
43 Years of Actors: A Taxonomy of
Actor Models and Their Key Properties

Joeri De Koster
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene, Belgium
jdekoste@vub.ac.be

Tom Van Cutsem
Nokia Bell Labs

Copernicuslaan 50
2018 Antwerp, Belgium

tom.van cutsem@nokia-bell-
labs.com

Wolfgang De Meuter
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene, Belgium
wdemeuter@vub.ac.be

Abstract
The Actor Model is a message passing concurrency model
that was originally proposed by Hewitt et al. in 1973. It is
now 43 years later and since then researchers have explored
a plethora of variations on this model. This paper presents
a history of the Actor Model throughout those years. The
goal of this paper is not to provide an exhaustive overview
of every actor system in existence but rather to give an
overview of some of the exemplar languages and libraries
that influenced the design and rationale of other actor sys-
tems throughout those years. This paper therefore shows that
most actor systems can be roughly classified into four fam-
ilies, namely: Classic Actors, Active Objects, Processes and
Communicating Event-Loops. This paper also defines the
Isolated Turn Principle as a unifying principle across those
four families. Additionally this paper lists some of the key
properties along which actor systems can be evaluated and
formulates some general insights about the design and ratio-
nale of the different actor families across those dimensions.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Concurrent, distributed, and parallel lan-
guages; D.1.3 [Concurrent Programming]: Parallel pro-
gramming

General Terms Languages, Theory

Keywords Actor Model, Concurrency

1. Introduction
The Actor Model is a concurrency model that was originally
proposed by Hewitt et al. in 1973 [13]. Since then it has been
used as the model of concurrency for both academic research

languages as well as industrial strength programming lan-
guages and libraries.

Because actors are often strictly isolated software enti-
ties and because of the asynchronous nature of its communi-
cation mechanism, they avoid common concurrency issues
such as low-level data races and deadlocks by design. Over
the years these properties have made the Actor Model into an
interesting concurrency model to be used both for exploiting
fine-grained concurrency in massively parallel workstations
as well as for exploiting more coarse-grained concurrency in
a distributed setting. More than 40 years later, there now ex-
ist bountiful implementations of the Actor Model in various
programming languages and libraries. Each of these imple-
mentations defines a slightly different flavour of the Actor
Model. This paper has three main contributions.

Firstly, because of all the variations on the Actor Model,
over the years researchers have employed different terms
to describe the different concepts that make up the Actor
Model. One of the contributions of this paper is to define
a common nomenclature for each of the key concepts of
the Actor Model. While a precise definition would require a
formal grounding, for this work, we currently limit ourselves
to an informal definition for each of the terms and concepts.
A list of terms and their definitions can be found under
Section 2.

Secondly, while each of these variations on the Actor
Model builds on top of a common substrate, in this paper
we identify and define four broad families along which each
actor system can be categorised. Namely: Classic Actors,
Active Objects, Processes and Communicating Event-Loops.
We provide an overview of the history of actor systems and
a definition for each of the different families along which
every actor system can be categorised in Section 3.

Thirdly, categorising an actor system along one of these
four families gives some indication of the properties and
structure of that actor system. However, the actual properties
of that system still remain largely dependent on the specific
implementation of the actor system. We present a number



of properties along which an actor system can be evaluated
in Section 4 and formulate some general insights about the
design and rationale of the different actor families across
those dimensions.

2. Terminology and Definitions
Before we further delve into the history of the Actor Model
we must first start by establishing a common terminology by
which we can denominate the different concepts defined by
an actor system. In this section we give an overview of the
different terms used for each of the key concepts found in
every actor system. We also provide an informal definition
for each of these concepts. In the following sections we will
mix these terms depending on the language being discussed.

message, envelope, event, request A message is the unit
of communication between different actors. A message is a
combination of an identifier that defines the type of message
and a payload that contains additional information sent with
that message. If one actor sends a message to another actor,
that message is stored in the latter actor’s inbox, independent
of the recipient actor’s current processing state.

inbox, mailbox, message queue, event queue The inbox
of an actor stores an ordered set of messages received by
that actor. While the inbox defines the order in which the
messages were received, that does not necessarily imply that
those messages are processed by that actor in that order.

turn, epoch, step A turn is defined as the processing of a
single message by an actor. In other words, a turn defines
the process of an actor taking a message from its inbox and
processing that message to completion.

interface At any given point in time, an actor’s interface
defines the list and types of messages it understands. An
actor can only process incoming messages that fit this in-
terface. For some actor systems this interface is fixed while
other actor systems allow an actor to change its interface,
thus allowing it to process different types of messages at dif-
ferent points in time.

state At any given point in time, we define an actor’s state
as all the state that is synchronously accessible by that actor
(i. e. state that can be read or written without blocking its
thread of control). Depending on the implementation, that
state can be mutable or immutable, and isolated or shared
between actors.

behaviour A behaviour is a common term to denote the
combination of an actor’s interface and its state. Some actor
systems enable an actor to modify its entire behaviour in one
single operation.

actor, active object, activity, vat, grain An actor can be
defined as a four-tuple: an execution context, an inbox, an
interface and its state. An actor perpetually takes messages
from its inbox and processes them in a new execution context

with respect to that actor’s interface and state. This continues
until the inbox is empty after which the actor goes to an idle
state until a new message arrives in its inbox.

actor system An actor system is a language or library that
implements the Actor Model as an abstraction for concur-
rency. Every actor system enables the creation and concur-
rent execution of actors.

3. History of Actor Systems
The Actor Model was originally proposed by Hewitt et
al. in 1973 [13] in the context of artificial intelligence re-
search at MIT. The original goal was to have a program-
ming model for safely exploiting concurrency in distributed
workstations. The problem domain was modelling paral-
lel communication based problem solvers. In October of
1975 Hewitt and Smith [12] wrote a primer on a language
called PLASMA, the first language implementation of the
Actor Model. In PLASMA, actors communicate with each
other via message passing which consists of sending a re-
quest from one actor (called the messenger) to another ac-
tor (called the target). The request and a reference to the
messenger are packaged as an envelope and put into the in-
box of the target actor (request: message; reply-to:

messenger). Given that envelope, the behaviour of the tar-
get actor then specifies how the computation continues with
respect to the request. The messenger is typically used as the
reply address to which a reply to the request should be sent.
The simplest control structure that uses this request-reply
pattern in most programming languages is the procedure call
and return. A recursive implementation of factorial written
in PLASMA is given in Listing 1.
(factorial ≡
(≡> [=n]

(rules n

(≡> 1

1)

(≡> (> 1)

(n * (factorial <= (n - 1)))))))

Listing 1. Factorial function written in PLASMA.

In this example factorial is defined to be an actor of which
the behaviour matches the requests of incoming envelopes
with one element which will be called n. The rules for
n are, if it is 1, then we send back 1 to the messenger
of the envelope. Note that this is done implicitly. If it is
greater than 1, we send a message to the factorial actor to
recursively compute the factorial of (n - 1). The Actor
Model only became more widely regarded as a general-
purpose concurrency model when it was recast in terms of
three simple primitives by Gul Agha [1, 2] in 1986. Agha
redefined the Actor Model in terms of three basic actor
primitives: create, send and become. His vision of the Actor
Model laid the foundations for a host of different other
actor systems and these three primitives can still be found
in various modern actor languages and libraries today.



This section gives an overview of a small but representa-
tive selection of the ancestry of actor systems from 1973 un-
til today. We classify the different actor languages into four
major paradigms: Classic Actors, Active Objects, Processes
and Communicating Event-Loop actors.

3.1 The Classic Actor Model
Agha [1, 2] recasts the Actor Model as a concurrent object-
oriented programming model. The main focus was to pro-
duce a platform for distributed problem solving in networked
workstations. In his model concurrent objects, i. e. actors, are
self-contained, independent components that interact with
each other by asynchronous message passing. In his work
he presents three basic actor primitives. create creates an
actor from a behaviour description. Returns the address of
the newly created actor. send asynchronously sends a mes-
sage from one actor to another by using the address of the
receiver. Immediately returns and returns nothing. become
replaces the behaviour of an actor. The next message that
will be received by that actor is processed by the new be-
haviour.

The example in Listing 2 is written in the Rosette actor
language [19] which was based on this model.
(define Cell

(mutable [content]

[put [newcontent]

(become Cell newcontent)]

[get

(return ’got-content content)]))

(define my-cell (create Cell 0))

(get my-cell)

Listing 2. An actor in Rosette.

The mutable form is used to create an actor generator
that is bound to Cell. That generator can be used with the
create form to create an instance of that actor. Each actor
instance has its own inbox and behaviour. Following the
keyword mutable is a sequence of identifiers that specify
the mutable fields of that actor. In our example, any Cell

actor will have one mutable field, namely the content of
that cell. After that is a specification of all the methods
that are understood by the actor. A method is specified by
a keyword followed by a table of arguments. In this case the
put method expects a value for the new content. Afterwards
follows the body that specifies how each method should be
processed. If one wishes to modify the state of a mutable
field one can use the become form to replace the behaviour
of an actor using the actor generator. The return form is
used to implicitly send back the result of a computation to
the sender of the original message.

These three primitives are the basic building blocks for
a lot of actor systems today and have been very influential
in the development of any actor language that follows this
work. A modern implementation of the Actor Model based
on Agha’s work[2] is the Akka [4] actor library for Scala.

Classic Actor Model

The Classic Actor Model formalises the Actor Model in
terms of three primitives: create, send and become.
The sequential subset of actor systems that implement
this model is typically functional. Changes to the state
of an actor are aggregated in a single become statement.
Actors have a flexible interface that can similarly be
changed by switching the behaviour of that actor.

However, there are many other library implementations of
this model for different languages.

The sequential subset of an actor model is the subset of
instructions out of which a behaviour can be composed. In
the case of the Classic Actor Model this sequential subset
is mostly functional. Any state changes are specified by re-
placing the behaviour of an actor. This has an important
advantage over conventional assignment statements as this
severely coarsens the granularity of side-effecting operations
that need to be considered when analysing a system. On the
one hand, an actor can only change its own behaviour, mean-
ing that the state of each actor is fully isolated. On the other
hand, changing the behaviour of an actor only comes into
effect when processing the next message. This means that
the processing of a single message can be regarded as a sin-
gle isolated operation. Throughout the rest of this paper we
refer to this principle as the Isolated Turn Principle. This
mechanism allows state updates to be aggregated into a sin-
gle become statement and significantly reduces the amount
of control flow dependencies between statements.

3.1.1 The Isolated Turn Principle
The semantics of the Classic Actor Model enable a macro-
step semantics [3]. With the macro-step semantics, the Actor
Model provides an important property for formal reasoning
about program semantics, which also provides additional
guarantees to facilitate application development. The macro-
step semantics says that in an Actor Model, the granularity
of reasoning is at the level of a turn, i. e., an actor processing
a message from its inbox. This means that a single turn can
be regarded as being processed in a single isolated step.
The Isolated Turn Principle leads to a convenient reduction
of the overall state-space that has to be considered in the
process of formal reasoning. Furthermore, this principle is
directly beneficial to application programmers, because the
amount of processing done within a single turn can be made
as large or as small as necessary, which reduces the potential
for problematic interactions. In other words, this principle
guarantees that, during a single turn, an actor has a consistent
view over its state and its environment.

To satisfy this principle, an actor system must satisfy both
safety and liveness properties:

Safety. To satisfy safety the state of an actor must be fully
isolated. This property is mainly guaranteed by adopting



a no-shared-state policy between actors. Any object that
is transmitted across actor boundaries is either copied,
proxied or immutable. This property ensures that the
processing of a single message in the Actor Model is
free of low-level data races. In addition, the processing
of a message cannot be interleaved with the processing
of other messages of the same actor unless the execution
of those different messages is also fully isolated. For
example, an actor for which the behaviour was modified
can already act on other incoming messages before fully
processing the current message. Or implementations of
the actor model can enable parallel execution of read only
messages [17] without impacting safety guarantees.

Liveness. To guarantee liveness, the processing of a mes-
sage cannot contain any blocking operations. Any mes-
sage is always entirely processed from start to finish. Be-
cause of this property, processing a single message is free
of deadlocks.

The Isolated Turn Principle guarantees that the Actor
Model is free of low-level data races and deadlocks. How-
ever, these properties only apply for the processing of a sin-
gle message, once you broaden that boundary to the pro-
cessing of several messages, these properties no longer hold.
On the one hand, as the actor model only guarantees isola-
tion within a single turn, high-level race conditions can still
occur with bad interleaving of different messages. The gen-
eral consensus when programming in an actor system is that
when an operation spans several messages the programmer
must provide a custom synchronisation mechanism to pre-
vent potential bad interleavings and ensure correct execu-
tion. On the other hand, high-level deadlocks can still occur
when actors are waiting on each other to send a message be-
fore progress can be made.

3.2 Active Objects
Around the same time that Agha reformulated Hewitt’s ac-
tors in terms of OOP, Yonezawa [23] worked on a object-
oriented concurrent programming language called ABCL/1.
In this language, each object has its own thread of control
and may have its own local persistent memory. In this model
state changes are not specified in terms of behaviour updates
(become) but rather by individual assignment statements. To
maintain actor isolation, the state of each active object is
only accessible by the object’s own thread of control. This
means that state updates are also isolated and because mes-
sages are processed entirely sequentially the Isolated Turn
Principle also holds for active objects1.

There are three types of messages in ABCL/1: past, now
and future. Past type messages are sent to the receiver and
immediately return. The sender does not wait for the receiver
to process the message before continuing its current compu-

1 Barring the use of ABCL’s express messages, which can potentially inter-
rupt the processing of a message and thus violate this principle [23].

tation. This message type corresponds to the standard way of
message passing in Classic Actors. Now type messages are
very similar to procedure call and return. When an object O
sends a now type message to another object T, O will wait for
T to process that message and send back a result before con-
tinuing with its current computation. Future type messages
are used when the sender of a message does not need the re-
sult of the message immediately. In other actor models, the
sender of a request has to finish its computation before be-
ing able to receive the response from the receiver. If sending
this request and processing the result is part of the sender’s
task, this often leads to an unnatural breakdown of that task
in different execution steps. ABCL/1’s futures was the first
attempt to solve that issue.
[object Cell

(state [contents := nil])

(script

(=> [:put newContent]

contents := newContent)

(=> [:get] @ From

From <= contents))]

Cell <= [:get]

Listing 3. An active object in ABCL/1.

ASP In ABCL/1 every object is an active object. This
makes it very suitable for exploiting fine-grained concur-
rency. Asynchronous Sequential Processes (ASP)[8] is a
programming model similar to ABCL/1 that enables a more
coarse-grained use of active objects. Contrary to ABCL/1,
not every object in this model is an active object. Rather,
actors in this model are represented by an activity. Each ac-
tivity has a single root object called the active object. Every
other object that is encapsulated by that activity is called
a passive object. Different activities do not share memory,
the active objects’ whole object graph is deep-copied into
the activity. The copied objects are called passive objects.
Any method call on an active object will result in an asyn-
chronous request being sent to the activity and returns a
future. The request is stored in a request-queue and is called
pending. Later this request will be served and when it is
finished the request is calculated and the future is replaced
with a (deep) copy of the return value. Similarly to AB-
CL/1’s futures, execution will block if any attempt is made
to perform a strict operation (e. g., a method call) on such a
future. Execution resumes when the corresponding request is
calculated. Isolation of the different activities is guaranteed
by passing passive objects by copy between the different ac-
tivities. All references to passive objects are always local to
an activity and any method call on a passive object is syn-
chronously executed. An implementation of this model can
be found in ProActive [6], which is a framework for Java.

SALSA SALSA [21] is another actor language that imple-
ments the Active Objects model on top of Java. The imple-
mentation translates SALSA code into Java code that can



Active Objects

Every active object has a single entry point that defines
a fixed interface of messages that are understood. The
sequential subset of actor systems that implement this
model is typically imperative. Changes to the state of
an actor can be done imperatively and isolation is guar-
anteed by sending composite values (passive objects)
between active objects by copy.

be compiled together with the SALSA actor library to Java
byte-code and run on any JVM. SALSA was proposed as
an actor-based language for mobile and internet computing
and has support for mobile actors which enables distributed
systems reconfiguration. A few of the other main contribu-
tions include actor garbage collection and three new lan-
guage mechanisms to help coordinate asynchronous com-
munication between different actors. When an actor sends
an asynchronous message to another actor, that actor may
include an implicit customer to which the result should be
sent after the message has been processed. This can be done
by using one of three kinds of continuations, namely token-
passing continuations, join continuations and first-class con-
tinuations. These continuations enable high-level synchro-
nization patterns to be specified, without the drawback of
futures2 whereby actors can potentially block waiting for
the future to be resolved. These token-passing continuations
can be implemented or specified as “partial” messages [22].
These partial messages are stored in a separate mailbox
which represent continuations that will be processed after
tokens get resolved.

Orleans A more recent industry-strength addition to the
active objects family of actor languages is the Orleans .NET
framework [15]. Orleans is a framework aimed at building
distributed high-scale computing applications. It was created
by Microsoft Research and designed for use in the cloud.
The Orleans runtime schedules execution of a large num-
ber of actors across a custom thread pool with a thread per
physical processor core. This makes Orleans highly suitable
for exploiting fine-grained concurrency. In Orleans, actors
are called grains. The implementation of a grain specifies a
class for which the methods are only asynchronously avail-
able through a proxy object. Calling such an asynchronous
message returns a task and Orleans inherits the await key-
word from C# in order to join with asynchronously execut-
ing tasks.

3.3 Processes
Erlang [5] was the first industry-strength language to adopt
the actor model as its model of concurrency. It was devel-
oped at the Ericsson and Ellemtel Computer Science Lab-

2 This is only a drawback for blocking futures as can be found in ABCL and
ASP. The E programming language has support for non-blocking promises
which do not exhibit this drawback.

oratories as a declarative language for programming large
industrial telecommunications switching systems. While Er-
lang’s programming style is very close to that of Classic Ac-
tors, it uses different mechanics to achieve similar effects.
An actor is not modelled as a named behaviour. Rather ac-
tors are modelled as processes that run from start to comple-
tion. Erlang actors can use the primitive receive to specify
what messages an actor can receive at that moment in time.
When evaluating a receive expression the actor pauses un-
til a message is received. If a message is received, the match-
ing code is evaluated and execution continues until a new
receive block is evaluated. One can use recursion to en-
sure that an actor continuously processes incoming mes-
sages. This is illustrated by Listing 4.
loop(Contents) ->

receive

{put, NewContent} ->

loop(NewContent);

{get, From} ->

From ! Contents,

loop(Contents)

end.

MyCell = spawn(loop, [nil]).

MyCell ! {get, self()}.

Listing 4. An Erlang process.

The spawn primitive creates a new Erlang process. This
will call the provided function, loop, in a new process and
returns that process’ id. The cell uses the primitive receive
to match incoming get- and put-messages. Once the message
body is processed the loop function calls itself recursively to
process the next message, passing along the updated state.

Scala Actor Library The Scala Actor Library [11] offers
a full-fledged implementation of Erlang-style actors on top
of Scala. Scala Actors can use two different primitives to re-
ceive a message. On the one hand, receive suspends the
current actor together with its full stack frame until a mes-
sage is received. Once the message is received the actor can
continue processing that message and the context in which
the receive block was executed is not lost. On the other
hand, react suspends the actor with just a continuation clo-
sure. This closure only contains information on how to pro-
ceed with processing an incoming message. The context in
which the react was called is lost. This type of message
processing has the benefit of being more lightweight because
it decouples the actor from its underlying thread of control,
allowing a single thread to execute many actors, allowing the
actor system to scale to a much larger number of actors

Kilim Kilim [18] is an actor framework for Java. The Kilim
weaver post-processes Java byte-code to add a lightweight
implementation of processes and provide strong isolation
guarantees. Each actor class needs to specify an execute

method as entry point for the actor. We categorise Kilim as
belonging to the Processes family of actor systems in our



Processes

Every process runs from start to completion. The se-
quential subset of actor systems that implement this
model is typically functional. Changes to the state of an
actor are aggregated in a single receive statement. The
scope of this receive statement then defines the current
state of that actor. Processes have a single entry point
that defines a flexible interface that can change by eval-
uating different receive expressions over time.

taxonomy because a Kilim actor is modelled as a process
that runs from start to completion. Getting a message from
an actor’s inbox is a blocking operation that in analogous to
executing a receive statement. The Kilim weaver makes sure
that context switching is possible during the execution of any
method that is annotated with the @pausable annotation, for
example, when an actor is waiting for a new message to ar-
rive in its inbox. Contrary to Erlang, the sequential subset
of Kilim is not functional and supports any Java statement.
To ensure isolation of the different actors, objects that are
transmitted over a mailbox have to implement the Message

interface and are passed by copy. However, there exist ex-
tensions to Kilim’s type system to enable zero-copy message
passing [10]. As long as the type system can guarantee that
any “shared” object is only accessible from within a single
actor then race conditions can be avoided. The use of linear
type systems to introduce shared-state in an actor model in a
safe and efficient ways is not only limited to Kilim. Pony [9]
also employs linear types to avoid deep copying messages
between actors.

3.4 Communicating Event-Loops
The E programming language [16] was the first language
to introduce the Communicating Event-Loop Actor Model.
This model takes a very similar approach to Asynchronous
Sequential Processes with the exception that it does not
make a distinction between passive and active objects. In
this model, each actor is represented as a vat. A vat has a
single thread of control (the event-loop), a heap of objects, a
stack, and an event queue. Each object in a vat’s object heap
is owned by that vat and those objects are owned by exactly
one vat. Within a vat, references to objects owned by that
same vat are called near references. References to objects
owned by other vats are called eventual references.

The type of reference determines the access capabilities
of that vat’s thread of execution on the referenced object.
Generally, actors are introduced to one another by exchang-
ing addresses. In the communicating event-loop model such
an address is always in the form of an eventual reference to
a specific object. The referenced object then defines how an-
other actor can interface with that actor. The main difference
between communicating event-loops (CEL) and other actor
models seen so far was that other actor models usually only

Communicating Event-Loops

A vat is a combination of an object heap, an event queue
and an event loop. Every reference that is passed be-
tween different vats is exported as an eventual reference
with a fixed interface and can serve as an entry point for
that actor. The sequential subset of actor systems that
implement this model is typically imperative. Changes
to the state of an actor can be done imperatively and
isolation is guaranteed by sending composite values be-
tween vats by eventual reference.

provide a single entry point or address to an actor (in other
words, at any point in time, an actor can have only 1 inter-
face). A CEL can define multiple objects that all share the
same message queue and event-loop and hand out different
references to those objects, thus essentially allowing one to
model an actor that has multiple interfaces at the same time.
The example in Listing 5 illustrates how to create an object
in E and send it an eventual message get.

def cell {

var contents := null

to put(newContents) {

contents := newContents

}

to get() {

return contents

}

}

var promise := cell<-get()

when (promise) -> {

println(promise)

}

Listing 5. A vat in E.

When an object in one vat sends an eventual message to
an object in another vat the message is enqueued in the event
queue of the owner of the receiver object and immediately
returns a promise. That promise will be resolved with the re-
turn value of the message once that message is processed. It
is not allowed for a vat to use a promise as a near reference.
If a vat wants to make an immediate call on the value rep-
resented by a promise, like printing it on the screen, that vat
must set up an action to occur when the promise resolves.
This is done by using the when primitive. Promises in E are
based on Argus’s promises [14]. With the main difference
being that accessing a promise in Argus is a blocking op-
eration while E adopts a purely asynchronous model (i. e.
executing the when primitive is also an asynchronous oper-
ation). When the promise for the value of the get message
becomes resolved, the body of the when primitive is exe-
cuted. During that execution the promise is resolved and can
be used as a local object.



AmbientTalk The communicating event-loop model was
later adopted by AmbientTalk [20], a distributed object-
oriented programming language which has been designed
for developing applications on mobile ad hoc networks. Am-
bientTalk was designed as an ambient-oriented program-
ming (AmOP) language.It adds to the Actor Model a number
of new primitives to handle disconnecting and reconnecting
nodes in a network where connections are volatile. The core
concurrency model however remains faithful to the original
communicating event-loops of E.

4. Actor System Properties
Each of the four families discussed gives some indication of
the properties of the actor system. However, these properties
still remain largely dependent on the specific implementa-
tion of the actor system. In this section we give an overview
of all the features and properties we use to classify the dif-
ferent actor systems discussed in Section 3. There are four
main classes of features and properties. First we look at how
each system processes individual messages. Secondly, we
look at how messages are received by the actor. Thirdly, we
look at what mutable state is available in the actor system
and how the actor system handles state changes. Lastly, we
classify the different actor systems according to the granu-
larity in which actors are meant to be used within a single
execution environment.

4.1 Message Processing
An important part of any actor system is the way in which
messages are processed. This is what we referred to earlier as
the sequential subset of the language. An important side-note
here is that, any property that holds for the sequential subset
of the language, typically only holds for the processing of a
single message. For example, any actor system that upholds
the Isolated Turn Principle guarantees that each message is
processed sequentially and fully isolated. However, once you
broaden that boundary to the processing of several messages,
most of these properties no longer hold. In this section we
only consider properties that hold during the processing of a
single message.

Paradigm The sequential subset of an actor language can
either be functional or imperative. If it is functional then,
typically, the only way to modify state is to change the
behaviour of the actor. If it is imperative then that means
that extra care needs to be taken to guarantee isolation of the
different actors. If the Isolated Turn Principle is guaranteed,
then the choice of paradigm does not impact the concurrency
properties of the resulting model.

Continuous The sequential subset of a language can allow
blocking statements or can ensure a continuous processing
of each message. In the latter case actors are guaranteed to
process a message from start to completion without having
to worry about deadlocks. Again, this only applies to the

Message Processing
Paradigm Continuous Consecutive

Classic Actor Model
Agha (ACT, SAL, Rosette) Functional Continuous Consecutive
Akka Imperative Blocking Consecutive
Processes
Erlang Functional Continuous Consecutive
Scala Actor Library Imperative Blocking Consecutive
Kilim Imperative Blocking Consecutive
Active Objects
ABCL/1 Imperative Blocking Interleaved
ASP (ProActive) Imperative Blocking Consecutive
SALSA Imperative Continuous Consecutive
Orleans Imperative Continuous Consecutive
Communicating Event-Loops
E Imperative Continuous Consecutive
AmbientTalk Imperative Continuous Consecutive

Table 1. Message Processing Properties

processing of a single message. Other forms of lost progress
can still occur between the processing of different messages.

Consecutive We consider a message to be processed in
consecutive order if it is processed from start to completion
without being interleaved with the processing of other mes-
sages of the same actor. This is usually guaranteed unless
there is some way to interrupt the processing of a single
message (e. g. express messages in ABCL/1).

A summary of the different actor languages discussed in
this paper and their properties with respect to message pro-
cessing can be found in Table 1. In conclusion, we list a num-
ber of observations made from this table. Firstly, the Isolated
Turn principle is a unifying principle across all actor fami-
lies. On the one hand, we have actor languages which mostly
support this principle. The major benefit of this is that the
developer gets strong safety guarantees: low-level data races
are ruled out by design. On the other hand, we find actor
libraries, which are often built on top of a shared-memory
concurrency model and typically do not enforce actor iso-
lation, i. e., they cannot guarantee that actors do not share
mutable state, therefore violating the Isolated Turn Princi-
ple. Secondly, the sequential subset of an actor system can
be functional or imperative, and as long as the Isolated Turn
principle is upheld, the choice does not impact the concur-
rency properties of that system. Finally, having continuous
message processing guarantees that the the sequential sub-
set of the actor system is free of low-level deadlocks. How-
ever, this does not guarantee global progress of the system as
deadlocks can still occur when two or more actors are wait-
ing for a message to arrive. What it does guarantee is that an
actor cannot be blocked while processing a message. Finally,
if we do not consider express messages from ABCL, every
actor system processes messages in consecutive order.

4.2 Message Reception
Incoming messages are always stored in the inbox of an
actor. How those messages are taken out of that inbox can
differ between the different actor systems. In this section
we discuss some properties of actor systems according to



how they take messages out of their inbox before processing
them.

Interface The interface (i. e. behaviour) of an actor can
be specified in various ways. Some actor systems specify a
behaviour as a list of messages and processing instructions,
to be called implicitly when a matching message is available.
Others use special primitives such as receive to let the
actor proactively take a message from their inbox. Others
use an object-oriented style where the interface of the actor
corresponds to the interface of an object and a message send
corresponds to a method invocation.

Flexibility The interface to an actor can be fixed or flex-
ible. When the interface of an actor is fixed that means
that actor will always understand the same set of messages
throughout its lifetime. When the interface is flexible, the set
of messages an actor understands can vary over time. This is
typically done by changing the behaviour of the actor. How-
ever, this does not imply that changing the behaviour of an
actor has to somehow change its interface. A behaviour is
stateful and an actor can change its behaviour to update its
internal state without changing what type of messages it un-
derstands. Similarly, having a fixed interface does not imply
that actors always respond to a message in the same way.
With an imperative sequential subset it is possible to change
how an actor responds to a message depending on earlier
state updates.

Number of interfaces Traditionally, every actor has a sin-
gle addressable entry point, namely the interface (i. e., the
behaviour) of that actor. However, in the case of the com-
municating event-loop model, each actor can hand out many
references to multiple of its own objects, creating multiple
addressable entry points each with a potentially different in-
terface.

Order In the case of a fixed interface, it makes sense to
process messages in the same order they arrived in the inbox
of the actor. However, when the interface is flexible it can be
opportune to process messages out of order (similar to Out
of Order Execution, OoOE) depending on what messages
are supported by the behaviour that is in place at the start
of each turn. Finally, actors in the E programming language
processes messages in E-ORDER where the order of mes-
sages is preserved when some messages are first sent trough
a forwarding actor.

A summary of the different actor languages discussed in
this paper and their properties with respect to message recep-
tion can be found in Table 2. In conclusion, we list a num-
ber of observations made from this table. Firstly, Classic Ac-
tors and Processes provide the best support for flexible inter-
faces and out of order message processing and thus facilitate
what is known as “conditional synchronisation” [7] (e.g. im-
plementing a blocking bounded buffer, or other more com-
plex forms of synchronisation). Secondly, actor systems de-

Message Reception
Interface Flexibility # Interfaces Order

Classic Actor Model
Agha (ACT, SAL, Rosette) Behaviour Flexible 1 OoOE
Akka Behaviour Flexible 1 OoOE
Processes
Erlang Receive Flexible 1 OoOE
Scala Actor Library Receive Flexible 1 OoOE
Kilim Mailbox Flexible 1 FIFO
Active Objects
ABCL/1 Methods Fixed 1 FIFO
ASP (ProActive) Methods Fixed 1 FIFO
SALSA Methods Fixed 1 FIFO*
Orleans Methods Fixed 1 FIFO
Communicating Event-Loops
E Methods Fixed * E-ORDER
AmbientTalk Methods Fixed * FIFO

Table 2. Message Reception Properties

veloped within an object-oriented paradigm tend to support
fixed actor interfaces in combination with imperative be-
haviour, while actor systems developed within a functional
paradigm tend to support flexible actor interfaces in com-
bination with a purely functional behaviour. Finally, Com-
municating Event Loops is the only actor family that allows
multiple addressable entry points to a single actor. This helps
support a POLA (principle of least authority) style of pro-
gramming, by facilitating the creation of many small, object-
level interfaces, rather than a single large actor-level inter-
face.

4.3 State Changes
Regardless of whether their sequential subset is functional
or not, all implementations of the Actor Model have some
form of mutable state (e. g. the behaviour/inbox of an actor).

Granularity The state of an actor may consist of multi-
ple individually addressable variables, each holding simple
atomic values (e.g. numbers), composite values (e.g. a list
of numbers) or references to other actors. State changes can
be aggregated or on an individual, i. e. per variable, basis. If
the sequential subset of the actor system is functional then
state changes are typically aggregated by replacing an ac-
tor’s behaviour. If the sequential subset of the actor system
is imperative then state changes can be made on an individ-
ual basis.

Isolation Isolation is guaranteed when no two actors can
read-write or write-write to the same memory location. In
actor systems where the sequential subset is functional this
is guaranteed because in those languages the only mutable
state is the behaviour of an actor and actors are only able
to modify their own behaviour. In actor systems where the
sequential subset is imperative some extra care needs to be
taken when sharing mutable state. For example, by (deep)
copying any data structure when it is passed between ac-
tors. Actor systems designed as libraries on top of execution
environments that support shared-memory multithreading
typically cannot guarantee isolation.

A summary of the different actor languages discussed in
this paper and their properties with respect to state changes



State Changes
Granularity Isolation

Classic Actor Model
Agha (ACT, SAL, Rosette) Aggregated Isolated
Akka Individual Shared-Memory
Processes
Erlang Aggregated Isolated
Scala Actor Library Individual Shared-Memory
Kilim Individual Isolated
Active Objects
ABCL/1 Individual Isolated
ASP (ProActive) Individual Isolated
SALSA Individual Isolated
SALSA Individual Shared-Memory
Communicating Event-Loops
E Individual Isolated
AmbientTalk Individual Isolated

Table 3. State Changes Properties

can be found in Table 3. In conclusion, we list a number
of observations made from this table. Firstly, the paradigm
of the sequential subset (functional or imperative) seems
to directly determine whether state changes at the level of
an actor are aggregated (for functional languages) or on
a per-variable basis (for imperative languages). Secondly,
actor systems generally ensure state changes are isolated
per turn. The general exception are actor systems designed
as libraries on top of execution environments that support
shared-memory multithreading.

4.4 Actors Per Execution Environment
The original intention for the Actor Model was to provide
a programming model for expressing concurrent programs
over different nodes in a distributed network. The message
passing model and isolation of the different actors is a good
fit for such systems. As such, most actor systems include
support for distribution. However, where they do differenti-
ate is how actors were meant to be used on a single node.
This ranges from Erlang, which is known for its lightweight
implementation of actors and supposed to run many actors
in a single execution environment, to AmbientTalk, which
is an actor language designed for mobile applications where
the execution environment in each phone would typically
host only a handful of actors.

A summary of the different actor languages discussed in
this paper and their properties with respect to the granularity
of their concurrency model can be found in Table 4. We
found that Classic Actors and Processes generally lead to
a style of programming where each individual actor is at the
level of abstraction of what an OO programmer would think
of as an “object”, or a functional programmer would think of
as an “abstract data type” (ADT), whereas for Active Objects
and CELs, each actor is more at the level of abstraction of
what an OO programmer would think of as a “component”,
or a functional programmer as a “module”.

It is our conjecture that Classic Actors and Processes lead
to a style of programming where the state of an actor tends to
be small in terms of the number of values involved (not nec-
essarily in terms of the size of the values involved), whereas
Active Objects and CELs lead to a style of programming

Actors per Execution Environment
Granularity

Classic Actor Model
Agha (ACT, SAL, Rosette) Fine-grained
Akka Fine-grained
Processes
Erlang Fine-grained
Scala Actor Library Fine-grained
Kilim Fine-grained
Active Objects
ABCL/1 Coarse-grained
ASP (ProActive) Coarse-grained
SALSA Coarse-grained
Orleans Fine-grained
Communicating Event-Loops
E Coarse-grained
AmbientTalk Coarse-grained

Table 4. Actors Per Execution Environment Properties

where the state of an actor tends to consist of many small
objects, like in a regular heap of an object-oriented program.

5. Conclusion
Over the years different actor systems have used different
terminology to name certain concepts. This paper provides
an informal definition of a nomenclature of a common sub-
strate by which we can name different concepts found in ev-
ery actor system. Additionally, this paper provides a brief
history of some of the key programming languages and li-
braries that implement the actor model and have influenced
and will continue to influence the design and rationale of
other actor systems today. While discussing these different
actor systems, we identify and define four broad categories
along which any actor system can be categorised. Namely:
Classic Actors, Active Objects, Processes and Communicat-
ing Event-Loops.

We also define the Isolated Turn principle as a unifying
principle across all actor families. The Isolated Turn Princi-
ple guarantees that the Actor Model is free of low-level data
races and deadlocks and guarantees that, during a single turn,
an actor has a consistent view over its state and its environ-
ment. Contrary to actor libraries that are built on top of a
shared memory concurrency model and typically cannot en-
force actor isolation, we identified that most actor languages
support this principle.

The properties of an actor system remain largely depen-
dent on the specific implementation of that actor system.
Therefore this paper defines a number of important proper-
ties along which every actor system can be evaluated. How-
ever, there are still some general conclusions to be drawn
from our evaluation of the different actor systems discussed
in this paper. Firstly, the sequential subset of an actor sys-
tem can be functional or imperative, and as long as the Iso-
lated Turn principle is upheld, the choice does not impact
the concurrency properties of that system. Secondly, actor
systems developed within an object-oriented paradigm for
their sequential subset tend to support fixed actor interfaces
in combination with imperative behaviour, while actor sys-
tems developed within a functional paradigm tend to sup-
port flexible actor interfaces in combination with a purely
functional behaviour. The flexible interface of the latter fa-



cilitates conditional synchronisation. Thirdly, the paradigm
of the sequential subset directly determines whether state
changes at the level of an actor are aggregated (for func-
tional languages) or on a per-variable basis (for imperative
languages). Finally, it is our conjecture that Classic Actors
and Processes are mostly used in a fine-grained concurrency
setting and lead to a style of programming where the state of
an actor tends to be small in terms of the number of values
involved (not necessarily in terms of the size of the values in-
volved), whereas Active Objects and CELs are mostly used
in a a coarse-grained concurrency setting and lead to a style
of programming where the state of an actor tends to consist
of many small objects, like in a regular heap of an object-
oriented program.

References
[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, MA, USA, 1986.

[2] G. Agha. Concurrent object-oriented programming. Commun.
ACM, 33(9):125–141, Sept. 1990.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
foundation for actor computation. J. Funct. Program., 7(1):
1–72, Jan. 1997.

[4] J. Allen. Effective Akka. O’Reilly Media, Inc., 2013.

[5] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in ERLANG (2nd Ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[6] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,
M. Morel, and R. Quilici. Grid Computing: Software Envi-
ronments and Tools, chapter Programming, Deploying, Com-
posing, for the Grid. Springer-Verlag, 2006.

[7] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and
distribution in object-oriented programming. ACM Comput.
Surv., 30(3):291–329, Sept. 1998.

[8] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous
sequential processes. Inf. Comput., 207(4):459–495, Apr.
2009.

[9] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil.
Deny capabilities for safe, fast actors. In Proceedings of
the 5th International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE! 2015,
pages 1–12, New York, NY, USA, 2015. ACM.

[10] O. Gruber and F. Boyer. Ownership-based isolation for con-
current actors on multi-core machines. In Proceedings of
the 27th European Conference on Object-Oriented Program-
ming, ECOOP’13, pages 281–301, Berlin, Heidelberg, 2013.
Springer-Verlag.

[11] P. Haller and M. Odersky. Actors that unify threads and
events. In Proceedings of the 9th International Conference on

Coordination Models and Languages, COORDINATION’07,
pages 171–190, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] C. Hewitt and B. Smith. A plasma primer (draft), 1975.

[13] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ac-
tor formalism for artificial intelligence. In Proceedings of the
3rd International Joint Conference on Artificial Intelligence,
IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[14] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI
’88, pages 260–267, New York, NY, USA, 1988. ACM.

[15] Microsoft. Orleans, 2015-16. URL
http://dotnet.github.io/orleans.

[16] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan coordination. In
Proceedings of the 1st International Conference on Trustwor-
thy Global Computing, TGC’05, pages 195–229, Berlin, Hei-
delberg, 2005. Springer-Verlag.

[17] C. Scholliers, E. Tanter, and W. De Meuter. Parallel actor
monitors: Disentangling task-level parallelism from data par-
titioning in the actor model. Sci. Comput. Program., 80:52–
64, Feb. 2014.

[18] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. In Proceedings of the 22nd European Conference on
Object-Oriented Programming, ECOOP ’08, pages 104–128,
Berlin, Heidelberg, 2008. Springer-Verlag.

[19] C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and
G. Agha. Rosette: An object-oriented concurrent systems
architecture. In Proceedings of the 1988 ACM SIGPLAN
Workshop on Object-based Concurrent Programming, OOP-
SLA/ECOOP ’88, pages 91–93, New York, NY, USA, 1988.
ACM.

[20] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and
W. De Meuter. Ambienttalk: Object-oriented event-driven
programming in mobile ad hoc networks. In Proceedings of
the XXVI International Conference of the Chilean Society of
Computer Science, SCCC ’07, pages 3–12, Washington, DC,
USA, 2007. IEEE Computer Society.

[21] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with SALSA. SIGPLAN Not., 36(12):
20–34, Dec. 2001.

[22] C. A. Varela. Programming Distributed Computing Systems:
A Foundational Approach. The MIT Press, 2013.

[23] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented
concurrent programming ABCL/1. In Conference Proceed-
ings on Object-oriented Programming Systems, Languages
and Applications, OOPLSA ’86, pages 258–268, New York,
NY, USA, 1986. ACM.


