
Position paper

Improving Trace-Based JIT Optimisation
using Whole-Program Information

Maarten Vandercammen Coen De Roover
Vrije Universiteit Brussel, Brussels, Belgium

{mvdcamme, cderoove}@vub.ac.be

Abstract
Trace-based just-in-time compilers use program analyses to
optimise execution traces. These analyses are limited in scope
to the parts of the program that have been traced. In this posi-
tion paper, we conjecture that trace optimisations can benefit
from extending the scope of their enabling analyses beyond
these traces to the set of possible future execution states of
the program. This by incorporating a static analysis which,
however, necessarily over-approximates this set. We therefore
propose to continuously refine the set of future states com-
puted by an initial, ahead-of-time analysis using run-time in-
formation about the current execution state of the program.
Additional static analyses launched at run time could further
refine the information about the future of the current and all
possible states. We expect that the resulting, hybrid program
view of static and dynamic information may enable additional
optimisations on collected traces and that these optimisations
may overcome the computational overhead of keeping the
view up-to-date.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation, Optimization;
F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program Analysis

Keywords JIT Compilation, Static Analysis, Incremental
Analysis, Hybrid Analysis

1. Introduction
Traditional ahead-of-time (AOT) compilers perform optimi-
sations such as loop invariant code motion, common subex-
pression elimination, loop unrolling, inlining, constant propa-
gation, register allocation etc., that are enabled by static anal-
yses. However, these analyses often struggle [3, 23] with fea-
tures that are common in dynamic languages, such as the

[Copyright notice will appear here once ’preprint’ option is removed.]

presence of dynamic typing, reflection and dynamic code
generation [13]. Furthermore, in a dynamic language that en-
ables redefining primitives, such as Scheme, it would be dif-
ficult to even apply constant propagation on the following
snippet of code: (define a (+ 1 2)). As the operator +
may have been redefined elsewhere in the program, a static
analysis may only soundly conclude that a should equal 3 if
it can first guarantee that the operator + is not redefined be-
fore reaching this expression. Such an analysis would become
even more convoluted in the presence of dynamic code gen-
eration, e.g., via eval expressions.

Execution environments for dynamic languages therefore
often incorporate just-in-time (JIT) compilation, as JIT com-
pilers can observe and subsequently optimise a program’s ex-
ecution. This information can guide optimisations, such as
type specialisation, which is in general difficult to acquire for
these languages using AOT compilation [11]. To retrieve this
knowledge, JIT compilers perform analyses. However, due
to the limited time budget that is available to JIT compil-
ers, these analyses are usually limited to the small part of the
program that is to be compiled. They therefore lack a holis-
tic view of the program and are thus limited to applying lo-
cal optimisations on the compiled program segments. This
makes it impossible to e.g., soundly determine whether the
value of a variable remains constant throughout the program,
even though this information would aid local optimisations
on these segments. In contrast, AOT compilers can afford to
spend the time required for building up a whole-program view
of the program via interprocedural static analyses, enabling
whole-program optimisations.

We therefore propose to combine both types of compila-
tion into a hybrid, two-stage technique:

1. Perform an ahead-of-time static, but necessarily impre-
cise, analysis of the program.

2. Update the results of this analysis with information that
is gathered at run time and, if necessary, rerun parts of
the analysis. These updated results can be used to further
improve performance of the dynamically compiled code.

We propose to incorporate this technique in trace-based
JIT compilers specifically, as their compilation scope is larger
than the one of the more common method-based JIT compil-



ers [14], increasing the number of optimisation opportunities
that become available thanks to the added static information.

In the following section, we give some background infor-
mation on trace-based JIT compilation. In Section 3, we give
a more detailed overview of our proposed technique. In Sec-
tion 4, we describe an initial prototype implementation. We
present related work in Section 5 and we conclude in Sec-
tion 6.

2. Trace-Based JIT Compilation
Trace-based JIT compilation [11] is an alternative to the more
common method-based JIT compilation. It builds on two
basic assumptions: most of the execution time of a program
is spent in loops, and several iterations of the same loop are
likely to take the same path through the program [5]. Trace-
based JIT compilers therefore do not limit themselves to the
compilation of methods, like method-based JIT compilers,
but they trace and compile frequently executed, “hot” loops.

Runtimes incorporating a trace-based JIT compiler usually
do so through mixed-mode execution. Initially, an interpreter
executes the program and profiles loops to identify hot ones.
When a hot loop is detected, the runtime starts tracing the
execution of this loop: the operations that are performed by
the interpreter while in this loop are recorded into a trace.
Tracing continues until the interpreter has completed a full
iteration of the loop. The recorded trace is then compiled and
optimised. Subsequent iterations of this loop will execute the
compiled trace.

Because a trace represents a single execution path, it must
ensure that the conditions that held while the trace was being
recorded still hold when it is executed. These assumptions
are checked by inserting guards encoding the corresponding
conditions in each trace. When a guard fails, execution of the
trace is aborted and the interpreter resumes normal interpreta-
tion of the program from that point onward. The point where
trace execution is aborted and interpretation restarts is called
a side-exit. Side-exits give rise to a performance penalty, be-
cause execution of the optimised trace must be aborted and
evaluation must proceed through regular interpretation of the
program. Most tracing compilers therefore include a mecha-
nism, called trace bridges, to switch execution from one trace
to another, once a guard has failed in the first trace [21].

Example Figure 1a depicts a Scheme program containing a
loop. The loop’s corresponding trace, consisting of pseudo-
code, is depicted in Figure 1b. As the expression (= n 0)

evaluated to false while tracing the first iteration of the loop,
the tracer inserted a guard guard false() that will check
whether this condition still evaluates to false during trace
execution.

3. Hybrid Analysis
Our proposed technique is based on the hypothesis that per-
formance of programs can be improved by extending the
scope of information available to a trace-based JIT com-
piler beyond the recorded traces themselves. This additional,

1 (define (sqr x)

2 (* x x))

3

4 (define (loop n result)

5 (if (= n 0)

6 result

7 (loop (- n 1)

8 (+ result

9 (sqr n)))))

10

11 (loop 100 0)

(a) The program to be traced.

loop:

t0 = n

t1 = result

int_cmp_equal(t0, 0)

guard_false()

t2 = int_subtr(t0, 1)

t3 = int_mult(t0, t0)

t4 = int_add(t1, t3)

n = t2

result = t4

jump(loop)

(b) The corresponding trace.

Figure 1: A loop in a program and its corresponding trace.

whole-program information may then enable further local op-
timisation of traces. Current trace-based JIT compilers can-
not perform optimisations that require such a whole-program
view, or they can only perform them by executing additional
run-time checks. AOT compilers for static languages man-
age to build up such a view through heavy-weight interproce-
dural analyses. However, their use for dynamic languages is
problematic, due to sources of imprecision, such as dynamic
typing and dynamic code generation, that are common in dy-
namic languages.

The lack of a global view of the program has a far-reaching
impact on trace-based JIT compilation. For example, were
the loop function in Listing 1 to be traced, a JIT compiler
could not substitute the constant 1 for the variable a in the
trace, as a may be re-assigned elsewhere in the program. Re-
executing the trace after this re-assignment would produce
incorrect values.

1 (let ((a 1))

2 (define (loop n)

3 (if (< n 0)

4 "done"

5 (loop (- n a))))

6 (loop 100)

7 ...)

Listing 1: Variable a at line 5 may be replaced by 1 if a is not
changed elsewhere in the program.

Existing JIT compilers for dynamic languages either
forego these value specialisation optimisations entirely, rely
on run-time profiling of variables to determine which vari-
ables seemingly remain constant [20], or depend on pro-
grammer annotations to promote variables which are likely
to remain constant [6]. The last two approaches require the
execution environment to verify that these variables have in-
deed remained constant, as it cannot be proven that this is the
case in general.

3.1 Run-Time Static Analysis
Performing a static analysis ahead-of-time for a dynamic lan-
guage may solve this issue in theory, but imprecision in its
results might preclude their use for optimisations in non-
trivial applications. We therefore propose to run static, whole-



program analyses at run time. By running such an analysis at
run time, we can incorporate observed information about the
execution of the program, which in turn should greatly im-
prove its precision. This increase in precision might produce
an accurate whole-program view, to the benefit of the optimi-
sations employed by JIT compilers.

In the remainder of this paper, we focus on applying a con-
stant propagation analysis at run time to find additional con-
stant expressions in the program. However, other analyses and
trace optimisations may benefit from our technique. Candi-
dates include a type inference analysis [12] and analyses that
detect which parts of the program are independent [17, 24],
i.e., which program segments do not have a race condition in
between them, and hence which parts of the program may be
executed in parallel.

3.2 Minimising Run-Time Overhead
To realise speedups with our technique, it will be crucial to
minimise the overhead of performing these analyses at run
time. To this end, the analyses will necessarily have to be
incremental [19]. This can be accomplished by running an
initial, heavyweight static analysis before executing the pro-
gram, as is done by AOT compilers, and letting the subse-
quent run-time analyses use and supplement the results from
this initial analysis and subsequent run-time analyses. Instead
of having to construct all analysis information from scratch,
an incremental analysis can reuse the information that was
computed by some previous analysis, and update it with new
concrete information about the execution of the program. In-
cremental analyses have been studied among others by Arzt
and Bodden [4] and Conway et al. [8]. Both of these projects
were in the context of static analyses that update the work of
previous analyses in response to changes to the source code
of the program. We intend to perform analyses that are incre-
mental with respect to updates about the observed informa-
tion that becomes available about the execution of the pro-
gram.

To further decrease the run-time overhead, we aim to run
these analyses, when possible, in parallel to the execution of
the program, on CPU cores that would otherwise remain idle.
This lets us take maximal advantage of the now widespread
multi- and manycore CPU architectures. Moreover, if at some
point it can be determined that a program trace cannot be
optimised any further, its analyses may be aborted, thereby
further reducing run-time overhead. As a final point, we be-
lieve this new approach may especially be of use for long-
running applications, such as on servers, where the time spent
analysing, optimising and compiling the code is only a frac-
tion of the overall time spent executing the program.

3.3 Challenges
We identify the following challenges for this technique to
realise speedups:

Launch Point of the Analysis The ideal moment to launch
an analysis must be determined. Continuously updating the
information, such as a program state graph, computed by an

earlier analysis while the program is executing will likely
cause too much an overhead. Instead, the analysis can be
launched upon reaching particular points of interest in the
program’s execution, such as the completion of a trace record-
ing. Analyses may also be launched upon passing a barrier
placed by a previous analysis, as is done in related work [12].
However, if the analysis is launched too early, later dynamic
features in the program, such as eval, can cloud the precision
of the analysis, as is the case in traditional static analyses. If
the analysis is too late, compiled traces may benefit less from
the enabled optimisations.

Scope of the Analysis The analyses should produce a pre-
cise whole-program view. As mentioned before, to minimise
run-time overhead, the analyses must be incremental. This
means that ideally, the run-time analyses would only range
over those parts of the program about which run-time infor-
mation has changed since the last time they were analysed.
Detecting which parts of the program must be re-analysed
will necessarily depend on the kinds of analyses and optimi-
sations that the compiler will employ.

Incorporating Run-Time Values The key insight of our
technique is to improve precision of static analyses by per-
forming them at run time such that observed values can be
incorporated. However, depending on the scope of the anal-
ysis, not all run-time information may be relevant. We must
therefore investigate which run-time facts improve precision,
and are therefore relevant, and which are not.

4. Initial Implementation
We have extended a trace-based JIT compiler for Scheme,
named STRAF1 so that it runs both an initial static analysis
before executing the program and multiple full, static analy-
ses at run time. It should be noted that these analyses are not
yet incremental: they are relaunched in full, from each point
in the program at which the compiler has completed recording
a trace. As can be expected, the corresponding run-time over-
head far exceeds any performance gains that can be achieved
by additional optimisations. However, our initial implemen-
tation already enables studying which kind of optimisations
now become possible, or which existing trace optimisations
can be improved using whole-program information.

The STRAF trace-based compiler integrates in Scala-AM
[25], a static analysis framework adhering to the abstracting
abstract machines (AAM) approach [26] to abstract interpre-
tation.

This approach enables developing one artefact, the so-
called AAM, that can execute both the concrete and the ab-
stract semantics of a program. In the first case, the AAM op-
erates on concrete values, such as regular numbers or strings,
and the AAM hence functions as a concrete interpreter for the
program. In the latter case, the AAM operates on abstract val-
ues, such as the type Integer as an abstraction of the set of
all concrete integers, and therefore functions as a static anal-

1 Publicly available at https://github.com/mvdcamme/scala-am

https://github.com/mvdcamme/scala-am


ysis of the program. Launching a static analysis from the cur-
rent point in the execution of a program can then be accom-
plished by converting a concrete AAM machine state to the
corresponding abstract machine state and continuing execu-
tion under the abstract semantics from there.

4.1 Initial Analysis
The initial static analysis that is currently launched by the
compiler aims to find variables, i.e., local variables, global
variables or even function parameters, in the program that can
be proven constant ahead-of-time. Note that the analysis cur-
rently employed by our prototype only considers a variable
constant if its value can be predicted by the analysis; vari-
ables initialised to a random value, or whose value depends
on user-input, are therefore automatically excluded.

When a trace has been recorded and is being optimised,
the optimiser can consult the set of constant variables that
was computed by the analysis and cross-reference it with the
set of variables looked up in the trace; any variable that is
looked up in the trace and which appears in the set of constant
variables can soundly be replaced by just its constant value.
This approach already enables us to replace the variable a in
the trace corresponding with the loop function in Listing 1
with its constant value 1.

4.2 Subsequent Run-Time Analyses
Although this initial analysis may already expose some con-
stants in the program, it might fail on less trivial applications.
Consider the program depicted in Listing 2. As the value of
a is a random value, it cannot be known ahead-of-time by
the initial analysis and the constant propagation optimisation
that was applicable on the trace earlier is no longer available.
As stated in Section 3, a traditional JIT compiler can observe
the run-time value of a, but as it cannot know whether a will
remain constant throughout the execution of the program, it
must place guards in the trace to verify that the value of a has
remained the same.

1 (let ((a (random 10)))

2 (define (loop n)

3 (if (< n 0)

4 "done"

5 (loop (- n a))))

6 (loop 1000)

7 ...)

Listing 2: The value of a cannot be computed ahead-of-time.

Our prototype launches a full, complete static analysis
anew when it has completed the recording of a trace. This run-
time analysis functions identically to the initial analysis. In
the case of the application in Listing 2, suppose the compiler
starts tracing the loop function, and that during this recording
it executes the alternative branch on line 5. It will then jump
to the beginning of the function on line 3 and stop recording
there, as it has completed a full iteration of the loop. At
this point, the compiler will launch a static analysis of the
remaining parts of the program. As the value of a is now

known, and if the analysis determines that this variable will
not be changed at any point further in the program, the lookup
of this variable in the trace can be replaced by its concrete
value. Our prototype thus combines static, whole-program
information, namely that a remains constant, with dynamic,
run-time information, namely the concrete value of a.

4.3 Optimising the Analyses
In some cases, it may be sound to abort the subsequent analy-
ses earlier, reducing the overhead of our technique. The anal-
ysis can conclude immediately that a variable does not remain
constant once it is assigned. However, as long as no assign-
ments of this variable have been detected, the analysis must
continue, as it may find one further on in the program.

By reducing the set of variables that needs to be checked,
the analysis may be aborted early: if an assignment has been
found for each of its variables, the analysis can be aborted. As
the static analysis is only used to replace lookups of variables
that appear in the trace, the set of variables that must be
checked can be limited to only those variables that appear
in the trace. This set can be further constrained by removing
all variables which have already been proven to be constant
by the initial analysis.

4.4 Results
To illustrate the potential of our technique, we apply it to the
program depicted in Listing 3. This program consists of a
Scheme loop of which each iteration decreases the loop index
by both a variable x and a variable y. The former equals 1

while the latter is a random number between 0 and 9. Once
initialised, neither x nor y is changed.

Listing 4 depicts the traces, consisting of the pseudo-
bytecode employed by STRAF, of the loop function from
Listing 3 that are produced by three different variations of the
STRAF compiler. The first trace is produced by the STRAF
compiler when it employs neither an initial analysis nor any
run-time analyses, i.e., as is the case in current state-of-the
art trace-based JIT compilers. The second trace corresponds
to a setting where an initial analysis of the program is per-
formed, but no run-time analyses are launched. The last trace
corresponds to our actual prototype technique: the compiler
performs an initial analysis and launches another run-time
analysis, after completing the recording of a trace for loop,
to refine the results of the initial one.

Each case represents an improvement on the previous case.
Whereas in the first trace, neither x nor y were substituted for
their respective constant values, in the second trace, the vari-
able x has been replaced by the value 1, as the initial analysis
correctly determined that x remains constant throughout the
program. However, this initial analysis could not predict the
value of y ahead-of-time. In the third case, the run-time analy-
sis employed by the compiler has observed the run-time value
of y, and as this value never changes, the run-time analysis
enables substituting its constant value for the variable lookup
operation.



1 (let ((x 1)

2 (y (random 10))) ; becomes 4

3 (define (loop n)

4 (if (< n 0)

5 "done"

6 (loop (- n x y))))

7 (loop 1000))

Listing 3: The program to be traced.

...

LookupVariable(n)

PushVal()

LookupVariable(x)

PushVal()

LookupVariable(y)

PushVal()

PrimCall(3,-)

...

(a) Perform neither
an initial nor a run-
time analysis.

...

LookupVariable(n)

PushVal()

ReachedValue(1)

PushVal()

LookupVariable(y)

PushVal()

PrimCall(3,-)

...

(b) Perform an ini-
tial but no run-time
analysis.

...

LookupVariable(n)

PushVal()

ReachedValue(1)

PushVal()

ReachedValue(4)

PushVal()

PrimCall(3,-)

...

(c) Perform both an
initial and a run-
time analysis.

Listing 4: Three traces corresponding to the above loop, with
the initial and run-time analysis either enabled or disabled.

1 (let ((x (random 10))

2 (y (random 10))

3 (z (random 10)))

4 (define (loop1 n)

5 (if (< n 0)

6 "done"

7 (loop1 (- n x y z))))

8 (loop1 1000)

9 (set! y (random 10))

10 (set! z (random 10))

11 (define (loop2 n)

12 (if (< n 0)

13 "done"

14 (loop2 (- n x y z))))

15 (loop2 1000)

16 (set! z (random 10))

17 (define (loop3 n)

18 (if (< n 0)

19 "done"

20 (loop3 (- n x y z))))

21 (loop3 1000)

22 (loop1 1000)

23 (loop2 1000)

24 (loop3 1000))

Listing 5: Three random values and three separate loops.

Analysis nr. Constant variables found
Initial analysis { }

Run-time analysis 1 { x }
Run-time analysis 2 { x, y }
Run-time analysis 3 { x, y, z }

Table 1: The constant variables found by each analysis.

Listing 5 illustrates the potential of our prototype when
launching multiple run-time analyses. The program consists
of three variables x, y and z, and three different loops, each of
which are called from two separate locations. As our proto-
type launches a run-time analysis after completing the record-
ing of a trace, the compiler will launch three run-time analy-
ses: after starting loop1 at line 8, after starting loop2 at line
15 and after starting loop3 at line 21, in addition to an initial
analysis. However, as each of the three variables is initialised
to a random value, the ahead-of-time analysis cannot predict
any of the variables’ values. Additionally, the first run-time
analysis, i.e., the analysis that is launched after completing
the recording of a trace for loop1, only finds the variable
x constant, as the variables y and z are re-assigned at lines
9 and 10. Note that the trace for loop1 will be re-executed
when reaching line 22, so if the variables y or z were to be
substituted for their run-time values in the trace now, the sec-
ond execution of this trace would produce incorrect values.
Similar to the first one, the second run-time analysis cannot
conclude that z is constant, as it is again re-assigned at line
16. Only the last run-time analysis can soundly substitute the
values of all three variables in the trace of loop3, as shown
in Table 1.

This example shows that in some situations it may be ben-
eficial for our prototype to launch several run-time analyses
successively. The advantage will become even greater once
the analyses become incremental and can reuse each others’
results.

4.5 Discussion
Our prototype represents a first step towards the realisation
of our proposed technique: it already extends the scope of
available information for the trace optimiser with a static,
whole-program view. This enables experimenting with newly
enabled optimisations, and with improvements to existing
ones.

Much work remains to be done however. The amount of
time spent in the run-time static analysis currently outweighs
any performance improvements that can be made by possible
new optimisations, because each analysis is restarted anew,
instead of incrementally building on the work computed by
an earlier analysis. We have focused on implementing a con-
stant propagation optimisation and are currently investigating
which additional optimisations may be added.

In conclusion, we can say that the current implementation
approaches the three challenges that were identified in Sec-
tion 3.3 in the following way:

Launch Point of the Analysis The analysis is started when
the compiler finishes recording a trace.

Scope of the Analysis Starting from the current location
in the program, each analysis keeps running until it reaches
the end of the program. The current analysis is therefore not
incremental.

Incorporating Run-Time Values As the scope of the run-
time analyses can effectively be the entire program, all run-



time, concrete values are converted to abstract values, because
this naive analysis cannot predict which values will be rele-
vant and which will not.

5. Related Work
5.1 JaegerMonkey
Our work is similar to the work of Hackett and Guo [12],
who extended Mozilla’s JaegerMonkey Javascript JIT com-
piler with a hybrid type inference technique to type specialise
the dynamically compiled code. They perform an initial static
analysis on a Javascript application, which generates an un-
sound set of type constraints for all expressions and state-
ments in the program. To handle the imprecision caused by
polymorphism in the code, the initial analysis generates run-
time type barriers between constraints to restrict the set of
types that could flow from one constraint to another. These
type barriers are triggered at run time. If they are passed with
a type they have not seen before, the new type value is propa-
gated further through the constraints at run time. Constraints
can also be generated by the analysis at run time. The ap-
proach leads to performance improvements of up to 50% on
some benchmarks.

There are some differences between our technique and
JaegerMonkey. As Hackett and Guo employ this technique
to execute Javascript programs, the client program only be-
comes available when a website is loaded. As a result, initial
analysis of the program necessarily has to be kept lightweight,
so as to minimise the analysis time spent before execution.
In contrast, our prototype operates on Scheme code. This
enables us to run heavyweight analyses on client programs
which can maximise the amount of information available be-
forehand, and minimise the amount of information that must
be computed anew at run time. Furthermore, although the
JaegerMonkey analysis can potentially range over the entire
program, the optimisations only employ local type informa-
tion of the program, instead of the optimisations that use a
global view of the program like we propose. JaegerMonkey’s
technique is based on inclusion constraints, our technique is
based on abstract interpretation via the AAM approach. The
AAM approach potentially facilitates incorporating run-time
information in the static analysis, as the static analysis works
on a direct abstraction of the concrete semantics of the pro-
gram. Lastly, JaegerMonkey is a method-based compiler, in-
stead of the trace-based JIT compilers that we target. We be-
lieve the increased scope that is available to traces [14] can
enhance the benefit of new optimisations that will become
available.

5.2 Static Analysis and JIT Compilation
Although many, if not most, JIT compilers apply a lightweight
analysis at run time over the code that is being compiled,
Jaegermonkey is the only JIT compiler, to the best of our
knowledge, which runs a static analysis over potentially the
entire program at run time and which reuses the work com-
puted by an initial analysis.

There are some JIT compilers that perform an initial anal-
ysis followed by a run-time, but local, analysis. However,
in such compilers, the run-time analyses do not reuse the
work of an earlier analysis, if there was one, and are also
limited to a specific, local part of the program. An exam-
ple is the McVM JIT compiler for MATLAB which was ex-
tended by Lameed and Hendren [16] with a two-stage static
analysis for optimising copying of arrays. In the first stage,
the compiler performs a simple static analysis over the pro-
gram ahead-of-time to remove redundant copies. In the sec-
ond stage, the compile combines two static analyses at run
time to further optimise copying.

5.3 Dynamic Languages
Several recent empirical studies have investigated to what ex-
tent developers use dynamic features in dynamic languages,
such as reflection and dynamic code generation [2, 7, 13, 18].
Although it is often said that these features are not commonly
used by developers, these studies have partially refuted this
claim. The results of these studies are important, as they in-
dicate to which degree precision of static analyses can be im-
proved by running the analyses at run time. It can be con-
cluded from the studies that call-site monomorphism is high,
even in dynamic languages: up to 81% in Javascript [18] and
up to 97% in Python [1]. This means that, once the type of a
receiver object is known, e.g., by looking at the concrete run-
time type, this type will generally remain stable, facilitating
further static analysis.

The level of other dynamic activity, i.e., reflection and
dynamic code generation, depends on the language under
consideration, with Javascript seemingly being used in much
more dynamic manner [18] than Smalltalk [7].

To address the challenge of finding an ideal launchpoint of
a static analysis, we look at studies which have investigated
the amount of dynamic activity that takes place throughout
the execution of a program. Holkner and Harland [13] re-
ported that interactive Python programs show a remarkable
higher level of dynamic activity in the startup phase of the
program, compared with after this startup phase. This indi-
cates that it might be optimal to analyse the program after
completing the startup phase. However, these findings were
disputed by Åkerblom et al. [2]. They also do not seem to be
applicable to Javascript programs [18].

Sherwood et al. [22] have presented several clustering
algorithms that attempt to explore phase-changes in the large-
scale behaviour of a program. These algorithms may also be
of use for us for finding launchpoints of run-time analyses.

5.4 Analysis at Run Time
Ernst [10] has noted similarities between dynamic analyses,
operating on concrete values, and static analyses, operating
on abstract values. He proposes to develop hybrid static-
dynamic analyses, but does not present concrete examples
of such analyses. Jenkins et al. [15] developed a theoretical
framework, along with a practical implementation, for mixing
concrete and abstract interpretation, but no concrete analysis



is presented within this framework. Dufour et al. [9] devel-
oped a blended analysis for measuring the lifespan of objects
created in framework-based Java applications. The blended
analysis combines dynamic and static analysis by performing
an offline static escape analysis on a call-graph that was ob-
tained by dynamic analysis of the program. This approach en-
ables avoiding the run-time overhead of dynamic monitoring
of the program, while still being able to operate on a precise
call-graph.

6. Conclusion
In this position paper, we outlined an approach for improving
performance of trace-based JIT compilation by extending
the local scope of information that is available to the trace-
based JIT compiler with a global view of the entire program.
The extended scope of information may expose additional
sources of optimisations on traces by e.g., identifying sources
of constants, soundly inferring types or finding independent,
and therefore parallelisable, program segments. To achieve
this global program view, we perform static, whole-program
analyses over the program. To handle imprecision in static
analyses for dynamic languages, we perform an initial, ahead-
of-time static analysis and we update its results at run time
by incorporating concrete run-time information, possibly in
the process launching new analyses. To minimise the run-
time overhead, such run-time analyses should be incremental,
building on the work computed by both the initial, ahead-
of-time analysis and previous run-time analyses. To further
decrease overhead, we aim to run the analyses in parallel
to the actual program execution whenever possible, on CPU
cores that would otherwise remain idle.

We have made an initial step towards a full realisation
of this technique by launching full static analyses over a
program at run time, after completing the recording of a trace.
These analyses are not yet incremental, but must be started
completely anew. Nevertheless, they were already successful
in finding constants that could not be predicted ahead-of-time.

References
[1] B. Åkerblom and T. Wrigstad. Measuring polymorphism in

python programs. In Proceedings of the 11th Symposium on
Dynamic Languages, DLS 2015, 2015.

[2] B. Åkerblom, J. Stendahl, M. Tumlin, and T. Wrigstad. Tracing
dynamic features in python programs. In Proceedings of the
11th Working Conference on Mining Software Repositories,
MSR 2014, 2014.

[3] E. Andreasen and A. Møller. Determinacy in static analysis for
jquery. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, 2014.

[4] S. Arzt and E. Bodden. Reviser: Efficiently updating ide-/ifds-
based data-flow analyses in response to incremental program
changes. In Proceedings of the 36th International Conference
on Software Engineering, ICSE ’14, 2014.

[5] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proc. of the 4th
ICOOOLPS Workshop, 2009.

[6] C. F. Bolz, A. Cuni, M. Fijlakowski, M. Leuschel, S. Pedroni,
and A. Rigo. Runtime feedback in a meta-tracing jit for ef-
ficient dynamic languages. In Proceedings of the 6th Work-
shop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems, ICOOOLPS ’11,
2011.

[7] O. Callaú, R. Robbes, E. Tanter, and D. Röthlisberger. How de-
velopers use the dynamic features of programming languages:
the case of smalltalk. In Proceedings of the International Work-
ing Conference on Mining Software Repositories, MSR’11,
2011.

[8] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards.
Incremental algorithms for inter-procedural analysis of safety
properties. In K. Etessami and S. K. Rajamani, editors, Pro-
ceedings of the 17th International Conference on Computer
Aided Verification, 2005.

[9] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis for
performance understanding of framework-based applications.
In Proceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’07, 2007.

[10] M. D. Ernst. Static and dynamic analysis: Synergy and duality.
In WODA 2003: ICSE Workshop on Dynamic Analysis, WODA
’03, 2003.

[11] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based just-in-time type spe-
cialization for dynamic languages. In Proc. of the 30th ACM
SIGPLAN PLDI Conf., 2009.

[12] B. Hackett and S.-y. Guo. Fast and precise hybrid type infer-
ence for javascript. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI ’12, 2012.

[13] A. Holkner and J. Harland. Evaluating the dynamic behaviour
of python applications. In Proceedings of the Thirty-Second
Australasian Conference on Computer Science - Volume 91,
ACSC ’09, 2009.

[14] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-
based java jit compiler retrofitted from a method-based com-
piler. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO
’11, 2011.

[15] M. Jenkins, L. Andersen, T. Gilray, and M. Might. Concrete
and abstract interpretation: Better together. In Proceedings of
the 2014 Scheme and Functional Programming Workshop, SFP
’14, 2015.

[16] N. Lameed and L. Hendren. Staged static techniques to effi-
ciently implement array copy semantics in a matlab jit com-
piler. In International Conference on Compiler Construction,
CC ’11, 2011.

[17] J. Nicolay, C. De Roover, W. De Meuter, and V. Jonckers. Auto-
matic parallelization of side-effecting higher-order scheme pro-
grams. In Proceedings of the 11th IEEE International Work-
ing Conference on Source Code Analysis and Manipulation,
SCAM ’11, 2011.



[18] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of javascript programs. SIGPLAN Not.,
45(6), June 2010.

[19] D. Saha and C. R. Ramakrishnan. Incremental and demand-
driven points-to analysis using logic programming. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, PPDP
’05, 2005.

[20] H. N. Santos, P. Alves, I. Costa, and F. M. Quintao Pereira.
Just-in-time value specialization. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), CGO ’13, 2013.

[21] D. Schneider and C. F. Bolz. The efficient handling of guards
in the design of rpython’s tracing jit. In Proc. of the 6th ACM
VMIL Workshop, 2012.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior. SIGOPS
Oper. Syst. Rev., 36(5), Oct. 2002.

[23] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.
Correlation tracking for points-to analysis of javascript. In
European Conference on Object-Oriented Programming, 2012.

[24] Q. Stievénart, J. Nicolay, W. De Meuter, and C. De Roover.
Detecting concurrency bugs in higher-order programs through
abstract interpretation. In Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative
Programming, PPDP ’15, 2015.

[25] Q. Stievénart, M. Vandercammen, J. Nicolay, W. De Meuter,
and C. De Roover. Scala-am: A modular static analysis frame-
work. In Proceedings of the 16th IEEE International Work-
ing Conference on Source Code Analysis and Manipulation,
SCAM ’16, 2016.

[26] D. Van Horn and M. Might. Abstracting abstract machines. In
Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’10, 2010.


	Introduction
	Trace-Based JIT Compilation
	Hybrid Analysis
	Run-Time Static Analysis
	Minimising Run-Time Overhead
	Challenges

	Initial Implementation
	Initial Analysis
	Subsequent Run-Time Analyses
	Optimising the Analyses
	Results
	Discussion

	Related Work
	JaegerMonkey
	Static Analysis and JIT Compilation
	Dynamic Languages
	Analysis at Run Time

	Conclusion

