
Dependence-Driven Delimited CPS
Transformation for JavaScript

Laure Philips Joeri De Koster Wolfgang De Meuter Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium

{lphilips, jdekoste, wdmeuter, cderoove}@vub.ac.be

Abstract
In today’s web applications asynchronous requests to remote ser-
vices using callbacks or futures are omnipresent. The continua-
tion of such a non-blocking task is represented as a callback func-
tion that will later be called with the result of the request. This
style of programming where the remainder of a computation is
captured in a continuation function is called continuation-passing
style (CPS). This style of programming can quickly lead to a phe-
nomenon called “callback hell”, which has a negative impact on the
maintainability of applications that employ this style. Several alter-
natives to callbacks are therefore gaining traction within the web
domain. For example, there are a number of frameworks that rely
on automatically transforming code, written without callbacks in
a direct sequential style, into the continuation-passing style. How-
ever, these frameworks often employ a conservative approach in
which each function call is transformed into CPS. Even when they
do a selective transformation they will often encapsulate the entire
remainder of the computation in the continuation. This conserva-
tive approach can sequentialise requests that could otherwise be
run in parallel. So-called delimited continuations can remedy, but
require special marks that have to be manually inserted in the code
for marking the beginning and end of the continuation. In this paper
we propose an alternative strategy in which we apply a delimited
CPS transformation that operates on a Program Dependence Graph
instead to find the limits of each continuation. We implement this
strategy in JavaScript and demonstrate its applicability to various
web programming scenarios.

Categories and Subject Descriptors D.3.4 [Processors]: Code
Generation

Keywords CPS transformation, Program Dependence Graph,
JavaScript

1. Introduction
Transformation of code into continuation-passing style is a well-
known strategy for compiling and optimisation [1]. For example,
compilers for higher-order languages frequently use this style as
an intermediate representation of a program. This is because the

compiler can perform more optimisations on this intermediate rep-
resentation than on the source code [7].

A more recent application of continuations can be found in the
web domain. Because of its distributed nature, most web devel-
opers are used to programming with continuation functions, of-
ten referred to as callbacks. For example, the PLT Scheme Web
Server [15] uses continuations to handle requests from clients.
The browser environment and NodeJS (which enables running
JavaScript on the server) are both single-threaded. This means
that developers are forced to write in an asynchronous style with
explicit continuations in order for their applications to remain re-
sponsive. For example, callbacks are needed in the user interface,
e.g., when the user clicks a button, or when accessing a service
on another distributed node. However, programming directly in
continuation-passing style is laborious and error-prone. When dif-
ferent asynchronous requests rely on the result of other previous re-
quests these callbacks can become deeply nested. This well-known
problem is called the callback hell or pyramid of doom which lim-
its the maintainability of the resulting code. Often every callback
is also responsible for its own failure handling (e.g., the service
you are trying to reach is not available), further complicating the
spaghetti of callbacks. As a result, promises, generators and re-
active programming gain traction with web programmers. These
approaches enable the programmer to manage asynchronous calls
in a more direct way. Next to these approaches, CPS transforma-
tion tools are an alternative approach for web programming that
is on the rise. By eliminating callback functions completely, they
enable programmers to write code in a synchronous style with-
out impacting the responsiveness of the resulting application. The
transformation of the synchronous code into the CPS version of the
same program is left to the compiler or code transformation tool.
Section 5 provides an in depth discussion of a number of these
tools.

One caveat of such an automatic transformation is that the re-
sulting CPS code which is outputted by the compiler is not al-
ways meant to be human readable. Moreover, the control flow of
the direct-style program is lost after the transformation into a CPS.
This drastically impacts the development process for the developer,
as the transformed code is often the one that is tested and debugged.
This raises an important issue, a debugger that works on the trans-
formed code should be tightly integrated with the compiler such
that runtime bugs can be reported on the original direct-style pro-
gram rather than on the transformed code. Some specialised tools
already exist that aim to help the programmer with this issue [26],
such as tools that support inverse CPS transformations.

Another problem with a number of existing code transforma-
tion tools is that they follow a conservative approach while trans-
forming the direct-style program in which the entire remainder of
the program is encapsulated in each continuation. This can lead to
the sequentialisation of independent requests that could otherwise

run in parallel. For example, when dealing with concurrency the
notion of the rest of the computation is not practical [10]. Sub-
continuations [10], sometimes also referred to as delimited, partial
or compose-able continuations [8], address this issue by capturing
only a part of the remainder of the program. The borders of a con-
tinuation have to be made explicit through delimited control op-
erators such as shift and reset. Delimited continuations have
proven useful in the context of concurrency, partial evaluation and
even mobile computing [12]. In order to improve the performance
of the resulting application, a transformation tool that targets de-
limited continuations might be desirable.

A third problem with some CPS transformation tools is that they
convert each and every function into its continuation-passing equiv-
alent. This is often undesirable as only functions that have compu-
tational effects should be converted to CPS [21]. Deciding whether
a function should be transformed can be based on a strictness anal-
ysis [4], effect analysis [21], or on programmer-provided annota-
tions as in Scala [23]. These selective transformations are needed
when transformed code needs to be linked with untransformed code
from libraries, or in situations where the performance overhead in-
troduced by the transformation [5] should be minimised.

In this paper we propose an alternative CPS transformation tool
based on delimited continuations that is guided by a control and
data flow analysis of the program. Our approach enables trans-
forming a direct-style program into its continuation-passing form
without the need for explicit delimited operators. To this end, we
construct a Program Dependence Graph of the program; a directed
graph of which the edges correspond to data and control depen-
dences [14, 27]. These graphs have been shown by Kuck et al. [16]
to be an appropriate vehicle for developing program optimisations.
We improve upon existing transformation tools on the nesting level
of independent callbacks and remove for the need for operators at
every call site. Moreover, our approach improves the readability of
the resulting code by respecting the structure and variable names of
the original program as much as possible.

The contributions of this paper are as follow:

• A delimited CPS transformation based on a dependence graph
instead of explicit dedicated control operators,
• General approach to selective CPS transformation on top of the

delimited CPS transformation,
• Concrete implementation of this approach for JavaScript.

2. Motivation
In this section we illustrate the issues raised in the previous section
by means of a small motivating example written in NodeJS. Our
example, as shown in Listing 1, accomplishes two separate tasks. It
first requests the temperature for the city of Brussels from a weather
service and writes the result to a file (lines 5–24). Next, it starts up
a server that reads out a welcome text from a file and returns it to
every client that connects (lines 33–39).

1 var fs = require(’fs’),
2 request = require(’request ’),
3 http = require(’http’);
4 /* Get temperature for given location */
5 function getTemperature (city , cb) {
6 var url = ’http :// weatherapi/weather?q=’ + city;
7 request(url , function (error , response , body) {
8 if (error)
9 cb(error , null);

10 else if (response.statusCode == 200) {
11 var data = JSON.parse(body),
12 temp = parseFloat(data.temp_C);
13 fs.writeFile(’temp.txt’,temp ,function (err){
14 if (err)
15 cb(err , null);
16 console.log(’temperature written ’);

17 cb(null , temp);
18 })
19 }
20 else {
21 cb(new Error(’Get temperature ’), null);
22 }
23 })
24 }
25
26 getTemperature(’Brussels ’, function (err , temp) {
27 if (err)
28 throw err;
29 console.log(temp);
30 }
31
32 /* Create the server */
33 http.createServer(function (req , res) {
34 fs.readFile(’welcome.txt’, function (err ,data){
35 if (err)
36 throw err;
37 res.write(data.toString ());
38 })
39 }).listen (8080 , ’localhost ’)

Listing 1. Callbacks in Node.js.

The code depicted in Listing 1 has been simplified at certain
parts but still captures the essence of the example. Because the tem-
perature file can only be written (line 13) once the result of the tem-
perature request (line 7) is known the callback for fs.writeFile
needs to be nested inside the callback for the temperature request.
In more complex examples any of these dependencies between call-
backs introduces another level of CPS. This could result in an ar-
bitrarily deep nesting of callback functions, rendering the program
difficult to read, debug, and maintain. Every callback is moreover
responsible for handling its error argument, further complicating
the code.

Note that the callback for createServer on line 33 does not
encapsulate the call to getTemperature or vice versa. This was
intentional as those two parts of the application are independent.
This becomes important later as more conservative approaches of
automatic CPS transformation tools might not detect this.

The most common solution to structuring asynchronous code
and avoiding scattered error handling in JavaScript is by using
promises. Asynchronous requests in JavaScript return a promise,
which can be consumed by calling the then primitive which ac-
cepts as an argument a function that will be called once the promise
is fulfilled. Because the then primitive itself returns a promise
these can effectively be chained together, thus avoiding the nest-
ing of callbacks. Additionally, promises allow error handling code
to be grouped into one single catch-clause, instead of being scat-
tered throughout the different nested callbacks. However, promises
merely provide a syntactic improvement over manual callback
functions. The program still needs to be written in a CPS where
the continuation of the program has to be provided as the argument
of the then primitive.

Alternatively there exist a number of semi-automated CPS
transformation tools that generate a CPS version of the program
from a direct-style implementation. Libraries such as CONTINUA-
TION.JS and STREAMLINE.JS1 are examples of such tools. What
these two libraries specifically have in common is that all asyn-
chronous calls can be written down as synchronous function calls
that take a special construct as additional argument instead of a
callback. That construct marks a function call for the library to
guide its CPS transformation.

Listing 2 shows how our motivating example could be written
down using CONTINUATION.JS. Each of the asynchronous calls of

1 https://github.com/BYVoid/continuation https://github.
com/Sage/streamlinejs

Listing 1 has been transformed into a synchronous function call
marked with an extra cont parameter. The cont special construct
takes the same parameters as the callback function it replaces.
The example can be implemented in a synchronous style. The
continuation of the program no longer needs to be stored in an extra
callback and thus the program no longer needs to be written in a
CPS.

1 function getTemperature(city , callback) {
2 var url = ’http :// weatherapi/weather?q=’ + city ,
3 body , response;
4 request(url , cont(error , response , body));
5 if (error)
6 throw error;
7 else if (response.statusCode == 200) {
8 var data = JSON.parse(body),
9 temp = parseFloat(data.temp_C);

10 fs.writeFile(’temp.txt’, temp , cont(error));
11 if (error)
12 throw error;
13 console.log(’temperature written ’);
14 }
15 }
16
17 getTemperature(’Brussels ’, cont(temperature));
18 console.log(temperature);
19
20 /* Create the server */
21 http.createServer(function (req , res) {
22 fs.readFile(’welcome.txt’, cont(error , data));
23 if (error)
24 throw error;
25 res.write(data.toString ());
26 }).listen (8080 , ’localhost ’)

Listing 2. Writing synchronous code with CONTINUATION.JS.

Failure handling in CONTINUATION.JS is supported by means
of the familiar try/catch block. For example, the programmer
could add a try/catch block around the call to getTemperature
at line 17. The transformation tool will then make sure that any
runtime errors that are thrown in the transformed code are properly
propagated to the correct catch block.

The code generated by CONTINUATION.JS is depicted in List-
ing 3. For saving space, we have only included the transformed
code for lines 17–26 of Listing 2. As expected, for every marked
function call corresponding callback functions have been gener-
ated and their return values are bound to the correct declarations.
The details of the transformed code are not important, however we
do want to point out an important difference between the control
flow of the resulting code and the control flow of our initial ver-
sion with a manual CPS transformation. As noted earlier, the calls
to getTemperature and createServer are independent of each
other and can be run concurrently. However, because the transfor-
mation tool does not have access to this information it will con-
servatively nest the call to createServer in the continuation of
the call to getTemperature (line 4). This sequentialisation of in-
dependent requests has several drawbacks with respect to perfor-
mance, fault-tolerance and responsiveness. Firstly, because of this
sequentialisation multiple independent requests cannot be issued
in parallel. For example, this decreases the performance for those
applications that issue requests to multiple services and then com-
bine the results as those requests will be sequentialised. Secondly,
if one request fails, the control flow of the program is broken and
other requests further up the chain are not executed, severely lim-
iting the fault-tolerance of the entire application. This is especially
problematic when issuing several independent requests. If one re-
quest fails this can cause other nested independent requests never
to be executed. Lastly, the responsiveness of the application can be
impacted as well as one of the callbacks that is responsible for re-

acting to user input might unintentionally be nested within other
long-running requests.

The CONTINUATION.JS library has an advantage over other li-
braries in terms of maintainability as it preserves the variables
names of the original program after the transformation. However,
as noted before, ideally the debugger is integrated with the trans-
formation tool in such a way that runtime bugs can be reported
on the original code. Section 5 gives a more in depth analysis and
comparison of the existing frameworks.

1 getTemperature(’Brussels ’, function (arguments ,
_$param4) {

2 temperature = _$param4;
3 console.log(temperature);
4 http.createServer(function (req , res) {
5 var err , data;
6 fs.readFile(’temp.txt’, function (arguments ,

_$param5 , _$param6) {
7 err = _$param5;
8 data = _$param6;
9 if (err) {

10 throw err;
11 }
12 res.write(data.toString ());
13 }.bind(this , arguments));
14 }).listen (8080 , ’localhost ’);
15 }.bind(this , arguments));

Listing 3. Generated code by CONTINUATION.JS for Listing 2.

In conclusion, with our approach we aim to improve over exist-
ing work on three levels:

• Concurrency: Existing approaches conservatively wrap each
asynchronous request in the continuation of the previous re-
quest regardless of whether they are independent or not. This
limits the performance, fault-tolerance and responsiveness of
the resulting application.
• Implicit transformation: A lot of existing approaches require

the programmer to not only explicitly mark every asynchronous
request in the original code but also explicitly mark every func-
tion that can potentially issue an asynchronous request in its
control flow. In this paper we advocate for an implicit approach
where the burden is put on the transformation tool to identify
which calls need to be transformed.
• Maintainability: To improve maintainability the transformed

code should preserve as much as possible the structure and vari-
able names of the original program. This facilitates understand-
ing, testing and debugging of the transformed code. Ideally this
should permit the programmer to understand and modify the
transformed CPS code after it has been deployed.

This paper advocates an approach that is aware of the dependen-
cies between the different instructions in the code in order to exploit
the available concurrency within the transformed code. Continua-
tions only encapsulate the instructions on which it depends and that
are strictly necessary. This results in a transformed code that better
respects the behaviour of the original code in terms of performance,
fault-tolerance and responsiveness.

In contrast with other approaches we do not add explicit lan-
guage constructs to mark asynchronous requests that need to be
transformed. This means it is up to the transformation tool to iden-
tify potential asynchronous function calls and transform the code
into a CPS where necessary. However, this also implies the pro-
grammer no longer has control over how the transformation tool
transforms the code and where a CPS is applied. In order to im-
prove this we have added a number of optional explicit language
constructs that allow the programmer to influence the transforma-
tion process. These are discussed in more detail in section 3.3.

This implicit transformation has as an advantage that the code is
more configurable. This approach can be applied to calls between
server and client tier, which are asynchronous by default. Take for
instance code with local calls which the transformation converts to
remote procedure calls with a callback function. When the devel-
oper decides that a certain part of the code should be on the server
instead of the client, the code can be copied as is, without the need
to remove explicit continuation marks.

Eventually our aim is to integrate a debugger with our transfor-
mation tool in such a way that any runtime state can be reported on
the original code while the debugger is executing the transformed
code. Additionally, our approach also attempts to maintain as much
as possible the structure and variable names of the original program
in order to improve the maintainability of the transformed code.

3. Overview of the Approach
Our program transformation tool performs its transformation in two
steps. Starting from the synchronous, direct-style program code, the
transformation tool first constructs a program dependency graph
(PDG). This graph is then used together with the abstract syntax
tree in a second step as input for the actual CPS transformation.
We now describe the accepted input language and the constructed
program dependency graph that act as input for the transformation.

3.1 Input A : Synchronous Code
Our approach is targeted towards the web domain. Because of this
our framework accepts JavaScript as a target language. However,
our approach is general enough to be applied to any higher-order,
general-purpose language.

Our framework accepts any valid JavaScript program as in-
put. Additionally, any explicit callback parameters of asynchronous
function calls can be omitted. In that case, the asynchronous func-
tion call can be used as an expression in a synchronous context
where an immediate result is required. For example, Listing 4 de-
picts a server-side JavaScript program that uses an external API
to collect information about boardgames to display on a webpage.
In this example two requests are issued to the external API. First
the latest and ‘hottest’ boardgames are fetched. Secondly, several
requests are issued to fetch the latest games friends have been play-
ing2. Please note that the function arguments on line 9 and 15 are
not callback functions that wait for the call to return but are actually
event listeners.

1 function options(path) { //e2 f1 in
2 return { // f1 out
3 hostname: ’bgg -json.azurewebsites.net’, //s1
4 path: path , //s2
5 method: ’GET’ //s3
6 }
7 }
8 var latest = https.get(options(’/hot’)); //s4 c1
9 latest.on(’data’, function (d) { //s5 c2

10 console.log(d);
11 })
12 var friends = [’lphilips ’, ’jdekoste ’, ’wdmeuter ’,

’cderoove ’]; //s6
13 friends.forEach(function (friend) {
14 var played = https.get(options(’/plays/’ +

friend));//s7 c3
15 played.on(’data’, function (d) { //s8 c4
16 console.log(d);
17 })
18 })

Listing 4. Sample program in direct-style JavaScript with mapping
to nodes

2 We collect this information from boardgamegeek.com using a
Boardgamegeek API http://bgg-json.azurewebsites.net/

On Line 1 we first define a function that constructs the request
object that needs to be included when using the HTTPS module3.
The path parameter can either be ’/hot’ to retrieve the most popular
games or ’/plays/uname’ to obtain the latest games the user with
username uname has played.

On line 8 the callback parameter of the request was omitted and
the request is used as a synchronous function call of which the
result is stored in the latest variable. To simplify the example,
we have omitted the client-side code and only print the results to
the console. Similarly, on lines 13 we iterate over a list of friends
and on line 14 request the latest games played by each of those
friends. This request can be used as a synchronous expression for
which the result is stored in the played variable.

Any asynchronous function call can just omit the callback pa-
rameter and be used in a synchronous context. This is in contrast to
other existing approaches, where the developer is required to man-
ually mark asynchronous function calls or definitions.

3.2 Input B : the Program Dependence Graph
The second input to our transformation is information about the
dependencies between the different parts of the program. This
information is carried by a program dependence graph that contains
all control and data flow dependencies.

More concretely, a PDG is a directed graph of which the nodes
correspond to instructions and branch predicates, and of which the
edges correspond to data and control dependences [14, 27]. An
instruction is data dependent on another if values flow from the
latter to the former. An instruction is control dependent on a branch
predicate if the outcome of the latter determines whether the former
will be executed. For instance, the instructions in the body of a
function are control dependent on the entry node of that function.
A program dependence graph also incorporates parameter binding
edges from concrete arguments of a call to the formal parameters
of the function definition.

e0

e2

f1
in

f1
out

o1

s4

c1

a1
out

a1
in

s5

c2

a2
in

s7

c3

a2
out

a3
in

control
data
call

e

s

f

c

aentry formal
parameter
in/out

actual
parameter
in/out

statement call

NODES DEPENDENCIES

s1
s2

s3

object member
o object entry

e1

library
function

s6 s8

c4

a4
in

Figure 1. PDG for the code given in Listing 4.

Figure 1 depicts the PDG for the code given in Listing 4. Not all
details are present, but all necessary parts to explain our approach
are. The root node e0 of the program has control dependencies
to seven PDG nodes: two function definitions and five statements,
which are all control dependent on the root node. The library func-
tion https.get is represented as an entry node (e1), without all
details (parameters, body). The definition of the function options
adds a new entry node (e2), which has one return statement as
its body. This return statement creates an object literal, resulting in
an object entry node. This object literal has three object members:
hostname, path and method. The option function has one pa-
rameter path, represented in the PDG as a formal parameter node

3 https://nodejs.org/api/https.html

f1in. This path parameter is sent along to the actual request to
obtain a list of boardgames, rendering statement s2 data dependent
on the formal parameter node. The function has a concrete return
value, the object literal which contains all the information for the
request, so a formal out parameter is added to the function (f1out).

The two variable declaration statements for latest and played
each contain a call to the https.get library function. This means
that these statements have a call node that is call dependent on the
entry node of the function that is called4. A call node has an ac-
tual parameter for each formal parameter of the invoked function.
We omitted the parameter-binding edges for presentation purposes,
these would bind the corresponding actual in nodes with the formal
in parameters of the called function and likewise the formal and
actual out parameters. These parameter-binding edges produce a
transitive flow from the call node to the function nodes and back.

In the code example we see how the results from the two re-
quests are being used later on to print them. This results in data
dependencies from the declarations of the result variables to the
statements where they are being used; from s5 to s4 and from s8 to
s7. The first one is because the statement on line 9 uses the variable
latest declared on line 8. Variable played gets used on line 13,
hence creating a data dependency from that statement node s8 to
the statement node that corresponds to the declaration of played,
s7.

PDGs are primarily used for program slicing [25, 27]. Infor-
mally, a program slice is a subset of the program that has a direct or
indirect effect on the values computed at a certain location. Accord-
ingly, a slice is computed with respect to a slicing criterion, usually
represented by the combination of a line number and a set of vari-
ables. Although many variations of the slicing algorithm exist, they
can be roughly categorised into forward and backward slicing al-
gorithms. In short, backward slicing looks for the statements that
influence the slicing criterion, while forward slicing looks for all
statements that are influenced by the slicing criterion. The slicing
algorithm works as a graph traversal algorithm that returns a set
of nodes that belong to the program slice. Applications of program
slicing are to be found in debugging, software maintenance, etc.
We do not slice the program, meaning we don’t exclude parts of
the code, but we use the dependency information of the PDG to
guide our CPS transformation.

3.3 Transformation based on the Program Dependence
Graph

The actual transformation rewrites synchronous calls to asyn-
chronous calls with a continuation callback argument.

The process recursively walks the PDG and looks for call nodes
and function declarations (thus entry nodes in the PDG). Call nodes
need to be transformed to a call with the original arguments and an
additional one for the callback that holds the continuation for that
call. Functions on the other hand take an extra parameter for the
callback and instead of returning a value, the result of that function
is given back to the caller by calling the callback function with
the return value. The algorithm for this transformation is given in
pseudocode below:

1 Make a set of each node in the PDG, nodes

2 Traverse PDG, for each node n do the following:

3 If n is a member of nodes:

4 If n is a Call Node:

4 Actually, another call is made in those statements, namely to the options
function. This would mean call nodes would be added beneath the actual in
parameters. To limit the size of the graph, we omitted these call nodes and
its actual parameters

5 Let p be the parent node of n,

cps the transformed call to cps-form.

6 If parent has data dependencies:

7 Let slice be the forward slice of p.

8 For each node sn in slice:

9 Add transform(sn) to body of callback of cps

10 If n has blocking annotation

or called function has side-effects:

11 For each node pn of the remainder of the program:

12 Add transform(pn) to body of callback of cps

13 If n is an Entry Node for a Function Declaration:

14 Add additional callback parameter to n

15 Transform the return statements

16 Else: do nothing

17 Remove n (and its children) from nodes

While the algorithm is traversing the PDG, we keep track of a
set of nodes, initially set to all the nodes in the PDG. This way
we avoid non-termination when cycles are present in the PDG.
Because some transformations that are applied on the PDG move
nodes, we also use this set to track whether the current PDG node
has already been transformed or not. This is in contrast with the
general approach for CPS transformations, as given in section 1.
Both approaches traverse the PDG, but the original one takes the
ordering as determined by the syntax tree (step ?? of the algorithm
described in section 1). Using the dependency information we can
establish an ordering that does not completely abide by the PDG,
but guarantees that continuations that belong together are nested.

The most interesting part of the algorithm is the transformation
for call nodes. It is in this transformation that we construct the
continuation of that statement. In order to do so, we look at the
parent statement of that call node. If the call happens in another
statement, e.g., a variable declaration or another call, we examine
whether other nodes are dependent on that node. For instance,
in the expression var a = foo(42), the parent of the call node
foo(42) is the declaration node of a. If the call node has such
a parent (meaning that the result of the call is being used (later
on)), we perform a forward slice on the corresponding node in
the program dependence graph. A forward slice of a program is
the collection of statements that may be affected by the value of
variables at that program point.

Should it be that the analysis that serves as the basis for the
construction of the PDG is imprecise, we could end up with a
forward slice that is not minimal. This implies that the continuation
is not minimal and worst case, we end up with the remainder of the
program at that point as its continuation. We discuss this in more
detail in section 3.5.

In the following code example, the forward slice for the program
point at line 1, results in the set of the statements on lines 1, 3 and
4.

1 var a = foo (42); // Slicing criterion
2 var b = foo (43);
3 var c = a + 2; // Part of slice
4 var d = c + 3; // Part of slice

Listing 5. Example code for a forward slice

Based on this forward slice, we transform each instruction that
is part of the slice and put it in the continuation callback of that
function (step 7-9). These nodes are thus removed from the set of
nodes that still need to be transformed, otherwise they would end
up twice or more in the transformed program. The call node itself,

together with its children (actual parameters) are removed from the
nodes set (step 17).

However, when a call is made to a function that has side-effects,
the forward slice should include all program statements that follow.
This implies that no forward slice is computed, but that the entire
remainder of the program at that point is to become the continuation
of the current call. This also applies to the case where the call is
annotated to be @blocking. To decide whether a function has side-
effects, we use a straightforward, but conservative AST analysis. A
full-blown purity analysis for JavaScript such as [20] could be used
to improve precision.

The @blocking annotation can be used on one single call,
meaning that the remainder of the program should wait or it can
be attached to a block statement. This allows programmers to
explicitly delimit a continuation; the continuation is captured until
the end of the annotated block.

The transformation process for a function declaration involves
adding an additional parameter for the callback function. On top of
that, the return statements are transformed to a call to the callback
parameter (step 13-15).

Other nodes, are not transformed (step 16) but they are removed
from the set of nodes that still need to be transformed as well
(step 17).

Note that in the listed transformation algorithm, each call node
and function declaration node is transformed to CPS. However, in
practice, programmers want to perform a selective CPS transfor-
mation [4], where not every call receives a continuation function.
The algorithm presented here can be easily extended to incorporate
criteria for deciding whether or not a transformation should take
place. We elaborate more on this in Section 3.5 and 5.

3.4 Asynchronous Code
All calls and function declarations from the original program have
been rewritten by the transformation process. Our transformation
results in the following code for the program listed in Section 3.1:

1 function options(path) {
2 return {
3 hostname: ’bgg -json.azurewebsites.net’,
4 path: path ,
5 method: ’GET’
6 };
7 }
8
9 https.get(options(’/hot’, function (res) {

10 var latest = res;
11 latest.on(’data’, function (d) {
12 console.log(d);
13 });
14 });
15 var friends = [’lphilips ’, ’jdekoste ’, ’wdmeuter ’,

’cderoove ’];
16 friends.forEach(function (friend) {
17 var played;
18 https.get(options(’/plays/’+friend), function (

res) {
19 var played = res;
20 played.on(’data’, function (d) {
21 console.log(d);
22 });
23 });
24 });

Listing 6. Result of transformation process for Listing 4

The transformation process has reacted to the data dependencies
from the program dependence graph by pulling the statement that
uses the result of the first request (line 9) into the callback that
declares latest. As a result, the correct dependencies are in scope
of one another. The callback continuation for the first call to the
https.get has been limited to the necessary statements only.

The other call to https.get is not included in the first callback
continuation, but is executed concurrently with the first call.

3.5 Implementation
We have implemented the CPS transformation based on depen-
dence graphs for JavaScript. Our implementation is available on-
line as an interactive tool STIP 5 that can be used to construct a
program dependence graph, calculate (backward) slices, and trans-
form a direct-style program to a continuation-passing program. Our
implementation can easily be extended to support a refactoring to
promises instead of callbacks, based on the dependence analysis.
Another option would be to use a refactoring tool that is able to
transform callback-based JavaScript to promise-based JavaScript,
such as PromisesLand6. We now give a more detailed overview
of the concrete implementation according to the steps described in
section 3.

Input A: Synchronous Code Our implementation is tailored to
JavaScript programs. The input code is a direct-style JavaScript
program, where some calls have possibly been annotated with the
@blocking annotation. These annotations reside inside comments,
such that other tools, like IDE’s or refactoring tools, ignore them.
They serve however as a seed for our CPS transformation, together
with the Program Dependence Graph.

Input B: the Program Dependence Graph To construct a pro-
gram dependence graph of the direct-style JavaScript code, we per-
form a recursive walk on the AST of that program. The control flow
dependencies can be calculated from the AST. For example, every
expression inside the body of a function, results in a control flow
dependency from the entry node for that function to the statement
node representing that expression.

Data and call dependencies cannot be calculated from the AST.
We rely on an abstract interpretation [2] of JavaScript to uncover
these data dependencies. Our current implementation uses the
JIPDA abstract interpretation [19]7, but can switch to other ab-
stract interpretation frameworks, such as TAJS [11]. We therefore
owe our support for a fairly representative subset of JavaScript
to JIPDA —including several features that are difficult to anal-
yse statically such as higher-order functions with side-effects and
prototype chains. Imprecise results from the abstract interpretation
are reflected in the program dependence graph by multiple call or
data dependencies from one node to all possible referees. This pro-
duces overfitting continuations, that could end up to contain the
remainder of the program. In this worst case scenario we obtain
the same results as classic CPS transformations without support
for delimiters. For example, when the analysis is imprecise about
the declaration statement of a reference, it could be that the graph
has two data edges from the reference statement to two different
nodes, each declaring the same variable. If both declaration state-
ments contain a call that is transformed to its CPS equivalent, the
reference statement will end up in the continuation of both calls.
This could possibly lead to wrong behavior of the program. It is
therefore that we warn the programmer when either no declaration
node can be found or more than one declaration node is returned
by the analysis. The programmer should act upon these warnings
and give the analysis more hints.

Delimited CPS transformation Section 3.3 described how the
CPS transformation walks the PDG, while transforming the cor-
responding AST nodes for call and function expressions.

The transformation uses the dependencies in the PDG for two
purposes: control dependencies drive the recursive walk of the

5 http://bit.ly/stipjs
6 http://salt.ece.ubc.ca/software/promisland/
7 https://github.com/jensnicolay/jipda

PDG, while the data dependencies guide the computation of the
limitations of each continuation.

e0

e2

f1
in

f1
out

o1

s4

c1

a1
out

a1
in

s5

c2

a2
in

s7

c3

a2
out

a3
in

s1

s2

s3

e1

library
function

s6 s8

c4

a4
in

Figure 2. PDG for Listing 4, limits of computations highlighted.

Figure 2 groups the data dependent statements inside rectangles.
Statement nodes s4 and s5 represent the following code (taken
from listing 4):

1 var latest = https.get(options(’/hot’);
2 latest.on(’data’, function (d) {
3 console.log(d);
4 })

Listing 7. Sample program in synchronous JavaScript.

Node s4 corresponds to the declaration of latest, while the
installation of the event listener on this variable corresponds to
s5. Therefore, there is a data dependency from node s5 to s4,
because it uses the declared variable of s4. As can be seen in
the graph, a call to the library function https.get is made as
well. When transforming this direct-style call into its continuation-
passing variant, we need to take into account the data dependencies
on node s4, because that call is made inside that expression.

The other call that gets transformed into CPS is c3, which is a
call that is made in the expression that corresponds to node s7 in
the PDG. On its turn, s8 is data dependent on s7, and therefore
must be part of the continuation of c3.

We compute the borders of a continuation based on the depen-
dencies in the dependence graph, resulting in delimited continu-
ations. These dependencies are ignored when a call or a block
statement is annotated to be blocking. Listing 8 shows how the
sleep function (line 2) is called before executing the request to
the board game service. This call expression has been adorned with
a @blocking annotation, to indicate that the remainder of the pro-
gram should wait until the sleep function has finished its execu-
tion. No delimited continuation is computed as a result, but the en-
tire remainder of the program becomes the continuation of that call.

1 /* @blocking */
2 sleep (5000);
3 var latest = https.get(options(’/hot’);
4 // Process latest boardgames
5 var friends = [’lphilips ’, ’jdekoste ’, ’cderoove ’,

’wdmeuter ’];
6 friends.forEach(function (friend) {
7 var played = https.get(options(’/plays/’ +

friend));
8 // Process boardgames friend played
9 })

10 })

Listing 8. Sample program with an explicit blocking point.

If there would be no means to express that the call to sleep
should be blocking, we would end up with the code given in List-
ing 9. On line 1 the call to sleep gets an extra callback parameter,
which has an empty body. The call to https.get on line 2 is thus

executed concurrently with the sleep call and not in the continua-
tion of sleep.

1 sleep (5000, function (err) {});
2 https.get(option(’/hot’), function (err , res) {
3 var latest = res;
4 // remainder of computations on latest
5 });
6 // remainder program

Listing 9. Faulty transformation for the code in Listing 8

However, the call to sleep has been explicitly annotated to be
blocking in listing 8 thus the whole remainder of the program
should wait until this call has finished, as demonstrated in the re-
sulting code in Listing 10. We see how both calls to the https.get
function are now captured inside the continuation of the call to
sleep, but both calls are still executed concurrently instead of be-
ing sequentialised.

1 var latest;
2 var friends;
3 sleep (5000, function () {
4 https.get(options(’/hot’, function (res) {
5 latest = res;
6 // Process latest games
7 });
8 friends = [’lphilips ’, ’jdekoste ’, ’wdmeuter ’, ’

cderoove ’];
9 friends.forEach(function (friend) {

10 var played;
11 https.get(options(’/plays/’+friend), function

(res) {
12 played = res;
13 // Process played games
14 });
15 });
16 });

Listing 10. Result of transformation process for Listing 8

Selective CPS transformation The proposed approach trans-
forms every function declaration and corresponding call to its
continuation-style equivalent. In practice, however, not every func-
tion should be transformed. Current selective CPS transformations
use a strictness or effect analysis to determine whether a function
should receive an extra continuation parameter. We incorporated
part of this selectiveness in the described approach: when a func-
tion has side-effects, it should be treated the same as if every call
to it is annotated with the blocking annotation. In other scenarios
extra criteria could be added to decide whether a call and function
should be transformed. For instance, when a library of JavaScript
functions always takes a callback parameter by design then every
call to such a function should be transformed. The same goes for
calls that go from client to server or vice versa, which are non-
blocking in nature most of the time. In fact, our selective CPS
transformation is an important cornerstone of our approach to tier
splitting [22].

4. Evaluation
4.1 Focused Qualitative Evaluation
For the qualitative evaluation we start from an implementation of
our motivating example (see Section 2) and convert it to a valid
STIP implementation given in Listing 11. For simplicity and space,
we omitted the function declaration of getTemperature(city).
There are two main advantages of the STIP code over the CON-
TINUATION.JS code. First of all, in contrast to CONTINUATION.JS,
STIP no additional keywords are required because asynchronous
function calls are implicitly identified. Secondly, STIP enables the
use of regular try/catch statements for the handling of exceptions.

1 var temp = getTemperature(’Brussels ’);
2 console.log(temp);
3 http.createServer(function (req , res)
4 try {
5 var data = fs.readFile(’welcome.txt’);
6 res.write(data.toString ());
7 }
8 catch (error) {
9 alert(error);

10 }
11 }).listen (8080 , ’localhost ’);

Listing 11. Code from Listing 1 as input for the transformation

The code generated by our transformation tool can be seen in
Listing 12. There are a number of qualitative advantages of our tool
over traditional transformation tools. First of all, our tool correctly
identifies that the call to getTemperature is independent of the
call to createServer and does not nest the call to the latter in the
continuation of the former. This is in contrast with transformation
tools such as CONTINUATION.JS that will conservatively nest ev-
ery asynchronous call in the continuation of the previous call. Un-
wrapping independent calls increases the exploited concurrency
and has advantages in terms of performance, fault-tolerance and
responsiveness.

Our transformation tool also preserves the variable names of the
original cade, therefore improving the readability and maintain-
ability of the transformed code. In this case the data variable is
used for storing the file contents in both the original cade as well as
the transformed code. Please note that our tool also hoists variables,
which is a common technique in Javascript engines to separate the
declaration (line 6) and assignment (line 8)) of variables.

1 getTemperature(’Brussels ’, function (err0 , res0) {

2 console.log(res0);
3 });
4 http.createServer(function (req , res) {
5 try {
6 var data;
7 fs.readFile(’welcome.txt’, function (err1 ,

res1) {
8 data = res1;
9 try {

10 if (err1)
11 throw err1;
12 res.write(data.toString ());
13 } catch (error) {
14 alert(error);
15 }
16 });
17 }
18 catch (error) {
19 alert(error);
20 }
21 }).listen (8080 , ’localhost ’);

Listing 12. Transformed Code from Listing 11

4.2 Larger-scale Quantitative Evaluation
To further validate our transformation tool we have conducted an
empirical study to evaluate the effectiveness of our CPS transfor-
mation. For this empirical study we chose a number of representa-
tive programs from GitHub that exhibit a lot of callbacks. Table 1
gives an overview of the selected GitHub projects. For validating
the different applications we based our criteria on an existing em-
pirical study on the use of callbacks in JavaScript programs [9].
Table 2 summarises our results for the selected programs. We list
for each program the number of calls with a callback argument,
the ratio of these calls to all calls in the program and the number
of defined functions that accept a callback parameter over all de-
fined functions in the program. We categorised the calls to library

functions that accept a callback into four categories: DOM calls
to manipulate an HTML page, network calls like calls to a remote
service, calls to timer functions like sleep and I/O calls for e.g.
file manipulation. The callbacks functions are analysed as well on
the number of statements in their bodies and the number of state-
ments that are dependent on the result of the call (thus on the result
parameter of the callback function).

In a next step each selected program was rewritten in a syn-
chronous style for both CONTINUATION.JS as well as STIP. This
involved removing all callback functions and adding transforma-
tion tool specific keywords where necessary. For the CONTINUA-
TION.JS this resulted in replacing every callback function of the
form function (err, res) body with the cont(err, res)
expression. For STIP we could simply omit the callback function
and insert an @blocking annotation where necessary. Afterwards,
the code generated from this rewritten programs by both tools was
analysed. The results of this analysis can be found in Table 3.

The nesting level is a measure for the minimum and maximum
amount of nested callbacks. We confirmed that the original pro-
gram only contains nested callbacks in the case that these callbacks
depend on each other. As we can see from the result, CONTINUA-
TION.JS is unable to correctly identify which calls are independent
and often unnecessarily nests the different callbacks in the resulting
code after transformation. Conversely, STIP does correctly recog-
nise each of the dependent and independent calls resulting in a nest-
ing level that is similar to the original program. This is off course
the best case scenario in which the precision of our analysis is good
enough to correctly identify each of the independent calls. While
this was the case for each of the analysed programs, it is possible
for our analysis to lose precision for some other cases. In such pro-
grams our tool will incorrectly assume that two asynchronous calls
are dependent and will over synchronise both calls by nesting the
resulting callbacks. Thus resulting in a transformation similar to the
one of CONTINUATION.JS. In the case where every asynchronous
call depends on its predecessor (e.g. as in program 9) both STIP as
well as CONTINUATION.JS result in a transformation with the same
nesting level.

Not only other asynchronous function calls but any other state-
ments should be considered while transforming the code. If a state-
ment is independent of the result of the callback it should not be in-
cluded in that callback while transforming the code. As can be seen
from the results, CONTINUATION.JS tool locates more statements
inside the generated callback functions, as is the case for seven of
the examples. This is a consequence of the brute-force transforma-
tion that takes the remainder of the program as the continuation.

We also listed the number of continuation specific keywords that
are used on the code before the transformation. For the CONTINU-
ATION.JS tool these are cont to replace a callback argument of a
call. For our approach this is the @blocking annotation that is used
to indicate a call should be blocking, even when no statements are
data dependent on its result. From the table it is clear that our ap-
proach does not require the programmer to use dedicated keywords
at every asynchronous call, but merely where it should be guaran-
teed or is unclear. The other approach requires every asynchronous
function and call to use these specific keywords.

5. Related Work
Delimited CPS transformations CPS transformation techniques
have been around for quite some time now and different flavours
thus exist. Delimited CPS transformations focus on the extent of
a continuation and often introduce control-operators to mark the
continuation’s reach.

Table 1. Selected JavaScript programs
Nr. Program LoC URL
1 How Callbacks Work 35 https://github.com/Runnable/How-Callbacks-Work-Example-App
2 Callback Example 2 13 https://github.com/acveer/callback
3 Callback (Parallel) 28 https://github.com/dead-horse/callback_hell
4 Callback Hell 54 https://github.com/danielrohers/callback-hell-sky
5 Closures 65 https://github.com/timestep/javascript-closures-callbacks
6 Callback Apply 29 https://github.com/acveer/callback
7 Games Node 111 https://github.com/abhidevmumbai/gamesNode
8 Weather Service 146 https://github.com/praveen16/weatherApp
9 Open Marriage (libraries) 519 https://github.com/ericf/open-marriage

Table 2. Properties of selected JavaScript programs
Nr. Nr. of cb Cb calls Func with cb Type cb Nesting level Nr. of stms in cb Data dep. stms

DOM network timer I/O min max min max avg avg
1 2 22% 0% 0 1 0 1 0 0 2 3 2,5 1
2 2 33% 50% 0 0 0 0 0 0 1 1 1 1
3 4 40% 100% 0 3 0 0 2 2 2 2 2 1,7
4 10 90% 100% 0 0 0 0 9 9 1 1 1 1
5 6 64% 78% 0 0 0 0 1 3 2 4 2,3 1,8
6 2 25% 100% 0 0 0 0 0 0 1 1 1 1
7 14 36% 0% 0 0 0 14 1 1 1 2 1,1 0,9
8 10 23% 50% 0 1 1 0 1 1 1 2 1,1 1,25
9 21 40% 41% 4 4 0 11 0 1 1 2 1,7 1,4

Table 3. Results for the selected JavaScript Programs
Nr. Nesting level Nr. of stms in cb Nr. of keywords

min max min max avg
STIP cont.js STIP cont.js STIP cont.js STIP cont.js STIP cont.js STIP cont.js

1 0 1 0 1 2 5 3 5 2,5 5 1 2
2 0 1 0 1 2 2 2 3 2 2,5 0 5
3 2 2 2 2 2 4 2 4 2 4 0 3
4 9 9 9 9 1 2 1 2 1 2 0 9
5 1 1 3 5 3 3 5 5 3,3 3,3 0 6
6 0 1 0 1 2 2 2 3 2 2,5 0 2
7 1 2 1 3 1 1 2 3 1,8 2,8 0 14
8 0 1 1 1 1 1 2 4 1,6 2,1 0 10
9 1 1 1 1 1 1 4 6 2,3 4,1 0 20

Scala has a complete package for (delimited) continuations8. It
offers the control operators shift and reset to capture and de-
limit a continuation respectively. Functions should be annotated
with the @cps annotation to hint the transformation that the func-
tion returns a special value, called a Unit.

The CPS facilities provided by Scala are exploited in a DSL
specialised in rich web applications [13]. The DSL generates
JavaScript code and offers an alternative for the callback-driven
programming style that is forced upon the programmer when
writing asynchronous JavaScript programs. Therefore they ex-
ploit the CPS annotations provided by the host language, Scala
together with specialised declarations and control abstractions, like
suspendableWhile.

All of these approaches use explicit control operators to cap-
ture and delimit continuations. We do not require such constructs
because of our dependency-based analysis. The @blocking anno-
tation can be used to tell our transformation that no limits should
be calculated, but in general the limits of a continuations are calcu-
lated automatically.

Selective CPS transformations We discuss those transformations
that are categorised as selective CPS transformations; not all func-
tions are transformed to be continuation-passing.

Danvy and Hatcliff perform a selective CPS transformation
based on a strictness analysis [4]. It is a selective transformation

8 http://www.scala-lang.org/api/2.10.1/index.html#scala.
util.continuations.package

because certain annotated functions are not transformed. Nielsen
defines a selective CPS transformation that preserves part of the
program in direct-style [21], based on an effect analysis. Applica-
tions in the program are annotated as trivial or non-trivial, based on
the control effects of that application. Trivial annotated applications
do not get transformed, while non-trivial receive a continuation.

Ley-Wild et al. [17] use annotations to apply an adaptive CPS
transformation on self-adjusting programs. It is a selective transfor-
mation because certain annotated functions are not transformed.

Our CPS transformation is based on the dependencies between
program statements and the programmer can add this selectiveness
by implementing a predicate function. This means that our CPS
transformation can be used in several domains. Because we already
support annotations (@blocking), support for selective annotations
as in [17] can easily be added to our approach.

Async-based approach Some programming languages take a so-
called async-based approach that support automatic transformation
to asynchronous programs.

C# introduces the async and await keywords [6]. Methods that
are indicated to be async can use the await keyword to mark the
point(s) where an asynchronous operation is performed. When such
a point is encountered, the method is suspended and control returns
to the caller of that method. The remainder of the method ends up
as the continuation of that asynchronous operation. Async methods
return a task, a representation of ongoing work. This task contains
the state of the asynchronous operation and will contain the result
(or exception) when the operation eventually finishes. While the

Table 4. CPS transformations projects in JavaScript
Streamline Continuation TameJS StratifiedJS

Replacement cb construct cont(params) defer(params) resume

Cont. granularity full program full program construct construct
Failure handling 3 3 3 3
Readable result 5 3 5 5

Tool support 3 5 3 3

await keyword resembles our @blocking annotation, it is always
required to be explicitly used.

CLOJURE9 has the core.async library to facilitate asyn-
chronous programming using channels. A channel is a queue with
consumers and publishers, which take data from and put data in
the queue respectively. This can be achieved in a synchronous or
an asynchronous way. A go block groups asynchronous reads and
writes to a channel. CORE.ASYNC transforms the body of each go
block in the program to parallel running state machines and trans-
forms the direct-style operations to their asynchronous form.

CPS transformations for JavaScript We already mentioned tools
that transform a synchronous JavaScript program to its asyn-
chronous variant. Table 4 depicts four of these tools and evaluates
them against a set of essential properties.

STREAMLINE.JS10 works under the assumption that all call-
backs are replaced by an underscore. One inconvenience is that
asynchronism is contagious; functions that use an underscore to
replace a callback somewhere in there body should take an extra
underscore parameter as well. The generated code is hardly read-
able, introducing many intermediate values, function wrappers, etc.
Failure handling is carried out by the usual try/catch construct.
Streamlined functions can be called with classic callbacks as well.
To achieve a delimited continuation, the programmer thus has to
fall back to callback functions. Debugging streamline code can be
achieved through JavaScript Source Maps11.

We already demonstrated how CONTINUATION.JS performs
CPS transformations in section 2. It introduces a virtual function
cont that replaces the callback functions. Every time cont is used,
the control flow is suspended until the result of the asynchronous
call has returned. Just like STREAMLINE.JS, programmers can still
use try/catch, but then the obtain construct must be used in-
stead of cont. The parallel construct executes asynchronous
functions concurrently, and only after each function call has fin-
ished, the consequent code is executed. This construct is thus a
way to explicitly mark asynchronous calls in the code that should
be executed concurrently. Out of all four transformation tools we
discuss here, CONTINUATION.JS is the only one that maintains
variable names and produces human readable output.

TAMEJS[24] works on a dialect of JavaScript, introducing sev-
eral primitives like await, that takes a block of code. In such a
block, every callback must be replaced by the defer construct.
Consecutive code must wait for the await block to finish, i.e., ev-
ery defer in that block is fulfilled. Every defer in the block is
executed in parallel. The programmer has thus more control over
the execution order of asynchronous tasks. Those that should be
executed in parallel must be grouped in an await block. The lan-
guage has tame-aware stack traces, enabling debugging support.

STRATIFIEDJS12 gets rid of the asynchronous spaghetti in
JavaScript by extending it with syntactic additions. Identical to
TAMEJS special constructs are introduced to group statements that

9 https://github.com/clojure/core.async
10 https://github.com/Sage/streamlinejs
11 http://www.html5rocks.com/en/tutorials/developertools/
sourcemaps/
12 http://onilabs.com/stratifiedjs

execute asynchronously and can only be resumed explicitly. The
waitfor construct and its variants takes a suspending code block
that blocks the execution of consecutive code. The resume function
can explicitly resume consecutive code. It is therefore that resume
can be passed along instead of a callback, such that the control flow
will resume once the callback is called with the result.

Most of these approaches have explicit constructs to express
that certain functions call should be executed simultaneously and
execution can only progress when all (or one) of these calls has
finished. This is a way to prevent that these calls are being sequen-
tialised in the transformed code. However, all of the consecutive
code ends up as the continuation of these parallel calls, with no
way to delimit the continuation.

6. Conclusion
Writing code in a direct synchronous style has a number of ad-
vantages over an asynchronous style using callbacks. For one, it
avoids the need for deep nesting of callback handlers colloquially
knows as the “callback hell”. Today, there already exist a number of
transformation tools that enable code written in a synchronous style
to be automatically transformed into an asynchronous CPS. The
transformation tool presented in this paper improves upon these
existing tools on three levels. Firstly, our tool avoids conservative
nesting of independent callbacks. This increases the exploited con-
currency which in turn improves performance, fault-tolerance and
responsiveness of the resulting application. Secondly, our tool does
not require explicit annotations in the code to distinguish asyn-
chronous function calls from synchronous function calls. Rather,
it employs an analysis based on program dependence graphs as a
technology to enable automating selective, delimited CPS transfor-
mations. Thirdly, our tool produces a transformation of the code
that preserves as much as possible the structure and variable names
of the original program. This facilitates understanding, testing and
debugging of the transformed code.

To validate our approach we analysed a number of existing
JavaScript projects that exhibit a lot of callbacks. We first man-
ually transformed them back into a synchronous style using both
CONTINUATION.JS as well as our tool STIP. We then compare the
resulting transformations for both tools and show that our approach
produces code that improves upon the exploited concurrency and
the maintainability compared to other tools. We show that our tool
can correctly identify independent callbacks for the investigated
programs and only nests callbacks when it is strictly necessary.

Acknowledgments
Laure Philips is supported by a doctoral scholarship granted by
the Agency for Innovation by Science and Technology in Flanders,
Belgium (IWT). This work has been supported, in part, by the SBO-
project Tearless funded by the same agency.

References
[1] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-

versity Press, New York, NY, USA, 1992.
[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
238–252. ACM, 1977.

[3] Oliver Danvy. Three steps for the CPS transformation (detailed ab-
stract). Technical Report CIS-92-02, Kansas State University, Febru-
ary 1992.

[4] Olivier Danvy and John Hatcliff. CPS-transformation After Strictness
Analysis. ACM Lett. Program. Lang. Syst., 1(3):195–212, September
1992.

[5] Olivier Danvy, Jung-taek Kim, O. Danvy, Jung-taek Kim, Kwangkeun
Yi, and Kwangkeun Yi. Assessing the Overhead of ML Exceptions by
Selective CPS Transformation. In In Proceedings of the 1998 ACM
SIGPLAN Workshop on ML, pages 103–114, 1998.

[6] Alex Davies. Async in Csharp 5.0 - Unleash the Power of Async.
O’Reilly, 2012.

[7] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The Essence of Compiling with Continuations. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design
and Implementation, PLDI ’93, pages 237–247, New York, NY, USA,
1993. ACM.

[8] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.
Adding Delimited and Composable Control to a Production Program-
ming Environment. SIGPLAN Not., 42(9):165–176, October 2007.

[9] Keheliya Gallaba, Ali Mesbah, and Ivan Beschastnikh. Don’t Call
Us, We’ll Call You: Characterizing Callbacks in JavaScript. In 2015
ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM 2015, Beijing, China, October 22-
23, 2015, pages 247–256, 2015.

[10] Robert Hieb, R.Kent Dybvig, and III Anderson, ClaudeW. Subcontin-
uations. LISP and Symbolic Computation, 7(1):83–109, 1994.

[11] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type
analysis for JavaScript. In Proc. 16th International Static Analysis
Symposium (SAS), volume 5673 of LNCS. Springer-Verlag, August
2009.

[12] Yukiyoshi Kameyama and Masahito Hasegawa. A Sound and Com-
plete Axiomatization of Delimited Continuations. In In Proc. of 8th
ACM SIGPLAN Int. Conf. on Functional Programming, ICFP’03,
pages 177–188. ACM Press, 2003.

[13] Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and Martin Oder-
sky. Javascript as an Embedded DSL. In James Noble, editor, ECOOP
2012, volume 7313 of Lecture Notes in Computer Science, pages 409–
434. Springer Berlin Heidelberg, 2012.

[14] Jens Krinke. Program slicing. In S K Chang, editor, Handbook of
Software Engineering and Knowledge Engineering 3. World Scientific

Publishing, 2004.

[15] Shriram Krishnamurthi, Peter Walton Hopkins, Jay A. McCarthy,
Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen. Implemen-
tation and use of the PLT scheme Web server. Higher-Order and Sym-
bolic Computation, 20(4):431–460, 2007.

[16] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. De-
pendence Graphs and Compiler Optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’81, pages 207–218, New York, NY, USA,
1981. ACM.

[17] Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling Self-
adjusting Programs with Continuations. SIGPLAN Not., 43(9):321–
334, September 2008.

[18] James S. Miller. MULTISCHEME : a parallel processing system based
on MIT scheme. PhD thesis, 1987. PHD.

[19] Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De
Meuter. Determining Coupling In JavaScript Using Object Type
Inference. In SCAM13, 2013.

[20] Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De
Meuter. Detecting Function Purity in JavaScript. In Proceedings of
the 15th International Working Conference on Source Code Analysis
and Manipulation (SCAM15), 2015.

[21] Lasse R. Nielsen and BRICS. A Selective {CPS} Transformation.
Electronic Notes in Theoretical Computer Science, 45(0):311 – 331,
2001. MFPS, Seventeenth Conference on the Mathematical Founda-
tions of Programming Semantics.

[22] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang
De Meuter. Towards Tierless Web Development Without Tierless
Languages. In Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, Onward! 2014, pages 69–81, New York, NY, USA, 2014.
ACM.

[23] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing First-
class Polymorphic Delimited Continuations by a Type-directed Selec-
tive CPS-transform. In Proceedings of the 14th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’09, pages
317–328, New York, NY, USA, 2009. ACM.

[24] Maciej Swiech and Peter Dinda. Making JavaScript better by mak-
ing it even slower. In Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2013 IEEE 21st Inter-
national Symposium on, pages 70–79. IEEE, 2013.

[25] Frank Tip. A Survey of Program Slicing Techniques. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1994.

[26] Andrew Tolmach. Debugging Standard ML without Reverse Engi-
neering. In In Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, pages 1–12. ACM Press, 1990.

[27] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–
357, 1984.

