
Extracting Executable Transformations
from Distilled Code Changes
Reinout Stevens

Software Languages Lab
Vrije Universiteit Brussel, Belgium

resteven@vub.ac.be

Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Belgium
cderoove@vub.ac.be

Abstract—Change distilling algorithms compute a sequence of
fine-grained changes that, when executed in order, transform a
given source AST into a given target AST. The resulting change
sequences are used in the field of mining software repositories
to study source code evolution. Unfortunately, detecting and
specifying source code evolutions in such a change sequence is
cumbersome. We therefore introduce a tool-supported approach
that identifies minimal executable subsequences in a sequence
of distilled changes that implement a particular evolution pat-
tern, specified in terms of intermediate states of the AST that
undergoes each change. This enables users to describe the effect
of multiple changes, irrespective of their execution order, while
ensuring that different change sequences that implement the same
code evolution are recalled. Correspondingly, our evaluation is
two-fold. Using examples, we demonstrate the expressiveness of
specifying source code evolutions through intermediate ASTs.
We also show that our approach is able to recall different
implementation variants of the same source code evolution in
open-source histories.

I. INTRODUCTION

The use of a Version Control System (VCS) has become an
industry best practice for developing software. Researchers in
the field of mining software repositories (MSR) leverage the
resulting revision histories to study the evolution of software
systems. However, most VCSs record their revisions of the
source code in a code-agnostic manner. Differences between
two revisions are therefore only available from the VCS as
lines of text that have been changed. A more fine-grained
representation, e.g., in terms of source code constructs that
have changed, is not readily available.
A change distilling algorithm (e.g., [1], [2], [3], [4]) can
be used to obtain more fine-grained information about the
differences between two revisions. Such an algorithm takes
two Abstract Syntax Trees (ASTs) as input, called the source
AST and the target AST respectively. It returns a sequence of
change operations that, when applied in order, transforms the
source AST into the target AST. A change is either an insert,
a move, a delete or an update of an AST node. These changes
provide fine-grained information about how the source code
constructs might have changed. Analyzing or querying such
change sequences is an essential ingredient in many a MSR
study (e.g., [5], [6], [7], [8]).
In this paper we address a problem faced by many MSR
researchers; the problem of recognizing in and extracting from
the output of a change distiller, a minimal and executable edit

script (i.e., a sequence of changes) that implements a specified
transformation of interest. Executable means that applying the
edit script on the initial source file results in edits corre-
sponding to the specified transformation. Minimal means that
removing any change from the script either preclude the script
from being executed, or render the resulting transformation of
the source file incomplete.
Manually recognizing a sought-after transformation in a dis-
tilled change sequence is challenging. Change sequences tend
to be large, with every change potentially depending on the
output of its predecessor. Changes that contribute to the
transformation need to be isolated from the others, while the
resulting edit script needs to remain executable.
Automated tool support is in order, but far from trivial to
provide. A straightforward tool might enable users to specify
the sought-after transformation in terms of changes. Such a
tool, however, would suffer from several problems. Figure 1
depicts an example transformation, in which a field of the
class Example is renamed between two revisions. We want
to extract the changes that perform this field rename. Three
potential change sequences that can be returned by a distilling
algorithm are shown at the bottom. In order to extract the
desired changes, the tool need would need to overcome the
following problems:
• Different change sequences can implement the same code
transformation, as illustrated by Figure 1. The corresponding
problem is two-fold. On the one hand, due to the heuristic
nature of the distiller there is no straightforward way to
know beforehand what change sequence will be output by
a distilling algorithm. Very different change sequences can
be distilled for similar modifications to similar files. On the
other hand, it is not practical for a user to enumerate all the
change sequences that could possibly be distilled. We call
this problem the Change Equivalence Problem.

• A change sequence must be applied in order as any change
potentially depends on a predecessor. Extracting an exe-
cutable subset of changes means that these dependencies
must be incorporated in the resulting edit script. Detecting
these dependencies is not straightforward. Change distilling
algorithms internally immediately apply each change as it is
distilled. In order not to modify the original source code a
copy is taken. As such, a change can refer to three different
ASTs; the original source code, the target source code,

public class Example {
 int y = 0; }

public class Example {
 int x = 0; }

1. update(“x”, “y”) 1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

1. insert(“int y = 0;”)
2. delete(“int x = 0;”)

Revision 1 Revision 2

Possible
Changes

Sequences

Fig. 1: Three different change sequences that each rename the
field x of revision 1 into the field y of revision 2.

and a copy of the original source code (denoted source’)
that will look identical to the target source code after the
execution of the algorithm. For example, a delete can only
be represented using nodes from the source AST, as the
node is not present in the target AST (otherwise it would
not have been removed), nor is it present in source’ as the
delete has already been applied. An insert on the other hand
only has nodes that are present in source’ and target, but
not in source (otherwise it would not have been inserted).
Computing dependencies between changes needs to account
for these three different ASTs, as comparing nodes from
different ASTs for equality produces incorrect results. We
call this problem the Change Representation Problem.

We present an approach that enables users to specify evo-
lutions of source code (e.g., a method rename refactoring
was performed, the signature of a method was modified and
its callers are updated, etc.), and that returns a minimal,
executable source code transformation from a sequence of
distilled changes. Example use cases are creating higher-
level changes that provide the intent of groups of changes,
detecting what additional changes are needed to execute a
desired transformation or detecting what non-transformation
related changes were applied to the source code.
This paper makes the following three contributions:
• First, we present a dedicated approach for specifying and
extracting executable code transformations from a distilled
sequence of source code changes. We introduce the term
“evolution query” for queries in this approach that describe
the sought-after change subsequences as a sequence of source
code characteristics rather than as a sequence of changes.
For a given transformation, an evolution query describes the
desired intermediate ASTs characteristics that should hold
along any sequence of changes that realizes this transforma-
tion.

• Second, we describe how to execute evolution queries
against a distilled change sequence, which is represented as
a graph of intermediate AST states. This AST graph is, in
turn, constructed from a change dependency graph in which
the order dependencies among changes in a change sequence
are made explicit. As such, our approach supports describing
and evaluating evolution queries in a manner that is agnostic
to the concrete change sequence computed by a distilling
algorithm.

• Third and finally, we evaluate our approach by means
of specifying, detecting and extracting minimal executable
transformations of three refactorings across different open-

source projects.

II. OVERVIEW OF THE APPROACH

We propose an approach for specifying and extracting exe-
cutable code transformations in a distilled sequence of changes
between a source and a target AST. Unique to this approach is
that it enables specifying an evolution query in terms of source
code characteristics; those that intermediate ASTs,constructed
by applying subsets of the sequence of distilled changes, must
exhibit. This shields users from the problems that specifying
evolution queries in terms of distilled changes gives rise to.
To make the notion of an evolution query more clear: it
describes paths in a so-called Evolution State Graph (ESG),
constructed from a distilled change sequence. Figure 2 depicts
the ESG for the distilled sequence in the middle of Figure 1.
The nodes of the ESG, called Evolution States (ES), contain
an AST state and the specific changes that transformed the
source AST into this state. An evolution query describes both
the path and the code elements that need to be present in the
nodes along this path. These code elements are described using
EKEKO [9], a logic program query language.
Figure 3 depicts an overview of our approach. There are two
revisions of the same file, called Rev1 and Rev2. The goal is
to detect instances of a user-specified evolution in the changes
between them. To this end, the files are passed as inputs to a
change distiller called CHANGENODES, detailed in Section III.
The distiller’s output is a sequence of changes that transform
the AST of the source file into the AST of the target file. We
convert this sequence into an auxiliary Change Dependency
Graph (CDG) that makes the dependencies among individual
changes explicit. For instance, the CDG encodes the fact that
an AST node cannot be inserted by a change operation if
its parent node has not been inserted by a preceding change
operation. Section IV-A details all change dependencies. Next,
the Evolution State Graph is constructed. The process starts
from a single Evolution State node containing the original
AST of the source file. Future ES are created by executing
changes without any unresolved dependencies, for which the
CDG is consulted. The solution to such a declarative evolution
query is an ES, containing an executable script of changes
that implements the evolution pattern specified by the user.
This script consists of the minimal amount of changes needed
to implement the evolution pattern, and any changes that
would no longer be executable if the rest of the solution were
executed. As such, our approach ensures that the remainder of
the change sequence remains executable as well.

A. EKEKO, A Declarative Program Querying Language

In order to specify the source code characteristics intermediate
AST should exhibit we use the program query language
EKEKO [9]. EKEKO is a Clojure library for applicative logic
meta-programming against an Eclipse workspace. It provides a
library of logic predicates that can be used to query programs.
These predicates reify the basic structural, control flow and
data flow relations of the queried Eclipse projects, as well as
higher-level relations that are derived from the basic ones.

1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

public class Example {
 int x = 0;
}

public class Example {

}

public class Example {
 int x = 0;
 int y = 0;
}

public class Example {
 int y = 0;
}

1.

2. 1.

2.

Changes Evolution State Graph

Fig. 2: Evolution state graph (ESG) for a sequence of distilled
changes. Edge labels correspond to applied changes.

converted

Code Rev1

Code Rev2
Change
Distilling
Algorithm

Change Sequence

Insert Move Insert …

Change Dependency Graph

Insert

Move

Insert

…

…

Evolution State Graph

ES

ES’

ES’’

Declarative Specification

Code Before

Code After

Sought-After Evolution Pattern

Operational Change Script

InsertInsert

outputs

navigates
consults

Fig. 3: Graphical overview of the approach.

EKEKO features several predicates that reify structural re-
lations computed from the Eclipse JDT and that we use
throughout this paper. Binary predicate (ast ?kind ?node), for
instance, reifies the relation of all AST nodes of a particular
type. Here, ?kind is a Clojure keyword denoting the decap-
italised, unqualified name of ?node’s class. Solutions to the
query (ast :MethodInvocation ?inv) therefore comprise all
method invocations in the source code.
Throughout this paper, we use a naming convention of predi-
cates that reify an n-ary relation consist of n components sepa-
rated by a -, each describing an element of the relation. Vertical
bars | separate words within the description of a single com-
ponent. For example, binary predicate method-string|named

unifies its first argument with a method declaration and its
second argument with the string representation of the name of
that method.

B. Motivating Example Revisited: Querying the ESG

Figure 4 illustrates the specification language of our approach.
Depicted is a logic query that finds instances of a field rename
by navigating the ESG. The query works by describing an AST
in which the field is present, and a later AST in which a field is
added and removed. To this end, line 3 launches an evolution
query through the query-changes construct. It takes as input
an ESG and unifies its second argument with the end state
of a matching path. Its third argument is a collection of logic
variables, made available to the remainder of its arguments.
These comprise a sequence of instructions that either verify
that the current ES adheres to the given logic conditions,
or navigate to another ES in the ESG. Lines 4–6 describe
the initial state using in-current-es, which introduces two
variables es and ast. es is bound to the current ES of the

query, ast is bound to the AST of that ES1. Lines 5–6 describe
the source code of that AST, in which a ?field needs to be
present at some depth 2. Next, line 7 applies an arbitrary, non-
zero, amount of changes using the operator change->+. This
will change the current ES for the remainder of the expression.
Finally, lines 8–12 state that the current ES needs to have
a newly field ?renamed. To this end, lines 11–12 ensure that
?field is not present in the current AST, and that ?renamed is
not present in the original AST. This is done based on the name
of the field using the EKEKO predicate ast-field|absent.
Notice how this query does not suffer from the change
equivalence and representation problems. The query supported
by our approach only required the user to describe source
code characteristics. The changes resulting in this source
code are returned as part of the query’s result. Users can
therefore abstract away from the concrete changes that were
distilled. By describing ASTs instead of changes we solve the
problem of different change sequences implementing the same
change pattern. This also makes it clear in which AST a node
resides. Where necessary, auxiliaries are provided to retrieve
the corresponding node in a different intermediate AST.

1(defn field-rename [esg]
2 (run* [?es]
3 (query-changes esg ?es [?orig-ast ?field]
4 (in-current-es [es ast]
5 (== ?orig-ast ast)
6 (ast-field ast ?field))
7 change->+
8 (in-current-es [es ast]
9 (fresh [?renamed ?new-name]

10 (ast-field|ast ast ?renamed)
11 (ast-field|absent ast ?field)
12 (ast-field|absent ?orig-ast ?renamed)))))

Fig. 4: Querying an ESG for changes renaming a field.
C. Example Applications and the Corresponding Queries

We illustrate the advantages of our approach through two
example applications. In the first example, we are tasked with
determining whether and which changes are responsible for
introducing a new method in between two revisions. In the
second, more complex example, we detect which changes from
a distilled change sequence are responsible for eliminating a
code clone.
1) Introduction of a Method: We first consider the problem of
identifying the changes in a change sequence that are respon-
sible for introducing a new method in between two revisions
of a file. We define a method as newly introduced if no method
with the same name was present in the original code. At
first sight, it might suffice for a solution to the problem to
query the change sequence for a single insert operation that
added a MethodDeclaration. Inadvertently, however, a change
sequence will be encountered in which the name of an existing
MethodDeclaration has been changed by an update or a move
operation. Before long, the query will have evolved into a
large enumeration of potential change operations with a similar

1These are variables only visible in the body of in-current-es. If these
variables need to be available in other parts of the query a user needs to
explicitly bind them to a logic variable.

2Throughout this paper, logic variables are prefixed with a question mark.

effect. Operations that change the signature of the method, for
instance, might also have to be accounted for.
Instead, it is much easier to detect an intermediate AST in
which a new method is present, and retrieve the changes that
led to the creation of this AST. Figure 5 depicts a function that
launches such an evolution query. The function takes as input
an ESG for a particular change sequence, and returns pairs
of a method that has been introduced and the corresponding
evolution state (ES). To this end, the function launches a query
on line 2 that will find solutions for a pair of variables ?method

and ?es. Lines 3–9 describe a path through the ESG that ends
in an evolution state ?es. Lines 3–5 describe the initial state
on this path, for which a logic variable ?absent is introduced.
Line 5 binds this variable to the source AST, as so far no
changes have been executed on the path. To this end, we use
in-current-es, which introduces two new variables es and
ast, bound to the current ES and its corresponding AST. Line
6 executes an arbitrary, non-zero amount of changes using
change->+. Lines 7–9 verify that a new method is added to
the current ES. To this end, we bind ?method to any method
declaration in the current ES, and verify that that method was
not present in the original AST using ast-method|absent. The
query returns all different ES that exhibit these characteristics.

1(defn introduced-method [esg]
2 (run* [?method ?es]
3 (query-changes esg ?es [?absent]
4 (in-current-es [es ast]
5 (== ?absent ast))
6 change->+
7 (in-current-es [es ast]
8 (ast-method ast ?method)
9 (ast-method|absent ?absent ?method)))))

Fig. 5: Querying an ESG for changes introducing a method.

2) Code Clone Elimination: For the final example application,
we are tasked with finding the changes in between two
revisions that resulted in the removal of a code clone. Such an
application may be interesting to MSR researchers to detect
how code clones are removed, and what additional changes
were performed next to the clone removal. We will look for
evidence of a removal technique involving the extract method
refactoring: the cloned code is extracted to a new method,
and each clone instance is replaced by a method invocation
to the newly introduced method. A concrete example of such
a clone removal exists in the APACHE ANT3 project. Com-
mit 6bdc259c2e818e1c86f944cbd8950e670294d944 removes a
code clone from file DirectoryScanner.java. Figure 6 depicts
the changes distilled from this commit. We only show a small
snippet of the original source file, which is slightly over 1500
lines of code.The semantics of these changes are explained in
section III. We assume that the code clone has already been
detected using an existing tool such as CCFINDER [10], and
that the ESG has been created. We are only tasked with finding
the specific changes that implemented the clone removal.
The first line of Figure 7 defines a function that takes as
input an ESG, the names of two methods containing cloned

3https://ant.apache.org/

code, and the extracted method AST node. The body of the
function launches a logic query on line 2 returning a collection
of all possible bindings for ?es, which is the end node of a
path throughout the ESG. Line 3 describes the shape of this
path through a regular path expression. Lines 5–9 bind cloneA

and cloneB to the clones detected in the source AST (i.e.,
setIncludes and setExcludes in the left revision in Figure 6).
The child+ predicate unifies the given logic variable with
any node of the given AST. Line 10 navigates to a different
node of the ESG by applying an arbitrary, non-zero amount of
changes. Lines 11–19 specify a strict implementation of the
extract method refactoring. Lines 12–13 require the presence
of a method ?extracted in the current ES that is identical to
the method given as the extracted parameter to the function
(i.e., normalizePattern in the right revision in Figure 6). This
ensures that an ES node of the ESG has been reached in which
all the changes extracting the cloned code have been applied.
If not, the query will backtrack to line 10 and another change
will be applied. Next, lines 14–15 retrieve the version in that
ES of the methods in which the two instances of the cloned
code resided originally (i.e., setIncludes and setExcludes in
the right revision in Figure 6). They use auxiliary construct
ast-method-method|corresponding to this end, which returns
the corresponding method from an ast for a given method.
Finally, lines 16–19 ensure that the methods containing cloned
code have been extracted.

III. DETAILED CHANGE DEFINITIONS

To compute the changes made in between two revisions of
a file, we rely on our own freely available4 change dis-
tiller called CHANGENODES [5], [11]. At its heart lies the
algorithm presented by Chawathe et al. [2], on which the
CHANGEDISTILLER [1] tool was based as well. The main
difference between both implementations is that CHANGEN-
ODES works on the actual nodes provided by the Eclipse Java
Development Tools (JDT) project, while CHANGEDISTILLER
uses a language-agnostic representation of nodes (to which
JDT nodes are translated).
Accessing the children of a node is done through properties.
For example, an if statement has three properties; an expres-
sion property, a then and an else property. Some properties
may return a collection instead of a single item. Such proper-
ties are called list properties. Some properties are mandatory,
meaning that the AST node must always have a non-null value
for them. The “name” property of a MethodDeclaration node
is an example of a mandatory property. Mandatory properties
ensure that every AST always represents syntactically legal
Java code. Our ESG construction algorithm relies on them
to ensure the legality of the constructed intermediate AST
states. As such, porting our approach to a different language
or source representation requires a means to ensure that an
AST represents syntactically legal code. We also require the
notion of a minimal representation of an AST node. A minimal
representation of a node is that node with no values for its

4https://github.com/ReinoutStevens/ChangeNodes

Insert

Move

Delete

00 public void setIncludes(String[] includes) {
04 this.includes = new String[includes.length];
05 for (int i = 0; i < includes.length; i++) {
06 this.includes[i] = normalizePattern(includes[i]);
07 }
08 }
10
11 public void setExcludes(String[] excludes) {
12 this.excludes = new String[excludes.length];
16 for (int i = 0; i < excludes.length; i++) {
17 this.excludes[i] = normalizePattern(excludes[i]);
18 }
19 }
21
22 private static String normalizePattern(String p) {
23 String pattern = p.replace('/', File.separatorChar)
24 .replace('\\', File.separatorChar);
25 if (pattern.endsWith(File.separator)) {
26 pattern += "**";
27 }
28 return pattern;
29 }

00 public void setIncludes(String[] includes) {
04 this.includes = new String[includes.length];
05 for (int i = 0; i < includes.length; i++) {
06 String pattern;
07 pattern = includes[i].replace('/', File.separatorChar).replace(
08 '\\', File.separatorChar);
09 if (pattern.endsWith(File.separator)) {
10 pattern += "**";
11 }
12 this.includes[i] = pattern;
13 }
14 }
15 }
16
17 public void setExcludes(String[] excludes) {
21 this.excludes = new String[excludes.length];
22 for (int i = 0; i < excludes.length; i++) {
23 String pattern;
24 pattern = excludes[i].replace('/', File.separatorChar).replace(
25 '\\', File.separatorChar);
26 if (pattern.endsWith(File.separator)) {
27 pattern += "**";
28 }
29 this.excludes[i] = pattern;
30 }
31 }
32 }

Fig. 6: Two revisions of class from the ANT project in between which a code clone is extracted into a separate method
normalizePattern, to which two invocations are added. Overlaid is the output of our CHANGENODES change distilling
algorithm.

1(defn clone-elimination [esg nameA nameB extracted]
2 (run* [?es]
3 (query-changes esg ?es

4 [?cloneA ?cloneB ?extracted ?aInvoc ?bInvoc ?aCurr ?bCurr]
5 (in-current-es [es ast]
6 (child+ ast ?cloneA)
7 (child+ ast ?cloneB)
8 (method-string|named ?cloneA nameA)
9 (method-string|named ?cloneB nameB))

10 change->+
11 (in-current-es [es ast]
12 (ast :MethodDeclaration ?extracted)
13 (ast-ast|same ?extracted extracted)
14 (ast-method-method|corresponding ast ?cloneA ?aCurr)
15 (ast-method-method|corresponding ast ?cloneB ?bCurr)
16 (child+ ?aCurr ?aInvoc)
17 (child+ ?bCurr ?bInvoc)
18 (method-invocation|invokes ?extracted ?aInvoc)
19 (method-invocation|invokes ?extracted ?bInvoc)))))))

Fig. 7: Querying an ESG for extract method refactorings.

non-mandatory properties, and a minimal representation of
the values of mandatory properties. For example, the minimal
representation of a MethodDeclaration is a method with a
name, but without arguments, body, etc . . .
We now define the semantics of the different types of change
operations produced by the change distiller. Note that these
change operations and are also used in the construction of
the ESG. As a distilling algorithm applies changes during
its execution, thereby modifying the AST, a copy of the
source AST is taken. Throughout this paper we call this copy
source’ and indicate the nodes inside with a quote as well.
ESG construction assumes the following changes:
insert(node’,original,parent’,property,index) A
node’ is inserted as property in node parent’. In case
property is a list property, the node is inserted at index.
original is the parent node in the original AST, and can be
null if the insert is part of another change operation5.

move(node’,original,parent’,property,index) A
node’ is moved to location property of parent’. In case
property is a list property, the node is moved to index.

5This is because the parent itself is not yet constructed, and thus does not
exist in source.

original represents the moved node in the original AST.
update(node’,original,property,value)

The value of node node’ at location property is updated to
value. This value is a Java object, and not an AST node.
original is the representation of node’ in the original AST.

delete(node’,original,property,index)

A node node’ and its complete subtree are removed. In case
property is a list property, index indicates the index of node’
in its list. Note that node’ will not be present in source’
as the change has already been applied. original is the
representation of node’ in the original AST.

Both a move and insert produce minimal representations of
an AST node; inserting a node will only result in a minimal
representation of that node being added, and thus not the
complete subtree. A move results in moving the minimal
representation of that node.Its original location is replaced by
a placeholder node that still contains the subtree located at
node’. The subtrees of these nodes will be introduced by later
change operations.

IV. CONCEPTUAL IMPLEMENTATION

Having presented the necessary background on changes and
change distilling, we are ready to present our approach in a
more detailed manner. We target the problem of identifying
executable subsequences in a distilled change sequence that
implement an evolution pattern of interest. Our approach re-
calls different subsequences that implement the same evolution
pattern, specified as paths through a graph of intermediate
AST states. This spares users the “Change Equivalence” and
“Change Representation” problems identified in Section I.
An Evolution State Graph (ESG) is constructed, against
which our approach evaluates evolution queries. The evolution
queries themselves feature regular path expressions [12], [13]
for describing paths through the ESG, and the source code
characteristics that have to be encountered along this path. In
general, a regular path expression describes a path through a
graph, for which conditions have to hold in nodes along that
path. They are akin to regular expressions, except that a) their

elements are evaluated against the nodes of a graph rather
than the characters of a string; and that b) some elements
can explicitly navigate to another node of the graph, against
which the next element of the regular path expression will be
evaluated.
Our evolution queries are logic queries with embedded reg-
ular path expressions. Table I provides an overview of our
particular embedding. We provide constructs for navigating an
ESG, such as change-> which moves evaluation to a successor
of the current node in the ESG. We also provide constructs
such as in-current-es for evaluating logic conditions against
the current node of the ESG. Such embedded conditions
comprise the primary means for describing the source code
characteristics that need to hold along a path of the ESG.

A. Construction of a Change Dependency Graph

Section IV-B will detail an algorithm for constructing the
Evolution State Graph (ESG) against which our approach
evaluates evolution queries. The algorithm relies on a model
of the order dependencies among the changes in a distilled
change sequence. Even though such a sequence is by definition
ordered (i.e., the distiller guarantees the sequence transforms
the source AST into the target AST when the changes are
executed in order), additional order dependencies are re-
quired because evolution queries are to identify (possibly non-
continuous) subsequences that implement a pattern of interest.
Individual changes in such a subsequence, can depend on any
change that preceded them in the distilled sequence.
A dependency A → B between changes A and B denotes that
in order to execute change B, one needs to execute change
A first. We gather all dependencies among the changes in
a change sequence in a Change Dependency Graph (CDG),
of which the nodes correspond to changes and the directed
edges to dependencies. We compute the following kinds of
dependencies:
Parent Dependency There is a parent dependency A →p B

between changes A and B if the subject of B is introduced
by the application of A. Nodes can be introduced either by an
insert or by a move operation. We determine this dependency
by checking whether the subject of change B is part of the
subtree created by the application of change A.

Move Dependency There is a move dependency A →m B
between changes A and B if B removes part of A, rendering
it impossible to move. This can happen either by a delete or
by an insert that overwrites the part of the AST in which the
node-to-be-moved resides.

List Dependency There is a list dependency A →l B be-
tween changes A and B if they operate on elements of the
same list, but the element of B has a lower index than the
element of A. Although changes A and B can be applied
independently of each other, the index of A will change
depending on whether B has already been applied or not.

The subsequent ESG construction algorithm will require the
CDG to be acyclic. Particular combinations of the above
dependencies can, however, induce cycles in the graph. For
example, the combination of two moves performing a swap

operation result in a cycle as the application of either move
renders the other one inapplicable. Such cycles are removed
by replacing one of these moves with an insert.

B. Construction of the Evolution State Graph

We now explain how the Change Dependency Graph (CDG)
from the previous section enables constructing the Evolution
State Graph (ESG) that is navigated through by a regular path
expression. The ESG represents the possible ASTs that can be
constructed by applying some of the distilled changes. A single
ESG node wraps a syntactically legal AST and an ordered
sequence of changes that were applied to construct that AST.
Two ESG nodes are connected if there exists an unapplied
change that transforms the AST of one into the AST of the
other. The resulting edge is labeled by the applied change. A
single change can appear on multiple edges in the graph.
The ESG has one source node (i.e., the node containing the
original source code with no applied changes) and one sink
node (i.e., the node containing the target source code and
no unapplied changes). The graph is constructed using the
information provided by the CDG. Initially, the source node
is constructed from the source AST. Successors of the source
node are constructed by applying a change without dependen-
cies. The CDG facilitates the retrieval of applicable changes
given a set of applied changes. The ESG is constructed on-
demand; nodes and their ASTs are only created as needed
when executing an evolution query.

V. EVALUATION

The examples in Section II-C served to demonstrate the
expressiveness of the specification language of our approach.
We now seek to answer the following research questions:
RQ1 Can a single evolution query identify the same evolution

pattern in different change sequences?
RQ2 Is a minimal and executable change script returned, and

can the remaining distilled changes still be executed after
the change script has been executed?

RQ3 How does our approach compare to directly querying
the output of a distilled change sequence with respect to
solution size, precision and the number of changes that
need be executed?

To answer these questions, we will use a data set of commits
from open-source repositories that each contain —among
many other changes— one of three well-known refactorings
(Section V-A). We aim to extract the exact changes contribut-
ing to each refactoring among all of the changes distilled for
each commit.
For each refactoring, we will attempt to specify the state of
the source code before and after the refactoring by means
of a declarative evolution query (Section V-B). Each solution
to such a query is an executable script of changes. When
executed, this script will transform the source code from
before the commit to a state that matches the specified state
of the code after the refactoring. In other words, the extracted
changes will perform the specified refactoring. The remaining
changes distilled for the commit will, when executed, in turn

TABLE I: Language for specifying evolution patterns through ESG-navigating regular path expressions.

Navigation through the ESG
change-> change-> is a goal that moves the current state to the next one by applying one of the applicable changes.
change->? change->? is a goal that either stays in the current state or that moves to the next one by applying one of the applicable

changes.
change->* change->* is a goal that changes the current state by applying an arbitrary, including zero, number of changes.
change->+ change->+ is similar to change->*, except that at least one change will be applied.
change==> change==> is a goal that moves the current state to a successive one by applying one of the applicable changes and all of

its dependent changes.
change==>* change==> is a goal that changes the current state by applying an arbitrary, including zero, number of changes and their

dependent changes.
Characteristics of an ES
(in-current-es
[node ast]
& goals)

in-current-es binds es to the current es of the evolution query, and ast to the intermediate AST of that state. It verifies
whether the logic goals goals hold in this intermediate state. These goals can be any EKEKO predicate.

Launching an Evolution Query
(query-changes esg
?end

[&vars] & goals)

query-changes launches a path query over esg and binds ?end to the end node of that query. Logic variables vars are
introduced and available in the scope of the path query. goals is a sequence of the aforementioned predicates that are
proven for the given ESG.

transform the state of the code after the refactoring to the state
of the code after the commit.
The approach computes a minimal solution — that is the
smallest subset of changes that implements the code evolution.
To this end, it retrieves the ES that matches the evolution query
with the smallest amount of applied changes. We manually
verify the solutions depicted in Table II on their minimality.
We also compute various metrics pertaining to each research
question (Section V-C).

A. Data Set of Commits Containing Refactorings

Our evaluation proceeds on a data set of commits that each
contain, among other changes, a “Replace Magic Constant”,
“Remove Unused Method” or “Rename Field” refactoring.
This random selection of refactorings is sufficiently varied in
the number of changes required to perform them, as well as
in the types of AST nodes affected by them. Table II lists the
identifier of each commit, the open source project repository
it originates from, the name of the refactoring it contains, the
name of the class affected by the refactoring, and the oracle
according to which the commit contains the refactoring. The
oracle is indicated by the number in the refactoring column.
We have used two such oracles:

• The first oracle, denoted by a 1 subscript, corresponds to a
data set6 produced by the REF-FINDER [14] tool which rec-
ognizes refactorings in commit histories using coarse-grained
change information (e.g., changes in the subtyping relation).
We manually inspected all occurrences of the “Replace Magic
Constant” refactoring in this data set, discarded the false
positives, and —without loss of generality— discarded the
commits that span multiple files. The latter because our
prototype implementation is currently limited to querying
changes between two revisions of the same file. The commits
listed in Table II are all such commits in the RF data set.

• The second oracle, denoted by a 2 subscript, corresponds to
a data set7 resulting from a study my Murphy-Hill et. al [15]
of logs of interactions of developers with the refactoring
functionality of their IDE. Each commit in this data set

6http://web.cs.ucla.edu/∼miryung/inspected dataset.zip
7http://multiview.cs.pdx.edu/refactoring/experiments/

has already been cross-checked by the authors with the
interaction logs. After filtering commits that span multiple
files, we are left with 3 instances each of the “Remove Unused
Method” or “Field Rename” refactorings in Table II.

Note that the identifiers listed in Table II differ depending
on the data set the commit stems from. For commits with
subscript 1, the short identifier from the project’s GitHub
repository is used. For commits with subscript 2, we use the
same identifier as the authors of the original study.

B. Queries for Changes Implementing Refactorings

We describe the queries used to identify the exact changes
contributing to the “replace magic constant” and “rename
field” refactoring. The “remove unused method” query is not
provided, but detects whether the initial ES contains an unused
method, and that that method is removed (based on its name)
in a successive ES. The query results will be discussed in the
next section.
1) Query for “Replace Magic Constant”: Figure 8 depicts the
query that identifies changes from a commit that implement
a “Replace Magic Constant” refactoring. This refactoring ex-
tracts a literal string or number from the body of a method to a
field, and updates the method such that it references the newly
introduced field. The first line of Figure 8 launches the query
for a path ending in an Evolution State ?es through Evolution
State Graph esg. Lines 2–3 introduce additional logic variables
used throughout the query. Lines 4–8 describe the initial
Evolution State of the source code. Line 5 unifies the original
AST with ?absent, so that it can be used later to determine
whether a fresh field has been introduced. Lines 6–8 identify
a method ?method that contains a constant value ?value. Line
9 uses the change->* operator to apply an arbitrary number
of changes. Lines 10–15 describe a future Evolution State, in
which a new field has been introduced to replace the constant
value. To this end, the ast-ast-field|introduced
ensures that its third argument ?field is absent from its first
AST argument, but present in its second. Line 12 ensures
that this field features the constant ?value as its initializer
expression. Line 13 uses ast-method-method|corresponding

to retrieve a method ?cmethod in the current Evolution State

1(query-changes esg ?es

2 [?not-present ?method ?literal value

3 ?cmethod ?field ?field-access]
4 (in-current-es [es ast]
5 (== ast ?absent)
6 (ast-method ast ?method)
7 (child+ ?method ?literal)
8 (literal-value ?literal ?value))
9 change->*

10 (in-current-es [es ast]
11 (ast-ast-field|introduced ?absent ast ?field)
12 (field-value|initialized ?field ?value)
13 (ast-method-method|corresponding ast ?method ?cmethod)
14 (child+ ?cmethod ?field-access)
15 (field-name|accessed ?field ?field-access)))

Fig. 8: Evolution query for those changes in a commit that
implement a “Replace Magic Constant” refactoring.

1(query-changes esg ?es

2 [?original ?field ?accesses

3 ?count ?renamed ?renamed-accesses]
4 (in-current-es [es ast]
5 (== ast ?original)
6 (child+ ast ?field)
7 (ast-field ast ?field)
8 (ast-field-list|accesses ast ?field ?accesses)
9 (length ?accesses ?count))

10 change->*
11 (in-current-es [es ast]
12 (child+ ast ?renamed)
13 (ast-field ast ?renamed)
14 (ast-field|absent ?original ?renamed)
15 (ast-field|absent ast ?field)
16 (ast-field-list|accesses ast ?renamed ?renamed-accesses)
17 (length ?renamed-accesses ?count)
18 (ast-field|unaccessed ast ?field)))

Fig. 9: Evolution query for those changes in a commit that
implement a “Rename Field” refactoring.

that corresponds to ?method in the original one. The names
and signatures of the methods are required to match, but not
their bodies. Finally, lines 14–15 ensure that this method now
accesses the newly introduced field.
2) Query for “Rename Field”: Figure 9 depicts the evolution
query that identifies changes implementing a “Rename Field”
refactoring. Lines 4–9 describe an initial ES in which a field
is present. Lines 11–21 describe a later ES in which that
field and its accesses are absent, and in which a new field
has been introduced that has the same number of accesses.
Line 5 unifies ?original with the AST of that ES, so that it
can be used in future ES. Next, lines 6–7 unify ?field with a
field declaration of that AST. Finally, lines 8–9 retrieve all the
uses of that field in a list ?accesses with length ?count. Line
10 uses change->* to apply an arbitrary number of changes.
Lines 11–18 describe the later ES in which the refactoring has
been completed. To this end, lines 12–13 unify ?renamed with
a field declaration. Line 14 uses ast-field|absent to ensure
that ?renamed is absent from the original AST, while line 15
ensures that ?field is absent from the current AST. Next, lines
16–17 verify that this new field is used as often as the original
variable. Finally, the last line ensures that no accesses to the
original field are present in the AST.

C. Query Results

As stated before, Table II depicts the results of our validation.
The first part describes the detected refactoring and the data
set from which this refactoring stems. The second part of

the table depicts metrics about the distilled changes and
corresponding CDG. Column #Ch depicts the total number
of distilled changes for the file. Next, column LP depicts
the length of the longest path throughout the CDG. Column
MP depicts the median length of the paths throughout CDG.
Both indicate, using our approach, how many changes that
need to be applied before a given change becomes applicable.
Directly using the output of a change distiller this would be all
preceding changes. Finally, Column #Co depicts the number
of connected components inside the CDG. These indicate
the clusters of independent changes. Thus, the columns LP,
MP and #Co illustrate the number of actual dependencies an
arbitrary changes has.
The last part of the table describe the found minimal solution.
Column #Sol depicts the number of changes the minimal,
executable solution returned by the query consists of. Next,
Columns LS and MS depict respectively the longest and
median span, indicating how many changes were distilled
between two successive changes in the solution. Column #DS
depicts the total number of changes that would have been
applied if the distilled output is used directly before the de-
scribed evolution pattern would be present. Thus, the columns
LS, MS and #DS indicate how many unneeded changes would
be applied when not using our approach, while #Sol depicts
the total number of changes that actually need to be applied.
The next three columns depict a manual classification of the
solution into either Evolution Implementing (#EI), Evolution
Supporting (#ES) and Evolution Linking (#EL) ones:

Evolution Implementing An EI change is an integral part
of the sought-after evolution pattern. In the “Rename Field”
refactoring, for example, the change modifying the name of
the field is considered as evolution inherent.
Evolution Supporting An ES change is not an integral part
of the sought-after evolution pattern, but is depended on by
one of its EI changes. Without the ES change, the EI change
would no longer be executable. For example, an EI change
inserting a field access into a method body depends on ES
changes preparing that method’s body.
Evolution Linking An EL change is included in the minimal
solution, but is neither an EI nor an ES change. EL changes
ensure that the remainder of the distilled changes can still be
executed after each change in the solution has been executed.
As such, they link the solution to the rest of the distilled
changes. For example, when parts of a method that fell
victim to the “Remove Method” refactoring are moved and
subsequently changed elsewhere, the minimal solution will
include these moves as EL changes. These changes could be
removed from the solution by our approach.

Finally, the last column indicates the total run-time in seconds
of distilling the changes, constructing the CDG and finding
the minimal solution.
Figure 10 illustrates this classification of the changes in the
the solution to the “Replace Magic Constant” evolution query
against commit 8275917. Before the commit, method getUrl()

contained the constant 0 twice: once as a magic constant

TABLE II: Table depicting the result of our validation. The first four columns describe the used data and detected refactoring.
The next four columns describe the distilled changes and their corresponding CDG. The final columns describe the minimal
solution and its changes.

Ref. Project Id Class #Ch LP MP #Co #Sol LS MS #DS #EI #ES #EL Time(s)
Co1 ant d97f4f3 WeblogicDeploymentTool 202 14 8 14 8 29 8 82 4 4 0 33
Co1 ant 34dc512 Jar 74 10 3 13 4 11 7 23 4 0 0 19
Co1 ant a794b2b FixCRLF 1244 20 6 2 10 300 68 1000 4 6 0 2054
Co1 JMeter b57a7b3 AuthPanel 245 10 4 31 5 135 23 199 4 1 0 106
Co1 JMeter 3a53a0a HTTPSampler 149 7 2 54 5 96 8.5 118 4 1 0 1985
Co1 JMeter 8275917 HTTPSampler 25 5 2 5 6 4 3 14 4 1 1 285
Me2 jdt.ui 678 JavaEditor 11 2 1 10 2 1 0.5 1 1 0 1 748
Me2 jdt.ui 2910 JavaNavigatorContentProvider 5 1 1 5 1 0 0 0 1 0 0 3
Me2 jdt.ui 2722 StubUtility2 291 8 2 114 39 22 4.5 264 2 0 37 1536
Fi2 jdt.ui.test 0277 MarkerResolutionTest 10 4 2.5 5 3 3 2 9 3 0 0 53
Fi2 jdt.ui 2810 SourceAnalyzer 63 7 2 25 13 13 3 57 13 0 0 8842
Fi2 jdt.ui 2810 SourceProvider 27 6 2 13 15 3 1 24 10 5 0 3133
Fi2 jdt.ui 2810 InlineMethodRefactoring 221 14 3 61 6 77 29 213 6 0 0 5757

on line 8, and once as part of a check for an empty list
on line 5. In the depicted solution, change 1 inserts a new
field “private static int UNSPECIFIED_PORT;”, change 2
inserts an initializer expression “...= null;” into the field,
and change 3 moves the latter 0 to replace the null in the
initializer, leaving a copy of the value behind on line 5 as it is a
mandatory node (cf. the minimal representation of AST nodes
discussed in Section III). Change 4 then moves the former 0
from line 8 to replace the one on line 5. Change 5 overwrites
the infix expression on line 8 as its textual representation
differs too much between both revisions. The left hand side
is kept, while change 6 inserts a new field access in the right
hand side. Changes 1, 2, 3 and 6 in the solution are EI changes
implementing the actual sought-after refactoring. Change 5 is
an ES change as it is depended upon by change 6. Change
4 is an EL change as it would no longer be applicable after
the application of change 6, which overwrites the node-to-be-
moved. It is not required for the sought-after refactoring, Note
that we performed this classification manually, ensuring that
the sum of #EI, #ES, and #EL is always #Sol.
1) Results for “Replace Magic Constant”: For each of the
refactoring commits from projects ant and JMeter, the evo-
lution query depicted in Figure 8 reports a minimal solution
consisting of the 4 sought-after EI changes: two for inserting
a new field declaration and its name, one for copying the
magic constant to the field initializer, and one for replacing the
constant with an access to the inserted field. The remaining
ES changes always prepare a parent node for this field access.
The EL change in the minimal solution for commit 8275917
was explained by Figure 10.
Note that the size of the change sequence distilled for the entire
commit varies wildly, as does their complexity. The CDG
hugely reduces the number of changes that need to be applied
for any given change. Thus, the returned minimal solutions
always consist out of a very small number of changes. The
minimal solution for commit a794b2b, for example, counts
only 11 of the 1244 changes distilled in total. More than
doubling class FixCRLF from 429 to 972 lines of code, this
commit contains many changes unrelated to the sought-after
ones. Here, we also find the largest span in the distilled change
sequence between any two solution changes: 300 successive

Move Insert

00 public class HTTPSampler extends AbstractSampler {
01 …
02
03 public URL getUrl() throws MalformedURLException {
04 String pathAndQuery=null;
05 if (getQueryString().length() > 0) {
06 …
07 }
08 if (getPort() == 0) {
09 return new URL(…);
10 } else {
11 …
12 }
13 …

00 public class HTTPSampler extends AbstractSampler {
01 public static final int UNSPECIFIED_PORT = 0;
02 …
03 public URL getUrl() throws MalformedURLException {
04 String pathAndQuery=null;
05 if (getQueryString().length() > 0) {
06 …
07 }
08 if (getPort() == UNSPECIFIED_PORT) {
09 return new URL(…);
10 } else {
11 …
12 }
13 …

1
3

4 5

2

6

Fig. 10: Code snippet from the HTTPSampler class, in which a
field is introduced (1,2). This field is initialized via a move of
a constant (3), which itself is replaced by another move (4).
Move 4 is an EL change as its node-to-be-moved is overwritten
by a later insert (6). Insert 5, unnecessarily, overwrites the
parent location of change 6, and is classified as an ES change.

changes would have to be searched through to find the next
change that is part of the solution, and 1000 changes would be
applied in total, compared to 10 changes using our approach.
2) Results for “Remove Unused Method”: The sought-after
refactoring can be performed by a single change, namely a
delete of the unused method. Inspecting the results we note
that this only holds for a single case. The returned solution
solution for StubUtility2 even contains 39 changes in total.
This is due to parts of the removed method being moved to
different locations by other changes. These moves are part
of the solution, and are classified as EL changes. We also
note that there are 2 EI changes: two methods with the same
name are removed. This is due to the declarative specification,
requiring that no methods with the same name are present. A
stricter specification would prevent this from happening.
3) Results for “Rename Field”: The final results are for the
“Rename Field” refactoring. The number of changes in the
solution differ across the different instances. This is due to
the nature of the refactoring, as it requires that every access is
updated to reflect the name change. Implementing this query
without our approach, but by directly querying the distilled
changes, would be hard as the number of changes is not known
beforehand. These changes can also span the entire change
sequence, as the accesses can happen throughout the whole
AST. We note that the run-time for all but one example are
high compared to the other refactorings. This can be attributed
to the nature of the declarative description of the source code,

which takes several seconds to run on a single ES.
From this validation we can answer our three RQ:
a) RQ1: We have successfully used a single evolution query
to identify the same pattern in different change sequences
created from source code that exhibits the desired pattern. As
such, we can positively answer RQ1.
b) RQ2: We have manually inspected the returned change
sequences and classified these changes. Some solutions may
still contain EL changes that are, strictly speaking, not part
of the minimal solution. Such changes must be applied before
some other solution changes so that the EL changes or non-
solution changes can be applied. It is left to the user to
remove any unwanted EL changes. The returned solutions are
relatively small compared to solutions returned by directly
querying the distilled changes, making a manual inspection
feasible. Next, we have also made sure the remaining changes
can still be applied after applying the solution. As such, we
can positively answer RQ2.
c) RQ3: We have shown several metrics regarding our com-
puted solutions, the distilled changes and the CDG. From
the LS, MS and #DS – indicating how solution changes
are interspersed between non-solution ones – we deduce that
replaying the distilled change sequence until a desired ES
is found results in much larger solutions. We do note that
our returned solutions may still contain EL changes that a
user, if desired, wants to filter out. Nonetheless, the number
of changes that would have to be inspected is a lot lower
than using a direct approach. We also want to stress that our
approach focuses on finding a minimal solution; if the goal
is to know whether a change sequence implements a certain
code evolution simply replaying the distilled changes until a
desired state is encountered is recommended.

VI. RELATED WORK

Our work lies at the intersection of multiple domains: Program
and History Querying Tools, History Querying Tools, Change
Distilling Algorithms and Change Dependencies. Program
Querying Tools identify source code elements that exhibit
user-specified characteristics. Enabling users to specify these
characteristics in logic-based languages has proven to result in
expressive, yet descriptive specifications. This requires reify-
ing code as data in a logic language. Examples of such logic-
based program querying tools include CODEQUEST [16],
PQL [17] and SOUL [18]. History Querying Tools extend
the idea of Program Querying Tools by allowing querying the
history of a software project instead of a single revision. Early
History Querying Tools, such as SCQL [19] and V-Praxis [20],
extended a PQL by adding a revision argument to each
predicate. More recent tools feature dedicated specification
languages. The BOA platform [21] allows efficient querying
of the history of a program by using MapReduce. History
Querying Tools provide a history of the source code, but offer
no support to query concrete source code changes that were
performed. They do provide a good starting point to integrate
an evolution query language in.

CHANGEDISTILLER [1] is a widely used implementation of
a distilling algorithm that has been implemented as a plugin
in the EVOLIZER platform. The algorithm itself is based on
the algorithm presented by Chawathe et al. [2]. GUMTREE [22]
is another distilling algorithm that proposes a hybrid approach
between line-based differencing and tree-based differencing to
improve the performance of the algorithm. In this paper we
make use of CHANGENODES, a distilling algorithm operating
directly on Eclipse JDT nodes. All algorithms provide similar
output, and thus feature the same problems as directly query-
ing the output of CHANGENODES.

VII. DISCUSSION AND FUTURE WORK

The presented work facilitates users in expressing and detect-
ing evolution patterns. Without our approach a user would have
to manually inspect the changes of a distilled change sequence
in order to identify the changes implementing the sought-
after pattern. While cumbersome, such a manual approach
results in a minimal set of changes implementing a pattern.
Our approach enables users to express evolution characteristics
through a declarative specification.
Currently, we have only used our approach to detect refac-
torings, for which the result is present in the target AST. In
theory a sought-after transformation could only be present in
some ES, but not in the final ES. It is ill-advised to detect
such ES. First, the construction of the ES depends on the
distilled change sequence. As such, there is no way to know
beforehand whether the desired ES will actually be present,
as an unexpected change sequence may be generated. Second
and finally, the worst-case performance in detecting a specific
ES is an issue. For a given set of changes with size N , N !
different sequences with length N can be constructed in case
no change has a dependency. As such, detecting such ES
requires replaying the different change sequences. To partially
solve this issue, we have introduced coarse-grained navigation
predicates that apply multiple changes at once, limiting the
search space at the cost of removing ES that may contain the
solution.
We want to investigate further applications of our approach.
We want to investigate whether we can cherry-pick changes
from a commit, for example to extract a single feature. This
feature can be expressed as an evolution query, and our
approach returns minimal executable edit script. We want to
see whether such edit script can be applied on similar source
code, such as code from a different branch. To this end, we
can use our approach to detect the differences between the
source code across the two branches.

VIII. CONCLUSION

We have presented an approach to extracting a minimal
executable edit script from distilled change sequences. An
evolution query describes the source code prior and after
the sought-after code transformation. Such a query can be
matched against any distilled code sequence. The approach
detects whether the transformation is present, and if so, returns
a minimal executable edit script.

REFERENCES

[1] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” Trans-
actions on Software Engineering, vol. 33, no. 11, 2007.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proc. of
the Int. Conf. on Management of Data (SIGMOD96), 1996.

[3] N. Palix, J. Falleri, and J. Lawall, “Improving pattern tracking with a
language-aware tree differencing algorithm,” in Proc. of the 22nd Int.
Conf. on Software Analysis, Evolution, and Reengineering (SANER15),
2015, pp. 43–52.

[4] R. Stevens and C. De Roover, “Querying the history of software projects
using QWALKEKO,” in Proc. of the 30th Int. Conf. on Software
Maintenance and Evolution, 2014.

[5] L. Christophe, R. Stevens, and C. De Roover, “Prevalence and main-
tenance of automated functional tests for web applications,” in Proc.
of the Int. Conf. on Software Maintenance and Evolution (ICSME14),
2014.

[6] N. Meng, M. Kim, and K. S. McKinley, “Lase: Locating and applying
systematic edits by learning from examples,” in Proc. of the 35th Int.
Conf. on Software Engineering (ICSE13), 2013.

[7] Z. Lin and J. Whitehead, “Why power laws?: An explanation from fine-
grained code changes,” in Proc. of the 12th Working Conf. on Mining
Software Repositories (MSR15), 2015.

[8] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-grained
code changes to detect unknown change patterns,” in Proceedings of the
36th Int. Conf. on Software Engineering (ICSE14), 2014.

[9] C. De Roover and R. Stevens, “Building development tools interactively
using the ekeko meta-programming library,” in Proc. of the European
Conf. on Software Maintenance and Reengineering (CSMR14), 2014.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, 2002.

[11] R. Stevens, “A declarative foundation for comprehensive history query-
ing,” in Proc. of the 37th Int. Conf. on Software Engineering, Doctoral
Symposium Track (ICSE15), 2015.

[12] O. de Moor, D. Lacey, and E. V. Wyk, “Universal regular path queries,”
Higher-Order and Symbolic Computation, pp. 15–35, 2002.

[13] Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu, “Parametric
regular path queries.” in Proc. of the Conf. on Programming Language
Design and Implementation (PLDI04), 2004.

[14] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in Proc. of the 2010 Int. Conf.
on Software Maintenance (ICSM10), 2010.

[15] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” Transactions on Software Engineering, vol. 38, pp. 5–18,
2012.

[16] E. Hajiyev, M. Verbaere, and O. D. Moor, “Codequest: Scalable source
code queries with datalog,” in Proceedings of the 20th European
conference on Object-Oriented Programming (ECOOP06), 2006.

[17] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and
security flaws using pql: a program query language,” in Proc. of the
20th Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA05), 2005.

[18] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL
tool suite for querying programs in symbiosis with Eclipse,” in Proc. of
the 9th Int. Conf. on Principles and Practice of Programming in Java
(PPPJ11), 2011.

[19] A. Hindle and D. M. German, “SCQL: A formal model and a query
language for source control repositories,” in Proc. of the 2005 Working
Conf. on Mining Software Repositories (MSR05), 2005.

[20] A. Mougenot, X. Blanc, and M.-P. Gervais, “D-Praxis: A peer-to-peer
collaborative model editing framework,” in Proc. of the 9th Int. Conf.
on Distributed Applications and Interoperable Systems (DAIS09), 2009.

[21] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proc. of the Int. Conf. on Software Engineering (ICSE13), 2013.

[22] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus,
“Fine-grained and accurate source code differencing,” in Proc. of the
29th Int. Conf. on Automated Software Engineering (ASE14, 2014.

[23] K. Maruyama, T. Omori, and S. Hayashi, “Slicing fine-grained code
change history,” IEICE Transactions, vol. 99-D, no. 3, pp. 671–687,

2016.

