Declaratively Specifying Security Policies For Web Applications

Angel Luis Scull Pupo

Jens Nicolay

Elisa Gonzalez Boix

Sofware Languages Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel

{ascullpu,eljenso,egonzale}@vub.ac.be

Abstract

The complex architecture of browser technologies and dy-
namic characteristics of JavaScript make it difficult to ensure
security in client-side web applications. Browser-level poli-
cies alone, such as Content Security Policy and Same-Origin
Policy, are not sufficient because they are implemented in-
consistently across browsers and can be bypassed. At the
application level, however, there exists no specification lan-
guage for expressing a wide range of security policies in a
composable and reusable manner.

In this paper we develop a declarative language for en-
coding an combining security policies in the context of
JavaScript web applications. We explore JavaScript’s reflec-
tion capabilities to enforce these security policies dynami-
cally. We validate our work by expressing common security
policies encountered in the literature.

1. Introduction

Today web applications can be seen as mashups of JavaScript
code and content from various sources. All JavaScript code
included from different sources has the same privileges to
access sensitive resources of the browser such as cookies,
location, etc. This situation exposes web applications to se-
curity threats such as Cross Site Scripting, Cross Site Re-
quest Forgery, Sensitive Data Exposure, etc. [9, [13| [18].
Many efforts have been done at the browser level to mitigate
these security threats. For example, the Content Security
Policy (CSP) allows developers to inform the browser about
the sources from which the application expects to load re-
sources. The Same-Origin Policy (SOP) restricts the content
a web page can access to resources of the same origin. Nev-
ertheless, the implementation of SOP and CSP present in-
consistencies across browsers vendors, and can be bypassed
[3,122]. As a result, browser-level efforts need to be comple-
mented with application-level security policies.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)

Meta’16 October 30, 2016, Amsterdam, Netherlands
Copyright (© 2016 held by owner/author(s).

In this paper, we present an application-level security
mechanism for specifying and enforcing security policies.
In particular, we aim to answer two research questions:

1. How can application-dependent security policies be ex-
pressed so that they are composable?

2. Can JavaScript’s reflective capabilities be employed to
enforce security policies without compromising their
transparency and tamper-prooﬁzess?[]

We discuss aspects about transparency and tamper-
proofness as a key point for future development, but we do
not aim cover them here.

2. Security policies for client side web
applications

We consider an application-level security policy as a pro-
gram property that must hold during the entire application’s
execution. Schneider et al. [24] classify security policies in
three classes:

1. access control policies restrict what operations principals
can perform on objects,

2. information flow policies restrict what principals can in-
fer about objects from observing system behavior, and

3. availability policies restrict principals from denying oth-
ers the use of a resource.

While the goal of our research is to cover those three types,
our current prototype implementation only supports access
control policies. Therefore we focus on access control se-
curity policies in this paper, and we will refer to them as
security policies in the rest of the paper.

2.1 Expressing security policies

To express security policies, many approaches support im-
perative specifications. In this case, security policies are ex-
pressed either in JavaScript directly (like in JSand [[1]) or in
the implementation language of the JavaScript virtual ma-

! By transparency we refer to the ability of a security policy that not interfere
with the target code it protects, and tamper-proofness means that security
policies themselves should not be vulnerable to attacks.

http://creativecommons.org/licenses/by-nd/4.0/

chine (C++ in Richards et al. [21]). These approaches of-
fer the flexibility of a full-fledged general purpose language.
However, it is the developer’s responsibility to make sure
that the policy is tamper-proof, and does not contain bugs or
errors that result in new vulnerabilities. In addition, devel-
opers have to manually call the enforcement mechanism and
perform the security checks themselves.

Alternatively, security policies can be written in a fully
declarative manner [5} [7) [10]. Typically, declarative ap-
proaches embed type annotations or access paths to a pro-
gram as policies. Heidegger et al. [[7]] implement access per-
mission contracts using a DSL embedded inside code com-
ments. Keil et al. [[10] propose to express access control
paths in a regular expression language. Such a language is
completely declarative, allowing developers to express com-
plex access control paths that automatically work in a tran-
sitive manner. Drossopoulou et al. [S]] propose a domain-
specific language (DSL) to express trust, risk, and security
policies in open systems. Their definitions make use of log-
ical predicates and assertions in an object capability lan-
guage.

Finally, some works combine imperative and declara-
tive specifications. Phung et al. [[19, 20] support type en-
forcement policies which are declaratively specified as a
list of types that are accepted as a function’s arguments,
while user-defined policies are still imperative. Their ap-
proach to express user-defined security policies is based on
Aspect-Oriented Programming (AOP) [IL1]. Developers ex-
press security properties in an imperative way at the gran-
ularity of methods and properties of built-in objects. How-
ever, this can lead to security misconfigurations and incon-
sistencies that can be used in attacks. In addition, Phung et
al. do not propose a mechanism to combine and reuse se-
curity policies. ConScript [15] is also based on AOP and
proposes a browser-based aspect system that allows the cre-
ation of application-specific security policies. Policies are
expressed in a declarative/imperative hybrid manner using
advice functions like around. Security checks are written in
an imperative manner while the code that will be checked
(e.g window. open) is expressed in an aspect-oriented man-
ner. Like Phung et al.’s work, ConScript does not provide
any mechanism to combine policies.

2.2 Enforcing security policies

Execution monitoring (EM) is a common technique to en-
force security policies. EM ensures that a target program
satisfies a certain specified property, and can notify or halt
the system when this property is violated [24].

An EM mechanism can be implemented as part of the
target system by relying on code instrumentation [20, 28]
or VM modifications [15} 21]]. However, VM modifications
have as a drawback that they limit the portability of security
policies (as they need to be re-implemented and customized
for each browser), and code instrumentation results in per-
formance impact.

Alternatively, EM can be achieved by observing and mod-
ifying the target system on the fly by employing JavaScript’s
reflective capabilities. As a result, policies then can only be
applied at the object level; primitive values cannot be fully
traced by the current JavaScript Proxy API. This in turn may
limit the transparency and tamper-proofness of the enforce-
ment mechanism.

2.3 Problem Statement

Although much research has focused on imperative spec-
ifications of security policies, declarative security policies
have a number of advantages. First, declarative specifica-
tions offer a well-defined interface for expressing policies,
constraining developers to a particular way of defining a pol-
icy which may lead to less error-prone code. However, they
are less flexible than imperative specifications as they usu-
ally require policy developers to use new notations to express
their policies, needing additional support for enforcing them
in an engine, parser, or compiler. Studied works rely on new
languages to express security policies obtaining more free-
dom in expressiveness but forcing developers to learn a new
language. Indeed they lack the facilities of the host language.
We claim that these observations motivate the need for a
new declarative domain-specific language (DSL) that com-
bines the flexibility of imperative policies with the ease
of development provided by more declarative solutions. In
this paper we present GUARDIA, an internal DSL [8|] for
JavaScript for declaratively specifying security policies for
client side web applications. We aim to distill fundamental
security policies from the wide range of solutions describe
above, in order to incorporate them in GUARDIA as building
blocks that can then be composed to express more complex
policies. We design GUARDIA’s enforcement mechanism in
a modular way so that we can experiment with different en-
forcement solutions. In the current prototype implementa-
tion, we employ ECMAScript 2015 [27] meta-level facili-
ties to develop an EM to enforce security policies, and we
discuss a design toward an hybrid approach in which code
instrumentation is combined with JavaScript proxies to im-
prove the transparency and tamper-proofness of policies.

3. GUARDIA: An internal DSL for
Declaratively Specifying Security Policies

In this section we describe GUARDIA, a novel declarative
DSL to express security policies for client side web appli-
cations written in JavaScript. GUARDIA provides a prede-
fined set of fundamental policies that can be composed to
build more complex ones. Fundamental policies alleviate the
developer of the burden of correctly writing security poli-
cies, and the built-in composability mechanisms provides
the flexibility of imperative specifications. We will first ex-
plain how to define security policies in GUARDIA, and we
describe the main building blocks to create policies and com-
bine them, and finally how to deploy them on JavaScript ob-

jects. Sectionfd] will explain other relevant constructs through
coding examples.

In order to enforce security policies, GUARDIA uses ex-
ecution monitoring of security-relevant invocations. The ex-
ecution of the target program halts if one of these security-
relevant invocations does not comply with one of the poli-
cies. We follow a similar attack model adopted by Phung et
al. in [20] and assume that (1) the code loaded by the web
browser is injected with malicious code, and (2) malicious
code has access to all resources of the browser. A security
relevant-invocation can be a call to a method or a function,
or access to an object property. For example, a call to the
window.open method could be used for malicious purposes,
and therefore its invocation is considered security-relevant.

3.1 Implementation

In this work, we employ the traps defined in the EC-
MAScript Proxy API [16]]. We use proxies to change the
semantics of a subset of operations on certain JavaScript ob-
jects to enforce security policies by intercepting the relevant
invocations. As such, checks in GUARDIA are limited by the
parameters that are accepted by the proxies’ traps.

The idea is to wrap objects with proxies to uphold the
security invariants. To build a proxy object, a target object
and a handler should be provided, as Listing [T| shows. The
proxy’s constructor returns a wrapper of the target object.
This wrapper intercept all read and write operations intended
upon the object, enforcing security policies before funneling
the invocation to the target object.

var objProxy = mew Proxy(obj,{
get: function (tar ,prop,rec){
// security policy enforcement
return Reflect.get(tar ,prop,rec);
}
set: function(tar ,prop,val,rec){
//security policy enforcement
Reflect.set(tar ,prop,val , rec)
}
3]

Listing 1. Example of a Javascript proxy

A security policy in our implementation is a JavaScript
object that specifies a number interception points used by
the enforcement mechanism to hook in the adequate traps.

A security policy object defines two types of interception
points which monitor security-relevant read and write op-
erations, such as a method invocation or the assignment to
a property in the target object, respectively. Developers can
register listeners to monitor these read and write operations.
The listing 2] shows how to define policy object that denies
a read operation on the open property/method. We specify
each field that could have a policy. The whenRead and when-
Write fields take an array of predicates that are evaluated
on each read or write operation. Similarly, the readListeners
and writeListeners fields take an array of listeners (closures)
that are notified on each read or write operation. Each reg-

istered listener is a JavaScript object that contains a notify
function.This function receives as parameters the dynamic
information related to the actual invocation. The notify func-
tion is executed each time a property is accessed or a method
is invoked.
var pol = {
whenRead: [Deny (["open’])],
whenWrite: [...],
readListeners: [{
notify: (tar, prop, rec, args) => {
//update some state ...
}

H

writeListeners: [...]

Listing 2. Example of a policy definition

All fields of policy definition object receives arrays of
objects. Those arrays are iterated to execute the registered
behavior in the corresponding trap. For example, whenRead
field register all predicates that must be triggered when a
read operation occurs on the proxy object. Listing |3| shows
how all registered predicates in whenRead are executed. This
code snipped is part of the handler that is used to build
secured proxy objects. Before executing the read operation,
each policy is checked by means of filter method. The
execution throws an error if one them returns false.

get: function(tar, prop, rec){
for (let pred of whenRead){
if (! pred. filter (tar, prop, rec))
throws new Error (”Not_allowed”);
}

return Reflect.get(tar, prop, rec);

}

Listing 3. Example of a proxy trap implementation

3.2 Security Policy Deployment

Security policies must be deployed on objects. In our ap-
proach, the result is a proxy object that acts as a handler of
the target object. Listing [4 shows how to deploy a policy for
the window object.

var winProxy = installPolicy (pol).on(window);

Listing 4. Policy deployment example

To construct the proxy we first build the handler that
implements get and set traps. These traps trigger the checks
(see Listing [3) registered in the policy. If the result of the
check is true, then the trap notifies the listeners and then
forwards execution to the target object. Otherwise, program
execution is halted.

3.3 Basic Security Policies

Elemental components of a security policy have been dis-
tilled into a number of fraits [23] that are then composed

to define a security policy. This allows developers to further
compose the provided policies to build more complex ones.

Following Schneider’s security policy definition in [24],
the most basic type of policy is a predicate that decides
whether an invocation is valid or not. Listing[5]shows such a
trait which requires a filter method that should evaluate to a
boolean value.

var TBase = Trait({
filter: Trait.required
1

Listing 5. Basic policy interface

TBase represents the most abstract policy which is ex-
tended to provide the set of elementary policies supported
by GUARDIA. Listing [6] shows how we extended TBase in
the TAllow trait to support policies that permit only certain
executions on a target object. As the listing shows, TBase is
composed with a new trait that provides the behavior of the
filter method. TA1low is materialized by the function Allow,
that takes as parameter an array of strings and returns an
object that implements TAllow. The resulting object con-
tains the behavior of the policy. We do not provide a trait
for a deny concept, because it can be expressed in terms of
TAllow.

var TAllow = Trait.compose(TBase, Trait({
filter: function (tar, prop, rec, args) {
return contains (this.allowed, prop);

}
1)

function Allow(properties) {
var allPropPolicy = Trait.create({}, TAllow);
allPropPolicy .allowed = properties;
return allPropPolicy;

Listing 6. Implementation of Allow concept

GUARDIA must not only allow to develop simple poli-
cies, but more elaborated policies or combined policies as
well. To this end we provide three higher-order policies that
can be used to combine policies based on the three tradi-
tional logical operators. GUARDIA provides them as three
JavaScript functions:

e the Not function receives as parameter a policy object A
and returns a policy object B that negates the behavior of
A. We use this building block to reify the Deny concept.

e the And function returns a policy that behaves as a logical
and of the policies provided as parameters.

e the Or function returns a policy that evaluates to true if
one of the policies given as parameter returns true.

Listing [7| shows the implementation of the And function
that returns a policy that behaves as a logical and operator.
function And (... policies) {

return Trait.create({},
Trait.compose(TBase, Trait({

filter: function (t, p, r, args) {
for (var p of policies) {
if (!p.filter(t, p, r, args)) {
return false;
}
}

return true;

Listing 7. Implementation of And concept

So far, we are able to design policies that allow or deny
the invocation of methods or the access to the properties of
a target object. But they are not sufficient to express con-
trol flow policies like no dynamic iframe creation in which
the execution of the document.createElement(tag) must halt
only when the value of the tag attribute is equal to iframe.
To this end, GUARDIA provides the ParamAt function that
returns a policy which can be used to check if a specific pa-
rameter of a method invocation hold some property. List-
ing [8] shows the implementation of ParamAt function. The
first parameter is a function that will be called by the filter
method. This function must return a boolean value. The sec-
ond parameter is the index of the parameter of the current in-
vocation. The last parameter is an arbitrary value used by the
function provided to ParamAt. The result object of ParamAt
is composed with TParamAt trait that implement the filter
function required for predicates. In this particular case the
implementation of the filter function applies the provided
function to the specified parameters.
var TParamAt = Trait.compose(TBase, Trait({

idxParam: Trait.required ,

otherParam: Trait.required ,
opFn: Trait.required ,

filter: function (tar, prop, rec, args) {
return this.opFn(args[this.idxParam],
this .otherParam);

}
1)

function ParamAt(fn, idx,
var bProto = {};
bProto .idxParam = idx;
bProto.otherParams = other;
bProto.operatorFn = fn;
return Trait.create (bProto, TParamAt);

other) {

Listing 8. Implementation of ParamAt concept

Many security policies require to take into account the
program’s state in order to determine whether a certain prop-
erty holds. Function StateFnParam allows the application
of a function to check the arguments of the actual security-
related invocation. Listing[T2]shows an example of its usage.

4. GUARDIA in Action

In order to show how developers can encode security poli-
cies in GUARDIA we now show the implementation of eight

security policies documented in previous works [[15} 20, 28]].
For each policy, we first briefly explain the policy and type
of attack it prevents, and then discuss the code in GUARDIA.

Policy #1: Limit popup window construction

Like Kikuchi et al. [[12]] and Meyerovich et al.[15], we limit
the number of attempts to open a popup window. Also, as
suggested by Phung et al. [20], we check that the new win-
dow has a location and status bar. We extended the invariant
of the policy by checking that the URL is in a whitelist. The
policy registers a listener that increments a counter each time
a window is open. Later the predicate verifies that the first
parameter is in a whitelist of URLSs. It also verifies that the
second parameter contains a location and status bar. We use
the StateLessThan function to check if a certain variable
state is less than a value.

var lstnr = {
notify: function (tar, name, rec, args) {
if (name === ‘open’) {

var winOpCnt = ac.getState (winOpenCount’);
if (winOpCnt) {
winOpCnt += 1;
ac.setState ('winOpenCount’, winOpCnt);

} else {
ac.setState ('winOpenCount’, 1);
}
}
}
}
var contains = (a, b) => {
return a.indexOf(b) != —1

var limitWin =
And (
Allow (["open’]),
ParamInList(0,urls),
ParamAt(contains , 1,
’location=yes’),
ParamAt(contains ,1,
‘status=yes’),
StateLessThan ("winOpenCount’ ,3)),
Not(Allow (["open’1)))

Or (

var proxy = installProxy ({whenRead:[limitWin]
readListeners:[Istnr]})

.on(window)

Listing 9. Limit popup window construction policy

Policy #2: Prevent resource abuse

Client-side resource abuse in JavaScript can adversely affect
user experience to the point that the application becomes
unusable [20]]. There exist certain methods in the DOM API
that can be exploited for this kind of attack like prompt
and alert [3| 15| [20]. Listing [T0] shows how to create a
policy that prevents resource abuse of the methods prompt,
alert and confirm in GUARDIA. At each invocation, the
policy checks the name of the property being accessed. If
the property is one of the specified by the policy, then the
invocation is denied.

—_
[=INRE-CREN e Y N N S

—_ = =
W N =

var noResAbuse = Deny ([“alert’, prompt’,
>confirm’])
installPolicy ({ whenRead:[noResAbuse]})
.on(window)

var proxy =

Listing 10. Prevent modal dialogues abuse policy

Policy #3: Disallow dynamic iframe creation

This policy aims to solve attacks that can happen by restor-
ing built-in methods from another page as stated in [20].
Listing[TT] shows how to build such a policy by negating the
combination of a Allow policy with a ParamAt which ap-
plies the function equals to the first invocation parameter
of createElement function and ’iframe’.

var equals = (a, b) = { return a === b }
var pol = not(and(
Allow (["createElement’]),
ParamAt(equals , 0, “iframe’)))

var proxy = installPolicy ({whenRead: pol})

.on(document)

Listing 11. Disallow dynamic iframe creation policy

Note that in contrast to Phung et al. in [20]], the developer
is not aware of the enforcement mechanism, and does not
need to manually enforce the policy and as such, the code of
the security policy is less exposed to coding errors.

Policy #4: Disabling page redirects after document .
cookie read events

Cookies are commonly used by web servers to store data
regarding to user session. If an attacker is allowed to make
a request after reading information stored in cookies, this
could cause leakage of valuable information [12| [15, 20].
There are different ways to make a request to an external
site, but here we present a policy that disallows changing the
location property of the window to avoid such an attack.
Listing [T2] shows how to construct such a policy by com-
bining a listener(lines 1 to 4) and the predicate of the pol-
icy (lines 5 to 10). In the predicate, any attempt to change
the location triggers the execution of StateFnParam that
verifies if cookieRead is false. Otherwise, it is not allowed
to change the location. Lines 10 to 13 install the policy.

var lIstnr = {

notify: (t,p,r,a) => {

if (p === ’"cookie){
setState ('cookieRead’ ,true) }}}

var noRedirect = Or(

And(Allow (["location’]),

StateFnParam (equals , "cookieRead’ , false)),
Not(Allow (["location’ 1))

)
installPolicy ({
whenWrite: [noRedirect],
readListeners: [Istnr]
}).on(window)

Listing 12. Disabling foreign links after cookies access

Policy #5: Allowing redirections for a whitelist of URLSs

Both Pungh et al. [20] and Meyerovich et al. [15]], propose a
policy to prevent redirection to another web site by means of
changing the location property of the window and document
objects. Similarly, we can prevent leakage of information
by changing the source location of images, forms, frames,
and iframes. Listing [T3]illustrates this policy in GUARDIA.
Redirections and setting of source locations are allowed only
for URLSs that are contained in a whitelist.

var urls = [http://google.com’,
“http ://facebook .com’]
var whtList = Or(
And(Allow (["location 1),
ParamInList(0,urls))),
Deny (' location’))

installPolicy ({ whenRead:[whtList]})
.on(document.location);

var pol = Or(And(
Allow (["src’]),
ParamInList (0, url)),
Not(Allow (["src’1)));

installPolicy ({whenRead:[pol]})
.onAll (document.images);

Listing 13. Allowing redirections for a whitelist of URLs

Policy #6: Restrict XMLHttpRequest to secure
connections and whitelist urls

Phung et al. [20] prevents impersonation attacks using the
XMLHttpRequest object by restricting its open method to
whitelist urls. Meyerovich et al. [15] proposes a policy that
enforces an HTTPS request when user and password argu-
ments are supplied to the open method. Here we implement
a security policy that compose these approaches.

var startsWith = (a,b) => {return a.startsWith(b)}
var isHTTPS = StateFnParam (1,startsWith , "HTIPS’)
var pol = Or(And(
Allow (["open’]),
ParamInList(1,urls),
isHTTPS ,
Not(ParamAt(equals ,3 ,undefined)),
Not(ParamAt(equals ,4,undefined))
)
And (
Allow (["open’]),
ParamInList(1,urls),
Not (isHTTPS)),
Not(Allow (["open’1)));
XMLHttpRequest = installPolicyCons (pol,
XmlHttpRequest);

Listing 14. Restrict XMLHttpRequest requests to HTTPS
and whitelist urls

Policy #7: Allowing a whitelist cross-frame messages

Cross-origin communication using window.postMessage
can lead to attacks such as Cross Site Scripting and Denial

of Service. The policy below is intended to prevent these
kind of attacks by checking that the origin URL of the
message is white-listed. The predicate of the policy verifies,
by means of ParamInList, that the second parameter of
the invocation of postMessage is contained in a whitelist
of URLs. If this is not the case, then the invocation of
postMessage is denied.

var urls = [http://google.com’,

“http ://facebook .com’]

var whtList = Or(And(Allow (["postMessage’]),
ParamInList(1,urls))), Deny(postMessage’))
var proxy = installPolicy ({whenRead: [whtList]})
.on(window)

Listing 15. Allowing a whitelist cross-frame messages

Policy #8: Disallow string arguments to setInterval and
setTimeout functions

This policy aims to disallow the execution of arbitrary code
as described in [[15]]. Functions setTimeout and setinterval
can accept a closure or string as callback argument. As such,
these functions can be abused to run malicious code.

Listing [T6] shows how we express a policy to restrict
the execution of these functions to closures. In the policy
below the execution of setTimeout and setInterval is
permitted only if the first parameter of the invocation is a
function.
var pol = Or(

And(Allow ([“setTimeout’, setlnterval "]),

ParamWithType (0, 'function’)),
Not(Allow (["setTimeout’, setlnterval " 1)))

var prox = installPolicy ({whenRead: pol})
.on(window)

Listing 16. Disallow string arguments policy

5. Evaluation and Discussion

We evaluated GUARDIA by expressing 13 different security
policies extracted from literature (cf. section E]) [6} 115} 20,
28]]. Table [I] provides an overview of all policies that have
been expressed in GUARDIA. The table is an adaptation from
the table presented in Bielova [3] that we extended with the
type of attack that each policy aims to prevent. We have
already shown in the previous section the implementation
of 8 of those security policies as representative examples of
each type of attack. They are marked in the the table with
their corresponding number. As the table shows GUARDIA
is able to cover all policies analyzed in the related work.

In the remainder of this section we discuss the main
features and limitations of our approach.

5.1 DSL vs. GPL

In this work, we explore an internal DSL for expressing se-
curity policies in contrast to creating a standalone declarative

Attack type Security policy HV Yu et al. Phung et al. ML GUARDIA
(6] (23] 1201 (5]

Forgery Limited number of popup v v v v v
windows opened (P1)

Forgery No popup windows without v v
location and status bar

Resource abuse Prevent abuse of resources like v v v v

modal dialogues (P2)
Restoring built-ins Disallow dynamic iframe v v v
from frames creation (P3)
Information leakage Disabling page redirects after v v v v v
document . cookie read (P4)

Information leakage Allowing redirections for a v v v
whitelist of URLs (P5)

Information leakage Restrict XMLHttpRequest to v v
secure connections and

whitelist URLs (P6)
Information leakage Disallow setting of src v v
property
Information leakage Disallow setting of location v v v
property
Impersonation XMLHttpRequest is restricted v v
to HTTPS connections (P6)

Impersonation / Disallow open and send v v v
Information leakage methods of XHR object

Man in the middle postMessage can only send to v v

the origins in a whitelist (P7)
Run arbitrary Disallow string arguments to v v

code*(fix) setinterval & setTimeout (P8)

Table 1. Comparison of approaches in security policies. Policy numbers P1 to P8 refer to the policies discussed in section 4]

programming language like in [3], or expressing policies as
a library in a full-fledged GPL. This choice is motivated by
the fact that we aim to provide basic and extensible building
blocks distilled from the domain of security policies.

In some cases, expressing a policy in GUARDIA is more
verbose than using an imperative approach, but we argue that
our language has the benefit of preventing code duplication
and coding errors as it incorporates a number of patterns
and offers them in well-defined building blocks. In addition,
in imperative approaches like [15} [20] developers mix the
code of security policies with the enforcement mechanism,
decreasing code maintainability. Another advantage of im-
plementing GUARDIA as a DSL is that the security policy
specification language can be decoupled from the enforce-
ment mechanism that monitors the program execution. As
mentioned in section [3.3] the security policy language in-
teracts with the enforcement mechanism by a well-defined
interface that provides information regarding the target ob-
ject, the property being accessing, and the parameters of the
actual call.

GUARDIA only supports access control policies for now,
but we are currently working on extending it to support
information flow control policies as well. In particular we

have conducted the first implementation steps for supporting
dynamically taint analysis [2, 4, [25]].

5.2 Transparency

Like [20, 24], we aim to achieve transparency in the sense
that the behavior of a target object in which a policy is in-
stalled should not affected by GUARDIA’s EM mechanism.
We rely on Van Cutsem and Miller’s [26] invariant enforce-
ment mechanism to uphold the invariants of target objects.
The transparency of our solution is thus tied to the trans-
parency of JavaScript proxies. First experiments to investi-
gate how proxies behave in a real environment on different
browsers and using libraries like JQuery, has shown some
issues. For example, JQuery presents errors when we wrap
methods of the window or document objects. To date, we
do not know if JQuery poses an strong invariant or if it is
an issue in the implementation of the Proxy API. We are
currently experimenting with alternative enforcement mech-
anisms based on the combination of proxies and code instru-
mentation [4] in order to improve the transparency and as
well tamper-proofness of the security policies.

5.3 Tamper-proofness

Tamper-proofness is achieved by making security policies
secured so that they are not vulnerable to attacks. This is
quite challenging in JavaScript and specially, when employ-
ing JavaScript proxies as the basis of the enforcement mech-
anism, which cannot intercept operations with primitive val-
ues. Primitive operations (e.g addition, multiplication, etc.)
and comparisons in JavaScript use implicit type conversions
which can be exploited to bypass the security mechanism. In
the remainder of this section we discuss three attacks which
can compromise the tamper-proofness of GUARDIA.

Redefinition of toString and valueOf functions. Listing
shows a code snippet on how an attacker could pro-
vide an object that at policy evaluation that redefines the
toString function to bypass a whitelist policy which
restricts access to ’bad’ URLs. To avoid this problem we
adopt the same approach of Phung et al. [20] by con-
verting all policy parameters to primitive values and only
using the converted values in target invocations. A mech-
anism to protect built-in objects in order to protect against
undesired behavior and state is work in progress.
var liarObj = {

value : ’‘good’,

toString function (){
var result = this.url
this.value = “bad’
return result;

}

}
console.log(liarObj.toString ()) //good
console.log(liarObj.toString ()) //bad

Listing 17. Example of ToString redefinition

Function aliasing. Our language relies on the names of
functions and properties to validate their invocation. Re-
lying on names to ensure security is an easy way of re-
stricting access to certain functionalities or data. How-
ever, in JavaScript it is easy to create function aliases
because functions are objects allocated on the heap. For
example, window.open function can be aliased with
myFun by assignment: myFun = window.open. An at-
tack can used the aliased function to circumvent security
policy enforcement. This potential risk is discussed by
Phung[20] and Meyerovich [15].

To prevent such risks associated with aliasing, we rely
on the fact that the deployment of security policies must
be realized before any other code that can create aliases
of target objects is executed. As such, all aliases are
created to the security policy and the target object is
never exposed to client code. Alternative ways to prevent
function aliasing is a point for future work.

Prototype poisoning. An attacker could take advantage of
the Javascript’s prototype inheritance chain to compro-
mise GUARDIA tamper-proofness. Since every JavaScript
object is created in an extensible and configurable state,

properties can be freely added and modified at any point
of the object’s lifetime. An attacker can at any time
change the prototype of an object and use the inheri-
tance chain to then bypass a security policy. As described
in in [14] there are different attacks related to prototype
poisoning: built-in subversion, global setter subversion,
and policy object subversion.

GUARDIA cannot currently deal with this kind of attacks.
In future work, we aim to explore ECMAScript 5 new
primitives that allow to strengthen and protect objects
from unintended changes [17, 26]. An object can be-
come non-extensible so that it is not possible add new
properties to the object, and non-configurable so that any
attempt to change non-configurable properties fails. We
can employ these two primitives for preventing changes
on the target object which would conflict with the prop-
erty expressed in a security policy installed on them.
Note, however, this implies trading transparency (since
the target object will not behave as if there was no se-
curity policy installed on it) in favor of tamper-proofness
for dealing with prototype poisoning attacks.

6. Conclusion

We presented an approach to declaratively specify security
policies for web applications. We introduced GUARDIA, a
DSL for expressing composable security policies that com-
bines the flexibility of imperative specification languages
with the ease of development provided by more declarative
solutions. Security policies in our approach are enforced by
wrapping target objects with proxies that intercept security-
relevant invocations. To prevent developers from making
mistakes in the enforcement of the policies, GUARDIA is ag-
nostic of the underlying enforcement mechanism. To date we
are not aware of the existence of a similar approach in the
context of web applications. To evaluate our approach, we
implemented 13 security policies found in related work, and
found that GUARDIA is capable of expressing all of them.

Acknowledgments

This research is funded by the Secloud Secure-IT Strategic
Platform project of the Innoviris.brussels research agency.

References

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens. Jsand: Complete client-side sand-
boxing of third-party javascript without browser modifica-
tions. In Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, ACSAC 12, pages 1-10, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1312-4.
doi: 10.1145/2420950.2420952. URL http://doi.acm.org/
10.1145/2420950.2420952.

[2] T. H. Austin, T. Disney, C. Flanagan, T. H. Austin, T. Dis-
ney, and C. Flanagan. Virtual values for language extension,
volume 46. ACM, Oct. 2011.

http://doi.acm.org/10.1145/2420950.2420952
http://doi.acm.org/10.1145/2420950.2420952

[3] N. Bielova. Survey on JavaScript security policies and their
enforcement mechanisms in a web browser. The Journal
of Logic and Algebraic Programming, 82(8):243-262, Nov.
2013.

[4] L. Christophe, E. G. Boix, W. De Meuter, and C. De Roover.
Linvail - A General-Purpose Platform for Shadow Execution
of JavaScript. SANER, pages 260-270, 2016.

[5] S. Drossopoulou, J. Noble, and M. S. Miller. Swapsies on
the internet: First steps towards reasoning about risk and trust
in an open world. In Proceedings of the 10th ACM Work-
shop on Programming Languages and Analysis for Security,
PLAS’15, pages 2-15, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3661-1. doi: 10.1145/2786558.2786564.
URL |http://doi.acm.org/10.1145/2786558.2786564.

[6] O. Hallaraker and G. Vigna. Detecting malicious JavaScript
code in Mozilla. IEEE, 2005.

[7] P. Heidegger, A. Bieniusa, and P. Thiemann. Access permis-
sion contracts for scripting languages. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 12, pages 111-122,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3.
doi: 10.1145/2103656.2103671. URL |http://doi.acm.org/
10.1145/2103656.2103671.

[8] P. Hudak. Building domain-specific embedded languages.
ACM Computing Surveys (CSUR), 28(4es):196—es, Dec.
1996.

[9] X. Jin, T. Luo, D. G. Tsui, and W. Du. Code injection attacks
on html5-based mobile apps. CoRR, abs/1410.7756, 2014.
URL http://arxiv.org/abs/1410.7756.

[10] M. Keil and P. Thiemann. Efficient dynamic access analysis
using javascript proxies. In Proceedings of the 9th Sympo-
sium on Dynamic Languages, DLS °13, pages 49-60, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2433-5.
doi: 10.1145/2508168.2508176. URL |http://doi.acm.org/
10.1145/2508168.2508176.

[11] G. Kiczales. Aspect-oriented programming. In 27th Inter-
national Conference on Software Engineering, 2005. ICSE
2005., pages 730-730. IEEe.

[12] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and 1. Serikov.
JavaScript Instrumentation in Practice. In Programming Lan-
guages and Systems, pages 326-341. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008.

[13] S. Lekies, B. Stock, M. Wentzel, and M. Johns. The unex-
pected dangers of dynamic javascript. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 723-735, Wash-
ington, D.C., Aug. 2015. USENIX Association. ISBN 978-
1-931971-232. URL https://www.usenix.org/conference/
usenixsecurity15 /technical-sessions/presentation /lekies.

[14] J. Magazinius, P. H. Phung, and D. Sands. Safe Wrappers and
Sane Policies for Self Protecting JavaScript. In Informatics,
pages 239-255. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[15] L. A. Meyerovich and B. Livshits. ConScript: Specifying and
Enforcing Fine-Grained Security Policies for JavaScript in the
Browser. In 2010 IEEE Symposium on Security and Privacy,
pages 481-496. IEEE, 2010.

[16] M. S. Miller and T. Van Cutsem. Proxies: design principles for
robust object-oriented intercession APls, volume 45 of design
principles for robust object-oriented intercession APls. ACM,
Dec. 2010.

[17] M. D. Network. MDN object, 2016. URL |https:
//developer.mozilla.org/en-US /docs/Web/JavaScript/
Reference/Global_Objects/Object.

[18] G. K. Pannu. A Survey on Web Application Attacks. IJCSIT)
International Journal of Computer Science and . .., 2014.

[19] P. H. Phung and L. Desmet. A two-tier sandbox architec-
ture for untrusted javascript. In Proceedings of the Work-
shop on JavaScript Tools, JSTools ’12, pages 1-10, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1274-5.
doi: 10.1145/2307720.2307721. URL |http://doi.acm.org/
10.1145/2307720.2307721.

[20] P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-
protecting javascript. In Proceedings of the 4th Interna-
tional Symposium on Information, Computer, and Commu-
nications Security, ASIACCS ’09, pages 47-60, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-394-5. doi:
10.1145/1533057.1533067. URL http://doi.acm.org/10.
1145/1533057.1533067.

[21] G. Richards, C. Hammer, F. Zappa Nardelli, S. Jagannathan,
and J. Vitek. Flexible access control for javascript. SIG-
PLAN Not., 48(10):305-322, Oct. 2013. ISSN 0362-1340.
doi: 10.1145/2544173.2509542. URL http://doi.acm.org/
10.1145/2544173.2509542.

[22] H. Saiedian and D. Broyle. Security vulnerabilities in the
same-origin policy: Implications and alternatives. Computer,
2011.

[23] N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:
Composable Units of Behaviour. In ECOOP 2003 — Object-
Oriented Programming, pages 248-274. Springer Berlin Hei-
delberg, Berlin, Heidelberg, July 2003.

[24] F. B. Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security (TISSEC), 3(1):
30-50, Feb. 2000.

[25] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ. In the 2009 ACM SIGPLAN conference, pages
87-97, New York, New York, USA, 2009. ACM Press.

[26] T. Van Cutsem and M. S. Miller. Trustworthy Proxies. In
ECOOP 2013 — Object-Oriented Programming, pages 154—
178. Springer Berlin Heidelberg, Berlin, Heidelberg, July
2013.

[27] A. Wirfs-Brock. Ecmascript 2015 language specification,
2015.

[28] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. ACM SIGPLAN Notices,
42(1):237-249, Jan. 2007.

http://doi.acm.org/10.1145/2786558.2786564
http://doi.acm.org/10.1145/2103656.2103671
http://doi.acm.org/10.1145/2103656.2103671
http://arxiv.org/abs/1410.7756
http://doi.acm.org/10.1145/2508168.2508176
http://doi.acm.org/10.1145/2508168.2508176
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
http://doi.acm.org/10.1145/2307720.2307721
http://doi.acm.org/10.1145/2307720.2307721
http://doi.acm.org/10.1145/1533057.1533067
http://doi.acm.org/10.1145/1533057.1533067
http://doi.acm.org/10.1145/2544173.2509542
http://doi.acm.org/10.1145/2544173.2509542

	Introduction
	Security policies for client side web applications
	Expressing security policies
	Enforcing security policies
	Problem Statement

	 Guardia: An internal DSL for Declaratively Specifying Security Policies
	Implementation
	Security Policy Deployment
	Basic Security Policies

	Guardia in Action
	Evaluation and Discussion
	DSL vs. GPL
	Transparency
	Tamper-proofness

	Conclusion

