I Now Pronounce You Reactive and Consistent

Handling Distributed and Replicated State in Reactive Programming

Florian Myter *
Tim Coppieters '

Vrije Universiteit Brussel
Pleinlaan 2
Elsene, Belgium

fmyter / tcoppiet@vub.ac.be

Abstract

Developing modern collaborative applications burdens the
programmer with local event handling (e.g. user interac-
tion), remote event handling (e.g. updates from the server)
and shared state (e.g. in order to allow operations while be-
ing disconnected). Several solutions have been developed at
the programming language level in order to reduce the com-
plexity of these aspects. On one hand, distributed reactive
models (e.g. DREAM) tackle both local and remote event
handling. On the other hand recent replicated consistency
models (e.g. CRDT’s and CloudTypes) hide the complexity
of shared, replicated state. Both solutions only partially alle-
viate the complexity associated with developing collabora-
tive applications. To the best of our knowledge, none or very
little effort has been undertaken to provide a single unified
model able to tackle both event handling and shared state.
In this paper we argue the need for such a united model.
To that end we present Direst, a domain specific language
which enhances traditional reactive abstractions (i.e. signals)
with replication and consistency features. Direst reduces the
complexities of writing truly collaborative applications by
providing a framework in which elegantly handling events
and easily managing shared state are not mutually exclusive.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Distributed Programming

* Funded by Innoviris (the Brussels Institute for Research and Innovation)
through the Doctiris program (grant number 15-doct-07)

T Research Assistant of the Fund for Scientific Research Flanders, Belgium
(EW.0.)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

REBLS’16, November 1, 2016, Amsterdam, Netherlands
© 2016 ACM. 978-1-4503-4644-3/16/11...$15.00
http://dx.doi.org/10.1145/3001929.3001930

Christophe Scholliers

Universiteit Gent
281 S9, Krijgslaan
Gent, Belgium

christophe.scholliers@ugent.be

Wolfgang De Meuter

Vrije Universiteit Brussel
Pleinlaan 2
Elsene, Belgium

wdmeuter@vub.ac.be

Keywords reactive programming, distributed program-
ming, data consistency, shared state, eventual consistency

1. Introduction

From simple chat applications over document or source edit-
ing to virtual whiteboards, interactive collaborative applica-
tions are omnipresent. When one adds modern requirements
such as scalability and offline availability (i.e. allowing lo-
cal operations while the client is disconnected), writing such
application becomes a particularly tedious task. We distil
two main challenges presented to programmers when writ-
ing such applications:

Event handling Given the distributed and interactive na-
ture of these applications programmers need to spend con-
siderable resources handling various events. These events
can either be internally (e.g. Ul events) or externally (e.g.
html requests) produced. Traditionally one employs call-
backs and the observer pattern to deal with these events.
However, these techniques negatively impact the maintain-
ability and readability of code (Salvaneschi et al. 2014).
The reactive programming paradigm (Bainomugisha et al.
2013) is a solution to the problems that emerge from the
use of callbacks. At the heart of this solution lie three con-
cepts: First, events and time-varying values (e.g. the system
time) are represented as first-class citizens called signals.
Second, programmers are able to declaratively specify de-
pendencies between these signals through the use of lifted
functions. Third, when a signal changes it is the language
runtime which makes sure that all dependant signals are up-
dated accordingly. These three concepts allow programmers
to explicitly write down, and reason about relations between
events.

The reactive paradigm has traditionally been applied to
user interfaces (Czaplicki and Chong 2013) and client-side
logic (Meyerovich et al. 2009). However, recent work has
focused on applying these solutions in the context of dis-
tributed systems. In a nutshell, these approaches enable pro-
grammers to specify dependencies between signals across

distributed clients (Margara and Salvaneschi 2014) or across
tiers (Reynders et al. 2014).

Replication Collaborative applications naturally involve a
notion of shared state. This includes distributing the state
to the clients, coordinating updates and maintaining a con-
sistency model such that replicas converge. In a more tra-
ditional approach, called pessimistic replication, a single
globally consistent view of the replicate state is maintained.
While this model is easy to comprehend and work with for
the programmer, this is not always scalable and does not al-
low disconnected operations. Models that do allow concur-
rent updates on the shared state, called optimistic replication,
provide weaker guarantees over the state and introduce an
enormous overhead for the programmer. Namely, when a lo-
cal update happens it is up to the programmer to propagate
this update to all replicas and to detect and resolve or prevent
possible conflicts (Saito and Shapiro 2005).

A significant amount of programming models, frameworks
and libraries (Burckhardt et al. 2012; Shapiro et al. 2011;
Meiklejohn and Van Roy 2015; Lorenz and Rosenan 2014;
Coppieters et al. 2016) aim to reduce the burden of main-
taining replicated state for the programmer. These replicated
programming models provide different guarantees over the
replicated state, but they all hide the complexity of main-
taining these guarantees by providing a simple API to the
programmer.

We advocate that the challenges underlying interactive and
collaborative applications are greater than the sum of their
solutions. In order to easily handle distributed and replicated
state in collaborative applications one needs a unified model
which embraces the solutions provided by both (distributed)
reactive programming as well as replication-based program-
ming.

Distributed reactive programming models lack the abstrac-
tions needed to represent mutable reactive values replicated
amongst distributed clients. Conversely, replication models
lack the abstractions provided by reactive programming to
elegantly combine their state changes with event-handling
logic.

In this paper we introduce Direst (Distributed Reactive
State)', a domain specific language built on top of Am-
bientTalk (Cutsem et al. 2014) which marries the worlds
of reactive and replicated programming. Direst allows pro-
grammers to easily write distributed reactive applications
which share state among clients. In order to achieve this, it
introduces the novel concept of replicated signals. The nov-
elty of these signals lies in the fact that they provide built-in
eventual consistency without programmers needing to man-
ually synchronise state. Concretely, Direst provides native
constructs to replicate signals over multiple clients. Each
clients is able to mutate a replica of a signal at any time

' The implementation can be found at https://github.com/myter/
Direst

Market

()
i List |

" pries) [/ Grocery

| ust) || hem1 ||

/N

Figure 1. Architecture of the grocery application

(i.e. even during disconnections). It is Direst which ensures
that all replicas of a signal are kept consistent across clients.
This prototypical language showcases how replication as a
first-class reactive programming construct can ease the im-
plementation of interactive and collaborative applications.

2. Motivating Example and Problem
Statement

As an example of an application that could benefit from our
approach consider a peer-to-peer grocery list application. In
this application a number of clients can collaboratively edit a
common grocery list. These clients consist of a single errand
runner which will physically go to a local store to buy the
groceries and multiple errand requesters which simply add
groceries to the list. The following requirements summarise
the application’s main functionality:

® The errand runner is responsible for creating the list.
However, all clients are able to add groceries to the list or
increase the amount of exemplars to be bought of a given
item. Changes made to the grocery list should eventually
be visible to all clients.

e Clients should be able to update the grocery list even
when they temporarily loose internet connection. Changes
to the grocery list made by an offline client should auto-
matically be resolved upon reconnection.

e The grocery list also figures a total price of all groceries.
The local supermarket at which the groceries will be
bought provides the clients with a list prices for all its
items. These prices can be changed solely by the market
itself.

The implementation of this example application poses a
number of interesting challenges with regard to reactiv-
ity and data replication. Figure 1 provides an overview of
our application’s architecture. Each square represents a dis-
tributed client (only one errand requester is depicted for the
sake of brevity). Within each square the circles represent

https://github.com/myter/Direst
https://github.com/myter/Direst

reactive values (i.e. values that may change as the result of
user interaction with the application). An arrow between two
circles indicates a dependency between the reactive values
which they represent. We distinguish two types of challenges
regarding the implementation of this application: reactive
challenges which affect the parts of the architecture high-
lighted in blue and replication challenges indicated in green.

2.1 Reactive Challenges

Each errand-related client (i.e. the errand runner or errand
requesters) comprises four reactive values or signals: the
grocery list itself, the amount of exemplars to be bought for
each grocery item, the price list which dictates the price of
each item and the fotal price of the list. The market client
comprises a single signal: a price list of the available items.
The dependencies between all these signals is shown in the
form of a graph in Figure 1. Each grocery list depends on
all grocery item signals. The list changes as either items are
added or the amount of items to be bought for an exem-
plar changes. Furthermore, each fotal price signal depends
on both its grocery list as well as the price list as a change
in either signals should trigger a change in the overall price
of the errand.

Traditional distributed reactive programming would provide
us with the means to declaratively specify the dependen-
cies between the reactive values in our application (i.e. the
blue arrows in Figure 1). Furthermore, the language runtime
would make sure that changes to a signal would trickle down
the dependency graph. For example, the addition of a new
grocery item would trigger a change in the grocery list itself
which would eventually change the total price of the list.
However, the distributed reactive paradigm fails to provide
us with the means to share and maintain mutable reactive
state (i.e. the green arrows in Figure 1). We discern two in-
stances of shared state. First, the price list signal which can
only be modified by the market. Given that clients are able to
add groceries to the list while being disconnected (and there-
fore the total price signal must be updated offline as well),
all clients need a replica of the price list. Second, grocery
item signals are shared amongst and can by mutated by the
errand runner and all errand requesters. This entails that a
change to or an addition of a grocery item signal should trig-
ger a propagation of change for all clients.

Traditional distributed reactive programming lacks the no-
tion of shared signals. Therefore, in order to implement
our application in a reactive way, programmers would need
to manually handle all replication and synchronisation of
shared signals.

2.2 Replication Challenges

From a replicated programming point of view we distinguish
two issues. First, the collection of grocery items can be mu-
tated by all clients which can lead to multiple versions of the
collection across clients. Second, although the price list sig-
nal is replicated as well we must ensure that only the market

is able to mutate its state. Replicated programming would
allow us to alleviate these issues as follows. The errand run-
ner contains the master version (i.e. the version considered
consistent) of the grocery list. All changes made to the list
by errand requesters must be merged with its version of the
list. It is the underlying replication model which makes sure
that all views held by other clients will be consistent with the
master version. Furthermore, some replication models (Cop-
pieters et al. 2014) would allow us to specify access control
policies which would enable us to safely replicate the mar-
ket’s price signal. The market would retain the sole right to
mutate its state while the errand runner and errand requesters
would only be able to read its state.

Although this approach allows us to easily manage shared
state, programmers need to manually manage the depen-
dencies between various parts of the application as well
as the propagation of changes between those parts. For
example, when a client receives an update to the gro-
cery list the programmer needs to make sure that both
the list as well as the total price are updated correctly.
Current replication models and languages lack the high-

level abstractions to elegantly write event-driven applica-

tions. As a result, programmers are forced to resort to ar-

chaic observer patterns and callbacks which quickly lead

to issues such as the callback hell (Finne et al. 1999).

3. Programming in Direst

Direst embraces both the reactive as well as the replica-
tion challenges exhibited by collaborative applications. To
demonstrate this we detail the implementation of our grocery
application using our approach. Given that Direst is imple-
mented atop AmbientTalk we first briefly introduce a num-
ber of key concepts of the AmbienTalk language in order to
make our implementation understandable.

AmbientTalk is an actor-based language where each actor
encompasses a heap of objects. Method invocation can ei-
ther happen synchronously between two objects owned by
the same actor, or asynchronously between objects owned by
different actors. Objects are able to discover objects owned
by other actors through a built-in tag-based publish/sub-
scribe discovery mechanism. By default all objects passed
between actors (e.g. an object is provided as an argument to
an asynchronous message) are passed by far reference (i.e.
a reference referring to an object residing in a different ac-
tor). However, an exception is made for isolates which are
objects that are passed by copy rather than by far reference.
We have split the implementation of the grocery application
in three components: the market, the errand runner and the
errand requesters. Each component is implemented as an ac-
tor which can run in complete isolation. Distributing this ap-
plication is therefore achieved by running each actor on a
separate device (e.g. a smartphone).

def market := actor:{
deftype Market;
3| def selfType (){
4 Market

6| def priceList := signal:{
7 def getPrice(item){
8 ...

10 def newPrice (item , price){

11 11

12 }:

14| publish: priceList as: Market mutablelf:{|mutator|
15 mutator.selfType () == Market

17| def updatePrice (item ,newPrice){
18 update: priceList by:{|prices| prices.newPrice(item,newPrice)}

20

Listing 1. Implementation of the market

Market The implementation of the market, which provides
clients with the latest price of its articles, is given by List-
ing 1. The market actor is responsible for creating the signal
which represents the current price list. Creating this signal
(line 6) is done using the signal : construct which takes
a signal definition and returns the instantiated signal ob-
ject. Such a signal definition represents the behaviour of
the replicated signal (i.e. its fields, accessors and mutators)
and can only be accessed through a dedicated updater. This
construct, update : by :, takes a signal as argument and a
function which will be invoked with the signal’s behaviour.
For example, the updatePrice function (line 17) updates the
price of a given item by using the priceList’s mutators.

The market actor is also responsible for publishing the price
signal. This is done through the publish : as : mutablel f :
construct (line 14) which accepts a signal, a type tag and
a function as arguments. The signal is published under the
given type tag which allows other actors to acquire a replica
of the signal. The function enables programmers to specify
which actors have the right to mutate the signal’s state. In
our case we specify that an actor can only mutate the price
list if it is the market actor (i.e. it has the Market type).

Errand runner The errand runner’s implementation is
given in Listing 2. The errand runner creates a new sig-
nal representing the master version of the grocery list (line
6) and publishes it (line 22). In contrast tot the market it
does not specify an access policy, which entails that any ac-
tor which obtained a replica will be able to mutate it. Direst
ensures that changing the state of a replica (or the original
signal) will trigger an update for all other replicas. In our
example this entails that a change to the grocery list by one
client will automatically change the grocery list of all other
clients.

Besides creating the replicated grocery list, the errand
runner also acquires a replica of the prices signal pro-
vided by the market (line 23). This is achieved with the
whenSignal : discovered : primitive, which takes a type
tag and a function as arguments. This primitive will invoke
the function with a replica of the price signal published by

200 Ok

def runner := actor:{
deftype Runner;

def selfType (){

4 Runner

6| def groceries := signal:{

7 def items := []:

8 def newltem (item){

9 ...

10 }:

11 H

12| def priceCalculator := lift({|groceries ,prices

13 def totalPrice := 0;

14 groceries .items.each:{|item|

15 totalPrice += prices.getPrice(item)

16 B

17 totalPrice

[I 0N

19| def updateGui := lift({|groceryList, totalPrice|
/..

publish: groceries as: Runner:

whenSignal: Market discovered:{|prices|

24 def totalPrice := priceCalculator(groceries ,prices);
updateGui(groceries , totalPrice);

}:
def addGrocery (grocery){

28 update: groceries by: {|list| list.newltem(grocery)};:
G

0] 3

Listing 2. Implementation of the errand runner

the market peer. It uses these prices and the grocery list to
update the user interface shown to the application user. This
is done through another construct provided by Direst: /lifted
functions. The i ft : constructs takes a regular function as
argument and lifts it in order to be applicable to signals. The
application of such a lifted function returns a signal repre-
senting the computation’s value. A lifted function can be
applied to both regular arguments as well as signals, as soon
as one of its signal arguments changes the closure will be
re-executed with the new value of the changed signal and
the last known value for all other signals as arguments. This
re-execution will cause the return signal to be updated which
in turn will update all of its dependants. In our example we
have two lifted functions. First, the priceCalculator which
depends on the grocerySignal and the priceSignal provided
by the market. The returning signal represents the total price
for the entire grocery list and is updates as soon as either
a client adds an item to the grocery list or if the market
changes its pricing. Second, the updateGui lifted function
which updates the user interface to reflect the latest state of
the grocery list an the total price of said list.

Errand requesters The code ran by all errand requesters
is given in Listing 3, for the sake of brevity we do not show
code in common with Listing 2 (i.e. priceCalculator and
updateGui). Each errand requester acquires a replica of the
groceries signal provided by the errand runner and a replica
of the prices signal provided by the market. As was the case
for the errand runner, two lifted functions assure the update
of the user interface. Each client is able to add an element
to the grocery list through the addGrocery method. As men-
tioned previously the addition of an element will trigger
the underlying replication mechanism to make sure that all
clients have the same grocery list and will therefore update
the UI of all other clients as well.

actor:{
deftype Requester;
def selfType (){

4 Requester

6 def groceryList;

7 whenSignal: Runner discovered:{|groceries |

8 groceryList := groceries;

9 updateListGui(groceries);

10 whenSignal: Market discovered:{|prices|

11 def totalPrice := priceCalculator(groceries ,prices):
12 updateGui(groceries , totalPrice)

}:
15 def addGrocery (grocery){
16 update: groceryList by: {[list| list.newltem(grocery)}

Listing 3. Implementation of errand requesters

From this minimal implementation of our grocery applica-
tion it is clear that marrying the world of reactive program-
ming and replicated programming offers significant bene-
fits regarding the ease with which one can program inter-
active collaborative applications. Programmers are able to
elegantly handle various events by letting Direst track and
manage dependencies between signals. Moreover, program-
mers are freed from the burden of replicating signals and
keeping their state consistent across replicas.

4. Replicating State Changes

In order to handle state changes to the replicated signals, any
consistency algorithm can be employed. The manner with
which the algorithm replicates and synchronises data is en-
tirely decoupled from the behaviour of the replicated sig-
nal in the Direst model. A signal simply represents a value
that can be replicated across clients/actors. These replicas
are kept consistent by means of an underlying algorithm. A
consequence of this decoupling is that any algorithm provid-
ing eventual consistency (e.g. CRDT, CloudTypes) could be
used to implement replicated signals.

In our implementation of Direst we opted for the Repliq
consistency model (Coppieters et al. 2016), since the unit of
replication in Repliq are objects and Repliq is actor based.
The main idea behind the Repliq model goes as follows.
Replicated objects must be isolated entities (i.e. the object
does not have access to its lexical scope). Furthermore, ar-
guments to the methods of the replicated object must be iso-
lated entities as well. These restrictions allow the model to
infer two crucial properties about these objects. First, the
state of a replica can be determined solely using the replica’s
state at creation time and an ordered list of all methods ex-
ecuted on it. Second, changing the state of a replica can be
achieved by undoing, redoing or reordering method invoca-
tions. Eventual consistency is then obtained by letting a mas-
ter actor, which in this case is the actor invoking stgnal :,
decide on the order in which the methods should be executed
on all the replicas.

The ordering is achieved by implementing a version of the
Global Sequence Protocol (Burckhardt et al. 2015).

An intuitive explanation of the protocol goes as follows.

Each actor has two logs per replica, the confirmed and
tentative log. The confirmed log represents the state as ob-
served by the master replica while the tentative log contains
a list of operations (i.e. invoked methods) which have been
applied locally to the replica. Whenever an operation is per-
formed on a replica it is added to the tentative log. More-
over, a synchronization process will send the operation to
the actor containing the master signal. There, the operation
is executed on the master replica and added to the confirmed
log after which all replicas will be notified of this addition.
Upon reception of the notification, every replica will reset
its state to the state at creation time, replay the entire con-
firmed and tentative log and remove the received operation
from the tentative log if it is present. This protocol makes
sure that eventually all the replicated signals have the same
confirmed log, have executed the operations in the same or-
der and thus converge.

This simplified explanation of the algorithm does not
account for failures and message loss/reordering. The actual
implementation in Direst uses GSP, such that it does work
correctly under these circumstances. It makes sure that logs
are numbered and durable, correct ordering is tested for
and recovery processes are initiated whenever required (after
failure or message loss).

Other consensus algorithms, such as Paxos (Lamport
1998; Lamport et al. 2001) and Raft (Ongaro and Ousterhout
2014), could also be used in order to let the logs converge.
Yet, we choose to work with a master-replica protocol for
two reasons. First, this allows every actor to have ownership
over the replicated signals it creates, by owning the mas-
ter object. This means that they can be in charge over what
is allowed on the replicas. Second, this lets the master ob-
ject act as the single source of truth. Although perhaps less
scalable, it allows users to know when their operations are
integrated into the master copy?. This is an important prop-
erty when modelling for example client-server architectures
using Direst, since it allows clients to know when their oper-
ations are made durable on the server. In contrast, this is not
possible with a consensus protocol or something like CRDT.

5. Reacting to State Changes

This section describes each primitive offered by Direst and
describes its semantics. The general idea behind our lan-
guage is to provide distribution and distributed state solely
through replication and reaction. Although we cannot pro-
hibit programmers from employing traditional AmbientTalk
functionality (e.g. asynchronous message sends), Direst pro-
vides all the functionality needed to write interactive and
collaborative applications and should therefore be used as-

2'We left the constructs that allow you to do this out of this paper, because
they are not strictly required for Direst and are dependent on the replication
algorithm.

is. We divide Direst’s API into two categories: natives used
for signal creation and natives used to initiate and handle
propagation of change.

5.1 Signal Creation

Construction of signals can happen through one of three
natives:

stgnal : One can explicitly create a signal using signal :,
which takes a signal definition as argument and returns
a signal object. A signal definition is a block statement
which can contain fields and methods but does not have
access to its enclosing scope. Given the distributed nature
of our signals, this ensures that signals are self-sufficient
entities. The resulting signal object is read and write
protected (i.e. the object has no public interface).

li ft Direst allows programmers to lift regular functions (i.e.
standard AmbientTalk functions), to work on signals.
li ft takes a regular AT function as argument and returns a
lifted version of that function. This lifted function differs
from the original one in two ways. First, when applied to
one or more signals the function will automatically track
changes made to its signal arguments. That is, as soon
as one of its arguments has changed the function will
re-apply itself with the latest value for each argument.
Second, the first application of a lifted function returns a
signal which contains the result value of the original (i.e.
non-lifted) function. As signal arguments to this applica-
tion change, so does the value of the return signal. Ap-
plying a lifted function thus adds a dependency between
the return signal and all argument signals.

publish : and whenSignal : discovered : Signals can also
be obtained through the use of our publish/subscribe sys-
tem which re-uses AmbientTalk’s built-in discovery sys-
tem in the background. Actors can publish a signal using
the publish : as : construct which takes a signal and a
type tag and will publish the signal under the given type
tag. Subscribing to a signal (i.e. obtaining a replica of the
signal) is done by invoking whenSignal : discovered :
which takes a type tag and a function as argument. Given
that a signal was published under the given type tag,
the function is called with a replica of the signal as ar-
gument. Optionally one can also publish a signal using
publish : as : mutablel f :, which takes an additional
function specifying which actors can mutate the replicas
of the signal. Concretely, this function will be attached
to all replicas of the published signal. As soon as an ac-
tor tries to mutate the replica’s state this function will be
invoked with the mutating actor as argument. Only if the
function evaluates to true will the actor be able to mutate
the replica’s state.

5.2 Change Propagation

Our DSL provides a single mean to start propagation:
update : by :, which takes a signal and a function as ar-

gument. The function will be applied to the signal’s current
state (i.e. its behaviour) and will be able to invoke its mu-
tators. We impose four limitations regarding this imperative
update of a signal. First, only source signals (i.e. signals
having no dependencies to other signals) can be impera-
tively updated. This also entails that imperatively updating
a replica of a signal can only be done if the replica’s master
version is a source signal. This ensures that the declarative
nature of our DSL is upheld. For example, when a lifted
function is applied to a number of signals this can be viewed
as a declarative specification of a dependency between the
function’s return signal and the argument signals. Allow-
ing programmers to then imperatively change the resulting
signal even if no argument signal has changed would be
counter intuitive. Second, the update should not happen in
the context of a lifted function application. This ensures that
updates happen in a non-circular way (i.e. a signal cannot be
updated as the result of its own update). However, due to the
dynamic nature of AmbienTalk this last constraint cannot
statically be enforced. Third, the function provided as argu-
ment to update : by : must only cause side-effects on the
signal it is updating. As explained in Section 4, all updates
to a signal might be replayed by the underlying synchronisa-
tion algorithm. If the update changes any other state than the
signal’s internal state this replaying may cause undesirable
effects. This constraint can again not statically be enforced
by Direst. Fourth, one can only mutate the replica of a signal
if the mutablel f : function allows it. In case the master
signal was published without this optional argument this last
requirement is always met.

As soon as a source signal has been changed two things
happen. First the changed signal’s new value is propagated,
in a topological order, to all signals which depend on this
signal within the same actor. Given that dependencies are
constructed using applications of lifted functions, this prop-
agation entails a cascade of function re-executions. Second,
our replication mechanism (see Section 4) starts, which will
eventually entail that all replicas are changed as well. This
will trigger a propagation of change on all actors which have
a replica of the changed signal.

6. Related Work

We categorise two fields of related work. First, work pertain-
ing to reactive programming in a distributed context. Second,
libraries and models aimed at handling distributed state and
replication.

6.1 Distributed Reactive Programming

AmbientTalk/R (Carreton et al. 2010) (AT/R) is an extension
of the AmbientTalk interpreter which provides constructs for
distributed reactive programming. As is the case for Direst
it provides native constructs to create,update and distribute
signals which it calls ambient behaviors. In this regard AT/R
closely resembles Direst. However, distributed behaviours

are exported by copy between actors. As a result, changing
the value of a copy of an ambient behaviour does not impact
other copies.

DREAM (Margara and Salvaneschi 2014) is a middleware
tailored towards distributed reactive programming. DREAM
offers consistency guarantees that pertain to causality of
events, glitch freedom and atomicity. It provides distribu-
tion of signals (or observable objects in DREAM terminol-
ogy) through a publish/subscribe system. However, an ob-
servable object can only be modified by the component (i.e.
distributed client) in which it was created. Moreover, the
publish/subscribe system is used to notify reactive objects
(which are similar to Direst’s lifted functions) of updated
values. This contrasts with the replication of actual signals
in Direst. These two properties of DREAM make it unfit to
easily represent shared mutable state.

Flapjax (Meyerovich et al. 2009) is a programming language
designed to write web applications in a reactive fashion.
However, flapjax only targets the client-side of web appli-
cations and does not provide reactivity for client-to-client
interaction. As a result one cannot express distributed state
in a reactive fashion.

The work presented in (Reynders et al. 2014) introduces
a DSL for multi-tier functional reactive programming. In
this work one is able to write full-stacked web applications
(i.e. both client and server) using a single reactive language.
The presented language allows programmers, amongst other
functionality, to replicate streams between client and server.
These replicated streams automatically push event values
across tiers as they arise. However, streams are not shared
amongst clients (i.e. two clients cannot mutate the same
stream).

6.2 Replication Mechanisms

The research field related to consistency models for repli-
cated state has produced a plethora of work since its concep-
tion (Saito and Shapiro 2005). Yet, recently a surge can be
seen in novel models that aim to provide such consistency at
the programming language level. We shortly discuss some
of the more prominent and recent of these.

Most closely related is Lasp (Meiklejohn and Van Roy
2015). Lasp is a domain specific language that implements
CRDT’s at the programming language level. Furthermore,
it also allows to use a restricted set of functions (functional
and set-theoretic) over these values to create new CRDT’s.
By providing functions such as map, filter, union, etc. Lasp
effectively integrates CRDT’s as first-class values into the
programming model. Yet, by no means does it incorporate
the reactive behaviour of the CRDT’s with the local reac-
tivity such as user interaction and the remote reactivity of
dependencies on non-replicated state.

CloudTypes (Burckhardt et al. 2012), just like CRDT’s, of-
fers pre-defined replicated values that have a pre-defined
behaviour in a replicated setting. Again, it has no integrated
reactive model to interact with other local and remote events.

Also Vercast (Lorenz and Rosenan 2014) provides such
application-level semantics, but has no integrated reactive
model.

Finally, the introduction of replicated values in a distributed
object-oriented system has been proposed before in Emerald
with Gaggles (Black and Immel 1993). The key difference
is that gaggles provide an interface to invoke methods on a
foreign object that might have multiple instances. Consis-
tency of the objects is not built-in, but can be built on top
of the provided constructs. Our work specifically focusses
on providing replicated objects such that actors can always
access and use them locally, preserving actor locality. This
inherently entails the usage of an optimistically replicated
algorithm. Furthermore, gaggles also have no integration
with or notion of reactivity.

7. Limitations and Future Work

A signal may only be published by an actor if that actor is
the owner of the signal. We say that an actor owns a signal if
it has either created the signal or if that signal solely depends
on signals, directly or indirectly, which it has created. For ex-
ample, a return signal of a lifted function which was applied
to a replica of a signal is not owned by the applying actor.
The sole reason to enforce this limitation is to avoid decen-
tralised distributed glitches (Drechsler et al. 2014). Explain-
ing this problem in detail would bring us out of the scope of
this paper. However, current solutions to the problem cannot
be applied to Direst without enforcing a centralised coordi-
nator. Our model therefore simplifies dependencies between
actors: one can never obtain a replica of another replica.

As explained in Chapter 4, the semantics of Direst are en-
tirely decoupled from the consistency model used for the
replicated signals. However, we provide no means yet to el-
egantly insert different consistency algorithms. Part of our
ongoing research is to allow programmers to easily cre-
ate their own replicated signals, providing their consistency
model. This entails designing a suited meta protocol that
provides the necessary hooks to implement every consis-
tency model, ranging from entirely distributed peer-to-peer
eventually consistent models such as CRDT, over master-
slave replication such as Repliq to strongly consistent mod-
els using consensus.

8. Conclusion

Reactive and replicated programming both provide partial
solutions to the problems one faces when programming in-
teractive collaborative applications. Reactive programming
allows for elegant handling of events and time changing vari-
ables such as Ul input and network events. Replicated pro-
gramming enables programmers to abstract away from state
replication and synchronisation. However, both approaches
have thus far only been developed and applied in isolation.
Programmers using the reactive paradigm need to handle
replicated and shared state manually while programmers us-

ing a replicated approach lack the high-level abstractions
provided by the reactive paradigm to efficiently write event-
driven code.

In this paper we introduce Direst: a domain-specific lan-
guage which aims at marrying the best of both worlds.
In Direst programmers are able to elegantly tackle events
through the use of traditional reactive constructs such as sig-
nals and lifting. Moreover, signals in Direst provide built-in
replication and synchronisation. Signals can be replicated
across distributed clients using a publish/subscribe mecha-
nism. Each client is able to mutate the state of these replicas
while Direst automatically ensures that the states of these
replicas are kept eventually consistent. Although the lan-
guage currently exhibits some limitations, it is the first dis-
tributed reactive programming language to provide repli-
cated state.

References

E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter. A survey on reactive programming. ACM Comput.
Surv., 45(4):52:1-52:34, Aug. 2013. ISSN 0360-0300.

A. P. Black and M. P. Immel. Encapsulating plurality. In Euro-
pean Conference on Object-Oriented Programming, pages 57—
79. Springer, 1993.

S. Burckhardt, M. Fihndrich, D. Leijen, and B. P. Wood. Cloud
types for eventual consistency. In European Conference on
Object-Oriented Programming, pages 283-307. Springer, 2012.

S. Burckhardt, D. Leijen, J. Protzenko, and M. Fahndrich. Global
sequence protocol: A robust abstraction for replicated shared
state. In LIPIcs-Leibniz International Proceedings in Informat-
ics, volume 37. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2015.

A. L. Carreton, S. Mostinckx, T. Van Cutsem, and W. De Meuter.
Loosely-coupled distributed reactive programming in mobile ad
hoc networks. In International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, pages
41-60. Springer, 2010.

T. Coppieters, L. Philips, W. De Meuter, and T. Van Cutsem. An
open implementation of cloud types for the web. In Proceedings
of the First Workshop on Principles and Practice of Eventual
Consistency, page 2. ACM, 2014.

T. Coppieters, W. De Meuter, and S. Burckhardt. Serializable even-
tual consistency: consistency through object method replay. In
Proceedings of the 2nd Workshop on the Principles and Practice
of Consistency for Distributed Data, page 3. ACM, 2016.

T. V. Cutsem, E. G. Boix, C. Scholliers, A. L. Carreton, D. Harnie,
K. Pinte, and W. D. Meuter. Ambienttalk: programming re-
sponsive mobile peer-to-peer applications with actors. Com-
puter Languages, Systems & Structures, 40(34):112 — 136, 2014.
ISSN 1477-8424.

E. Czaplicki and S. Chong. Asynchronous functional reactive pro-
gramming for guis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI *13, pages 411422, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2014-6.

J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini. Distributed
rescala: An update algorithm for distributed reactive program-
ming. In Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 14, pages 361-376, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2585-1.

S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Calling
hell from heaven and heaven from hell. In Proceedings of the
Fourth ACM SIGPLAN International Conference on Functional
Programming, ICFP *99, pages 114-125, New York, NY, USA,
1999. ACM. ISBN 1-58113-111-9.

L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133-169, 1998.

L. Lamport et al. Paxos made simple. 2001.

D. H. Lorenz and B. Rosenan. Versionable, branchable, and merge-
able application state. In Proceedings of the 2014 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software, Onward! 2014, pages 2942,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3210-1.

A. Margara and G. Salvaneschi. We have a dream: Distributed re-
active programming with consistency guarantees. In Proceed-
ings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, pages 142-153, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2737-4.

C. Meiklejohn and P. Van Roy. Lasp: A language for distributed,
coordination-free programming. In Proceedings of the 17th In-
ternational Symposium on Principles and Practice of Declara-
tive Programming, PPDP ’15, pages 184-195, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3516-4.

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Green-
berg, A. Bromfield, and S. Krishnamurthi. Flapjax: A program-
ming language for ajax applications. SIGPLAN Not., 44(10):
1-20, Oct. 2009. ISSN 0362-1340.

D. Ongaro and J. Ousterhout. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14), pages 305-319, 2014.

B. Reynders, D. Devriese, and F. Piessens. Multi-tier functional
reactive programming for the web. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2014,
pages 55-68, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-3210-1.

Y. Saito and M. Shapiro. Optimistic replication. ACM Comput.
Surv., 37(1):42-81, Mar. 2005. ISSN 0360-0300.

G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini. An em-
pirical study on program comprehension with reactive program-
ming. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014,
pages 564-575, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-3056-5.

M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. SSS’11, pages 386—400, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24549-7.

	Introduction
	Motivating Example and Problem Statement
	blueReactive Challenges
	mygreenReplication Challenges

	Programming in Direst
	Replicating State Changes
	Reacting to State Changes
	Signal Creation
	Change Propagation

	Related Work
	Distributed Reactive Programming
	Replication Mechanisms

	Limitations and Future Work
	Conclusion

