
Inter-parameter Constraints
in Contemporary Web APIs

Nathalie Oostvogels∗B, Joeri De Koster, and Wolfgang De Meuter

Vrije Universiteit Brussel, Brussels, Belgium
{noostvog, jdekoste, wdmeuter}@vub.ac.be

Abstract. Today’s web applications often rely on a myriad of external
web APIs, communicating with them through various HTTP requests
spread throughout the application. These APIs are often textually de-
scribed by constraints on the inputs and outputs of their entry points.
In this paper we discuss constraints in web APIs that span multiple
parameters. We show that these constraints are common in web APIs,
but cannot be expressed in existing machine-readable API specification
languages. We envision the emergence of constraint-centric specification
languages which focus on expressing constraints and describe a proto-
typical language that supports constraints over multiple parameters.

Keywords: Web application · Web API · API specifications · Inter-parameter
constraints

1 Introduction

Today it is hard to imagine a web site without cross-website functionality such
as a “like” button from Facebook, a video from YouTube or a Twitter feed. Such
cross-website functionality is typically provided by a web service that exposes
its functionality through an Application Programming Interface (API), which is
primarily accessed by means of requests over HTTP(S).

A web API is comprised of a number of entry points (also referred to as end-
points, methods or routes) that are usually described in a publicly accessible tex-
tual documentation. For every entry point, it lists inputs (accepted parameters)
and outputs (which are returned to the client). Additionally, the documentation
often lists constraints on the input parameters of each entry point. Examples of
such constraints are the type of a parameter, whether a parameter is required
or optional, allowed values, etc.

Satisfying the constraints set by the API providers is essential for a request
to succeed. Modern web applications contain many requests to many different
APIs. Manually verifying each request in a web application is a difficult and
time-consuming task. Fortunately, machine-readable API specifications aid the
automatic verification of requests and generation of documentation.

∗ Funded by a PhD Fellowship of the Research Foundation - Flanders (FWO)

These specifications are written using machine-readable API specification
languages [6], which describe the same information found in textual API docu-
mentations: general information (location and authentication requirements) and
a list of every entry point of the API. The input and output data is described
for every entry point, together with constraints for the input data.

As an API evolves, so do the constraints on parameters. This has led to the
emergence of constraints over multiple parameters, which are currently not sup-
ported by existing specification languages. Table 1 shows an example of such an
inter-parameter constraint in the Twitter API. The direct_messages/new en-
try point expects up to three parameters: user_id, screen_name and text. As
for constraints, Twitter only indicates whether a parameter is required (text)
or optional (user_id, screen_name). These single-parameter constraints are
mostly well-documented and supported by existing machine-readable specifica-
tion languages.

Table 1. Excerpt from Twitter API documentation1

Field name Optional? Description
user_id optional The ID of the user who should receive the direct message.

screen_name optional The screen name of the user who should receive the direct
message.

text required The text of your direct message.
Note: One of user_id or screen_name are required.2

However, as indicated below the table, either the screen name or the user
ID should be provided as well. This is an example of a constraint that spans
multiple parameters. In contrast to single-parameter constraints, inter-parameter
constraints are not captured by existing machine-readable API specifications and
can only be verified manually. This limits their usability for expressing more
complex scenarios that are commonly found in today’s web APIs.

In this paper, we reflect on inter-parameter constraints such as the one above,
and we make three contributions:

1. We identify three categories of inter-parameter constraints, and show that
they are commonly found in existing web APIs (Section 2);

2. We show where current machine-readable API specification languages fall
short (Section 3);

3. We introduce a new constraint-centric API specification language, an exten-
sion of OpenAPI, that addresses these shortcomings (Section 4).

1 https://dev.twitter.com/rest/reference/post/direct_messages/new 2 At the time of conducting
our survey, the note below the table was explicitly mentioned in the API. Recently, the description
has changed — omitting the note — but the constraint still holds.

2 Inter-parameter Constraints

Section 1 already showed an example of an inter-parameter constraint. In this
section, we discuss several instances of inter-parameter constraints found in ex-
isting web APIs, and classify them into three categories: exclusive constraints,
dependent constraints and group constraints. Inter-parameter constraints are as
much part of an API as single-parameter constraints, but they are often not
properly represented or enforced.

2.1 Exclusive Constraints

We call a constraint an exclusive constraint when exactly one of a set of
parameters is required. Table 1 illustrates an exclusive constraint: Twitter
expects either a user_id or a screen_name to indicate the recipient of the
private message. In this case the textual representation does not truly reflect
the correct requirements for the parameters of the request. Both parameters
are tagged as optional in the API documentation, which is contradicted by the
requirement that one of them must be supplied for the request to succeed.

Our study of existing API documentation (in Section 2.5) reveals that many
of them contain exclusive constraints. Examples include entry points in

– Facebook for publishing a status update6 where “either link, place or message
must be supplied”;

– Stripe3, where “either source or customer is required” when creating a charge;
– YouTube4, where you may only provide one filter when retrieving a playlist

(“specify exactly one of the following parameters”).

2.2 Dependent Constraints

The second category of inter-parameter constraints are dependent constraints,
where constraints on a parameter depend on a property of another
parameter (which we call the base parameter). This dependency can be on
either the presence of a parameter or its value. There are three sub-categories of
dependent constraints5:

– Present-Present (PP) dependent constraint: the presence of a parameter de-
pends on the presence of the base parameter;

– Present-Value (PV) dependent constraint: the presence of a parameter de-
pends on the value of the base parameter;

– Value-Value (VV) dependent constraint: the accepted set of values for a
parameter depends on the value of the base parameter.

Table 2 shows an example of a PP-dependent constraint in the Facebook
API. When posting a link on someone’s wall, you can specify a picture, name,
caption and description for that link. These four parameters may only be
included when link (the base parameter) itself is also present.
3 https://stripe.com/docs/api/node#create_charge 4 https://developers.google.com/youtube/v3/docs/playlists/list
5 Value-Present dependent constraints are omitted, because no example was found in this survey.

Table 2. Dependent constraints in the Facebook API6

Field name Optional? Description
link optional The URL of a link to attach to the post. Additional fields

associated with link are shown below.
picture optional Determines the preview image associated with the link.

name optional Overwrites the title of the link preview.
caption optional Overwrites the caption under the title in the link preview.

description optional Overwrites the description in the link preview

Our study of existing API documentation (in Section 2.5) also revealed de-
pendent constraints in other web APIs. For example, in the “add a member to
a list” entry point in the Twitter API7, the parameters owner_screen_name
or owner_id are only taken into account if the slug parameter is also present.
This is actually a combination of two inter-parameter constraints: next to the
PP-dependent constraint, there is also an exclusive constraint on the parameters
owner_id and owner_screen_name. The Google Maps API has a PV-dependent
constraint for rendering the directions8: the property infoWindow is ignored
when suppressInfoWindows is true. Finally, the Amazon API for product ad-
vertisement contains an example of a VV-dependency: when searching for an
item9, condition cannot be set to “new” when the availability parameter is
set to “available”.

2.3 Group Constraints

We classify inter-parameter constraints as group constraints when a set of pa-
rameters should be either all excluded or all included in the request.
Table 3 shows a group constraint found in the Twitter API: when creating a
new tweet, the user’s current location can be provided via the lat and long
parameters. However, it is an error to pass along only lat or only long: both
parameters must be included to specify the location of the resulting tweet.

In Section 2.5, we show that group constraints are found in many APIs.
In Flickr11, for example, all coordinates of a person in a picture (x, y, width
and height) must be provided. The YouTube API12 requires that when creat-
ing a playlist, the parameter onBehalfOfContentOwnerChannel may only be
present when there is a value for the onBehalfOfContentOwner parameter. In
addition, onBehalfOfContentOwnerChannel can only be used in conjunction
with onBehalfOfContentOwner.
6 https://developers.facebook.com/docs/graph-api/reference/v2.8/user/feed
7 https://dev.twitter.com/rest/reference/post/lists/members/create
8 https://developers.google.com/maps/documentation/javascript/reference#DirectionsRenderer
9 http://docs.aws.amazon.com/AWSECommerceService/latest/DG/ItemSearch.html
10 https://dev.twitter.com/rest/reference/post/statuses/update
11 https://www.flickr.com/services/api/flickr.photos.people.add.html
12 https://developers.google.com/youtube/v3/docs/playlists/insert

Table 3. A group constraint in the Twitter API10

Field name Optional? Description
lat optional The latitude of the location this Tweet refers to. This pa-

rameter will be ignored unless it is inside the range −90.0 to
+90.0 (North is positive) inclusive. It will also be ignored if
there isn’t a corresponding long parameter.

long optional The longitude of the location this Tweet refers to. The valid
ranges for longitude is −180.0 to +180.0 (East is positive) in-
clusive. This parameter will be ignored if outside that range,
if it is not a number, or if there is not a corresponding lat
parameter.

2.4 Identifying Unsatisfied Constraints in API Requests

When only a textual representation of an API documentation is available, an
IDE is unable to automatically verify whether requests comply with a specifica-
tion. Developers are then forced to rely on the API provider to respond with a
meaningful error message in case of a malformed request, or are forced to manu-
ally verify each request in the application. The problem with the former is that
this means that bugs can only be identified after deployment of the application.
Additionally, this approach requires full coverage of every API request by the
application’s test suite. Furthermore, every API provider responds differently —
and not always with an error message — to requests that do not satisfy its con-
straints. We can classify the responses to unsatisfied inter-parameter constraints
in three categories:

The API provider returns an error message: in the best-case scenario
the API provider returns a meaningful error message whenever inter-parameter
constraints are not satisfied. Unfortunately, this is not always the case. For exam-
ple, when the exclusive constraint from the YouTube API is not met by supplying
more than one filter for a playlist, the following error message is returned: “In-
compatible parameters specified in the request”. Twitter returns a more detailed
error message when a dependent constraint is not satisfied: “You must specify
either a list ID or a slug and owner”. For unsatisfied group constraints, Flickr
returns as error message: “Some co-ordinate parameters were blank”.

The API provider makes a silent choice: API providers can opt to tol-
erate certain malformed requests in order to be compatible with a wider variety
of clients. For example, Twitter does not complain when both the screen name
and user ID are passed along when sending a direct message. However, when
the screen name and the user ID belong to different users, Twitter chooses the
screen name and silently ignores the user ID instead of raising an error. The
same applies for group constraints present in the Twitter API: if not all group
parameters are present, all incomplete groups are ignored. Similarly, Facebook
just silently ignores all the dependent parameters when the base parameter is not

provided. These kinds of errors are very difficult to debug, because the developer
does not receive any feedback about the incorrect requests.

The API documentation is incorrect: in the case of Facebook, where
their API documentation mentions the exclusive constraint “either link, place or
message must be supplied” for publishing a status update, supplying all parame-
ters results in a sensible status update, where all provided values are combined.

2.5 Inter-parameter Constraints in the Wild

To investigate how frequently the three categories of inter-parameter constraints
occur in web APIs in the wild, we analysed the six most popular APIs of Pro-
grammableWeb13 (based on usage in mashups). Other catalogs and metrics exist,
e.g. API Harmony14 checks usage on GitHub. Table 4 summarises our results.

In every API documentation, we looked for keywords that indicate an inter-
parameter constraint. Exclusive constraints are often indicated with either or
one of, dependent constraints with keywords such as additional and providing,
and keywords for group constraints include corresponding and providing.

Table 4. Inter-parameter constraints in web APIs

Exclusive Dependent Group # entry points
Google Maps JavaScript API 10 3 3 117
Twitter REST API 32 14 6 97
YouTube Data API 11 3 5 50
Flickr API 12 0 1 206
Facebook Graph API 11 4 1 209
Amazon Product Advertising API 2 5 2 9

Table 4 shows that every inter-parameter constraint occurs in every API,
except for Flickr. Exclusive constraints are the most common inter-parameter
constraint in web APIs with a total of 78 occurrences. Although less frequent,
group constraints occur in all the APIs we investigated. Apart from Flickr, every
API has dependent constraints in their API documentation.

In summary, inter-parameter constraints are present in modern web APIs
and the way services respond to requests that do not satisfy constraints is not
always well-defined. These diverse ways of responding to invalid requests stem
from a disconnect between the documentation of an API and its implementation.
Ideally, a specification is available that defines every constraint in a machine-
readable manner, including inter-parameter constraints. This specification en-
ables automatic verification of every constraint on the client side and reject
invalid requests before they are sent. However, inter-parameter constraints are
currently second-class concepts in specification languages and can therefore only
be described textually.
13 http://www.programmableweb.com/apis/directory 14 https://apiharmony-open.mybluemix.net/

3 Machine-Readable Specification Languages for Web
APIs

Machine-readable specification languages for web APIs have been around since
2000, with the introduction of WSDL (Web Services Description Language)[2].
Since then, many new languages have emerged, such as WADL[4] (Web Appli-
cation Description Language), OpenAPI specification (formerly known as Swag-
ger), MSON (Markdown Syntax for Object Notation) and RAML (RESTful API
Modeling Language). These languages primarily form the input for tools that
generate human-readable documentation, but also enable automated testing of
APIs and code analysis. If a machine-readable API is not available or cannot
fully represent the constraints of an API, developers have to resort to manual
verification of each API call.

Existing specification languages already support single-parameter constraints
such as types, minimum and maximum values and whether parameters are re-
quired or optional. However, we argue that inter-parameter constraints are not
supported by specification languages for web APIs. Table 5 shows four specifica-
tion languages, but there exist many more specification languages for web APIs
such as WSDL, WifL [3], Web IDL [1] and hRESTS [5]. However, to the best of
our knowledge, none of these deal with inter-parameter constraints.

Table 5. Constraints in web API specifications

Exclusive Dependent Group
OpenAPI × × ×
MSON × × ×
RAML × × ×
WADL × × ×
JSON Schema × X X

We also include JSON Schema in our discussion — even though it only
validates one object at a time — because it supports some inter-parameter con-
straints.15 However, it is not a good fit for describing web APIs, as there are
several mismatches between JSON Schema and web API specifications. First,
JSON Schema by default allows fields that were not described in the schema.
This is undesired behaviour while validating web APIs: the list of parameters
should be exhaustive and extra parameters should be rejected. To ensure that un-
mentioned fields are rejected, the field additionalProperties must be added
and set to false in every JSON Schema object.

Note that parameters in OpenAPI are described using a subset of JSON
Schema, which excludes the features below.

JSON Schema does not directly support the specification of inter-parameter
constraints, but programmers are able to express group constraints and Present-
15 JSON Hyper-Schema is an extension of JSON Schema for describing APIs. However, it does not
add additional expressiveness for describing web APIs.

Present dependent constraints. The following snippet shows an encoding in
JSON Schema of the PP-dependent constraint specified in Table 2. In this con-
straint we use dependencies to specify that the preview picture and the title
name can only be present if a link was also provided with the request.
{type: ’object’, properties: {link: {type: ’string’},

picture: {type: ’string’},
name: {type: ’string’}},

dependencies: {picture: ’link’, name: ’link’}}

The snippet below shows an encoding in JSON Schema of the group con-
straint specified in Table 3 as a mutual dependency between both fields.
{type: ’object’, properties: {long: {type: ’number’}, lat: {type: ’number’}},

dependencies: {long: ’lat’, lat: ’long’}}

For humans creating or interpreting the specification, it can be difficult to see
which dependency maps to which logical constraint. Likewise, it is difficult to
combine multiple constraints on parameters in JSON Schema. Readability and
maintainability could be improved by separating constraints from the structure
of the object, eg. by having language constructs for defining custom constraints.

Finally, Table 5 shows that JSON Schema does not support exclusive con-
straints. Ostensibly, the oneOf construct appears suitable, but we show this is
not the case with a counterexample in Listing 1.1. This example attempts to
encode the constraint given in Section 2.1, where an object may only contain
a screen_name or user_id field. Nonetheless, an object {screen_name:42,
user_id:42} would be accepted as well: the screen_name parameter is not a
string, therefore the first schema is not considered valid, and therefore the oneOf
constraint passes! This is not a good fit for the exclusive constraints found in
web APIs: we want to ensure that exactly one of the fields is present.

Listing 1.1. Attempt at using oneOf for exclusive constraints
1 {oneOf: [
2 {type: "object",
3 properties: {screen_name: {type: "string", required: true}}},
4 {type: "object",
5 properties: {user_id: {type: "number", required: true}}}]}

We can conclude that the current API specification languages have very min-
imal support for inter-parameter constraints. There is a need for a specification
language that enables the specification of inter-parameter constraints (next to
single-parameter constraints). Moreover, this language needs to be future-proof
such that new kinds of inter-parameter constraints can be easily supported in
the language as well. In the next section, we present a specification language
that embeds support for inter-parameter constraints in its core.

4 OAS-IP: A Constraint-Centric Specification Language

In this section we introduce OAS-IP, a new specification language for web APIs,
focused on defining and imposing constraints on parameters of entry points. By
defining constraints using propositional logic, writers of API specifications can

factor out patterns in constraints and impose constraints on single or multi-
ple parameters. This enables the discovery and implementation of novel inter-
parameter constraints.

OAS-IP is an extension of the OpenAPI specification language, which aims
to be a vendor-neutral specification language for web services, and is supported
by many companies such as Google and Microsoft. OAS-IP offers two exten-
sions to the specification language, both described below. The first extension
enables developers to define predicates for common constraints, and the second
introduces a new way to impose constraints on query and payload parameters.
Contraints on path and header parameters are not supported, as they were not
found in our survey.

4.1 Constraint Definitions

Figure 1 shows the syntax of constraints in OAS-IP: a constraint is a logical
formula that consists of operations over parameters, joined together with logical
connectives. As usual, precedence can be indicated by parentheses. Parameters
target regular and nested fields, as well as “array” fields — constraints on which
apply to every element of the targeted array. Operations test properties on these
parameters, such as whether it is present, its type, and restrictions on its value
or its length. Finally, to promote reusability, constraint definitions enable the
abstraction of common constraint patterns.

v ∈ Values ::= Number, String, Boolean or Parameter
f ∈ Parameters ::= s | f.s | f.[]

t ∈ Types ::= string | number | boolean | object | t[] | null
cd ∈ Constraint definitions ::= s(s1, ..., sn) = c

c ∈ Constraint ::= o | lc | s(v1, ..., vn)
o ∈ Operations ::= present(f) | type(f)=t | length(f)⊕ v | value(f)⊕ v

lc ∈ Logical connectives ::= and(c, c) | or(c, c) | not(c) | implic(c, c) | iff(c, c)
⊕ ∈ Math operators ::= =, !=, <, >, <=, >=

Fig. 1. Syntax definition for constraints

Listing 1.2 shows the definition of several single-parameter constraints (lines 2–5)
as well as the three categories of inter-parameter constraints we identified in
Section 2 (lines 6–10). Expressing the exclusive constraint requires that either
present(f1) or present(f2) is true. Dependent parameters are expressed us-
ing an implication. Finally, group constraints are expressed with a double impli-
cation: f1 must be present when f2 is present, and vice versa.

4.2 Constraints

Listing 1.3 shows how (inter-parameter) constraints are imposed on entry points
in OAS-IP. It imposes the exclusive constraint already discussed in Section 2.1.

Listing 1.2. Sample constraint definitions in the YAML syntax
1 x-constraint-definitions:
2 - minimum(f, v) := value(f) >= v
3 - required(f) := present(f)
4 - string?(f) := type(f) = string
5 - number?(f) := type(f) = number
6 - xor(f1, f2) := or(and(present(f1), not(present(f2))), and(present(f2), not(present(f1))))
7 - pp-dependent(f1, f2) := implic(present(f1), present(f2))
8 - pv-dependent(f1, f2, v) := implic(present(f1), value(f2) = v)
9 - vv-dependent(f1, f2, v1, v2) := implic(value(f1) = v1, value(f2) = v2)

10 - group(f1, f2) := iff(present(f1), present(f2))

Listing 1.3. Expressing constraints for an API operation in OAS-IP
1 /direct_messages/show:
2 post:
3 parameters:
4 - { name: screen_name, in: query, type: string }
5 - { name: user_id, in: query, type: string }
6 - { name: text, in: query, type: string}
7 x-constraints:
8 - xor(screen_name, user_id)

In OpenAPI, and thus in OAS-IP as well, entry points are grouped under
the paths key, with the different HTTP methods they support nested under the
entry point. Lines 4–6 list the parameters for the POST method of this entry
point, including single-parameter constraints to impose a type on the parameters.
The inter-parameter constraint on these parameters is listed on line 8, indicating
that exactly one of screen name and user ID must be supplied.

In OpenAPI, constraints are only specified per parameter, thus limiting it to
supporting single-parameter constraints. Such constraints can be trivially trans-
lated to the x-constraints section, using the single-parameter constraint defini-
tions in Listing 1.2. In Section 4.4 we discuss in detail how OAS-IP supports the
constraints that can be expressed in OpenAPI.

4.3 Composing Inter-parameter Constraints

Section 2 showed that inter-parameter constraints are common in the documen-
tation of web APIs. Sometimes these inter-parameter constraints are even nested.
We will discuss the composability of inter-parameter constraints by means of an
example from the Twitter API:

“You can identify a list by its slug instead of its list_id. If you decide
to do so, note that you will also have to specify the list owner using the
owner_id or owner_screen_name parameters.”

This sentence denotes a dependent constraint between slug and two fields
(owner_id and owner_screen_name), which have an exclusive constraint im-
posed on them in turn. There is also an exclusive constraint between these three
fields and the list_id field. Using the constraint definitions in Listing 1.2, we
would like to write this down as:

and(xor(list_id, slug), iff(present(slug), xor(owner_screen_name, owner_id)))

However, this is subtly wrong: the constraint is also valid if every field except
slug is present.16 Instead, this constraint may be written down as a set of
smaller, non-nested constraints:
xor(slug, list_id)
implic(present(slug), xor(owner_screen_name, owner_id))
pp-dependent(owner_screen_name, slug)
pp-dependent(owner_id, slug)

This set of constraints is not as concise, but it is correct. During the course
of developing OAS-IP (and accompanying examples), we found it beneficial to
work with sets of singular constraints rather than nesting constraints.

4.4 Comparison with Other Web API Specification Languages

Section 3 discussed several languages for web API specifications. Our main
concern with existing languages is the lack of support for inter-parameter con-
straints: only JSON Schema has limited support for expressing constraints over
multiple parameters. More specifically, JSON Schema expresses dependent con-
straints and group constraints using its dependencies construct.

This section introduced OAS-IP, a specification language for web APIs with
constructs for defining constraints by means of predicates over parameters. Writ-
ers of web API specifications do not have a limited set of constraints to choose
from: they can use any combination of the provided operations. Moreover, com-
plicated predicate combinations are abstracted to a custom constraint definition.
This is an advantage over JSON Schema, where lack of abstractions gives rise to
readability and maintainability issues. For example: a group constraint results
in two dependencies expressions, which is not always intuitive to the reader.

To gauge the expressiveness of OAS-IP for modeling existing web APIs, we
examined the constraint keywords of OpenAPI and JSON Schema and attempted
to replicate them with constraint definitions in OAS-IP. Apart from the type
and whether the parameter is required, the majority of keywords are single-
parameter constraints on either numeric values of parameters or the size of arrays
or objects, and thus supported with the existing operations in OAS-IP. Others,
such as pattern, uniqueItems and multipleOf can be supported by adding
new operations. OAS-IP currently does not support the JSON Schema items
and additionalItems constraints which provide a different schema for each
item of an array.

A final difference is the handling of unspecified fields. The patternProperties
keyword allows constraining parameters whose name matches a regular expres-
sion, while the additionalProperties keyword either validates or forbids un-
known parameters. As we mentioned before, OAS-IP defaults to rejecting re-
quests with unknown fields. Both can be supported with the addition of patterned
fields: for example, string?(metadata./^x-/) would require that unspecified
fields of the metadata object starting with x- must be strings.
16 It is possible to come up with alternative formulations, but the reader needs to construct a truth
table in order to convince him or herself.

With these extensions, OAS-IP can express the same single-parameter con-
straints as OpenAPI and JSON Schema. In addition, it is capable of describing
inter-parameter constraints, which other specification languages cannot.

5 Conclusion and Future Work

Today, APIs of modern web applications are described in a public API docu-
mentation. This documentation is often generated using a machine-readable API
specification language. Such specifications can also enable automatic verification
of constraints in the API. Traditionally such specification languages have focused
on single-parameter constraints.

We surveyed current API documentation and identified three kinds of inter-
parameter constraints. These constraints are currently only described textually
and are not covered by the existing specification languages. This limits the
power of existing tooling around API specification languages. Our survey indi-
cates that inter-parameter constraints are essential to achieving comprehensive,
machine-readable web API specifications. Therefore, we designed OAS-IP, an
API specification language based on the OpenAPI specification, extended with
new language constructs to define and impose both single-parameter and inter-
parameter constraints. With this added flexibility, developers can describe all
constraints in their APIs, which in turn makes tooling more powerful.

As a proof of concept, we have developed a preprocessor which, given an
OAS-IP specification, produces a list of constraints for every entry point in the
API.17 We envision that this preprocessor will form the basis for various tools
that help developers interact with web APIs. As a first step, existing docu-
mentation generation tools can use the preprocessor to help web developers un-
derstand the constraints on particular entry points. Going further, we envision
that constraint-centric languages will form the basis of new tools that statically
analyse interactions with web APIs in web applications.

References

1. S. Bae, H. Cho, I. Lim, and S. Ryu. SAFEWAPI: Web API Misuse Detector for
Web Applications. In Foundations of Software Engineering, pages 507–517, 2014.

2. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services
description language (WSDL) 1.1, 2001.

3. P. J. Danielsen and A. Jeffrey. Validation and interactivity of Web API documen-
tation. In International Conference on Web Services (ICWS), pages 523–530, 2013.

4. M. J. Hadley. Web application description language (WADL). 2006.
5. J. Kopecky, K. Gomadam, and T. Vitvar. hRESTS: An HTML microformat for de-

scribing RESTful web services. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), volume 1, pages 619–625, 2008.

6. R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan,
and R. Van de Walle. Survey of semantic description of REST APIs. In REST:
Advanced Research Topics and Practical Applications, pages 69–89. Springer, 2014.

17 https://github.com/noostvog/Verify-Request

