
Building a Modular Static Analysis
Framework in Scala (Tool Paper)

Quentin Stiévenart Jens Nicolay Wolfgang De Meuter Coen De Roover
Vrije Universiteit Brussel, Belgium

{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be

Abstract
We present SCALA-AM, a framework for implementing static
analyses as systematically abstracted abstract machines. Anal-
yses implemented on top of SCALA-AM separate operational
semantics from machine abstraction concerns. This modular-
ity facilitates varying the analyzed language and the applied
abstraction method in an analysis. We describe the design of
our framework and demonstrate its use in a static analysis for
the DOT calculus. We conclude with a tour of the features of
Scala through which SCALA-AM achieves its modularity.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program analysis

General Terms Theory, Languages, Verification

Keywords Static Analysis, Abstract Interpretation, Abstract
Machines

1. Introduction
Static analysis is a useful technique for assessing the correct-
ness of programs, to detect bugs, or prove their absence. How-
ever, supporting modern programming language features like
higher-order functions and concurrency in static analyzers is
far from trivial. The Abstracting Abstract Machines (AAM)
approach [5] to static analysis enables languages and analyses
to be implemented in a natural and systematic way, by taking
a concrete interpreter and systematically abstracting it into an
abstract interpreter. However, most formalizations of AAM
and its derivatives tend to mix the language semantics with
the machine abstraction, leading to poor modularity.

In SCALA-AM1, we separate the definition of the lan-
guage semantics from the machine abstraction in order to
obtain high modularity. This allows both language designers
and abstract machine specialists to work together on the same
artefact and focus on their domain of expertise. We believe
our framework is a useful foundation for supporting new
features of languages, while serving as a platform to help
abstract machine researchers develop new techniques and test
them on languages larger than simple calculi.

SCALA-AM has been developed with modularity in mind,
and this goal has been achieved thanks to the features of
Scala. In this paper, we present the design of SCALA-AM,
we demonstrate how languages can be supported by imple-
menting semantics for DOT [1], and we describe some of the
features of Scala for achieving modularity. This paper makes
the following contributions:

• We describe a modular static analysis framework that
supports multiple languages and abstraction mechanisms
by separating machine abstraction from semantics.

• We describe the use of the framework in a static analysis
for the DOT language.

• We report on the Scala features through which SCALA-
AM achieves its high modularity.

2. Background: Abstracting Abstract
Machines

The small-step operational semantics of a language can be
described as an abstract machine. Injecting the program into
the machine’s initial state causes the machine to start applying
its state transition function repeatedly until a final state is
reached. A trace of the machine states arising during the
program’s execution is computed.

The Abstracting Abstract Machines [5] approach is a
technique where such an abstract machine is systematically
abstracted into an abstract abstract machine, or an abstract
interpreter. Defined over a finite state space with a non-
deterministic state transition function, it now produces a
graph instead of a trace — also for non-terminating programs.

1 https://github.com/acieroid/scala-am

https://github.com/acieroid/scala-am

This graph can be queried for the results of the static analysis
corresponding to the applied machine abstraction.

The main advantage of the AAM approach is that the re-
sulting abstract interpreter closely resembles the concrete
one from which it is systematically derived through abstrac-
tion. Various abstraction patterns arise, which can be applied
to support other languages or new language features. For
example, potential sources of infiniteness can be threaded
through the machine’s store to ensure its state space remains
finite. This is the case for closures: a closure is composed of
an expression and an environment, and environments map
variables to values, which themselves can be closures. This
recursive knot in the state space is cut by threading closures
through the store, and having environments map variables to
addresses in the store. Restricting addresses to a finite number
then renders the state space finite.

Related work on AAM has produced different techniques
to abstract the concrete abstract machine, with varying de-
grees of precision. A current summary of the state of the art
can be found in [3]. The goal of SCALA-AM is to enable
experimenting with these techniques on different languages
with minimal implementation effort: changing the language
analyzed should not impact the machine abstraction, and
vice-versa.

3. The SCALA-AM Framework
SCALA-AM performs static analysis on programs in lan-
guages described as small-step operational semantics. A se-
mantics description forms a component of SCALA-AM, and
another component, the machine abstraction, drives the inter-
pretation of the program.

To analyze a program, SCALA-AM first injects the pro-
gram into an initial machine state. A state represents the
current state of the evaluation, and contains information such
as the expression to evaluate, the binding environment, the
store, and an abstraction of the stack. It is the responsibility
of the machine abstraction to manipulate the stack. The ab-
stract machine then performs steps on the current state by
relying on the language semantics described as a small-step
operational semantics. If the current state needs to evaluate an
expression, it will call the semantics’ stepEval function. If the
current state needs to continue with the topmost continuation,
the machine abstraction pops the continuation and calls the
semantics’ stepKont function. Both of these functions return
a set of actions that describe the successor states to generate.
Actions, returned by stepEval and stepKont, can be eval ac-
tions when an expression has to be evaluated, value actions
when a value has been reached, requiring the next step to in-
spect the topmost continuation frame, and push actions when
a continuation has to be pushed on the stack before evaluating
a given expression.

This process is repeated until all reachable states have
been explored. The state space of the abstract machine has to
be finite to ensure the convergence of this process.

t, u ∈ Term ::= λx.t | νx.d | let x = t in u

| x | xy | x.a

d ∈ Definition ::= {x = t} | d1 ∧ d2

ς 7−→ ς ′ a = alloc(ς)

〈x, ρ, σ, κ〉 〈σ(ρ(x)), σ, κ〉
〈λx.t, ρ, σ, κ〉 〈clo(λx.t, ρ), σ, κ〉
〈νx.d, ρ, σ, κ〉 〈obj(νx.d, ρ), σ, κ〉

〈let x = t in u, ρ, σ, κ〉 〈t, ρ, σ, letk(x, u, ρ) : κ〉
〈x y, ρ, σ, κ〉 〈t, ρ[x 7→ a], σ[a 7→ varg], κ〉

where clo(λx.t, ρ) = σ(ρ(x))
varg = σ(ρ(y))

〈x.a, ρ, σ, κ〉 〈t, ρ[y 7→ ρ(x)], σ, κ〉
where obj(νy.d, ρ) = σ(ρ(x))

t = member(d, a)
〈v, σ, letk(x, u, ρ) : κ〉 〈u, ρ[x 7→ a], σ[a 7→ v], κ〉

Figure 1. DOT small-step semantics as an abstract machine,
where x, y are variable names and a is a field name.

In SCALA-AM, actions enable formulating machine ab-
stractions and language semantics independently of each
other. Other components can be implemented independently
as well. The most important of these components is the value
lattice, which forms the abstraction of the values of the lan-
guage analyzed, and which enables tuning the precision of
the resulting analysis. Addresses and timestamps are other
components that influence context sensitivity and precision
of the machine abstraction.

4. Example: Analyzing DOT Programs
We now show how support for a language can be added to
SCALA-AM. We take the DOT language [1] as an example2.

4.1 Adding Support for DOT
Input languages have to be described as small-step opera-
tional semantics that perform operations over an environment
and store. This is done for DOT in Fig. 1. DOT expressions
are naturally represented as case classes in Scala:
trait Term { val pos: Pos }
case class Lam(x: String, t: Term, pos: Pos)
case class Obj(x: String, d: Def, pos: Pos) extends Term
case class Let(x: String, t: Term, u: Term, pos: Pos) extends Term
case class Var(x: String, pos: Pos) extends Term
case class App(x: String, y: String, pos: Pos)
case class Sel(x: String, a: Member, pos: Pos) extends Term

trait Def
case class Field(a: Member, t: Term, pos: Pos) extends Def
case class Aggregate(d1: Def, d2: Def, pos: Pos) extends Def

These expressions have to implement the Expression type
class, requiring the presence of a component Pos which serves
to map expressions to their source code position.

The definition of the semantics corresponding to the
formal definition of Fig. 1 only accesses values through the

2 SCALA-AM, the full implementation of this example and others can be
found at https://github.com/acieroid/scala-am/.

https://github.com/acieroid/scala-am/

DotLattice type class. The functions stepEval and stepKont
are defined as follows:

val dabs = implicitly[DotLattice[Abs]]
val addr = implicitly[Address[Addr]]

def stepEval(t: Term, env: Env, ...) = t match {
case Var(x, _) => for {

v <- evalVar(x, env, store)
} yield Action.value(v, store)
case Lam(x, t, _) =>

Action.value(dabs.lambda(x, t, env), store)
case Obj(x, d, _) =>

Action.value(dabs.obj(x, d, env), store)
case Let(x, t, u, _) =>

Action.push(FrameLet(x, u, env), t, env, store)
case App(x, y, _) => for {

fun <- evalVar(x, env, store)
arg <- evalVar(y, env, store)

} yield dabs.getClosures(fun).map({
case (x, t, env) =>

val a = addr.variable(x, arg, time)
Action.eval(t, env.extend(x, a), store.extend(a, arg)) })

case Sel(x, a, _) => for {
obj <- evalVar(x, env, store)

} yield dabs.getObjects(obj).map({
case (x, defs, env) =>

findTermMember(defs, a) match {
case Some(t) =>

val ad = addr.variable(x, obj, time)
Action.eval(t, env.extend(x, ad), store.extend(ad, obj))

case None =>
Action.error(NoTermMember(a, obj.toString, t.pos))

} })}
def stepKont(v: Abs, frame: Frame, ...) = frame match {

case FrameLet(x, u, env) =>
val a = addr.variable(x, v, time)
Action.eval(u, env.extend(x, a), store.extend(a, v)) }

The stack component of the abstract machine (κ in Fig. 1) is
not present in the semantics definition. Pushing on the stack is
done through Action.push, and popping from the stack when
a value is reached is handled automatically by the machine
abstraction, which then calls stepKont. The evalVar: (String,
Env, Store) => MayFail[Abs] function looks up the value of
a variable, and may result in an error (see Section 6.4 for a
description of the MayFail monad). This enables describing
the semantics independently of the machine abstraction. State-
of-the-art machine abstractions are provided (AAM, AAC
and P4F [3]), and each abstracts the stack differently. Other
machine abstractions can be added as well.

Values in the language have to be represented as a join
semi-lattice. The definition of the semantics is indepen-
dent of the implementation of this lattice through type class
DotLattice. This enables describing the semantics indepen-
dently of the actual values. Different abstraction levels (e.g.,
concrete values, types of values, . . .) can be used with a single
definition of the semantics.

trait DotLattice[L] extends JoinLattice[L] {
def lambda(v: String, body: Term, env: Env): L
def obj(v: String, defs: Definition, env: Env): L
def getClosures(x: L): Set[(String, Term, Env)]
def getObjects(x: L): Set[(String, Definition, Env)] }

A straightforward implementation of this lattice is to have
sets of values as lattice elements, where values can be either a
closure or an object. We omit this implementation for brevity.

4.2 Running the Analysis
Having defined the semantics of DOT, one can use one of the
provided machine abstractions to compute the flow graph of
a DOT program, which can then be used to verify properties
of the analyzed program:

1 val dot = new DotLanguage[ClassicalAddress.A]
2 val lattice = dot.DotLatticeImpl
3 implicit val isDotLattice = lattice.isDotLattice
4 val sem = new dot.DotSemantics[lattice.L, ZeroCFA.T]
5 val machine = new AAM[Term, lattice.L,
6 ClassicalAddress.A, ZeroCFA.T]
7 val res = machine.eval(sem.parse(args(0)), sem, true, None)
8 res.toDotFile("graph.dot")

The DotLanguage class is parameterized with the addresses
used, and contains the definition introduced above. To analyze
a program, a machine abstraction has to be instantiated (line
5), and its eval method takes as argument the input program
(parsed by the semantics), the semantics, a boolean indicating
if the computed state graph has to be kept in memory, and an
optional timeout. The resulting graph can be extracted to a
file (line 8)3. We highlight here what the modularity of the
framework allows us to perform:

• To use a different lattice, one would only change line 2.
• To analyze a different language, one would change line 4

to provide the language semantics, and the occurence of
Term on line 5 (as a different language would use different
expressions).

• To use a different machine abstraction, one would change
line 5.

• Context sensitivity can also be tuned by using different
type arguments in line 5: here we use program locations
as addresses and perform a context-insensitive analysis
(0-CFA).

5. Performance
Lacking a corpus of DOT programs to benchmark our exam-
ple analysis on, we evaluate the performance of SCALA-AM
on an extended version of the Gabriel benchmarks for Scheme
instead4. We computed the flow graph for each program in
the corpus using a) the Scheme semantics provided by the
framework, b) the AAM machine abstraction with a global
store, c) a lattice representing values by their types, and d)
no context sensitivity. Most of the benchmarks complete in
under a second. Table 1 includes an excerpt of the results,
including the slowest benchmarks.

While performance has not been our main concern, these
results show that our implementation can analyze small
programs in a decent amount of time. Note that the running
time does not depend on the size of the program in LOCs,

3 Unfortunately, the format used to represent graphs in SCALA-AM is also
called DOT. This graph language has no link whatsoever wih the DOT
language analyzed in this section.
4 The benchmarks are included with the SCALA-AM distribution. The
benchmarks were run on a 2014 Mac Book Pro, with a Intel Core i7 2.8GHz
processor and 16 GB of DDR3 memory, with Scala version 2.11.8.

Benchmark LOC Time (s)
church 28 191.72
mceval 239 177.36
dderiv 82 4.63
regex 81 1.15
scm2java 268 < 0.01

Table 1. Running time of SCALA-AM on Scheme bench-
marks.

but rather on the complexity of its behavior. The church
benchmark, for instance, is short but contains many higher-
order functions. The scm2java compiler benchmark, in
contrast, is 10 times as long but written in a procedural
manner, and takes less than one millisecond to analyze.

6. Scala as a Driver for Modularity
In this section, we describe a few features of Scala that allow
us to obtain high modularity in SCALA-AM.

6.1 Type Classes
The use of type classes [2] is essential in the SCALA-AM
framework to abstract over the implementation of its com-
ponents. For example, components requiring a lattice take
as type parameter a type that implements the JoinLattice
type class. The JoinLattice type class specifies a join semi-
lattice that has to provide a bottom element (⊥), a way to
join elements (t), and an ordering (v). A join semi-lattice
is a monoid (mzero is ⊥, mappend is t) with a partial order-
ing. In fact, we automatically derive both monoid and partial
ordering instances from join lattices in SCALA-AM.
trait JoinLattice[L] {

def bottom: L
def join(x: L, y: L): L
def subsumes(x: L, y: L): Boolean }

We also have type classes for expressions, addresses,
and timestamps, with implementations that model common
techniques such as 0-CFA, k-CFA, and concrete execution.
These are the components that make our framework modular:
changing the implementation of any of these components
changes the kind of analysis that is performed. Addresses and
timestamps influence precision of the abstract machine, and
the lattice influences precision over the values.

6.2 Extending Type Classes
The values in languages described in SCALA-AM must im-
plement the JoinLattice type class. However, this type class
is very limited: it only requires the definition of generic join
semi-lattice value ⊥ and operations t and v. These opera-
tions are the only ones needed by the machine abstraction.
However, when defining language semantics, it should be
possible to inject values into or extract values from the lattice
and perform operations on these values. Instead of hardcod-
ing a specific lattice in the implementation of the language
semantics, we opt for a modular approach and create an ex-
tended type class that can be plugged into the semantics,

enabling analysis with different lattice implementations. The
type class extends JoinLattice and provides the necessary
additional lattice operations. This is illustrated in the example
of Section 4.

As another example, consider the Scheme language, for
which we can define a SchemeLattice type class as follows.
trait SchemeLattice[L] extends Joinlattice[L] {

def inject(x: Int): L
def inject(x: Boolean): L
def unaryOp(op: UnaryOperator)(x: L): MayFail[L]
def binaryOp(op: BinaryOperator)(x: L, y: L): MayFail[L]
// ...and others

}

The MayFail monad represents computations that may fail
and/or succeed, and is described in Section 6.4.

The implementation of a lattice can represent values
concretely (e.g., 1, #t), by their types (e.g., Int, Bool), or by
some other abstraction (e.g., intervals for integers). Low-level
operations on these values are performed through the unaryOp
and binaryOp functions. For example, to add two values, one
would call lattice.binaryOp(Plus)(x, y). These low-level
operations are the responsibility of the lattice implementation.

To implement primitives of the language, one can define
a set of primitive operations that are defined in terms of
low-level operations, and are therefore independent of the
lattice implementation. Consider for example the Scheme
primitive +, which takes a variable amount of arguments. All
the following calls to + are valid: (+), (+ 1), (+ 1 2). This
primitive can be defined as follows.
object Plus extends NoStoreOperation("+") {

override def call(args: List[Abs]) = args match {
// (+) is 0
case Nil => abs.inject(0).point[MayFail]
// (+ x rest) is x added to (+ rest)
case x :: rest => call(rest) »= (plus(x, _)) }}

In this fashion, a large subset of the Scheme language can
be supported with minimal overhead for adding new lattice
implementations. The same technique can be applied to other
languages as well. SCALA-AM provides implementations
of common lattices over simple domains (integers, floats,
booleans, strings) that can be used as building blocks to
implement more complex lattices, such as the Scheme lattice.

6.3 Testing through Quickchecking with ScalaCheck
The join operation of a join semi-lattice 〈L,t〉 must be
associative (x t (y t z) = (x t y) t z), commutative
(x t y = y t x), and idempotent (x t x = x). Moreover,
when extending a join semi-lattice with other operations,
some properties have to be satisfied: ⊥ is preserved through
operations, operations are monotone, and operations are a
sound over-approximation of their concrete counterpart.

Take for example a lattice that has support for integers,
injected through inject: Int => L, and has a plus: (L, L) =>
L operation. We need the following properties to hold:

• Bottom is preserved: plus(⊥, x) = ⊥, plus(x,⊥) = ⊥.
• The operation is monotone: b v c =⇒ plus(a, b) v
plus(a, c) ∧ plus(b, a) v plus(c, a).

• The operation is a sound over-approximation
of its concrete counterpart: inject(a + b) v
plus(inject(a), inject(b)).

Inspired by [4], we include quickcheck-style tests in
our framework using the ScalaCheck5 library to test these
properties. To support tests for a new lattice implementation,
generators for elements of the lattice have to be developed. A
generator has to be able to generate arbitrary elements of the
lattice, and arbitrary elements that are subsumed by a given
element.
trait LatticeGenerator[L] {

def any: Gen[L]
def le(l: L): Gen[L] }

Given a generator for elements of a lattice, we can then
generate lattice tests. Below is a fragment of our test suite to
test integer lattices6.
case class IntSpec[I : IsInteger](gen: LatticeGenerator[I]) {

val int = implicitly[IsInteger[I]]
val bot = int.bottom
property("plus on bottom is bottom") {

forAll { (a: I) =>
assert(int.plus(bot, a) == bot && int.plus(a, bot) == bot)

}}
property("plus is monotone") {

forAll { (a: I, c: I) => forAll(gen.le(c)) { (b: I) =>
assert(int.subsumes(c, b) &&

int.subsumes(int.plus(a, c), int.plus(a, b)) &&
int.subsumes(int.plus(c, a), int.plus(b, a)))

}}}
property("plus is a sound over-approximation") {

forAll { (a: Int, b: Int) =>
assert(int.subsumes(int.plus(int.inject(a), int.inject(b)),

int.inject(a + b)))
}} }

Combined with manual test cases, this approach allows us
to have high confidence in the correctness of the lattice
implementations with relatively low effort.

6.4 The Need for a May Fail Monad
Interpreters that work with abstract values must be able to
represent computations that may fail and produce a result at
the same time. For example, in a lattice representing values
by sets of types, if a is {Int} and b is {Int, Bool}, then
computing a + b produces an integer and a failure result.
SCALA-AM represents failures by one or more semantic
errors (SemErr). A computation that may fail has to return
a potential resulting value and a list of errors ((Option[L],
List[SemErr])). Representing all computations that may fail
by such a type leads to a lot of boilerplate code. We therefore
introduce the MayFail monad. This monad has three kinds of
values: success, error, or both.
trait MayFail[L]
case class MFSuccess[L](l: L) extends MayFail[L]
case class MFError[L](errs: List[SemErr]) extends MayFail[L]
case class MFBoth[L](l: L, errs: List[SemErr]) extends MayFail[L]

The bind function on this monad is defined as follows.

5 https://www.scalacheck.org
6 This test code could be further parameterized by the operations to test: the
code for testing plus and minus is almost identical.

def bind[A, B](fa: MayFail[A])(f: (A) => MayFail[B])
: MayFail[B] = fa match {
case MFSuccess(l) => f(l)
case MFError(errs) => MFError(errs)
case MFBoth(l, errs) => f(l) match {

case MFSuccess(l) => MFBoth(l, errs)
case MFError(errs2) => MFError(errs ++ errs2)
case MFBoth(l, errs2) => MFBoth(l, errs ++ errs2) }}

Thanks to Scalaz’7 support for monads, to implicits, and
Scala’s for notation, we are able to obtain readable descrip-
tions of language semantics, as demonstrated in Section 4.

7. Conclusion and Future Work
In this paper, we presented SCALA-AM, a modular static
analysis framework that can be extended to support multiple
languages and machine abstractions. A central concept in
the framework are actions returned by the semantics to drive
the machine abstraction. We demonstrated how languages,
described as small-step operational semantics, can be added
to the framework, and how Scala features allowed us to
achieve high modularity. We believe SCALA-AM can be used
as a foundation to build and experiment with static analyses
without having to implement everything from scratch.

The framework currently provides support for a large
subset of Scheme, as well as multiple machine abstractions.
It also supports modeling languages with shared memory
concurrency. As future work, we plan on extending it with
other languages and features such as non-local control flow.
This would require extending the set of actions that can
be returned by the semantics. We also plan on working
on optimizations of abstract machines in order to construct
efficient static analyses that can support a wide variety of
languages without polluting the language semantics.

Acknowledgments
Quentin Stiévenart is funded by the GRAVE project of the
Research Foundation - Flanders (FWO).

References
[1] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki.

The essence of dependent object types. In WadlerFest
2016, volume 9600 of Lecture Notes in Computer Sci-
ence.

[2] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type
classes as objects and implicits. In OOPSLA’10.

[3] T. Gilray, S. Lyde, M. D. Adams, M. Might, and
D. Van Horn. Pushdown control-flow analysis for free.
ACM SIGPLAN Notices, 51(1), 2016.

[4] J. Midtgaard and A. Møller. Quickchecking static analysis
properties. In ICST’15.

[5] D. Van Horn and M. Might. Abstracting abstract ma-
chines. In ICFP’10.

7 http://typelevel.org/projects/scalaz

https://www.scalacheck.org
http://typelevel.org/projects/scalaz

	Introduction
	Background: Abstracting Abstract Machines
	The Scala-AM Framework
	Example: Analyzing DOT Programs
	Adding Support for DOT
	Running the Analysis

	Performance
	Scala as a Driver for Modularity
	Type Classes
	Extending Type Classes
	Testing through Quickchecking with ScalaCheck
	The Need for a May Fail Monad

	Conclusion and Future Work

