
A Declarative Foundation for
Querying the History of Software

Projects

Reinout Stevens

May 2017

Abstract

The use of a Version Control System (VCS) is an industry best prac-
tice for developing software projects. VCS’s enable developers to share
and integrate changes made to the source code. As a side-effect, a VCS
stores the entire development history of the versioned software project.
This history is of interest to several stakeholders. Developers can use it
to find answers to questions that might arise during the development.
Examples of such questions are “Who introduced this piece of code?”
or “Who has contributed to this failing class?”. Researchers in the do-
main of mining software repositories can leverage the same history to
analyze, spot trends, and retrieve actionable information about the de-
velopment of software projects.

Although very insightful, software histories are too large to inspect
manually. Support from a general-purpose history querying tool that sat-
isfies the needs of the different stakeholders is in order. Such a tool au-
tomatically identifies the elements from a project’s history that exhibit
the characteristics specified in a given history query. We identify several
criteria for such a general-purpose history querying tool. Among oth-
ers, history querying tools should support the following characteristics
in their queries:

Version Characteristics concern the different elements of a particular
version of a project. Examples of these characteristics are the au-
thor, commit message, or the state of the source code of a particular
version.

Temporal Characteristics concern the temporal quantification over the
versions of the software project. Examples include quantifiers such
as “for every version” or “after the first version that . . . ”.

Change Characteristics concern the fine-grained edits made between
two versions of the source code. Examples of these are the source
code elements that have been inserted, moved, updated or removed.

Evolution Characteristics concern the effect of applying a (sub)sequence
of changes to source code. Examples are all change sequences that
have the same effect as a known refactoring or earlier transforma-
tion of the code.

We propose a declarative foundation to history querying that supports
these different characteristics. Characteristics are expressed in logic

queries, while a logic proof procedure identifies history elements ex-
hibiting the specified characteristics. We create and design the general-
purpose history querying tool QwalKeko that supports the character-
istics in a uniform declarative language. We validate our work through
different means. We validate the support for version and temporal char-
acteristics through several usage scenarios stemming from the afore-
mentioned stakeholders. We validate the support for change character-
istics by conducting a large-scale empirical study in which we inves-
tigate the co-evolution of functional tests with the system under test.
We conduct this study twice; once using our approach to history query-
ing and once using a general-purpose programming language. This en-
ables us to compare both implementations on the different concerns of
the study. Finally, we evaluate the support for evolution characteristics
by identifying instances of refactorings in different change sequences
stemming from open-source projects, and ensuring that the identified
change sequences are correct, minimal and executable.

Samenvatting

Het gebruik van versiebeheersystemen is standaard om softwarepro-
jecten te ontwikkelen en onderhouden. Ze laten ontwikkelaars toe om
gemaakte wijzigingen aan de broncode te verdelen onder ontwikke-
laars. Als bijproduct bevat een versiebeheersysteem ook de geschiede-
nis van de broncode van het softwareproject. Deze geschiedenis is in-
teressant voor verscheidene belanghebbenden. Softwareontwikkelaars
kunnen deze geschiedenis gebruiken om antwoord te vinden op vra-
gen zoals “Wie heeft deze code geïntroduceerd?” of “Wie heeft er bijge-
dragen aan deze falende klasse?”. Onderzoekers actief in het domein
van mining software repositories gebruiken deze geschiedenis om het
ontwikkelingsproces te analyseren, om trends te vinden en toepasbaar
advies te verkrijgen.

Zulke geschiedenissen zijn te groot en complex om efficiënt manueel
te doorzoeken. Er is nood aan een algemene history querying tool die
voldoet aan de verschillende noden van de belanghebbenden. Zulk een
tool identificeert automatisch de elementen in de geschiedenis van een
project die voldoen aan karakteristieken die gespecificeerd zijn in een
history query. We identificeren verscheidene criteria voor zulk een al-
gemene history querying tool. History querying tools moeten onder
andere de volgende karakteristieken in hun queries ondersteunen:

Versiekarakteristieken betreffen de verschillende elementen van een
versie. Voorbeelden van zulke elementen zijn de auteur, commit
message of de staat van de broncode van een bepaalde versie.

Temporele karakteristieken betreffen de temporele quantificatie van
elementen van verschillende versies. Voorbeelden zijn “voor elke
versie” of “na de eerste versie die . . . ”.

Wijzigingskarakteristieken betreffen de wijzigingen tussen twee ver-
sies van de broncode. Voorbeelden zijn de toevoeging, verplaat-
sing, aanpassing of verwijdering van broncode-elementen.

Evolutiekarakteristieken betreffen het effect van de toepassing van een
sequentie van wijzigen op de broncode. Voorbeelden zijn de verza-
meling van change sequenties die hetzelfde effect als een gekende
refactoring of eerder geziene transformatie van de broncode heb-
ben.

We stellen een declaratieve fundering voor om de geschiedenis te bevra-
gen die de verschillende karakteristieken ondersteunt. Karakteristieken

worden uitgedrukt in logische queries, terwijl een logic proof procedure
de geschiedenis-elementen identificeert die de gespecificeerde karakte-
ristieken omvatten. We ontwikkelen en ontwerpen de algemene history
querying tool QwalKeko die de verschillende karakteristieken onder-
steunt in een uniforme taal. We valideren de ondersteuning van versie-
en temporele karakteristieken door middel van verschillende gebruiks-
scenarios. We valideren de ondersteuning van wijzigingskarakteristie-
ken door het uitvoeren van een empirische studie die de co-evolutie
van functionele testen met het geteste systeem onderzoekt. We imple-
menteren deze studie tweemaal; eenmaal in QwalKeko en eenmaal
in een algemene programmeertaal. We evalueren beide implementaties
door de verschillende onderdelen van de studie te vergelijken met el-
kaar. Tot slot valideren we de ondersteuning van evolutiekarakteristie-
ken door verschillende instanties van refactorings te detecteren in ver-
scheidene change sequenties, verkregen van open-source projecten, en
te verzekeren dat de verkregen change sequenties correct, minimaal en
uitvoerbaar zijn.

Acknowledgements

I want to thank the members of my jury (Julia Lawall, Xavier Blanc,
Ann Dooms, Jan Hidders, Peter Vranckx and Theo D’Hondt) for their
insightful comments and feedback.

I want to thank Coen for the support, guidance and feedback during
the last five years (six if you count my master’s thesis). I apologize for
all of my poorly written drafts you had to crawl through, correct (I
should have invested in red marker stocks), but that you turned into
Shakespearean masterpieces.

I want to thank all my current and former colleagues. Laure and Eline,
for being good friends. Simon, for having the nicest hairdo (next to
Coen). Carlos, for being the flyest of dudes (and helping me with
Eclipse). Florian, for making me look like a better person. Mattias
and Jens, for being part of the holy trinity known as the IWT triangle,
back when research was still hard and challenging. Everybody who dis-
tracted me: Dries, Kevin, Nathalie and Laure for the daily coffee, Tim,
Kevin, Laurent and Joeri for the occasional swim and Ward for running
with me.

I want to thank my friends for providing the necessary venting oppor-
tunities. Sean and Johan for our bi-weekly rhum&coke, retro-gaming
solving-the-world’s-problems evenings accompanied by top-notch mu-
sic. Not many people can say that they have been friends since crèche
and kindergarten. Karl and Karel, for the irregularly planned games
of “kleurenwies” and king. Annelies for losing these games with the
consistency that would make a Swiss clockmaker proud.

I want to thank my family of engineers that never did a PhD. Finally I
have two extra characters in front of my name that (hopefully) compen-
sate for my engineering degree from “den Aldi”.

Even though you asked me not to put you in the acknowledgments, I
want to thank Frederiekje for being an awesome girlfriend. I am sorry
for all the deadlines, the lack of holidays, being grumpy from time to
time, etc.

Finally, I want to thank Gustaaf and Nori for being little balls of fluff.
Just stop eating my plants.

C O N T E N T S

1 Introduction 1
1.1 Context: Potential Uses of History Information 1

1.1.1 Stakeholders of History Information 1

1.1.2 Tool Support for Querying Program and History Information 3

1.2 Problem Statement . 4

1.3 Contributions . 6

1.4 Outline of the Dissertation . 7

1.5 Publications Supporting this Dissertation 8

2 Background on History Querying 11
2.1 Version Control Systems . 12

2.2 Querying Version Control Systems for History Characteristics 12

2.2.1 Examples of History Querying 13

2.2.2 Types of History Characteristics 15

Revision Characteristics . 16

Temporal Characteristics . 17

Change Characteristics . 17

Evolution Characteristics . 19

2.3 Applications of History Querying . 21

2.3.1 Program Comprehension . 21

2.3.2 Empirical Studies . 25

2.4 Criteria for General-Purpose History Querying Support 29

2.5 Conclusion . 29

3 State of the Art in History and Software Querying 31
3.1 Querying a Single Revision . 31

3.1.1 Text Querying . 32

3.1.2 Logic Program Querying . 32

3.1.3 Conclusion . 35

3.2 Querying Multiple Revisions . 35

3.2.1 Conclusion . 42

3.3 Querying Source Code Changes . 42

3.3.1 Conclusion . 44

vii

3.4 Conclusion . 44

4 Overview of the Approach 45
4.1 An Introduction to Declarative Programming in Clojure 46

4.1.1 Negation As Failure . 49

4.2 Querying Graphs with Qwal . 50

4.3 Querying Code with Ekeko . 53

4.4 Querying Changes with ChangeNodes 54

4.4.1 Supporting Evolution Characteristics 56

4.5 Applicability of the Approach . 57

4.6 Conclusion . 58

5 Supporting Temporal and Revision Characteristics 61
5.1 The Need for Dedicated Support for Specifying Temporal Charac-

teristics . 62

5.1.1 Representing a Version Control System as a Revision Graph . 63

5.2 Supporting Temporal Characteristics through Qwal 63

5.2.1 Example Queries . 65

5.2.2 Supporting User-defined Temporal Operators 69

5.2.3 Qwal Compared to Graph Query Languages 71

5.2.4 Conclusion . 73

5.3 The Need for Dedicated Support for Specifying Revision Character-
istics . 73

5.4 Supporting Revision Characteristics through Ekeko 75

5.4.1 Integrating a PQL into a History Query Language 77

5.5 Evaluation: Answering History Questions using QwalKeko 79

5.5.1 History Queries for Answering Questions Developers Ask . . 79

5.5.2 History Queries for Verifying a Development Process 83

5.5.3 History Queries for Mining Software Repositories 84

5.6 Discussion . 85

5.7 Conclusion . 86

6 Supporting Change Characteristics 89
6.1 The Need for Dedicated Support for Specifying Change Characteristics 90

6.2 Retrieving Fine-grained AST Changes 90

6.2.1 The Inner Workings of a Change Distilling Algorithm 92

6.2.2 Detailed Change Definitions 93

6.3 Working with Source Code Changes 95

6.4 Supporting Change Characteristics through ChangeNodes 96

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes 98

6.5.1 Context of the Study . 100

6.5.2 Identifying Selenium Files using QwalKeko 102

6.5.3 Identifying Selenium Files using Clojure 103

6.5.4 Classification of Changes using QwalKeko 105

6.5.5 Classification of Changes using Clojure 107

6.5.6 Results of our Evaluation . 109

6.5.7 Visualizing Commit Histories 113

6.5.8 Results of the Change Classification 113

6.6 Discussion . 117

6.7 Conclusion . 118

7 Supporting Evolution Characteristics 121
7.1 The Need for a Dedicated Support for Specifying Evolution Charac-

teristics . 122

7.2 Change Characteristics Compared to Evolution Characteristics . . . 124

7.3 Supporting Evolution Characteristics 125

7.3.1 Motivating Example Revisited: Querying the ESG 127

7.3.2 Example Applications and the Corresponding Queries 128

Introduction of a Method . 128

Code Clone Elimination . 129

7.4 Conceptual Implementation . 131

7.4.1 Construction of a Change Dependency Graph 133

7.4.2 On-demand Construction of the Evolution State Graph 135

7.4.3 Minimizing Solutions to an Evolution Query 135

7.5 Evaluation: Extracting Executable Transformations from Distilled
Code Changes . 137

7.5.1 Data Set of Commits Containing Refactorings 138

7.5.2 Queries for Changes Implementing Refactorings 139

7.5.3 Query Results . 140

7.6 Discussion . 153

7.7 Conclusion . 154

8 Conclusion and Future Work 155
8.1 Summary of the Dissertation . 155

8.2 Criteria for General-Purpose History Querying Support 156

8.3 Limitations of the Approach . 159

8.3.1 Performance . 159

8.3.2 Detecting Patterns in Intermediate Evolution States 160

8.4 Future Research . 161

8.4.1 Other Sources of Information 161

8.4.2 Coarse-Grained Source Code Changes 161

8.4.3 Semantic Dependencies . 161

8.4.4 Empirical Studies . 162

8.5 Concluding Remarks . 162

References 165

1
I N T R O D U C T I O N

Contemporary software projects are not developed by an individual developer.
Creating and maintaining a software project often requires many developers work-
ing in parallel on different tasks. One developer may be implementing new fea-
tures, a different developer may be resolving bugs while still another developer
may be implementing an experimental algorithm to improve the performance of
the project. All these developers need to share their modifications among each
other.

A project’s source code is stored in a centralized, shared repository. A Version
Control System (VCS) supports the management of such modifications. Develop-
ers have a copy of the project’s source code on their computer. Developers can
commit their local modifications, hereby recording the changes to their local copy
of the repository — the structure holding the data about the versioned files —, and
push them to a centralized copy on a server. Applying these changes to the source
code results in a new revision of the source code. As a side effect, a VCS contains
the history of the source code of the versioned software project.

1.1 Context: Potential Uses of History Information

The history information stored in a VCS can be used by several stakeholders. This
section introduces these stakeholders and existing tool-supported approaches to
querying this information.

1.1.1 Stakeholders of History Information
We introduce two stakeholders of history information; more specifically software
developers and researchers working in the field of Mining Software Repositories.

1

1 Introduction

Software developers Software developers need answers to a wide series of ques-
tions during the development of a software project [36, 51, 68]. Some of these
questions can be answered using the history the project. Examples of questions
from these studies are:

1. Who is the expert of this class?

2. Who has made changes to my classes?

3. What is the evolution of the code?

4. Who made a particular change and why?

5. Who is working on the same classes as I am?

6. What has changed between two builds and who has made these changes?

For example, the question “Who has made changes to my classes?” can be an-
swered by retrieving the revisions in which the developer introduced one or more
classes, and subsequently determining whether another developer modified any
of those classes in a later revision.

Researchers Researchers working in the field of Mining Software Repositories
(MSR) [7] aim to provide tangible recommendations about the development pro-
cess of software by spotting trends and correlations in the evolution of the source
code of software systems. The history information residing in version control sys-
tems is invaluable to their research. For example, Chen et. al [12] studied how
Object-Relational Mapping (ORM) Code is maintained in Java systems, found
that compatibility, performance, and security problems are more common to re-
sult in ORM code changes, and recommend better tooling support for such ORM
systems. Christophe et al. [13] studied which parts of automated functional tests
for web applications were most prone to changes over time, and recommend using
the PageObject design pattern in such tests.

Both groups of stakeholders can leverage the information stored in Version Con-
trol Systems. This information can be extensive1. It is not feasible to manually
inspect a VCS to retrieve the elements of interest (e. g., classes, methods, authors,
code changes, etc.) and their history and evolution. The querying facilities of
most Version Control Systems only support querying the history of the versioned
source code. For instance, they support querying a textual representation of the

1At the time of writing, the project with the largest number of commits stored in
GHTorrent [41] contains 1043116 commits, while the median number of commits of the
top 50 largest projects is 151489.

2

1.1 Context: Potential Uses of History Information

source code using regular expressions. Regular expressions are useful for devel-
opers searching for elements featuring a particular character string. A regular ex-
pression cannot account for variations of code constructs (e. g., whitespace, format-
ting, or equivalent for/while loops, etc.). These querying facilities are insufficient
for the aforementioned stakeholders. In general, they cannot be used to answer
general-purpose program or history queries.

1.1.2 Tool Support for Querying Program and History
Information

Program querying tools enable users to query a single revision of a software
project. History querying tools enable users to query multiple revisions of a ver-
sioned software project. In what follows we introduce both.

Program Querying Tools Finding source code elements using the tools provided
by an integrated development environment (IDE) would be cumbersome. They
provide support for some commonly required information (e. g., the callers of a
method, the type hierarchy of a class), but they do not provide a more general-
purpose means to launch queries against source code. This problem is addressed
by a program querying tool. Program querying tools (e. g., [15, 20, 43, 55]) feature
a dedicated language for users to specify the characteristics of the elements of a
program’s source code they are interested in, and return the elements that adhere
to this specification. For example, a developer could specify the characteristics of
methods that may return a null object, or that access a certain variable (directly or
indirectly) and have these methods returned by the tool.

The following example query, expressed using Ekeko [18, 19], returns all return
statements that return null.

1 (ekeko* [?return ?value]
2 (ast :ReturnStatement ?return)
3 (has :expression ?return ?value)
4 (ast :NullLiteral ?value))

Solutions to the query consist of pairs of a return statement and the null value it
returns; the bindings for variables ?return and ?value respectively. In each solution,
variable ?return is bound to a return statement that returns the value ?value, which
must be a null literal.

However, program querying tools are still limited to querying a single revision
of a software project. They cannot be used to query the history of a software project:
users needs to find an ad-hoc solution to retrieve and combine results stemming
from different revisions. They do form a good starting point as a foundation for
history querying; users need only specify the characteristics of the sought-after
code elements, and are not encumbered with implementing an operational search
through the code.

3

1 Introduction

History Querying Tools A history querying tool (e. g., [25, 46, 58, 75]) extends
the notion of a Program Querying Tool with support for history information. To
this end, it reifies the information stored by a VCS so that this information can
be queried. Queries no longer only concern code elements but also the versions of
these elements. For example, the following QwalKeko [71–73] (the history query-
ing tool presented in this dissertation) query returns all classes named Evaluator

and the revision in which such a class has been introduced by a developer:

1 (qwalkeko* [?class ?end]
2 (qwal vcs start ?end []
3 ;;skip all versions in which the class is absent
4 (q=>*
5 (in-source-code [version]
6 (class-named|absent "Evaluator")))
7 ;;class is present
8 (in-source-code [version]
9 (class-named ?class "Evaluator"))))

The query describes a path of successive revisions in the history of the versioned
software project represented by the variable vcs, starting in revision start and
ending in revision ?end. Line 4 skips an arbitrary number of revisions in which
the Evaluator class is absent until a revision is encountered in which the Evaluator

class is present. This class is bound to ?class and, together with the revision ?end,
returned as a solution to the user.

1.2 Problem Statement

Querying a single revision of a software project has long since been supported
by program querying tools. Querying multiple revisions of a software project is
only supported to a limited extent by existing history querying tools. Most existing
history querying tools only support querying a coarse-grained representation of
the history of the queried software project. They do not support querying the
history of the complete source code of a software project (i. e., up to the level of
individual abstract syntax tree nodes), they do not feature a uniform language
that supports query reuse, abstraction and composition, and they do not support
querying the edit operations that have been made between two revisions.

We examine the source code information required by our stakeholders for per-
forming existing Mining Software Repositories studies and for answering develop-
ers’ questions regarding the evolution of a software project. From this examination
we discern four kinds of characteristics that must be supported by a general-purpose
history querying tool. For instance, in a Mining Software Repositories study Ray
et al. [64] define, identify and study changes to the source code that are unique
in the history of a software project. Thus, performing this study using a history
querying tool requires support for specifying the characteristics of changes made
to the abstract syntax tree between two revisions (i. e., change characteristics). In a

4

1.2 Problem Statement

study regarding the questions of software developers Latoza et al. [51] conducted
a survey about hard-to-answer questions that developers ask about their code. The
survey includes questions regarding code changes (e. g., debugging, implementing
features, code history), code elements (e. g., intent of code, method properties, per-
formance) and their element relationships (e. g., contracts, control flow). Answer-
ing these questions using a history querying tool requires, at a minimum, support
to specify the characteristics of code elements (i. e., revision characteristics) and
their temporal relationships (i. e., temporal characteristics).

The four discerned characteristics are the following:

Revision Characteristics Revision characteristics concern elements from a single
revision. Examples of these elements are the author of a revision, a class or
an if-statement. Examples of these characteristics are the name of the author,
the parent class of a class or the expression of an if-statements. These char-
acteristics can be used in queries to express conditions such as “a revision
introduced by the author named Bob”, “a class inheriting from Person” or “an
if-statement that performs a null check”.

Temporal Characteristics Temporal characteristics concern the temporal quantifi-
cation between elements from different revisions. Examples of these charac-
teristics are “after a particular revision”, “before a revision in which. . . ”, “in
every revision”, “until a revision in which. . . ”. These characteristics can be
used in queries to express conditions such as “in what pair of successive re-
visions is the class Person present and then absent?” or “does every class have
a corresponding unit test in every version?”.

Change Characteristics Change characteristics concern fine-grained changes that
have occurred between two revisions of a file. Examples of these changes are
the insertion or removal of an AST node. Examples of such characteristics are
the index at which an AST node has been inserted, the AST node that has
been removed from the code, an update to the modifier of a method. These
characteristics can be used in queries to express conditions such as “what
if-tests have been introduced?” or “what methods have been removed?”.

Evolution Characteristics Evolution characteristics concern code transformations
that are implemented by change sequences. Examples of such code transfor-
mations are refactorings or systematic edits. Examples of their characteristics
are the intermediate states of the source code as it undergoes the transfor-
mation. These characteristics can be used in queries to express conditions
such as “do these changes implement a Remove Unused Method refactor-
ing?”, or “what additional changes have been applied next to this code clone
removal?”.

5

1 Introduction

These characteristics need to be supported for a history querying tool to be
general-purpose. Existing history querying tools do not support all these character-
istics. Without support for revision characteristics, sought-after revision elements
cannot be specified by a user and need to be found manually by inspecting the
revision. Without support for temporal characteristics, a user needs to manually
configure a program querying tool to retrieve revision elements in the correct revi-
sion. Without support for change characteristics, a user cannot specify the changes
to be found among those that occurred between two revisions of the code. They
then need to be found manually by inspecting the change sequences or edit scripts.
Without support for evolution characteristics, users need to account for the differ-
ent possible change sequences (i. e., the different possible change operations and
their permutations) that implement the same source code transformation to en-
sure detecting all possible instances of that source code transformation. Evolution
characteristics are difficult to support because a source code transformation can
be implemented by different change sequences that, when applied, have the same
end result.

Both groups of stakeholders require support in the form of a tool that enables
specifying the characteristics of sought-after history elements, and that subse-
quently returns the corresponding elements adhering to the given specification.
This tool needs to support these characteristics in a uniform language to lower the
learning curve for the stakeholders.

1.3 Contributions

This dissertation makes the following contributions:

1. We identify and motivate the different criteria for a general-purpose history
querying tool that serves the needs of stakeholders in information about the
history of a software project.

2. We design and implement a history querying tool called QwalKeko that
satisfies these criteria. It has a declarative foundation: characteristics are ex-
pressed in logic queries, while a logic proof procedure identifies history el-
ements exhibiting the specified characteristics. Unique to the approach is
the use of regular path expressions [17] for specifying paths through differ-
ent graph structures, and the use of logic conditions within such a regular
path expression specifying the characteristics nodes along this path must ex-
hibit. Temporal characteristics are specified using paths through a revision
graph. In this graph nodes correspond to revisions and edges connect succes-
sive revisions. Evolution characteristics are specified using paths through an
evolution state graph. In this graph a node corresponds to the intermediate
abstract syntax tree that can be constructed from applying a subsequence of

6

1.4 Outline of the Dissertation

changes, an edge corresponds to a single change, and two nodes are con-
nected via an edge when the application of that edge transforms its source’s
abstract syntax tree into its target’s syntax tree. This particular specification
enables our logic proof procedure to recognize instances of the same code
transformation in change sequences of which the order, number and opera-
tions of changes differ.

3. We validate that QwalKeko satisfies the different criteria for a general-
purpose history querying tool, and thus serves the needs of the history infor-
mation stakeholders, through example queries and empirical studies that are
representative for its intended use. For some studies, the results are scientific
contributions by themselves.

1.4 Outline of the Dissertation

Chapter 2 introduces and motivates the different criteria for a general-purpose
history querying tool by looking at the history information required by re-
cent studies in the domain of mining software repositories and the history
information required to answer developers’ questions regarding the history
of a software project.

Chapter 3 discusses the state of the art in querying software, its history and its
evolution. We motivate why existing approaches do not satisfy all the criteria
for a general-purpose history querying tool.

Chapter 4 provides a high-level overview of our approach to history querying.
It introduces the different components of QwalKeko, which are then dis-
cussed in detail in the subsequent chapters.

Chapter 5 introduces the declarative foundation of QwalKeko. It integrates the
graph querying language Qwal [72] with the logic program querying tool
Ekeko [19]. Ekeko supports querying Java projects in an Eclipse workspace.
Qwal supports querying paths through a graph-based representation of a
VCS using regular path expressions [17]. The combination of both supports
revision and temporal characteristics in history queries. We evaluate this
foundation by providing queries for several scenarios of the different stake-
holders. We have published about Qwal at several conferences [50, 72, 74].

Chapter 6 extends QwalKeko with support for change characteristics using Change-
Nodes. ChangeNodes implements a change distilling algorithm. Such an
algorithm takes as input two revisions of a source code file, and outputs
a sequence of changes that, when applied, transforms the first revision of
the file into the second revision. We extend QwalKeko with support for

7

1 Introduction

change characteristics by providing a declarative API on top of Change-
Nodes and its output. We evaluate this extension by performing a mining
software repositories study on the evolution of functional automated tests for
web applications. We have two implementations of this experiment; one us-
ing Clojure and one using QwalKeko. This enables us to compare both
implementations regarding the different concerns of the study. The results of
the Selenium study are published in a conference paper [13] and is accom-
panied by a tool demonstration paper [72].

Chapter 7 extends QwalKeko with support for evolution characteristics. The
chapter discusses the problems when specifying a sought-after source code
transformation in terms of change characteristics. The main problem is the
change equivalence problem, which stipulates that different change sequences
can implement the same conceptual transformation. To support evolution
characteristics, we transform the output of ChangeNodes into a graph
of all possible ASTs that can be constructed by applying the changes in a
change sequence. This enables specifying source code transformations as a
path through this graph of potential intermediate ASTs, and the conditions
ASTs along this path must adhere to. To ensure the uniformity of our history
querying language, these paths are, just like the paths through the revision
graph, specified using regular path expressions. QwalKeko returns a min-
imal, executable subsequence of changes that implement the desired source
code transformation. We evaluate this approach by identifying instances of
the same refactoring and the changes implementing this refactoring in sev-
eral commits to different open-source projects. This approach to supporting
evolution characteristics in a history querying tool is published in a confer-
ence paper [73].

1.5 Publications Supporting this Dissertation

Supporting Publications
1. R. Stevens, C. De Roover, C. Noguera, A. Kellens, and V. Jonckers. A logic

foundation for a general-purpose history querying tool. Elsevier Journal on
Science of Computer Programming, 2014.

This journal paper presents a prototype of our logic foundation to history
querying, supporting coarse-grained revision characteristics and temporal
characteristics. It supports Chapter 5.

2. L. Christophe, R. Stevens, C. De Roover and W. De Meuter. Prevalence and
maintenance of automated functional tests for web applications. In Proceed-

8

1.5 Publications Supporting this Dissertation

ings of the 30th International Conference on Software Maintenance and Evo-
lution (ICSME14), 2014.

This conference paper presents a mining software repositories study regard-
ing the evolution of automated functional unit tests performed using our
history querying tool. The study validates our support for change character-
istics in history querying. This paper supports Chapter 6.

3. R. Stevens, C. De Roover. Extracting Executable Transformations from Dis-
tilled Code Changes. In the Proceedings of the 24th International Conference
on Software Analysis, Evolution, and Reengineering (SANER17), 2017.

This conference paper presents our approach to supporting evolution charac-
teristics in history querying. It supports Chapter 7.

Related Publications
1. A. Kellens, C. De Roover, C. Noguera, R. Stevens, and V. Jonckers. Reason-

ing over the evolution of source code using quantified regular path expres-
sions. In Proceedings of the 18th Working Conference on Reverse Engineer-
ing (WCRE11), 2011.

2. R. Stevens, C. De Roover, C. Noguera, and V. Jonckers. A history querying
tool and its application to detect multi-version refactorings. In Proceedings of
the 17th European Conference on Software Maintenance and Reengineering
(CSMR13), 2013.

3. C. De Roover and R. Stevens. Building development tools interactively us-
ing the Ekeko meta-programming library. In Proceedings of the 18th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR14),
Tool Demo Track, 2014.

4. R. Stevens and C. De Roover. Querying the history of software projects using
QwalKeko. In Proceedings of the 30th International Conference on Soft-
ware Maintenance and Evolution (ICSME14), Tool Demo Track, 2014.

5. R. Stevens. A declarative foundation for comprehensive history querying. In
Proceedings of the 37th International Conference on Software Engineering,
Doctoral Symposium Track (ICSE15), 2015.

9

2
B A C K G R O U N D O N H I S T O RY Q U E RY I N G

The goal of this chapter is to discern the criteria of a general-purpose history
querying tool. First, Section 2.1 introduces version control systems, which contain
the history of a software project. Next, Section 2.2.1 discusses examples of exist-
ing history querying approaches. Section 2.2.2 discusses the different characteris-
tics that should be supported by a general-purpose history querying tool These
characteristics are revision, temporal, change and evolution characteristics. Section 2.3
introduces two application domains for history querying. The first application is
program comprehension. In this application the history of a software project is
leveraged to provide a better understanding of its current state. Existing research
on program comprehension has already identified the kind of questions develop-
ers ask during the development and maintenance of a software project [14, 36, 68].
A subset of those questions can only be answered using information about the his-
tory of the software system under development. The second application consists
of empirical studies, which can make use of the history of software projects to
confirm existing or identify new best practices in software engineering. Section 2.4
defines, based on the application domains, the different criteria a history querying
approach must adhere to for it to be general-purpose.

11

2 Background on History Querying

2.1 Version Control Systems

We begin this chapter with an introduction to version control systems, as they
are the source of historical information of our approach. Version Control Systems
(VCS) enable developers to work in parallel on a software project. A wide series
of VCS exist, each with their own specialized features. In this section we discuss
the elements shared by most of these VCS. Figure 2.1 depicts a meta-model of
the information stored by most VCS. This representation is based on the one used
by Evolizer [37] (cf. Section 3.2). Several commits are stored for a project. A
commit contains a set of changes a single author made to the project. These changes
can either be the addition, modification or removal of a file. Changes made to an
existing file are represented in terms of addition or removal of lines of text. A line is
represented by combining an addition and removal. In order to develop a software
system collaboratively, an initial commit is created. We call this the root revision
of the system. A developer working on the project can checkout a revision. As a
result, he gets a local copy of that revision on his working station. Every revision
is assigned a unique identifier so that developers can specify what revision they
want to checkout. He can modify the code and commit or push his modifications to
the VCS. To document the intent of the revision he may add a commit message to
the commit. Finally, other developers can retrieve his changes. In case two people
have modified the same file simultaneously a merge conflict may occur. In this case,
the developer has to manually inspect both revisions of the code and commit the
correct revision in which all changes have been integrated.

VCS enable developers to implement experimental features in a separate branch.
Branches enable developers to develop different variants of the system in parallel.
Two branches can be merged, so that all the modifications made in both branches
are present. In case both branches modified the same files a merge conflict may
occur as well.

2.2 Querying Version Control Systems for History
Characteristics

In this section we define the term “history query” and provide several example
queries supported by existing approaches. A history query describes elements
from the history and evolution of a software project. These elements, and thus
the answer to a history query, are either VCS meta-elements (i. e., the author, the
commit message, the timestamp of a revision), revision elements (i. e., a class, a
method or any arbitrary Abstract Syntax Tree (AST) node of a revision) or change
elements (i. e., the insertion or removal of an AST node). A history query describes
the characteristics these returned elements must exhibit in a dedicated language.

12

2.2 Querying Version Control Systems for History Characteristics

successors()
predecessors()
checkout()

Revision
commit-id
commit-message
timestamp

linesAdded
linesRemoved

ModificationReport

name
Branch

name
email

Author

root()

name
url

Project

successors

predecessors

*1
*

*

*

1

*

1

1

*

Figure 2.1: UML diagram depicting a meta-model of a Version Control System, based on
the meta-model of Evolizer [37].

The identification of these elements is done by the history query tool, which ac-
cepts history queries from the user. This dissertation focuses on tool support for
querying the history of the source code of software projects. Other sources of infor-
mation, such as bug trackers, mailing lists, etc. are not considered.

2.2.1 Examples of History Querying
Figure 2.2 depicts an example query expressed in the Boa language [25]. Boa en-
ables users to query the history of multiple software projects using the Visitor
pattern. Boa runs this query in parallel across multiple projects using MapRe-
duce [21]. The depicted example computes the number of authors the queried
software projects have. For each project, a task is created with its own variable
space. The first line introduces a task-local variable p that is bound to the corre-
sponding project of that task. The second line defines an output variable counts.
Such a variable is shared across the different tasks, and is the result of the query.
Each project is assigned a unique index, and this array stores the number of au-
thors for a project at this index. Lines 5–12 implement a Visitor that visits every
revision of the queried software projects. This Visitor checks whether the author
of the visited revision is a new author for that project, and if so increments the
number of authors for that project. Boa is an example of an imperative history
query language.

13

2 Background on History Querying

1 p: Project = input;
2 counts: output sum[string] of int;
3

4 committers: map[string] of bool;
5

6 visit(p, visitor {
7 before node: Revision ->
8 if (!haskey(committers, node.committer.username)) {
9 committers[node.committer.username] = true;

10 counts[p.id] << 1;
11 }
12 })

Figure 2.2: History query expressed in Boa for computing the number of authors that
worked on each software project. This query is taken from the Boa example page.

Figure 2.3 depicts a SCQL [46] query that identifies whether an author a has
only modified files created by author b. To this end, it uses a declarative specifi-
cation language that returns the different solutions for every logic variable. The
language features the existential quantifier E and the universal quantifier A as well
as a large library of predicates that can be used in a query. The first two lines spec-
ify that two authors a and b must exist. Line 3 specifies that these authors must
be different. Line 4–7 specify that for all revisions r created by author a, all files
f of these revisions must be created by author b in a revision r2 that was created
before revision r.

1 E(a, Author) {
2 E(b, Author) {
3 a!=b &&
4 A(r, a.revisions) {
5 A(f, r.file) {
6 Ebefore(r2, f.revisions, r) {
7 isAuthorOf(b, r2)
8 }
9 }

10 }
11 }
12 }

Figure 2.3: History query expressed in SCQL that computes the different authors A that
only modify files introduced by author B. This query is taken from [46].

Figure 2.4 depicts a query written in QwalKeko [72], our declarative history
querying language. A QwalKeko query describes a sequence of commits, and
the properties of elements that reside in these commits. The query retrieves all
methods that have ever been present in any revision of the software project. So-
lutions to the query consist of all bindings for the logic ?method and ?version that
make the query’s conditions succeed. Line 2 launches a history query over the
representation of a software project, bound to project, starting in version root and
ending in ?version. Line 3 skips an arbitrary number of revisions without speci-

14

2.2 Querying Version Control Systems for History Characteristics

fying any revision characteristics. Lines 4–5 state that ?method must unify with a
method declaration present in the current revision curr of the software.

1 (qwalkeko* [?method ?version]
2 (qwal project root ?version []
3 (q=>*)
4 (in-source-code [version]
5 (ast :MethodDeclaration ?method))))

Figure 2.4: History query expressed in QwalKeko that retrieves all methods that have
ever been present in any version of a project.

2.2.2 Types of History Characteristics
A general-purpose history querying tool should facilitate its users in expressing a
wide variety of characteristics of the sought-after solution. We first introduce these
characteristics, and then discuss them in detail. We discern the following charac-
teristics, based on the applications of history querying discussed in Section 2.3.

Revision Characteristics Revision characteristics concern the properties elements
of a single revision must exhibit. Examples of such elements are the author
of the revision, a class, or any arbitrary AST node. Examples of such char-
acteristics are the name of an author, the class hierarchy to which a class
belongs etc. These characteristics can be used in a history query to find, for
instance, modification records by a particular author, a class that implements
a particular design pattern, all methods that are recursive etc.

Temporal Characteristics Temporal characteristics concern quantification over el-
ements from different revisions. Examples of such quantification are “for
every revision”, “after a particular revision”, “for every pair of successive
revisions”, etc. These characteristics can be used in queries to express condi-
tions such as “is the class Person present in every revision?” or “does every
class have a corresponding unit test in every revision?”.

Change Characteristics Change characteristics concern fine-grained source code
changes that occurred between two revisions. Source code changes can be
caused by edits or IDE interactions performed by the developers. Examples
of such changes are the insertion, deletion, move or update of AST nodes.
Examples of such characteristics are the index at which an AST node has been
inserted, the AST node that has been removed from the code, an update to the
modifier of a method. These characteristics can be used in queries to express
conditions such as “a method declaration node that was inserted”, “an if
test that was removed” or “a method body that was moved to a different
location”.

15

2 Background on History Querying

Evolution Characteristics Evolution characteristics concern high-level change pat-
terns that occurred between two revisions of a file. The difference between
change characteristics and evolution characteristics is that the first concern
individual changes, whereas the latter concern the effect of a sequence of
changes. Examples of such characteristics are code transformations, such as
a refactoring or a systematic edit, that are implemented by a sequence of
changes. These characteristics can be used in queries to express conditions
such as “does this change sequence implement a field rename refactoring?”,
or “does this change sequence implement a code clone removal?”.

We will argue that a general-purpose history querying tool must enable express-
ing these different characteristics in a uniform language. Among these character-
istics, the revision and temporal characteristics are orthogonal. The revision char-
acteristics concern elements of a single revision, which must be retrieved from a
particular revision. The temporal characteristics concern from what revision the
elements are retrieved, but do not concern the characteristics of these elements.
Change and evolution characteristics concern operations between two successive
revisions of the same code. As these operations are applied to concrete source code,
the characteristics describing these operations also concern the affected source
code. As such, specifications of change characteristics and source code character-
istics (which are part of the revision characteristics) are necessarily tangled. We
envision a history querying tool that offers dedicated features for each of the aforementioned
characteristics.

In what follows we discuss the different characteristics in detail.

Revision Characteristics

The revision characteristics concern the revision or VCS elements that reside in a
single revision of the queried software project. We discern three categories, namely:
revision meta-data characteristics, coarse-grained revision characteristics and fine-
grained revision characteristics.

Revision Meta-Data Characteristics Revision Meta-Data Characteristics (RMC)
concern elements that stem from the meta-data kept by the underlying VCS. Ex-
amples of these elements are the author, the timestamp, the commit message, the
modified files etc. of a revision. Examples of these characteristics are the name of
the author, the words of a commit message or the path of a modified file. These
characteristics can be used in queries to express conditions such as “a commit
pushed by the author Alice”, “a commit after the second of June”, “a commit mes-
sage containing the word ’fix’ or ’bug”’ or “a commit modifying a file in the ’tests’
directory”.

16

2.2 Querying Version Control Systems for History Characteristics

Coarse-grained Revision Characteristics Coarse-grained Revision Characteris-
tics (CRC) concern elements that stem from a coarse-grained representation of the
source code. For object-oriented programming languages, such a representation
could be a Hismo [39] model of the versioned software project. A Hismo model
represents the history of a project up until the level of methods. For instance, the
classes each package is composed of and the methods or fields within each class.
Relations between these entities are included as well. For instance, the callees and
callers of each method. The key point is that the complete source code is not avail-
able, and information that is not stored in the model cannot be retrieved. Examples
of coarse-grained characteristics are the name of a class, the methods present in a
class, or the signature of a method. These characteristics can be used in queries to
express conditions such as “a class with at least 10 methods”, “a method named
foo” or “a method that calls itself recursively”.

Fine-Grained Revision Characteristics Fine-grained Revision Characteristics (FRC)
concern the individual source code elements in a revision. Examples of these el-
ements are any type of AST node, such as a method invocation, an if test, a re-
turn statement etc. Examples of their characteristics are the name of the invoked
method, the expression of the if test or the value of the return statement. These
characteristics can be used in queries to express conditions such as “a method in-
vocation of the method named launchMissile”, “an if test performing a null-check”
or “a return statement returning 0”.

Temporal Characteristics

Temporal Characteristics (TC) concern the temporal quantification over elements
from different revisions. Examples are “for every revision”, “after a particular revi-
sion”, “for every pair of successive revisions”, “until a revision in which. . . ”, “for
every revision after a particular revision” etc. These characteristics can be used
in queries to express conditions such as “for every revision the class Person must
be present”, “a bug fix must be introduced eventually after the revision that in-
troduced that bug”, “until a class is removed it must have a corresponding unit
test” or “every revision after the release of Java must enumerate elements of a
collection using internal rather than external iteration constructs (i. e., a forEach()

rather than a for-loop).”

Change Characteristics

Change Characteristics (CC) concern changes to source code. Examples of these
changes are the operations that were performed by a developer in order to trans-
form the source code from one revision into the code of a different revision. Exam-
ples of their characteristics are the type of the operation such as an insert, a delete

17

2 Background on History Querying

Insert

Delete

Move

Update

00 public class Example {
01 public Integer run(Integer x) {
02 return x;
03 }
04
05 public void test() {
06 int x = 0;
07 int y = 0;
08 int z = 0;
09 run(x);
10 }
11 }

00 public class Example {
01 public Integer run(Integer x) {
02 int y = 0;
03 return x;
04 }
05
06 public int foo() {
07 return 42;
08 }
09
10 public void test() {
11 int x = 1;
12 run(x);
13 }
14 }

Figure 2.5: Figure depicting changes on two revisions of the same source code

or a move. These characteristics can be used in queries to express conditions such
as “a field that was introduced by an insert”, “a method of which the body was
moved to the consequent of an if-test” or “an unused method that was deleted”.

Figure 2.5 depicts two revisions of the same source code, and the change oper-
ations performed on those ASTs. It depicts two revisions of the class Example. The
variable declaration int x = 0 is updated to a new initial value. The variable decla-
ration int y = 0 is moved to a different method. The variable declaration int z = 0

is no longer present, and thus removed. Finally, a new method foo is inserted.

We outline three different ways to obtain information about source code changes:
line differencing, change logging and change distilling.

Line Differencing Line Differencing computes the changes between two versions
of a file in terms of the addition and removal of lines of text. One well-
known line differencing tool is diff, which takes as input two files, and
outputs what lines need to be added or removed to transform the first file
into the second file. The same functionality is also provided by most VCS.
Line differencing would result in the move of line 7 to line 2 of Figure 2.5 to
be represented as a combination of addition and removal instead of a move.

Change Logging A change logger, such as Fluorite [77], SpyWare [66], Cod-
ingTracker [60], and Syde [44], records the different operations a developer
performs inside his IDE while he is developing the project. Change are rep-
resented by the keystrokes the developer performed, as well as interactions
with the IDE (such as invoking a refactoring tool). A change logger returns
accurate edit operations, including edits that are invisible in the final revi-
sion (e. g., adding and later removing a piece of code). Changes also span the
source code of the complete project, such as moving pieces of code from one
file to a different one.

Change Distilling A change distiller, such as ChangeDistiller [33], Change-
Nodes [72] or Gumtree [30], is an algorithmic approach to procure changes
post factum. The algorithm takes as input two revisions of a file, and outputs

18

2.2 Querying Version Control Systems for History Characteristics

a sequence of changes. To this end, it uses heuristics, such as the textual sim-
ilarity of two AST nodes, to determine whether nodes were modified. The
different possible change types are inserts, moves, deletes and updates of
AST nodes.

Line differencing, change logging and change distilling differ in how well the re-
sulting changes correspond to the actual actions the developer performed. Change
logging produces an accurate representation of how the developer implemented
the modifications to the source code. It is, however, not readily accessible for most
projects as the change logger must be installed prior to the changes being per-
formed. There are also privacy concerns as it includes invisible edits. A change
distiller can be used for any versioned software project, but its use of heuristics
can sometimes produce non-minimal change sequences, nor do these edit scripts
match with the actual modifications the developer performed. Line differencing
tools such as diff work at the level of complete lines rather than individual source
code elements on these lines, and do not provide move operations. Thus, they pro-
duce the least accurate changes.

Evolution Characteristics

Evolution characteristics concern instances of patterns that are the result of ap-
plying change sequences. Examples of such evolution patterns or code transfor-
mations are refactorings or systematic edits. Examples of their characteristics are
the intermediate states of the source code as it undergoes the transformation.
These characteristics can be used in queries to express conditions such as “do
these changes implement a Remove Unused Method pattern?”, or “what addi-
tional changes are applied next to this code clone removal?”.

The difference between change characteristics and evolution characteristics is
that change characteristics concern individual changes, whereas evolution charac-
teristics concern the behavior of a change sequence as a whole. We illustrate this
by means of an example. Listing 2.1 depicts a source code extract from the ant

project, in which methods setIncludes and setExcludes contain a piece of cloned
code. Listing 2.2 depicts the next revision of this source code, in which the cloned
code has been extracted to a new method normalizePattern, and each clone instance
has been replaced by an invocation to that method. This “extract method refactor-
ing in order to remove a code clone” has occurred in several projects. Instances of
this pattern have concrete change sequences that do not necessarily consist out of
identical change operations. As such, describing these patterns using only change
characteristics is hard as one needs to take these differences into account.

19

2 Background on History Querying

1 public void setIncludes(String [] includes) {
2 if (includes == null) {
3 this.includes = null;
4 } else {
5 this.includes = new String[includes.length];
6 for (int i = 0; i < includes.length; i++) {
7 String pattern;
8 pattern =
9 includes[i]. replace(’/’, File.separatorChar). replace(

10 ’\\’, File.separatorChar);
11 if (pattern.endsWith(File.separator)) {
12 pattern += "**";
13 }
14 this.includes[i] = pattern;
15 }
16 }
17 }
18

19 public void setExcludes(String [] excludes) {
20 if (excludes == null) {
21 this.excludes = null;
22 } else {
23 this.excludes = new String[excludes.length];
24 for (int i = 0; i < excludes.length; i++) {
25 String pattern;
26 pattern =
27 excludes[i]. replace(’/’, File.separatorChar). replace(
28 ’\\’, File.separatorChar);
29 if (pattern.endsWith(File.separator)) {
30 pattern += "**";
31 }
32 this.excludes[i] = pattern;
33 }
34 }
35 }

Listing 2.1: Source containing cloned code. This code is present in com-
mit 6bdc259c2e818e1c86f944cbd8950e670294d944

20

2.3 Applications of History Querying

1 public void setIncludes(String [] includes) {
2 if (includes == null) {
3 this.includes = null;
4 } else {
5 this.includes = new String[includes.length];
6 for (int i = 0; i < includes.length; i++) {
7 this.includes[i] = normalizePattern(includes[i]);
8 }
9 }

10 }
11

12 public void setExcludes(String [] excludes) {
13 if (excludes == null) {
14 this.excludes = null;
15 } else {
16 this.excludes = new String[excludes.length];
17 for (int i = 0; i < excludes.length; i++) {
18 this.excludes[i] = normalizePattern(excludes[i]);
19 }
20 }
21 }
22

23 private static String normalizePattern(String p) {
24 String pattern = p.replace(’/’, File.separatorChar)
25 .replace(’\\’, File.separatorChar);
26 if (pattern.endsWith(File.separator)) {
27 pattern += "**";
28 }
29 return pattern;
30 }

Listing 2.2: Source after extracting the cloned code. This code is present
in commit 28d39b09a766fbb0dd3ca9b65ac06edf89075e8e

2.3 Applications of History Querying

In this section we provide two application domains that require reasoning about
the history of a software project. The first domain we discuss is the domain of
program comprehension. In this domain, the history of a software project is lever-
aged to answer questions developers ask. Next, we discuss the domain of mining
software repositories (MSR). According to the Mining Repositories Conference this
domain focuses on the ways in which mining these repositories “can help to under-
stand software development, to support predictions about software development,
and to plan various aspects of software projects” [23].

2.3.1 Program Comprehension
Developers need answers to a variety of questions regarding the software system
they are developing and maintaining, as indicated by several studies [14, 36, 51].
From this research we discern the developer questions that could be answered us-
ing a history querying tool. Table 2.1 summarizes these studies by depicting the

21

2 Background on History Querying

Table 2.1: Table depicting an overview of questions that developers ask that can be an-
swered by looking at the history of a software project, taken from [14, 36, 51]. The
columns indicate the question number, paper from which it was taken, the question
itself, and whether it requires expressing VCS Meta-Data characteristics (VMC), coarse-
grained revision characteristics (CGRC), fine-grained revision characteristics (FGRC)
or change characteristics at the level of line changes (LiC), distilled changes (DC) or
logged changes (LoC).

No. Ref Question VMC CGRC FGRC LiC DC LoC
Rationale
QR1 [51] Why was it done this way? 3 7 7 7 7 7
QR2 [51] Why wasn’t it done this

other way?
3 7 7 7 7 7

QR3 [51] Was this intentional, acciden-
tal, or a hack?

3 7 7 7 7 7

QR4 [36] Who made a particular
change and why?

3 7 7 3 3 3

QR5 [14] Why is this “this way”? [Re-
cover the rationale behind a
snippet of code]

3 7 7 7 7 3

Evolution
QV1 [51] When, how, by whom, and

why was this code changed
or inserted?

3 7 7 3 3 3

QV2 [51] What else changed when
this code was changed or in-
serted?

3 7 3 3 3 3

QV3 [51] How has it changed over
time?

3 7 7 7 3 3

QV4 [51] Has this code always been
this way?

3 7 7 3 3 3

QV5 [51] What recent changes have
been made?

3 7 7 3 3 3

QV6 [36] Who has made changes to
my classes?

3 3 3 7 7 7

QV7 [36] What classes have been
changed?

3 3 3 7 7 7

QV8 [36] Which code has recently
changed that is related to
me?

3 7 7 3 3 3

QV9 [36] What is the most popular
class? [Which class has been
changed most?]

3 3 3 7 7 7

22

No. Ref Question VMC CGRC FGRC LiC DC LoC
QV10 [51] Did my teammates do this? 3 7 3 3 3 3

Code Expertise
QX1 [36] Who created the API that I

am about to change?
3 7 3 7 7 7

QX2 [36] Who owns this piece of
code? Who modified it the
latest?

3 7 3 3 3 3

QX3 [36] Who owns this piece of
code? Who modified it
most?

3 7 3 3 3 3

QX4 [36] Who to talk to if you have
to work with packages you
have not worked with?

3 3 3 7 7 7

QX5 [51] Who is the owner or expert
for this code?

3 7 3 3 3 3

Branching
QB1 [51] How can I move this code to

this branch?
3 7 3 7 3 3

QB2 [51] Have changes in another
branch been integrated into
this branch?

3 7 3 7 3 3

2 Background on History Querying

questions that could be answered using a history querying tool and the character-
istics required to answer such question. We denote whether the question can be
answered using line-level changes (LiC) as their change representation, distilled
changes (DC) or logged changes (LoC). The table does not include temporal char-
acteristics, as they are required for every question, nor does it contain evolution
characteristics as we found no question requiring these. Evolution characteristics
are used for empirical studies, which we discuss in Section 2.3.2.

In 2010 Fritz et al. [36] conducted an empirical survey, asking eleven professional
developers what questions they have while working on a project, for which there
is no tool support. To this end, the authors first demonstrated a small tool that
provided information about source code, change sets, work items and team mem-
bers. Given such a tool, they asked developers what kind of questions they would
want answered. From these interviews handwritten notes were taken, and from
these notes the developer questions were distilled. The study resulted in 46 differ-
ent questions (including questions not related to the history). They subsequently
categorized these questions as follows: questions related to source code, to change
sets, to teams, to work items, to comments, to web/wiki, to stack traces and to test
cases.

In 2010 Latoza et al. [51] conducted a survey about hard-to-answer questions
that developers ask about their code. They invited a random sample of around
2000 developers at Microsoft, to which 469 responded. The survey includes ques-
tions regarding code changes (e. g., debugging, implementing features, code his-
tory), code elements (e. g., intent of code, method properties, performance), ele-
ment relationships (e. g., contracts, control flow), and an open response item about
other hard-to-answer questions. The referenced paper focuses on answers to this
free response item, which was filled in by 179 developers. In order to analyze re-
sponses, the authors clustered the questions into categories using the underlying
intent of the question. We analyzed the different questions and identified the ones
that require history information in order to answer them.

In 2015 Codoban et al. [14] conducted a study about the motivations of devel-
opers to use and examine the history of their software projects. To this end, 14

developers from 11 different companies were interviewed in a semi-structured
manner. In order to extend their findings from these interviews a survey was cre-
ated and posted on popular social media channels. This survey was filled in by 217

respondents. Although the paper does not immediately provide concrete questions
developers ask, it does provide insights in how and why the history of a software
project is used by developers.

Table 2.1 contains all the questions from [14, 36, 51] that could be answered by
inspecting the history of the software project. For example, QV5 “Who has made
changes to my classes?” can be answered by first identifying all classes a specific
author introduced, followed by finding the authors of revisions that modify these
classes that are different from the original author. QX3 “Who owns this piece of

24

2.3 Applications of History Querying

code? Who modified it most?” can be answered in different ways. The owner of a
piece of code could be defined as the person who first introduced it. Depending on
the granularity of the used information, this can be the person who introduced the
file (requiring VCS information), the class (requiring CGSC) or that specific AST
node (requiring DC or LoC). The person who modified it the most could also be the
person who modified that file the most, or the person that modified that specific
AST node the most often. Finally, some information is subsumed by more detailed
information. For example, a coarse-grained representation of the source code is
subsumed by a fine-grained representation. The same holds for line changes, dis-
tilled changes and logged. Table 2.1 depicts the different sources of information
that could answer the question. More precise or fine-grained information should
result in more precise answers.

Manually browsing through the history of a software project, which can con-
tain thousands of revisions, is not a task any developer wants to undertake.
Tool support is required to deal with the size of the data, the diversity of ques-
tions and the information required to answer these questions.

2.3.2 Empirical Studies
The history of software projects is the subject of several empirical studies. For
example, the mining software repositories (MSR) community focuses “on the ways
in which mining these repositories can help to understand software development,
to support predictions about software development, and to plan various aspects
of software projects” [23]. To this end, the community analyzes the information
present in software repositories, as well as other sources of information such as
bug trackers, mailing lists, etc. We focus on studies that primarily use Version
Control Systems (VCS) as their source of information.

Table 2.2 depicts a summary of several empirical studies and the information
that each study required. To this end, we have looked at the relevant tracks from
several recent major conferences, identifying papers that mainly use VCS as their
source of information for their study. We indicate whether the study uses VCS
meta-data characteristics (VMC), coarse-grained revision characteristics (CGRC),
fine-grained revision characteristics (FGRC) and change characteristics at the level
of line changes (LiC), distilled changes (DC) or logged changes (LoC). All studies
require temporal characteristics, and are not indicated. We found no study that
uses evolution characteristics, even though studies would benefit from these. In-
stead, current studies manually identify change sequences that implement a code
transformation (e. g., Negara et al. [61]) or they make use of an already known set
of systematic edits and their changes (e. g., Meng et al. [56]).

25

2 Background on History Querying

Table 2.2: Table summarizing several empirical studies and the information the study
required. The columns indicate the paper, a summary of that paper and whether
the study required VCS meta-data (VMD), Coarse-Grained Revision Characteristics
(CGRC), Fine-Grained Revision Characteristics (FGRC) or change characteristics at
the level of line changes (LiC), distilled changes (DC) or logged changes (LoC).

Paper Summary VMD CGRC FGRC LiC DC LoC
Ray et al. [64] Identifies which changes are

unique in the history of the
project. The study explores how
prevalent unique changes are and
determines where they occur in
the architecture of the project.

3 7 7 3 7 7

Mondal et al.
[57]

Identifies code clones and studies
how bug-prone the different types
of code clones are. To this end,
the study identifies bug-fixing
changes made to these clones.

3 7 3 3 7 7

Meng et al.
[56]

Presents a tool Lase that cre-
ates an executable edit script from
systematic code changes. To this
end, the tool generalizes several
edit examples, represented by fine-
grained code changes.

3 7 3 7 3 7

Zaidman et al.
[78]

Studies the co-evolution between
source code and their correspond-
ing unit tests. For example, one of
the research questions answered
is whether this evolution happens
synchronously or phased.

3 3 3 7 7 7

Cacho et al.
[9]

Studies the evolution of exception
handlers and their robustness. The
latter is done by computing the
places in which an exception can
be thrown, and which exceptions
are potentially uncaught.

3 7 3 3 7 7

Kawrykow
and Robillard
[49]

Identifies changes that are essen-
tial and non-essential. Examples
of non-essential changes are local
variable refactorings, or changes
caused by a method rename. The
study concludes that between 2.6%
and 15.5% of all method updates
consists entirely of non-essential
modifications.

3 7 3 7 3 7

Giger et al.
[38]

Studies whether fine-grained
source code changes are more
effective than coarse-grained
changes in order to predict bugs.

3 7 7 3 3 7

26

Paper Summary VMD CGRC FGRC LiC DC LoC
Dyer et al.
[26]

Studies how and when new lan-
guage features are adapted by de-
velopers, and whether there is
code in which a new feature po-
tentially could have been used,
but was not. In order to deter-
mine whether existing code was
adapted they compare the number
of potential feature usages with
the concrete number of usages be-
tween two successive revisions.

3 7 3 7 7 7

Negara et al.
[61]

Finds unknown change patterns
from fine-grained source code
changes, represented by logged
developer actions. A data-mining
algorithm is applied to transac-
tions of changes in order to detect
patterns.

7 7 7 7 7 3

Steidl and
Deissenboeck
[70]

Studies how Java methods grow
over time. To this end, the size of a
method across every revision of a
software project is compared.

3 7 3 7 7 7

Christophe
et al. [13]

Studies the co-evolution between
Selenium tests and the produc-
tion code. It also studies which
parts of Selenium tests are most
prone to change.

3 7 3 7 3 7

2 Background on History Querying

There are several examples of such studies [38, 64, 78]. Study [78] investigates
whether production code and its accompanying unit tests co-evolve throughout
the history of the software project. To this end, its authors visualize how the com-
mit behavior of developers, the growth of the project and the test quality evolve
across time. In order to further substantiate their findings the authors manually
analyze commit messages and interview the developers of the studied software
projects.

Ray et al. [64] define, identify and study unique source code changes. Some
changes are repetitive, idiomatic or frequent, while others are unique in the history
of a project. In order to retrieve changes they use the meta-data of git, which stores
source code modifications at the level of a line. Changes are collected for all the
revisions of the analyzed software project. The authors bundle successive modified
lines of code in a hunk of code. Next, they compare modified lines across hunks
in order to find which changes are unique and which are not. After categorizing
these changes, the authors analyze the results, for example to find how frequent
unique changes occur, who introduces them and where they occur.

The work of Giger et al. [38] compares the use of fine-grained source code
changes to the use of modified lines of code in bug prediction algorithms. To
this end, they use the meta-data present in a VCS to retrieve the modified lines
of successive revisions. In order to retrieve fine-grained source code changes they
use ChangeDistiller [33]. ChangeDistiller is an algorithm that computes
fine-grained between two revisions of a file. They find that source code changes
outperform line changes for bug prediction models.

Looking at the research methods of the studies in Table 2.2, we notice that re-
searchers combine existing analysis tools for a single revision with scripts to apply
these tools on multiple revisions. Although the data used and produced by these
studies is frequently available, the scripts are not. The latter is required to repro-
duce existing studies.

A general-purpose history querying tool could alleviate these problems.
Such a tool enables expressing in a domain-specific language the wide variety
of characteristics of the sought-after history elements. The tool automatically
finds the history elements exhibiting these characteristics. The resulting queries
can be reused on different projects and across different studies.

28

2.4 Criteria for General-Purpose History Querying Support

2.4 Criteria for General-Purpose History Querying
Support

Based on the different types of history querying applications of Section 2.3 and
Section 2.2.2, we identified six criteria that a general-purpose history querying
tool must adhere to.

C1–C4: Support revision, temporal, change and evolution characteristics in a
uniform language. For each of these characteristics, a user must express condi-
tions over that characteristic in a history query. The history querying tool must
identify the history elements that exhibit these characteristics. This is especially
challenging for the evolution characteristics; the same code evolution can be im-
plemented using different change sequences, which must all be identified by the
history querying tool.

To this end, it must support characteristics concerning VCS meta-data, coarse-
grained revision elements and fine-grained revision elements. Revision character-
istics have been discussed in Section 2.2.2.

C5: Support a means for query abstraction, reuse and composition Query ab-
straction, reuse and composition enable users to write small queries that can be
tested individually. These queries can be composed to form larger ones. This re-
sults in improved readability and maintainability of large queries. Without query
reuse and composition, queries become convoluted, hard to understand and hard
to debug.

C6: Provide solutions in an on-demand manner Looking at the different history
applications we notice that they do not always need to have a complete set of an-
swers. In the case of program comprehension retrieving some but not all solutions
to a query can provide sufficient insight. During the prototyping phase of an em-
pirical study, queries need to be tested. To this end, retrieving some solutions and
verifying their correctness is desired over retrieving all the solutions, which may
be time consuming. As such, a history querying tool should provide solutions in
an on-demand manner.

2.5 Conclusion

In this chapter we have provided an overview of two history querying applications:
program comprehension and empirical studies of software repositories. For each
application, we have summarized existing research and the kind and granularity
of history information required for that application. From these applications we

29

2 Background on History Querying

distilled the different history characteristics that need to be supported by a history
querying tool for it to be general-purpose.

These characteristics are classified as follows. First, revision characteristics which
are further divided into version control meta-data, coarse-grained and fine-grained
source code characteristics. Revision characteristics concern elements of a single re-
vision. Second, temporal characteristics, which concern the temporal quantifications
over revision elements. Third, change characteristics concern individual change oper-
ations and the affected source code. Finally, evolution characteristics concern change
sequences and their effect on the source code.

We have discerned the different criteria to which a history querying tool needs
to adhere in order to cater to the different needs of the history applications.

30

3
S TAT E O F T H E A RT I N H I S T O RY A N D S O F T WA R E Q U E RY I N G

In this chapter we provide an overview of the state of the art in querying software,
its history and its evolution. To this end, we have divided this overview into three
different parts. First, Section 3.1 discusses tool-supported approaches to querying
a single revision of a software project. Second, Section 3.2 discusses tool-supported
approaches to querying multiple revisions of a software project. Third and finally,
Section 3.3 discusses tool-supported approaches to querying source code changes.
We link all these approaches back to the criteria stipulated in Section 2.4.

Table 3.1 lists the discussed approaches and whether they adhere to the differ-
ent criteria stipulated in Section 2.4. We divide criterion C1 into two subcriteria,
expressing coarse-grained and fine-grained revision characteristics, to better illus-
trate the capabilities of the approaches. A plus denotes that the tool adheres to the
criteria, a minus that it does not adhere, and a plus-minus that it partially fulfills
the requirement. This is often the case when the tool provides the data (e. g., source
code changes), but no actual query language (e. g., a change query language) for
that data.

3.1 Querying a Single Revision

In this section we discuss existing approaches for querying a single revision of
a software project. Section 3.1.1 briefly discusses approaches that query text. Sec-
tion 3.1.2 discusses logic program querying.

31

3 State of the Art in History and Software Querying

Table 3.1: Table depicting an overview of existing history querying approaches, and
whether they adhere to our criteria stipulated in Section 2.4

Tool C1coarse C1fine C2 C3 C4 C5 C6
PQL + + � � � � �
SOUL + + � � � + �
CodeQuest + � � � � + �
JTL + + � � � � �
SCQL + � ± � � � +
V-Praxis + � ± � � � +
Harmony + + ± � � � �
Absinthe + � ± � � + +
Boa + + ± � � � ±
Evolizer ± ± ± ± � � �
CheOPSJ + � ± + ± + �

3.1.1 Text Querying
Regular expressions [35] are suited to query large files of text. They enable users
to express a sequence of characters that have to be present in a string, using op-
erators such as repetition, optional characters, wildcards etc. For example, both
the commandline grep tool and modern IDEs support searching through text files
using regular expressions. Regular expressions are useful for developers searching
for elements featuring a particular character string. A regular expression cannot
account for variations of expressions (e. g., whitespace, formatting, or equivalent
for/while loops, etc.). Thus, complex code patterns and all their possible variations
become very hard to specify correctly and concisely.

3.1.2 Logic Program Querying
Logic program querying has frequently been proposed for querying a single revi-
sion of a software program. It advocates using formulas in an executable logic to
specify the characteristics of the sought-after source code. This is done by reifying
the program under investigation such that the logic variables can range over the
elements of the program. Executing a proof procedure establishes whether certain
program elements exhibit the characteristics specified by the formula.

Logic programming allows querying source code in a declarative style. Logic
formulas enable users to describe the characteristics source code has to exhibit,
while the proof procedure for the logic identifies the corresponding source code
adhering to these characteristics.

There has been extensive research around the use of logic programming for
querying a single version of a software project. In what follows we provide an
overview of some of the work done in this domain.

32

3.1 Querying a Single Revision

PQL Program Query Language (PQL) [55] is a program query language mainly
used in the context of finding application errors and security flaws. A PQL query
is a pattern that is matched against the execution trace of the program. Potential
matches for the pattern are detected statically by means of a static analyzer. These
matches are further refined using dynamic analysis. The static analysis narrows
the locations of the application that have to be instrumented and verified by the
dynamic analysis. To this end, the program under investigation is transformed
into a logic fact base, and a PQL query is translated to a Datalog [10] query con-
sulting this fact base. The dynamic analysis will then catch all matches during
the execution of the program. A user can define actions that are executed when
such a match occurs. Examples of such actions are the insertion of a breakpoint, or
writing the occurrence of a match to a log.

Figure 3.1 depicts a PQL query that verifies that InputStream resources are man-
aged properly. It detects methods that create an InputStream in which is not closed
before the end of that method. Should it escape that method an action is executed
that closes the InputStream. This example is adapted from Martin et al. [55].

1 query forceClose()
2 uses object InputStream in;
3 within _ . _ ();
4 matches {
5 in = new InputStream();
6 ~in.close();
7 }
8 executes in.close();

Figure 3.1: PQL example that enforces every opened stream to be eventually closed. This
example is adapted from Martin et al. [55].

CodeQuest CodeQuest [43] enables a developer to write logic queries over Java
programs using Datalog. To this end, it creates a fact base representating the soft-
ware system under investigation. This fact base reifies relations between selected
source code entities, such as the reading from and writing to fields and calling of
methods. It does not provide submethod information or ASTs.

Figure 3.2 depicts a CodeQuest query, adapted from Hajiyev et al. [43]. This
query finds all methods that implement an abstract method. To this end, it unifies
logic variable Abstract with an abstract method, Implements with a method overrid-
ing this abstract method, and ensures that this method is not abstract itself.

JTL The Java Tools Language (JTL) [15] is a program query language to reason
about Java code. JTL represents the program under investigation in a Datalog fact
base. The query language is a Datalog language with a syntax resembling Java. As
such, JTL features predicates that enable users to write queries that superficially
resemble the corresponding source code. These queries are then evaluated using

33

3 State of the Art in History and Software Querying

1 implementation_of_abstract(Abstract, Implements) :-
2 modifier(Abstract, abstract),
3 overrides(Implements, Abstract),
4 not(modifier(Implements, abstract)).

Figure 3.2: Finding a method that implements an abstract method using CodeQuest,
adapted from Hajiyev et al. [43].

1 boolean_return_recommendation :=
2 if[_] then[S1] else[S2],
3 S1.return[V1],
4 S2.return[V2],
5 V1.literal["true"],
6 V2.literal["false"];

Figure 3.3: A JTL example detecting unneeded if-tests that either return true or false. This
example is taken from Cohen et al. [15].

Datalog. JTL uses the bytecode representation of the Java program instead of the
actual source code.

Figure 3.3 depicts a JTL query, taken from Cohen et al. [15]. It detects unneeded
if-tests that look like if(test) return true; else return false;. The second line intro-
duces two new variables S1 and S2 that substitute respectively for the consequent
and alternative of an if-test. Both S1 and S2 must be a return-statement, returning
V1 and V2. V1 must be the literal value true, while V2 must be the literal value false.
This query illustrates the combination of a grammar resembling Java as well as the
use of declarative programming.

SOUL The Smalltalk Open Unification Language [20], known as SOUL, is a
declarative program query language implemented in Smalltalk. SOUL queries
support three kind of conditions: regular logic conditions, Smalltalk conditions
and template conditions. Smalltalk conditions are any Smalltalk expression that
evaluates to either true or false. Template conditions are conditions in a logic
query that resemble the sought-after source code. Its main motivation is that code
queries expressed using only logic predicates can become convoluted. For exam-
ple, if jtStatement(st) ?x = (?type)?e; is an example of such a template query. The
template contains logic variables that unify with the corresponding source code
element matching the template.

Figure 3.4 depicts an example person class written in Java and a SOUL query
using a code template, adapted from the SOUL website1. This template matches
all the accessors for the age variable. Imagine for a moment that the name of the
field and the operand of the return statement are reified as strings. The unification
would unify the shadowed variable used on line 4 with the instance variable. The
method on line 3 would not match, as age does not unify with this.age. The domain-

1http://soft.vub.ac.be/SOUL

34

http://soft.vub.ac.be/SOUL

3.2 Querying Multiple Revisions

specific unification used in SOUL treats reified objects differently. This allows the
unification of the two variables on lines 2-–3, while the variable on line 4 does not
unify. SOUL uses static analyses similar to PQL to gather this information.

1 class Person {
2 private Integer age;
3 public Integer getAge() { return this.age; }
4 public Integer notGettingAge(Integer age) { return age; }
5 }
6

7 if jtClassDeclaration(?c){
8 class ?className {
9 private ?fieldDeclarationType ?fieldName;

10 ?modifierList ?returnType ?methodName(?parameterList) {
11 return ?fieldName;
12 }
13 }
14 }

Figure 3.4: A Person class with an accessor for the age in Java. The other method does
not return the instance variable, as it is shadowed. This example is adapted from the
SOUL website.

3.1.3 Conclusion
Logic program querying has proven a popular choice for querying the source
code of a software project. It enables users to describe the sought-after source code
in a high-level language, while the identification of the program elements that
adhere to the logic specification is performed by the logic engine. Existing program
querying tools cannot be readily used as a history querying tool, as they do not
enable users to express temporal characteristics nor change characteristics. They
do form a starting point for supporting revision characteristics in a history query
language. To this end, they must be adapted significantly to enable querying VCS
meta-data next to the source code of individual revisions. Change and evolution
characteristics would not be supported as VCS do not provide (distilled or logged)
change information.

3.2 Querying Multiple Revisions

In the following section we discuss existing history querying approaches that en-
able users to query multiple revisions of a software project.

SCQL SCQL [46] is one of the very first history querying approaches. It converts
a VCS into a graph: nodes in this graph correspond to revisions, modification re-
quests, authors and files. A modification request is a set of modified files by a spe-
cific author that have been submitted to the repository, but that are not accepted

35

3 State of the Art in History and Software Querying

1 E(a, Author) {
2 A(f, author.files) {
3 A(f2, author.files) {
4 eq(f.directory, f2.directory)
5 }
6 }
7 }

Figure 3.5: An SCQL query detecting authors that only modified files that are in a single
directory. This example is taken from Hindle and German [46].

yet. Once accepted, a new revision is created. Edges correspond to the relations
between these elements. A modification request is linked to the successive modifi-
cation request, the author of its revisions and each of its revisions. SCQL provides
a declarative language for expressing relationships such as previous, after, always
or never.

We already provided an example SCQL query in Section 2.2.1. Figure 3.5 de-
picts another SCQL query that detects authors who only modified files residing
in the same directory. This example is taken from Hindle and German [46]. The
first line uses the existential quantifier E to state that an author a must exist. Lines
2–4 uses the universal quantifier A to state that all pair of files f and f2 modified by
author a must reside in the same directory.

Although SCQL represents one of the first approaches to history querying, it
has several shortcomings. First and foremost, no actual source code (C1) nor source
code changes (C3, C4) can be queried as the information is limited to the file level.
This limits the kind of questions that can be answered with this approach. Basic
temporal relationships can be expressed (e. g., EBefore, ABefore, EAfter, AAfter), but
more complex relationships (e. g., while, within three revisions, . . .) can only be
expressed by combining the provided predicates, which leads to heavily nested
queries (C2). SCQL does not provide any means for query abstraction, reuse and
composition, and thus these combinations cannot be abstracted away into new
predicates (C5).

V-Praxis V-Praxis [58] converts the history of a software project to a relational
database. This database contains a coarse-grained representation of every revision.
V-Praxis does not provide a dedicated query language. Instead, it provides an
interface for several query languages to query the database. Examples of such
query languages are Prolog, XQuery and SQL.

Figure 3.6 depicts a logic predicate changedOperations(Me,OpIds,R) implemented
in Prolog. This predicate succeeds for a list of methods OpIds, introduced by one
author Me, that call methods that are modified by a different author in a recent
revision R. The introduced methods must call a method that was recently (in this
case within 10 commits of this revision) modified by a different author. Lines 3–5

find all methods that are introduced by Me and binds them to MyOpIdList, which is

36

3.2 Querying Multiple Revisions

1 changedOperations(Me,OpIds,R) :-
2 % Store the IDs of the method created by me in MyOpIdSet
3 findall(MyOpId,
4 (create(MyOpId,’method’,_,Me)),
5 MyOpIdList),
6 list_to_set(MyOpIdList,MyOpIdSet),
7 % Store the IDs of the called method in CalledOpIdSet
8 findall(CalledOpId,
9 (parcours(CurrentMyOpId,MyOpIdSet),

10 addReference(CurrentMyOpId,’calls’,CalledOpId,_,_)),
11 CalledOpIdList),
12 list_to_set(CalledOpIdList,CalledOpIdSet),
13 % Store result of the query in OpIds
14 findall(CurrentCalledOpId,
15 (parcours(CurrentCalledOpId,CalledOpIdSet),
16 action(_,CurrentCalledOpId,_,_,V,Other),
17 Other \= Me,
18 V >= R-10),
19 OpIds).

Figure 3.6: An example of a V-Praxis predicate, taken from its wiki. This predicate de-
tects methods that are introduced by an author Me that call methods that were recently
modified by a different author.

turned into a set on line 6. Lines 8–12 find all methods called by the methods in
MyOpIdList and binds them to the set CalledOpIdSet. Finally, lines 14–19 find methods
that are modified in a revision V that is at most 10 revisions removed from R.

V-Praxis does not feature a dedicated query language. Users are free to choose
from Prolog, SQL and other general-purpose query languages for expressing
revision and temporal characteristics. However, such general-purpose languages
lack dedicated features that facilitate expressing these characteristics. For instance,
there is no dedicated temporal specification language. Instead, the facts represent-
ing the program have a revision argument that needs to be accessed by the chosen
query language (C2). Next, it is hard to state whether the query language pro-
vides means for query abstraction, reuse and composition (C5) and results in an
on-demand fashion (C6). Prolog enables abstracting queries into predicates that
can be reused, and computes results only if needed. SQL on the other hand can
only abstract queries using stored procedures, which are cumbersome to imple-
ment. Finally, change information is missing from the fact base, and thus change
and evolution characteristics cannot be queried for (C3, C4).

Harmony Harmony [29] is a history querying tool aimed at performing MSR
studies. To this end, the tool provides data extractors for a wide array of industry-
strength VCS. The history is represented by a model similar to the one used by
V-Praxis. This model stores revisions, authors, files and modifications (create,
edit or delete) made to files. Source code is available in an on-demand fashion for
more fine-grained studies. To query this information, users need to subclass from
an abstract analysis class. This class provides access to the stored data. Relevant

37

3 State of the Art in History and Software Querying

1 @Override
2 public void runOn(Source repo) {
3 HashMap <Item , HashMap <Author , Integer >> HashMap <Author , Integer >>();
4 for (Item it : repo.getItems ()) {
5 HashMap <Author , Integer > authors = new HashMap <Author , Integer >();
6 ownership.put(it , authors);
7 for (Action a : it.getActions ()) {
8 for (Author at : a.getEvent (). getAuthors ()) {
9 Integer own = new Integer (1);

10 if (authors.containsKey(at)){
11 own = authors.get(at)+1;
12 }
13 authors.put(at , own);
14 }
15 }
16 }
17 }

Figure 3.7: An example of a Harmony analysis, taken from Falleri et al. [29]. This analysis
computes ownership of files.

data for the MSR study needs to be navigated to and inspected imperatively using
Java expressions.

Figure 3.7 depicts an analysis implemented using Harmony. This example is
taken from Falleri et al. [29]. The example computes the ownership of source files
by counting how frequently each author modified each file. The method runOn,
implementing an abstract method provided by the analysis class, imperatively it-
erates over the different files in a data source (i. e., an imported repository). Each
file is associated with a list of actions (i. e., modifications to that file), which in
itself is associated with a list of authors. By nesting loops the analysis updates a
map that associates how frequently different authors updated that file.

Harmony imports a repository and makes its data more accessible for the user.
Finding the relevant data must be done manually in an imperative manner, as
depicted by Figure 3.7 (C1, C2). This makes queries convoluted, for example by
having multiple nested loops. Composition and reuse of an analysis is difficult as
it is constrained to the abstract analysis class (C5). Finally, change information is
unavailable, and thus change and evolution characteristics cannot be queried for
(C3, C4).

Absinthe Absinthe [75] is a history query language that is the conceptual pre-
decessor of QwalKeko. It enables reasoning about the history of a software
project, represented by a Hismo [39] model (cf., Section 2.2.2). To this end, a
query describes a path throughout a revision graph using regular path expres-
sions [17]. Sought-after revision characteristics are expressed using the declarative
program query language SOUL, described earlier (cf., Section 3.1). Characteristics
concern either elements residing in a Hismo model or the concrete source code
of a method. The first is stored in memory, while the latter requires retrieving the
source code from the VCS. This source code is queried using the regular predicates

38

3.2 Querying Multiple Revisions

1 ?first isOldestVersion,
2 e(manyOf>([true]),
3 and(?class isClass,
4 ?class wasChanged,
5 ?author isAuthorOfVersion),
6 manyOf<(not(?class wasChanged))) matches:
7 graph(versionTrans, ?first, ?last, <?class, ?author>),
8 ?last isEndVersion

Figure 3.8: Absinthe query that detects the author who last modified a class.

provided by SOUL. The model of Absinthe ensures that an entity (e. g., a class)
stemming from in one revision unifies with the corresponding entity in another re-
vision, even when that entity underwent some modifications. This allows users to
use the same variable bound to an entity across different revisions as long as that
entity is present in those revisions. The temporal characteristics are expressed as
a path throughout a graph representation of the VCS. The used fact base changes
throughout a history query depending on the current state of the path. As a result,
predicates concerning revision elements do not require an argument specifying
the revision of the sought-after element. Instead, this is handled by the temporal
specification of the query.

Figure 3.8 depicts an Absinthe query. This query finds the author that last
modified a class. To this end, the query describes a path through the revision
graph. Along this path, there must be a revision in which the author modified
the class, followed by revisions in which that class is no longer modified up to
the terminal revision is encountered. The first line unifies ?first with the starting
revision of the VCS. Lines 2–7 describe a path throughout the revision graph,
starting in ?first and ending in ?last. Line 2 uses the existential quantifier e to state
that the query must hold for at least one path. The universal quantifier a would
imply that the query must hold for all the paths between ?first and ?last. Line
2 also skips an arbitrary number of revisions along the path by using the manyOf>

temporal operator with a body that always succeeds. manyOf> is a regular path
expression operator that succeeds when its goal succeeds an arbitrary, including
zero, amount of times. It also implicitly skips one revision after each succession of
its goals. manyOf> is greedy, meaning it tries to succeed as much as possible (or in
this case skips as many versions as possible). The lazy variant manyOf< would skip
zero versions first. Both operators have the same semantics, but produce results
in a different order. Lines 3–5 state that in the current revision of the expression
a class ?class must be present that was modified by ?author. Next, line 6 states
that for the remainder of the path that class cannot be changed. Note that the
same variable ?class is reused across different revisions. Finally, the last line of the
query states that ?last must be a terminal version, ensuring that the path ends in
a terminal revision in the graph.

39

3 State of the Art in History and Software Querying

Absinthe provides a clean separation of temporal and revision concerns. Pred-
icates are evaluated against a dynamic fact base that changes depending on the
temporal specification. Nonetheless, it has several shortcomings. First, it is focused
on querying a coarse-grained representation of the history of a software project. It
enables users to retrieve the source code of a method, but does this inefficiently
by fetching the code from a remote repository (C1). Such a coarse-grained repre-
sentation can only be built efficiently when the underlying VCS has knowledge
of the grammar of the stored programming language. If not, the complete repre-
sentation of the source code is required. Next, Absinthe comes with a limited,
predefined set of graph navigation operators that are not easily extended (C2). Fi-
nally, source code changes are not available, and thus change (C3) and evolution
(C4) characteristics cannot be expressed.

Boa Boa [25] is a language for querying large software histories. A query is
matched against a (predefined) set of software histories. Queries are written in
a MapReduce [21] style: a mapping function retrieves the correct data elements,
while an aggregator (such as max, min, mean, sum, . . .) combines these data ele-
ments into a single result. MapReduce ensures that queries are evaluated efficiently
against a large number of repositories.

We already provided a Boa example in Section 2.2.1. Figure 3.9 depicts a differ-
ent example, taken from Boa’s website2. It depicts a query that detects whether
a fixing revision added a null-check to a file. A fixing revision is identified by a
commit message containing the word “fix” To this end, a visitor is defined that
visits every queried project. It visits the different modified files for every revision.
Whenever a previous revision exists of the modified file (in case it is introduced
there is no previous revision), it visits both revisions of the file. This time the vis-
itor will visit nodes of type Statement. It will count the number of if-statements
that check for a null-statement. This is done for both revisions of the file, and in
case the number of null-checks is increased it must have been added in the fixing
revision.

Boa is aimed at supported MSR studies across large repositories. To this end, it
uses MapReduce as an efficient way to query the different revisions across different
repositories in parallel. Temporal and revision characteristics are expressed using
the Visitor pattern. The temporal language is constrained as users can only express
that all revisions of a project must be visited (C2). A visitor pattern also does
not allow composing nor easy reuse of existing queries (C5). Next, Boa is only
available through an online platform, restricting users to query only a predefined
set of software projects. Finally, source code changes are not available, and thus
change (C3) and evolution characteristics (C4) cannot be expressed.

2http://boa.cs.iastate.edu/

40

http://boa.cs.iastate.edu/

3.2 Querying Multiple Revisions

1 p: Project = input;
2 AddedNullCheck: output sum of int;
3

4 isfixing := false;
5 count := 0;
6 # map of file names to the last revision of that file
7 files: map[string] of ChangedFile;
8

9 visit(p, visitor {
10 before node: Revision -> isfixing = isfixingrevision(node.log);
11 before node: ChangedFile -> {
12 # if this is a fixing revision and
13 # there was a previous version of the file
14 if (isfixing && haskey(files, node.name)) {
15 # count how many null checks were previously in the file
16 count = 0;
17 visit(getast(files[node.name]));
18 last := count;
19

20 # count how many null checks are currently in the file
21 count = 0;
22 visit(getast(node));
23

24 # if there are more null checks, output
25 if (count > last)
26 AddedNullCheck << 1;
27 }
28 # if file is deleted
29 if (node.change == ChangeKind.DELETED)
30 remove(files, node.name);
31 else
32 files[node.name] = node;
33 stop;
34 }
35 before node: Statement ->
36 # increase the counter if there is an IF statement
37 # where the boolean condition is of the form:
38 # null == expr OR expr == null OR null != expr OR expr != null
39 if (node.kind == StatementKind.IF)
40 visit(node.expression, visitor {
41 before node: Expression ->
42 if (node.kind == ExpressionKind.EQ || node.kind == ExpressionKind.NEQ)
43 exists (i: int; isliteral(node.expressions[i], "null"))
44 count++;
45 });
46 });

Figure 3.9: Boa query that computes whether a fixing revision added a null-check to a
file. This example is adapted from the Boa documentation.

41

3 State of the Art in History and Software Querying

3.2.1 Conclusion
Early approaches, such as SCQL, V-Praxis and Absinthe, only provide a
coarse-grained representation of the history. Absinthe provides a complete rep-
resentation of the source code in an on-demand fashion, at the cost of a perfor-
mance penalty. Later approaches such as Harmony focus on providing history
information, but lack a dedicated specification language. Boa is aimed at sup-
porting MSR studies over multiple large repositories. Boa specifications adhere
to the MapReduce paradigm, which is an efficient way to collect and process data
of every revision in the system. A downside of visitor pattern is that queries are
difficult to abstract from, reuse and compose.

3.3 Querying Source Code Changes

In the following section we discuss existing approaches that enable users to query
source code changes.

CheOPS CheOPSJ [69] advocates change-centric software engineering using a
first-class representation of changes. It is a Java-centric continuation of CheOPS [27].
CheOPSJ is created to work with the Eclipse IDE, whereas CheOPS does so for
Smalltalk. CheOPSJ provides changes stemming from both a change logger and
change distiller. CheOPS models revision entities, changes and their dependen-
cies in a graph. Examples of these change dependencies are that the subject (i. e.,
the affected AST node) of a change must be present or that a method can only be
removed after all its callers are also removed. CheOPSJ uses GROOVE [65] to
describe patterns in these graphs.

Figure 3.10 depicts a GROOVE query over a CheoPSJ change graph. The
query detects instances of a “move method” pattern. This pattern requires the
removal of a single method in one class, and the addition of a method with the
same name and signature in a different class. This query is taken from Soetens
[69]. The query consists out of two class nodes (labeled Class) and two method
nodes (labeled Method). Four addition nodes (labeled Add) and a single removal
node (labeled Rem) are also present. The class nodes must be different, indicated
by the red edge. Both methods must have the same name and signature, indicated
by the shared nodes. One of the methods must have been removed, indicated by
it being the subject of a remove change. Finally, both addition and removal must
happen within a timespan of 10000ms. To this end, the query ensures that the time
stamps of the operations are within this time span.

CheOPSJ provides a change-oriented representation of the history of a soft-
ware project. Its program representation is based on a Famix [67], which does not
provide submethod information. As a result, fine-grained revision data is not avail-

42

3.3 Querying Source Code Changes

Figure 3.10: A GROOVE query that detects a “move method” pattern in the change graph
of CheOPSJ. This example is taken from Soetens [69].

able (C1). The authors focus on changes stemming from a logging approach. These
changes have a time stamp, but the revision elements themselves do not. There is
no notion of a revision present, only changes that were applied on an initial start-
ing state. This makes expressing temporal characteristics hard (C2). CheOPSJ
enables expressing change characteristics (C3). The authors circumvent some of
the problems of specifying evolution characteristics by relying on logged changes
and by not providing move operations, which are represented by the removal and
addition of the element. Nonetheless, the “Change Equivalence” problem (detailed
in Chapter 7) still exists. For example, a method can be introduced by inserting a
new method, but also by renaming an existing method. These different sequences
must be manually accounted for. The query language GROOVE supports query
abstraction, composition and reuse (C5).

Evolizer Evolizer [37] is a platform to perform studies on the evolution of
source code. To this end, the authors enable importing data from the version con-
trol systems CVS and SVN and the issue tracking software Bugzilla. Evolizer

stores the imported data in a database that can be accessed to perform MSR stud-
ies. Several tools are built on top of Evolizer. Among these is ChangeDis-
tiller [33]. ChangeDistiller computes fine-grained source code changes be-
tween files of two successive revisions. To this end, it uses the facilities provided

43

3 State of the Art in History and Software Querying

by Evolizer to retrieve the source code of modified files between two revisions,
and stores the computed changes in a database as well.

Evolizer facilitates accessing the source code from a repository, but, to the best
of our knowledge, does not provide a query language for this data. Source code
can be queried using the facilities provided by Eclipse, for example by implement-
ing a visitor (C1). ChangeDistiller provides fine-grained source code changes,
but does not provide a dedicated query language for these changes. As such,
Evolizer does not allow expressing temporal (C2) characteristics, nor change
(C3) or composable source code characteristics (C5). It could provide a solid foun-
dation for a history query language, as it exposes the historical data required to
support each of the desired criteria.

3.3.1 Conclusion
Existing approaches that provide source code changes do not focus on querying
these changes and the revision elements. They do not suffice as general-purpose
history querying tools. Evolizer forms a starting point by providing the different
data sources needed to create such a history querying tool. CheOPSJ represents
changes and their dependencies as a graph. This enables users to query changes
and the affected code using a graph query language. Unfortunately, CheOPSJ
does not facilitate in expressing fine-grained revision and temporal characteristics.

3.4 Conclusion

In this chapter we have discussed the state of the art in querying software, its his-
tory and evolution. First, we have discussed several approaches that query a single
revision of a software project. Logic program query languages represent their pro-
grams as a fact base and provide predicates to query this fact base. Their declara-
tive nature facilitates expressing the characteristics of the sought-after source code
in a terse query, while the identification of the elements adhering to these charac-
teristics is done by the underlying reasoning engine. Next, we have discussed sev-
eral existing history querying approaches. Early approaches provide but a coarse-
grained representation of each revision of the system. Later approaches include
the complete source code, but lack a general-purpose specification language or are
focused on performing MSR studies. Finally, we have discussed existing tools and
approaches that work with changes. Tools such as CheOPS organize changes to
help developers browse a sequence of changes. These approaches are not suited
to perform automated studies across different repositories. In general, there exists
no tool that adheres to all the criteria listen in Section 2.4.

44

4
O V E RV I E W O F T H E A P P R O A C H

In this chapter we introduce our approach to history querying that satisfies the
criteria in Chapter 2. We have instantiated this approach in a domain-specific lan-
guage called QwalKeko. QwalKeko enables its users to query the history and
evolution of Java projects stored in git. To this end, it converts a git repository
into a directed acyclic graph, of which the nodes corresponds to revisions, and
the edges correspond to the successor relation between revisions. A QwalKeko

query describes a path throughout this graph, and the characteristics revision el-
ements need to exhibit in revisions along this path. QwalKeko is a declarative
query language. Users specify the different characteristics of the sought-after ele-
ments, while identifying these elements is left to an underlying search mechanism.

QwalKeko integrates three smaller domain-specific languages; the graph query
language Qwal, the program query language Ekeko, and the change query
language ChangeNodes. Figure 4.1 depicts an overview of the architecture of
QwalKeko. Qwal is a general-purpose graph query language that enables speci-
fying paths through any graph and the properties that have to hold in nodes along
this path. In the context of QwalKeko, Qwal is used to specify paths through the
revision graph. Such a path describes the temporal relations of a history query, and
supports the second criterion. We introduce Qwal in Section 4.2, and discuss it
in detail in Chapter 5. Ekeko is a declarative programming language that enables
querying Java projects in the Eclipse IDE. It is used to express the revision char-
acteristics that elements need to exhibit in revisions along the path specified using
Qwal. It supports the first criterion. ChangeNodes provides an implementation
of the change differencing algorithm presented by Chawathe et al. [11]. Change-
Nodes features predicates that reify the output of this distiller and enables users
to express change characteristics. This supports the third criterion. We introduce
these predicates in Section 4.4 and discuss them in detail in Chapter 6. To enable
users to specify evolution characteristics, QwalKeko provides a graph represen-
tation of intermediate ASTs, where each node is an AST that can be created by

45

4 Overview of the Approach

Clojure

QwalKeko

fine revision
(ast ?type ?node)
(has ?prop ?node ?result)
(child ?prop ?node ?child)
…

ekeko

coarse revision
(fileinfo ?file version)
(author version)
(revision-number version)
(date version)
…

ekeko
Converted Graph

change&evolution
(change ?change left right)
(change|affects-node c ?node)
…

ChangeNodes

temporal
q=>
q=>*
q<=
…

qwal

consults

navigates ChangeNodes
Distilleruses

consults

Figure 4.1: Overview of QwalKeko’s integration of ChangeNodes, Qwal and Ekeko.

applying a subset of changes. Evolution characteristics concern paths throughout
such an “Evolution Graph” and the source code characteristics of its intermediate
states. This supports the fourth criterion. QwalKeko is a declarative language
that supports query abstraction, reuse and composition, hereby supporting the
fifth criterion. Its declarative nature supports the sixth criterion. As it relies so
heavily on declarative programming, we start this chapter with an introduction to
declarative programming in Clojure.

4.1 An Introduction to Declarative Programming in
Clojure

Throughout this thesis we make use of the dynamic programming language Clo-
jure. Clojure is a Lisp-dialect that compiles to Java Virtual Machine (JVM) byte-
code. Clojure features a symbiosis with Java enabling calling Java code from
Clojure and vice versa. This thesis makes extensive use of a declarative reason-
ing engine called core.logic

1. This engine is based on miniKanren [8], which
provides a declarative library for the Scheme programming language.

Logic queries are launched using the special forms run or run*. The first returns
a given number of solutions, while the latter computes all solutions to the query.
Throughout this thesis we will use the naming convention that logic variables start
with a question mark. We explain the different aspects of core.logic by means of
several examples that gradually increase in complexity.

1https://github.com/clojure/core.logic

46

https://github.com/clojure/core.logic

4.1 An Introduction to Declarative Programming in Clojure

1 (run* [?x]
2 (== ?x 1))
3

4 ;;[1]

The above example depicts how a logic query can be launched. The query re-
turns all solutions to the logical variable ?x. The first line launches a logic query
using run*. It takes as its first argument a list of result variables, and computes
all possible bindings for these variables that satisfy the query’s logic conditions.
These are given as the second argument to run*. The special form run has a similar
interface, except that it takes the number of desired solutions as an additional first
argument. Line 2 unifies ?x with the number 1 using the predicate ==/2.2 ==/2 is
the basic unification predicate of core.logic. Syntactically there is no difference
between a predicate and a Clojure function. Semantically, a predicate does not
return any value, but provides values for its arguments. In declarative program-
ming these values are called terms. A term can be one of the three following things:

1. A primitive value, such as a number, a string or a Java object.

2. A logic variable.

3. A collection of which each element is another term.

We use the work of Flach to explain unification [32]. We first introduce the
concept of substitution. A substitution is a mapping from variables to terms. For
example, {?x ! 1} and {?x ! ?y} both are substitutions. Unification is the process
of making terms equal by means of a substitution. This substitution is called a
unifier. Several unifiers may exist to unify both terms, where one unifier replaces
more variables by terms than strictly necessary. The most general unifier is the
one that only substitutes the necessary variables. Such a unifier is unique, up to
renaming of variables. Unification is the process of identifying such unifier. If no
such unifier exist we say that the terms are not unifiable.

1 (run* [?x]
2 (membero ?x [1 2 3]))
3

4 ;;[1 2 3]

The above example illustrates the glue of declarative programming, namely
backtracking. Backtracking tries to find additional solutions, either when the user
requested additional solutions or when a later condition fails, by trying the differ-
ent possible values for a variable. The example calls the membero/2 predicate, a logic
implementation of member. It unifies its first argument with the different elements
of its second argument. Note that ?x will only have a single value at a single time.
Additional solutions are computed using backtracking.

2The number indicates the arity of the predicate

47

4 Overview of the Approach

1 (run* [?x]
2 (membero ?x [1 2 3])
3 (membero ?x [2 3 4]))
4

5 ;;[2 3]

The above example further illustrates backtracking and conjunction. First, line 2

unifies ?x with the value 1. Next, line 3 tries to unify ?x with the value 2. This fails,
so the reasoning engine backtracks to line 2, which had more possible solutions.
This time, x is unified with the value 2. Line 3 now succeeds, and a solution is
found. As run* computes all solutions, ?x will be unified with the value 3 as well,
which is also a solution.

1 (run* [?x]
2 (conde
3 [(== ?x 1)]
4 [(== ?x 2)]))
5

6 ;;[1 2]

The above example illustrates the logical disjunction conde. conde takes an arbi-
trary number of clauses, and each clause consists out of an arbitrary number of
conditions. conde succeeds if at least one of its clauses succeeds. When multiple
clauses succeed, backtracking ensures the different succeeding clauses are used to
compute solutions. Thus, ?x either takes the value 1 or the value 2.

1 (run* [?x ?y]
2 (membero ?x [1 2 3])
3 (membero ?y [3 4 5]))
4

5 ;;[[1 3] [2 3] [3 3] [1 4] [2 4] [3 4] [3 3] [3 4] [3 5]]

The above example illustrates queries with multiple solution variables. Instead
of outputting a collection of possible values for a single variable, core.logic re-
turns a collection of vectors. In each vector the first element corresponds to a
solution for the first variable, the second element with a solution for the second
variable etc.

1 (run* [?x ?y]
2 (membero ?x [1 2 3])
3 (membero ?y [3 4 5])
4 (!= ?x ?y))
5

6 ;;[[1 3] [2 3] [1 4] [2 4] [3 4]...]

The above example illustrates the predicate !=/2, which states that its arguments
cannot unify. When both arguments are a primitive value, this predicate succeeds
by verifying that both arguments are not equal. When one of the arguments is an
unbound variable it places a constraint on the variable that is verified when the
variable is ground. core.logic features a complete library to perform constraint-
based programming. We do not discuss this library as we only make use of the !=

predicate in this dissertation.

48

4.1 An Introduction to Declarative Programming in Clojure

1 (defn membero [?x ?list]
2 (fresh [?head ?tail]
3 (conso ?head ?tail ?list)
4 (conde
5 [(== ?head ?x)]
6 [(membero ?x ?tail)])))

The final example illustrates how new predicates can be implemented. They are
defined like a regular Clojure function, except that their body consists of an all

or fresh special form. Both implement a logic conjunction of conditions. fresh, in
addition, introduces new, local, logic variables. In contrast to Prolog, core.logic
requires variables to be declared. The code depicts a possible implementation of
membero/2. On line 2 it introduces two new logic variables ?head and ?tail using
fresh. Line 3 uses predicate conso which is the declarative version of Clojure’s
regular cons function. It unifies its first argument with the head of the third argu-
ment and its second argument with the rest of the third argument. Lines 3–5 state
that either ?x must unify with ?head or that ?x must be a member of ?tail.

4.1.1 Negation As Failure
The final concept we would like to introduce is the concept of negation as failure
(NAF). Negation is used in queries to state that conditions are not allowed to
succeed. To this end, the special form fails is used, which takes a single goal that
must fail. For example, in the following query we state that a variable should not
be a member of the list on line 3 but of the list on line 4:

1 (run* [?x]
2 (fails
3 (membero ?x [1 2 3]))
4 (membero ?x [2 3 4]))
5

6 ;;’()

Counter-intuitively, this query does not yield any results. The reason for this is
that fails implements NAF. As such, the predicate succeeds only when its condi-
tions do not yield a solution. If no solution exists, fails succeeds, otherwise it fails.
For the given example, the condition on line has several solutions, namely ?x either
being 1, 2 or 3. Variable ?x not being ground can be a member of the first list. As
a result, the condition on lines 2–3 fails. Switching around both statements yields
the expected result, as depicted in the following figure:

1 (run* [?x]
2 (membero ?x [2 3 4])
3 (fails
4 (membero ?x [1 2 3])))
5

6 ;;[[4]]

49

4 Overview of the Approach

foo bar

quux baz

Figure 4.2: Example Graph containing four nodes foo, bar, baz and quux. The root node
is bound to foo.

The following code depicts the implementation of fails. It uses condu, a logical
disjunction that, once the first condition of a clause succeeds, does not backtrack.
Thus, if goals on line 3 succeeds the second branch on line 4 will never be con-
sidered. If it does not succeed the second branch is considered, which always
succeeds.

1 (defmacro fails [& goals]
2 ‘(condu
3 [(all ~@goals) fail]
4 [succeed]))

Throughout this dissertation we frequently use NAF to ensure a code element
is absent from a revision. For example, a query that wants to find in what revi-
sion a class is introduced must find a revision in which that class is not present,
and that the class is present in the next revision. In order to correctly implement
such queries it is important to fully grasp the semantics of NAF with regards to
variables that are ground or not.

4.2 Querying Graphs with Qwal

Qwal

3 is a declarative, domain-specific language for querying graphs hosted by
Clojure’s core.logic library. It enables navigating a graph using regular path
expressions [17, 54]. Regular path expressions (RPE) are akin to regular expres-
sions, except that they match nodes throughout a graph instead of characters in a
string. We illustrate Qwal by means of several examples. In Chapter 5 we discuss
Qwal in detail.

Figure 4.2 depicts an example graph of four nodes, foo, bar, baz and quux. The
nodes of this graph are represented by Clojure symbols and do not contain any
information. We have bound the Clojure variable graph to this graph, and the

3https://github.com/ReinoutStevens/damp.qwal

50

https://github.com/ReinoutStevens/damp.qwal

4.2 Querying Graphs with Qwal

Clojure variable start to the node foo. We illustrate the basic concepts of Qwal

by means of several simple queries.

1 (let [graph {:nodes ... :successors ...}
2 start ’foo]
3 (run* [?end]
4 (qwal graph start ?end []
5 (current-node [node]
6 (== node ’foo))
7 q=>
8 (current-node [node]
9 (== node ’bar))

10 q=>
11 (current-node [node]
12 (== node ’baz))
13 q=>
14 (current-node [node]
15 (== node ’quux)))))
16

17 ;;[quux]

The above example navigates a specific path through the graph; from foo over
bar and baz to quux. To this end, line 3 uses run* to launch a query that returns all
solutions for ?end, which will be the end node of our RPE. Line 4 launches a RPE
using the qwal special form. It takes as input a graph and starting node, a logic
variable that will be bound with the end node of the RPE, and a list of local logical
variables. In this example we start our path expression in start, which is bound to
foo. Lines 5–6 make use of the special form current-node to bind node to the node
of the graph up to which the RPE has navigated so far. Note that the scope of the
Clojure variable node is limited to the body of the current-node special form. Line
6 unifies node with ’foo. As our path expression started in the start node, and the
expression has not yet navigated to a different one, the unification succeeds. Line
7 makes use of the navigation operator q=>, which moves the current node to one
of its successors. The node foo only has a single successor, bar, which is now the
current node of the expression. Line 8–9 ensure that this is the case. Lines 10–15

follow a similar pattern, changing the current node to respectively baz and finally
quux. The latter will be the end node of our expression, and is unified with ?end.

1 (run* [?end]
2 (qwal graph start ?end []
3 (q=>*)
4 (current-node [node]
5 (== node ’quux))))
6

7 ;;[quux]

The above example depicts a more complex navigation. It starts in a similar man-
ner as before, launching a new logic query followed by a RPE starting in start and
finishing in ?end. Line 3 makes use of the q=>* operator, which skips an arbitrary, in-
cluding zero, number of nodes. It is implemented using a logic disjunction, which
either succeeds, or which applies q=> and a recursive call of itself. Backtracking

51

4 Overview of the Approach

ensures that all possible paths are explored. Lines 4–5 then state that the current
node, and thus the end node, must be quux. Note that the graph contains an infinite
path due to a cycle between bar, baz and quux. Nonetheless, Qwal detects this cycle
and does not compute results indefinitely. The nodes in the cycle are visited only
once. If the query would contain an additional q=>* nodes in the cycle would be
visited twice.

1 (run* [?end]
2 (qwal graph start ?end []
3 (q=>*)
4 (current-node [node]
5 (== node ’foo))
6 (q=>*)
7 (current-node [node]
8 (== node ’absent))))
9

10 ;;[]

The above example determines whether a path exists through graph graph in
which the node foo is encountered, eventually followed by the node absent. Such
a sequence of nodes does not exist in our example graph. This example further
illustrates that Qwal can handle infinite paths, and does not take the same path
indefinitely when it will not yield new results.

1 (run* [?end]
2 (qwal graph start ?end [?state]
3 (q=>*)
4 (current-node [node]
5 (== node ?state))
6 (q=>+)
7 (current-node [node]
8 (== node ?state))))
9

10 ;;[bar baz quux]

The final example detects cycles in the graph by checking whether the same node
is encountered twice along a single path. To this end, it introduces a logic variable
?state in the scope of the path expression. Line 3 skips an arbitrary number of
nodes using the q=>* operator. Lines 4–5 unify ?state with the current node of the
path expression. Line 6 skips an arbitrary, non-zero, number of nodes. The final
two lines detect whether the node ?state is encountered again. The query returns
the three nodes that are part of the cycle, bar baz and quux. The q=>* operator on
line 3 will first skip zero nodes, meaning ?state is bound to foo. The q=>* operator
on line 6 navigates to a successor, in this case bar. Lines 7–8 now fail, and upon
backtracking line 6 navigates to baz. These, and further backtracking on line 6, will
not yield any solutions. It is only when the reasoning engine backtracks on line 3

that solutions are found. Once again Qwal will not go into an infinite loop: the
reasoning engine detects whether, during the execution of a single goal, the same
state is encountered twice. In this case a cycle exists and it will not further explore
this state.

52

4.3 Querying Code with Ekeko

We further discuss regular path expressions in the context of QwalKeko in
Chapters 5 and 7. They are used to express temporal and evolution characteristics,
as stipulated by Criteria 1 and 2.

4.3 Querying Code with Ekeko

Ekeko

4 [19] is another domain-specific language hosted by Clojure, used to
query Java projects in the Eclipse IDE. To this end, it features a predicate library
that enables users to query the AST representation of the source code, as well
as control and data flow information of the program under investigation. Users
can launch queries directly from Eclipse as Ekeko is integrated via an Eclipse

plugin that provides a read-eval-print loop.
Ekeko predicates reason about the Abstract Syntax Tree (AST) representation

provided by Eclipse. A basic understanding of this Eclipse representation is
therefore required. All AST nodes inherit from an abstract class ASTNode. For each
AST node type a corresponding class exists, such as MethodDeclaration, TypeDeclaration,
ReturnStatement etc. Every node type has a predefined set of properties. For exam-
ple, the body of a method declaration is accessed using the BodyProperty. Three
kinds of properties exist; child properties have a single AST node as their value,
child list properties have a collection of nodes as their value, and simple properties
have a regular Java object as their value. Ekeko reifies these AST nodes and their
properties. We illustrate Ekeko by means of several examples.

1 (run* [?method]
2 (ast :MethodDeclaration ?method))

The above query detects all method declarations present in the queried software
projects. The query finds all solutions for ?method. On line 2 it uses the Ekeko

predicate ast, which unifies its first argument with the type of the sought-after
AST node,5 and unifies its second argument with an instance of that type from
the AST of the program under investigation. In this case we already provided the
value for the desired type, namely a :MethodDeclaration. As such, ?method will be
unified with a method declaration in the program. Types are specified using the
Clojure keyword that corresponds to the name of the sought-after class.

1 (run* [?method ?body]
2 (ast :MethodDeclaration ?method)
3 (has :body ?method ?body))

The above query retrieves all method declarations and their corresponding body.
To this end, line 3 uses the has/3 predicate which accesses the value of a particular

4https://github.com/cderoove/damp.ekeko
5This argument is a Clojure keyword, which are prefixed by a colon.

53

https://github.com/cderoove/damp.ekeko

4 Overview of the Approach

property of a code. It unifies its first argument with the name of the property, and
its second argument with the owner of that property, and its third argument with
the value of that property. In case of a simple property this value is a wrapper for
a Java obect that keeps a link to its owner. In case of a child property the value is
another AST node. In case of a child list property, the value is a list of nodes.

1 (run* [?method ?body ?statement]
2 (ast :MethodDeclaration ?method)
3 (has :body ?method ?body)
4 (child :statements ?body ?statement))

The above query retrieves all method declarations, their corresponding body and
the statements inside that body. The query starts from the same conditions as the
previous one, but continues with a condition that retrieves a statement from the
method’s body. We use the Ekeko predicate child, which is similar to has except
that it is specialized for child list properties. It unifies its first argument with the
keyword representation of a child list property, unifies the second argument with
the owner of the list, and the third argument with a single element from the list
located at that property.

1 (run* [?method]
2 (fresh [?return ?value]
3 (ast :MethodDeclaration ?method)
4 (child+ ?method ?return)
5 (ast :ReturnStatement ?return)
6 (has :expression ?return ?value)
7 (ast :NullLiteral ?value)))

The final example detects all methods that explicitly return a null value. We
introduce two local variables ?return and ?value using fresh. Line 3 binds ?method

to a method declaration. Line 4 uses child+, a recursive version of child, and binds
?return to a descendant of ?method. Line 5 ensures that this descendant ?return is a
return statement. Lines 6 retrieves the expression of the return statement using has

and binds it to ?value. Finally, line 7 ensures that ?value is a null literal.
Chapter 5 discusses Ekeko and how it can be used to express revision charac-

teristics, stipulated by Criterion 2, in the context of QwalKeko in more detail.

4.4 Querying Changes with ChangeNodes

The final part of QwalKeko enables users to query the fine-grained evolution
of the source code of the software project under investigation. To this end, it pro-
vides the following three parts. First, it provides an algorithm to distill changes
between two revisions of a file. Second, it provides a declarative language that
reifies these changes, enabling users to express the characteristics of an individ-
ual change. Third and finally, it provides an evolution query language that en-
ables users to express how source code could have evolved, and that identifies the
changes responsible for this evolution.

54

4.4 Querying Changes with ChangeNodes

Retrieving AST Changes
Most VCS only store changes at the level of modified lines of text. They do not have
a language-aware representation of the versioned source code, and as such cannot
provide fine-grained source code changes. Fine-grained changes are operations
that can be applied on an AST to transform it from one revision into the AST of
the next revision.

QwalKeko features a change distiller implementation called ChangeNodes.
ChangeNodes computes fine-grained source code changes (i. e., insert, move,
delete or update of an AST node) between two revisions of a file. It is based on the
distilling algorithm of Chawathe et al. [11], which is also used by ChangeDis-
tiller [33], a widely used change distiller. The output of a distilling algorithm
is a sequence of changes that must be applied in order and that transform the
original AST into the target AST. A distilling algorithm tries to output a minimal
edit script that reuses as many existing nodes as possible. The main difference
between ChangeDistiller and ChangeNodes is that ChangeNodes rep-
resents its changes using the AST representation of Eclipse, while ChangeDis-
tiller uses a language agnostic representation. The advantage of using a differ-
encing algorithm is that it can compute source code changes for any two source
code files. The disadvantage is that these algorithmically retrieved changes do not
necessarily correspond to the changes a developer made.

Supporting Change Characteristics
As ChangeNodes uses the Eclipse AST representation, we can use Ekeko to
query these changes. In addition to the distiller, ChangeNodes provides a pred-
icate library, which extends Ekeko with predicates for reasoning about the dis-
tilled changes. It enables a user to express characteristics of an individual change,
its subject and its effect. The specification of the AST nodes of a change is done
using Ekeko. We illustrate this idea further by means of an example:

1 (let [rev-graph ...
2 root (first (:roots rev-graph))]
3 (qwalkeko* [?change ?end]
4 (qwal rev-graph root ?end [?left ?right ?inserted]
5 (in-source-code [curr]
6 (ast :CompilationUnit ?left))
7 q=>
8 (in-source-code [curr]
9 (compilationunit-compilationunit|corresponding ?left ?right)

10 (change ?left ?right ?change)
11 (change|insert ?change)
12 (change|insert-node|node ?change ?inserted)
13 (ast :MethodDeclaration ?inserted)))))

The above example query finds changes that insert a method declaration in the
source code, between the root revision and a direct successor of the source code.

55

4 Overview of the Approach

The third line launches a QwalKeko query that finds all such inserts in version
?end. It uses the special form qwalkeko*, which is the QwalKeko equivalent of run*.
It enables to modify the fact base used by Ekeko throughout the execution of a
query. Line 4 launches a regular path expression over the revision graph rev-graph,
representing the history of a software project, starting in the root revision root, and
ending in ?end. It introduces three local variables, ?left, ?right and ?inserted. These
will get bound respectively to the original source code of one file, the source code
of that file in the next revision and the method declaration that was inserted in
between. Lines 5–6 bind ?left to a compilation unit (i. e., the root node of a file)
from the root revision. The in-source-code special form extracts the source code of
the current revision, and evaluates the conditions in its body against that revision.
This enables users to express source code characteristics for that revision. Line 7

changes the current revision to a direct successor using the Qwal predicate q=>.
Line 9 uses compilationunit-compilationunit|corresponding to find the same compi-
lation unit in the current revision, and unifies it with ?right. To this end, it takes
as its first argument a compilation unit, and looks for a compilation unit in the
same package that contains the same class declaration. Line 10 uses change, which
distills the different changes between both compilation units, and unifies ?change

with a single one of these changes. Line 11 ensures that ?change is an insert. Line
12 unifies ?inserted with the effect of the insert, i. e., the node that is inserted. Line
13 uses the Ekeko predicate ast to ensure that a method declaration is added.

Chapter 6 discusses the ChangeNodes distiller and its change query language
in detail. The language is used to express change characteristics, as stipulated by
Criterion 3.

4.4.1 Supporting Evolution Characteristics
The query from the previous example identified changes that introduce a method
declaration. Individual change characteristics suffice when the user knows before-
hand what specific changes he is looking for. Evolution characteristics are required
when the change sequence is unknown beforehand or when a high-level code
transformation must be described. One of the problems with specifying changes
is that multiple change sequences can implement the same source code transfor-
mation, even when the underlying source code files are similar. This is due to the
heuristic nature of the distilling algorithm. As a result, users must take all possible
change sequences into account when writing generic change queries. For example,
the query from the previous example only takes insert operations into account,
even though a method can be introduced by updating the name of an existing
method, or by moving a name to the name property of a method declaration.

This is where source code evolution characteristics come into the picture. Instead
of trying to account for the different possible change sequences that can implement
the sought-after code evolution a user describes the source code before and after

56

4.5 Applicability of the Approach

the evolution using Ekeko. The search mechanism of QwalKeko identifies the
concrete changes implementing this code evolution and returns them to the user.
To this end, a so-called Evolution Graph (EG) is constructed, which consists out
of all the possible intermediate ASTs that can be constructed from a sequence of
changes.

Evolution characteristics concern the evolution of source code along the path
through this ESG. We use Qwal to describe paths throughout this graph. To this
end, extend Qwal with change navigation predicates that control the number of
applied changes. The following example illustrates such a query, that returns an
evolution state in which a method is introduced. An evolution state contains an
intermediate AST that is constructed from applying a subsequence of changes. The
example assumes the evolution graph is already created.

1 (let [evolution-graph ...
2 source ...]
3 (qwalkeko* [?end]
4 (query-changes evolution-graph ?end [?inserted]
5 (change->*)
6 (in-current-es [ast es]
7 (ast-ast-method|introduced source ast ?inserted)))))

The second line launches a QwalKeko query that finds all evolution states ?end

in which a method was added. Line 4 launches a query over the evolution graph
using the query-changes special form. It starts in the “source” evolution state, that is
the state in which no changes have been applied. Line 5 uses change->* to apply an
arbitrary number of changes. Applying a change moves the current evolution state
to a successive evolution state. A new intermediate AST is constructed by applying
the change on the intermediate AST of the previous evolution state. Line 6 uses
special form in-current-es to express source code characteristics of the AST ast of
the current evolution state es. Line 7 uses ast-ast-method|introduced, which takes as
input 2 bound ASTs and unifies its third argument with a method declaration that
is introduced in the second AST. We assume source is bound to the original source
code. ast is a local variable introduced by in-current-es, and is bound to the AST of
the current evolution state. Finally, ?inserted is unified with the newly introduced
method.

Chapter 7 discusses the support for evolution characteristics in detail, as stipu-
lated by Criterion 4.

4.5 Applicability of the Approach

QwalKeko supports querying Java projects that are stored in git. The discussed
concepts can be generalized to other programming languages and version control
systems.

57

4 Overview of the Approach

Modern general-purpose VCS (e. g., git, darcs, svn or mercurial) have a
notion (either directly supported or by convention) of branches and revisions. Such
a VCS can be represented as a graph, and temporal characteristics can be expressed
as paths through this graph.

A coarse-grained representation of the versioned source code is required to
support coarse-grained revision characteristics. For object-oriented languages a
Hismo [39] model can be used. An instance of such a model cannot be created
for any revision of a software project stored in language-agnostic VCS without
checking out the complete source code of that revision first. Language-aware VCS
(e. g., Monticello, a VCS used for Pharo) do enable creating such a model
efficiently [52]. QwalKeko does not feature such a representation as creating it
for the combination of Java and git requires checking out the complete source
code anyway. Thus, QwalKeko focuses on querying a fine-grained revision rep-
resentation.

A structured reification of the source code is required to support fine-grained
characteristics. QwalKeko combines the representation provided by the Eclipse

JDT with the logic program query language Ekeko to support revision characteris-
tics. The granularity of this information can differ. The representation may contain
a reification of the source code (i. e., an abstract syntax tree), but it may also contain
control and data-flow information. A parser is required to create such an abstract
syntax tree that adheres to an abstract grammar. The level of information that is
stored in such AST depends on the used parser.

An AST representation is required to support change characteristics. A change
distiller takes as input two ASTs, and outputs a sequence of changes. A distiller
does not rely on the semantics of the programming language, but works purely on
a syntactical level.

An AST representation that has knowledge of the abstract grammar of the rep-
resented programming language is required to support evolution characteristics.
This is required to support change subsequences that, when applied, result in syn-
tactically legal source code. The absence of such an AST representation would
result in support for evolution characteristics that may also return solutions that
yield syntactically illegal source code.

4.6 Conclusion

In this chapter we have provided an overview of QwalKeko and its components;
the graph query language Qwal, the program query language Ekeko and the
change query language ChangeNodes. Qwal is used to express temporal char-
acteristics (C1). Users describe a path using regular path expressions through a
graph of revisions. This graph represents the history of the software project under
investigation. Ekeko is used to express revision characteristics of the revisions

58

4.6 Conclusion

along such a path (C2). To this end, it provides its users with a predicate library
that enable expressing characteristics over the AST of a revision, as well as control
and data flow graphs of the software project. QwalKeko supports change char-
acteristics (C3) using ChangeNodes. ChangeNodes provides a change distill-
ing algorithm to compute fine-grained source code changes between two revisions
of a file. QwalKeko supports evolution characteristics (C4) by transforming the
output of ChangeNodes into an evolution graph. Nodes in this graph are repre-
sented by intermediate ASTs that are the effect of applying a subset of the distilled
changes. Evolution characteristics describe a path throughout an evolution graph
and the characteristics intermediate AST states need to exhibit. These intermedi-
ate AST states are described using Ekeko. The declarative nature of QwalKeko

ensures that the different components are extensible (C5) and provide solutions in
an on-demand fashion (C6).

In the following chapters we discuss these different components in detail. In
Chapter 5 we discuss the combination of Qwal and Ekeko, and provide queries
for several history related questions. Chapter 6 discusses the change distilling algo-
rithm used by ChangeNodes and how change characteristics can be expressed.
Finally, Chapter 7 discusses the problems of expressing evolution patterns using
only change characteristics and how evolution characteristics are required to ex-
press these patterns.

59

5
S U P P O RT I N G T E M P O R A L A N D R E V I S I O N
C H A R A C T E R I S T I C S

In the previous chapters we motivated the need for a general-purpose history
querying tool and the criteria such a tool needs to adhere to. In this chapter
we introduce a version of QwalKeko, our query language, that allows express-
ing temporal and revision characteristics (C1 and C2). QwalKeko combines the
general-purpose graph query language Qwal with the declarative program query
language Ekeko. A graph query language enables expressing temporal charac-
teristics by navigating a revision graph, while a program query language enables
expressing revision characteristics that have to hold in specific nodes of that graph.

Section 5.1 motivates the need for dedicated support for specifying temporal
characteristics. Section 5.2 discusses Qwal; our approach to supporting tempo-
ral characteristics. Qwal is a general-purpose graph query language that enables
specifying paths through a graph. A path is specified using regular path expres-
sions, which are akin to regular expressions. They consist of logic conditions to
which regular expression operators have been applied. Rather than matching a
sequence of characters in a string, they match paths through a graph along which
their conditions holds. In the context of history querying, Qwal enables specify-
ing temporal characteristics as paths through a graph representation of a version
control system.

Section 5.3 motivates the need for dedicated support for specifying revision
characteristics. Section 5.4 discusses Ekeko; our approach to supporting revision
characteristics. The declarative program query language Ekeko enables express-
ing revision characteristics of Java programs inside the Eclipse IDE.

Section 5.5 evaluates the combination of Qwal and Ekeko by answering
history-related questions.

61

5 Supporting Temporal and Revision Characteristics

5.1 The Need for Dedicated Support for Specifying
Temporal Characteristics

As discussed in Chapter 2 and stipulated by criterion C2, a history query language
must enable expressing temporal characteristics. Temporal characteristics concern
the temporal quantification over elements from different revisions. Revision char-
acteristics concern the revision or VCS elements of these revisions. The temporal
specification language must overcome several challenges.

The main challenge is that the temporal specification language must be com-
patible with the revision query language. Even though both concern a different
aspect of a history query, the temporal specification determines in what revisions
certain revision characteristics must hold. Thus, the temporal and revision spec-
ification language must be compatible with each other. For example, combining
a declarative temporal specification with an imperative revision query language
may result in unclear or hard to grasp semantics due to backtracking. The tem-
poral specification language also influences whether some revision characteristics
become easy or hard to express. For example, using a declarative revision query
language, specifying whether a code element has been introduced in a revision
is easily done by finding a revision in which the element is present, and ensur-
ing that that element is absent in a predecessor. The other way around is harder
due to negation-as failure, as there is no way to express that any element must
be absent without knowing what the sought-after element is. A similar example
is specifying whether an element was removed. Thus, depending on the chosen
temporal specification language such revision characteristics become easy or hard
to express.

A second challenge is the memory usage and performance. A version control
system may contain thousands of revisions which cannot all be loaded in memory
at the same time. Thus, proving that a certain property holds for all revisions
may result in thousands of revisions being simultaneously open. An alternative
approach is to automatically close revisions after they have been used. This can
lead to the same revision being loaded several times throughout the execution
of a history, a costly process. Additionally, it may also lead to the loss of object
identity. Elements that are retrieved from a revision may still exist in memory, and
reopening that revision results in building a new representation of that revision.
As a result, multiple instances of the same code element can exist in parallel. This
may result in undesired behavior. A way to combat these problems is to provide
a coarse-grained and fine-grained representation of a revision, as discussed in
Section 2.2.2. A coarse-grained representation can be fully loaded into memory,
and does not require checking out any revisions.

62

5.2 Supporting Temporal Characteristics through Qwal

5.1.1 Representing a Version Control System as a Revision Graph
To support temporal characteristics QwalKeko represents the revisions of a VCS
and their successor relation as a directed acyclic graph (DAG). Every node of
this graph corresponds to an individual revision, and successive revisions are con-
nected via a directed edge. Note that a node can have multiple outgoing edges.
This is the case for revisions that initiate a new branch in the software’s history.
Nodes can also have multiple incoming edges. This is the case for revisions that
resulted from the merge of different branches.

Nodes also provide a representation of the meta-data of a revision, as discussed
in Section 2.2.2. This representation consists of the commit message, author, time
stamp, revision number and modified files (i. e., added, changed and removed
files). Table 5.1 depicts the functional Clojure interface for this graph represen-
tation. Table 5.2 depicts the logic interface that is written on top of the functional
one. Note that most revision predicates have an already bound revision as their
revision argument instead of a logic variable.

Table 5.1: Functional interface for the revision graph.
Procedure Description
Revision Procedures
(successors revision) returns the direct successors of revision
(predecessors revision) returns the direct predecessors of revision
(revision-number revision) returns the revision number of revision
(author revision) returns the author of revision
(commit-message revision) returns the commit message of revision
(date revision) returns the timestamp of revision
(files revision) returns the modified files of revision
(root? revision) returns a boolean indicating whether revision is a root revision
(terminal? revision) returns a boolean indicating whether revision is a terminal revision
Graph Procedures
(revisions graph) returns the revisions of a graph
(roots graph) returns the root revisions of a single graph

5.2 Supporting Temporal Characteristics through Qwal

Regular path expressions (RPE) are akin to regular expressions [1], except that
they consist of logic conditions to which regular expression operators have been
applied. Rather than matching a sequence of characters in a string, they match
paths through a graph along which their conditions holds. In the context of history
querying, RPEs match sequences of nodes in the revision graph (cf. Section 5.1.1).
Conditions are specified using revision characteristics. These conditions quantify
over the entities in a single revision of the software project. RPEs have been used
in different software engineering domains as well, such as compiler optimizations,
where they match paths through control-flow graphs [17].

A regular path expression uses operators that navigate a revision graph, hereby
changing the revision against which revision characteristics are verified. Some of

63

5 Supporting Temporal and Revision Characteristics

Table 5.2: Declarative interface for the revision graph.
Predicate Description
Revision Predicates
(graph-revision graph ?rev) unifies ?rev with a revision stemming from the revision graph graph.
(revision|root rev) succeeds if rev is a root revision (i. e., a revision without any predecessors).
(revision|terminal rev) succeeds if rev is a terminal revision (i. e., a revision without any succes-

sors).
(revision|branching rev) succeeds if rev is a branching revision (i. e., a revision with multiple suc-

cessors).
(revision|merging rev) succeeds if rev is a merging revision (i. e., a revision with multiple prede-

cessors)
(revision|non-branching rev) succeeds if rev is a non-branching revision (i. e., a revision without multi-

ple successors)
(revision|non-merging rev) succeeds if rev is a non-merging revision (i. e., a revision without multiple

predecessors)
(revision-number rev ?num) unifies ?num with the revision number of rev. Note that rev is not a logic

variable, but must already be bound to a revision.
(revision-author rev ?author) unifies ?author with the author of revision rev.
(revision-date rev ?date) unifies ?date with the time stamp of revision rev.
(revision-message rev ?message) unifies ?message with the commit message of revision rev.
(revision-file|modified rev ?file) unifies ?file with modified file of revision rev.
(revision-file|unmodified rev file) succeeds if file is not modified in revision rev. This is the equivalent of

(fails (revision-file|modified rev file)).
Graph Predicates
(graph-revision graph ?rev) unifies ?rev with a revision of the revision graph graph. Note that graph is

not a logic variable, but must already be bound to a revision graph.

these operators also enable expressing revision characteristics that have to hold in
the current revision of the path expression. We provide an overview of the avail-
able operators. In the used notation f is a sequence consisting of either temporal
operators or logic conditions that need to hold in the current state of the path
expression.

q=> The q=> operator moves the state of the regular path expression from the cur-
rent node in the revision graph to one of its successor nodes. Upon back-
tracking a different successor node is used if available.

q<= The q<= operator moves the state of the regular path expression from the cur-
rent node in the revision graph to one of its predecessor nodes. Upon back-
tracking a different predecessor node is used if available.

(q* f) The q* operator indicates that f has to hold an arbitrary, including zero,
number of times. The q* operator is lazy, meaning it immediately succeeds.
Upon backtracking, f must hold another time. If f does not move the state
of the regular path expression no more solutions will be returned. A greedy
variant is not available as it is not supported by the underlying logic imple-
mentation of core.logic.

(q=>* f) The q=>* operator indicates that f followed by a q=> has to hold an arbi-
trary, including zero, number of times. This is equivalent to (q* f q=>).

(q<=* f) The q<=* operator indicates that f followed by a q<= has to hold an arbi-
trary, including zero, number of times. This is equivalent to (q* f q<=).

64

5.2 Supporting Temporal Characteristics through Qwal

(q+ f) The q+ operator indicates that f has to hold an arbitrary, non-zero, number
of times. This is equivalent to (all f (q* f)).

(q=>+ f) The q=>+ operator indicates that f followed by a => has to hold an arbitrary,
non-zero, number of times. This is equivalent to (q+ f q=>).

(q<=+ f) The q<=+ operator indicates that f followed by a q<= has to hold an arbi-
trary, non-zero, number of times. This is equivalent to (q+ f q<=).

(q? f) The q? operator indicates that f has to hold zero or one time.

(q=>? f) The q=>? operator indicates that f followed by a => has to hold zero or
one time. This is equivalent to (q? f q=>).

(q<=? f) The q<=? operator indicates that f followed by a q<= has to hold zero or
one time. This is equivalent to (q? f q<=).

(in-git-info [rev] y) The in-git-info special form indicates that y has to hold in
the current node of the revision graph. rev is a newly introduced local vari-
able that can be used by y. y is a sequence of Ekeko conditions that concern
meta-revision data.

(in-source-code [rev] y) The in-source-code special form is similar to in-git-info,
except that y is a sequence of Ekeko conditions that concern meta-revision,
coarse-grained and fine-grained revision data. As a side-effect, the current
node of the revision graph is imported as a separate Eclipse project.

5.2.1 Example Queries
We illustrate the use of Qwal through three example queries. The first, second
and third query identify authors that committed two successive revisions within
10 minutes, co-changing files and potential merge conflicts respectively.

Successive Commits In the first example we are interested in finding authors
that committed two successive revisions within the time span of 10 minutes. The
following query retrieves these authors:

1 (qwalkeko* [?author ?corrected]
2 (qwal graph root ?corrected [?date ?end-date]
3 (q=>*)
4 (in-git-info [original]
5 (version-author original ?author)
6 (version-date original ?date))
7 q=>
8 (in-git-info [corrected]
9 (version-author corrected ?author)

10 (version-date corrected ?end-date)
11 (within-10-minutes ?date ?end-date))))

65

5 Supporting Temporal and Revision Characteristics

skipped original corrected

Figure 5.1: Overview of the different considered paths throughout the execution of the
“Successive Commits” query.

The first line launches a history query that returns an author ?author and a
revision ?end that was committed 10 minutes after the previous revision by the
same author. The second line launches a Qwal expression over a revision graph
graph, starting in root and ending in ?corrected. We assume that the graph and root

variables were defined earlier. The Qwal expression introduces two new local
logic variables ?date and ?end-date. Line 3 uses the q=>* operator to skip an arbitrary
number of versions. Its operands are empty, meaning only the q=> operator is
applied an arbitrary number of times. Lines 4–6 specify some conditions that need
to hold in the current revision of the path expression. They unify ?author with the
author of the revision, and ?date with the timestamp of which it was committed.
These conditions are wrapped in the special form in-git-info, which introduces a
local variable original that is bound to the current revision, and takes an arbitrary
number of logic conditions that have to hold in that revision. in-git-info enables
expressing coarse-grained characteristics of information stored in the graph (see
Table 5.1). Next, line 7 uses the q=> operator to move the current revision to a
direct successor. The final 4 lines state that this revision needs to be modified by
the same author within 10 minutes of the previous commit. This is also the end
revision of the path expression, and is unified with ?corrected. Note that Qwal

will backtrack when the author of the revision on line 9 does not unify with the
author of the revision on line 5.

Figure 5.1 depicts, for a simple example graph, a graphical overview of the
different possible paths that are verified throughout the execution of this query.
The revision graph consists of 6 revisions and two branches. The original and
corrected nodes in the figure correspond to their namesake variables. skipped are
the revisions that are skipped by line 3 of the query. The top row depicts the

66

5.2 Supporting Temporal Characteristics through Qwal

*

* *

2

3

3’ 5’

5

1

4’

4 6

modified co-changing not co-changing

* repeat previous state arbitrary no. times

Figure 5.2: Two possible paths of the “co-changing files” query. The path on the top suc-
ceeds, while the path on the bottom contains no co-changing files until a terminal
revision is encountered.

considered paths in the top branch, while the bottom row depicts the considered
paths in the bottom branch.

Co-changing Files The following example illustrates the use of QwalKeko for
finding co-changing files. These are files that, from a certain point in the revision
graph, are always modified together. The following query retrieves such files:

1 (qwalkeko* [?fileA ?fileB ?end]
2 (terminal graph ?end)
3 (qwal graph root ?end []
4 (q=>*)
5 (in-git-info [modified]
6 (revision-file|modified modified ?fileA)
7 (revision-file|modified modified ?fileB)
8 (!= ?fileA ?fileB))
9 (q=>+

10 (in-git-info [cochanging]
11 (conde
12 [(revision-file|modified cochanging ?fileA)
13 (revision-file|modified cochanging ?fileB)]
14 [(revision-file|unmodified cochanging ?fileA)
15 (revision-file|unmodified cochanging ?fileB)])))))

Figure 5.2 depicts two paths that are considered during the execution of this
query. The path on the top succeeds as there is a revision in which two files are
modified, and these files co-change until a terminal revision is encountered.1 The
path on the bottom does not yield any results, as no files co-change until a terminal

1The history query accounts for multiple terminal revisions in a revision graph through back-
tracking over the different possible paths

67

5 Supporting Temporal and Revision Characteristics

revision is encountered. The first line launches a history query that returns all
pairs of files ?fileA and ?fileB and end revision ?end of the path expression. The
second line states that ?end must be a terminal revision (i. e., a revision without
any successors). It ensures that the files co-change until a terminal revision is
encountered. Line 3 launches the actual path expression over the revision graph
graph, starting in root and ending in ?end. Line 4 skips an arbitrary number of
versions using the q=>* operator. Lines 5–8 state that two different files ?fileA and
?fileB in the current revision must have been modified. Lines 9–15 state that these
files need to co-change an arbitrary, non-zero, number of times. To this end, they
use the temporal operator q=>+ in combination with the logic disjunction conde

to state that either both files were modified, or both files remained unmodified.
These files must remain co-changing until a terminal revision is encountered and
the path expression terminates.

Potential Merge Conflict The final example illustrates the use of QwalKeko to
detect potential merge conflicts by finding a file that was modified in two parallel
branches that are merged in a later stage. The following query detects such files:

1 (qwalkeko* [?file ?end]
2 (qwal graph root ?end [?branch ?prev ?modified]
3 (q=>*)
4 (in-git-info [branching]
5 (revision|branching branching)
6 (== branching ?branch))
7 (q=>+
8 (in-git-info [curr]
9 (revision|non-merging curr)))

10 (in-git-info [modified]
11 (revision-file|modified curr ?file))
12 (q=>*
13 (in-git-info [curr]
14 (revision|non-merging curr)))
15 (in-git-info [curr]
16 (== ?prev curr))
17 q=>
18 (in-git-info [merging]
19 (revision|merging merging))
20 q<=
21 (in-git-info [curr]
22 (!= ?prev curr))
23 (q<=*
24 (in-git-info [modified]
25 (!= curr ?branch)
26 (revision-file|modified curr ?modified)
27 (file-file|same ?file ?modified)))))

Figure 5.3 depicts a successful path that is considered during the execution of
the query. This query works by finding a branching version ?branch, and a modified
file ?file in one of its branches. This is implemented by lines 3–11. Line 3 skips
an arbitrary number of revisions. Lines 4–6 state that the current revision ?branch

must be a branching revision. Lines 7–11 skip an arbitrary number of non-merging

68

5.2 Supporting Temporal Characteristics through Qwal

2

3

7

5

61

branching merging modified modified

8

4

Figure 5.3: A successful path that is considered during the execution of the “Potential
Merge Conflict” query.

revisions and unify ?file with a modified file in such a revision. Next, the query
continues skipping revisions until a merging revision is encountered. It will also
capture the revision just before the merging one. This is needed so the query
can move backwards and take a different path. This is a pattern that frequently
occurs when querying branches. All of this is done on lines 12–19. Lines 12–14 skip
an arbitrary number of non-merging revisions. Lines 15–16 unify ?prev with the
revision right before a merging revision. Line 17 moves to the next revision, which
must be a merging one. This is stated by lines 18–19. Now, the query will move
backwards along a different branch and verify whether the same file is modified.
Line 20 moves one version back. To ensure that the path expression does not simply
moves backwards on the same branch lines 21-22 state that the current revision
must be different from ?prev. Finally, lines 24–27 ensure that ?file is modified in
this branch as well. We cannot use unification as the file may be modified in a
different manner (i. e., it may be removed in one branch and edited in the other
one, so the modification type does not unify). Finally, line 25 ensures that the path
expression does not go further than the initial branching version.

5.2.2 Supporting User-defined Temporal Operators
Qwal provides an extensible implementation that can be extended with user-
defined operators. Users may want to implement their own operators to abstract
over domain-specific patterns, or to query graph structures for which the regular
Qwal operators do not suffice. For example, we define domain-specific opera-
tors in Chapter 7 to query so-called evolution graphs. In order to support existing
Qwal operators a graph structure needs to provide a successors function that re-
turns a list of successors for a given node.

69

5 Supporting Temporal and Revision Characteristics

Every operator in Qwal is implemented by a logic rule that takes three argu-
ments: a graph object, a bound current node and an unbound next node. These
rules need to bind the ?next variable to another node of graph for their operator to
succeed. We illustrate th extensible implementation by means of three examples.

Implementing q=> The following code snippet shows the implementation of q=>:
1 (defn q=> [graph current ?next]
2 (all
3 (membero ?next (successors graph current))))

The first line corresponds to the interface operators must adhere to. The graph

and current variables will be bound to the queried graph and the current state of
the path expression respectively, while the ?next variable is an unbound logic vari-
able that must be ground by the operator. q=> itself is implemented using membero, a
logic implementation of member, over the successors of the current node of the path.
successors calls the graph-specific successor function.

Implementing q* The following example shows the implementation of q*:
1 (defn q* [& goals]
2 (def q*loop
3 (tabled
4 [graph current end goals]
5 (conde
6 [(fresh [next]
7 (solve-goals graph current next goals)
8 (q*loop graph next end goals))]
9 [(== current end)])))

10 (fn [graph current next]
11 (q*loop graph current next goals)))

Operator q* is implemented in terms of a local tabled rule q*loop that either
proves all the logic goals, hereby arriving in a new state next, and calling itself
recursively; or that finishes the loop by unifying the next state with the current state.
A tabled rule is proven using tabled resolution (see below), ensuring that proving
the same goal multiple times does not result in an infinite loop (e. g., when a query
moves back and forth between the same revision). Finally, the q*-rule returns a new
function that just calls the internal function.

Implementing branch=><= In the final example we implement a new temporal op-
erator branch=><= that we could have used in the “Potential Merge Conflict” exam-
ple (cf., Section 5.2.1). This operator moves forwards one revision, and backwards
into a different branch.

1 (defn branch=><= [graph current ?next]
2 (fresh [?branch]
3 (q=> graph current ?branch)
4 (revision|branching ?branch)
5 (q<= graph ?branch ?next)
6 (!= ?next ?branch)))

70

5.2 Supporting Temporal Characteristics through Qwal

The code reuses the Qwal operators q=> and q<= to navigate the graph, while
ensuring a branching revision is encountered and a different branch is taken. Such
an operator is not provided by Qwal as it is specific to history querying, but can
easily be implemented by a user. This is stipulated by Criterion C2.

5.2.3 Qwal Compared to Graph Query Languages
In this section we briefly discuss existing graph query languages. We discuss lan-
guages stemming from two domains. The first domain is the formal verification of
computer programs. The second domain are graph databases.

Formal Verification Linear Temporal Logic (LTL) [6, 62] and Computation Tree
Logic (CTL) [6, 28] have both been used for the formal verification of computer
programs. LTL is a temporal logic; a form of logic specifically tailored for for-
mal statements that involve the notion of order in time. In the context of history
querying this notion of time is provided by the successor relationship between the
different revisions. An LTL query describes properties of an (infinite) path through
a graph structure. CTL is a branching-time logic. It reasons about multiple paths in
parallel, resulting in a tree-like structure instead of a single path. It features a simi-
lar set of operators to LTL, but these are accompanied with either an existential or
universal quantifier.

We have chosen regular path expressions (RPE) as the foundation for Qwal.
LTL, CTL and RPE share a subset of properties that can be expressed in each
formalism, and have a disjoint set of properties that cannot be expressed by the
other formalisms. The shared subset contains frequently occurring patterns [24].
The differences in expressivity between the three formalisms are apparent in cyclic
graphs that contain infinite paths. In the context of history querying, the queried
revision graph is always acyclic.

Graph Databases A graph database represents its data as a graph using nodes,
edges, and their properties. Several languages exist to query such graph databases.
We focus on three major query languages Cypher, SPARQL and Gremlin.

Cypher is a declarative language to create, update and query the graph
database Neo4j.2 Neo4j represents its stored data as either a node, an edge or an
property. Nodes and edges can be labeled. For example, imagine we want to store
people and their friendship relations. A person would be represented as a node,
his name would be a property, and a friend would be represented via an edge to
another person.

2https://neo4j.com/

71

https://neo4j.com/

5 Supporting Temporal and Revision Characteristics

A Cypher query describes a path through such a graph using a syntax that
resembles the specified path. The following query returns all the “friends of a
friend” of the person named “Alice”:

1 MATCH (alice name: "Alice")-[:friend*2]->(foaf)
2 RETURN alice.name, foaf.name

Characteristics of a node are specified between parentheses (resembling a drawn
node), while characteristics of an edge are specified in arrows. Line 1 specifies that
there must be a node with name “Alice, bound to alice. It follows the edge labeled
:friend twice. This is indicated by *2. The end node of this path is a friend-of-a-
friend node, bound to foaf. Line 2 returns the results back to the user. Replacing
*2 by *2.. would result in all indirect friends of Alice. Replacing *2 with a * would
result in all friends of Alice. These operators are similar to the operators of RPE.

SPARQL is a query language for Resource Description Framework (RDF). RDF
is a directed, labeled graph format that is used in the context of the semantic
web [45]. RDF represents data as triplets.

SPARQL supports property path expressions, which are similar to RPE. The
following query returns all the “friends of a friend” of a person named “Alice:

1 {
2 ?x foaf:name "Alice",
3 ?x foaf:friend/foaf:friend/foaf:name ?name .
4 }

Line 2 retrieves a person named “Alice”. Line 3 follows its friend property twice,
and then unifies ?name with the name of the friend-of-a-friend. The / construct
enables chaining properties. The following query finds all the indirect friends of
Reinout:

1 {
2 ?x foaf:name "Alice",
3 ?x foaf:friend/foaf:friend+/foaf:name ?name .
4 }

It adds a + construct to indicate that the friend property must be followed an
arbitrary, non-zero, number of times.

Gremlin is a graph traversal language provided by Apache Tinkerpop. Grem-
lin enables users to implement graph traversals. According to the official web-
site3, every traversal is composed of a sequence of steps, where a step performs
an atomic operation on a data stream. Each step of a traversal is either a map-step
(transforming the data in the data stream), a filter-step (filtering data from the
stream) or a side effect-step (used to compute statistics). These steps are then
composed into a larger query.

The following query finds all the “friends of a friend” of a person named “Al-
ice”:

3https://tinkerpop.apache.org/gremlin.html

72

5.3 The Need for Dedicated Support for Specifying Revision Characteristics

1 g.V().match(
2 as("alice").has("name","Aeinout"),
3 as("alice").out("friend").as("f"),
4 as("f").out("friend").as("foaf")).
5 select("foaf").by("name")

The first line launches a query over a graph g. It selects all the vertices that match
the characteristics specified on lines 2–4. Line 2 creates a variable "alice" bound to
a node that has a "name" property equal to "alice". Line 3 follows the "friend" edge
from the variable "alice", and unifies it with "f". Line 4 follows the "friend" edge
from the node "f", and stores the resulting node in variable "foaf". Finally, line 5

selects the name of all the friends-of-a-friend. Selecting all the indirect friends of
Alice can be done by through a repeat directive.

Cypher and SPARQL both enable specifying paths through a graph to retrieve
elements of interest in terms of regular path expressions. Gremlin is more sim-
ilar to functional programming. Cypher and SPARQL use similar operators as
RPE to support expressing paths through a graph. This motivates the choice for
RPE to support temporal characteristics in the context of history querying. We
have optied to implement our own RPE over reusing Cypher or SPARQL as
we aim to create a uniform language with a declarative foundation for history
querying, as motivated by Chapter 3. This facilitates combining the support for
temporal characteristics with the support for revision characteristics in the form of
the declarative program querying language Ekeko.

5.2.4 Conclusion
Qwal implements regular path expressions, which enable users to specify paths
throughout a graph, and the conditions that have to hold in nodes along that
path. Path expressions are akin to regular expressions. In the context of history
querying Qwal is used to navigate a graph representation of a VCS, in which
nodes correspond to a revision and successive revisions are connected via an edge.
The rest of the chapter focuses on expressing the conditions that have to hold in a
revision.

5.3 The Need for Dedicated Support for Specifying
Revision Characteristics

Most Version Control Systems provide support for querying their stored con-
tents. This enables retrieving the stored meta-data, such as the author or commit-
message, of a particular commit. They also support retrieving the data contained
in each commit, such as the files or lines that were modified. The state of a file at
a particular point in time (e. g., after a given commit) can also be reconstructed,

73

5 Supporting Temporal and Revision Characteristics

after which it can be queried using separate tools for searching through text, such
as grep

4.
For example, the git log command enables users to query the log of projects ver-

sioned in git

5. This allows querying the author, commit message, date, changed
files and changed lines of any revision. Unfortunately, filtering this data to find a
revision with the interesting revision elements of that revision is left to the user.
Similarly, the git show command can be used to reconstruct the contents of a par-
ticular file in a given revision. Unfortunately, most VCS have no knowledge of the
syntax of the stored contents. As such, there is no difference between a plain text
file and for example a Java source file. Thus, users need to resort to text querying
tools to find source code exhibiting characteristics of interest.

A well-known example of such a tool is grep

6. grep enables searching through
text using regular expressions. This limits the kind of queries that can be expressed.
For example, even a regular expression which detects whether a particular file
implements a method with a specific signature is already cumbersome if one wants
to account for the different white space that may be present. With more constraints
added, such as requiring the method to perform a null-check, one can quickly see
that regular expressions are not suited to account for all different ways such a
method may be implemented. Next to the problems in accounting for the different
legal syntactical ways to write source code is the problem of data- and control-flow
information that is not available using a textual representation of the source code.

In general, fine-grained revision characteristics cannot be expressed using the
query facilities provided by a VCS alone. Coarse-grained characteristics can be
expressed in a limited manner, but may require combining several tools. As such,
the query facilities of a VCS do not fulfill criterion C1: a history tool must enable
expressing revision characteristics.

Program Query Languages (PQLs, cf., Section 3.1) are designed for querying
the source code of a single revision of a software project. They relieve the user
from implementing a search through code files themselves. Instead, source code
characteristics are specified in a dedicated language, and the detection of code
exhibiting these characteristics is done by the underlying implementation. We have
provided several examples of such PQL in Section 3.1.

4http://www.gnu.org/software/grep/
5https://git-scm.com
6http://www.gnu.org/software/grep/

74

http://www.gnu.org/software/grep/
https://git-scm.com
http://www.gnu.org/software/grep/

5.4 Supporting Revision Characteristics through Ekeko

Table 5.3: Table depicting the commonly used Ekeko predicates
Predicate Description
(ast ?type ?node) Unifies ?node with an AST node of type ?type. ?type is a keyword corre-

sponding to the name of the class of the AST node (e. g., :TypeDeclaration,
:IfStatement, :MethodInvocation, . . .).

(has ?property ?node ?value) Unifies ?value with a child node of ?node, located at property ?property. In
case the property is a ChildListProperty ?child is unified with the collec-
tion itself. ?property is a keyword representing the identifier of the prop-
erty (e. g., :name, :body, :arguments, . . .).

(child ?property ?node ?child) Similar to has, except that property must be a ChildListProperty. ?child is
unified with an element of the collection located at ?property.

(child+ ?node ?child) Unifies ?child with any descendant of ?node.
(parent ?node ?parent) Unifies ?parent with the direct parent of ?node
(parent+ ?node ?parent) Unifies ?parent with an ancestor of ?node
(ast-compilationunit|encompassing ?node ?cu) Unifies ?cu with the surrounding compilation unit of the arbitrary AST

node ?node.
(ast-type|encompassing Unifies with the surrounding type declaration of the arbitrary AST node

?node.
(method-method|caller ?method ?caller) Unifies ?caller with a method that calls ?method

5.4 Supporting Revision Characteristics through
Ekeko

Ekeko [19] is a declarative program query language, implemented in Clojure,
enabling users to query Eclipse projects written in Java. Just like Qwal, it
makes use of core.logic as its declarative engine. Characteristics of the sought-
after source code are specified declaratively by means of a logic query. The condi-
tions of such a query quantify over the source code of the program. Solutions to
the query, computed by Ekeko, correspond to the sought-after code.

We have opted to use a declarative PQL and more specifically Ekeko to support
revision characteristics in QwalKeko. Declarative PQL have proven themselves
successful in querying source code, as discussed in Section 3.1. We have opted for
Ekeko as it already supports criteria C1 — expressing revision characteristics —
C5 — query reuse, abstraction and composition — and C6 — providing solutions
in an on-demand manner —.

Most declarative program query languages specify source code by transforming
it to logic terms. This way, the terms can be bound to logic variables. Ekeko fore-
goes such a transformation, and instead leaves the reified version of an AST node
as the AST node itself (i.e., an instance of org.eclipse.jdt.core.dom.ASTNode). Such
identify-based reification prevents queries from returning stale results that no longer
reflect the current state of the workspace. It also brings some practical advantages,
such as allowing the reuse of existing infrastructure provided by Eclipse, and
facilitates interoperability with other Eclipse plugins.

Ekeko provides a library of predicates that can be used to query programs.
These predicates reify basic structural, control flow and data flow relations about
the queried program, as well as higher-level relations that are derived from the
basic ones. Table 5.3 depicts the predicates used most commonly in this thesis.

75

5 Supporting Temporal and Revision Characteristics

They are the ones reifying structural relations maintained by the Eclipse Java de-
velopment tools (JDT)7. Binary predicate (ast ?type ?node), for instance, reifies the
relation of all AST nodes of a particular type. Here, ?type is a Clojure keyword
denoting the capitalized, unqualified name of ?node’s class. Solutions to the query
(ekeko [?inv] (ast :MethodInvocation ?inv)) therefore comprise all method invoca-
tions in the source code. The ternary predicate (has ?property ?node ?value) reifies
the relation between an AST node and the value of one of its properties. Here,
?property is a Clojure keyword denoting the decapitalized name of the property
(e.g., :modifiers). In general, ?value is either another AST node or a wrapper for
primitive values (e. g., integers), null, or collections. This wrapper ensures the re-
lationality of the predicate. The following query retrieves nodes that have null as
the value for their :expression property (i. e., receiver-less invocations):

1 (ekeko [?node]
2 (fresh [?exp]
3 (nullvalue ?exp)
4 (has :expression ?node ?exp)))

The child/3 predicate reifies the relation between an AST node and one of its
immediate AST node children. Solutions to the following query therefore consist
of pairs of a method invocation and one of its arguments:

1 (ekeko [?inv ?arg]
2 (ast :MethodInvocation ?inv)
3 (child :arguments ?inv ?arg))

Next to facilitating the use of query results in tools and preventing queries from
returning stale results that no longer reflect the current state of the workspace,
our identity-based reification of AST nodes also brings along some practical im-
plementation advantages. Many predicates call out to Java whenever this is more
convenient than a purely declarative implementation:

1 (defn ast-parent [?node ?parent]
2 (fresh [?kind]
3 (ast ?node ?ast)
4 (!= null ?parent)
5 (equals ?parent (.getParent ?node))))

Here, the last line uses equals/2, which first unwraps any logic variables in its
second argument, so that the method ASTNode.getParent() can be called on it. This
result is unified with the first argument ?parent. The before-last line ensures that
the predicate fails for CompilationUnit instances that function as AST roots.

7http://www.eclipse.org/jdt/

76

http://www.eclipse.org/jdt/

5.4 Supporting Revision Characteristics through Ekeko

5.4.1 Integrating a PQL into a History Query Language
As a PQL, Ekeko enables querying one or more Eclipse projects, as indicated
by the user, against which logic queries are evaluated. In general, a PQL is used
to query a single, fixed, revision of a software project. History queries, in contrast,
span multiple revisions of a versioned software project. Integrating a PQL into a
history query language such that existing predicates can be reused is challenging.

V-Praxis [58](cf., Section 3.2) uses an approach in which every predicate of
the PQL receives an additional argument that is bound to the queried revision.
Binding this argument to the correct revision is left to the history query language,
and more specifically, its temporal specification language. The reification of the
source code is also adapted – every fact gets the same extra revision argument. As
a result, there is but a single data structure representing the history of the software
project under investigation.

An alternative solution exists when the PQL can be configured to change the
data it queries at run time. In the context of history querying a separate data struc-
ture could be used for each revision. Throughout the execution of a history query
the PQL is configured so that it queries the correct data structure. The difficulty
lies in ensuring that, upon backtracking, this configuration is updated accordingly.
Done correctly, the predicates provided by Ekeko can be used in history queries
without requiring modification.

Figure 5.4 illustrates the low-level implementation of in-source-code. It is imple-
mented as a macro that takes as its first argument a singleton vector containing
a variable bound to the node of the revision graph representing the current revi-
sion, and an arbitrary number of goals that have to hold in that revision. It returns
a goal adhering to the specifications of Qwal (cf., Section 5.2), and thus it can
be used in a Qwal query. This predicate will be called by Qwal with its first
argument bound to the VCS graph, its second argument to the current revision
node and the predicate must unify the third argument with the next revision of
the RPE. As in-source-code does not navigate the revision graph, the next revision
can remain the same revision as the current one. Lines 5–6 ensure that the current
revision is configured and built as a separate Eclipse project, and that Ekeko

predicates quantify over this project. Next, line 7 evaluates all the goals provided
by the user. Line 8 unifies the next variable with the current revision. Finally, lines
9–11 ensure that, upon backtracking, the current revision is restored correctly. The
low-level interface of core.logic, which exposes the substitution map, is used to
implement this side-effect within the backtracking. A lambda is created that takes
as argument the current variable substitutions, and that restores the correct revi-
sion. Unlike line 6 this must be done in this manner to enforce the evaluation of
set-current upon backtracking.

PQLs, and thus Ekeko, are tailored towards querying a single revision of a
software project. A history query language on the other hand retrieves source code

77

5 Supporting Temporal and Revision Characteristics

1 (defmacro in-source-code [[revision] & goals]
2 ‘(fn [graph# ~revision next#]
3 (project [~revision]
4 (all
5 (ensure-checkout ~revision)
6 (set-current ~revision)
7 ~@goals
8 (== ~version next#)
9 (fn [subs#]

10 (set-current ~revision)
11 subs#)))))

Figure 5.4: Code listing depicting the implementation of in-source-code and how the cur-
rent version is updated.

elements from different revisions. Thus, a history query language must provide
facilities to retrieve the same code entity (e. g., a class or a method) across different
revisions.

Absinthe [50](cf., Section 3.2) uses an approach in which a single code entity
has a single representation, regardless of the current revision of the query. The val-
ues that are returned from accessing properties of this representation do depend
on the current revision. This approach has as an advantage that the same logic
variable can be used throughout a history query for a single code entity. The dis-
advantage is that Absinthe builds a Hismo [39] model beforehand which tracks
the location of these code entities.

QwalKeko does not opt for such an approach, as building such a model is time
and memory consuming. Absinthe can build a Hismo representation efficiently
as the used VCS has knowledge of the semantics of the program language of the
versioned project. Building such a model in QwalKeko would require importing
the source code of every modified file of each revision. Instead, QwalKeko pro-
vides predicates that enable users to retrieve an element found in one revision in
the current revision. These predicates rely on the name of an entity to find it in the
current revision. For example, the predicate type-type|corresponding unifies its sec-
ond argument with the corresponding type declaration of the first argument. To
this end, it finds a type declaration within the same package and the same name
as the original type declaration. Table 5.4 shows an overview of these predicates.
This name-based tracking has as a disadvantage that it cannot handle renames,
nor can it be used for any arbitrary code element, such as if statements, method
invocations etc. In Chapter 7 we discuss a change-based approach which provides
tracking of arbitrary code elements.

78

5.5 Evaluation: Answering History Questions using QwalKeko

Table 5.4: Predicates that find the corresponding element of elements retrieved from a
different revision.

Predicate Description
(compilationunit-compilationunit|corresponding orig ?corr) unifies ?corr with the compilation unit corresponding

to orig, based on the location of the original compilation
unit.

(type-type|corresponding orig ?corr) unifies ?corr with the type declaration (i. e., a class dec-
laration or an interface) corresponding to orig, based
on name of the original type declaration.

(method-method|corresponding orig ?corr) unifies ?corr with the method corresponding to orig,
based on the signature and corresponding compilation
unit of the original method.

5.5 Evaluation: Answering History Questions using
QwalKeko

Section 5.2 introduced Qwal and Section 5.4 introduced Ekeko. In this section,
we illustrate the expressiveness and applicability of the combination of both in the
history querying tool QwalKeko. To this end, we provide queries that answer
several history-related questions. We provide queries for three sets of questions:
the first set is related to questions developers ask regarding the history of a sys-
tem’s source code. The second set is related to questions managers might be in-
terested in about the development process of their team. The diversity of these
queries demonstrates the broad applicability of a general-purpose history query-
ing tool. The final set is related to questions a researcher working in the field of
mining software repositories might want answered.

Using these queries, we evaluate QwalKeko on the criteria for a general-
purpose history querying tool introduced in Section 2.4.

5.5.1 History Queries for Answering Questions Developers Ask
We begin by providing queries that answer questions that developers commonly
ask, as identified by two surveys [36, 51]. We have discussed some of these ques-
tions in Section 2.3.

Identifying Co-Authors of a Class Owned by a Developer

In our first example we introduce a query that retrieves all developers who have
modified classes owned by a particular developer. A developer owns a class when
he or she introduced that class.

We build this query incrementally. First, we create a query that finds the version
in which a specific class named Evaluator was introduced. Second, we create a
query that finds all the classes introduced by a certain developer. We finish with
the query that answers the history-related question.

79

5 Supporting Temporal and Revision Characteristics

Find the revision in which Evaluator was introduced The following query finds
the revision in which a class named Evaluator was introduced:

1 (qwalkeko* [?end]
2 (qwal graph root ?end [?classA ?classB ?nameA ?nameB]
3 (q=>*)
4 (in-source-code [curr]
5 (fails
6 (ast :TypeDeclaration ?classA)
7 (has :name ?classA ?nameA)
8 (name|simple-string ?nameA "Evaluator")))
9 q=>

10 (in-source-code [curr]
11 (ast :TypeDeclaration ?classB)
12 (has :name ?classB ?nameB)
13 (name|simple-string ?nameB "Evaluator"))))

Line 1 launches the history query using the qwalkeko* special form, returning all
revisions in which the class Evaluator is introduced. Multiple solutions are possible
when the class is introduced in multiple branches, or removed and reintroduced
at a later point. Next, line 2 launches a regular path expression using the qwal

special form over the predefined revision graph, starting in root and ending in
?end. It introduces several new logical variables, namely ?classA, ?classB, ?nameA

and ?nameB. Line 3 skips an arbitrary number of revisions using the q=>* operator
with an empty body. Lines 4–8 specify that the current revision should not contain
the Evaluator class. They use the in-source-code special form to specify revision
characteristics in the current revision should exhibit. This current revision is bound
to curr. Lines 6–8 try to find a type declaration ?classA that is named Evaluator. By
wrapping these in a fails primitive, line 5 ensures that no such class is present in
the current revision. Line 9 skips a single revision. Next, the query requires the
Evaluator class to be present in the current revision. This means that the current
revision is the one that introduced the class as it was not present in the previous
revision. To this end, lines 10–13 contain the same code as the fails body, and look
for this class. The path expression succeeds if such a pair of successive revisions
can be found, and binds ?end to the final revision.

One problem with this query is that it only works when the name of the class
is known beforehand. We use negation-as-failure to require that a class with a spe-
cific name is absent. As a result, replacing the class’ name with an unbound logic
variable would result in finding a revision in which no class is present. Alterna-
tively, the revision introducing an element can be retrieved by finding a revision in
which the element is present, that is preceded by a revision in which it is not. This
would eliminate the problem caused by our use of negation-as-failure as follows:

80

5.5 Evaluation: Answering History Questions using QwalKeko

1 (qwalkeko* [?introduced]
2 (fresh [?end]
3 (qwal graph root ?end [?classA ?classB]
4 (q=>*)
5 (in-source-code [curr]
6 (ast :TypeDeclaration ?classB)
7 (type-name|string ?classB "Evaluator")
8 (== ?introduced curr))
9 q<=

10 (in-source-code [curr]
11 (fails
12 (ast :TypeDeclaration ?classA)
13 (type-name|string ?classA "Evaluator")))))

The query first identifies a revision in which the class Evaluator is present, and
then verifies that this class is not present in any of the revision’s predecessors using
the q<= operator. It uses some higher-level predicates out of succintness concerns.
For example, the predicate type-name|string/2 binds its second argument to the
string representation of the name of the class passed as its first argument. Note that
the regular path expression no longer ends in the revision in which the element
was introduces. To reproduce the behavior of the previous query, a fresh variable is
introduced on line 2 that will contain the end revision of the path expression. The
query returns all solutions for ?introduced, bound on line 8 to the current revision
of the path expression at that stage.

Finding which classes are introduced by a specific author The previous query
identified the version in which the Evaluator class was introduced. The following
query generalizes the previous one such that it identifies any class introduced by
Bob. We also introduce a new predicate type|absent that takes as input a bound
variable, and succeeds when the current revision does not contain a type with the
same name.

1 (defn type|absent [type]
2 (fresh [?type ?name]
3 (type-name|string type ?name
4 (fails
5 (ast :TypeDeclaration ?type)
6 (type-name|string ?type ?name)))))
7

8 (qwalkeko* [?class]
9 (fresh [?end]

10 (qwal graph root ?end []
11 (q=>*)
12 (in-source-code [curr]
13 (ast :TypeDeclaration ?class)
14 (version-author curr "Bob"))
15 q<=
16 (in-source-code [curr]
17 (type|absent ?class)))))

Lines 1–6 introduce a new, reusable predicate type|absent, to which the code from
the original path expression is extracted. This predicate is used on line 17. Line 14

81

5 Supporting Temporal and Revision Characteristics

uses the predicate version-author/2 , which succeeds when its second argument
unifies with the author of the given version.

Finding who changed classes introduced by a specific author Our final query
answers the original question: “who changed classes introduced by Bob?”.

1 (defn type-type|corresponding [original ?corresponding]
2 (fresh [?name]
3 (type-name|string original ?name)
4 (type-name|string ?corresponding ?name)))
5

6 (defn type|absent [type]
7 (fresh [?corresponding]
8 (fails
9 (type-type|corresponding type ?corresponding))))

10

11 (qwalkeko* [?author]
12 (fresh [?end]
13 (qwal graph root ?end
14 [?classA ?classB]
15 (q=>*)
16 (in-source-code [curr]
17 (ast :TypeDeclaration ?classA)
18 (version-author curr "Bob"))
19 q<=
20 (in-source-code [curr]
21 (type|absent ?classA))
22 (q=>+)
23 (in-source-code [curr]
24 (type-type|corresponding ?classA ?classB)
25 (type|modified ?classB)
26 (version-author curr ?author)
27 (!= ?author "Bob")))))

We introduce another predicate type-type|corresponding/2 that further extracts
common code. This predicate is now used by type|absent/1 to further reuse query
code. A path expression is launched on line 11, with a similar beginning to the
previous one. Lines 16–21 find a class that was introduced by “Bob”. Lines 23–27

look for a revision in which a class with the same name was modified by a different
author. To this end, the predicate type|modified/1 unifies its argument with a type
declaration that resides in a file that is modified in the current revision. Finally,
we verify that the author of that revision is different from “Bob”. This query can
easily be generalized to find classes that were modified by a person different from
the original author by replacing “Bob” by a logic variable.

Identifying Re-introduced Methods Our second example identifies methods
deleted from a class at one particular point in time, but added again afterwards
to the same class —possibly under a different name but with the same body. The
following query identifies such methods:

82

5.5 Evaluation: Answering History Questions using QwalKeko

1 (qwalkeko* [?method]
2 (fresh [?end]
3 (qwal graph root ?end
4 [?classA ?classB ?body ?introduced ?introbody]
5 (q=>*)
6 (in-source-code [curr]
7 (ast :MethodDeclaration ?method)
8 (ast-type|encompassing ?method ?classA)
9 (has :body ?method ?body))

10 q=>
11 (in-source-code [curr]
12 (method|absent ?method))
13 (q=>*)
14 (in-source-code [curr]
15 (ast :MethodDeclaration ?introduced)
16 (ast-type|encompassing ?introduced ?classB)
17 (type-type|corresponding ?classA ?classB)
18 (has :body ?introduced ?introbody)
19 (ast-ast|same ?body ?introbody))
20 q<=
21 (in-source-code [curr]
22 (method|absent ?introduced)))))

Lines 3–4 launch a RPE over the revision graph, starting in root and ending in
?end. A number of logic variables used by the regular path expression are also
introduced. Line 5 skips an arbitrary number of revisions. Next, lines 6–9 retrieve
a method ?method from the current revision, its encompassing class ?classA and the
body of that method. Line 10 advances a single revision. Lines 11–12 verify that
the method ?method is no longer present by using method|absent (cf., Section 5.4).
So far, the query has identified a method that is removed in a later revision. The
next part of the query identifies a newly introduced method in the same class
that has the same body as the earlier removed method. Line 13 skips an arbitrary
number of revisions, until a revision is encountered in which a method ?introduced

with the same body is introduced. Finally, lines 20–22 ensure that the method was
introduced by moving back a single revision and failing to find a corresponding
method.

5.5.2 History Queries for Verifying a Development Process
We now shift our focus to history-related questions managers of a development
team might want answered. These questions concern the development process of
the software project.

Finding Violations against Test-Driven Development

In the first example, a manager needs to find violations against the principle of
test-driven development (TDD) which advocates writing tests prior to implement-
ing the tested functionality. The manager wants to assert that the team actually
adhered to TDD. The question that the manager needs answered is “what are the

83

5 Supporting Temporal and Revision Characteristics

methods in the system, for which a unit test was added after the method’s intro-
duction?”.

The following QwalKeko query assumes that a predicate test-tested|method/2

exists. Although we do not provide a definition for this predicate, this predicate
links a unit test to a method through a naming convention or program analysis.

1 (qwalkeko* [?methodA ?end]
2 (qwal graph root ?end
3 [?test ?methodB ?method-test]
4 (q=>*)
5 (in-source-code [curr]
6 (ast :MethodDeclaration ?methodA)
7 (fails
8 (test-tested|method ?test ?methodA)))
9 q=>

10 (in-source-code [curr]
11 (method-method|corresponding ?methodA ?methodB)
12 (test-tested|method ?method-test ?methodB))))

The query launches a Qwal query, starting in root and ending in ?end. On line
4 it starts by skipping an arbitrary number of revisions using the q=>* operator.
Next, lines 5–8 state that a revision must exist, in which a method ?methodA has
no corresponding unit test. Line 9 skips an arbitrary, non-zero number of revi-
sions. Lines 10–12 state that in the current revision a unit test is added. To this
end, method-method|corresponding retrieves the corresponding method in the current
revision. The query returns all methods ?methodA that violate the test-driven devel-
opment principle, for which a unit test is present in a later revision ?end.

5.5.3 History Queries for Mining Software Repositories
We now provide examples, from the domain of mining software repositories. As
discussed in Section 2.3 the domain of mining software repositories analyzes in-
formation in software repositories to better understand software development.

Identifying “Zombie Code”

In the following example we illustrate the use of QwalKeko to detect a, what
we coin, temporal bad smell. This is a bad smell [34] that only becomes apparent
when analyzing the evolution of the source code of a system. In particular, we
introduce the concept of zombie code. We define this temporal bad smell as methods
in the system that were stopped being used in a particular version but that are not
removed (i. e., become dead code), and that are used again in a later version. While
the presence of zombie code is not necessarily problematic, instances of this bad
smell might point at uses of implicitly deprecated code.

The following QwalKeko query retrieves instances of zombie methods:

84

5.6 Discussion

1 (qwalkeko* [?zombie]
2 (fresh [?end]
3 (qwal graph root ?end []
4 (q=>*)
5 (in-source-code [curr]
6 (fresh [?caller]
7 (ast :MethodDeclaration ?zombie)
8 (method-method|caller ?zombie ?caller)))
9 q=>

10 (q=>+
11 (in-source-code [curr]
12 (fresh [?caller ?corresponding]
13 (method-method|corresponding ?zombie ?corresponding)
14 (fails
15 (method-method|calls ?zombie ?caller)))))
16 (in-source-code [curr]
17 (fresh [?caller ?corresponding]
18 (method-method|corresponding ?zombie ?corresponding)
19 (method-method|caller ?zombie ?caller))))))

This query begins with the usual configuration of QwalKeko and Qwal. Line
4 skips an arbitrary number of revisions, until a revision is encountered in which
a method ?zombie is called by ?caller. Next, line 9 skips a single revision using the
q=> operator. Lines 10–15 state that the zombie method is no longer being called
for an arbitrary, non-zero number of revisions. Remember that the q=>+ operator
will first prove the goals passed as its arguments before skipping a single revision,
which is why line 9 skipped a revision. Finally, the last 4 lines specify that the
zombie method should be called again.

5.6 Discussion

In the following section we discuss the currently described state of QwalKeko

and how it adheres to the criteria stipulated in Section 2.4.

C1: Revision Characteristics QwalKeko converts a VCS into a graph-based rep-
resentation, which contains a coarse-grained representation of every revision (cf.,
Section 5.1.1). By reifying this data and providing a declarative layer, QwalKeko

enables expressing coarse-grained characteristics. Declarative program query lan-
guages have proven themselves successful in querying a single revision of a soft-
ware project. By integrating Ekeko into QwalKeko (cf., Section 5.4). Ekeko

supports expressing fine-grained revision characteristics. We have shown this ex-
pressiveness through the different example queries, which are representative of
the different application domains stipulated in Section 2.3.

QwalKeko supports expressing coarse and fine-grained revision characteris-
tics.

85

5 Supporting Temporal and Revision Characteristics

C2: Temporal Characteristics QwalKeko features the graph query language
Qwal (cf., Section 5.2). Qwal enables users to express regular path expressions
through the aforementioned revision graph. Qwal provides an extensible imple-
mentation that enables users to provide their own navigation predicates. We have
shown through the examples that Qwal supports expressing temporal character-
istics. Its bi-directional navigation eases the expression of some revision character-
istics, such as the introduction or removal of code elements.

QwalKeko supports expressing temporal characteristics.

C3–4: Change and Evolution Characteristics QwalKeko as it has been intro-
duced up until now does not feature support for fine-grained source code changes,
and does not support expressing change and evolution characteristics. We intro-
duce these in Chapters 6 and 7.

The currently described state of QwalKeko does not support expressing
change and evolution characteristics.

C5: Query Abstraction, Reuse and Composition QwalKeko enables query ab-
straction, reuse and composition in several ways. Users can define their own pred-
icates that can be used in queries and other predicates. Users can define their own
temporal operators, either by combining existing operators or by implementing a
logic goal that adheres to Qwal’s interface.

QwalKeko supports query abstraction, reuse and composition.

C6: On-demand Solutions QwalKeko combines a declarative graph query lan-
guage with a declarative revision query language. This declarative nature enables
computing solutions in an on-demand fashion.

QwalKeko supports the computation of solutions in an on-demand manner.

5.7 Conclusion

In this chapter we discussed the declarative programming query language Ekeko.
It enables users to query Java projects stored in Eclipse by reifying the AST

86

5.7 Conclusion

representation of Eclipse, and combines this with core .logic, a declarative
engine for Clojure. We combine Ekeko with Qwal, a graph query language
implementing regular path expressions, to query the history of a software project.
Regular path expressions enable specifying a path throughout a graph of revi-
sions, while Ekeko enables specifying the source code characteristics that have to
hold in revisions along this path. The declarative nature of Ekeko enables users
to describe revision characteristics in a high-level language, while the identifica-
tion of elements adhering to these characteristics is performed by the underlying
reasoning engine. We have demonstrated the use of QwalKeko in answering
history-related questions, stemming from different application domains such as
program comprehension as well as the mining software repositories.

The currently described state of QwalKeko adheres to criteria C1, C2, C5 and
C6. The missing ingredient is support for expressing change and evolution charac-
teristics (see Section 2.2.2). Chapter 6 discusses how fine-grained changes can be
retrieved, and how change characteristics can be supported. Chapter 7 discusses
the final concept of QwalKeko, the support for evolution characteristics.

87

6
S U P P O RT I N G C H A N G E C H A R A C T E R I S T I C S

In the previous chapter we introduced a version of QwalKeko that supports the
expression of temporal and revision characteristics. In this chapter we focus on
the third criterion for a general-purpose history querying tool (cf., Section 2.4);
support expressing change characteristics. First, Section 6.1 motivates the need for
dedicated support specifying change characteristics. Next, Section 6.2 discusses
how to procure fine-grained AST changes. Two approaches exist, namely change
logging and change distilling. A change logger produces changes by recording the
actions of developers while they are developing the software project in an IDE. A
change distiller produces changes between any two files in an algorithmic manner.
We focus on some of the implementation details of change distilling algorithms.
Understanding these details is needed to fully grasp the challenges of querying
their output.

Section 6.3 discusses existing approaches to querying distilled and/or logged
source code changes. Section 6.4 introduces a declarative API to query the output
of our own distilling algorithm called ChangeNodes. We extend QwalKeko

with a declarative API that enables expressing change characteristics in queries.
We validate this extension using an empirical study in which we investigate which
parts of Selenium

1 tests in mature open-source projects are most prone to change.
We implement this study twice; once using QwalKeko and once using Clojure

in combination with the raw output of ChangeNodes. We compare both imple-
mentations and assess how they handle the different concerns of the study.

1http://www.seleniumhq.org/

89

http://www.seleniumhq.org/

6 Supporting Change Characteristics

6.1 The Need for Dedicated Support for Specifying
Change Characteristics

As discussed in Section 2.3, fine-grained code changes are needed to perform stud-
ies concerning the evolution of source code. A general-purpose history querying
tool must procure these changes and, as stipulated by criterion C3, support speci-
fying their characteristics. Fine-grained changes cannot be retrieved directly from
most version control systems, which store changes at the level of line changes (i. e.,
the addition or removal of a single line). As line changes do not convey sufficiently
fine-grained information about the modifications made to the source code between
two commits, it does not suffice for a general-purpose history querying tool to sup-
port querying them. Two other approaches exist, which are detailed in Section 6.2,
change logging and change distilling. The former records the interactions of a de-
veloper inside the IDE during the development of the software project. The latter
is an algorithmic approach that takes as input two versions of a file, and outputs
a sequence of changes that when applied in order transforms the original version
of the file into the new one.

The specification of change characteristics and specification of revision charac-
teristics are entangled. Fine-grained source code changes operate on source code,
and thus the specification of change characteristics (e. g., “Does a change exist that
adds a new method?”, or “Does a change exist that moves a return statement to
an if statement?”) also involves the description of source code characteristics. To
facilitate satisfying criterion C5 – supporting query reuse, abstraction and com-
position – we argue that both kinds of characteristics should be specified in the
same language. A single uniform specification language for all characteristics also
lowers the learning curve for users of the tool.

6.2 Retrieving Fine-grained AST Changes

We first discuss from where to obtain fine-grained change information. Fine-
grained change operations are the low-level operations that were applied to the
individual nodes of an AST in order to transform it from one revision to the next
revision. VCS generally store changes at the level of line modifications. These line
modifications only consider the addition and removal of lines, but not a line being
moved. These moves are represented by the removal and addition of a line. Thus,
VCS do not suffice as a source for fine-grained source code changes. We discuss
two approaches that do provide fine-grained changes; change logging and change
distilling.

90

6.2 Retrieving Fine-grained AST Changes

Change Logging
A change logger records the operations a developer performs inside the IDE while
developing an application. Several such logging approaches exist, such as Spy-
Ware [66], CodingTracker [60], Fluorite [77] and Syde [44]. The recorded operations
can also include invocations of refactoring tools, interactions with the underlying
VCS, copy-pasting code etc. Change loggers track changes that are invisible to a
VCS. For example, a developer may make several attempts to implement a certain
feature, but only commit the final result. These attempts are invisible when look-
ing at the code in the VCS, yet a change logger provides sufficient information to
uncover these.

The main advantage of change loggers is that they provide a complete, accurate
representation of the actions the developer performed. The main disadvantage is
that a change logger must be installed inside the IDE of every developer working
on the project. As a result, logging data is not readily available for most projects.
Second, replaying the logged operations will result in many intermediate states
that cannot be parsed. For these reasons we opt for a different approach, namely
change distilling.

Change Distilling
A change distiller implements an algorithmic approach to retrieving changes from
any pair of source files. To this end, a change distiller takes as input two ASTs,
called the source and target AST, and outputs a minimal sequence of change oper-
ations that, when applied in order to the source AST, transforms it into the target
AST. These changes can either be an insert of a node, an update of its properties,
its removal or its moving to a different location. A change distiller tries to output
a minimal sequence of changes that reuses as many nodes as possible from the
source AST.

ChangeDistiller [33] implements such a distilling approach, computing
changes between Java source code files. It is based on the differencing algorithm
of Chawathe et. al [11], originally intended for LaTeX files. Gumtree [30] im-
proves upon ChangeDistiller with more fine-grained changes by operating
upon a more detailed representation of the source code. In general, these distilling
approaches provide similar operations.

The main advantage of using a change distiller is that it can be used on any pair
of source files. As such, it can be used for any software project stored in a VCS.
The main disadvantage is that the outputted change sequence does not necessarily
match the concrete edits a developer performed. The algorithm only works for a
pair of files, and does not track source code that was moved to a different file.

In this dissertation we focus on a distilling approach as it can, unlike change log-
ging, be applied to any versioned software project. We have implemented a change

91

6 Supporting Change Characteristics

Insert

Delete

Move

Update

00 public class Example {
01 public Integer run(Integer x) {
02 return x;
03 }
04
05 public void test() {
06 int x = 0;
07 int y = 0;
08 int z = 0;
09 run(x);
10 }
11 }

00 public class Example {
01 public Integer run(Integer x) {
02 int y = 0;
03 return x;
04 }
05
06 public int foo() {
07 return 42;
08 }
09
10 public void test() {
11 int x = 1;
12 run(x);
13 }
14 }

Figure 6.1: Example of the output of a distilling algorithm.

distiller called ChangeNodes.2 ChangeNodes consists of two parts. First, it
enables users to distill changes between two Eclipse Java source files. Second,
it provides a declarative API for these changes that is used by QwalKeko. At
its heart lies the same algorithm as ChangeDistiller. The main difference be-
tween both implementations is that ChangeDistiller uses its own AST rep-
resentation instead of the one provided by Eclipse. ChangeNodes represents
its changes using Eclipse AST nodes. This facilitates its integration with Ekeko

and QwalKeko. The AST representation of Eclipse is also more fine-grained,
resulting in more fine-grained change information.

6.2.1 The Inner Workings of a Change Distilling Algorithm
The distilling algorithm described by Chawathe et al. [11], used by all of the afore-
mentioned change distillers, works in two phases. First, the matching phase estab-
lishes which nodes are considered to be equal between the source and the target
AST. Second, the differencing phase makes use of the matching to output change op-
erations. Chawathe et al. assume such a matching already exists, and only describe
the differencing phase. The work of Fluri et al. [33] focuses on heuristics that pro-
vide an adequate matching between two ASTs. The more accurate the matching,
the fewer redundant and unneeded change operations are output.

Figure 6.1 depicts a simple example, in which an Example class underwent some
changes. A new method foo has been added, the initializer expression of variable x

has been updated, variable y has been moved to a new location and variable z was
removed. Modified nodes that match are indicated with arrows. The matching of
unmodified nodes is not depicted. As newly added method foo has no matching
nodes in the original source code, an insert operations is outputted by the distiller.
As variable z has no matching node in the target AST, a removal operation is
outputted.

2https://github.com/ReinoutStevens/ChangeNodes

92

https://github.com/ReinoutStevens/ChangeNodes

6.2 Retrieving Fine-grained AST Changes

The algorithm’s matching phase takes as input two ASTs, and outputs a map-
ping between nodes of the source AST to nodes of the target AST that match.
Two matching nodes (and their subtrees) are not necessarily equal – they are just
sufficiently similar. For example, line 6 in Figure 6.1 depicts a node that is not
completely identical to its matching counterpart. We do not detail the heuristics
used to determine such matching, as they have been discussed in other work [33].
Examples of these heuristics include the Levenshtein distance between the string
representation of two nodes or the ratio of matching and non-matching children
between two nodes, which is also used by ChangeNodes.

The differencing phase takes as input two ASTs and a matching between nodes
in these ASTs. Next, it navigates the target AST using a breadth-first traversal,
outputting the correct change operations. For example, an insert operation is cre-
ated when a node is encountered that has no a matching node in the source AST.
Whenever a change operation is created, it is also applied immediately to the cur-
rent state of the source AST and the matching is updated to reflect this change.
This is required to maintain the assumption that, at every step of the traversal, the
parent of the current node has a matching counterpart. To prevent modifications to
the original source code, a copy of the source AST is taken. In this dissertation we
call this copy source’, and nodes residing in this AST are also indicated by a quote.
Note that, even though source’ starts as a copy of the original source code, it will
be identical to the target AST after executing the algorithm. The representation of
the changes that are output therefore refers to one of three ASTs, source, source’ or
target.

6.2.2 Detailed Change Definitions
We now provide a definition of the different kinds of change operations that are
produced by ChangeNodes. Eclipse nodes can have three different kinds of
children, accessed via so-called properties: child properties, list properties and sim-
ple properties. The difference lies in the values they can assume. A child property
has another AST node as its value, a list property has a list of AST nodes as its
value, and a simple property has a regular Java object that is not an AST node as
its value (e.g., a String). More importantly, some properties are mandatory, mean-
ing that the AST node must always have a non-null value for them. The “name”
property of a MethodDeclaration node is an example of a mandatory property.

We now define the semantics of the different change operations that are output
by ChangeNodes. These definitions are more detailed than those from the lit-
erature (i.e., [30, 33]), but we found that the additional detail is implicitly present
in most existing distiller implementations (and could hence be made explicit in
their supporting publications). As a distilling algorithm applies changes during its
execution, thereby modifying the AST, a copy of the source AST is taken.

93

6 Supporting Change Characteristics

insert(node’,original,parent’,removed’,property,index)

A node’ is inserted at location property of node parent’. In case property is a child
list property, the node is inserted at index index. Applying the insert will only
add a minimal representation of node’ to parent’. Node original is the parent in
the original AST, and can be null if the insert is part of the subtree introduced by
another change operation. Finally, removed’ is the node that the insert operation
overwrote in case a node was already present in original at location property. If
such a node was present its child nodes are added to node’ so that later change
operations can use them. If no such node was present this value is null. During
the execution of the algorithm the removed node is still accessible through the
matching data structure. For example, the overwritten node can still be moved
to a different location.

move(node’,original,parent’,preparent’,property,index)

A node’ is moved from preparent’ to location property of node parent’. In case
property is a list property, the node is moved to index index. Only a minimal
representation of the node will be moved. Its original location is replaced by
a placeholder node that still contains the subtree located at node’. Thus, only
the node is moved, and not the node and its complete subtree. original is the
representation of node’ in the original AST.

update(node’,original,property,value)

The value of node node’ at location property is updated to value. property must be
a simple property. As such, the value will be a Java object, and not an AST node.
original is the representation of node’ in the original AST.

delete(node’,original,parent’,property,index)

A node node’ and its complete subtree are removed at the value of property in
parent’. In case property is a list property, index indicates the index of node’ in its
list. Note that node’ will not be present in source’ as the change has already been
applied. As such, node’ will not have a parent node. The parent node before the
application of the delete is captured by parent’. original is the representation of
node’ in the original AST.
Note that moves and inserts produce minimal representations of an AST node

(as defined above), even if that AST node has a large subtree. This subtree will
be introduced by subsequent change operations. For example, a minimal method
declaration node can be inserted, after which its body can be created by moving a
pre-existing piece of code. Looking back at our initial example from Figure 6.1, the
depicted introduced method foo(){...} will actually be distilled as several seperate
insert operations, each one introducing new parts of the method.

94

6.3 Working with Source Code Changes

6.3 Working with Source Code Changes

In the following section we describe existing approaches that work with or query
fine-grained source code changes. These approaches do not necessarily operate in
the context of history querying.

JET JET [40] is a tool for analyzing subsequences of changes and characterizes
dependencies between these changes. It is used in the context of change integra-
tion, where changes made in one branch of a system need to be applied to a
different branch. This requires integrators to manually inspect changes made in
either branch to see how they can be integrated. JET supports integrators in recov-
ering dependencies between changes, in assessing how the integration of changes
would impact the target branch and in detecting whether the same source code
entity is modified multiple times by different changes. Just as CheOPS (cf., Sec-
tion 3.3), JET models these changes based on modifications made to a FAMIX [67]
representation of the source code. It provides several views of the changes and
their dependencies to aid integrators.

JET targets a single group of users, namely integrators. As such, it supports
them by helping with the exploration and manual inspection of change sequences.
It does not help with programmatically querying and analyzing changes, which is
needed in the context of MSR studies.

Lase Lase [56] is a tool that generates a single context-aware edit script that
automates multiple systematic edits, provided by means of examples. To this
end, Lase distills changes between modified methods, identifies common sub-
sequences among the corresponding change sequences, generalizes identifiers in
these sequences to meta-variables and finally extracts the common edit context.
This approach requires comparing individual changes, but not reasoning about
the change script as a whole. This is identified by the authors as one of the weak
points of the approach. Reasoning about the change script as a whole is difficult
for two reasons. First, a change distilling algorithm only returns but one of many
possible orderings between changes (e. g., changes that modify different parts of
the code can be interchanged in the change sequence). Lase assumes that similar
code edits result in similar change sequences where changes appear in the same
order. Second, the identification of common subsequences does not account for
different change sequences implementing the same transformation. It is assumed
a distilling algorithm returns the same sequence for the same code transformation.

The limitations of Lase further motivate the need for a dedicated and general-
purpose history query language.

95

6 Supporting Change Characteristics

1 @r@
2 expression x;
3 flexible expression list es;
4 identifier f != pci_enable_msix;
5 @@
6 x =
7 - pci_enable_msix
8 + f
9 (es)

10

11 @script:python@
12 f << r.f;
13 @@
14 print f

Figure 6.2: A Prequel query searching for replacements of pci_enable_msix. This example
is taken from [53].

Prequel Prequel [53] is a tool for querying line changes in the history of C
projects. Prequel is tailored towards identifying commits that (partially) contain
a source code transformation Figure 6.2 depicts a Prequel query that detects
replacement of a function call of pci_enable_msix. This example is taken from Lawall
et al. [53]. The query consists out of a pattern matching rule r (lines 1–9) and a
Python script (lines 11–14). Lines 2–5 introduce meta-variables x, an expression
representing the return value, es, an expression list representing the arguments of
the function call and f, an identifier representing the name of the function that
replaces pci_enable_msix. Lines 6–9 specify the form of the sought-after pattern,
where a call to pci_enable_msix is replaced by an arbitrary function f. The flexible

keyword indicates that the variable es can match one sequence of arguments before
the patch application, and a different sequence of arguments afterwards. Prequel

prints the identifiers of matching commits and the text generated by the Python

script at the end of the query.
Prequel is an interesting tool that enables querying large change sequences

by describing the surrounding and affected source code. They use a line-based
change representation and not fine-grained code changes operating on individual
AST nodes, although there is no requirement that the requested changes need to
align with complete lines.

6.4 Supporting Change Characteristics through
ChangeNodes

Criterion C3 (cf., Section 2.4) stipulates that a general-purpose history querying
tool must support change characteristics. These characteristics concern the in-
dividual changes (cf., Section 6.2.2) outputted by a change distilling algorithm.
ChangeNodes distills changes between two versions of a Java AST, and outputs
a sequence of changes that, when applied in order, transforms the original source

96

6.4 Supporting Change Characteristics through ChangeNodes

Table 6.1: Table depicting the libary of logic predicates to retrieve describing the character-
istics of a single change.

Predicate Description
Retrieving Changes
(changes ?changes source target) Unifies ?changes with the change sequence distilled between the compila-

tion units
source and target.

(change ?change source target) Unifies ?change with a single change of the change sequence distilled be-
tween the compilation units source and target.

Change Characteristics
(change|insert change) Succeeds if change is an insert operation.
(change|move change) Succeeds if change is a move operation.
(change|update change) Succeeds if change is an update operation.
(change|delete change) Succeeds if change is a delete operation.
(change-node|original change ?original) Unifies the original node of change with ?original.
(change-property|property change ?property) Unifies the property of change with ?property.
(change|insert-node|parent insert ?parent) Unifies the parent of insert with ?parent
(change|insert-node|removed insert ?removed) Unifies the removed node of insert with ?removed
(change|move-node|parent move ?parent) Unifies the parent of move with ?parent
. . . Similar accessors exist for the different change operations.
Matching
(changes-node-node|matching
changes ?nodeA ?nodeB)

Unifies ?nodeA with a node in the source AST and ?nodeB with its matching
node in the target AST.

1 (qwal graph root ?end [?left-cu ?right-cu ?change]
2 (in-source-code [curr]
3 (ast :CompilationUnit ?left-cu))
4 q=>
5 (in-source-code
6 (compilationunit-compilationunit|corresponding ?left-cu ?right-cu)
7 (change ?change ?left-cu ?right-cu)
8 (change|insert ?change)))

Figure 6.3: Code depicting how change/3 is used to retrieve a single insert in the sequence
of distilled changes.

AST into the target AST. In order to satisfy Criterion C3 a declarative API is pro-
vided that enables using the output of ChangeNodes in QwalKeko queries.

Table 6.1 depicts this API. The purpose of this API is two-fold. First, it facilitates
retrieving changes between two revisions of a file. These predicates are depicted
in the first part of the table. Second, it provides predicates enabling expressing
change characteristics (e. g., a change must be an insert) and source code charac-
teristics of the AST nodes affected by a change (e. g., a MethodDeclaration was in-
serted). These predicates are depicted in the middle part of the table. An auxiliary
predicate changes-node-node|matching/3 is also provided that exposes the matching
computed by ChangeNodes between the source and target AST.

Figure 6.3 illustrates how the change/3 predicate can be used to retrieve fine-
grained changes made between two revisions of the same Java file. The query
uses change/3 to find all newly inserted AST nodes.

On line 3 ?left-cu is bound to a compilation unit in the root revision of the
graph. It moves to one of the successors of that revision on line 4. The compilation
unit ?right-cu corresponding to ?left-cu is retrieved on lines 5–6 from that revision

97

6 Supporting Change Characteristics

using compilationunit-compilationunit|corresponding, which looks for a compilation
unit in the same package that defines the same type (cf., Section 5.4) . On line 7 the
changes between these two compilation units are computed using the predicate
change/3. The final line specifies that ?change needs to be an insert operation. We
can use Ekeko to specify more complex characteristics of the surrounding source
code.

In the example we define a predicate change-method|affected that reifies the
relation of changes affecting a particular method. It is depicted in Figure 6.4.
Lines 1–4 implement change-method|affected, which calls the more general predicate
change-node|affected, and verifies that the affected node is indeed a method dec-
laration. Predicate change-node|affected, implemented on lines 6–15, checks what
kind of change operation is provided as argument, and calls the correspond-
ing specialized predicate. Such a predicate is depicted on lines 17–23. Predicate
change|insert-node|affected unifies its second argument with an AST node that is
affected by an insert. To this end, it introduces a local variable ?affected that is
unified with either the subject of the insert (residing in the source AST) or the node
resulting from applying the insert (residing in the source’ AST). Nodes affected by
the insert are all the ancestors of that node, as their subtree is modified by the in-
sert. These ancestors are retrieved using child+. Predicates for the different change
operations are implemented using a similar pattern. For example, a delete refers
to a node in the original source code, as well as a (removed) node and its parent
in source’.

The example also illustrates some of the problems with querying changes di-
rectly; it requires a deep understanding of how the different changes are repre-
sented, and in what AST the nodes involved in a change resides. These problems
are discussed in detail in Chapter 7, as they motivate the need for supporting
evolution characteristics in history queries.

6.5 Evaluation: Expressing Change Characteristics
using ChangeNodes

In the following section we evaluate whether QwalKeko extended with
ChangeNodes can be used to perform studies regarding the evolution of a soft-
ware project. We want to answer the following research questions:

RQ1 Can QwalKeko be used to conduct MSR studies on real-world software
projects?

RQ2 How does the expressiveness and conciseness of QwalKeko compare to the
general-purpose programming language Clojure’s?

98

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

1 (defn change-method|affected [change ?method]
2 (all
3 (change-node|affected change ?method)
4 (ast :MethodDeclaration ?method)))
5

6 (defn change-node|affected [change ?node]
7 (all
8 (conde
9 [(change|update change)

10 (change|update-node|affected change ?node)]
11 [(change|delete change)
12 (change|delete-node|affected change ?node)]
13 [(change|insert change)
14 (change|insert-node|affected change ?node)]
15 ...)))
16

17 (defn change|insert-node|affected [insert ?node]
18 (fresh [?affected ?prop]
19 (conde
20 [(change|insert-node|original insert ?affected)]
21 [(change|insert-node|inserted’ insert ?affected)])
22 (child+ ?prop ?node ?affected)))
23

24 (defn change|delete-node|affected [delete ?node]
25 (fresh [?affected ?prop]
26 (conde
27 [(change|delete-node|original delete ?affected)]
28 [(change|delete-node|parent’ delete ?affected)])
29 (child+ ?prop ?node ?affected)))

Figure 6.4: Code listing depicting a predicate change-node|affected that retrieves all changes
affecting a method.

To answer these research questions, we revisit a study we conducted earlier [13].
In this study we investigated how frequently automated functional tests for web
applications tests are modified, and what parts of such tests are most prone to
change. We answer our first research question by detailing the different steps of
the study. These give an indication how QwalKeko can be used to perform other
MSR studies. We answer the second research question by replicating this study
without QwalKeko in Clojure, the raw output of ChangeNodes and some
Java to interact with Eclipse. To this end, we directly query the AST representa-
tion of Eclipse and the output of ChangeNodes. Checking out and importing
revisions is done using a Java helper class. We compare both implementations of
the same study. To this end, we classify each line of code as related to one of the
following concerns:

1. Expressing revision characteristics

2. Expressing temporal characteristics

3. Expressing change characteristics

4. Interacting with the VCS

5. Interacting with Eclipse

99

6 Supporting Change Characteristics

6. Interacting with the database

7. Processing the results

6.5.1 Context of the Study
Functional GUI testing has recently seen the arrival of test automation tools such
as HP Quick Test Pro, SWTBot

3, Robotium

4 and Selenium

5. These tools exe-
cute so-called test scripts which are executable implementations of the traditional
requirements scenarios. Test scripts consist of commands that simulate the user’s
interactions with the GUI (e.g., button clicks and key presses) and of assertions
that compare the observed state of the GUI (e.g., the contents of its text fields)
with the expected one.

Although test automation allows repeating tests more frequently, it also brings
about the problem of maintaining test scripts: as the system under test (SUT) evolves,
its test scripts are bound to break. Assertions may start flagging correct behavior
and commands may start timing out thus precluding the test from being executed
at all. Little is known about the kind of repairs that developers perform in practice.
Insights about manually performed repairs are therefore of vital importance to
researchers in automated test repair.

To address this, we have analyzed open-source projects using Selenium. Se-
lenium is a functional testing framework in which a developer scripts browser
actions, and for example verifies that an application’s user interface displays the
desired elements. In the original paper we answered the following research ques-
tions:

SQ1 How prevalent are Selenium-based functional tests for open-source web
applications? To what extent are they used within individual applications?

SQ2 Do Selenium-based functional tests co-evolve with the web application?
For how long is such a test maintained as the application evolves over time?

SQ3 How are Selenium-based functional tests maintained? Which parts of a
functional test are most prone to changes?

To distinguish between the research questions of our validations and the re-
search questions of the original study we shall call the latter study questions (SQ).
In this dissertation we focus on the second and third study questions. In the origi-
nal paper [13] we answered the first question by querying GitHub for open-source
projects that use Selenium. We identified 4287 candidate repositories that use

3http://eclipse.org/swtbot/
4https://code.google.com/p/robotium/
5http://docs.seleniumhq.org/

100

http://eclipse.org/swtbot/
https://code.google.com/p/robotium/
http://docs.seleniumhq.org/

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

Selenium. We narrowed the number of repositories down to 287 by selecting
projects that adhere to the following criteria:

1. A project needs to be at least 1 year old.

2. A project needs to have over 100 commits in the last year.

3. A project needs to be larger than 500 KBytes.

In order to answer the second and third SQ we narrowed down these projects to
a corpus of 47 repositories that uses Selenium extensively. From these 47 repos-
itories, we manually selected 8 projects. These 8 projects form our high-quality
corpus, based on the number of Selenium tests present in the system. This selec-
tion excludes web frameworks and test frameworks built on top of Selenium. It
also excludes test-only project repositories. As such, the high-quality corpus con-
sists of repositories that version true web applications and their Selenium-based
functional tests. Table 6.2 describes these repositories. The first two columns depict
some general information about the project; the GitHub Repository column depicts
the name of the GitHub project and the Description column describes the general
purpose of the project. Next, the # Commit column depicts the total number of
commits in the project. The # Sel. Commit column depicts the total number of com-
mits that modified or introduced Selenium files. The Java LoC column depicts
the total number of lines of Java code in the final revision of the project. Finally,
the Sel. LoC depicts the total number of lines of code in Selenium files in the final
revision of the project.

These projects form the basis for both the study performed in our paper as well
as the validation of this chapter. These are large, mature projects that are repre-
sentative for projects used in other MSR studies. In what follows we reconstruct
the different steps performed for the study. We provide two versions of the source
code; one version written using QwalKeko and one using Clojure, Java and
the raw output of ChangeNodes. We do provide a small layer on top of the
Eclipse JDT AST representation that enables describing the source code using
functional variants of Ekeko’s ast, has and child. These only provide a thin wrap-
per around the property descriptors used by Eclipse, but increase the readability
of the code. To interact with git we make use of JGit

6, a library providing Java
bindings for the git API. Performing the study using QwalKeko depicts how
similar MSR studies could be performed. Comparing both versions of the code
enables us to evaluate the expressiveness of QwalKeko.

The different steps are as follows: first, we need to identify Selenium files for
every revision. Once we have identified these we can answer SQ2 by determining
how frequently these files change. Next, we need to detect revisions in which these

6https://eclipse.org/jgit/

101

https://eclipse.org/jgit/

6 Supporting Change Characteristics

Table 6.2: The 8 repositories in the high-quality corpus.
GitHub Repository Description # Commit # Sel. Commit Java LoC Sel. LoC

gxa/atlas Portal for sharing gene
expression data

2118 358 32,375 5,374

INCF/eeg-database Portal for sharing
EEG/ERP portal clini-
cal data

854 17 68,262 7,158

mifos/head Portfolio management
for micro-finance insti-
tutions

7977 505 338,705 18,735

motech/TAMA-Web Front office application
for clinics

2358 239 62,034 2,815

OpenLMIS/open-lmis Logistics management
information system

4714 1153 72,275 19,195

xwiki/xwiki-enterprise Enterprise-level wiki 688 164 28,405 13,506

zanata/zanata-server Software for translators 3430 81 111,698 3,509

Zimbra-Community/zimbra-sources Enterprise collaboration
software

377 243 1,025,410 189,413

1 (qwalkeko* [?file ?cu ?end]
2 (qwal graph root ?end []
3 (q=>*)
4 (in-git-info [curr]
5 (file|add ?file curr))
6 (in-source-code [curr]
7 (file|compilationunit ?file ?cu curr)
8 (compilationunit|selenium ?cu))))

Figure 6.5: QwalKeko code to identify Selenium tests in the history of a project.

files are modified, and compute the changes made to the test scripts. Finally, we
need to classify these changes in order to detect which parts of the test code are
most prone to change.

6.5.2 Identifying Selenium Files using QwalKeko
First of all, we need to identify which files of each project are Selenium scripts.
To this end, we write a QwalKeko query that loops over all the revisions of the
queried software project. For each revision, it inspects the newly added files and
identifies whether it is a Selenium script. The latter is done by looking whether
the file imports a package of which name contains “selenium”. Albeit a simple
heuristic we have not encountered any incorrectly identified files.

Figure 6.5 depicts a query that returns all the Selenium tests, the compilation
unit and the revision of the script of the queried software project. First, an arbitrary,
including zero, number of revisions is skipped using the q=>* operator on line 3.
Next, the query binds ?file to a newly added file. The in-git-info special form is
evaluated without checking out code to avoid unnecessary operations. Finally, the
last three lines check out the corresponding compilation unit of the added file and
verify whether it is a Selenium script.

102

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

1 (defn compilationunit|selenium [?cu]
2 (fresh [?imp ?impname ?str]
3 (ast :CompilationUnit ?cu)
4 (child :imports ?cu ?imp)
5 (has :name ?imp ?impname)
6 (name|qualified-string ?impname ?str)
7 (string-contains ?str ".selenium")))

Figure 6.6: QwalKeko code that detects whether a compilation unit imports a Selenium

package

Identifying whether a compilation unit is a Selenium script is done
purely using Ekeko. Figure 6.6 depicts the implementation of predicate
compilationunit|selenium. Line 2 defines three new logic variables using fresh. Line
3 verifies whether ?cu unifies with a compilation unit. Line 4 unifies ?imp with one
of the import statements on that compilation unit. Lines 5–6 retrieve the name of
the imported package. The last line verifies whether the name contains the string
“.selenium”.

The results of this query are written to a database so that they do not
need to be recomputed by other predicates. We introduce a new predicate
(file|selenium file version) which verifies whether a file corresponds to a Sele-
nium script for a certain revision. This predicate consults this database and will
be used in further examples.

6.5.3 Identifying Selenium Files using Clojure
Implementing the functionality in plain Clojure requires some scaffolding. We
cannot rely on the facilities provided by QwalKeko to navigate the different
commits, nor to import these as an Eclipse project. The latter is needed to have
access to the different ASTs. Even though our heuristic approach to identify Se-
lenium files based on their import statements could be done using a text search
tool such as grep, we will still parse the source code using the Eclipse parser.
Our motivation is two-fold. First, an AST representation is required for the change
classification step. Second, parsing the source code would be required in more
complex studies.

Figure 6.7 depicts this scaffolding. The function read-git-repo imports a reposi-
tory residing at a certain location. The function get-walker returns an iterator for a
given repository that can be used to navigate the different commits. Finally, func-
tions checkout-commit and delete-commit ensure that an Eclipse project is created
or removed containing the code of the given commit. To this end, it uses a helper
Java class ClojureMetaVersion that handles the low-level git checkout command and
importing the project in Eclipse.

This scaffolding facilitates importing git repositories, checking out a single com-
mit and importing this commit as a separate Eclipse project. Next, we need

103

6 Supporting Change Characteristics

1 (defn read-git-repo [location]
2 (let [builder (new FileRepositoryBuilder)]
3 (.setGitDir builder (file location))
4 (.build builder)))
5

6 (defn get-walker [repo]
7 (let [git (new Git repo)
8 walker (-> git .log .all .call)]
9 walker))

10

11 (defn repo-name [repo]
12 (.getName (.getParentFile (.getDirectory repo))))
13

14 (defn checkout-commit [repo rev-commit]
15 (let [version (ClojureMetaVersion. rev-commit (repo-name repo))]
16 (.openAndCheckoutIfNeeded version)))
17

18 (defn delete-commit [repo rev-commit]
19 (let [version (ClojureMetaVersion. rev-commit (repo-name repo))]
20 (.closeAndDeleteIfNeeded version)))

Figure 6.7: Clojure code to import a git repository and import an individual commit
into Eclipse.

to implement the functionality that detects whether a file implements a Sele-
nium test. This is depicted by Figure 6.8. Similar to the QwalKeko imple-
mentation, the Clojure implementation checks for an import of a Selenium

package. The code uses the function has-clj, a Clojure re-implementation of
Ekeko’s has/3. has-clj is used to retrieve the import statements of a parsed com-
pilation unit. Next, it verifies whether a single import statement includes a Se-
lenium package. Unlike the QwalKeko version, in which the declarative en-
gine backtracks over the different import statements, the Clojure version must
perform this explicitly. Luckily Clojure features high-level list processing func-
tions, such as some. This higher-order function succeeds when a given function
succeeds for at least a single element of a collection. To convert a qualified
name (e. g., org.eclipse.jdt.core.dom.ASTNode) into a list of individual parts (e. g.,
(org eclipse jdt core dom ASTNode)) we implement and use split-qualified-name.

We can now identify compilation units that implement a Selenium test. As a
last step we need to verify for every commit whether any newly added file is a Se-
lenium test. Figure 6.9 depicts this. Line 27 defines a function process-repo, which
takes as input a repository, creates a corresponding walker and iterates over every
commit using map. In contract to the QwalKeko implementation, the Clojure

implementation is limited in how commits are traversed. JGit can only provide
the parents of a given commit, and not the successors. For this example we just
need to perform a single operation for every commit, and the order in which com-
mits are traversed is irrelevant. As such, a walker suffices. A walker enables a user
to set a start commit, to filter out some commits and then visit all the commits.
Function process-commit processes such a single commit. It uses get-modified-files

to retrieve the modified files of that commit. Internally this function uses JGit to

104

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

1 (defn split-qualified-name
2 ([name]
3 (split-qualified-name name ’()))
4 ([name res]
5 (if (.isSimpleName name)
6 (conj res name)
7 (recur (has-clj :qualifier name) (conj res (has-clj :name name))))))
8

9 (defn contains-selenium-import? [cu]
10 (let [imports (has-clj :imports cu)]
11 (some
12 (fn [import]
13 (let [qualname (has-clj-unwrapped :name import)
14 names (split-qualified-name qualname)
15 ids (map #(has-clj-unwrapped :identifier %) names)]
16 (some
17 #"selenium"
18 ids)))
19 imports)))

Figure 6.8: Clojure code to detect whether a compilation unit imports a Selenium

package.

compute the differences with every parent commit. It returns a list of DiffEntry

objects, which contain, among others, the path of the file and what kind of modifi-
cation was performed (i. e., the file was added, moved, deleted or modified). From
this list we select all added Java files. When such a file exists, line 15 performs
a checkout of the commit and call process-file, passing the name of the Eclipse

project representing that commit as well as the local path of the file. After process-
ing all the modified files, line 22 ensures the commit is removed as well. Finally, the
results are written to a database. Note that Clojure has lazy sequences. In this
case we must ensure that the results are computed before the project is removed.
Thus, all elements of the collection are realized using doall.

6.5.4 Classification of Changes using QwalKeko
Having successfully identified the Selenium scripts in the queried software
project, we now need to compute and categorize changes made to these files.
To this end, whenever a change was made to a Selenium script we will use
ChangeNodes to compute the differences between that revision of the file and
its predecessor. The classification we use is based on code elements frequently
found in Selenium test scripts. These elements are either locators, which retrieve
elements in the DOM, commands, such as clicking on a button, demarcator, such
as test specific annotations, asserts and constants.

Figure 6.10 depicts a QwalKeko query that computes and classifies changes
made to Selenium scripts. On line 4 it skips an arbitrary, non-zero number of
versions using the q=>+ predicate. Next, it binds ?file to a modified file in the cur-
rent revision. It ensures this file is a Selenium script. If no Selenium scripts are
modified in this revision no code is checked out. Next, it binds ?right-cu to the

105

6 Supporting Change Characteristics

1 (defn process-file [eclipse file]
2 (let [cu (get-compilation-unit eclipse file)]
3 (when (contains-selenium-import? cu)
4 [file (count-lines cu)])))
5

6 (project-name [repo commit]
7 (str (repo-name repo) "-" (commit-id commit)))
8

9 (defn process-commit [repo walker commit]
10 (let [modified-files (get-modified-files repo walker commit)
11 added-files (map get-path (filter diffentry-added? modified-files))
12 java-files (filter #(.endsWith % ".java") added-files)
13 eclipse-name (project-name repo commit)]
14 (when-not (empty? java-files)
15 (checkout-commit repo commit))
16 (let [results (doall (remove nil?
17 (map
18 (fn [file]
19 (process-file eclipse-name file))
20 java-files)))]
21 (when-not (empty? java-files)
22 (delete-commit repo commit))
23 (doall
24 (map (fn [[file loc]] (add-changed-file repo commit file loc)) results))
25 results)))
26

27 (defn process-repo [repo]
28 (let [walker (get-walker repo)]
29 (doall (map #(process-commit repo walker %) (seq walker)))))

Figure 6.9: Clojure code that detects Selenium files in every commit of a VCS.

1 (qwalkeko*
2 [?left-cu ?right-cu ?file ?end ?change ?category]
3 (qwal graph version ?end []
4 (q=>+)
5 (in-git-info [curr]
6 (file|edit ?file curr)
7 (file|selenium ?file curr))
8 (in-source-code [curr]
9 (file|compilationunit ?file ?right-cu curr))

10 q<=
11 (in-source-code [curr]
12 (compilationunit|corresponding ?right-cu ?left-cu)
13 (change ?change ?left-cu ?right-cu)
14 (classify-change ?change ?category))))

Figure 6.10: QwalKeko code that computes and classifies changes made to Selenium.

compilation unit of that Selenium script. On line 10 of the query it moves to one
of the predecessors of the current revision using the q<= predicate. On line 12 it
retrieves the corresponding compilation unit of ?right-cu and binds it to ?left-cu.
Note that the way the query is written, ?left-cu is bound to the original script,
while ?right-cu contains the more recent revision of the script. On the last 2 lines it
computes the changes made to these files. The predicate classify-change is respon-
sible for classifying a single change.

106

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

1 (defn change|affects-findBy [change ?find-by]
2 (all
3 (change|affects-node change ?find-by)
4 (conde
5 [(methodinvocation|by ?find-by)]
6 [(annotation|findBy ?find-by)])))
7

8 (defn methodinvocation|by [?x]
9 (fresh [?name]

10 (ast :MethodInvocation ?x)
11 (child :expression ?x ?name)
12 (name|simple-string ?name "By")))
13

14 (defn annotation|findBy [?x]
15 (all
16 (ast :NormalAnnotation ?x)
17 (annotation-name|equals ?x "FindBy")))

Figure 6.11: Classification of changes using QwalKeko

Figure 6.11 depicts how a change can be classified as a modification to a locator.
To this end it uses (change|affects-node change ?node), which unifies ?node to any
parent node of both the original and the target AST node of the change. This pred-
icate works purely on an AST level, and does not use other sources of information.
It then verifies whether one of the affected nodes resides inside either a method in-
vocation with the name “By” or an annotation named “FindBy”. These predicates
are once again written using Ekeko. Predicates for the remaining categories are
analogous.

6.5.5 Classification of Changes using Clojure
We now implement the same functionality in plain Clojure. Figure 6.12 imple-
ments the function change-get-affected-nodes, mimicking the behavior of predicate
change|affects-node/2. This function returns a collection of all the AST nodes that
are affected by a single change. We define a helper function node-get-parent-nodes

that returns the path from a node to the root node of the AST. For each change type
a specialized function is created. For example, insert-get-affected-nodes returns the
nodes affected by an insert operation. Unlike the declarative implementation we
must manually return a collection containing all the solutions. These solutions are
also computed in an on-demand fashion due the Clojure’s lazy collections.

Next, we need to implement the functionality to detect whether a change affects
certain Selenium elements, such as FindBy statements. Figure 6.13 implements the
function classify-findby, which returns whether a change affects a FindBy statement.
The function classify-change returns the different categories that a single change
affects. The declarative QwalKeko implementation handles this in a more intu-
itive manner by backtracking. Several type checks are also scattered throughout
the code; the AST can return different types of AST nodes for a single property,
while we are only interested in a single type. This type checking is present to a

107

6 Supporting Change Characteristics

1 (defn node-get-parent-nodes [node]
2 (take-while #(not (nil? %))
3 (iterate #(.getParent %) node)))
4

5 (defn insert-get-affected-nodes [insert]
6 (let [original (.getOriginal insert)
7 inserted (.getCopy insert)]
8 (concat
9 (node-get-parent-nodes original)

10 (node-get-parent-nodes inserted))))
11

12 (defn move-get-affected-nodes [move]
13 (let [source (.getOriginal move)
14 target (.getCopy move)]
15 (concat
16 (node-get-parent-nodes source)
17 (node-get-parent-nodes target))))
18

19 (defn delete-get-affected-nodes [delete]
20 (let [removed (.getOriginal delete)
21 prime-parent (.getPrimeParent delete)]
22 (concat
23 (node-get-parent-nodes removed)
24 (node-get-parent-nodes prime-parent))))
25

26 (defn update-get-affected-nodes [update]
27 (let [node (.getOriginal update)]
28 (node-get-parent-nodes node)))
29

30 (defn change-get-affected-nodes [change]
31 (cond
32 (.isInsert change) (insert-get-affected-nodes change)
33 (.isMove change) (move-get-affected-nodes change)
34 (.isDelete change) (delete-get-affected-nodes change)
35 (.isUpdate change) (update-get-affected-nodes change)))

Figure 6.12: Clojure implementation to detect what nodes are affected by a change

lesser extent in the QwalKeko implementation due to its use of ast/3. Unlike the
Clojure implementation, the declarative engine just fails and backtracks when-
ever an element does not have a certain property, whereas the Clojure variant
throws an exception. Thus, a more careful checking for nil values is required in
the Clojure implementation.

The final part of the implementation must iterate over every pair of revisions,
compute the changes and classify these changes using the aforementioned func-
tions. Figure 6.14 implements the function classify-all-changes. This function loops
over every commit, calling process-commit-changes. This function introduces a local
function process-commit-parent, which processes a commit and its predecessor. To
this end, it retrieves all the modified Selenium files on line 12 and 13. If such
a file exists a checkout of the commit and its predecessor is performed, and the
modified Selenium files are processed using process-file. This function takes as
input a commit, its predecessor and a file path. It parses both revisions of the file,
computes the changes between both revisions and classifies these changes. It re-
turns three values; the changes, a collection of changes and their corresponding

108

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

1 (defn method-findby? [node]
2 (when (ast-methodinvocation? node)
3 (let [exp (ast/has-clj-unwrapped :expression node)]
4 (when (ast-simplename? exp)
5 (= (.getIdentifier exp) "FindBy")))))
6

7 (defn annotation-findby? [node]
8 (when (ast-normalannotation? node)
9 (let [name (.getIdentifier (ast/has-clj-unwrapped :typeName node))]

10 (= name "FindBy"))))
11

12 (defn classify-findby [change]
13 (let [affected (change-get-affected-nodes change)]
14 (some (fn [node]
15 (or
16 (annotation-findby? node)
17 (method-findby? node)))
18 affected)))
19

20 (defn classify-change [change]
21 (remove nil?
22 (list
23 (if (classify-assert change) :assert)
24 (if (classify-findby change) :findby)
25 (if (classify-pageobject change) :pageobject)
26 (if (classify-constantupdate change) :constant)
27 (if (classify-driver change) :driver)
28 (if (classify-command change) :command))))

Figure 6.13: Clojure implementation to classify a single change

classification and the file location that was passed as input. These results are then
passed to add-change-result, which writes them to a database. Finally, the opened
projects are closed again.

6.5.6 Results of our Evaluation
In the following section we classify each line of the study according to one of the
following concerns:

• Checking Revision characteristics, for example whether a compilation unit
implements a Selenium test.

• Checking Temporal characteristics, for example getting the successor of a
revision.

• Checking Change characteristics, for example whether a change affects an
assert statement.

• Interacting with the VCS, for example checking out a specific revision or
getting all the commits of the versioned project.

• Interacting with Eclipse, for example importing a commit into Eclipse or
retrieving parsed code from a file.

109

6 Supporting Change Characteristics

1 (defn process-file [commit parent file]
2 (let [left (get-compilation-unit (project-name parent) file)
3 right (get-compilation-unit (project-name commit) file)
4 changes (get-java-changes left right)
5 classified (map classify-change changes)
6 partitioned (remove #(empty? (second %)) (partition 2 (interleave changes classified)))]
7 [changes partitioned file]))
8

9 (defn process-commit-changes [repo walker commit]
10 (letfn
11 [(process-commit-parent [commit prev]
12 (let [modified-files (filter diffentry-modified? (get-modified-files-parent repo walker commit prev))
13 seleniums (filter is-selenium-file? (map get-path modified-files))]
14 (when (not (empty? seleniums))
15 (checkout-commit repo commit)
16 (checkout-commit repo prev))
17 (let [results (map #(process-file commit prev %) seleniums)]
18 (doall
19 (map
20 (fn [[changes interleaved file]]
21 (add-change-result repo commit file changes interleaved))
22 results)))))]
23 (let [preds (get-parents repo walker commit)]
24 (doall
25 (map #(process-commit-parent commit %) preds))
26 (doall
27 (map #(delete-commit repo %) preds))
28 (delete-commit repo commit))))
29

30 (defn classify-all-changes [repo]
31 (let [walker (get-walker repo)]
32 (doall
33 (map
34 (fn [commit]
35 (process-commit-changes repo walker commit))
36 (seq walker)))))

Figure 6.14: Clojure implementation that computes and classifies changes to made Se-
lenium files

• Interacting with the Database, for example to store computed results so that
they can later be reused or shared.

• Processing the results, for example grouping all the changes affecting assert
statements together.

Table 6.3 depicts the results of this classification. We have split the code of both
implementations into three groups; code to perform the identification of Sele-
nium files, code to perform the change classification and code that is shared
between both steps. The table only depicts the lines of Clojure code. For the
Clojure implementation we make use of a Java class that facilitates importing
projects into Eclipse or to retrieve a specific commit from the git repository. This
Java class contains 160 lines of code. The Clojure code provides a thin wrap-
per around this class. Figure 6.15 provides a different view on this data; it depicts
the main concerns (i. e., all but the database and processing of results) of both
implementations as a bar plot.

110

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

Table 6.3: Table depicting the lines of code spent on the different concerns for both the
Clojure and QwalKeko implementation of the Selenium experiment.

Clojure QwalKeko
Category Shared Sel. Classify Total Shared Sel. Classify Total
VCS 30 7 7 44 0 1 2 3

Eclipse 14 1 2 17 0 1 2 3

Revision 12 27 124 163 0 22 106 128

Temporal 0 4 7 11 0 1 2 3

Change 0 0 53 53 0 0 72 72

Processing 0 4 41 45 0 3 72 75

Database 9 14 8 31 9 5 13 27

Other 24 0 0 24 15 0 0 15

Total 388 326

Figure 6.15: Plot depicting the different concerns in both implementations of the study.

111

6 Supporting Change Characteristics

Results for the shared code Looking at the results we notice that the Clojure

implementation has a lot more shared code than the QwalKeko variant. This is
because we needed to implement functionality that is provided by QwalKeko.
This is mainly interacting with the VCS to retrieve a specific commit, as well as
Eclipse to retrieve the parsed source code. Also note that the depicted data does
not include an Eclipse class that handles the low-level commands of checking
out a commit and importing it into Eclipse as a separate project. These concerns
are handled by QwalKeko by the graph representation of a VCS and by using
the in-source-code construct. The shared code in QwalKeko concerns the setup
of the database and importing the different namespaces of QwalKeko.

Results for the Selenium identification For the identification of Selenium files
we note that both implementations have an almost identical number of lines.
Ekeko features a very explicit style of source code querying that is easily mim-
icked in Clojure. Thus, both implementations have a similar number of lines.
The main difference is that Clojure needs to implement its own version of back-
tracking; its functions need to return all results which are filtered in later stages.
For example, function contains-selenium-import? first needs to retrieve all import
statements before it can filter them. This code is quite terse due to the functional
nature of Clojure and its higher-order functions that operate on collections. This
is also noticeable in the temporal specification in Clojure. We need to perform
the same operation for every revision of the queried project. Thus, we use map over
the collection of commits. This is similar to QwalKeko, in which we use q=>*.

Results for the change classification The first thing to notice is that the expres-
sion of change characteristics takes up more lines-of-code in the QwalKeko im-
plementation. This is due to an implementation of several short predicates that
detect whether a change affects a certain node type. The QwalKeko implemen-
tation introduces some logic variables that are inlined in the Clojure implemen-
tation, thus resulting in more lines-of-code. Both implementations do not require
that much effort to express temporal characteristics, although the Clojure imple-
mentation requires a bit more. This is due to the nature of the change classification
which, similar to the Selenium identification, requires to perform an operation
on every revision pair. The Clojure implementation can only easily retrieve the
predecessors of a revision, and not the successors. This limits the way the commits
of the VCS can be navigated.

We can positively answer our first research question RQ1. We have used
QwalKeko to perform an MSR study on software projects of industrial scale.
The study requires expressing temporal characteristics, fine-grained revision char-
acteristics and change characteristics. In Chapter 2 we have provided an overview
of existing studies and the granularity of information they require. As such, this

112

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

Selenium study is representative of a whole series of studies regarding the his-
tory and evolution of a software project.

For the second research question RQ2 we conclude that QwalKeko provides a
cleaner and more concise way to implement the Selenium experiment. Clojure

does not feature constructs for specifying temporal characteristics. The resulting
code is harder to maintain and read than the equivalent QwalKeko queries.

6.5.7 Visualizing Commit Histories
To answer SQ2 of the original study, we also visualized the commit histories of
the high quality corpus that provide some insight into the commit histories of
individual projects from our high-quality corpus. We present these visualizations
in this dissertation as well to provide some more examples of what QwalKeko

can aid in achieving. Figure 6.16 depicts a variant of the Change History Views
introduced by Zaidman et al. [78] for three randomly selected projects. For each
commit in a project’s history, our variant visualizes whether a Selenium (rather
than a unit test file) or application file was added, removed or edited. The X-axis
depicts the different commits ordered by their timestamp. The Y-axis depicts the
files of the project. To this end, we assign a unique identifier to each file. We ensure
that Selenium files get the lowest identifiers by processing them first. As a result,
they are located at the bottom of the graph.

Figure 6.16 clearly demonstrates that Selenium tests are modified as the
projects evolve. However, the modifications do not appear to happen in a coupled
manner. This is to be expected as Selenium tests concern the user interface of
an application, while application commits also affect the application logic underly-
ing the user interface. Any evolutionary coupling will therefore be less outspoken
than, for instance, between a unit test and the application logic under test.

Note that many files are removed and added around revision 1000 of the
xwiki-enterprise project. The corresponding commit message7 reveals that this is
due to a change in the project’s directory structure. We see this occur in several
other projects.

6.5.8 Results of the Change Classification
To answer SQ3 we have classified the changes made to Selenium tests into cate-
gories. These categories are created from the typical components of a Selenium-
based functional test. We define the following categories:

Driver-related Expressions opening and closing a connection to the web browser;
e. g., new ChromeDriver(), driver.close()

7Commit 74feec18b81dec12d9d9359f8fc793587b4ed329

113

6 Supporting Change Characteristics

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●● ●●●●●●●●●
●●●●
●

●●●●●● ●●●●●●●●●
●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●
●●●● ●●●●●●●●● ●●●●●●●●●●

●●●●●●●● ●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●● ●●●●● ●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●

●● ●●●●●● ●●●●●●●●●●●●●●●
● ●● ●●●●●● ● ●●● ●●●●

0

500

1000

0 500 1000 1500
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●●●
●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●● ●●●●●●●●●●●

●●●●
●●
●●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0

500

1000

1500

0 1000 2000 3000 4000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●

●

●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●

●●

●●●●●●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●

●●●

●

●●●●●●

●

●●●●●●●
●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●

●

●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●

●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●

●●
●●
●
●●●●
●●●●
●
●●●
●
●●
●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●● ●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●

●●

●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●
●
●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●
●

●●●●

●
●

●

●

●●

●●●●●●●●
●●●●

●
●

●●

●

●●●●●●●●●●●
●●●●●●

●●

●●●●
●

●●●●

●●●●●●
●
●●
●●●●●●●●●●

0

500

1000

1500

0 500 1000 1500 2000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

Figure 6.16: Change histories of the xwiki-enterprise (top), open-lmis (middle), and
atlas projects (bottom).

114

6.5 Evaluation: Expressing Change Characteristics using ChangeNodes

Locators Expressions locating specific DOM elements; e. g.,
driver.findElements(By.ByName("...")), webElement.findElement(By.ById("..."))

Inspectors Expressions retrieving properties of a DOM element; e. g.,
element.getAttribute("..."), element.isDisplayed()

Commands Navigation requests and interface interactions; e. g., driver.get("..."),
navigation.back(), element.click(), element.sendKeys("...")

Demarcators Means for demarcating actual tests and setting up or tearing down
their fixtures, typically provided by a Unit Testing framework; e. g., Test,
BeforeClass

Assertions Predicates over values, typically provided by a Unit
Testing framework ; e. g., assertTrue(element.isDisplayed()),
assertEquals(element.getText(), value)

Exception-related Means for handling exceptions that stem from interacting with
a separate process. e. g., StaleElementReferenceException, TimeOutException

Constants Constants specific to web pages such as identifiers and classes of DOM
element.

Figure 6.17 depicts the ratio of changes that are classified in a specific category
for our high-quality corpus. The Y-axis has a box plot summarizing the number
of changes that were classified in each category, divided by the total number of
changes made to Selenium files. Table 6.4 lists project-scoped results.

The most frequently made changes are those to constants and asserts. These
are the two test components that are most prone to changes. Constants occur fre-
quently in locator expressions to retrieve DOM elements from a web page and in
assert statements as the values compared against.8 Focusing future tool support
for test maintenance on these areas might therefore benefit test engineers most.
Existing work about repairing assertions in unit tests [16], and about repairing ref-
erences to GUI widgets in functional tests for desktop applications [42] suggests
that this is not infeasible. Note that existing work also targets repairing changes
in test command sequences [47], but such repairs do not seem to occur much in
practice.

8Our tool classifies such changes also in the locator or assertion category.

115

6 Supporting Change Characteristics

●

●

●

0.0

0.1

0.2

0.3

0.4

assertion command constant demarcator location
Change Classification

C
ha

ng
e

H
it

R
at

io

Figure 6.17: Summary of the corpus-wide change classification.

Table 6.4: Project-scoped change classification.
Project Total Locator Command Demarcator Asserts Constants
Atlas 8068 90 3 104 3282 2586

XWiki 68665 115 154 24 1490 3114

Tama 31821 95 89 43 36 571

Zanata 12959 497 119 0 1 906

EEG/ERP 248 3 0 0 6 24

OpenLMIS 69792 2550 401 8 3454 8972

116

6.6 Discussion

Both outliers in our results stem from the atlas project. Its test scripts contain
hardcoded genome strings inside assert statements that are frequently updated.

6.6 Discussion

Chapter 5 discusses which criteria of a general-purpose history querying tool
QwalKeko fulfills. We concluded that support for change and evolution char-
acteristics is missing. By integrating ChangeNodes into QwalKeko we aim to
solve these shortcomings. This section discusses whether the Clojure implemen-
tation fulfills the criteria, and whether QwalKeko supports the specification of
change characteristics through the integration with ChangeNodes.

C1: Revision Characteristics Both the Clojure and QwalKeko implementa-
tion support the specification of revision characteristics. QwalKeko supports
these through Ekeko. We implemented similar functionality in Clojure. The
major difference is that the backtracking must be implemented manually in Clo-
jure. This is done by returning all possible solutions that are filtered later on.
QwalKeko on the other hand relies on the underlying declarative engine.

C2: Temporal Characteristics QwalKeko enables users to specify temporal
characteristics through Qwal. Our Clojure implementation uses JGit to query
the meta-data of a git repository. git only stores the parent (or predecessor) of a
commit. Thus, navigating the commits in an arbitrary order is difficult. A walker
class, specifying a walk through the revision graph, can be implemented by the
user. This is not sufficient for history querying, as the walk depends on the ele-
ments found in certain revisions, and cannot be known beforehand. For both the
Selenium identification and classification the temporal characteristics are very
simple. Thus, this shortcoming is only partially visible in our experiment.

C3–4: Change and Evolution Characteristics Both implementations illustrate
that change characteristics are cumbersome to express. In this study we were only
interested in classifying individual changes, yet we already notice that we need
to implement specialized predicates or functions for every change type. Different
change types are represented by different ASTs – the source AST, the target AST
and the source’ AST – and thus require specialized behavior. Our current change
specification language is suited to describe a single change, but does not scale
to describing larger multi-change patterns. We describe the problems of querying
changes and how to overcome them through a dedicated specification language in
Chapter 7.

117

6 Supporting Change Characteristics

QwalKeko extended with ChangeNodes supports the specification of
change characteristics. Support for specifying evolution characteristics is in-
troduced in Chapter 7.

C5: Query abstraction, reuse and composition Both implementations enable ab-
stracting, reusing and composing queries. QwalKeko enables users to define
new predicates, introduce new temporal operators, etc. Providing a declarative in-
terface on top of the output of ChangeNodes enables the description of change
characteristics. The AST-based representation of changes enables reusing existing
Ekeko predicates to describe the source code affected by a change. Clojure ad-
vocates a functional approach to write queries, in which collections are iterated,
filtered, etc. Writing and composing small functions is key to such an approach.
The Clojure functionality is based on the functionality provided by QwalKeko,
resulting in similar query abstraction, reuse and composition.

C6: On-Demand Solutions Clojure is a functional language with lazy evalua-
tion. Some special care is needed in the case of side-effects, such as importing or
removing a revision. It is left to the user to perform this operation carefully and
ensure that the query benefits as much as possible from the delayed evaluation.
QwalKeko suffers from a similar problem; it relies on backtracking to provide
more solutions. To this end, it keeps every revision open until a query has fin-
ished (or the query must explicitly remove a revision). Solutions are provided in
an on-demand manner, but memory consumption can be high.

6.7 Conclusion

In this chapter we extended QwalKeko with a change distilling algorithm called
ChangeNodes. It is based on the algorithm of Chawathe et al. [11] that is
also used by other change distilling approaches such as ChangeDistiller [33].
ChangeNodes implements an algorithm to retrieve fine-grained changes be-
tween two revisions of a file. These changes do not necessarily correspond to the
concrete edits a developer performed. They do form a source of information to see
what elements were potentially modified during development.

This extension is done through a declarative API that reifies these changes. This
layer enables users to retrieve changes and specify these characteristics. We have
evaluated the current state of QwalKeko by performing an empirical study re-
garding the evolution of Selenium tests. In this study we identified mature open-
source projects using Selenium and detected which parts of Selenium tests
are most prone to change. We implement this study twice; once using Clojure

118

6.7 Conclusion

and once using QwalKeko. We discerned the different concerns of this study,
and classified the code of each implementation according to these concerns. From
these we conclude that QwalKeko’s dedicated support results in a more con-
cise implementation. We also note that, even though change characteristics can be
expressed, that these are expressed in a cumbersome manner. In Chapter 7 we in-
troduce support for evolution characteristics, which enables specifying the effect
of multiple changes in a concise manner.

119

7
S U P P O RT I N G E V O L U T I O N C H A R A C T E R I S T I C S

Chapter 6 extended QwalKeko with support for change characteristics (C3)
through the use of ChangeNodes. The chapter concluded that, although
QwalKeko supports specifying individual change characteristics, specifying the
behavior of multiple changes is cumbersome. This chapter discusses these chal-
lenges in detail and extends QwalKeko with support for evolution characteris-
tics. Evolution characteristics concern patterns of interest in a sequence of changes.
As an answer QwalKeko returns a minimal, executable subsequence of changes
that, when applied, introduce the sought-after pattern.

Specifying such patterns in terms of single change characteristics is difficult;
different change sequences can implement the same code transformation. These
must be accounted for when specifying evolution characteristics in terms of indi-
vidual change characteristics. In this chapter we extend QwalKeko with support
for evolution characteristics in a change-agnostic manner, in which a source code
transformation can be detected in multiple change sequences regardless of the
concrete distilled changes. Evolution characteristics concern instances of source
code transformations that are the result of applying change sequences. A source
code transformation is specified as a path in a graph of intermediate states called
the Evolution Graph. The paths are described using Qwal, and the source code
characteristics of the states using Ekeko. An auxiliary graph called the Change
Dependency Graph is constructed, in which the syntactical dependencies between
changes are made explicit. The change dependency graph is used to construct the
evolution graph.

We evaluate the support for evolution characteristics in QwalKeko by specify-
ing and detecting several evolution patterns, and verifying that the returned solu-
tions are minimal and executable. To this end, we use several data sets from other
studies that detected refactorings in the history of open-source projects. We show
that QwalKeko can identify multiple instances of the same refactoring using a

121

7 Supporting Evolution Characteristics

public class Example {
 int y = 0;
}

public class Example {
 int x = 0;
}

1. update(“x”, “y”) 1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

1. insert(“int y = 0;”)
2. delete(“int x = 0;”)

Revision 1 Revision 2

Possible
Changes

Figure 7.1: Three different change sequences that each rename the field x of revision 1 into
the field y of revision 2.

single query. We show that the returned solutions to these queries are minimal
and executable.

7.1 The Need for a Dedicated Support for Specifying
Evolution Characteristics

Figure 7.1 depicts an example code transformation, in which a field of the class
Example is renamed between two revisions. Three change sequences that can be
returned by ChangeNodes, or any distilling algorithm, are shown at the bottom.
Their differences illustrate one of the problems with querying the output of a
distilling algorithm directly. It requires enumerating all possible change sequences
that perform the sought-after code transformation.

When querying distilled changes directly using change characteristics, one
needs to account for the fact that the algorithm distills but one of the possible
change sequences that could transform the source AST into the target AST. Al-
though the distilling algorithm strives to output a minimal change sequence, the
concrete sequence that will be distilled is hard to predict. As a result, one needs to
enumerate all possible change sequences in the query explicitly. Figure 7.2 depicts
such an enumeration in a query for our field renaming problem.

Line 1 defines a function rename-field, which takes as input a sequence of dis-
tilled changes, and outputs a sequence of changes that implement the field rename.
Solutions to this query consist of bindings for the logic variable ?sequence that sat-
isfy each condition. Line 3 features a logical disjunction conde, of which each dis-
junct corresponds to a potentially distilled change sequence. The first sequence is
specified on lines 4–14, the second sequence on lines 15–28. We discuss the former
lines first. They retrieve singleton sequences from changes that consist of a change
that updates the name of a field. Line 4 introduces a number of logic variables
through the fresh keyword. Next, variable ?update is bound to one of the distilled
changes using member. The logic engine will bind ?update to the next change in the
distilled change sequence changes upon backtracking. The sought-after sequence in
this case consists of a single change, so line 6 unifies our solution ?sequence with

122

7.1 The Need for a Dedicated Support for Specifying Evolution Characteristics

a singleton list. Next, line 7 ensures that the change is an update (rather than an
insert or a delete). Line 8 retrieves the value that was updated and verifies that it is
a SimpleName AST node. This name needs to reside in a VariableDeclarationFragment,
verified through the parent predicate on line 10. Finally, line 14 verifies that the
new value differs from the original one. Lines 15–28 describe both the second and
third change sequence that could implement a field rename; an insert followed by
a delete, or vice versa. Their approach is similar to the one for the first sequence.
Lines 17–18 retrieve two changes ?insert and ?delete from the distilled change se-
quence changes, while line 19 unifies our solution ?sequence with a list consisting
of these two changes. The remaining lines restrict the bindings for these variables
further through conditions on the source code affected by each change.

1 (defn rename-field [changes]
2 (qwalkeko* [?sequence]
3 (conde
4 [(fresh [?update ?val|source ?parent|source ?val|target]
5 (member ?update changes)
6 (== ?sequence (list ?update))
7 (change|update ?update)
8 (change|update-original ?update ?val|source)
9 (ast :SimpleName ?val|source)

10 (parent ?val|source ?parent|source)
11 (ast :VariableDeclarationFragment ?parent|source)
12 (change|update-node|newval ?update ?val|target)
13 (ast :SimpleName ?val|target)
14 (name-name|different ?val|source ?val|target))]
15 [(fresh [?insert ?delete ?insert|source’
16 ?delete|original ?i-name ?d-name]
17 (member ?insert changes)
18 (member ?delete changes)
19 (== ?sequence (list ?insert ?delete))
20 (change|insert ?insert)
21 (change|delete ?delete)
22 (insert-node|inserted ?insert ?insert|source’)
23 (ast :VariableDeclarationFragment ?insert|source’)
24 (change|delete-node ?delete ?delete|original)
25 (ast :VariableDeclarationFragment ?delete|source)
26 (has :name ?insert|source’ ?i-name)
27 (has :name ?delete|source ?d-name)
28 (name-name|different ?i-name ?d-name))])))

Figure 7.2: Querying a distilled change sequence for a field rename.

Reasoning about a sequence of changes in this manner gives rise to the following
problems:

• Different change sequences can implement the same transformation of the
source code. This was illustrated by Figure 7.1. The corresponding problem
is two-fold. On the one hand, there is no straightforward way to know before-
hand what change sequence will be output by a distilling algorithm. Distill-
ing algorithms make use of heuristics to determine whether nodes from the
source AST are sufficiently equal to nodes from the target AST. As a result,
very different change sequences can be distilled for similar modifications to

123

7 Supporting Evolution Characteristics

similar files. On the other hand, it is not practical for a user to enumerate all
the change sequences that could possibly be distilled. This was illustrated by
the large disjunction in Figure 7.2. We call this problem the Change Equiva-
lence Problem.

• Change distilling algorithms immediately apply each change as it is distilled.
In order not to modify the original source code, they make a copy. As such, a
change refers to potentially three different ASTs; the original source code, the
target source code, and a copy of the original source code (denoted source’)
that will look identical to the target source code after the execution of the
distilling algorithm. For example, a delete can only be represented using
nodes from the source AST, as the node is not present in the target AST
(otherwise it would not have been removed), nor is it present in source’ as
the delete has already been applied. An insert on the other hand only has
nodes that are present in source’ and target, but not in source (otherwise it
would not have been inserted). As a user, it is cumbersome to switch between
the different ASTs to describe the surrounding source code affected by a
change. Lines 7, 8, 12, 21 and 23 of Figure 7.2 are indicative of this problem.
The nodes affected by individual changes reside in one of three different
ASTs. The names for variables such as ?insert|source’ hint at the AST in
which its binding resides. Users need to be aware of the AST in which a
node resides, as comparing nodes from different ASTs for equality produces
incorrect results.1 We call this problem the Change Representation Problem.

7.2 Change Characteristics Compared to Evolution
Characteristics

Chapter 6 extended QwalKeko with support for change characteristics. This sup-
port enables specifying the characteristics of individual changes residing in a dis-
tilled change sequence. Section 6.5 used this support to classify changes made to
Selenium tests. Our support for evolution characteristics enables specifying a
sought-after code transformation, and as a solution returns a minimal, executable
subset of changes stemming from a single change sequence. The returned sub-
set contains the changes that implement this code transformation. The original
returned change sequence may contain other changes that do not contribute to
the code transformation. Executable means that the solution can be applied to
the original source code, and that the resulting source code contains the effect of
the sought-after code transformation. Minimal means that the solution only con-
sists of three groups of changes. First, evolution implementing changes are changes

1This motivated our use of name-name|different, which copes with nodes from different ASTs, while
unification cannot.

124

7.3 Supporting Evolution Characteristics

that perform the code transformation. Second, evolution supporting changes are
changes that are depended on by one of the evolution implementing changes. Fi-
nally, evolution linking changes are neither evolution implementing or evolution
supporting, but are depended on by one of the non-solution changes, and apply-
ing the evolution implementing or supporting changes would render those non-
solution changes inexecutable. Section 7.5.3 further illustrates these three groups
of changes.

The support for evolution characteristics forms the basis for future research. We
envision using this support for different applications, such as commit untangling,
porting features from one branch to a different branch or automating systematic
edits. For example, commit untangling is the process of splitting a single tangled
commit into multiple atomic commits. An atomic commit is a commit that only
contains changes resulting from a single development activity. Provided that the
different development activities of a tangled commit are identified, a user could
write a history query that extracts a minimal, executable change sequence for an
activity. By applying this change sequence a new atomic commit would be created.
A minimal sequence is needed, if not the resulting commit would contain changes
that are part of another development activity. An executable sequence is needed
to create a new atomic commit containing only the extracted activity.

Specifying a sought-after code transformation and retrieving a minimal, ex-
ecutable solution in terms of change characteristics is difficult. A minimal, in-
executable solution could be retrieved by specifying the changes implementing
a sought-after transformation. Such specification must enumerate all possible
change sequences that implement the sought-after code transformation due to
the change equivalence problem (cf., Section 7.1). Extracting an executable solu-
tion may prove to be difficult. Change distillers return a sequence that must be
applied in order. Every change potentially depends on any preceding change. Re-
trieving a executable subsequence of changes by expressing a code transformation
in terms of change characteristics requires manually verifying these dependencies.
The support for evolution characteristics renders these dependencies implicit. They
are navigated using change operators. These dependencies and the corresponding
change navigaton operators are detailed in Section 7.4.

7.3 Supporting Evolution Characteristics

We propose support for evolution characteristics to specify and detect code trans-
formations in distilled sequences of changes. Unique to this support is that it
enables specifying a code transformation in terms of source code characteristics;
those that a sequence of intermediate AST states could evolve through were the
distilled changes replayed. This shields users from the problems that specifying
code transformations in terms of distilled changes gives rise to.

125

7 Supporting Evolution Characteristics

1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

public class Example {
 int x = 0;
}

public class Example {

}

public class Example {
 int x = 0;
 int y = 0;
}

public class Example {
 int y = 0;
}

1

2 1

2

Changes Evolution State Graph

Figure 7.3: Evolution state graph (ESG) for a sequence of distilled changes. Edge labels
correspond to applied changes.

For specifying said code transformation, we provide specialized Qwal pred-
icates. Whereas we previously used Qwal to match paths through a graph of
revisions (cf., Chapter 5), we now match against a sequence of nodes in a so-called
Evolution State Graph (ESG) constructed from a distilled change sequence. Fig-
ure 7.3 depicts the ESG for the distilled sequence in the middle of Figure 7.1. The
nodes of the ESG, called Evolution States (ES), contain an AST state and the spe-
cific changes that transformed the source AST into this state.

Figure 7.4 depicts an overview our approach to supporting evolution characteris-
tics in a history querying language. There are two revisions of the same file, called
Rev1 and Rev2. The goal is to detect instances of a user-specified pattern in the
differences between them. The distiller’s output is a sequence of changes needed
to transform the AST of the source file into the AST of the target file. We convert
this sequence into an auxiliary Change Dependency Graph (CDG) that makes the
dependencies among individual changes explicit. For instance, the CDG encodes
the fact that an AST node cannot be inserted by a change operation if its parent
node has not been inserted by a preceding change operation. Section 7.4.1 details
all change dependencies. Next, the Evolution State Graph (ESG) is constructed.
The process starts from a single Evolution State (ES) node containing the original
AST of the source file. Other nodes are created in an on-demand fashion; when
the user-specified evolution characteristics require navigating to an unexplored
region in the graph. This requires determining which changes from the distilled
sequence remain and are applicable dependency-wise. To this end, the ESG con-
sults the CDG —a process that is detailed in Section 7.4.2. The solution to such a
query is an ES, containing an executable script of changes (i. e., the changes can be
applied to the original source code) that implements the evolution pattern speci-
fied by the user. This script consists of the minimal number of changes needed to
implement the source code transformation, and any changes that would no longer
be executable if the rest of the solution were executed. As such, a solution ensures
that the remainder of the change sequence remains executable as well.

126

7.3 Supporting Evolution Characteristics

Code Rev1
Code Rev2

navigates consults

Change
Distilling
Algorithm

Change Sequence

Insert Move Insert …

Change Dependency Graph

Insert

Move

Insert

…

…

convertedEvolution State Graph

ES

ES’

ES’’

Declarative Specification

Code Before

Code After

Sought-After Evolution Pattern

Operational Change Script

InsertInsert

outputs

Figure 7.4: Graphical overview of the approach.

7.3.1 Motivating Example Revisited: Querying the ESG
Figure 7.5 illustrates the specification language of our approach for supporting
evolution characteristics. Depicted is a logic query that finds instances of a field
rename by navigating the ESG. To this end, line 3 launches a Qwal expression
through the query-changes construct. Internally query-changes calls the qwal construct,
with the starting node bound to the root ES. It takes as input an ESG and unifies
its second argument with the end state of a matching path. Its third argument is
a collection of logic variables, made available to the remainder of its arguments.
These comprise a sequence of instructions that either verify that the current ES
adheres to the given logic conditions, or navigate to another ES in the ESG. Lines
4–6 describe the initial state using in-current-es, which introduces two variables
es and ast. The first is bound to the current ES of the query, the latter is bound
to the AST of that ES.2 Lines 5–6 describe the source code of that AST, in which
a ?field needs to be present at some depth. Next, line 7 applies an arbitrary, non-
zero, amount of changes using the regular path expression operator change->+. This
will change the current ES for the remainder of the expression. Finally, lines 8–12

state that the current ES needs to have a newly field ?renamed. To this end, lines

2These are variables only visible in the body of in-current-es. If these variables need to be available
in other parts of the query a user needs to explicitly bind them to a logic variable.

127

7 Supporting Evolution Characteristics

11–12 ensure that ?field is not present in the current AST, and that ?renamed is not
present in the original AST. This is done based on the name of the field using the
predicate ast-field|absent.

Figure 7.2 depicted an equivalent logic query that quantifies directly over a se-
quence of distilled changes without support for evolution characteristics. There,
the user specifying the query was burdened with describing the characteristics of
the sought-after changes and the code that they affect. The query with support for
evolution characteristics, in contrast, merely required the user to describe source
code characteristics. The changes resulting in this source code are returned as part
of the query’s result. Users can therefore abstract away from the concrete changes
that were distilled. This solves both of the aforementioned problems. First, by hav-
ing users describe ASTs instead of changes, users are shielded from the change
equivalence problem (cf., Section 7.1). Second, it is always clear in which AST a
node resides, shielding the user from the change representation problem (cf., Sec-
tion 7.1). Where necessary, auxiliaries are provided to retrieve the corresponding
node in a different intermediate AST.

1 (defn field-rename [esg]
2 (qwalkeko* [?es]
3 (query-changes esg ?es [?orig-ast ?field]
4 (in-current-es [es ast]
5 (== ?orig-ast ast)
6 (ast-field ast ?field))
7 change->+
8 (in-current-es [es ast]
9 (fresh [?renamed ?new-name]

10 (ast-field ast ?renamed)
11 (ast-field|absent ast ?field)
12 (ast-field|absent ?orig-ast ?renamed)))))

Figure 7.5: Querying an ESG for changes renaming a field.

7.3.2 Example Applications and the Corresponding Queries
We illustrate the advantages of supporting evolution queries in history queries
through two example applications. In the first example, we are tasked with deter-
mining whether and which changes are responsible for introducing a new method
in between two revisions. In the second, more complex example, we detect which
changes from a distilled change sequence are responsible for eliminating a code
clone.

Introduction of a Method

We first consider the problem of identifying the changes in a change sequence
that are responsible for introducing a new method in between two revisions of
a file. At first sight, it might suffice to query the change sequence for a single

128

7.3 Supporting Evolution Characteristics

insert operation that added a MethodDeclaration. Inadvertently, however, a change
sequence will be encountered in which the name of an existing MethodDeclaration

has been changed by an update or a move operation. Before long, the query will
have evolved into a large enumeration of potential change operations with a simi-
lar effect. Operations that change the signature of the method, for instance, might
also have to be accounted for.

Instead, it is much easier to find an intermediate AST in which a new method
is present, and retrieve the changes that led to the creation of this AST. Figure 7.6
depicts a function that launches such an evolution query. The function takes as
input an ESG for a particular change sequence, and returns pairs of a method that
has been introduced and the corresponding evolution state. The function launches
a query on line 2 that will find solutions for a pair of variables ?method and ?node.
Lines 3–9 describe a path through the ESG that ends in an evolution state ?es.
Lines 3–5 describe the initial state on this path, for which a logic variable ?absent is
introduced. Line 5 binds this variable to the source AST, as so far no changes have
been executed on the path. Line 4 introduces two new variables es and ast, bound
to the current ES and its corresponding AST, using special form in-current-es. Line
6 executes an arbitrary, non-zero amount of changes using change->+. Lines 7–9

verify that a new method is added to the current ES. Line 8 binds ?method to any
method declaration in the current ES, and verifies that that method was not present
in the original AST using ast-method|absent. The query returns all different ES that
exhibit these characteristics.

1 (defn introduced-method [esg]
2 (qwalkeko* [?method ?es]
3 (query-changes esg ?es [?absent]
4 (in-current-es [es ast]
5 (== ?absent ast))
6 change->+
7 (in-current-es [es ast]
8 (ast-method ast ?method)
9 (ast-method|absent ?absent ?method)))))

Figure 7.6: Querying an ESG for changes introducing a method.

Code Clone Elimination

For the final example application, we are tasked with finding the changes in be-
tween two revisions that resulted in the removal of a code clone. We will look for
evidence of a removal technique involving, but not limited to, the extract method
refactoring: the cloned code is extracted to a new method, and each clone instance
is replaced by a method invocation to the newly introduced method. A concrete
example of such a clone removal exists in the Apache ANT3 project. Commit

3https://ant.apache.org/

129

https://ant.apache.org/

7 Supporting Evolution Characteristics

Insert

Move

Delete

00 public void setIncludes(String[] includes) {
01 if (includes == null) {
02 this.includes = null;
03 } else {
04 this.includes = new String[includes.length];
05 for (int i = 0; i < includes.length; i++) {
06 this.includes[i] = normalizePattern(includes[i]);
07 }
08 }
09 }
10
11 public void setExcludes(String[] excludes) {
12 if (excludes == null) {
13 this.excludes = null;
14 } else {
15 this.excludes = new String[excludes.length];
16 for (int i = 0; i < excludes.length; i++) {
17 this.excludes[i] = normalizePattern(excludes[i]);
18 }
19 }
20 }
21
22 private static String normalizePattern(String p) {
23 String pattern = p.replace('/', File.separatorChar)
24 .replace('\\', File.separatorChar);
25 if (pattern.endsWith(File.separator)) {
26 pattern += "**";
27 }
28 return pattern;
29 }

00 public void setIncludes(String[] includes) {
01 if (includes == null) {
02 this.includes = null;
03 } else {
04 this.includes = new String[includes.length];
05 for (int i = 0; i < includes.length; i++) {
06 String pattern;
07 pattern = includes[i].replace('/', File.separatorChar).replace(
08 '\\', File.separatorChar);
09 if (pattern.endsWith(File.separator)) {
10 pattern += "**";
11 }
12 this.includes[i] = pattern;
13 }
14 }
15 }
16
17 public void setExcludes(String[] excludes) {
18 if (excludes == null) {
19 this.excludes = null;
20 } else {
21 this.excludes = new String[excludes.length];
22 for (int i = 0; i < excludes.length; i++) {
23 String pattern;
24 pattern = excludes[i].replace('/', File.separatorChar).replace(
25 '\\', File.separatorChar);
26 if (pattern.endsWith(File.separator)) {
27 pattern += "**";
28 }
29 this.excludes[i] = pattern;
30 }
31 }
32 }

Figure 7.7: Two revisions of a class from the ANT project in between which a code clone is
extracted into a separate method normalizePattern, to which two invocations are added.
Overlaid is the output of our ChangeNodes change distilling algorithm.

6bdc259... removes a code clone from file DirectoryScanner.java. Figure 7.7 depicts
the changes distilled from this commit. We only show a small snippet of the origi-
nal source file, which is slightly over 1500 lines of code. We assume that the code
clone has already been detected using an existing tool such as CCFinder [48],
and that the ESG has been created. We are only tasked with finding the specific
changes that implemented the clone removal.

The first line of Figure 7.8 defines a function that takes as input an ESG, the
names of two methods containing cloned code, and the extracted method AST
node. The body of the function launches a logic query on line 2 returning a collec-
tion of all possible bindings for ?end, which is the end node of a path throughout
the ESG. Line 3 describes the shape of this path through a regular path expres-
sion. Line 4 introduces the logic variables that are available to the path expression.
Lines 5–9 bind cloneA and cloneB to the clones detected in the source AST (i.e.,
setIncludes and setExcludes in the left revision in Figure 7.7). the child+ construct
requires the binding for each variable to stem from the AST of the first node of
the ESG. Line 10 navigates to a different node of the ESG by applying an arbi-
trary, non-zero amount of changes. Lines 11–19 specify a strict implementation
of the extract method refactoring. Lines 12–13 require the presence of a method
?extracted in the current ES that is identical to the method given as the extracted

parameter to the function (i.e., normalizePattern in the right revision in Figure 7.7).
This ensures that an ES node of the ESG has been reached in which all the changes
extracting the cloned code have been applied. If not, line 10 will be backtracked to
and another change will be applied. Next, lines 14–15 retrieve the version in that
ES of the methods in which the two instances of the cloned code resided originally
(i.e., setIncludes and setExcludes in the right revision in Figure 7.7). They use the

130

7.4 Conceptual Implementation

auxiliary construct ast-method-method|corresponding to this end, which returns the
corresponding method from an ast for a given method. Finally, lines 16–19 ensure
that the methods previously containing cloned code now contain a method invo-
cation invoking the method to which the clone was extracted (i.e., the invocations
on line 6 and on line 17 in the right revision in Figure 7.7).

1 (defn clone-elimination [esg nameA nameB extracted]
2 (qwalkeko* [?end]
3 (query-changes esg ?end
4 [?cloneA ?cloneB ?extracted ?aInvoc ?bInvoc ?aCurr ?bCurr]
5 (in-current-es [es ast]
6 (child+ ast ?cloneA)
7 (child+ ast ?cloneB)
8 (method-string|named ?cloneA nameA)
9 (method-string|named ?cloneB nameB))

10 change->+
11 (in-current-es [es ast]
12 (ast :MethodDeclaration ?extracted)
13 (ast-ast|same ?extracted extracted)
14 (ast-method-method|corresponding ast ?cloneA ?aCurr)
15 (ast-method-method|corresponding ast ?cloneB ?bCurr)
16 (child+ ?aCurr ?aInvoc)
17 (child+ ?bCurr ?bInvoc)
18 (method-invocation|invokes ?extracted ?aInvoc)
19 (method-invocation|invokes ?extracted ?bInvoc)))))))

Figure 7.8: Querying an ESG for extract method refactorings.

7.4 Conceptual Implementation

Having presented the necessary background on changes and change distilling,
we are ready to present the support for evolution characteristics in a more de-
tailed manner. We target the problem of identifying executable subsequences
in a distilled change sequence that implement an evolution pattern of interest.
QwalKeko recalls different subsequences that implement the same evolution pat-
tern, specified as paths through a graph of intermediate AST states. This spares
users the “Change Equivalence" and “Change Representation" problems identified
in Section 7.1.

Section 7.4.2 will detail the Evolution State Graph (ESG) against which our ap-
proach evaluates evolution queries. We provide specialized Qwal change predi-
cates to navigate this graph. Table 7.1 shows an overview of the different available
predicates. We provide operators for navigating an ESG, such as change->, which
moves evaluation to a successor of the current node in the ESG. We also provide
operators such as in-current-es for evaluating logic conditions against the current
node of the ESG. Such embedded conditions comprise the primary means for de-
scribing the source code characteristics that need to hold along a path of the ESG.

131

7 Supporting Evolution Characteristics

Table 7.1: Language for specifying evolution patterns through ESG-navigating regular
path expressions.

Navigation through the ESG
change-> change-> is an operator that moves the current state to the next

one by applying one of the applicable changes.
change->? change->? is an operator that either stays in the current state or

that moves to the next one by applying one of the applicable
changes.

change->* change->* is an operator that changes the current state by apply-
ing an arbitrary, including zero, number of changes.

change->+ change->+ is similar to change->*, except that at least one change
will be applied.

change==> change==> is an operator that moves the current state to a succes-
sive one by applying one of the applicable changes and all of its
dependent changes.

change==>* change==> is an operator that changes the current state by apply-
ing an arbitrary, including zero, number of changes and their
dependent changes.

Characteristics of an ES
(in-current-es
[es ast]
& conditions)

in-current-es binds es to the current ES of the query, and ast to
the intermediate AST of that state. It verifies whether the logic
conditions conditions hold in this intermediate state. These con-
ditions can be any Ekeko predicate.

Launching a Query
(query-changes
esg ?end
[&vars] &
conditions)

query-changes launches a path query over esg and binds ?end to
the end node of that query. Logic variables vars are introduced
and available in the scope of the path query. conditions is a se-
quence of the aforementioned operators that are proven for the
given ESG.

132

7.4 Conceptual Implementation

7.4.1 Construction of a Change Dependency Graph
Section 7.4.2 will detail an algorithm for constructing the Evolution State Graph
(ESG) against which our approach evaluates a query. The algorithm relies on a
model of the order dependencies among the changes in a distilled change se-
quence. Even though such a sequence is by definition ordered (i.e., the distiller
guarantees the sequence transforms the source AST into the target AST when
the changes are executed in order), additional order dependencies are required to
identify (possibly non-contiguous) subsequences that implement a pattern of inter-
est. Individual changes in such a subsequence, can depend on any change in the
distilled sequence.

A dependency A ! B between changes A and B denotes that in order to execute
change B, one needs to execute change A first. We gather all dependencies among
the changes in a change sequence in a Change Dependency Graph (CDG), of which
the nodes correspond to changes and the directed edges to dependencies. Recall
the definition of the different changes discussed in Section 6.2.2. We compute the
following kinds of dependencies:

Parent Dependency

There is a parent dependency A !p B between changes A and B if the
subject of B is introduced by the application of A. Nodes can be introduced
either by an insert or by a move operation. We determine this dependency
by checking whether the subject of change B is part of the subtree created
by the application of change A. To this end, we verify whether parent’ of
change B is part of the minimal representation of node’ of change A. The
left-most situation in Figure 7.9 illustrates a parent dependency between a
change introducing node a and a change introducing node b.

Move Dependency

There is a move dependency A !m B between a move A and a change B if B
removes part of the code-to-be-moved of A, rendering it impossible to move
its node. This can happen either by a delete or by an insert that overwrites
the part of the AST in which the node-to-be-moved resides. To detect this
dependency, we check whether the preparent’ (the parent’ of node’ before
applying the move) of A is part of the AST of the removed’ (the node’ that is
overwritten by applying the insert) of an insert operation or node’ of a delete
operation. Note that without preparent’ or removed’ it would be impossible to
detect whether the node of a move was overridden by an insert, as both the
move and the insert have already been applied in source’, and as such the
original location would be lost. An example move dependency is depicted in
the middle in Figure 7.9, where node a is moved, while node b is inserted at
the original location of a.

133

7 Supporting Evolution Characteristics

Insert Dependency List Dependency

Source SourceTarget Target

Move Dependency

Source Target
α

Figure 7.9: Different kinds of change dependencies illustrated among the changes distilled
between a source and target AST. Dotted lines connect matching AST nodes. Single-
arrowed lines connect an AST node with a child AST node. Double-arrowed lines
connect an AST node with an element of one of its list-valued properties. Blue nodes
are added to the target AST.

Cycle between the move of
α and the insert of β

Source Target

Cycle between the move
of α and the move of β

Source Target

Figure 7.10: Different combinations of dependencies can induce cycles. The example of the
left depicts a cycle between the insert of beta an the move of alpha. The example on
the right depicts a cycle between two moves.

List Dependency

There is a list dependency A !l B between changes A and B if they operate
on elements of the same list, but the element of B has a lower index than the
element of A. Although changes A and B can be applied independently of
each other, the index of A will change depending on whether B has already
been applied. For example, change A inserts a new method at index 3 in a
type declaration, after which change B inserts a new method at index 4 of
the same type declaration. An example of such a dependency is depicted on
the right in Figure 7.9.

The subsequent ESG construction algorithm will require the CDG to be acyclic.
Particular combinations of the above dependencies can, however, induce cycles in
the graph. Figure 7.10 depicts dependencies that induce cycles. The left example
depicts a move dependency and a parent dependency, which form a cycle. Node
b is inserted on the same location where node a is residing. Node a is moved
as a child of node b. As such, the move of node a can only be applied after the
insertion of node b, while inserting node b overwrites node a. To solve this, our
CDG construction algorithm detects such cycles and replaces the move operation
of a by an insert operation.

134

7.4 Conceptual Implementation

Cycles can also occur across moves. For example, two moves that swap the loca-
tion of two nodes a and b result in the first move overwriting the node of the other
move. This can also occur across multiple moves, in which move A overwrites
move B, move B overwrites move C and move C overwrites move A. These cycles
can also be removed by replacing one of the moves with an insert operation. The
right example in Figure 7.10 depicts a cycle between two moves.

7.4.2 On-demand Construction of the Evolution State Graph
We now explain how the Change Dependency Graph (CDG) from the previous sec-
tion enables constructing a Evolution State Graph (ESG) that is navigated through
by a regular path expression. The ESG represents the possible ASTs that can be
constructed by applying subsets of the distilled changes in different orderings.
A single ESG node wraps a syntactically legal AST and an ordered sequence of
changes that have been applied to construct that AST. Two ESG nodes are con-
nected if there exists an unapplied change that transforms the AST of one into the
AST of the other. The resulting edge is labeled by the applied change. A single
change can appear on multiple edges in the graph, but only once along a single
path.

The ESG has one source node (i.e., the node containing the original source
code with no applied changes) and one sink node (i.e., the node containing the
target source code and no unapplied changes). The graph is constructed using
the information provided by the CDG. Initially, the source node is constructed
from the source AST. Successors of the source node are constructed by applying
a change without dependencies. The CDG facilitates the retrieval of applicable
changes given a set of applied changes. It also enables computing the correct in-
dex for changes modifying a list, where the index changes depending on whether
list dependencies have already been applied. The ESG is constructed on-demand;
nodes and their ASTs are only created as needed.

7.4.3 Minimizing Solutions to an Evolution Query
A solution is computed by navigating the ESG until an ES is encountered of which
the source satisfies the declarative specification provided by the user. This ES, to-
gether with bindings for all the logical variables, is returned as a solution to the
user. ES nodes returned in this manner are not necessarily a minimal solution,
i.e., an ES node that wraps the smallest number of applied changes. Multiple ES
may exist that satisfy the declarative specification, each with a different number of
applied changes.

135

7 Supporting Evolution Characteristics

We define a minimal solution as the smallest operational script of changes that
implements the specified evolution pattern.

There are different ways to compute such a minimal solution:

Brute-force Path Exploration A brute-force path exploration approach considers
all the different paths in the ESG. To this end, we can simply rely on the
declarative proving mechanism to compute all the solutions for the query
for that ESG. A minimal solution can easily be retrieved from all those solu-
tions. The major drawback from this approach is the performance. It requires
considering all the different possible paths in the ESG. A single ES can be
reached along different paths (i. e., permutations of the same subsequence),
while these different paths will not yield new solutions in future ES. Thus,
this brute-force approach will revisit the same ES multiple times, even when
it has already shown that further exploring that ES will not yield any results.

Brute-force Subset Generation Another brute-force approach is to generate all
the applicable subsets of changes. A change can be included in a subset if all
of its dependencies are also in that subset. This can be done by consulting
the CDG. An ESG’ can be constructed for a single subset by topologically
sorting the changes. Determining whether such an ESG’ exhibits the specified
history characteristics can be done more efficiently as there is only a single
path through the ESG’. A minimal solution can be found by ordering the
subsets by their size, and considering the smaller sets first. The advantage of
this approach is that only a single path leading to a specific ES is considered,
improving the performance. The disadvantage is that a different ordering of
the same set of changes result in different ES (but the same final ES). Thus,
potential solutions are missed.

Minimizing a Solution A final approach is to compute a single non-minimal so-
lution, and to minimize its changes to a minimal solution. A solution ES
contains a single change sequence that realizes the sought-after evolution
pattern. This change sequence can be transformed into an ESG’, in which ev-
ery ES only has a single successor, constructed by applying the next change
in the solution sequence. Determining whether such an ESG’ exhibits the
specified history characteristics can be done more efficiently as there is only
a single path through the ESG’. In order to minimize a given solution we
verify whether the removal of a single change and all its dependents still
results in an ESG’ exhibiting the evolution pattern. If so, that change is not
part of the minimal solution. Otherwise, that change must have been part of
the solution, and must be kept. We can do this for every change in a non-
minimal solution to transform it into a minimal one. While this approach

136

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

turns a solution into a minimal one, the worst case performance of finding a
single solution still requires enumerating all the different paths through the
ESG. QwalKeko provides more coarse-grained navigation predicates that
apply a series of changes to quickly find a single solution (e. g., change==> ap-
plies a change and all of its dependent changes), at the risk of missing an
ES containing the solution. Finally, note that when the sought-after evolution
pattern is present in the target AST, a starting solution can be constructed by
simply executing all distilled changes.

We have opted for the last approach as the sought-after source code transfor-
mation is frequently present in the final ES. Finding a solution can be done by
executing all the changes, and this solution can in turn be minimized. Section 8.3
discusses detecting patterns that are only present in intermediate ES.

7.5 Evaluation: Extracting Executable Transformations
from Distilled Code Changes

The examples in Section 7.3.2 served to demonstrate the expressiveness of the
specification language of our approach. We now seek to answer the following
research questions:

RQ1 Can a single query identify instances of the same evolution pattern in different
change sequences?

RQ2 Is a minimal and executable change script returned, and can the remaining distilled
changes still be executed after the change script has been executed?

RQ3 How does support for evolution characteristics compare to directly querying the
output of a distilled change sequence with respect to solution size, precision and
the number of changes that need be executed?
To answer these questions, we will use a data set of commits from open-source

repositories that each contain —among many other changes— one of three well-
known refactorings (Section 7.5.1). We aim to extract the exact changes contribut-
ing to each refactoring among all of the changes distilled for each commit.

For each refactoring, we will attempt to specify the state of the source code
before and after the refactoring by means of a history query (Section 7.5.2). Each
solution to these queries is an executable script of changes. When executed, this
script will transform the source code from before the commit to a state that matches
the specified state of the code after the refactoring. In other words, the extracted
changes will perform the specified refactoring. The remaining changes distilled
for the commit will, when executed, in turn transform the state of the code after
the refactoring to the state of the code after the commit.

QwalKeko computes a minimal solution — that is the smallest subset of
changes that implements the code evolution. To this end, it retrieves the ES that

137

7 Supporting Evolution Characteristics

exhibits the evolution characteristics with the smallest amount of applied changes.
We manually verify the solutions depicted in Table 7.3 on their minimality. We also
compute various metrics pertaining to each research question (cf., Section 7.5.3).

7.5.1 Data Set of Commits Containing Refactorings
Our evaluation proceeds on a data set of commits that each contain, among other
changes, a “Replace Magic Constant”, “Remove Unused Method” or “Rename Field”
refactoring. This random selection of refactorings is sufficiently varied in the num-
ber of changes required to perform them, as well as in the types of AST nodes
affected by them. Tables 7.2 and 7.3 list the identifier of each commit, the open
source project repository it originates from, the name of the refactoring it contains,
the name of the class affected by the refactoring, and the oracle according to which
the commit contains the refactoring. The oracle is indicated by the subscript in the
first column. We have used two such oracles:

• The first oracle, denoted by the subscript 1, corresponds to a data set4 produced
by the Ref-Finder [63] tool which recognizes refactorings in commit histo-
ries using coarse-grained change information (e.g., changes in the subtyping
relation). We manually inspected all occurrences to the “Replace Magic Constant”
refactoring in this data set, discarded the false positives, and —without loss of
generality— discarded the commits that span multiple files. The latter because
our prototype implementation is currently limited to querying changes between
two revisions of the same file. The commits listed in Table 7.3 are all such com-
mits in the RF data set.

• The second oracle, denoted by the subscript 2, corresponds to a data set5 origi-
nating from a study by Murphy-Hill et. al [59] of logs of interactions of develop-
ers with the refactoring functionality of their IDE. Each commit in this data set
has already been cross-checked by the authors with the interaction logs. After
filtering commits that span multiple files, we are left with 3 instances of the “Re-
move Unused Method” refactoring and 4 instances of “Field Rename” refactoring
in Table 7.3.

Note that the commit identifiers listed in Table 7.2 differ depending on the data
set the commit stems from. For commits with subscript 1, the short identifier from
the project’s GitHub repository is used. For commits with subscript 2, we use the
same identifier as the authors of the original study.

4http://web.cs.ucla.edu/~miryung/inspected_dataset.zip
5http://multiview.cs.pdx.edu/refactoring/experiments/

138

http://web.cs.ucla.edu/~miryung/inspected_dataset.zip
http://multiview.cs.pdx.edu/refactoring/experiments/

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

1 (query-changes esg ?es
2 [?not-present ?method ?literal value
3 ?cmethod ?field ?field-access]
4 (in-current-es [es ast]
5 (== ast ?absent)
6 (ast-method ast ?method)
7 (child+ ?method ?literal)
8 (literal-value ?literal ?value))
9 change->*

10 (in-current-es [es ast]
11 (ast-ast-field|introduced ?absent ast ?field)
12 (field-value|initialized ?field ?value)
13 (ast-method-method|corresponding ast ?method ?cmethod)
14 (child+ ?cmethod ?field-access)
15 (field-name|accessed ?field ?field-access)))

Figure 7.11: Evolution query for those changes in a commit that implement a “Replace
Magic Constant” refactoring.

7.5.2 Queries for Changes Implementing Refactorings
We describe the queries used to identify the exact changes contributing to the “re-
place magic constant”, “remove unused method”, and “rename field” refactorings.
The query results will be discussed in the next section.

Query for “Replace Magic Constant” Figure 7.11 depicts the query that identi-
fies changes from a commit that implement a “Replace Magic Constant” refactoring.
This refactoring extracts a literal string or number from the body of a method to
a field, and updates the method such that it references the newly introduced field.
The first line of Figure 7.11 launches the query for a path ending in an Evolution
State ?es through Evolution State Graph esg. Lines 2–3 introduce additional logic
variables used throughout the query. Lines 4–8 describe the initial Evolution State
of the source code. Line 5 unifies the original AST with ?absent, so that it can
be used later to determine whether a fresh field has been introduced. Lines 6–8

identify a method ?method that contains a constant value ?value. Line 9 uses the
change->* operator to apply an arbitrary number of changes. Lines 10–15 describe
a future Evolution State, in which a new field has been introduced to replace the
constant value. Line 11 uses ast-ast-field|introduced to ensure that ?field is
absent from its first AST argument, but present in its second. Line 12 ensures
that this field features the constant ?value as its initializer expression. Line 13 uses
ast-method-method|corresponding to retrieve a method ?cmethod in the current Evolu-
tion State that corresponds to ?method in the original one. The names and signatures
of the methods are required to match, but not their bodies. Finally, lines 14–15 en-
sure that this method now accesses the newly introduced field.

Query for “Remove Unused Method” Figure 7.12 depicts the query that identi-
fies changes implementing a “Remove Unused Method” refactoring. The query de-

139

7 Supporting Evolution Characteristics

1 (query-changes esg ?end
2 [?method]
3 (in-current-es [es ast]
4 (child+ ast ?method)
5 (ast :MethodDeclaration ?method)
6 (method|unused ?method))
7 change->*
8 (in-current-es [es ast]
9 (ast-method|absent ast ?method)

10 (method|unused ?method)))

Figure 7.12: Evolution query for those changes in a commit that implement a “Remove
Unused Method” refactoring.

scribes an initial Evolution State containing an unused method, and a later Evolu-
tion State in which the method is no longer present. Lines 3–6 describe the initial
ES, in which method ?method is unused. Line 6 uses method|unused/1, which imple-
ments a straightforward name-based resolution mechanism to verify that ES does
not contain an invocation of this method. Line 7 applies an arbitrary number of
changes using change->*. Lines 8–10 describe a successive ES, in which no method
with the same name as the name of ?method can be found. It also ensures that there
is no call introduced to the removed method.

Query for “Rename Field” Figure 7.13 depicts the query that identifies changes
implementing a “Rename Field” refactoring. Lines 4–9 describe an initial ES in
which a field is present. Lines 11–21 then describe a later ES in which that field and
its accesses are no longer present, and in which a new field has been introduced
that has the same number of accesses. Line 5 unifies ?original with the AST of the
starting ES, so that it can be used in future ES. Lines 6–7 unify ?field with a field
declaration of that AST. Lines 8–9 collect all the uses of that field in a list ?accesses
with length ?count. Line 10 uses change->* to apply an arbitrary number of changes.
Lines 11–18 describe the later ES in which the refactoring has been completed.
Lines 12–13 unify ?renamed with a field declaration. Line 14 uses ast-field|absent

to ensure that ?renamed is absent from the original AST, while line 15 ensures that
?field is absent from the current AST. Next, lines 16–17 verify that this new field is
used as often as the original variable. Finally, the last line ensures that no accesses
to the original field are present in the AST.

7.5.3 Query Results
Table 7.2 and Table 7.3 depict the results of our validation. The first part of Table 7.2
describes the detected refactoring and the data set from which this refactoring
stems. The second part of the table depicts metrics about the distilled changes and
corresponding CDG. Column #Ch shows the total number of distilled changes for
the file. Next, column LP shows the length of the longest path through the CDG.

140

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

1 (query-changes esg ?es
2 [?original ?field ?accesses
3 ?count ?renamed ?renamed-accesses]
4 (in-current-es [es ast]
5 (== ast ?original)
6 (child+ ast ?field)
7 (ast-field ast ?field)
8 (ast-field-list|accesses ast ?field ?accesses)
9 (length ?accesses ?count))

10 change->*
11 (in-current-es [es ast]
12 (child+ ast ?renamed)
13 (ast-field ast ?renamed)
14 (ast-field|absent ?original ?renamed)
15 (ast-field|absent ast ?field)
16 (ast-field-list|accesses ast ?renamed ?renamed-accesses)
17 (length ?renamed-accesses ?count)
18 (ast-field|unaccessed ast ?field)))

Figure 7.13: Evolution query for those changes in a commit that implement a “Rename
Field” refactoring.

Column MP shows the median length of the paths through CDG. Both indicate,
using our approach, how many changes need to be applied before a given change
becomes applicable. Were the output of a change distiller used directly, this would
be all of the preceding changes in the distilled sequence. The last columns show
how connected the graph is. Column #Co shows the number of connected com-
ponents in the CDG. Changes from one component can only be connected with
changes from the same component. Column #Single shows the number of compo-
nents that contain only a single node. Columns MaxIn and MIn show respectively
the maximum and median in-degree of the CDG (i. e., the number of changes de-
pending on a change). Finally, Columns MaxOut and MOut show respectively the
maximum and median out-degree the CDG (i. e., the number of changes a change
depends on).

Table 7.3 describes the solution and its changes. Column #Sol depicts the num-
ber of changes in the minimal, executable solution returned by the query. Next,
Columns LS and MS depict respectively the longest and median span, indicating
the number of changes that separate two successive changes in the solution. Col-
umn #DS depicts the total number of changes that would need to be applied were
the distilled output queried directly, before the described evolution pattern would
be recognized. Thus, the columns LS, MS and #DS indicate how many irrelevant
changes would need to be applied when not using our approach, while #Sol in-
dicates the total number of changes that actually need to be applied using our
approach. The next three columns depict a manual classification of the solution
into either Evolution Implementing (#EI), Evolution Supporting (#ES) and Evolution
Linking (#EL) ones:

141

7
Supporting

Evolution
C

haracteristics

Table 7.2: Table describing the data and computed CDG of our evaluation. The first column shows the identifier that links Table 7.3
and this table. The next four columns describe the used data and detected refactoring. The rest of the columns describe the
distilled changes and their corresponding CDG.

Id Ref. Project Commit Class #Ch LP MP #Co #Single MaxIn MIn MaxOut MOut
1 Constant1 ant d97f4f3 WeblogicDeploymentTool 202 14 8 10 4 16 1 10 1

2 Constant1 ant 34dc512 Jar 74 10 3 5 4 33 1 6 2

3 Constant1 ant a794b2b FixCRLF 1244 20 6 2 1 235 1 49 2

4 Constant1 JMeter b57a7b3 AuthPanel 245 10 4 17 15 106 1 11 1

5 Constant1 JMeter 3a53a0a HTTPSampler 149 7 2 36 18 11 1 6 1

6 Constant1 JMeter 8275917 HTTPSampler 25 5 2 4 0 5 1 4 1

7 Method2 jdt.ui 678 JavaEditor 11 2 1 10 9 1 1 1 1

8 Method2 jdt.ui 2910 JavaNavigatorContentProvider 5 1 1 5 5 0 0 0 0

9 Method2 jdt.ui 2722 StubUtility2 291 8 2 28 24 91 1 10 1

10 Field2 jdt.ui.test 0277 MarkerResolutionTest 10 4 2.5 5 4 1 1 3 1

11 Field2 jdt.ui 2810 SourceAnalyzer 63 7 2 25 22 1 1 6 2

12 Field2 jdt.ui 2810 SourceProvider 27 6 2 12 10 3 1 3 2

13 Field2 jdt.ui 2810 InlineMethodRefactoring 221 14 3 41 33 41 1 9 2

1
4
2

7.5
Evaluation:Extracting

Executable
Transform

ations
from

D
istilled

C
ode

C
hanges

Table 7.3: Table depicting the solutions of our evaluation. The first column shows the identifier. The next seven columns describe
the minimal solution and its changes. The last column describes the running time of the computation of the result.

Id #Sol LS MS #DS #EI #ES #EL Time(s)
1 8 29 8 82 4 4 0 33

2 4 11 7 23 4 0 0 19

3 10 300 68 1000 4 6 0 2054

4 5 135 23 199 4 1 0 106

5 5 96 8.5 118 4 1 0 1985

6 6 4 3 14 4 1 1 285

7 2 1 0.5 1 1 0 1 748

8 1 0 0 0 1 0 0 3

9 39 22 4.5 264 2 0 37 1536

10 3 3 2 9 3 0 0 53

11 13 13 3 57 13 0 0 8842

12 15 3 1 24 10 5 0 3133

13 6 77 29 213 6 0 0 5757

1
4
3

7 Supporting Evolution Characteristics

Move Insert

00 public class HTTPSampler extends AbstractSampler {
01 …
02
03 public URL getUrl() throws MalformedURLException {
04 String pathAndQuery=null;
05 if (this.getMethod().equals(HTTPSampler.GET) && getQueryString().length() > 0) {
06 …
07 }
08 if (getPort() == 0) {
09 return new URL(getProtocol(),getDomain(),pathAndQuery);
10 } else {
11 …
12 }
13 …

00 public class HTTPSampler extends AbstractSampler {
01 public static final int UNSPECIFIED_PORT = 0;
02 …
03 public URL getUrl() throws MalformedURLException {
04 String pathAndQuery=null;
05 if (this.getMethod().equals(HTTPSampler.GET) && getQueryString().length() > 0) {
06 …
07 }
08 if (getPort() == UNSPECIFIED_PORT) {
09 return new URL(getProtocol(),getDomain(),pathAndQuery);
10 } else {
11 …
12 }
13 …

1
3

4 5

2

6

Figure 7.14: Code snippet from the HTTPSampler class, in which a new field is introduced
(1,2). This field is initialized via a move of a constant (3), which itself is replaced by
a different move (4). Move 4 is an EL change as its node-to-be-moved is overwritten
by a later insert (6). Insert 5, unnecessarily, overwrites the parent location of change 6,
and is classified as an ES change.

Evolution Implementing An EI change is an integral part of the sought-after evo-
lution pattern. In the “Rename Field” refactoring, for example, the change modi-
fying the name of the field is considered as evolution implementing.

Evolution Supporting An ES change is not an integral part of the sought-after
evolution pattern, but is depended on by one of its EI changes. Without the ES
change, the EI change would no longer be executable. For example, an EI change
inserting a field access into a method body depends on ES changes preparing
that method’s body.

Evolution Linking An EL change is included in the minimal solution, but is nei-
ther an EI nor an ES change. EL changes ensure that the remainder of the dis-
tilled changes can still be executed after each change in the solution has been
executed. As such, they link the solution to the rest of the distilled changes. For
example, when parts of a method that fell victim to the “Remove Method” refac-
toring are moved and subsequently changed elsewhere, the minimal solution
will include these moves as EL changes. These changes could be removed from
the solution by our approach.

Finally, the last column indicates the total running time in seconds for distilling
the changes, constructing the CDG, and finding a single minimal solution. This
is the running time of a single execution, and only serves to provide the general
order of magnitude of the running time.

Figure 7.14 illustrates this classification of the changes in the solution to the
“Replace Magic Constant” query against commit 8275917. Before the commit, method
getUrl() contained the constant 0 twice: once as a magic constant on line 8, and
once as part of a check for an empty list on line 5. In the depicted solution, change
1 inserts a new field “private static int UNSPECIFIED_PORT;”, change 2 inserts an
initializer expression “...= 0;” into the field, and change 3 moves the latter 0 to
replace the null in the initializer, leaving a copy of the value behind on line 5 as
it is a mandatory node (cf. the minimal representation of AST nodes discussed

144

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

in Section 6.2.2). Change 4 then moves the former 0 from line 8 to replace the
one on line 5. Change 5 overwrites the infix expression on line 8 as its textual
representation differs too much between both revisions. The left hand side is kept,
while change 6 inserts a new field access in the right hand side. Changes 1, 2, 3 and
6 in the solution are EI changes implementing the actual sought-after refactoring.
Change 5 is an ES change as it is depended upon by change 6. Change 4 is an EL
change as it would no longer be applicable after the application of change 6, which
overwrites the node-to-be-moved. It is not required for the sought-after refactoring,
Note that we performed this classification manually, ensuring that the sum of #EI,
#ES, and #EL is always #Sol.

Results for “Replace Magic Constant” For each of the refactoring commits from
projects ant and JMeter, the evolution query depicted in Figure 7.11 reports a min-
imal solution consisting of the 4 sought-after EI changes: two for inserting a new
field declaration and its name, one for copying the magic constant to the field
initializer, and one for replacing the constant with an access to the inserted field.
The remaining ES changes always prepare a parent node for this field access. We
already explained the EL change in the minimal solution for commit 8275917 above
using Figure 7.14.

Note that the size of the change sequence distilled for the different commits con-
taining this refactoring varies wildly, as does their complexity. As demonstrated
by columns #Sol and #DS, the CDG reduces the number of changes that need to be
applied for any given change significantly. Thus, the returned minimal solutions
always consist out of a very small number of changes. The minimal solution for
commit a794b2b, for example, includes only 11 of the 1244 changes distilled in to-
tal. More than doubling class FixCRLF from 429 to 972 lines of code, this commit
contains many changes unrelated to the sought-after ones. Here, we also find the
largest span in the distilled change sequence between any two solution changes:
300 successive changes would have to be searched through to find the next change
that is part of the solution, and 1000 changes would be applied in total, compared
to 10 changes using our approach.

Each of the minimal solutions can be replayed on the source code before the
commit. However, doing so might not eliminate every copy of the magic constant.
This is because our specified query is somewhat too relaxed. Its minimal solution
only needs to encompass the changes that eliminate a single copy of the constant,
leaving the changes that eliminate the remaining copies behind. The query could
be improved by, for instance, requiring that the final evolution state has as many
accesses to the newly introduced field as there were copies of the constant. The
danger of making queries this strict is that some instances of the evolution pattern
will no longer be recognized. This would already be the case for the commit in
Figure 7.14, where the same constant is used for two different purposes.

145

7 Supporting Evolution Characteristics

Legend

insert

delete

move

solution

dependency

update

Figure 7.15: Figure depicting the CDG created for the commit with identifier 2 in Table 7.2.

146

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

Legend

insert

delete

move

solution

dependency

update

Figure 7.16: Figure depicting the CDG created for the commit with identifier 5 in Table 7.2.

147

7 Supporting Evolution Characteristics

Legend

insert

delete

move

solution

dependency

update

Figure 7.17: Figure depicting the CDG created for the commit with identifier 3 Table 7.2.

148

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

Figure 7.15 depicts the CDG created for commit 34dc512 of the ant project. Fig-
ure 7.16 depicts the CDG created for commit 3a53a0a of the JMeter project. Every
distilled change corresponds to a node in the graph. Dependent changes are con-
nected through an edge. The colors of the node indicate the change type. Changes
that are part of the minimal solution are depicted as a pentagon. Figure 7.15

demonstrates that inserting blocks of code results in many parent dependencies.
This is due to the minimal representation of change operations (cf., Section 6.2.2).
Both figures illustrate that the CDGs has several connected components, with
changes that can be applied independently from each other.

Figure 7.17 depicts the CDG created for commit a794b2b of the ant project. This
figure illustrates the complexity of some of the CDGs. The high number of distilled
changes results in a complex CDG, where a manual detection of the dependencies
is not feasible.

Results for “Remove Unused Method” The sought-after refactoring can be per-
formed by a single change, namely a delete of the unused method. Inspecting the
results we note that this only holds for a single case. The returned solution so-
lution for StubUtility2 even contains 39 changes in total. This is due to parts of
the removed method being moved to different locations by other changes. These
moves are part of the solution, and are classified as EL changes. We also note that
there are 2 EI changes: two methods with the same name are removed. This is due
to the declarative specification, requiring that no methods with the same name are
present. A stricter specification would prevent this from happening.

Figure 7.18 depicts the CDG created for the StubUtility2 class. This figure clearly
illustrates the evolution linking move operations (i. e., the blue pentagons), and
the single evolution implementing delete operation (i. e., the red pentagon). The
nodes-to-be-moved are all part of the subtree that will be removed by the delete.
Thus, the moves must be applied before the delete. Two similar delete operations
are present; one on the left side of the figure that is not part of the solution and
one in the top right corner of the figure that is part of the solution. Each delete
that is part of the solution removes one of the two methods that share their name.

Results for “Rename Field” The final results are for the “Rename Field” refac-
toring. The number of changes in the solution differ across the different instances.
This is due to the nature of the refactoring, as it requires that every access is up-
dated to reflect the name change. Implementing this query without our approach,
but by directly querying the distilled changes, would be hard as the number of
changes is not known beforehand. These changes can also span the entire change
sequence, as the accesses can happen throughout the whole AST. We note that the
running times for all but one example are high compared to the other refactorings.
This can be attributed to the nature of the declarative description of the source

149

7 Supporting Evolution Characteristics

Legend

insert

delete

move

solution

dependency

update

Figure 7.18: Figure depicting the CDG created for the commit with identifier 9 in Table 7.2.

150

7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes

code, which takes several seconds to run on a single ES. Detecting the absence of
an element requires visiting all the nodes in the AST to ensure that the element is
not present, which is a slow process.

Figure 7.19 depicts the CDG created for the SourceProvider class. This figure de-
picts the different evolution implementing updates that update the accesses to the
the renamed field.

From this validation we can answer the three RQ, introduced in Section 7.5:

RQ1: Identifying instances of the same evolution pattern We have successfully
used a single query to identify different instances of the same pattern in differ-
ent change sequences created for commits containing the sought-after pattern. As
such, we can affirmatively answer RQ1.

RQ2: Minimal and executable change script We have manually inspected the re-
turned change sequences and classified their constituent changes. Some solutions
may still contain evolution linking changes that are, strictly speaking, not part of
the minimal solution. Evolution linking changes ensure that the remainder of the
distilled changes can still be executed after each change in the solution has been
executed. It is left to the user to discard the unwanted EL changes from a solution.
The returned solutions are relatively small compared to the solutions that would
be returned by directly querying the distilled changes, rendering a manual inspec-
tion feasible. Our approach moreover guarantees that changes can still be applied
after applying the solution. The remaining changes distilled for the commit will,
when executed, in turn transform the state of the code after the refactoring to the
state of the code after the commit. As such, we can positively answer RQ2.

RQ3: Solution size, precision and number of executed changes We have com-
puted several metrics about the solutions returned by QwalKeko, the distilled
changes and the CDG. From metrics LS, MS and #DS – indicating how solution
changes are interspersed between non-solution ones – we deduce that replaying
the distilled change sequence until a desired ES is found would result in much
larger solutions. Thus, without the support for evolution characteristics many
more changes would need to be applied before the sought-after transformation
is present. We do note that our returned solutions may still contain EL changes
that a user, if desired, wants to filter out. Nonetheless, our approach lowers the
number of changes that its users need to inspect. We also want to stress that our
approach focuses on finding minimal solutions; if users merely desire to know
whether a change sequence implements a certain code evolution, simply replaying
the distilled changes until a desired state is encountered suffices.

151

7 Supporting Evolution Characteristics

Legend

insert

delete

move

solution

dependency

update

Figure 7.19: Figure depicting the CDG created for the commit with identifier 12 in Ta-
ble 7.2.

152

7.6 Discussion

7.6 Discussion

In Chapter 6 we concluded that QwalKeko supported Criteria C1–C3, express-
ing revision, temporal and change characteristics, but did not yet support C4, ex-
pressing evolution characteristics. In this chapter we extended QwalKeko with
support for evolution characteristics.

C4: Support Evolution Characteristics Section 7.5 provides an evaluation of the
support for evolution characteristics in our history query language. By answer-
ing RQ1 and RQ2 affirmatively we can state that QwalKeko supports evolution
characteristics in its history query. A solution consists of an executable, minimal,
(possibly non-contiguous) subsequence of changes.

Users can express evolution characteristics by reusing existing concepts of
QwalKeko. The characteristics of an evolution state are expressed in terms of
the same support for revision characteristics that its users are already familiar
with. The navigation of the evolution state graph is specified using Qwal through
the use of specialized operators. Change characteristics, although not desired due
to the change equivalence problem (cf., Section 7.1), can also be specified.

We have opted to introduce specialized “change navigation” operators over
reusing existing Qwal operators (cf., Table 7.1) to make the distinction between
navigating a revision graph and an evolution state graph more clear. For some
of the change navigation operators, there is a corresponding revision navigation
operator, such is the case for change-> and q=>. Other change navigation operators,
such as change==>, don’t. Thus, we have opted for a dedicated set of operators over
reusing the existing, generic ones.

QwalKeko supports evolution characteristics in its history queries.

C5: Support Query Reuse, Abstraction and Composition Logic conditions ex-
pressing evolution characteristics can be abstracted into predicates. QwalKeko

supports the different characteristics in a uniform, declarative language. This uni-
formity facilitates the abstraction, reuse and composition of queries.

QwalKeko supports query abstraction, reuse and composition.

C6: On-demand Answers The declarative nature of QwalKeko’s support for
evolution characteristics supports finding non-minimal, executable solutions in an
on-demand manner. Backtracking over the ESG may yield additional ES exhibiting

153

7 Supporting Evolution Characteristics

the specified evolution characteristics. Solutions can in turn be minimized using
the approach discussed in Section 7.4.3.

QwalKeko provides solutions in an on-demand manner.

7.7 Conclusion

In this chapter we discussed the challenges a user faces when specifying the charac-
teristics of a sought-after source code transformation in terms of the characteristics
of multiple changes. First, the change equivalence problem states that a single source
code transformation can be implemented by different change sequences. Specifica-
tion of a transformation must account for all different possible change sequences.
Second, the change representation problem stipulates that changes returned from a
distiller involve three different ASTs. This renders specifications complex as com-
paring nodes from different ASTs for equality produces incorrect results.

As a solution for these two problems we extended QwalKeko with dedicated
support for evolution characteristics, enabling users to specify the sought-after
transformation in terms of a path through the evolution state graph, and the char-
acteristics of the code of the ASTs of the evolution states along this path. As a solu-
tion, a minimal, executable subsequence of changes is returned. This solves both the
change equivalence and representation problem as the specification does not rely
on change characteristics. Implementation-wise, constructing the evolution state
graph requires consulting a secondary auxiliary graph called the change depen-
dency graph. This graph models dependencies between changes, and facilitates
retrieving the applicable changes for any given evolution state.

We evaluated our support for evolution characteristics on its ability to identify
multiple instances of the same evolution pattern in different change sequences
(RQ1), whether it returns solutions that are minimal and executable (RQ2), and
how it compares to directly querying the output of a distilled change sequence
with respect to solution size, precision and the number of changes that need to be
executed (RQ3). To this end, we detected instances of known refactorings in open-
source projects using history queries in which we specified the evolution charac-
teristics of the refactoring, and verified that the returned solutions were minimal
and executable. We concluded that QwalKeko supports evolution characteris-
tics, hereby fulfilling to all the criteria for a general-purpose history querying tool
stipulated in Section 2.4.

154

8
C O N C L U S I O N A N D F U T U R E W O R K

8.1 Summary of the Dissertation

Version Control Systems enable developers to share changes, undo changes or
create branches that do not affect the main branch of the software project. The
history stored in such a VCS can be leveraged by developers to answer questions
regarding the evolution of the software project, or by researchers in the domain
of mining software repositories. Both stakeholders require support in the form of
a tool that enables specifying the characteristics of sought-after history elements,
and that subsequently returns the corresponding elements adhering to the given
specification.

This dissertation makes the following contributions:

1. We identify and motivate the different criteria for a general-purpose history
querying tool that serves the needs of stakeholders in obtaining information
about the history of a software project.

155

8 Conclusion and Future Work

2. We have designed and implemented a declarative history querying tool
QwalKeko that satisfies these criteria. It has a declarative foundation: char-
acteristics are expressed in logic queries, while a logic proof procedure iden-
tifies history elements exhibiting the specified characteristics. Unique to the
approach is the use of regular path expressions for specifying paths through
different graph structures, a revision graph and an evolution state graph,
and the use of logic conditions within such a regular path expression spec-
ifying the characteristics nodes along this path must exhibit. Most impor-
tantly, evolution characteristics are expressed in terms of a regular path ex-
pression and source code characteristics. This change-agnostic specification
solves the change equivalence problem (cf., Section 7.1). The specification of
a code transformation in terms of a path through an evolution state graph
and the characteristics of the ASTs along this path supports identifying dif-
ferent instances of the same code transformation in different distilled change
sequences.

3. We have validated that QwalKeko adheres to the different criteria for a
general-purpose history querying tool, and serves the needs of the stakehold-
ers through example queries and empirical studies that are representative for
its intended use. For some studies, the results are scientific contributions by
themselves.

8.2 Criteria for General-Purpose History Querying
Support

Section 2.4 introduces the different criteria for a general-purpose history query-
ing tool, based on the applications of the stakeholders of history information. We
define the following criteria:

C1–C4 A history querying tool must support the specification of revision (C1),
temporal (C2), change (C3) and evolution (C4) characteristics. Revision char-
acteristics concern the properties elements of a single revision must exhibit.
Temporal characteristics concern quantification over elements from differ-
ent revisions. Change characteristics concern individual source code changes
that occurred between two revisions. Evolution characteristics concern code
transformations that are implemented by change sequences.

C5 A history querying tool must support a means for query abstraction, reuse
and composition.

C6 A history querying tool must provide solutions in an on-demand manner.

156

8.2 Criteria for General-Purpose History Querying Support

Chapter 3 provides an overview of the state of the art in source code querying
tools. Program querying tools such as CodeQuest [43], JTL [15] and SOUL [20],
do not support criteria C2, C3 and C4. Early history querying tools such as
SCQL [46] only support expressing coarse-grained revision characteristics, and
none of criteria C3 and C4. Later history querying tools such as Boa [25] do sup-
port fine-grained revision characteristics, but do not fulfill criteria C3 and C4, nor
do they support query abstraction, reuse and composition. Queries, for instance,
are specified as imperative visitors over ASTs which need to be composed man-
ually. Other tools such as CheOPSJ [69] support querying changes, but lack a
dedicated query language for specifying the characteristics of the sought-after his-
tory information.

Chapter 4 presents a high-level overview of the different components of
QwalKeko. The declarative foundation facilitates integrating these components
into a uniform history query language that support query abstraction, reuse
and composition (C5) and computes solutions in an on-demand manner (C6).
These components are detailed in the subsequent chapters. Chapter 5 provides
the foundation of our approach to support history querying. It combines the
declarative program querying tool Ekeko with the graph query language Qwal

to support revision (C1) and temporal (C2) characteristics. Chapter 6 extends
QwalKeko with support for change characteristics (C3) by reifying the output
of ChangeNodes. ChangeNodes computes a sequence of fine-grained source
code changes between two files of Java code through a change differencing algo-
rithm. Chapter 7 extends QwalKeko with support for evolution characteristics
(C4).

C1: Supporting Revision Characteristics using Logic Queries Section 5.4 intro-
duced Ekeko, a declarative program querying tool that enables users to query the
Java projects in an Eclipse workspace. Ekeko supports querying the AST of a
single revision using logic queries of which the conditions specify revision char-
acteristics. To this end, we reified the meta-data of a revision, such as the author,
commit message, timestamp, etc., and extended Ekeko with new predicates for
this data.

C2: Supporting Temporal Characteristics through Regular Path Expressions Em-
bedded in Logic Queries Section 5.2 introduced Qwal, a regular path expres-
sion [17] language that enables users to specify paths through arbitrary graphs.
QwalKeko converts the information stored in a VCS to a graph, in which each
node corresponds to a revision, and successive revisions are connected by an edge.
Section 5.2.1 provides several example queries depicting the usage of Qwal. A
Qwal query consists of navigation predicates that specify a path through a revi-
sion graph, and the conditions that have to hold in revisions along this path.

157

8 Conclusion and Future Work

Qwal provides a generic set of navigation predicates to specify paths through
any graph. The extensible implementation of Qwal enables users to define their
own domain-specific navigation predicates if needed. This extensible implementa-
tion is used in Chapter 7 to implement support for evolution characteristics which
are specified as paths through an evolution state graph.

Section 5.5 evaluates the foundation of our approach to history querying. It
provides queries for several scenarios of the stakeholders of history information.
These queries illustrate how regular path expressions, implemented by Qwal, are
used to express temporal characteristics by navigating the revision graph, while
the declarative program query language Ekeko is used to express revision char-
acteristics that have to hold in revisions along the specified path.

We conclude that combination of Qwal and Ekeko, forming the foundation of
QwalKeko, satisfies criteria C1–2 and C5–6. Criteria C5 and C6 are supported
due to the declarative nature of the chosen specification formalisms

C3: Supporting Change Characteristics through a Change Distiller Chapter 6

extended QwalKeko with support for change characteristics. To this end, it in-
troduced ChangeNodes, a change distiller that computes fine-grained source
code changes between two Java source files. We extended QwalKeko with a
declarative layer (cf., Section 6.4) that reifies the output of ChangeNodes, hereby
supporting change characteristics.

Section 6.5 evaluated QwalKeko on its support for change characteristics. To
this end, we performed a mining software repositories study [13] with the goal
of finding what parts of automated functional tests are most prone to change
throughout the history of web applications. We implemented this experiment
in QwalKeko and in Clojure. We concluded that the dedicated support of
QwalKeko for revision, temporal and change characteristics (C1–C3) results in a
more concise implementation than Clojure.

C4: Supporting Evolution Characteristics through an Evolution State Graph
Chapter 7 discussed the two major problems of querying the output of a change
distilling algorithm, such as ChangeNodes, directly to detect complex patterns.
The change representation problem stipulates that changes involve AST nodes that
stem from three ASTs; the source AST, the target AST, and a copy of the source
AST that is transformed into the target AST during the execution of the algorithm.
This encumbers specifying change characteristics as the user needs to track from
which AST the subject of a change stems. The change equivalence problem stipu-
lates that different change sequences can implement the same conceptual source
code transformation. A user must account for these different possible sequences
in every specification.

158

8.3 Limitations of the Approach

To address these problems we extended QwalKeko with support for evolu-
tion characteristics. A change sequence is transformed into an evolution state
graph, containing intermediate ASTs that can be constructed by applying subsets
of changes. A source code transformation is described as a path, using regular
path expressions, through this evolution state graph, along with the source code
characteristics of the intermediate ASTs. This change-agnostic specification solves
the change representation and equivalence problems. As a solution, a minimal, exe-
cutable subsequence of changes is returned. Section 7.5 evaluated this approach by
detecting multiple instances of the same refactoring across different open-source
projects using a single history query.

We conclude that QwalKeko satisfies all the stipulated criteria of a general-
purpose history querying tool.

8.3 Limitations of the Approach

8.3.1 Performance
We did not focus on the performance and memory usage of QwalKeko. History
queries may take a long time to complete, depending on the size of the project and
whether all possible answers must be computed. This is acceptable when perform-
ing an empirical study, but not for developers who want near-instant answers to a
question they have during the development.

There are several slow parts in QwalKeko. First, importing the source code
of a revision from a VCS into Eclipse may take several seconds due to the data
being written to disk and the construction of a model of that revision. Next, distill-
ing changes between two versions has a performance of O(n2) [30], where n is the
maximum number of AST nodes in either the source or target AST. Finally, for a
given set of changes with size N, N! different sequences with length N can be con-
structed in case no change has a dependency. The corresponding evolution state
graph will contain all these different permutations. Computing all the solutions
for such a graph is not feasible for large change sequences.

QwalKeko already mitigates some of these issues:
The declarative nature of QwalKeko supports computing results in an on-

demand manner. This enables writing queries incrementally which can be tested
quickly. QwalKeko features different representations of the history information
(cf., Section 2.2.2). From coarse-grained to fine-grained these are a coarse-grained
revision representation (e. g., the modified files or the author of a revision), a
fine-grained revision representation (e. g., the source code of a revision), the fine-
grained changes made between two revisions of a file and finally an evolution

159

8 Conclusion and Future Work

state graph created from such changes. An initial query could only specify coarse-
grained revision characteristics (e. g., to find all the revisions by a specific author).
A follow-up query could use these results to limit the number of checkouts that
must be performed.

To reduce the memory usage an incremental representation of the source code
could be used [2]. In such a representation an initial AST is created for the first re-
vision containing that AST. Later revisions in which that file is modified reuse the
initial AST, but also store the modifications the AST underwent. Thus, unchanged
nodes are reused across revisions, reducing the memory usage.

To mitigate the problem of querying a high number of possible evolution states,
we have introduced coarse-grained navigation predicates, such as change==> (cf.,
Section 7.4), that apply multiple changes at once. These predicates limit the search
space of a query, at the cost of removing intermediate states that may contain the
solution.

8.3.2 Detecting Patterns in Intermediate Evolution States
Currently, QwalKeko has only been used to detect source code transformations
for which the sought-after transformation is present in the target AST. For exam-
ple, Section 7.5 detected refactorings for which the resulting code was present in
the AST of the final ES. In theory, a sought-after transformation can be present in
some ES, but not in the final ES. It is ill-advised to detect intermediate ES in which
the transformed code is present, but that is absent in the final ES. The construction
of the ESG depends on the distilled change sequence. As such, there is no way
to know beforehand whether the desired ES will actually be present, as an un-
expected change sequence may be generated. Detecting patterns in intermediate
evolution states does make sense in the context of logged changes. Such changes
may uncover initial attempts of the developer when modifying the source code.
An ESG can be constructed using logged changes. However, whereas an ESG for
distilled changes contains all the different ASTs that could be constructed, an ESG
for logged changes could use the temporal relation between changes. For example,
a developer introduced two new methods. We could create two groups of changes,
one that affect the first method and one that affect the second one. The order in
which the complete group of changes is replayed can differ, but replaying a single
group could follow the actions of the developer. This reduces the number of pos-
sible ES in the graph, and improves the performance. This temporal information
is unavailable when using distilled changes. Even though similar groupings could
be made, the order of changes inside a group would still depend on the output of
the distiller, and suffer from the change equivalence problem.

160

8.4 Future Research

8.4 Future Research

In this section we discuss several potential avenues of future research for querying
the history of software projects. For us, the main focus lies on extending the facili-
ties to specify evolution characteristics. Section 8.3 already discussed using logged
changes instead of distilled changes as the input to our evolution state graph.

8.4.1 Other Sources of Information
This dissertation focused on querying the history and evolution of source code.
However, software development does not include source code alone. Bug trackers,
mailing lists, a continuous integration pipeline, etc., are all used to develop and
maintain a project. All these are also sources of relevant information for the his-
tory information stakeholders, but are currently not integrated into QwalKeko.
Mailing lists can provide insights into the design decisions of the project. Bug
trackers can provide the raison d’être of a commit. Continuous integration data
provides insights into the build status of a revision (i. e., whether the revision com-
piled successfully, what unit tests did or did not pass, . . .). For example, Travis-
Torrent [5] collects TravisCI (a continuous integration system) information from
open-source projects and makes it accessible to researchers. Existing work [3, 31]
links bug tracker information to its related revision. This extra information from
external sources could be incorporated in QwalKeko as additional facts in the
revision graph.

8.4.2 Coarse-Grained Source Code Changes
We could use QwalKeko’s support for evolution characteristics to transform
fine-grained changes into coarse-grained changes, such as the ones provided by
CheOPSJ (cf., Section 3.3). Examples of these coarse-grained changes are the in-
troduction of a method and its body, a field rename, etc. Coarse-grained changes
better convey the meaning of what happened between two revisions. QwalKeko

ensures that the coarse-grained changes are correctly identified, regardless of the
concrete distilled changes. One could add coarse-grained change characteristics
to query these changes as they should not suffer from the change equivalence
problem.

8.4.3 Semantic Dependencies
A next step is to incorporate semantic dependencies in our support for evolution
characteristics. Currently, the change dependency graph only includes syntactical
dependencies. Using data flow information one could add semantic dependencies
(e. g., a method can only be called if it is introduced, a field can only be removed

161

8 Conclusion and Future Work

if it is no longer accessed, etc.). Semantic dependencies have several potential uses.
First, they ensure evolution states are semantically correct. The resulting evolution
state graph would be smaller as fewer semantically correct evolution states exist.
Second, the semantic change dependency graph could be used to untangle com-
mits [22, 76]. Ideally, a single commit implements a single concern (e. g., a bug fix,
a feature addition, etc.). By analyzing the connectivity of the change dependency
graph we hope to find subgraphs that implement such a single concern. The de-
pendency graph ensures that the changes of the subgraph can be applied, and
thus be extracted into a separate commit. We want to leverage the history of the
software project to apply an edit script on similar source code, such as a different
branch of the project. To this end, the history of the software project contains the
information to see how both branches have diverged. This information can be used
to modify the patch so that it can be applied on the different branch.

8.4.4 Empirical Studies
Finally, we want to use QwalKeko in more empirical studies. For example, our
original motivation for the support for evolution characteristics was to perform
a study about code clones [4, 57] that are removed by performing a refactoring
(e. g., an extract method refactoring), and what additional operations developers
perform besides the refactoring. The evaluation of the support for evolution char-
acteristics (cf., Section 7.5) shows that QwalKeko can identify minimal change
sequences that implement a refactoring. We want to continue this study for a larger
data set using QwalKeko.

8.5 Concluding Remarks

We started this dissertation motivating the need for a general-purpose history
querying tool based on the potential information about the history of a software
project. We discerned the different criteria for such a general-purpose history
querying tool. Throughout the remainder of the dissertation we instantiated our
own history querying tool QwalKeko that satisfies these criteria.

QwalKeko is a declarative history querying tool. As its foundation it com-
bines the program query language Ekeko with the graph query language Qwal,
which implements regular path expressions. We extended QwalKeko with sup-
port for change characteristics through ChangeNodes. Finally, we extended
QwalKeko with support for evolution characteristics by transforming the out-
put of ChangeNodes into an evolution state graph. Unique to the approach is
the use of regular path expressions within history queries to express paths through
the different graph structures — the revision graph and the evolution state graph
— and the characteristics nodes along this path must exhibit.

162

8.5 Concluding Remarks

We evaluated QwalKeko through example queries, an empirical study regard-
ing the evolution of automated functional tests performed once in Clojure and
once in QwalKeko, and a study regarding the specification of refactorings using
the support for evolution characteristics, and the identification of the subset of
changes in different change sequences that implement these refactorings. These
studies illustrate that QwalKeko satisfies the different criteria for a general-
purpose history querying tool.

QwalKeko can be improved in different aspects, such as its performance. The
evolution state graph can be extended with semantic dependencies. Such depen-
dencies might ensure that the generated ES would be semantically correct. Next to
that, they would decrease the number of evolution states that need to be generated,
reducing the size of the evolution state graph.

In conclusion, QwalKeko provides a solid, declarative foundation for a
general-purpose history querying tool that serves the needs of the history infor-
mation stakeholders.

163

R E F E R E N C E S

[1] A. Aho. Algorithms for finding patterns in strings. MIT Press, 1990. 63

[2] Carol V. Alexandru and Harald C. Gall. Rapid multi-purpose, multi-commit
code analysis. In Proceedings of the 37th International Conference on Software
Engineering (ICSE15), 2015. 160

[3] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu,
and Abraham Bernstein. The missing links: Bugs and bug-fix commits. In
Proceedings of the 18th International Symposium on Foundations of Software Engi-
neering (FSE10), 2010. 161

[4] Saman Bazrafshan and Rainer Koschke. An empirical study of clone removals.
In 2013 IEEE International Conference on Software Maintenance, Eindhoven, The
Netherlands, September 22-28, 2013, pages 50–59, 2013. 162

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. Travistorrent: Synthe-
sizing travis ci and github for full-stack research on continuous integration.
In Proceedings of the 14th Working Conference on Mining Software Repositories
(MSR17), 2017. 161

[6] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph.
Schnoebelen. System and Software Verification, Model-Checking Techniques and
Tools. Springer, 2001. ISBN 9783540415237. 71

[7] Christian Bird, Tim Menzies, and Thomas Zimmermann, editors. The Art and
Science of Analyzing Software Data. Morgan Kaufmann, 2015. 2

[8] William E. Byrd. Relational Programming in miniKanren: Techniques, Applica-
tions, and Implementations. PhD thesis, Indiana University, Bloomington, IN„
September 30, 2009. 46

[9] Nélio Cacho, Eiji Adachi Barbosa, Juliana Araujo, Frederico Pranto, Alessan-
dro F. Garcia, Thiago César, Eliezio Soares, Arthur Cassio, Thomas Filipe, and
Israel García. How does exception handling behavior evolve? an exploratory
study in java and c# applications. In Proceedings of the 30th International Con-
ference on Software Maintenance and Evolution(ICSME), 2014. 26

165

References

[10] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146–166, 1989. 33

[11] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-
nifer Widom. Change detection in hierarchically structured information. In
Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD96), pages 493–504, 1996. 45, 55, 91, 92, 118

[12] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W.
Godfrey, Mohamed Nasser, and Parminder Flora. An empirical study on the
practice of maintaining object-relational mapping code in java systems. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR16), 2016. 2

[13] Laurent Christophe, Reinout Stevens, Coen De Roover, and Wolfgang
De Meuter. Prevalence and maintenance of automated functional tests for
web applications. In Proceedings of the 30th International Conference on Software
Maintenance and Evolution (ICSMe14), 2014. 2, 8, 27, 99, 100, 158

[14] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. Soft-
ware history under the lend: A study on why and how developers examine
it. In 31st International Conference on Software Maintenance and Evolution (IC-
SME15), 2015. 11, 21, 22, 24

[15] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. JTL: the Java Tools Language.
In Proceedings of the 21st Annual SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA06), pages 89–108, 2006.
3, 33, 34, 157

[16] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Reassert: Sug-
gesting repairs for broken unit tests. In Proceedings of the International Confer-
ence on Automated Software Engineering (ASE09), 2009. 115

[17] Oege de Moor, David Lacey, and Eric Van Wyk. Universal regular path
queries. Higher-Order and Symbolic Computation, pages 15–35, 2002. 6, 7, 38, 50,
63, 157

[18] Coen De Roover and Katsuro Inoue. The ekeko/x program transformation
tool. In Proceedings of the 14th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM14), Tool Demo Track, 2014. 3

[19] Coen De Roover and Reinout Stevens. Building development tools interac-
tively using the ekeko meta-programming library. In Proceedings of the 18th
European Conference on Software Maintenance and Reengineering (CSMR14), 2014.
3, 7, 53, 75

166

References

[20] Coen De Roover, Carlos Noguera, Andy Kellens, and Viviane Jonckers. The
SOUL tool suite for querying programs in symbiosis with Eclipse. In Proceed-
ings of the 9th International Conference on Principles and Practice of Programming
in Java (PPPJ11), pages 71–80, 2011. 3, 34, 157

[21] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI04), 2004. 13, 40

[22] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and
Stéphane Ducasse. Untangling fine-grained code changes. Proceedings of the
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER15), 2015. 162

[23] Stephan Diehl, Harald C. Gall, Martin Pinzger, and Ahmed E. Hassan. In-
troduction to MSR 2006. In Proceedings of the 2006 International Workshop on
Mining Software Repositories (MSR06), pages 1–2, 2006. 21, 25

[24] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property speci-
fication patterns for finite-state verification. In Proceedings of the Second Work-
shop on Formal Methods in Software Practice (FMSP’98), 1998. 71

[25] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software reposito-
ries. In Proceedings of the 2013 International Conference on Software Engineering
(ICSE13), 2013. 4, 13, 40, 157

[26] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining
billions of ast nodes to study actual and potential usage of java language
features. In 36th International Conference on Software Engineering (ICSE14), 2014.
27

[27] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and Theo
D’Hondt. Change-oriented software engineering. In Proceedings of the 2007
International Conference on Dynamic languages (ICDL07), 2007. 42

[28] E. A. Emerson and Joseph Y. Halpern. Decision procedures and expressive-
ness in the temporal logic of branching time. Journal of Computer and System
Sciences, 30(1):1–24, February 1985. 71

[29] Jean-Rémy Falleri, Cédric Teyton, Matthieu Foucault, Marc Palyart, Floréal
Morandat, and Xavier Blanc. The harmony platform. CoRR, 2013. 37, 38

167

References

[30] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Montperrus. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th International Conference on Automated Software Engineering
(ASE14, 2014. 18, 91, 93, 159

[31] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of the
International Conference on Software Maintenance (ICSM ’03), 2003. 161

[32] Peter Flach. Simply Logical, Intelligent Reasoning by Example, chapter Logic and
Logic Programming, pages 26–35. John Wiley & Sons, 1994. 47

[33] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. Change
distilling: Tree differencing for fine-grained source code change extraction.
Transactions on Software Engineering, 33(11), 2007. 18, 28, 43, 55, 91, 92, 93, 118

[34] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., 1999. 84

[35] Jeffrey E.F. Friedl. Mastering Regular Expressions, 3rd Edition. O’Reilly Media,
2006. 32

[36] Thomas Fritz and Gail C. Murphy. Using information fragments to answer
the questions developers ask. In Proceedings of the 32nd International Conference
on Software Engineering (ICSE10), pages 175–184, 2010. 2, 11, 21, 22, 23, 24, 79

[37] Harald C. Gall, Beat Fluri, and Martin Pinzger. Change analysis with evolizer
and changedistiller. IEEE Software, 26(1):26–33, January 2009. 12, 13, 43

[38] Emanuel Giger, Martin Pinzger, and Harald C. Gall. Comparing fine-grained
source code changes and code churn for bug prediction. In Proceedings of the
8th Working Conference on Mining Software Repositories (MSR11), pages 83–92,
2011. 26, 28

[39] Tudor Gîrba and Stéphane Ducasse. Modeling history to analyze software
evolution. Journal of Software Maintenance: Research and Practice (JSME06), 18:
207–236, 2006. 17, 38, 58, 78

[40] Verónica Uquillas Gómez, Stéphane Ducasse, and Andy Kellens. Supporting
streams of changes during branch integration. Science of Computer Program-
ming, 96:84–106, 2014. 95

[41] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR13), MSR ’13,
pages 233–236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-
1. 2

168

References

[42] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and evolving gui-
directed test scripts. In Proceedings of the 31st International Conference on Soft-
ware Engineering (ICSE09), 2009. 115

[43] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable
source code queries with datalog. In Proceedings of the 20th European conference
on Object-Oriented Programming (ECOOP06), 2006. 3, 33, 34, 157

[44] Lile Hattori and Michele Lanza. Syde: A tool for collaborative software devel-
opment. In Proceedings of the 32nd International Conference on Software Engineer-
ing (ICSE10), pages 235–238, 2010. 18, 91

[45] John Hebeler, Matthew Fisher, Ryan Blace, and Andrew Perez-Lopez. Seman-
tic Web Programming. Wiley Publishing, 2009. 72

[46] Abram Hindle and Daniel M. German. SCQL: A formal model and a query
language for source control repositories. In Proceedings of the 2005 Working
Conference on Mining Software Repositories (MSR05), pages 100–105, 2005. 4, 14,
35, 36, 157

[47] Si Huang, Myra B. Cohen, and Atif M. Memon. Repairing gui test suites using
a genetic algorithm. In Proceedings of the 3rd Internal Conference on Software
Testing, Verification and Validation (ICST10), 2010. 115

[48] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilin-
guistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 2002. 130

[49] David Kawrykow and Martin P. Robillard. Non-essential changes in version
histories. In Proceedings of the 33rd International Conference on Software Engineer-
ing (ICSE11), 2011. 26

[50] Andy Kellens, Coen De Roover, Carlos Noguera, Reinout Stevens, and Viviane
Jonckers. Reasoning over the evolution of source code using quantified reg-
ular path expressions. In Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE11), pages 389–393, 2011. 7, 78

[51] Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about code.
In Evaluation and Usability of Programming Languages and Tools (PLATEAU10),
pages 8:1–8:6, 2010. 2, 5, 21, 22, 23, 24, 79

[52] Jannik Laval, Simon Denier, Stéphane Ducasse, and Jean-Rémy Falleri. Sup-
porting simultaneous versions for software evolution assessment. Journal of
Science of Computer Programming, 2010. 58

169

References

[53] Julia Lawall, Quentin Lambert, and Gilles Muller. Prequel: A Patch-Like
Query Language for Commit History Search. Research Report RR-8918, Inria
Paris, 2016. 96

[54] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller, and Nanjun
Hu. Parametric regular path queries. In Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation (PLDI04),
pages 219–230, 2004. 50

[55] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application
errors and security flaws using pql: a program query language. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA05), 2005. 3, 33

[56] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: Locating and ap-
plying systematic edits by learning from examples. In Proceedings of the 35th
International Conference on Software Engineering (ICSE13), 2013. 25, 26, 95

[57] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider. A compara-
tive study on the bug-proneness of different types of code clones. In Proceed-
ings of the 31th International Conference on Software Maintenance and Evolution
(ICSME15), 2015. 26, 162

[58] Alix Mougenot, Xavier Blanc, and Marie-Pierre Gervais. D-Praxis: A peer-to-
peer collaborative model editing framework. In Proceedings of the 9th Interna-
tional Conference on Distributed Applications and Interoperable Systems (DAIS09),
pages 16–29, 2009. 4, 36, 77

[59] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor,
and how we know it. Transactions on Software Engineering, 38:5–18, 2012. 138

[60] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny
Dig. Is it dangerous to use version control histories to study source code
evolution? In Proceedings of the 26th European Conference on Object-Oriented
Programming (ECOOP12), 2012. 18, 91

[61] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. Mining fine-
grained code changes to detect unknown change patterns. In Proceedings of
the 36th International Conference on Software Engineering (ICSE14), 2014. 25, 27

[62] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (SFCS77), SFCS ’77, pages 46–57,
1977. 71

170

References

[63] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-
based reconstruction of complex refactorings. In Proceedings of the 2010 IEEE
International Conference on Software Maintenance (ICSM10), 2010. 138

[64] Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagappan,
and Thomas Zimmermann. The Uniqueness of Changes: Characteristics and
Applications. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR15), 2015. 4, 26, 28

[65] Arend Rensink. The groove simulator: A tool for state space generation. In Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE04), pages
479–485, 2004. 42

[66] Romain Robbes and Michele Lanza. Spyware: A change-aware development
toolset. In Proceedings of the 30th international conference on Software engineering
(ICSE08), pages 847–850, 2008. 18, 91

[67] S. Tichelaar Serge Demeyer and P. Steyaert. The FAMOOS information ex-
change model. Technical report, University of Berne, 1999. 42, 95

[68] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers
ask during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of Software Engineering (FSE06), 2006. 2,
11

[69] Quinten David Soetens. Change-Based Software Engineering Using Reified
Changes for Test Selection and Refactoring Reconstruction. PhD thesis, Univer-
siteit Antwerpen, 2015. 42, 43, 157

[70] Daniela Steidl and Florian Deissenboeck. How do java methods grow? In
Proceedings of the 15th International Working Conference on Source Code Analysis
and Manipulation (SCAM15), 2015. 27

[71] Reinout Stevens. A declarative foundation for comprehensive history query-
ing. In Proceedings of the 37th International Conference on Software Engineering,
Doctoral Symposium Track (ICSE15), 2015. 4

[72] Reinout Stevens and Coen De Roover. Querying the history of software
projects using QWALKEKO. In Proceedings of the 30th International Conference
on Software Maintenance and Evolution, 2014. 7, 8, 14, 18

[73] Reinout Stevens and Coen De Roover. Extracting executable transformations
from distilled code changes. In Proceedings of the 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER17), 2017. 4, 8

171

References

[74] Reinout Stevens, Coen De Roover, Carlos Noguera, and Viviane Jonckers.
A history querying tool and its application to detect multi-version refactor-
ings. In Proceedings of the 17th European Conference on Software Maintenance and
Reengineering (CSMR13), 2013. 7

[75] Reinout Stevens, Coen De Roover, Carlos Noguera, Andy Kellens, and Viviane
Jonckers. A logic foundation for a general-purpose history querying tool.
Elsevier Journal on Science of Computer Programming, 2014. 4, 38

[76] Yida Tao and Sunghun Kim. Partitioning composite code changes to facilitate
code review. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR15), 2015. 162

[77] YoungSeok Yoon and Brad A. Myers. Capturing and analyzing low-level
events from the code editor. Proceedings of the 3rd Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU 11), 2011. 18, 91

[78] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen.
Mining software repositories to study co-evolution of production & test code.
In Proceedings of the 2008 International Conference on Software Testing, Verification,
and Validation (ICST08), pages 220–229, 2008. 26, 28, 113

172

	1 Introduction
	1.1 Context: Potential Uses of History Information
	1.1.1 Stakeholders of History Information
	1.1.2 Tool Support for Querying Program and History Information

	1.2 Problem Statement
	1.3 Contributions
	1.4 Outline of the Dissertation
	1.5 Publications Supporting this Dissertation

	2 Background on History Querying
	2.1 Version Control Systems
	2.2 Querying Version Control Systems for History Characteristics
	2.2.1 Examples of History Querying
	2.2.2 Types of History Characteristics
	Revision Characteristics
	Temporal Characteristics
	Change Characteristics
	Evolution Characteristics

	2.3 Applications of History Querying
	2.3.1 Program Comprehension
	2.3.2 Empirical Studies

	2.4 Criteria for General-Purpose History Querying Support
	2.5 Conclusion

	3 State of the Art in History and Software Querying
	3.1 Querying a Single Revision
	3.1.1 Text Querying
	3.1.2 Logic Program Querying
	3.1.3 Conclusion

	3.2 Querying Multiple Revisions
	3.2.1 Conclusion

	3.3 Querying Source Code Changes
	3.3.1 Conclusion

	3.4 Conclusion

	4 Overview of the Approach
	4.1 An Introduction to Declarative Programming in Clojure
	4.1.1 Negation As Failure

	4.2 Querying Graphs with Qwal
	4.3 Querying Code with Ekeko
	4.4 Querying Changes with ChangeNodes
	4.4.1 Supporting Evolution Characteristics

	4.5 Applicability of the Approach
	4.6 Conclusion

	5 Supporting Temporal and Revision Characteristics
	5.1 The Need for Dedicated Support for Specifying Temporal Characteristics
	5.1.1 Representing a Version Control System as a Revision Graph

	5.2 Supporting Temporal Characteristics through Qwal
	5.2.1 Example Queries
	5.2.2 Supporting User-defined Temporal Operators
	5.2.3 Qwal Compared to Graph Query Languages
	5.2.4 Conclusion

	5.3 The Need for Dedicated Support for Specifying Revision Characteristics
	5.4 Supporting Revision Characteristics through Ekeko
	5.4.1 Integrating a PQL into a History Query Language

	5.5 Evaluation: Answering History Questions using QwalKeko
	5.5.1 History Queries for Answering Questions Developers Ask
	5.5.2 History Queries for Verifying a Development Process
	5.5.3 History Queries for Mining Software Repositories

	5.6 Discussion
	5.7 Conclusion

	6 Supporting Change Characteristics
	6.1 The Need for Dedicated Support for Specifying Change Characteristics
	6.2 Retrieving Fine-grained AST Changes
	6.2.1 The Inner Workings of a Change Distilling Algorithm
	6.2.2 Detailed Change Definitions

	6.3 Working with Source Code Changes
	6.4 Supporting Change Characteristics through ChangeNodes
	6.5 Evaluation: Expressing Change Characteristics using ChangeNodes
	6.5.1 Context of the Study
	6.5.2 Identifying Selenium Files using QwalKeko
	6.5.3 Identifying Selenium Files using Clojure
	6.5.4 Classification of Changes using QwalKeko
	6.5.5 Classification of Changes using Clojure
	6.5.6 Results of our Evaluation
	6.5.7 Visualizing Commit Histories
	6.5.8 Results of the Change Classification

	6.6 Discussion
	6.7 Conclusion

	7 Supporting Evolution Characteristics
	7.1 The Need for a Dedicated Support for Specifying Evolution Characteristics
	7.2 Change Characteristics Compared to Evolution Characteristics
	7.3 Supporting Evolution Characteristics
	7.3.1 Motivating Example Revisited: Querying the ESG
	7.3.2 Example Applications and the Corresponding Queries
	Introduction of a Method
	Code Clone Elimination

	7.4 Conceptual Implementation
	7.4.1 Construction of a Change Dependency Graph
	7.4.2 On-demand Construction of the Evolution State Graph
	7.4.3 Minimizing Solutions to an Evolution Query

	7.5 Evaluation: Extracting Executable Transformations from Distilled Code Changes
	7.5.1 Data Set of Commits Containing Refactorings
	7.5.2 Queries for Changes Implementing Refactorings
	7.5.3 Query Results

	7.6 Discussion
	7.7 Conclusion

	8 Conclusion and Future Work
	8.1 Summary of the Dissertation
	8.2 Criteria for General-Purpose History Querying Support
	8.3 Limitations of the Approach
	8.3.1 Performance
	8.3.2 Detecting Patterns in Intermediate Evolution States

	8.4 Future Research
	8.4.1 Other Sources of Information
	8.4.2 Coarse-Grained Source Code Changes
	8.4.3 Semantic Dependencies
	8.4.4 Empirical Studies

	8.5 Concluding Remarks

	References

