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ABSTRACT
Program defects tend to surface late in the development of
programs, and they are hard to detect. Security vulnerabil-
ities are particularly important defects to detect. They may
cause sensitive information to be leaked or the system on
which the program is executed to be compromised.

Existing approaches that use static analysis to detect se-
curity vulnerabilities in source code are often limited to a
predetermined set of encoded security vulnerabilities. Al-
though these approaches support a decent number of vulner-
abilities by default, they cannot be configured for detecting
vulnerabilities that are specific to the application domain of
the analyzed program.

In this paper we present JS-QL, a framework for detecting
user-specified security vulnerabilities in JavaScript applica-
tions statically. The framework makes use of an internal
domain-specific query language hosted by JavaScript. JS-
QL queries are based on regular path expressions, enabling
users to express queries over a flow graph in a declarative
way. The flow graph represents the run-time behavior of a
program and is computed by a static analysis.

We evaluate JS-QL by expressing 9 security vulnerabili-
ties supported by existing work and comparing the resulting
specifications. We conclude that the combination of static
analysis and regular path expressions lends itself well to the
detection of user-specified security vulnerabilities.

1. INTRODUCTION
Security vulnerabilities are important program defects to

detect. They might lead to leaks of sensitive information, or
even to the system on which the program is executed being
compromised. Existing approaches that use static analy-
sis to detect generic defects and security vulnerabilities in
source code often support but a fixed set that is hard-coded.
In case support for user-defined checks is available, these
often need to be expressed in a general-purpose language
which renders doing so rather cumbersome.

These problems can be overcome by enabling users to de-
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fine the characteristics of a sought-after defect in a domain-
specific language. This renders the static analysis that iden-
tifies source code exhibiting these properties application-
specific and the defect itself user-defined.

A diverse set of specification languages for source code
characteristics have been proposed. Specification languages
for structural characteristics include graph rewrite rules [31]
or logic formulas [7, 10, 32, 22, 5, 2, 12, 9] that quan-
tify or range over a program’s AST nodes. Specification
languages for behavioral characteristics include reachability
queries [11, 8, 37, 36, 24, 26], temporal logic formulas [25],
state machines [13, 3] and logic formulas [28, 14] that quan-
tify over control flow and data flow analysis results.

1.1 JS-QL
In this paper we present JS-QL, an internal domain-specific

specification language supporting regular path expressions [8,
26], hosted by JavaScript. JS-QL enables the formulation of
pre-encoded and user-defined queries for detecting security
vulnerabilities in a readable and expressive manner. Queries
are executed over a flow graph computed by a static analysis.
The flow graph represents the required program information
in terms of control flow and value flow.

The application-specific nature of the queries written in
JS-QL, together with the possibility for users to define these
queries by themselves, makes it a powerful aid in checking
program characteristics, and security vulnerabilities in par-
ticular. In contrast to general program checkers, a much
wider range of program characteristics can be detected.

JS-QL supports multiple types of queries, such as for-
ward and backward queries, and universal and existential
queries, allowing developers to explore their programs in
several ways.

JS-QL is inspired by the strengths and shortcomings of
existing program analysis tools which are extensible with
user-defined rules and queries. JS-QL differs from existing
solutions in its target language, the way a program is repre-
sented, and how the user is given access to this representa-
tion:

• JS-QL targets JavaScript programs.

• JS-QL works on a flow graph, which is a rich pro-
gram representation—richer than a program depen-
dence graph for example.

• JS-QL is an internal JavaScript DSL for specifying reg-
ular path expressions, and aims to be a readable and
expressive query language.

http://dx.doi.org/10.1145/2993600.2993612
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Figure 1: JS-QL architecture

1.2 Contributions
Our contributions are the following:

1. We present the JS-QL domain-specific language for ex-
pressing succinct and highly readable program queries.

2. We present the JS-QL framework to match JS-QL queries
against JavaScript programs.

3. We evaluate JS-QL by expressing multiple security
vulnerabilities and comparing the resulting specifica-
tions to corresponding ones of existing work (Section 5).

1.3 Overview of the approach
The architecture of the JS-QL framework is depicted in

Figure 1. The query engine takes as input a flow graph of a
program (Section 2) and a JS-QL query (Section 3). The
output computed by the engine consists of <State, Sub-

stitutions> for all paths in the graph on which a match
for the query was found (Section 4).

2. REPRESENTING PROGRAM BEHAV-
IOR AS FLOW GRAPHS

Any approach for detecting security vulnerabilities in a
program must rely on information about the runtime be-
havior of that program. More specifically, it is necessary
to determine the value flow (what are the possible values
that expressions in a program may attain?) and control
flow (what are the possible paths through a program?) of
programs. In the JS-QL framework we rely on JIPDA [30]
to provide this information. Given an JavaScript program,
JIPDA computes a flow graph for this program. The flow
graph is a finite representation of the runtime behavior of
the input program. Nodes in a flow graph represent program
states, and edges denote transitions between states.

Other types of graphs, such as a program dependence
graph [17], can also be used to track information flow, but
these graphs often lack more general information about pro-
gram states, making them less qualified for use as the (main)
program representation. On the other hand, a larger and
more precise representation of program information gener-
ally is more costly to compute and query than a simpler
one.

2.1 Computing the flow graph
JIPDA defines the small-step semantics of a subset of

JavaScript as an abstract machine that transitions between
states [15]. As the abstract machine describes the individual
steps required to evaluate programs expressed in JavaScript,
this type of semantics is referred to as small-step operational
semantics. Starting from an initial state, which represents
the input program to be evaluated, the machine continu-
ally transforms machine states into possible successor states,
generating a graph of all potentially reachable states. Ev-
ery state corresponds to a snapshot of the program state

(expressions, values, the heap, and the stack) while the ma-
chine is evaluating the program. Evaluation states represent
the evaluation of an expression of the program in a particu-
lar binding environment. Continuation states indicate that
the machine is ready to continue evaluation with a value it
has just calculated. Other types of states, such as return
states and throw states, are special kinds of continuation
states and indicate a special type of control flow.

Because JIPDA is flow-sensitive, it is guaranteed that a
state A on some path in the graph occurs before a state B on
the same path if A occurs before state B in the program. This
simplifies reasoning about patterns in a program, because
no false positives will occur with regards to the order of
execution of states.

2.2 Finitizing the semantics
JS-QL queries (Section 3) examine the resulting flow

graph to obtain the necessary control and value flow infor-
mation required for detecting non-trivial security vulnera-
bilities. However, the problem with computing a flow graph
using an abstract machine as described above, is that the
graph can become unpractically large, or even infinite. To
ensure that resulting flow graphs are finite and reasonable
in size, while still containing useful and consistent results
about the behavior of programs, JIPDA applies the tech-
nique of abstract interpretation. Abstract interpretation is a
theory that offers a solution to the problem of costly or un-
computable runtime properties [6]. Although the concrete
semantics of a non-trivial program are not computable with
finite resources, abstract interpretation nevertheless offers
a framework for getting useful answers to non-trivial ques-
tions about programs. The answers we obtain from abstract
interpretation will necessarily be approximations due to the
undecidability of the questions asked.

In the context of this paper the results of flow analysis
must conservatively approximate the control flow and value
flow of programs, erring on the safe side in order to remain
faithful to the original semantics. For example, if during
concrete interpretation a call site invokes a particular func-
tion, the analysis must reflect this possibility, but the anal-
ysis may be imprecise in the sense that it overestimates the
set of called functions at call sites.

The default abstract semantics for JS-QL equips JIPDA’s
abstract machine with a set lattice containing primitive
types and pointers, and with monovariant object allocation
(i.e., based on the syntactic allocation site).

3. THE JS-QL QUERY LANGUAGE
JS-QL, short for JavaScript Query Language, is a lan-

guage for expressing different kinds of application-specific
and user-defined security vulnerabilities. To this end,
the language specializes in expressing queries matching se-
quences of program states in the flow graph by making using
of regular path expressions [8, 26]. Regular path expressions
describe paths in a graph in a syntax similar to regular ex-
pressions. It is important that exploring and accessing infor-
mation in a flow graph happens in an expressive yet readable
way, as such graphs might be complex to understand. We
are convinced that regular path expressions enable users to
write clean and understandable queries.

We first discuss the design of JS-QL (Section 3.1), and
then present an overview of the language (Section 3.2).



3.1 Design
We have designed JS-QL as an internal domain-specific

language (DSL) built on top of JavaScript. Domain-specific
languages are well suited for querying graphs, because they
allow the expression of ideas at the level of abstraction of
the problem domain—in our case queries over program in-
formation contained in a flow graph. DSLs avoid much of
the boilerplate code that would be required when writing the
same queries in a general-purpose language. However, the
cost of designing and implementing a DSL is non-negligible,
and users have to be educated in order to use the language.

3.1.1 External DSLs
DSLs that have a compiler to translate DSL programs into

applications are called external DSLs. The main advantage
of an external DSL is that the implementation of the com-
piler can be completely tailored to the DSL. The external
DSL in turn is not restricted in any way regarding nota-
tion and primitives because its syntax is independent of any
underlying host language. There is ample related work on
external DSLs for graph traversal and querying [16, 23, 1].

3.1.2 Internal DSLs
An internal (or embedded) DSL is built on top of a host

language—JavaScript in case of JS-QL. This type of DSL
inherits the infrastructure of its host language, and tailors
it toward the domain of interest. Although internal DSLs
are restricted by the syntax of their host language, they can
make full use of the host language as a sublanguage, thus
offering the expressive power of the host language as well as
its domain-specific expressive power. This expressive power,
along with not having to build a full fledged compiler for our
DSL, are the main reasons we preferred an internal DSL over
an external one for JS-QL.

The Gremlin language [33] and Dagoba [35] are exam-
ples of existing internal DSLs for graph traversal. Günther
and Cleenewerck [21] illustrates how well the flexibility and
expressiveness of Ruby accommodates the implementation
of an internal DSL for surveys. These languages served as
inspiration for the design of JS-QL as an internal domain-
specific query language.

3.1.3 DSL design patterns
The principal design pattern used in JS-QL is method

chaining. Method chaining is a pattern in which the out-
put of one method flows naturally as input to another
method. This approach offers a fluent interface [18] to the
user with the aim to write readable queries while avoiding
boilerplate code and coding mistakes. A fluent API is ideal
for querying states in flow graphs, as it is natural to de-
scribe states we want to encounter on a path through the
graph in a clearly specified order. Consider for example
the query G.skipZeroOrMore().functionCall(). G indi-
cates the start of a query, and the query then skips zero
or more states until a function call state is encountered.

3.2 Overview of JS-QL

Entry point.
JS-QL is a internal DSL, and therefore has to provide

an entry point that can be used to start querying the flow
graph. A single entry point G is created for this purpose,
and represents the flow graph without any states or paths

matched. The query G.state() for example matches the
first state in the graph.

States and state properties.
The state construct is the single most basic element of

the language. It matches any state in the flow graph, but
does not provide other information. Nevertheless is it the
most important building block of the language because it is
used to construct higher-level queries and predicates, as we
discuss later in this section.

Constructs evalState, kontState, returnState and re-

sultState are equivalent to state but match only those
specific kinds of states.

JS-QL deconstructs program states as nested key-value
pairs. Keywords node, value, benv, store, etc. are state
keywords that correspond to program state properties. The
key indicates the property to be matched, whereas a value
can be one of three things: a variable that gets bound to the
key’s corresponding value in the JIPDA state, a nested map
that further deconstructs the current property, or a literal
that only matches with its specific value.

The this JS-QL keyword is an implicit property that is
made available for each deconstructable map in the lan-
guage. Its value represents the immediately enclosing ob-
ject.

JS-QL enables users to specify sequences of states through
method chaining. When checking the flow graph against
this type of query pattern, all states in the pattern must
be matched in exactly the order specified. When a state in
a query pattern is encountered that does not match with
the current state in the flow graph, the matching process is
aborted for the current path that is investigated in the flow
graph.

Variables.
Variables are strings that start with a ?. JS-QL has to use

strings for variables because of the embedded nature of the
language: JavaScript would not recognize variables specified
as names (i.e., as regular JavaScript variables).

Temporary variables are variables that are not contained
in the resulting substitutions. By introducing these vari-
ables in the code, no conditionals have to be written to check
whether a certain property is present in a map, as we can
just use a temporary variable as a replacement. Using tem-
porary variables, a predicate (see below) can also provide
information that can be queried optionally.

Regular path expressions.
JS-QL supports the use of the Kleene star operator to

match any number of states, and the Kleene plus operator
to match at least one state. These constructs must be placed
after the state(s) they are applied to.

Query patterns can be surrounded by braces. Left and
right braces in JS-QL are denoted by lBrace and rBrace,
respectively.

JS-QL provides the or language construct to specify dis-
junction. The following example detects all uses of a variable
v in binary arithmetic expressions. The variable can be on
either side of the binary operator.

1 G.skipZeroOrMore ()
2 .lBrace ()
3 //Left -hand side with name ’v’
4 .state({node: { type: ’BinaryExpression ’,



5 left: {name:’v’}}})
6 .or()
7 //Right -hand side with name ’v’
8 .state({node: { type: ’BinaryExpression ’,
9 right: {name:’v’}}})

10 .rBrace ()

JS-QL combines techniques from regular expressions with
a special built-in construct, the wildcard. In JS-QL, a wild-
card serves the sole purpose of matching any state it gets
compared with. Because wildcards in JS-QL enable users to
specify that some states in the flow graph can be skipped,
another name for this construct is skip. A wildcard con-
struct acts just like regular states in a query, meaning that
they only match a single state in the flow graph.

Negation.
When placed before a state, the not construct will only be

matched if the negated state can not be matched with the
current state in the flow graph. This can be used to ensure
that a state does not occur on the matched path. A negated
state immediately followed by star (plus) can be read as:
“Match zero (one) or more states that are not the negated
state”.

Properties.
JS-QL has a built-in keyword properties that can be

used to introduce additional properties. Introducing prop-
erties increases the expressivity of the language. When the
construct is used to obtain more information from already
bound variables, it avoids queries with deeply nested maps
which quickly become confusing to read and bothersome to
modify. Function prop can be used to query for a specific
property. The first argument of prop is the function that is
applied when the matching engine processes the query. The
remaining arguments of prop are passed as arguments to
the applied function. Another way to define properties is by
simply specifying which attribute of a variable one wishes to
capture, as in line 6 in the following example.

1 G.skipZeroOrMore ()
2 .state({
3 node:{ declarations: ’?decls’ },
4 properties :{
5 ’?dec’ : prop(’memberOf ’, ’?decls’),
6 ’?decName ’ : ’?dec.left.name’
7 ’?decNameU ’: prop(function(a){
8 return a.toUpperCase ();
9 }, ’?decName ’)

10
11 }})

This example matches all states in a flow graph that declare
variables. For each declaration ?dec in a list of declara-
tions ?decls, we introduce the declaration itself, the name
of the declared variable ?decName and its uppercase conver-
sion ?decNameU as properties.

Filters.
JS-QL provides the filters keyword for specifying fil-

ters in queries. A filter can be any function, predefined or
specified by the user, that returns a boolean value. When
returning a true value, pattern matching continues. Other-
wise the matching process aborts and no match for the cur-
rent path in the flow graph is found. Filters in JS-QL work
very similar to properties, except that they act as guards
who filter out states that do not satisfy certain conditions.

As no variables have to be stored for filters, the value of the
filters keyword is a JavaScript array, instead of a (nested)
map. A filter is declared through the cond JavaScript func-
tion, which is similar to prop for properties. The following
example query detects multiple variable declarations in one
declaration statement.

1 G.skipZeroOrMore ()
2 .state({
3 node:{ declarations: ’?decls’},
4 properties :{
5 ’?length ’ : prop(’length ’, ’?decls’)
6 },
7 filters :[
8 cond(’>’, ’?length ’, 1)
9 ]

10 })

Dataflow.
Variables and functions from the input program can be

looked up in JS-QL using the lookup keyword. The value-
part of this keyword is a map with the names of the variables
to look up as keys and the variable names that need to be
bound to the addresses as values.

Predicates and policies.
JS-QL provides a number of built-in predicates to abstract

over matching single states. For example, built-in predicate
functionCall matches states that evaluate a function call.
In addition, users can specify their own predicates and poli-
cies. Policies are sequences of states and predicates forming
a query pattern.

Recursion.
Recursive queries are queries that invoke themselves. JS-

QL supports recursive queries by providing the rec function.
This function takes two arguments: the mapping for the re-
cursive step, and the predicate that is called recursively. A
recursive query can for example be used to detect by which
variables a variable is tainted. Our implementation contains
a naive taintedBy policy that considers variables. This pol-
icy takes three optional arguments: orig denotes the origi-
nal value which is aliased, alias represents the alias of the
original value, and rec keeps track of all variables that have
been used as aliases in between orig and alias.

Type of queries.
JS-QL is a flexible query tool that supports different types

of queries.
Existential queries match a pattern if at least one path

is found. Universal queries require that the query matches
for the same substitutions along all possible paths in the
flow graph between two states. The following example
is a universal query that checks where a variable has a
constant value. It assumes the presence of a predicate
def(name:’?x’) that matches all definitions and redefini-
tions of a JavaScript variable bound to ?x.

1 G.skipZeroOrMore ()
2 .def({name: ’?x’}) // Define the

variable
3 .not().def({name: ’?x’}).star() // As long as it is

not redefined

Queries can explore the flow graph in two directions. For-
ward queries match states in the flow graph starting at the



initial state and in the direction of the final states of the
graph. Backward queries match states in the flow graph
starting at the final states and in the direction of the ini-
tial state of the graph. Although backward queries are less
common, they are needed for performing certain types of
program analyses such as live variable analysis. The exam-
ple below depicts a backward query for performing a live
variable analysis. The entry point for backward queries is F,
and it assumes the presence of a predicate use(name:’?x’)

that matches all uses of a JavaScript variable bound to ?x.

1 F.skipZeroOrMore ()
2 .use({name: ’?x’}) // Read the variable
3 .not().def({name: ’?x’}).star() // As long as it isn’

t written

4. GRAPH QUERY ENGINE
The graph query engine is the core of our tool. It matches

user-defined queries against states in a JIPDA flow graph,
capturing and unifying relevant program properties. The
query engine takes a flow graph and a JS-QL query as input
(Figure 1).

We based our algorithm for solving queries on the work
presented in Liu et al. [26]. A JS-QL query is parsed like
a regular expression. Each state in the pattern represents
one character in the regular expression, defined by objects of
type RegexPart. These parts of the pattern have five fields
to ease the translation from regular expression to automa-
ton:

1. Name: The name of a regular expression part. In the
current implementation, the name denotes the type of
the state/predicate that the RegexPart represents (e.g.
state, wildcard, not, lbrace).

2. Symbol : The actual symbol that will be parsed by the
parser to set up the automaton corresponding to the
query.

3. Object : The argument of the state/predicate in which
all variables are bound and properties, filters, and
lookups are specified.

4. ExpandFunction: A higher-order function represent-
ing a recursive predicate or policy that is called for
recursive queries. This argument does not need to be
specified when a query is not recursive.

5. ExpandContext : A unique identifier to avoid overlap-
ping recursive variable names, only used for recursive
queries.

States and predicates are function calls returning this to
enable method chaining. Each function call represents one
state in the pattern, and thus for each of these calls the
corresponding RegexPart gets pushed into a map containing
the pattern information.

Recursive query patterns can contain an arbitrary number
of states, so they cannot be modeled directly as a sequence of
RegexParts as the length of the actually matched pattern is
not known. We therefore store a recursive query in a single
RegexPart object, and mark it with the name “subgraph”.
Additionally, we specify the ExpandFunction and Expand-
Context to be able to process the subgraph in the matching
algorithm. We adopted the idea to treat recursive queries in
this manner from the PQL language [28].

The entire query pattern (i.e. the map) is processed by
applying Thompson’s Construction Algorithm and the Sub-
set Construction Algorithm consecutively to obtain an NFA
and DFA respectively [34].

The algorithms for existential and universal queries that
are used as the basis of the tool were first presented in Liu
et al. [26]. In our work we require algorithms for matching
regular path expressions with graphs containing simple in-
formation. These algorithms match the edge labels of the
graph with the edge labels of the regular path expression (in
the remainder of this paper, we will call these expressions
patterns).

The algorithms presented by Liu et al. do not support
recursion, and therefore do not provide constructs for re-
cursive queries. We augmented these algorithms to consider
subgraphs as a regular data structure and implemented a
way to process them. This required transforming the JIPDA
flow graph such that all state information is available in the
edges instead of the nodes. This presented no difficulties
as no explicit edge information is present in regular JIPDA
flow graphs.

The information on the edge labels in the approach de-
scribed by Liu et al. consists of simple information. In their
work the arguments of a pattern can only be symbols, such
as a string or a literal, limiting the type of graphs that can be
analyzed. We extended these algorithms to support nested
maps as arguments, as these are the main data structure in
JS-QL for representing a state.

A JS-QL query output consists of tuples <State, Sub-

stitutions> for all paths on which a match for the query
was found. JS-QL supports three types of variables that
each play a particular role.

1. Regular variables contain the information that the user
wants to match in a query. When a match succeeds,
they are contained in the resulting substitutions.

2. Recursive variables are used as intermediary variables.
They function as variables that were bound in the pre-
vious step of a recursive query, enabling a recursive
step to work with the value of one or more variables of
the previous step.

3. Temporary variables are state-local variables used
when not specifying a certain argument for a predi-
cate or policy.

By allowing the user to work with these three types of vari-
ables, writing queries becomes flexible because the bindings
in a substitution set can be limited to only the informa-
tion needed by the user. When imagining JS-QL without
the support of temporary variables for example, the size of
the substitution set for more complex queries would quickly
grow large. This decreases the readability of the results and
makes interpretation of these results more difficult.

5. EVALUATION
We evaluated the expressiveness of JS-QL by expressing 9

security vulnerabilities distilled from 3 papers that present
alternative approaches for expressing security-related pro-
gram queries: GateKeeper [20], PidginQL [24], and Con-
Script [29]. Table 1 gives an overview of the 9 different
vulnerabilities and their origin. For each vulnerability, we
evaluate how well its formulation in JS-QL matches the orig-
inal formulation. Because we do not have space to discuss



Policy Origin Name
V1 GateKeeper Prototype poisoning
V2 GateKeeper Global namespace pollution
V3 GateKeeper Script inclusions
V4 PidginQL CMS non-administrator sends message

to all CMS users
V5 PidginQL Public output depends on user’s non-

cryptographically hashed password
V6 PidginQL Existing database is opened before

master password is checked
V7 ConScript String arguments to setInterval,

setTimeout
V8 ConScript Non-HTTP-cookies
V9 ConScript Resource abuse

Table 1: Evaluated policies and their origin.

all 9 vulnerabilities, we choose to report on one vulnerability
per approach we compare against: V1, V4, and V7. We con-
clude this section by evaluating our framework based on the
results from the experiments, and specify advantages and
limitations of our approach (Section 5.4).

5.1 GateKeeper
GateKeeper is a mostly static approach for soundly en-

forcing security and reliability policies for JavaScript pro-
grams [20]. Programs are represented as a database of Dat-
alog rules against which GateKeeper policies, also written
in Datalog, are checked.

Vulnerability 1: Prototype poisoning
Prototype poisoning compromises trusted code by manipu-
lating global prototypes from which that code inherits [27].
An example of this attack is changing the toString function
on the global object to spoof a URL.

1 String.prototype.toString = function () {
2 return "www.trustedsite.com";
3 }
4
5 var login = function () {
6 if (document.location.toString () === "www.

trustedsite.com") {
7 // proceed
8 }
9 }

GateKeeper.
Guarnieri and Livshits [20] defines the FrozenViola-

tion(v) predicate to detect writes to prototypes of built-in
objects (Listing 1). This predicate first looks for all stores
of field v. This field points to location h2, which repre-
sents the points-to address for variables. Only writes to
built-in objects are infringements of the policy, which im-
plies that h2 has to point to a field of of one of these ob-
jects. This is expressed as follows: in BuiltInObjects(h),
h points to the heap location of a built-in object. The
Reaches(h1,h2) predicate makes sure that the field that
was stored reaches the built-in object directly or indirectly,
by recursively checking if one of the properties of the built-in
object has a field pointing to the stored field.

JS-QL.
Listing 2 depicts the JS-QL query to express the same

vulnerability. The filter on lines 10-12 indicates that we

1 Reaches(h1,h2) :- HeapPtsTo(h1,_,h2).
2 Reaches(h1,h2) :- HeapPtsTo(h1,_,h3),
3 Reaches(h3,h2).
4
5 FrozenViolation(v) :- Store(v,_,_),
6 PtsTo(v,h2),
7 BuiltInObject(h1),
8 Reaches(h1,h2).
9

10 % Specify all built -in objects
11 BuiltInObject(h) :- GlobalSym("String", h).
12 BuiltInObject(h) :- GlobalSym("Array", h).
13 % ...
14
15 GlobalSym(m,h) :- PtsTo("global", g),
16 HeapPtsTo(g,m,h).

Listing 1: Vulnerability 1 in GateKeeper

1 G.skipZeroOrMore ()
2 .state({
3 node:{
4 expression :{
5 left:{
6 properties: ’?props’,
7 mainObjectName: ’String ’
8 }
9 }

10 },
11 filters :[
12 cond(’contains ’, ’?props’, ’prototype ’)
13 ]
14 })

Listing 2: Vulnerability 1 in JS-QL

only want to detect writes to the prototype property of the
String object. When omitted, the query detects all writes
to this object.

The JS-QL policy only detects writes to the String ob-
ject. The implementation of JS-QL also contains a com-
pound policy to detect writes to all built-in objects’ proto-
type property.

Discussion.
JS-QL proves to be able to specify the prototype poisoning

vulnerability and similar vulnerabilities. The GateKeeper
query is more verbose compared to its JS-QL equivalent, in-
dicating that JS-QL queries can be concise while remaining
expressive.

Other vulnerabilities and conclusion
Vulnerabilities V2 and V3 were also expressible in JS-QL.
GateKeeper excels in writing concise queries to detect cer-
tain individual properties of a program. It is however diffi-
cult to specify a query in GateKeeper which finds a sequence
of properties in a program. JS-QL does not have this limita-
tion, as it is designed to match states along an abstract flow
graph. While JS-QL can also express individual properties
of a program such as calls of a certain method, it is also
capable of finding complex patterns.

Two other features that JS-QL offers and GateKeeper
lacks is filtering and defining extra properties. It would be
very cumbersome to write a query in GateKeeper to find
all function calls to methods that take more than four ar-
guments, which can be considered as a code smell. JS-QL
provides the properties and filters constructs to express
this.



Although the query for detecting V1 is actually a bit
shorter when expressed in JS-QL, GateKeeper is less ver-
bose in most situations. This is because data flow analysis
happens behind the scenes in GateKeeper, whereas JS-QL
has to do the checks for aliasing in the language itself.

5.2 PidginQL
Johnson et al. [24] presents a query language, PidginQL,

for querying a program dependence graph (PDG). This type
of graph is different from a flow graph generated by JIPDA
because it only depicts dependencies between program state-
ments, rather than modeling the whole execution of a pro-
gram.

Vulnerability 4: CMS non-administrator sends mes-
sage to all CMS users
In a scenario where not only administrators can broadcast
messages, a regular user with bad intentions could easily
take advantage of this situation to cause harm to the system.
For instance, a CMS application with a large number of
users could be exploited by sending a message to all users
asking them to provide sensitive information such as their
password. The attacker can then compromise the contents
of the victim’s account. To avoid this undesirable behavior,
we need a policy which prevents regular users from sending
messages to a large number of other users.

Pidgin.
Listing 3 is the Pidgin query that detects this vulnerabil-

ity. First, the query searches for all nodes that are entries of
the addNotice method and stores them in a variable. The
addNotice method is the method that sends messages to all
users. Next, all points in the PDG are found that match a
return node of the isCMSAdmin method with a return value
which is truthy. In order to know if there exists some path
in the graph where addNotice is called when the return
value of isCMSAdmin is false, all paths between the nodes
in addNotice and isAdmin are removed from the graph for
all paths where isAdmin is true. Finally, the intersection of
the nodes in this “unsanitized” graph and the nodes in the
sensitiveOps argument is taken, the latter representing a
broadcast in this case. When this intersection is not empty,
we assume that vulnerability exists in the remainder of the
graph. This last part is checked by the accessControlled

method.

JS-QL.
When attempting to write a similar query in JS-QL,

we need to define the problem in terms of control flow:
“There must be no path between the returns of isCMSAdmin
when the return value is false, and a call of the addNotice

method.” With abstract interpretation, a value can be both
true and false at the same time, which is why we have to
inspect the nodes in the flow graph. When looking at a con-
ditional (like an IfStatement), we can determine whether
the true of false branch has been taken by comparing the
first node of the branches with the alternate/consequent of
the conditional. This can be seen on lines 2 and 6 in listing
4, where the ?alt variable of the IfStatement gets matched
with one of the successive states, ensuring that that state is
the beginning of the false branch. We bind the context of
the branch state to ?kont and the stack to a?lkont. The next
time we encounter a state with the same context and stack,

1 let accessControlled(G, checks , sensitiveOps) =
2 G.removeControlDeps(checks) ∩ sensitiveOps is

empty
3
4 let addNotice = pgm.entriesOf("addNotice") in
5 let isAdmin = pgm.returnsOf("isCMSAdmin") in
6 let isAdminTrue = pgm.findPCNodes(isAdmin ,TRUE) in
7 pgm.accessControlled(isAdminTrue ,

addNotice)

Listing 3: Vulnerability 4 in PidginQL

1 G.skipZeroOrMore ()
2 .ifStatement ({alt:’?alt’})
3 .skipZeroOrMore ()
4 .functionCall ({name:’isCMSAdmin ’})
5 .skipZeroOrMore ()
6 .state({node:’?alt’, kont:’?k’,lkont:’?lk’})
7 .not().endIf({kont: ’?k’, lkont:’?lk’}).star()
8 .functionCall ({name:’addNotice ’})

Listing 4: Vulnerability 4 in JS-QL

we know that the end of the branch has been reached. Lines
8-9 indicate that we only wish to find the calls to addNotice

before the end of the branch.

Discussion.
While this query finds all cases where isCMSAdmin is false,

it will not detect calls to addNotice outside this test. We can
solve this by finding all calls to addNotice, but this leads to
false positives. The situation would be improved if a means
to express the XOR relation between results of the JS-QL
policies existed. If we had this kind of mechanism at our dis-
posal, we could search for all calls to addNotice and all calls
to addNotice that happen in the true branch of isCMSAdmin,
and remove all states that occur in both results. The result
after removal would then only contain occurrences of the
vulnerability. Currently, operations for combining queries
are not supported in JS-QL, as this would require an other
layer of abstraction over query results. Although feasible,
combining of queries is out of the scope of this paper.

Other vulnerabilities and conclusion
We were able to express vulnerabilities V4, V5, and V6 in
JS-QL, but not without difficulty. Vulnerabilities V4 and
V6, when expressed in our specification language, introduce
results containing false positives. Detecting these two vul-
nerabilities each required two separate queries. If we wish
to attain a result set without false positives, we could take
the exclusive disjunction of the result sets of these separate
queries.

The PidginQL language is best at expressing queries that
deal with the dependencies between nodes in their program
dependence graph. This type of graph is very powerful
to check the control and data flow between two parts of
code [17], but it is more difficult to use it to detect more
general properties about a program.

For JS-QL, it is the other way around. Our approach
allows us to detect a wide range of general and complex
properties about a program, but it sometimes has troubles
detecting dependencies between states with only one query.
While PidginQL may be powerful in finding dependencies
as described above, it does not return much meaningful in-
formation about the found vulnerabilities. Where JS-QL



returns all nodes representing occurrences of a vulnerabil-
ity, PidginQL only indicates the presence or absence of vul-
nerabilities without specifying actual nodes that represent
occurrences.

Another restriction in PidginQL is that there is no way
to reason about the internals of a state in the graph. This
expressiveness and flexibility comes at the cost of JS-QL
queries often being more verbose.

5.3 ConScript
ConScript [29] is a client-side advice implementation for

security. The language allows the hosting page to express
fine-grained application-specific security policies which are
enforced at runtime.

Vulnerability 7: String arguments to setInterval, set-
Timeout
In JavaScript, setInterval and setTimeout take a callback
function as a first argument that is fired after a certain inter-
val of time. However, a string argument can also be passed
as the first argument, as Listing 5 illustrates. This poten-
tially allows attackers to pass malicious code as a string
argument to setInterval/setTimeout, which can lead to
security threats.

1 var f = function (){}
2 var i = 1;
3 var s = "stringgy"
4 var o = {};
5 setTimeout(i, interval);
6 setTimeout(s, interval); // Violation
7 setTimeout(o, interval);
8 setTimeout(f, interval);

Listing 5: String arguments to setTimeout

ConScript.
ConScript is an aspect-oriented advice language that is

able to detect security violations such as the one depicted
in listing 5. The aspects are written in JavaScript, which
enables the programmer to make full use of the language.
The ConScript language also provides a type system to as-
sure that the policies are written correctly, as can be seen
on line 1 in Listing 6. Lines 10-11 depict the actual regis-
tration of the advice on the setInterval and setTimeout

functions. When called, the onlyFnc function is triggered
instead, which checks if the type of the argument is indeed
of type “function”. curse() has to be called within the ad-
vice function, disabling the advice in order to prevent an
infinite loop, but has no additional semantic value for the
policy itself.

JS-QL.
Because JS-QL queries range over a flow graph con-

structed as the result of an abstract interpretation, it must
be the case that the used value abstraction does not ab-
stract away the type of a value. This can be accomplished
by using a type lattice that abstracts concrete values to the
set of types they represent, and this is also the default ab-
stract value lattice in JS-QL. In this lattice, abstract value
{Str,Num} for example represents a concrete value that is
either a string or a number. We can define a isString

helper function that checks whether a variable may be of
type string by using a membership test. The JS-QL query in
listing 7 uses this function to determine whether the value of

1 let onlyFnc : K x U x U -> K =
2 function (setWhen : K, fn : U, time : U) {
3 if (( typeof fn) != "function") {
4 curse();
5 throw "The time API requires functions as

inputs.";
6 } else {
7 return setWhen(fn, time);
8 }
9 };

10 around(setInterval , onlyFnc);
11 around(setTimeout , onlyFnc);

Listing 6: Vulnerability 7 in ConScript

1 G.skipZeroOrMore ()
2 .functionCall ({
3 name:’setTimeout ’,
4 arguments:’?args’,
5 properties :{
6 ’?arg’ : prop(’memberOf ’, ’?args’),
7 ’?name’: ’?arg.name’,
8 },
9 lookup :{’?name’: ’?lookedUp ’},

10 filters :[
11 cond(’isString ’, ’?lookedUp ’)
12 ]
13 })

Listing 7: Vulnerability 7 in JS-QL

the ?name variable may be of type String or not. The query
looks for a call of the setTimeout function and binds its
arguments to ?args. Function memberOf creates a new sub-
stitution set for each of the elements in the list that it takes
as an argument. This allows the inspection of each individ-
ual argument ?arg of the setTimeout function. We take the
name of the argument and look up its value in the lookup

clause. The query then filters out the string arguments, as
already discussed above. This query will only detect the
actual violation on line 6 in listing 5.

Discussion.
Both approaches are able to express the security vulner-

ability in a concise way. The JS-QL query however is more
readable than its ConScript counterpart, as it requires less
boilerplate code and does not use type system annotations.

Other vulnerabilities and conclusion
It is not straightforward to compare JS-QL to ConScript, as
ConScript checks for policy violations using dynamic anal-
ysis. We were able however to express vulnerabilities V7,
V8, and V9 in JS-QL, and we can therefore compare the
expressiveness of the queries written in each language.

The ConScript language applies advices around function
calls, changing the behavior of the program if the function
call was prohibited. The aspect-oriented approach allows
ConScript to specify what actions that need to be taken
when a violation is detected. We can not express this in
JS-QL, but this is also not necessary because we detect vul-
nerabilities at compile-time rather than at runtime. Field
accesses can also be expressed as function calls, so ConScript
can reason about getting and setting values as well. JS-QL
can also reason about getting and setting values, but has
access to more information thanks to the underlying flow
graph.

The advice functions written in ConScript have full access



–GateKeeper– –PidginQL– –ConScript–
V1 V2 V3 V4 V5 V6 V7 V8 V9

JS-QL 3 3 3 m 3 m 3 3 3

3: Fully expressible, m: Expressible with false positives
Table 2: Expressiveness of JS-QL

to the JavaScript language, making them very flexible in be-
havior. By using JavaScript instead of a DSL, the policies
themselves are also quite verbose, because for each policy a
JavaScript function has to be created. This does allow users
of ConScript to define properties and filters, as in JS-QL.
However, the advice approach limits ConScript to detect
only function calls, which considerably reduces expressive-
ness.

Querying for multiple sequential lines of code is difficult
in ConScript. Where a JS-QL query could easily be written
to detect a function call to method X after reading vari-
able Y, Conscript has to define variables that function as a
“boolean”. The variable is set to true when Y is read. The
advice around X then has to check the value of Y before
deciding what action to perform.

We argue that JS-QL queries are more expressive than
their ConScript counterparts when it comes down to the
detection of different kinds of program states. JS-QL also
proves flexible in terms of specifying properties and filters,
but is not as flexible as ConScript because the latter has full
access to the JavaScript language once an advice is triggered.
Both languages are quite verbose because of the expressive-
ness they provide.

5.4 Overall evaluation
We evaluated the JS-QL language by expressing 9 different

security vulnerabilities originating from 3 different papers.
Each of the 9 vulnerabilities could be checked in under 3
seconds. The results of this evaluation are summarized in
Table 2. From these results we can conclude the following:

• JS-QL can be used to express a wide variety of security
vulnerabilities in a readable and flexible way.

• JS-QL is limited in expressiveness for detecting depen-
dencies between states.

Generally speaking, JS-QL is capable of expressing any
security vulnerability that can be detected in a flow graph
computed by the underlying abstract interpretation. Secu-
rity properties that for example require relations between
flow graphs (e.g., equivalence properties [4]) fall outside the
scope of JS-QL.

5.4.1 Advantages of JS-QL

Granularity.
A key advantage of the JS-QL tool is the ability for pro-

grammers to define queries and vulnerabilities that are as
general or specific as needed. Starting from the state pred-
icate, complex patterns can be expressed and wrapped in
a self-named predicate. Flexibility is key in these predi-
cates because the user can specify which properties he ex-
poses through the predicate. These properties can then be
queried by passing metavariables as arguments, which are
bound when a match is found. Literals and metavariables

that are already bound act as filters for the predicates, as in
any declarative language.

Flexibility.
The JIPDA graph contains states with information of ar-

bitrary depth. Therefore, JS-QL has to provide access to
all these levels of information. The flexibility required for
doing so means that JS-QL is not bound to one particular
graph type, but that all types of graphs with labeled nodes
and edges can be used with little to no modification of the
tool itself. Only a reification layer of the new graph needs to
be provided, mapping the states of the graph to the format
our tool uses.

Negation.
JS-QL, in contrast to many other query languages, offers

negation as a feature to increase expressiveness, albeit in a
limited way (see below).

Recursion.
Another non-trivial feature of the JS-QL tool is the possi-

bility to recursively define queries. This type of queries are
especially useful for following a trace of information starting
at a certain point, such as all aliases of a certain variable.

5.4.2 Limitations of JS-QL

Negation.
Negation is subject to some limitations in the current

implementation of JS-QL. It is limited to only one state,
which can be insufficient in some cases. Variables bound in
a negated state are only visible to that state and will thus
not be included in the resulting substitutions. Negating se-
quences of states wrapped in braces is also not supported.
Unrestricted negation would make JS-QL more expressive
and is a topic of future research.

Performance and Scalability.
The performance and scalability of our implementation

is largely determined by the performance and scalability of
the underlying abstract interpretation [19] and the graph
query engine [26]. Currently, all test programs and queries
are small and run within reasonable time (in under 3 sec-
onds), but we expect that for larger programs and queries
the runtime of the tool would increase significantly.

Our current implementation has computational overhead
when patterns can be matched multiple times in the algo-
rithm. Each match is a computationally heavy operation,
which means that we should try to avoid matching more
than once. This could be done by memoizing the substitu-
tions between all already matched pairs of state and pattern,
decreasing the computational overhead drastically and mak-
ing the tool scale in the size of the input program and speed
of query results.

6. CONCLUSION
This paper proposes a query-based technique and tool

for detecting security vulnerabilities in JavaScript programs.
Unlike most existing tools, our tool can be configured to de-
tect vulnerabilities that are specific to a single application
instead of being limited to a fixed set of pre-encoded rules.
For this purpose we introduced JS-QL, an expressive spec-



ification language that enables users to write succinct and
application-specific queries to test their applications against
vulnerabilities. JS-QL matches queries against an abstract
flow graph of a statically analyzed program. We use abstract
interpretation as a static analysis technique to generate this
graph containing program information. JS-QL is a domain-
specific language embedded in JavaScript and is based on
the concept of regular path expressions. These expressions
are similar to traditional regular expressions, except that
they can be applied to find certain paths in a graph instead
of finding patterns in a string.

We evaluated our specification language by expressing
multiple security vulnerabilities and comparing the resulting
specifications to corresponding ones of existing work. The
results of the evaluation indicate that the static analysis of
our technique is sufficiently powerful and its specification
language sufficiently expressive for expressing application-
specific vulnerabilities commonly found in related work. We
conclude from our experiments that our language is apt for
specifying several types of security vulnerabilities. The com-
bination of abstract flow graphs and regular path expressions
proves to be an effective means to obtain program informa-
tion and specify security vulnerabilities. Specifications in
JS-QL are often more readable, concise, and equally expres-
sive compared to their formulation in other languages.

The implementation of JS-QL is publicly available1 and
can be used to test source code for general characteristics
and security vulnerabilities. Despite its current limitations,
we believe that our tool represents a step in the right direc-
tion for allowing users to detect security vulnerabilities in
their JavaScript applications.
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