
A Study of Concurrency Bugs and Advanced
Development Support for Actor-based Programs

Carmen Torres Lopez1, Stefan Marr2, Hanspeter Mössenböck2, and Elisa
Gonzalez Boix1

1 Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
2 Johannes Kepler University, Linz, Austria

Abstract. The actor model is an attractive foundation for developing
concurrent applications because actors are isolated concurrent entities
that communicates through asynchronous messages and do not share
state. Thus, they avoid common concurrency bugs such as data races.
However, they are not immune to concurrency bugs in general.

This paper studies concurrency bugs in actor-based program reported in
literature. We define a taxonomy for these bugs. Furthermore, we analyze
the bugs to identify the patterns causing them as well as their observable
behavior. Based on our taxonomy, we further analyze the literature and
find that current approaches to static analysis and testing focus on com-
munication deadlocks and message protocol violation. However, they do
not provide solutions to identify livelocks and behavioral deadlocks.

We propose a research roadmap of the main debugging techniques that
can help to support development of actor-based programs.

Keywords: Actor Model; Concurrency; Bugs; Survey

1 Introduction

With the widespread use of multicore systems, even in everyday phones, concur-
rent programming has become mainstream. However, concurrent programming
is known to be hard and error prone. Unlike traditional sequential programs,
concurrent programs often exhibit non-deterministic behavior which makes it
difficult to reason about their behavior. Many bugs involving concurrent enti-
ties, e.g. processes, threads, actors [3], manifest only in rare execution traces.
Identifying and analyzing concurrency bugs is thus an arduous task, perhaps
even an art.

When studying techniques to support the development of complex concurrent
programs, our first research question is what types of concurrency bugs appear in
such programs. The answer to this question depends on the concurrency model
in which the program is written. Most existing studies about concurrency bugs
focus on thread-based concurrency [36, 1, 9]. The established frame of reference,
however, does not directly apply to other concurrency models which are not
based on a shared memory model like actor model, communication sequential

2 Torres Lopez et al.

processes (CSP), etc. In this paper we study concurrency bugs in message passing
concurrent software, in particular, actor-based programs.

The actor model is attractive for concurrent programming because it avoids
by design some concurrency bugs associated with thread-based programs. Since
actors do not share mutable state, programs cannot exhibit memory-level race
conditions such as data races. In addition, deadlocks can be avoided if communi-
cation between actors is solely based on asynchronous message passing. However,
this does not mean that programs are inherently free from concurrency issues.

This paper surveys concurrency bugs in the literature on actor-based pro-
grams and aims to answers three research questions: (1) which kind of concur-
rency bugs can be avoided by the actor model, (2) what kind of patterns cause
concurrency bugs in actor programs, and (3) what is the observable behavior in
the programs that have these bugs?

To provide a common frame of reference to distinguish different types of con-
currency bugs that appear in actor-based programs, we propose a taxonomy of
concurrency bugs in actor-based programs (in Section 3). The taxonomy aims to
establish a conceptual framework for concurrency bugs that facilitates communi-
cation amongst researchers. It is also meant to help practitioners in developing,
testing, debugging or even statically analyzing programs to identify the root
cause of concurrency bugs by offering more information about the type of bugs
and their observable properties.

Based on our taxonomy of bugs, we analyze actor literature that reports
concurrency bugs and map them to the proposed classification. Furthermore, we
identify which types of bugs have been addressed in literature so far, and which
types have been studied less. With this insight, we sketch a research roadmap
for advanced tool support for actor-based programs.

The contributions of this paper are:

– A systematic study of concurrency bugs in actor-based programs based on
a literature review. To the best of our knowledge it is the first taxonomy of
bugs in the context of actor-based concurrent software.

– An analysis of the patterns and observable behaviors of concurrency bugs
found in different actor-based programs.

– A review of the state of the art in static analysis, testing, debugging, and
visualization of actor-based programs to identify open research issues.

– A research roadmap for advanced debuggers for actor-based programs to
support analysis of lack of progress issues and message protocol violations.

2 Terminology and Background Information

Before we delve into the classification of concurrency bugs in actor-based pro-
grams, we discuss the terminology used in this paper and the basic concepts on
actor-based programs and concurrency issues.

Since the actor model was first proposed by Hewitt [28], several additional
variations of it have emerged. We use the same terminology proposed by De
Koster et al., [20] which identifies three variants in addition to the classic actor

Concurrency Bugs and Development Support for Actor-based Programs 3

model: active objects (e.g. ABCL [52], AmbientTalk/1 [21]), processes (e.g. Er-
lang [4], Scala) and communicating event loops (e.g. E [37], AmbientTalk/2 [51],
JavaScript). In all the variants, concurrency is introduced by actors. All actors
communicate with one another by means of messages. Messages are stored in
a mailbox. Each actor has a thread of execution, which perpetually processes a
message at a time from the mailbox. The processing of one message by an actor
defines a turn. Each actor has a behavior associated that defines how an actor
processes messages. The set of messages that an actor knows how to process in a
certain turn denotes the interface of the actor’s behavior. Actors can store state
which can only be accessed or mutated by the actor itself. In other words, actors
have exclusive access to their mutable state.

Through this paper, we employ the terms concurrency bug and issue inter-
changeably. A concurrency bug is a failure related to the interactions among
different concurrent entities of a system. Following Avizienis’s terminology [5],
a failure is an event that occurs when the services provided by a system deviate
from the ones it was designed for. The discrepancy between the observed behav-
ior and the theoretically correct behavior of a system is called an error. Hence,
an error is an event that may lead to a failure. Finally, a fault is an incorrect step
in a program which causes an error (e.g. the cause of a message transmission
error in a distributed system may be a deteriorated network cable). A fault is
said to be active when it causes an error, and dormant when is present in a
system but has not yet manifested as an error.

Although actors were originally designed to be used in open distributed envi-
ronments, they can be used on a single machine, e.g. in multicore programming.
This paper analyses concurrency bugs that appear in actor-based programs used
in either concurrent or distributed systems. However, bugs that are only observ-
able in distributed systems (e.g. due to network failures) are out of the scope of
this paper.

3 Classification of Concurrency Bugs in Actor-based
Programs

Concurrency bugs have been well studied in the thread-based programs [1, 2,
36, 39, 42]. For actor-based programs, on the other hand, there is so-far no
well-established terminology for concurrency bugs. This section introduces a
taxonomy of concurrency bugs for the actor model derived from bugs reported
in literature and our own experience with actor languages.

Table 1 first summarizes the well-known terminology for thread-based pro-
grams from literature, and then introduces our proposed terminology for concur-
rent bugs in actor-based programs. Our overall categorization departures from
the distinction in the literature on shared-memory concurrency bugs which clas-
sifies bugs in two general categories: lack of progress issues and race conditions.

Depending on the guarantees provided by the specific actor model, programs
may be subject to different concurrency bugs however. Thus, not all concurrency

4
T

o
rres

L
o
p

ez
et

a
l.

Concurrency Model Category of Concurrency Bugs Bug Definition

Threads

Lack of Progress
Deadlock condition in a system where two or more threads are blocked forever

waiting for another thread to do something[42]
Livelock condition in which two or more threads while not blocked cannot make

further progress[39].

Race Condition
Data race special case of race condition that occurs when two threads access the

same data and at least one of them writes the data [1]
Bad interleaving (also know
as high-level data race[42],
atomicity violation[1])

occurs when the program exposes an inconsistent intermediate state
due to the overlapping execution of two threads[42]

Order violation occurs when the expected order of execution of at least two memory
accesses is not respected[1].

Actors
Lack of Progress

Communication deadlock condition in a system where two or more actors are blocked forever
waiting for another actor to do something.

Behavioral deadlock condition in a system when two or more actors are not blocked but wait
on each other for a message to be able to progress, i.e. the message to
complete the next step is never sent.

Livelock condition similar to a deadlock in which two or more actors are not
able to make progress but they continuously change their state.

Message
Protocol
Violation

Message order violation condition in which the order of exchanging messages of two or more
actors is not consistent with the intended protocol of an actor.

Bad message interleaving occurs when a message is processed in between two messages which are
intended to be processed one after the other.

Memory inconsistency occurs when different actors have inconsistent view of shared resources.
The effects of the turn that modifies a conceptually shared resource,
may not be visible to other actors which also alter the same resource.

Table 1. Taxonomy of concurrency bugs

Concurrency Bugs and Development Support for Actor-based Programs 5

bugs are applicable to all actor variants. The rest of the section we define each
type of bug, and detail in which variants cannot be present when applicable.

3.1 Lack of Progress Issues

Two different kinds of conditions can lead to a lack of progress in an actor-based
program: deadlocks and livelocks. However, these issues manifest themselves
differently in actor-based programs compared to thread-based programs.

Communication Deadlock. Communication deadlock is a condition in a sys-
tem where two or more actors are blocked forever waiting for another actor to
do something. This condition is similar to traditional deadlocks known from
thread-based programs. The terminology stems, however, from the work of [14]
in Erlang concurrency bugs.

Communication deadlocks can only occur in variants of the actor model that
feature a blocking receive operation. This is common in variants of the actor
model based on processes. Examples of such actor systems include Erlang and
the Scala Actors framework [27]. A communication deadlock manifests when an
actor only has messages in its inbox that cannot be received with the currently
active receive statement. Listing 1.1 shows a communication deadlock example
in Erlang extracted from [14]. The fault is in line 12, where the pong process is
blocked because it is waiting for a message that is never sent by the ping process.
Instead the ping process returns ok.

1 play() ->
2 Ping = spawn(fun ping/0),
3 spawn(fun() -> pong(Ping) end).
4

5 ping() ->
6 receive
7 pong_msg -> ok
8 end.
9

10 pong(Ping) ->
11 Ping ! pong_msg,
12 receive
13 ping_msg -> ok
14 end.

Listing 1.1. Communication deadlock example in Erlang (from [14]). Line 12 has a
blocking receive causing the pong process to deadlock because the expected message is
never sent.

Behavioral Deadlock. A behavioral deadlock happens when two or more ac-
tors conceptually wait for each other because the message to complete the next
step in an algorithm is never sent. In this case, no actor is necessarily suspended

6 Torres Lopez et al.

or otherwise unable to receive messages. We call this situation a behavioral dead-
lock, because the mutual waiting prevents local progress. However, these actors
might still process messages from other actors. Since actors do not actually
block, detecting behavioral deadlocks can be harder than detecting deadlocks in
thread-based programs.

We illustrate a behavioral deadlock in an implementation of the dining philoso-
phers concurrency problem written in Newspeak [8] which is shown in listing 1.2.
The behavioral deadlock makes that some philosophers cannot eat (as they never
acquire two consecutive forks), preventing global progress. Line 14 shows that
the left fork has the same value as the id of the philosopher, but for the right fork
the program computes its value. For example, philosopher 1 will eat with fork 1
and 2 and so on. The error occurs when the philosopher puts down its forks, the
right one has a wrong value (line 24) because the calculation swaps numForks and
leftForkId variables. This programming mistake is the fault that causes fork 2
and 4 to be always taken. Consequently, there is no global progress since philoso-
pher 2 and 4 never eat and philosopher 1 and 3 eat only once. Philosopher 5 can
always eat showing local progress however.

1 class PhilosopherActor new: id rounds: rounds
2 counter: aCounter arbitrator: arbitrator = (
3 ...
4 public start = (
5 |p|
6 p := arbitrator <-: pickUpForks: self id: id.
7 p whenResolved: [:v | v println.].
8)
9)

10 class ArbitratorActor new: numForks resolver: resolver = (
11 ...
12 public pickUpForks: philosopher id: leftForkId = (
13 | rightForkId |
14 rightForkId := 1 + (leftForkId % numForks).
15 ((forks at: leftForkId) or: [forks at: rightForkId])
16 ifTrue: [philosopher <-: denied]
17 ifFalse: [
18 forks at: leftForkId put: true.
19 forks at: rightForkId put: true.
20 philosopher <-: eat]
21)
22 public putDownForks: leftForkId = (
23 | rightForkId |
24 rightForkId := 1 + (numForks % leftForkId).
25 forks at: leftForkId put: false.
26 forks at: rightForkId put: false.
27)
28)

Listing 1.2. Behavioral deadlock example of a dining philosopher implementation.
Line 24 calculates rightForkId incorrectly, preventing the philosophers from eating.

In contrast to communication deadlocks, all variants of actor models can
suffer from behavioral deadlocks. One cause for such deadlocks are flexible inter-

Concurrency Bugs and Development Support for Actor-based Programs 7

faces [20], because when actor limits the set of messages it accepts, the overall
system can reach a state where actors mutually wait for messages being sent,
without allowing any progress. On the other hand, if an actor implements two or
more interfaces, it could be that only one of them is deadlocked, allowing some
progress with respect to interactions with other actors.

Livelock. A program is in a livelock when an actor or groups of actors can
make local progress, but the program is not able to make global progress. For
example, actors can change their state receiving and executing messages, but
the overall execution of the program stalls and can not be finished.

An example for a livelock is given in listing 1.3. It shows the sleeping barber
problem [22] implemented in Newspeak [8]. The waiting room, the barber, and
the customers are implemented as actors. The concurrency issue in this example
is caused by a fault in line 7. Instead of receiving the next customer from the
collection of customers waitingCustomers, the barber always receives the same first
customer. Both actors, room and barber are not blocked. The barber asks for
the next customer to the room (line 20) and the room sends the customer to the
barber to do the haircut (line 8). But, as the customer that is sent is always the
same, there is no global progress.

1 class WaitingRoomActor new: capacity barber: anActor = (
2 ...
3 public next = (
4 waitingCustomers size > 0
5 ifTrue: [
6 | customer |
7 customer := waitingCustomers first.
8 barber <-: enter: customer in: self]
9 ifFalse: [

10 barber <-: wait.
11 barberAsleep := true]
12)
13)
14 class BarberActor new: resolver = (
15 ...
16 public enter: customer in: room = (
17 customer <-: start.
18 busyWait: (random next: avHaircutRate) + 10.
19 customer <-: done.
20 room <-: next
21)
22)

Listing 1.3. Livelock in a sleeping barber implementation. Line 7 reads always the
same customer, but does not remove it from the list, preventing global progress.

3.2 Message Protocol Violations

As shown in table 1, thread-based programs commonly suffer from three sorts
of low-level race conditions: data races, bad interleavings (also know as high-

8 Torres Lopez et al.

level data race[42], atomicity violation[1]), and order violations. Actors, on the
other hand, cannot suffer from those low-level race conditions since they have
exclusive access to their state and messages are processed serially. Nevertheless,
all actor-based programs can have race conditions related to the order in which
messages are processed. We consider these race conditions to be at a high level
to distinguish them from the low-level memory access race conditions that occur
in thread-based programs.

High level race conditions in actor based-programs can be observed when
two or more actors exchange messages that are not consistent with the intended
protocol of the application. Therefore, we refer to them more specifically as
message protocol violations. Also we identified three types of message protocol
violations, which are described in the remainder of this subsection: message order
violations, bad message interleavings, and memory inconsistency.

Message order violation. A message order violation appears when the or-
der in which two or more actors exchange messages is not consistent with the
intended protocol of the actor. This includes messages that are received out of
order or in unexpected interleavings. They are typically caused by actors only
supporting a subset of all possible message sequences.

Message order violations are common for instance in JavaScript. In a contem-
porary browser, each script runs inside one single-threaded event loop per page.
After the initial parsing and interpretation of <script> tags, the event loop pro-
cesses incoming events related to page lifecycle events, UI events, timer events,
XRS responses, etc. The order in which corresponding events handlers are ex-
ecuted is non-deterministic, e.g., because of user actions or I/O timing, which
can give rise to unexpected ordering of messages that is not handled correctly by
the program. The fault occurs in line 2, in this case because of an interleaving
between the execution of the user action onclick and the HTML parsing. Listing
1.4 extracted from [43] shows an example of such a message order violation.

The code in listing 1.4 defines an input tag for a button in an HTML page
(line 2), and two scripts: one declaring two variables (init and y) and the behavior
of function f which is executed when the button is clicked (line 4–12), and a
second script which updates init and y variables. Since the parsing of the input

tag and the execution of the scripts happen in different turns of the event loop, a
violation in the order of messages execution can occur. For instance, if the button
is clicked before the first script runs function f is not yet declared, causing the
JavaScript interpreter to crash.

Note that message order violations in JavaScript only affect a single actor,
because JavaScript scripts runs in a single event loop, which processes all types of
events. General message order violations can also involve more than two actors.

Bad message interleaving. We define a bad message interleaving as the con-
dition when a message is processed in between two messages which are expected
to be processed one after the other, causing some misbehavior of the application
or even a crash.

Concurrency Bugs and Development Support for Actor-based Programs 9

1 <html><body>
2 <input type="button" id="b1" onclick="javascript:f()">
3 ... <!-- many elements -->
4 <script>
5 function f() {
6 if (init)
7 alert(y.g);
8 else
9 alert("not ready");

10 }
11 var init = false, y = null;
12 </script>
13 ...
14 <script>
15 y = { g: 42 };
16 init = true;
17 </script>
18 </body></html>
19

Listing 1.4. Message order violation within a single event loop in JavaScript (from
[43]). On line 2, the onclick event can be triggered by the user before the function f is
parsed and made available, causing an error.

In the original actor model, when an actor sends a message to a recipient
actor, the message is placed in a mail queue and is guaranteed to be eventually
delivered by the actor system. All messages are thus expected to be delivered in
the order in which the sender actor sent them. However, there are two sources
of bad interleavings. First, messages from different senders may be interleaved
in between messages from one sender. In other words, even if the actor model
enforces that messages from a sender actor are received in a FIFO order, one
message of a different sender actor may be interleaved. The second source of
bad interleavings of messages occur in variants of the actor model which do
not guarantee in-order delivery of the messages. This is can be found in actor
models used to build distributed systems, like Scala or ActorFoundry [33] in
which communication between actors is not enforced to work in a FIFO manner.

Listing 1.5 shows an example of bad message interleavings in ActorFoundry
(extracted from [33]). The listing shows an example of bad message interleaving
in a network communication between two actors, Server and Client. In line 10,
the Client sends an asynchronous message to the Server to store the value 1. In
line 11, the Client does a call, which waits for a result, to retrieve the value
from the Server. The fault is trigger by line 13, because can happen that the
Server processes the set message between the two get messages. Consequently,
the values of v1 and v2 will be inconsistent.

Note that in the context of JavaScript, bad message interleavings can also
occur within a single event loop if programs can receive notifications for external
events, e.g. events from the network, timer or sensors. Such issues have been
previously reported by [29].

10 Torres Lopez et al.

1 class Server extends Actor {
2 int value = 0;
3 @message void set(int v) { value = v; }
4 @message int get() { return value; }
5 }
6 class Client extends Actor {
7 ActorName server;
8 Client(ActorName s) { server = s; }
9 @message void start() {

10 send(server, "set", 1);
11 int v1 = call(server, "get");
12 int v2 = call(server, "get");
13 assert v1 == v2;
14 }
15 }

Listing 1.5. Bad message interleaving example in ActorFoundry (from [33]). Server

actor can interleave the messages set and get send by the Client. If that is the case v1

will have a different value that v2.

Memory inconsistency. A memory inconsistency is a condition in which dif-
ferent actors have inconsistent view of shared resources. This can be caused
because the effects of the turn that modifies a conceptually shared resource, may
not be visible to other actors which also alter the same resource. Previous re-
search in the context of Erlang have collected such kinds of problems [30, 31, 23].

Listing 1.6 shows a modified fragment of an Erlang program used by D’Osualdo
et al. [23] to verify the property of mutual exclusion in actors. The program (orig-
inally introduced by Huch [30]) spawns one database process and several client
processes. The purpose of the program is to save information in a database, which
acts as a conceptually shared resource by different client actors. The database
consists of a list of (key, value) tuples. When a client process sends an allocate
message to the database, the database checks if the key exists already (line 8). If
the value does not exist (line 25) then it can be saved. The free message in the
client computes the value to be saved (line 10) and then the client process sends
the tuple to the database. If a second process does lookup before the first value
is saved, the lookup function will fail due to the key has not been inserted. The
fault occurs in line 19, when the database process receives the key and value to
be stored. Another client that has a different value with the same key can save
it. Thus, the value sent by the first process will be overwritten by the value of
another client process. In order to fix this error, the message pattern should be
declared inside a receive statement after line 10, in order to save the value sent
by the client and avoid other processes making a lookup.

3.3 Comparison with Existing Terminology in Actor Literature

As said in the introduction, the goal of establishing a taxonomy is to provide
a common vocabulary for concurrency bugs in actor-based programs. In what
follows we relate our terminology to the one presented in other scattered efforts
tackling concurrency bugs for actor-based programs.

Concurrency Bugs and Development Support for Actor-based Programs 11

1 main() ->
2 DB = spawn(fun()->dataBase(#{})end),
3 spawnmany(fun()->client(DB) end).
4

5 dataBase(M) ->
6 receive
7 {allocate,Key,P} ->
8 case lookup(Key,M) of
9 fail ->

10 P!free,
11 dataBase(M);
12 succ ->
13 P!allocated,
14 dataBase(M)
15 end;
16 {lookup,Key,P} ->
17 P!lookup(Key,M),
18 dataBase(M);
19 {value,Key,V} ->
20 dataBase(maps:put(Key,V, M))
21 end.
22

23 lookup(K,M) ->
24 case maps:find(K,M) of
25 error -> fail;
26 _V -> succ
27 end.

Listing 1.6. Memory inconsistency example in Erlang (based on [30, 23]). Line 19
shows a message pattern that allows to different processes store different values for the
same key.

Bad message interleavings have been denoted as ordering problems by Lauter-
burg et al. [33], Long et al. [35] and as atomicity violation by Zheng et al.
[53], Hong et al. [29]. We consider ordering problems to be too corse grained ter-
minology. In addition, we opted for bad message interleaving to avoid confusion
with atomicity violations in thread-based concurrent programs due to low-level
memory accesses errors.

Message order violations has been collected under many diverse names in
literature: data races by Petrov et al. [40], harmful races by Raychev et al. [43],
order violations by Hong et al. [29], and message ordering bugs by Tasharofi
et al. [50]. We believe that message order violations is a descriptive word while
avoiding confusion with low-level data races present in thread-based programs.

Memory inconsistency problems has been denoted as race conditions by
Hughes and Bolinder [31]. Also in the work of D’Osualdo et al. [23] this problem
has been tackle proving a correctness property referred as “mutual exclusion”.

In literature, the term orphan messages [16] refers to messages that an actor
exchanges but that the receiver actor(s) will never handle. Rather than a kind of
concurrency bug, we consider orphan messages as an observable property of an
actor system which may be a symptom of a concurrency bug like communication
deadlocks or message ordering violations. We will employ this terminology in
the next section when we classify concurrency bugs reported in literature with
our taxonomy. Orphan messages can for example be present in actor languages

12 Torres Lopez et al.

that allows flexible interfaces such as Erlang, Scala Actors framework and Akka
library [20]. An actor may change the set of messages it accepts after another
actor has already sent a message which can only be received by a interface which
is no longer supported.

4 Concurrency Bugs in Actor-based Programs

In this section, we review various concurrency bugs reported in literature, and
classify them according to the taxonomy introduced in section 3. The goal is
actually twofold: (1) to classify concurrency bugs collected in prior research in
the bug categories according to our taxonomy and (2) to identify bug patterns
and observable behaviors that appear in programs exhibiting a particular con-
currency bug. The later is useful to design mechanisms for testing, verification,
statically analyse or debugging such concurrency issues.

Table 3 shows the catalog of concurrency bugs collected from literature that
we have analyzed. In the first column we categorized these bugs according to
the taxonomy presented in table 1. For each bug scenario we describe the bug
pattern as a generalized description of the fault by identifying the actions that
trigger the error. In the remainder, we highlight the identified bug patterns in
italic. We also describe the observable behavior of the program that has the
concurrency issue, i.e. the failure.

4.1 Lack of Progress Issues

To the best of our knowledge, literature reports on communication deadlocks
mostly in the context of Erlang programs. Bug-4 in table 3 is an example of a
communication deadlock collected by Christakis and Sagonas [14], which corre-
sponds to the example depicted in Listing 1.1. Christakis and Sagonas distinguish
two causes for communication deadlocks in Erlang programs:

– receive-statement with no messages i.e. empty mailbox,
– receive with the wrong kind i.e. the messages of the mailbox are different to

the ones expected by the receive statement.

We classify these conditions as bug patterns for orphan messages, which can lead
to communication deadlocks in Erlang.

Christakis and Sagonas [13] mention also other conditions that can cause
mailbox overflows or potentially indicate logical errors. Such conditions include
no matching receive, i.e. the process does not have any receive-clause matching
a message in its mailbox, or receive-statement with unnecessary patterns, i.e. the
receive statement contains patterns that are never used.

Bug-9 is similar in kind to bug-4. Bug-9 was identified by Gotovos et al.
[26] when implementing a test program in Erlang which has a server process
that receives and replies to messages inside a loop. The server process blocks
indefinitely because it waits for a message that is never sent. They also iden-
tify it as problematic, when a message is sent to an already finished process,

Concurrency Bugs and Development Support for Actor-based Programs 13

which is exhibited by bug-10. This can happen due to two possible situations.
First, if a client process sends a message to an already finished server process,
the client process will throw an exception. Second, if the server process exits
without replying after the message was received, the client process will block
waiting for a reply that is never sent. We categorize bug-4, bug-9 and bug-10 as
communication deadlocks and the observable behaviors as orphan messages.

The work of D’Osualdo et al. [23] identified three other bug patterns leading
to abnormal process termination in Erlang programs, which might cause dead-
locks: sending a message to a non-pid value, applying a function with the wrong
arity and spawning a non-functional value. These bug patterns could result in
a communication deadlock or in a message order violation if the termination
notification is not handled correctly.

4.2 Message Protocol Violations

Message order violation. In Erlang, updating some resources such as the
global name registry require careful coordination to avoid concurrency issues.
For example, we categorize bug-1 as a message order violation, which as a result
makes a race on the global process registry visible [12]. The bug is caused because
two processes try to register processes for the same global name more than once,
which is done with non-atomic operations. For correctness, these processes would
need to coordinate with each other.

Bug-11 reported by Christakis et al. [11] is an other example of a message
order violation exhibited when a spawned process terminates before the parent
process registers its process id. The application expects the parent process to
register the id of the spawned process before the spawned process is finalized,
but as the execution of spawn and register functions are not atomic, an unexpected
termination can cause a message order violation.

Zheng et al. [53] studied concurrency issues that can appear in JavaScript
programs. In their example, which corresponds to bug-14, two events are exe-
cuted but the application can not return the responses in time, e.g. the second
message is executed with the value of the first message. They argue the cause
of this issue can be the network latency and the delay in manage the responses
by the JavaScript engine. If the events operate on the same data, it can lead
to inconsistencies e.g. deleting an object of a previous event. We consider this
kind of race as message order violation, because the order of the messages is not
consistent with the protocol of the web application.

In the context of JavaScript, Petrov et al. [40] identified 4 different message
order violations. An interleaving between the execution of a script and the event
for rendering an input text box is shown in bug-17, which can lead to inconsis-
tencies when saving the text a user entered. Also problematic is the potential
interleaving of creating an HTML element and executing a script that uses the
element shown in bug-18. If the HTML element has not yet been created, it will
cause an exception. Moreover, bug-19 corresponds to the scenario where execut-
ing a function can race with is definition. This can happen when the function is
invoked first because the HTML loads faster, and the script where it is declared

14 Torres Lopez et al.

is only loaded later. One specific example is when an event handler is triggered
before its code is loaded. In bug-20, the onload event of an HTML element is
triggered before the code is loaded, which causes the event handler to never run
correctly.

Raychev et al. [43] detected similar race conditions to the one of Petrov et al.
[40], which we categorize as message order violation. Their bug example was
depicted in Listing 1.4 in the previous section and it corresponds to bug-16. Hong
et al. [29] also collected message ordering violations in three different exiting
websites. One of its examples shows an scenario where a user input invokes a
function before is defined. This last example is detailed in bug 23. From all these
collected bugs, we conclude that a common bug issue in JavaScript programs is
the bad interleaving of two events in an unexpected order.

Tasharofi et al. [50] identified twelve bugs in five Scala projects using the Akka
actor library, which we categorize as message ordering problems. Bug-13 give
details of one of these bugs. In their study the authors [50] mentioned two bug
patterns in Scala and Akka programs that can cause concurrency bugs in actors.
First, when changing the order of two receives in a single actor (consecutive or
not), which can provoke a message order violation. Second, when an actor sends
a message to another actor which does not have the suitable receive for that
message. This last issue actually corresponds to an orphan message, and can
also lead to other misbehaviors such as communication deadlocks.

Bad message interleaving. Bug-12 corresponds to the example of bad mes-
sage interleaving collected by Lauterburg et al. [33] which was shown in List-
ing 1.5. The bug pattern occurs when an actor execute a third message between
two consecutive messages due to actor model implementation is not FIFO.

Zheng et al. [53] also identifies bad message interleavings such as the one ex-
hibited in bug-15. The bug pattern corresponds to the use of a variable not ini-
tialized by other methods before it was defined. This delay of receiving a response
can be cause by a busy network and leads to an exception in the application.
Hong et al. [29] also observed bad message interleavings in JavaScript programs.
Bug-21 shows a pattern in which a variable is undefined because after a user
has upload a file to a workspace, the user changes the workspace before the file
has been completely uploaded. In the case of bug-22, a variable is null because an
event handler updates the DOM between two inputs events that manipulate the
same DOM element.

Memory inconsistency. Memory inconsistency issues have been only reported
in the context of Erlang programs to the best of our knowledge. Christakis and
Sagonas [12] shows an example of high-level races between processes using the
Erlang Term Storage in bug-2. In this case the error is due to inserting and lookup
in tables that has public access, thus is possible that two or more processes try
to read and write from them simultaneously. A second example detailed in bug-
3, shows a similar issues that can happen when accessing tables of the Mnesia

Concurrency Bugs and Development Support for Actor-based Programs 15

database. The cause is due to the use of reading and writing operations that are
not race safe. We categorize both issues as memory inconsistency problems.

Hughes and Bolinder [31] detected four bugs corresponding to memory incon-
sistency in dets, the disk storage back end used in the Erlang database Mnesia.
Bug-5 refers to insert operations that run in parallel instead of being queued in
a single queue. They can cause inconsistent return values or even exceptions.
Bug-6 observable behavior corresponds to an inconsistency of visualizing the
dets content. This issue can ocurr when reopening a file that is already open and
executing insert and get contents operations in parallel. Bug-7 and bug-8 are
caused due to failure on integrity checks. Of the five bugs found these two are
the ones that can occur with less probability. Bug-7 is reproduced only in one
specific scenario when running three processes in parallel, and bug-8 can occur
only in those languages implementations that can keep new and old version of
the server state.

Huch [30] and D’Osualdo et al. [23] has conducted studies to verify mutual
exclusion in Erlang programs. In listing 1.6 it is shown an example. The bug
pattern identified corresponds to the wrong definition of the behavior of the
actor, and the observable property is that two actors can store different values
for the same key which leads to inconsistencies, i.e. the actors can share the same
resource.

5 Advanced Development Techniques

This section surveys the current state of the art of techniques that support the
development of actor-based programs. The goal is to identify the relevant sub-
fields of study and problems in the literature. Furthermore, for each of these
techniques we analyzed based on the literature how they relate to the bug cate-
gories of our taxonomy to identify open issues.

Specifically, we survey techniques for static analysis, testing tools, debuggers,
and visualization. Table 2 gives an overview of the category of bugs the static
analysis and testing techniques address. It leaves out debugging and visualization
techniques, since they are typically not geared towards a specific set of bugs.

5.1 Static Analysis

The static analysis approaches surveyed in this section include all approaches
that identify concurrency issues without executing a program. This includes
approaches based on typing, abstract interpretation, symbolic execution, and
model checking. The following descriptions are organized by the category of
concurrency bugs these approaches addresses.

Lack of progress issues. In the field of actor languages, Erlang has been
subject to extensive studies. Dialyzer is a static analysis tool that uses type in-
ference in addition to type annotations to analyze Erlang code [44]. The static

16 Torres Lopez et al.

analysis combines control-flow and data-flow-based to identify problematic us-
age of Erlang built-in functions that can cause concurrency issues. Dialyzer also
has support for detecting message order violations as well as memory incon-
sistencies [45, 12]. Christakis and Sagonas [14] extended Dialyzer to also detect
communication deadlocks in Erlang. For that they use a technique based on
building a communication graph.

Another branch of work uses type systems to prevent concurrency issues.
For actor languages, this includes for instance the work of Colaço et al. [16].
Based on a type system for a primitive actor calculus, they can prevent many
situations in which messages would be received but never be processed, i.e., so-
called orphan messages. However, the static analysis cannot detect all possible
orphan messages. Therefore, the approach relies on dynamic type checks to detect
the remaining cases. Similar work was also performed for Erlang, where orphan
messages are also detected based on a type system [18].

Dam and Fredlund [19] proposed an approach using static analysis to verify
properties such as the boundedness of mailboxes. The verification of this property
can avoid the presence of orphan messages in a program. Their technique applies
local model checking in combination with temporal logic and extensions to the µ-
calculus for basic Erlang systems.

Message protocol violation. D’Osualdo et al. [23] also work on Erlang and
use static analysis and infinite-state model checking. Their goal is to check spe-
cific properties for programs that are expressed with annotations in the code.
With this approach, they are able to verify for instance correct mutual exclu-
sion semantics modeled with messages. However, the current approach cannot
model arbitrary message order violations, because the used analysis abstracts
too coarsely from messages.

Garoche et al. [25] verify safety properties statically for an actor calculus
by using abstract interpretation. Their work focuses on orphan messages, and
specific message order violations. Their technique is especially suited for detect-
ing unreadable behavior, detecting unboundedness of resources, and determining
whether linearity constraints hold.

Zheng et al. [53] developed a static analysis for JavaScript relying on call
graphs and points-to set. The analysis detects bad message interleavings and
message order violations. With the properties of JavaScript, one can consider
this analysis as a special case for actor systems where only a single actor is
analyzed with respect to its reaction to incoming messages. WebRacer [40] is a
tool that uses a memory access model and a notion of happens-before relation for
detecting races at the level of the DOM tree nodes. The detected bugs correspond
to bad message interleavings and message order violations in our taxonomy.
EventRacer [43] is another tool that aims to find bad message interleavings or
message order violations in JavaScript applications. In this case the authors
proposed a race detection algorithm based on vector clocks.

Concurrency Bugs and Development Support for Actor-based Programs 17

5.2 Testing Tools

This section describes work on testing actor based-programs to identify concur-
rency bugs. Some of the approaches are based on recording the interleaving of
messages, use state model checkers, and techniques to analyze message schedules.

Lack of progress issues. Sen and Agha [46] present an approach to detect
communication deadlocks in a language closely related to actor semantics. They
use a concolic testing approach that combines symbolic execution for input data
generation with concrete execution to determine branch coverage. The key aspect
of their technique is to minimize the number of execution paths that need to be
explored while maintaining full coverage.

Concuerror [11] is a systematic testing tool for Erlang that can detect ab-
normal process termination as well as blocked processes, which might signify
a communication deadlock. To identify these issues, Concuerror records process
interleavings for test executions and implements a stateless search strategy to
explore all interleavings.

Message protocol violation. Claessen et al. [15] use a test-case-generation ap-
proach based on QuickCheck in combination with a custom user-level scheduler
to identify race conditions. The focus specifically on bad message interleavings
and process termination issues. To make their approach intuitive for develop-
ers, they visualize problematic traces. Hughes and Bolinder [31] use the same
approach and apply it to a key component of the Mnesia database for Erlang.
They demonstrate that the system is able to find race conditions induced from
the message level that can occur when interacting with the shared memory prim-
itives used by Mnesia.

Basset [33, 34] is an automated testing tool based on Java PathFinder, a
state model checker, that can discover bad message interleavings in Scala and
ActorFoundry programs. Tasharofi et al. [49] improve Basset with a technique
to reduce schedules to be explored, which improves the performance of Basset.
Their key insight is to exploit the transitivity of message send dependencies
to prune the search space for relevant execution schedules. For the Scala-Akka
programs there is another testing tool called Bita, which also can detect message
order violations. Their proposal is based on a technique called schedule coverage,
which analyses the order of the receive events of an actor [50].

The Setac framework [48] for Scala Actors framework enables testing for race
conditions on actor messages, specifically message order violations. A test case
defines constraints on schedules and assertions to be verified, while the frame-
work identifies and executes all relevant schedules on the granularity of message
processing. The Akka actor framework for Scala also provides a test framework
called TestKit.3 However, it does not seem to provide any sophisticated auto-

3 Akka.io: Testing Actor Systems, Lightbend Inc., access date: 8 February 2017, http:
//doc.akka.io/docs/akka/current/scala/testing.html

http://doc.akka.io/docs/akka/current/scala/testing.html
http://doc.akka.io/docs/akka/current/scala/testing.html

18 Torres Lopez et al.

matic testing capabilities, which seems to indicate that the current techniques
might not yet be ready for adoption in industry.

Cassar and Francalanza [10] investigate how to minimize the overhead of
instrumentation to detect race conditions. Instead of relying exclusively on syn-
chronous instrumentation, they use asynchronous monitoring in combination
with a logic to express correctness constraints on the resulting event traces.

Hong et al. [29] proposed a JavaScript testing framework called WAVE for
the same classes of issues mentioned by [40] and [43]. The framework generates
test cases based on operation sequences. In case of a concurrency bug, they can
observe different results for the generated test cases.

Communi. Behav. Live- Message Or. Bad Msg. Mem.
Deadlock Deadlock Lock Violation Inter. Incon.

Static Analysis
Christakis and Sagonas [14] X
Christakis and Sagonas [12] X X
Colaço et al. [16] p
Dagnat and Pantel [18] p
Dam and Fredlund [19] p
D’Osualdo et al. [23] p p p
Garoche et al. [25] p p
Zheng et al. [53] p p
Petrov et al. [40] X X
Raychev et al. [43] X

Testing Tools
Sen and Agha [46] X
Claessen et al. [15] X
Christakis et al. [11] X
Lauterburg et al. [34] X
Tasharofi et al. [50] X
Tasharofi et al. [48] p p
Tasharofi et al. [49] p X
Claessen et al. [15] p X p
Hughes and Bolinder [31] p X
Hong et al. [29] X X
Cassar and Francalanza [10] p p p
Table 2. Overview of the bug categories addressed in literature. A ‘p’ indicates that
a bug category is addressed only partially. Typically, the approaches are limited by for
instance a too coarse abstraction or a description language not expressive enough to
capture all bugs in a category.

5.3 Debuggers

This section reviews the main features provided by current debuggers for actor-
based systems. It includes techniques for both online and postmortem debugging.

Concurrency Bugs and Development Support for Actor-based Programs 19

Causeway [47] is a post-mortem debugger for distributed communicating event-
loop programs in E [37]. It focuses on displaying the causal relation of messages
to enable developers to determine the cause of a bug. Causality is modeled as
the partial order of events based on Lamport’s happened-before relationship [32].
We consider that this approach can be useful for detecting message protocol vi-
olations.

REME-D [7] is an online debugger for distributed communicating event-loop
programs written in AmbientTalk [51]. REME-D provides message-oriented de-
bugging techniques such as the state inspection, in which the developer can
inspect an actor’s mailbox and objects, while the actor is suspended. It also
supports a catalog of breakpoints, which can be set on asynchronous and future-
type messages sent between actors. Like Causeway, REME-D allows inspecting
the history of messages that were sent and received when an actor is suspended,
also known as causal link browsing [7]. Therefore we consider debugging tech-
niques provided in REME-D can help to detect message order violations. Also
the technique of inspecting the state of the actor can facilitate debugging lack
of progress issues such as behavioral deadlocks and livelocks.

In the context of JavaScript, the Chrome DevTools online debugger supports
Web Workers,4 which are actors that communicates with the main actor through
message passing. The Chrome debugger allows to pause workers. In the case
of shared workers it also provides mechanisms to inspect, terminate, and set
breakpoints.5 For debugging messages and promises on the event loop, Chrome
also supports asynchronous stack traces. This means, it shows the stack at the
point a callback was scheduled on the event loop. Since this works transitively, it
allows to infer the point and context of how a callback got executed. We consider
that stack information could help to find both message order violation and lack
of progress issues.

Erlang also has an online debugger6 that supports line, conditional, and
function breakpoints. The Erlang processes can be inspected from a list and for
each process a view with its current state as well as the current location in
the code can be opened, which allows to inspect and interact with each process
independently. It also supports stepping through processes and inspected their
state. We consider that processes inspection information could help to find both
message protocol violations and lack of progress issues.

The ScalaIDE also includes debugging of actor-based programs.7 It is a clas-
sic online debugger with support for stepping, line and conditional breakpoints.
Furthermore, one can follow a message send and stop in the receiving actor. Addi-

4 Web Workers, W3C, access date: 14 February 2017, https://www.w3.org/TR/wo
rkers/

5 http://blog.chromium.org/2012/04/debugging-web-workers-with-chr
ome.html

6 Debugger , Ericsson AB, access date: 14 February 2017, http://erlang.org/doc
/apps/debugger/debugger chapter.html

7 Asynchronous Debugger , ScalaIDE, access date: 14 February 2017, http:
//scala-ide.org/docs/current-user-doc/features/async-debugger/
index.html

https://www.w3.org/TR/workers/
https://www.w3.org/TR/workers/
http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html

20 Torres Lopez et al.

tionally, the debugger supports asynchronous stack traces similar to Chrome [24].
We consider these techniques useful for debugging message protocol violations.
They can also be used to identify behavioral deadlocks and livelocks when in-
specting the state of the receiving actor.

5.4 Visualization

This section discusses mechanisms and approaches to visualize actor-based sys-
tems for debugging. Some of the techniques represent actor communication flow
with petri nets. Others techniques detail the an actor’s state, its mailbox, and
the traces of causal messages that are sent and received.

Miriyala et al. [38] proposed the use of predicate transition nets for visualizing
actors execution. Based on the classic model of actors the proposal focus on the
representation of the actor behavior and sent messages. The activation of each
transition in the petri net corresponds to a behavior execution. The authors
emphasize that the order of net transitions should be represented in the same
order of execution of messages of the actor system. The main idea is that the
user interacts with a visual editor for building the execution of an actor system
in the petri net.

Coscas et al. [17] present a similar approach. In this case the use of predicate
transition nets is focus in simulate actors execution in a step by step mode. When
the user fires a specific transition only observes a small part of whole net. The
approach also verifies messages that not match with the ones expected by the
actor, i.e. messages that do not match the actor’s interface.

The Causeway debugger also visualizes the program’s execution based on
views for process order, message order, stack and source code view [47]. The
process order view shows all messages executed for each actor in chronological
order, e.g. a parent item with asynchronous message sends. The message order
view shows the causal messages for a message sent, i.e. other messages that
have been executed before the message was sent and provoked the send of the
message we want to debug. In this view is also possible to distinguish processes by
color, which helps to visualize when a message flow (known as activation order)
corresponds to a different process. The stack view shows a partial causality of
messages. It is considered partial because the call chain showed in the stack
only visualizes the messages that have been executed, it does not show the
other possible messages that can cause the invocation of a message (known
as happened-before relation). The source code view shows the code where the
message was sent in the code. Thanks to the synchronization achieved between
all the views is possible to transit through the messages related to the execution
of the actor’s behavior that lead to the bug.

Boix et al. [7] show the actor state in their REME-D debugger. The actor
view shows messages that are going to be executed in the actor’s mailbox. At
the same time is also shown the state of the actor and its objects. This view
is useful for the user be able to interact with the objects and messages of the
actor that is inspecting. One of the main advantages of this online debugger is
the possibility of pause and resume the actor execution.

Concurrency Bugs and Development Support for Actor-based Programs 21

Recently Beschastnikh et al. [6] developed ShiViz, a visualization tool where
developers can visualize logs of distributed applications. The mechanism is based
on representing happens-before relationships of messages through interactive
time-space diagrams. The tool also offers to the user search fields by message in
the diagram using keywords. Additionally, is possible to find ordering patterns,
which could help to identify wrong behaviors in an execution.

6 A Research Roadmap for Debuggers

Even so actor-based programs do not suffer from the same low-level concurrency
issues as thread-based programs, they can exhibit lack of progress issues and
message protocol violations.

Our literature study in section 4 reveals that most techniques tackle concur-
rency bugs with some form of static analysis or testing, which is so far not able
to tackle all possible problems.

For behavioral deadlocks, livelocks, or many types of message protocol vi-
olations, developers still need to rely on other techniques including classic de-
buggers. For example, some techniques identify the fault of a communication
deadlock, but cannot detect all possible variants of orphan messages. For mes-
sage protocol violations, some techniques such as abstract interpretation can be
too coarse to model for instance message order violations.

Debuggers provide the flexibility to explore a programs behavior dynamically.
However, they typically lack advanced features for actor-based programs that
help to identify concurrency bugs. Further research is needed to improve the
debugging process, in particular to browse and manipulate message histories to
combine them with online features such as rich stepping and breakpoint options.

6.1 Message-oriented Breakpoints and Stepping

Message-breakpoints have been already used with good results when debugging
actor-based programs. Nevertheless, few debuggers support a full set of break-
points that for example, allows to debug messages stepping on the sender and
on the receiver side. None of the debuggers investigate in section 5.3 allows us to
set breakpoints on promises to inspect the computed value before it is used to
resolve the promise. We argue that the implementation of flexible breakpoints
that adjust to the needs of actor-based programs is needed. For instance, a break-
point set on the sender side of the message will suspend actor’s execution before
the message is sent. This can be useful when debugging lack of progress issues
as livelocks and behavioral deadlocks because the developer will be able to see
whether the message has the correct values.

Stepping using turns executions can give the developer information about the
state of the actor after processing the messages (step-over), navigate by messages
sent inside a turn (step into) and see return values of promises (step-return)
[7]. Ideally, a debugger does not only allow us to inspect the turn flow, but to
also combine the message stepping with the possibility of seeing the sequential

22 Torres Lopez et al.

operations that the actor executes inside of a turn. This gives developers better
ways to identify the root cause of a bug.

6.2 Track the Causality of Messages

Currently, only few debuggers allow developers to track the causality of mes-
sages. However, we consider this an important debugging technique. Recording
the causal relationships of messages can help diagnosing, e.g., message protocol
violations. Information about causality could also help for instance in Listing 1.5
to identify which messages are involved in the bad message interleaving. When
recording such information, a debugger could also provide a mechanism to filter
for a specific message through its name, and then visualize the corresponding
turn information for such messages [7].

Back-in-time debugging techniques, often used in postmortem context, could
be helpful for identifying message order violations, too. Such techniques allow
developers to navigate forward and backward in the flow of messages by using
execution traces. Sometimes is used together to deterministic replay to capture
small traces and avoid runtime overhead of the program. Indexation and querying
mechanisms can make such a system even more useful [41].

6.3 Visualization

To offer better visual support for actor systems, a combination of information
about the actor’s state and its objects, visualizing the order of execution of
messages and including the happens-before relation between them, together with
stack information should give the user better comprehension about the program
is debugging. Nevertheless, further research is needed that support the tooling
for identifying complex concurrency bugs. For example, a visualization is needed
to distinguish between the stepping of messages that are exchange by actors and
stepping through the sequential code of each actor. Ideally, a visualization could
also highlight based on the source code that certain messages are independent
of each other, because there is no direct ordering relationship between them.

7 Conclusion

Although the actor model avoids data races and deadlocks by design, it is still
possible to have lack of progress issues and message-level race conditions in actor-
based programs. Our literature review shows that actor-based programs exhibit
a range of different issues depending on the specific actor model variant. In lan-
guages like Erlang and Scala, programs can exhibit communication deadlocks
because the actor implementation provides blocking operations. A common ob-
servable behavior of this concurrency bug are the orphan messages. Such kinds
of communication deadlocks cannot happen in event loop concurrency, but nev-
ertheless, other lack of progress issues such as behavioral deadlocks and livelocks
can occur. Behavioral deadlocks can be seen in all variants of actor models, and

Concurrency Bugs and Development Support for Actor-based Programs 23

they are one of the most difficult bugs to identify. One reason is that actors in
such a situation are not blocked, but still do not make any progress. Livelocks
are similar hard to diagnose as behavioral deadlocks. Message order violations,
bad message interleaving, and memory inconsistencies are race conditions that
can happen in actor-based programs.

Most work on identifying concurrency bugs is done in the fields of static
analysis and testing. Current techniques are effective for some specific cases, but
often they are not yet general and do not necessarily scale to the complexity
of modern systems. Debugging support for actor languages currently provides
features such as message-oriented breakpoints, inspecting the history of messages
together with recording their casual relations, and support for asynchronous
stack traces. However, better tools are needed to identify the cause of bugs.

In the future, we will focus on the implementation of a debugger that com-
bines strategies such as recording the causality of messages with message oriented-
breakpoints and rich stepping. Moreover, we will experiment with visualization
techniques that give the developer a better understanding of the debugging in-
formation.

8 Acknowledgments

This research is funded by a collaboration grant of the Austrian Science Fund
(FWF) with the project I2491-N31 and the Research Foundation Flanders (FWO
Belgium).

2
4

T
o
rres

L
o
p

ez
et

a
l.

Appendix A: Catalog of Bugs Found in Actor-based Programs

Bug Type Id Bug Pattern Observable Behavior Source Reporting the Bug Language

Message order
violation

bug-1 incorrect execution order of two pro-
cesses when registering a name for a pid
in the Process Registry

runtime exception Fig. 1 in [12] Erlang

Memory incon-
sistency

bug-2 insert and write in tables of Erlang
Term Storage with public access

inconsistency of values in the ta-
bles

Fig. 2 in [12] Erlang

Memory incon-
sistency

bug-3 insert and write in tables (dirty opera-
tions in Mnesia database)

inconsistency of values in the ta-
bles

Fig. 2 in [12] Erlang

Communi-
cation deadlock

bug-4 receive statement with no messages process in waiting state due to an
orphan message

Fig. 1 in [14] Erlang

Memory incon-
sistency

bug-5 testing insert operations in parallel
(Mnesia database)

exception or inconsistent return
values

Sec. 5 of [31] Erlang

Memory incon-
sistency

bug-6 testing open file in parallel with
other operations of dets API (Mnesia
database)

inconsistency when visualizing the
table’s contents

Sec. 5 of [31] Erlang

Memory incon-
sistency

bug-7 open, close and reopen the file, be-
sides running three processes in parallel
(Mnesia database)

integrity checking failed due to
premature eof error

Sec. 5 of [31] Erlang

Memory incon-
sistency

bug-8 changes in the dets server state integrity checking failed (Mnesia
database)

Sec. 5 of [31] Erlang

Communi-
cation deadlock

bug-9 receive statement with no messages process in waiting state due to an
orphan message (server waits for
ping requests)

Program 2 and Test code
2 in [26]

Erlang

Communi-
cation deadlock

bug-10 message sent to a finished process, the
finished process exit without replying

process blocks due to an orphan
message

Test code 5 in [26] Erlang

Message order
violation

bug-11 spawned process that terminates before
its Pid is register by the parent process

process will crash and exits abnor-
mally due to an orphan message

Fig. 1 in [11] Erlang

C
o
n
cu

rren
cy

B
u
g
s

a
n
d

D
ev

elo
p
m

en
t

S
u
p
p

o
rt

fo
r

A
cto

r-b
a
sed

P
ro

g
ra

m
s

2
5

Bad message
interleaving

bug-12 actor execute a third message between
two consecutive messages

inconsistent values of variables Fig. 2 in [33] Actor-
Foundry

Message order
violation

bug-13 incorrect order of execution of two mes-
sage receives

the program throws an exception
because of a null value

Listing 1 in [50] Scala

Message order
violation

bug-14 the second message is executed with the
value of the first message

actions are performed over the
wrong variable

Fig. 4 in [53] JavaScript

Bad message
interleaving

bug-15 use of a variable not initialized by other
methods before it was defined

out of bounds exception Fig. 4 in [53] JavaScript

Message order
violation

bug-16 race between HTML parsing and user
actions

application crash Fig. 1 in [43] JavaScript

Message order
violation

bug-17 race between execution of a script and
rendering of an input text box

inconsistency in the value of the
variable (storing text the user en-
tered)

Fig. 2 in [40] JavaScript

Message order
violation

bug-18 race between creation of HTML element
and using the element

throw an exception that can lead
the application to crash

Fig. 3 in [40] JavaScript

Message order
violation

bug-19 invocation of a function before parsing
of the same function

application crash Fig. 4 in [40] JavaScript

Message order
violation

bug-20 iframe’s load event fires before the script
executes

event handler will never run Fig. 5 in [40] Javascript

Bad message
interleaving

bug-21 execution of an operation (changing the
workspace) between two other opera-
tions (starting the file transmission and
the completion of the transmission)

exception of variable undefined Fig. 6 in [29] JavaScript

Bad message
interleaving

bug-22 event handler updates DOM between
two input events that manipulate the
same DOM element

error because of a null value Found in Fig.3 [29] JavaScript

Message order
violation

bug-23 user input invokes a function before it
has been defined/loaded

application crashes (due to unex-
pected turn termination)

Found in Fig. 2 [29] JavaScript

Table 3: Catalog of bugs found in actor based programs

Bibliography

[1] Abbaspour, S., Sundmark, D., Eldh, S., Hansson, H., Afzal, W.: 10 years
of research on debugging concurrent and multicore software: a systematic
mapping study. Software Quality Journal pp. 1–34 (2016)

[2] Abbaspour, S., Sundmark, D., Eldh, S., Hansson, H., Enoiu, E.P.: A study
of concurrency bugs in an open source software. In: IFIP International
Conference on Open Source Systems. pp. 16–31. Springer (2016)

[3] Agha, G.: Actors: A model of concurrent computation in distributed sys-
tems. Ph.D. thesis, MIT, Artificial Intelligence Laboratory (Jun 1985)

[4] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Pro-
gramming in ERLANG. Prentice Hall (1993)

[5] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable
Secur. Comput. 1(1), 11–33 (Jan 2004)

[6] Beschastnikh, I., Wang, P., Brun, Y., Ernst, M.D.: Debugging distributed
systems. Commun. ACM 59(8), 32–37 (Jul 2016)

[7] Boix, E.G., Noguera, C., De Meuter, W.: Distributed debugging for mobile
networks. Journal of Systems and Software 90, 76–90 (2014)

[8] Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox, W., Miranda,
E.: Modules as Objects in Newspeak. In: ECOOP 2010 – Object-Oriented
Programming, Lecture Notes in Computer Science, vol. 6183, pp. 405–428.
Springer (2010)

[9] Brito, M., Felizardo, K.R., Souza, P., Souza, S.: Concurrent software testing:
A systematic review. On testing software and systems: Short papers p. 79
(2010)

[10] Cassar, I., Francalanza, A.: On Synchronous and Asynchronous Monitor In-
strumentation for Actor-based Systems. In: Proceedings 13th International
Workshop on Foundations of Coordination Languages and Self-Adaptive
Systems. pp. 54–68. FOCLASA 2014 (September 2014)

[11] Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting
concurrency errors in erlang programs. In: Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on. pp.
154–163. IEEE (2013)

[12] Christakis, M., Sagonas, K.: Static Detection of Race Conditions in Erlang.
pp. 119–133. PADL 2010 (January 2010)

[13] Christakis, M., Sagonas, K.: Detection of Asynchronous Message Passing
Errors Using Static Analysis. In: Rocha, R., Launchbury, J. (eds.) Practical
Aspects of Declarative Languages: 13th International Symposium,. pp. 5–
18. PADL 2011, Springer (January 2011)

[14] Christakis, M., Sagonas, K.: Static Detection of Deadlocks in Erlang. Tech.
rep. (Jun 2011)

[15] Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts,
T., Wiger, U.: Finding Race Conditions in Erlang with QuickCheck and

Concurrency Bugs and Development Support for Actor-based Programs 27

PULSE. In: Proceedings of the 14th ACM SIGPLAN International Confer-
ence on Functional Programming. pp. 149–160. ICFP ’09, ACM (2009)

[16] Colaço, J.L., Pantel, M., Sallé, P.: A Set-Constraint-based analysis of Ac-
tors, pp. 107–122. Springer (1997)

[17] Coscas, P., Fouquier, G., Lanusse, A.: Modelling Actor Programs using
Predicate/Transition Nets. In: Proceedings Euromicro Workshop on Paral-
lel and Distributed Processing. pp. 194–200 (Jan 1995)

[18] Dagnat, F., Pantel, M.: Static analysis of communications in erlang pro-
grams (November 2002), http://rsync.erlang.org/euc/02/dagnat
.ps.gz

[19] Dam, M., Fredlund, L.̊a.: On the Verification of Open Distributed Systems.
In: Proceedings of the 1998 ACM Symposium on Applied Computing. pp.
532–540. SAC ’98, ACM (1998)

[20] De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: A tax-
onomy of actor models and their key properties. In: Proceedings of the 6th
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control. pp. 31–40. AGERE 2016, ACM (2016)

[21] Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming in ambienttalk. In: European Conference
on Object-Oriented Programming. pp. 230–254. Springer (2006)

[22] Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Pro-
gramming Languages: NATO Advanced Study Institute, pp. 43–112. Aca-
demic Press (1968)

[23] D’Osualdo, E., Kochems, J., Ong, C.H.L.: Automatic verification of erlang-
style concurrency. In: Logozzo, F., Fähndrich, M. (eds.) 20th International
Symposium on Static Analysis. pp. 454–476. SAS 2013, Springer (June
2013)

[24] Dragos, I.: Stack Retention in Debuggers For Concurrent Programs
(July 2013), http://iulidragos.com/assets/papers/stack-ret
ention.pdf

[25] Garoche, P.L., Pantel, M., Thirioux, X.: Static safety for an actor dedicated
process calculus by abstract interpretation. In: Gorrieri, R., Wehrheim, H.
(eds.) Formal Methods for Open Object-Based Distributed Systems. pp.
78–92. FMOODS 2006, Springer (June 2006)

[26] Gotovos, A., Christakis, M., Sagonas, K.: Test-driven development of con-
current programs using concuerror. In: Proceedings of the 10th ACM SIG-
PLAN workshop on Erlang. pp. 51–61. ACM (2011)

[27] Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-
based programming. Theoretical Computer Science 410(2-3), 202–220 (Feb
2009)

[28] Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Confer-
ence on Artificial Intelligence. pp. 235–245. IJCAI’73, Morgan Kaufmann
Publishers Inc. (1973)

[29] Hong, S., Park, Y., Kim, M.: Detecting Concurrency Errors in Client-Side
Java Script Web Applications. In: 2014 IEEE Seventh International Con-

http://rsync.erlang.org/euc/02/dagnat.ps.gz
http://rsync.erlang.org/euc/02/dagnat.ps.gz
http://iulidragos.com/assets/papers/stack-retention.pdf
http://iulidragos.com/assets/papers/stack-retention.pdf

28 Torres Lopez et al.

ference on Software Testing, Verification and Validation (ICST). pp. 61–70.
IEEE (Mar 2014)

[30] Huch, F.: Verification of erlang programs using abstract interpretation
and model checking. In: Proceedings of the Fourth ACM SIGPLAN In-
ternational Conference on Functional Programming. pp. 261–272. ICFP
’99, ACM, New York, NY, USA (1999), http://doi.acm.org/10.1145/
317636.317908

[31] Hughes, J.M., Bolinder, H.: Testing a database for race conditions with
quickcheck. In: Proceedings of the 10th ACM SIGPLAN Workshop on
Erlang. pp. 72–77. Erlang ’11, ACM (2011)

[32] Lamport, L.: Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM 21(7), 558–565 (1978)

[33] Lauterburg, S., Dotta, M., Marinov, D., Agha, G.A.: A Framework for State-
Space Exploration of Java-Based Actor Programs. In: 2009 IEEE/ACM
International Conference on Automated Software Engineering. pp. 468–479
(Nov 2009)

[34] Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Basset: A Tool for
Systematic Testing of Actor Programs. In: Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering. pp. 363–364. FSE ’10, ACM (2010)

[35] Long, Y., Bagherzadeh, M., Lin, E., Upadhyaya, G., Rajan, H.: On ordering
problems in message passing software. In: Proceedings of the 15th Interna-
tional Conference on Modularity. pp. 54–65. ACM (2016)

[36] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: A comprehensive
study on real world concurrency bug characteristics. In: Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems. pp. 329–339. ASPLOS XIII, ACM, New
York, NY, USA (2008)

[37] Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency among strangers. In:
International Symposium on Trustworthy Global Computing. pp. 195–229.
Springer (2005)

[38] Miriyala, S., Agha, G., Sami, Y.: Visualizing actor programs using predicate
transition nets. Journal of Visual Languages & Computing 3(2), 195–220
(1992)

[39] Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java
Concurrency in Practice. Addison-Wesley Professional (2005)

[40] Petrov, B., Vechev, M., Sridharan, M., Dolby, J.: Race detection for web
applications. In: ACM SIGPLAN Notices. vol. 47, pp. 251–262. ACM (2012)

[41] Pothier, G., Tanter, É.: Summarized trace indexing and querying for scal-
able back-in-time debugging. In: European Conference on Object-Oriented
Programming. pp. 558–582. Springer (2011)

[42] Prasad, S.K., Gupta, A., Rosenberg, A.L., Sussman, A., Weems, C.C.: Top-
ics in Parallel and Distributed Computing: Introducing Concurrency in Un-
dergraduate Courses. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edn. (2015)

http://doi.acm.org/10.1145/317636.317908
http://doi.acm.org/10.1145/317636.317908

Concurrency Bugs and Development Support for Actor-based Programs 29

[43] Raychev, V., Vechev, M., Sridharan, M.: Effective race detection for event-
driven programs. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Ap-
plications. pp. 151–166. OOPSLA ’13, ACM (2013)

[44] Sagonas, K.: Experience from developing the dialyzer: A static analysis
tool detecting defects in erlang applications. In: Proceedings of the ACM
SIGPLAN Workshop on the Evaluation of Software Defect Detection Tools
(2005)

[45] Sagonas, K.: Using static analysis to detect type errors and concurrency
defects in erlang programs. In: International Symposium on Functional and
Logic Programming. pp. 13–18. Springer (2010)

[46] Sen, K., Agha, G.: Automated Systematic Testing of Open Distributed
Programs. In: Baresi, L., Heckel, R. (eds.) 9th International Conference
on Fundamental Approaches to Software Engineering. pp. 339–356. FASE
2006, Springer (2006)

[47] Stanley, T., Close, T., Miller, M.: Causeway: A message-oriented distributed
debugger. Tech. rep., HP Labs (Apr 2009)

[48] Tasharofi, S., Gligoric, M., Marinov, D., Johnson, R.: Setac: A
Framework for Phased Deterministic Testing Scala Actor Programs
(2011), https://days2011.scala-lang.org/sites/days2011/fi
les/ws1-2-setac.pdf

[49] Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha,
G.: TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for
Testing Actor Programs. In: Giese, H., Rosu, G. (eds.) Formal Techniques
for Distributed Systems: Joint 14th IFIP WG 6.1 International Confer-
ence, FMOODS 2012 and 32nd IFIP WG 6.1 International Conference,
FORTE 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings. pp. 219–
234. Springer (2012)

[50] Tasharofi, S., Pradel, M., Lin, Y., Johnson, R.E.: Bita: Coverage-guided, au-
tomatic testing of actor programs. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering. pp. 114–124. ASE’13 (Nov
2013)

[51] Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter,
W.: Ambienttalk: object-oriented event-driven programming in mobile ad
hoc networks. In: Inter. Conf. of the Chilean Computer Science Society
(SCCC). pp. 3–12. IEEE Computer Society (2007)

[52] Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent pro-
gramming in abcl/1. In: Conference Proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications. pp. 258–268. OOPSLA
’86, ACM, New York, NY, USA (1986)

[53] Zheng, Y., Bao, T., Zhang, X.: Statically Locating Web Application Bugs
Caused by Asynchronous Calls. In: Proceedings of the 20th International
Conference on World Wide Web. pp. 805–814. WWW ’11, ACM (2011)

https://days2011.scala-lang.org/sites/days2011/files/ws1-2-setac.pdf
https://days2011.scala-lang.org/sites/days2011/files/ws1-2-setac.pdf

	toctitle TODO
	1 Introduction
	2 Terminology and Background Information
	3 Classification of Concurrency Bugs in Actor-based Programs
	3.1 Lack of Progress Issues
	Communication Deadlock.
	Behavioral Deadlock.
	Livelock.

	3.2 Message Protocol Violations
	Message order violation.
	Bad message interleaving.
	Memory inconsistency.

	3.3 Comparison with Existing Terminology in Actor Literature

	4 Concurrency Bugs in Actor-based Programs
	4.1 Lack of Progress Issues
	4.2 Message Protocol Violations
	Message order violation.
	Bad message interleaving.
	Memory inconsistency.

	5 Advanced Development Techniques
	5.1 Static Analysis
	Lack of progress issues.
	Message protocol violation.

	5.2 Testing Tools
	Lack of progress issues.
	Message protocol violation.

	5.3 Debuggers
	5.4 Visualization

	6 A Research Roadmap for Debuggers
	6.1 Message-oriented Breakpoints and Stepping
	6.2 Track the Causality of Messages
	6.3 Visualization

	7 Conclusion
	8 Acknowledgments

