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a b s t r a c t 

Just-in-time compilation has proven an effective, though effort-intensive, choice for realiz- 

ing performant language runtimes. Recently introduced JIT compilation frameworks advo- 

cate applying meta-compilation techniques such as partial evaluation or meta-tracing on 

simple interpreters to reduce the implementation effort. However, such frameworks are 

few and far between. Designed and highly optimized for performance, they are difficult 

to experiment with. We therefore present STRAF , a minimalistic yet flexible Scala frame- 

work for studying trace-based JIT compilation. STRAF is sufficiently general to support a 

diverse set of language interpreters, but also sufficiently extensible to enable experiments 

with trace recording and optimization. We demonstrate the former by plugging two dif- 

ferent interpreters into STRAF . We demonstrate the latter by extending STRAF with e.g., 

constant folding and type-specialization optimizations, which are commonly found in ded- 

icated trace-based JIT compilers. The evaluation shows that STRAF is suitable for prototyp- 

ing new techniques and formalisms in the domain of trace-based JIT compilation. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Constructing a dedicated just-in-time compiler for a language requires significant engineering effort. The Truffle [23] and

RPython [4] frameworks address this problem by reducing the language-specific engineering that is required by applying

partial evaluation and meta-tracing to relatively simple interpreters. It has recently been shown [16] that the technique of

meta-tracing is capable of lifting the performance of a meta-traced interpreter to the same order of magnitude of a dedicated

just-in-time compiler, while requiring less engineering effort from the developers of this interpreter. 

However, several open research questions for (meta-)trace-based compilation remain. For example, how can the warm-up

time of the compiler be reduced, and how can the problem of trace explosion be addressed to avoid tracing an exponen-

tial number of paths. Although RPython has proven itself as a framework for constructing performant language runtimes,

its performance focus makes it difficult to adapt the framework itself or experiment with various compilation strategies.

Addressing the aforementioned research questions by experimenting in RPython is therefore a complex undertaking. We

therefore introduce STRAF , a minimalistic Scala framework with the aim of facilitating further experiments in trace-based

JIT compilation. STRAF is designed not as a performant competitor to RPython, but as an extensible research vehicle for

studying tracing compilation. It enables experiments with dynamic analyses of traces, with strategies for their optimiza-
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tion, and with the various ways in which executions, traces, and optimizations interact. STRAF can therefore be used as a

testbed for various experimental strategies in trace-based compilation. Once researchers feel that these strategies have been

sufficiently explored, they may be implemented in a mature trace-based compiler to be further developed and evaluated. 

As the main priority of STRAF is to achieve an extensible and minimalistic tracing framework, we separate the tracing

mechanism in STRAF from the actual semantics of the language being executed. This results in a flexible runtime that can

be composed with various language interpreters, similar to meta-tracing frameworks like RPython. However, in contrast

to these meta-tracers, the traces recorded by STRAF are not generic, but are specific to the interpreter that is employed.

As traces are interpreter-specific, language implementers wishing to benefit from the advantages of the STRAF framework

must therefore provide a number of hooks in their interpreter, e.g., to enable optimization and de-optimization, that are not

required by a meta-tracing framework. The effort required for language implementers to compose their interpreter in STRAF

is therefore higher than in traditional meta-tracing framework, but enables maximal decoupling of tracing and language

semantics. The difference between the STRAF framework and a general meta-tracing compiler is described in more detail in

Section 3.4 . 

To concisely describe the framework, we formalize STRAF and provide the implementation. 1 Our implementation inte-

grates with a Scala framework [19] for defining abstract machines through the AAM methodology [20] . This methodology

provides a procedure for systematically transforming the concrete semantics of any language, which, when implemented,

correspond to a concrete interpreter for the language, to some abstract semantics of this language. The abstract seman-

tics enable finite reasoning over a program’s execution and can therefore be used as the basis for a static analysis of the

language. The integration of STRAF with this analysis framework only adds to STRAF ’s potential for experimentation. 

STRAF not only offers a large degree of flexibility in terms of the language interpreters it can execute, it is also adapt-

able in how the framework itself can be extended. In this paper, we evaluate both aspects. First, we present two different

interpreters and demonstrate how they can be plugged into STRAF . Second, we show how to extend STRAF with six trace

optimizations, with a heuristic for selecting hot loops for which it is effective to start tracing, and with guard tracing to

mitigate the performance penalty of aborting the execution of a previously-recorded trace. These extensions are commonly

found in trace-based JIT compilers. Concretely, this paper makes the following contributions: 

• The design, a formal specification, and a reference implementation of the minimalistic, but extensible STRAF framework

into which interpreters can be plugged to construct a trace-based JIT compiler. 
• An evaluation of STRAF ’s generality by composing it with two language interpreters. 
• An evaluation of STRAF ’s extensibility by extending it with six trace optimizations, with a heuristic for detecting hot

loops, and with the ability to start tracing from the point of a guard failure. 

2. Trace-based JIT compilation 

Trace-based JIT compilation is an alternative to the more common method-based JIT compilation. It builds on two basic

assumptions: most of the execution time of a program is spent in loops, and several iterations of the same loop are likely to

take the same path through the program [4] . Trace-based JIT compilers therefore do not limit compilation to methods, like

method-based ones, but they trace and compile frequently executed, i.e., “hot” loops. 

Runtimes incorporating a trace-based JIT compiler usually do so through mixed-mode execution. Initially, an interpreter

executes the program and profiles loops to identify hot ones. When a hot loop is detected, the runtime starts tracing the

execution of this loop: the operations that are performed by the interpreter while in this loop are recorded into a trace.

Tracing continues until the interpreter has completed a full iteration of the loop. The recorded trace is then compiled and

optimized. Subsequent iterations of this loop will execute the compiled trace. 

Because a trace represents a single execution path, it must ensure that the conditions that held while the trace was being

recorded still hold when it is executed . These assumptions are checked by inserting guards encoding the corresponding con-

ditions in each trace. When a guard fails , execution of the trace is aborted and the interpreter resumes normal interpretation

of the program from that point onward. The point where trace execution is aborted and interpretation restarts is called a

side-exit . Side-exits give rise to a performance penalty, because execution of the optimized trace must be aborted and eval-

uation must proceed through regular interpretation of the program. To mitigate the overhead, most tracing compilers use

optimized trace bridges to jump from one trace to another, once a guard has failed [18] . 

Example. Listing 1 a depicts a Scheme program containing a loop. Part of the loop’s corresponding trace is de-

picted in Listing 1 b. As the expression ( = n 0) evaluated to false during tracing, the tracer inserted a guard

ActionGuardFalse that will check whether this condition still evaluates to false during trace execution. 

3. Overview of STRAF 

A language runtime implemented using STRAF consists of two main entities: an interpreter, responsible for regular pro-

gram execution, and a tracing machine or tracer , responsible for trace recording and execution. The tracer is provided by the
1 Available at https://github.com/mvdcamme/scala-am 
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Listing 1. A loop in a program and part of its corresponding trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRAF framework, while the interpreter is to be provided by the language developer, in a manner similar, but not identical,

to meta-tracing. The tracer controls the interpreter by repeatedly asking it to execute a step when no trace is being executed,

and is itself responsible for determining how execution of the program should proceed in other cases. Section 3.2 details the

interface through which the tracer and the interpreter communicate. For instance, the interpreter is to send signals to the

tracer when it reaches interesting points in the program, such as the beginning of or exit from a loop iteration. 

Execution is divided into three distinct execution phases: normal interpretation , in which the program is interpreted

without the tracer interfering, trace recording , in which the operations of the interpreter are recorded by the tracing machine,

and trace execution , in which a previously recorded trace is executed. The execution phases and their transitions can be

modeled as a state diagram, shown in Fig. 2 . 

3.1. Tracer state 

The tracer is modeled as a state machine transitioning between tracer states . Fig. 1 lists the definitions of these states:

a TracerState consists of a reference to the aforementioned execution phase, a tracer context, a program state, and a trace

node. 

During the execution of the program, the tracer switches between the ExecutionPhases : normal interpretation (NI), trace

recording (TR) and trace execution (TE) phases. Section 3.3 describes the transitions between the different states of the

tracer. 

The TracerContext is a two-tuple used by the tracer. The first component of the tuple stores the trace that is currently

being recorded. This is either Null , if no trace is being recorded, or it is a trace node ( TraceNode ), which is a three-tuple

that associates a trace with a unique label and a program state, so that this trace can later be retrieved by referencing its

label. The second component, TraceNodeMap , stores all trace nodes, containing the traces that were previously recorded, by

mapping the aforementioned labels to the trace nodes. The trace itself is a sequence of actions which are opaque interpreter-

specific data structures that represent the operations performed by the interpreter while evaluating the program. When

executing the trace, these same actions are again executed one-by-one by the interpreter. As these actions are unique to

the interpreter that is used, they are not defined here. An example of some possible actions appeared in Listing 1 b and is

shown again in Section 4 , when discussing one possible implementation of the interpreter. However, we define one special

end-trace action et rp , whose semantics are detailed in Section 3.3 . 
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Fig. 1. The tracing machine. 

Fig. 2. The three execution phases of a program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is assumed that interpreters are modeled as state machines operating on a program state. This requirement enables the

tracer to grab the entire, current execution state of the interpreter in the form of some program state which is defined by the

interpreter and remains opaque to the tracer. The implementer of the interpreter could for example model the interpreter

as a CESK machine. CESK-based interpreters operate on CESK states, consisting of a control component (C), an environment

(E) (mapping variables to addresses), a store (S) (mapping addresses to values) and a continuation stack (K) [12] . These

interpreters are guided through the evaluation of a program by checking the state’s control component, which corresponds

with either an expression to next be evaluated or a continuation to be followed. The state’s environment maps variables to

addresses and its store maps these addresses to values. The continuation stack saves the continuations to be followed upon

completing the evaluation of a (sub)expression and reaching a value. Abstracting a program’s execution as a program state

facilitates transitioning between the various phases of execution as both the execution of a trace and normal interpretation

of the program operate on the same structure. 

During the evaluation of the program, the interpreter operates on these program states and determines the next instruc-

tion, which, depending on the current execution phase, may be recorded into a trace by the tracing machine. The tracer

obtains new program states from the interpreter during normal interpretation and trace recording, or by executing trace

instructions during trace execution. 

The last component of the tracer state either equals Null if no trace is currently being executed, or it contains the trace

node storing the trace that is being executed. 
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3.2. Tracing interface 

Interpreter functions. The tracing machine monitors and controls the execution of the interpreter through the following

interface, which must be provided by the interpreter: 

step : P rogram State → Int erpret erSt ep 

applyAction : P rogram State × Action → Act ionRet urn 

restart : RestartP oint × P rogram State → P rogram State 

optimize : T race × P rogram State → T race 

The tracer asks the interpreter to perform a single evaluation step on a program state via a two-step process. The tracer

first calls the step function on this state. In this step call, the interpreter checks the state and considers which operations

must be completed in this step of the evaluation. It then reifies these operations in the form of actions, i.e., data structures

representing the operations to execute, and wraps a list of the computed actions in an InterpreterStep . As the second step

in the process, the tracer then makes the interpreter actually execute these reified operations by calling applyAction
on them and the state to compute an ActionReturn that contains the new, updated program state. The restart function

enables the tracer to restart normal interpretation when a guard failure has occurred at run time. The optimize function

takes a trace and a program state and returns a trace that is optimized with respect to the given program state. It is designed

such that the tracer can consider the optimization of a trace as a black box, rendering it the responsibility of the language

implementer. In Section 4 , we demonstrate how an interpreter that satisfies this interface may be built. 

Note that although in principle the definitions of program states and actions are specific to one particular interpreter,

in practice they might be reused between different interpreters, which in turn would enable language developers to also

reuse at least the applyAction and optimize functions, similar to what is done in PyPy. However, creating a set of

these common elements might place further constraints on the design of the interpreter, as the interpreter would have

to accommodate for these components by adapting its step and restart functions so that they employ these actions

and states. Additionally, such a common program state should be sufficiently generic that it could be used by any sort of

interpreter. 

Program states. With the interpreter being a state machine, interpreting a program amounts to continuously executing the

state transition rule that is applicable for the current program state; tracing the interpreter becomes recording the transi-

tions performed by the interpreter state machine and executing a trace corresponds to replaying the recorded transitions

starting from the current program state. These transitions thus correspond to the aforementioned actions in STRAF . Note

that our tracer does not depend on a particular definition for the program state or state transition, but this is left to the

interpreter. 

Actions. To enable a more fine-grained optimization of traces, the interpreter can use two sets of state transition rules:

high-level and low-level transitions, i.e., actions, both operating on a program state. One high-level transition is composed

of several low-level actions. As illustrated by Fig. 3 , executing the high-level transition is equivalent to applying each of the

constituent actions consecutively. The high-level transition itself does not appear in a trace; only the low-level actions are

recorded. 

InterpreterStep. During the normal interpretation and trace recording phases, the tracing machine repeatedly asks the inter-

preter to perform a single high-level transition by calling step . This function takes the current program state as input and

outputs an InterpreterStep : a two-tuple containing a list of actions to be applied on the given program state that together

constitute the high-level transition that has just been performed, and possibly a tracing signal . When the interpreter enters

a loop, it communicates this to the tracer by including a tracing signal, startLoop , in its response. This enables the tracer

to decide whether to start tracing this loop, start executing a previously recorded trace for this loop, or do nothing at all.

For this to work, the interpreter should identify each loop in the user program uniquely through a label. When interpreting

a loop over multiple iterations, a startLoop is sent at the start of each iteration. If the tracer has started recording a loop

after detecting a startLoop signal at one iteration and subsequently detects another startLoop for the same loop, it knows

that one full iteration of the loop has been completed so it can stop recording. Conversely, when the interpreter exits a loop
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Listing 2. A looping versus a non-looping function. 

Listing 3. Evaluating a set! -expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

instead of continuing with another iteration, it includes the endLoop signal in the InterpreterStep . This enables the tracer to

stop tracing in case it had been tracing this loop, so as not to trace outside of the loop . We will call traces whose recording

is stopped via such an endLoop signal non-looping traces in contrast to looping traces which are terminated via a startLoop .

The difference between looping and non-looping traces is made more clear in Listing 2 . Note that in Scheme, loops are con-

structed by recursively calling a function. Every function call could therefore loop back to itself, so the interpreter sends an

startLoop at the start of every function call. Should the function indeed recursively call itself, as depicted in Listing 3 a, a

second startLoop will be sent and recording will be terminated. If no recursive call takes place, as is the case for Listing 3 b,

the interpreter sends an endLoop upon returning from the function call. Upon later execution of a non-looping trace, the

tracer will restart normal interpretation when it reaches the end of the trace. 

Note that in the basic model of STRAF , a nested loop will be inlined when tracing the outer loop. However, it would be

possible to extend STRAF such that this inlining is avoided, e.g., by aborting trace recording of an outer loop when an inner

loop is detected. 

Applying an action. An action is applied by the tracer via the interface’s applyAction function. This returns an Action-

Return structure, which can be: an actionStep , a guardFailed or an endTrace . Most actions result in an actionStep , which

wraps the new program state that is the result of applying the action on the input state. The purpose of guardFailed and

endTrace will become clear over the next sections. Note that, in this model, guards are also a kind of action. 

Guard instructions. As a trace represents a single execution, guards are inserted to ensure that a trace is only executed

when the conditions that lead to this specific path through the program are valid. Guards being actions themselves, when

applied via applyAction , they cause the interpreter to check some condition on this state and then either return some

actionStep in case the guard did not fail, or a guardFailed in case it did. The tracer detects this return value and takes action

accordingly. As the generation and placement of guards is specific to the interpreted language, they need to be created by

the interpreter during its processing of step requests and be included in the list of actions returned to the tracer via an

interpreterStep . 

Restarting interpretation. Upon failure of a guard during the execution of a trace, or upon reaching the end of a non-looping

trace, the tracer applies restart to the current program state and to a so-called restart point in order to restart normal

interpretation. A restart point includes the necessary information to construct the program state from where normal inter-

pretation must resume. Similar to actions and program states, the exact definition of a restart point intentionally depends

on the interpreters. For the CESK example, a restart point could correspond to the control field of a state and point to the

program expression that must now be evaluated; restart could then take this control and merge it with the other fields

of the CESK state. Note that the design of correct restart points may depend on not only the interpreter that is used, but

also on the optimizations employed by this interpreter, as the optimizations that are applied on a trace may have an effect

on the restart points inside this trace. Similar to the process of optimizing traces, designing correct restart points, as well as
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ensuring that any interference between the trace optimizations and the restart points is resolved, is hence a responsibility

of the interpreter developers. 

3.3. Transition rules 

Fig. 4 lists the formal semantics of the tracing machine and its interaction with the interpreter. We use this formalism to

concisely describe the working of STRAF . A reference implementation for these semantics is available at https://github.com/

mvdcamme/scala-am . 
Fig. 4. Transition rules between tracer-states. 

Please cite this article as: M. Vandercammen et al., A flexible framework for studying trace-based just-in-time compilation, 

Computer Languages, Systems & Structures (2017), http://dx.doi.org/10.1016/j.cl.2017.07.005 

https://github.com/mvdcamme/scala-am
http://dx.doi.org/10.1016/j.cl.2017.07.005


8 M. Vandercammen et al. / Computer Languages, Systems & Structures 0 0 0 (2017) 1–26 

ARTICLE IN PRESS 

JID: COMLAN [m3Gsc; August 3, 2017;10:48 ] 

Fig. 4. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These semantics center around how the TracerState of the tracing machine is updated as execution of the program pro-

ceeds. For each rule, the left-hand side of the arrow matches the current configuration of the TracerState , the right-hand

side denotes the updated state, and the part above the horizontal line describes the conditions that must be satisfied for

the original TracerState to transition such that it produces this updated TracerState . Note also that we use a helper function

applyAction ∗ which takes a program state and a sequence of actions as input and consecutively updates the program

state with each action in the sequence, assuming the action resulted in an actionStep . 

The helper function applyAction ∗ can be recursively defined as follows: 

t is an empty list 

applyAction* (s, t) = s 
applyActionEmpty 

applyAction (s, a ) = actionStep ( s ′ ) 
applyAction* (s, a : t) = applyAction* (s ′ , t) applyActionNonEmpty 

We also use the underscore character to match any field whose value is irrelevant. We use the notation T [ lbl ] to look

up the label lbl in the map T . If the map does not contain this label, it returns an undefined value. Similarly, we use the

notation T [ lbl �→ tn ] to either extend the map T with tn at lbl , if T did not yet contain lbl , or to replace the previous entry for

lbl with the value tn . 

Normal interpretation. The normal interpretation phase (NI) refers to the execution stage in which no trace is being recorded

or executed: the tracer only intervenes when the interpreter reaches the start of a loop, signaled by the interpreter via a

TracingSignal , at which point the tracer may either decide to start tracing or to start executing a previously recorded trace.

Fig. 4 a depicts the corresponding formalization. 

Rule Ni-ContinueInterpreting represents the most common case in which the interpreter either has not entered any

loop, and the interpreter hence returns False instead of an actual signal, or the interpreter has exited a loop and it sends the

endLoop tracing signal to indicate this. In both cases, the interpreter also returns the list of actions, t , that must be applied

to arrive at the new program state, s ′ . As no actions are recorded while in the NI phase, the new tracer state is simply a

copy of the old one, with the original program state replaced by the new one. 

In rules NI-StartTracing and NI-StartExecuting , the interpreter enters a loop that is identified by the label lbl . The

first sequence of actions, that are already part of the loop, consist of a 1 : ...: a n . In rule NI-StartTracing , no trace has been

recorded yet for this loop, so the tracer starts tracing it: it changes its execution phase to indicate that it is now trac-

ing, updates its tracer context by replacing the component representing its current trace and, as the sequence of actions

a : ...: a n is part of the loop to be traced, it immediately records this sequence. The actions a : ...: a n are also applied to
1 1 

Please cite this article as: M. Vandercammen et al., A flexible framework for studying trace-based just-in-time compilation, 

Computer Languages, Systems & Structures (2017), http://dx.doi.org/10.1016/j.cl.2017.07.005 

http://dx.doi.org/10.1016/j.cl.2017.07.005


M. Vandercammen et al. / Computer Languages, Systems & Structures 0 0 0 (2017) 1–26 9 

ARTICLE IN PRESS 

JID: COMLAN [m3Gsc; August 3, 2017;10:48 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arrive at the new program state s ′ . This component now becomes a trace node consisting of the label lbl of the loop that is

traced, the actions that were executed by the interpreter and that were carried back in the interpreterStep , as well as the

old program state s. s is saved so it can later be used as input for the optimize function, as described in Section 5 . 

In rule NI-StartExecuting , the interpreter also starts a new loop iteration, but the tracer context already contains a

trace for this loop: i.e., it has an entry for the loop’s label lbl . The tracer switches its execution phase to TE to indicate

it must execute this trace in the following step and the tracer replaces the trace node of the tracer state for the trace

node containing the trace for the label lbl . As execution must now switch to the trace, the actions carried back in the

interpreterStep are discarded entirely. 

Trace recording. In the trace recording phase (TR), all actions executed by the interpreter are recorded into a trace. Recording

stops when the interpreter sends either a startLoop signal or an endLoop signal carrying the same label as the trace being

recorded. Fig. 4 b lists the corresponding rules. 

Rule TR-ContinueTracing describes the situation where the interpreter has either not entered or exited a loop, or it has

entered or exited a loop different from the one currently being traced, which is indicated by respectively the startLoop or

endLoop carrying a label different from the label of the loop being traced. In any case, the tracer records the interpreter’s

actions by appending the list of actions a 1 : ...: a n returned from the interpreter to the back of the trace. The program state

is also replaced as the tracing process remains otherwise unaffected, the tracer continues tracing. 

In rule TR-SameStart , the interpreter reaches the start of a loop, but this loop has the same label as the one currently

being traced. This means, one full iteration of the loop is completed and tracing can stop. The trace is then optimized,

making use of the program state that was saved when starting the recording of this trace, and stored in the tracer context.

The actions t ′ carried back in the interpreterStep are the same actions as those that were recorded at the beginning of the

trace and are hence not recorded in the trace. Execution then continues by executing this optimized trace. Rule TR-SameEnd

describes the interpreter exiting a loop that is being traced, instead of continuing with its next iteration. The interpreter

sends an endLoop signal carrying the loop’s label and a restart point rp . In response, the tracer appends the special end-

trace action et rp to the end of the trace. The semantics of this action are defined in the ApplyActionEndTrace rule: when

this action is executed via the applyAction function, applyAction always returns an endTrace structure carrying the

communicated restart point. This restart point can then be used to restart normal interpretation from the point of the end

of this loop. 

Trace execution. In the trace execution phase (TE), the tracer is executing a previously recorded trace. Fig. 4 c lists the corre-

sponding rules. Note that a guard instruction is a normal action. 

Rule TE-NoSignal describes the case where a non-guard action is applied, or a guard action that did not fail: an ac-

tion from the trace is applied on the current program state, by calling applyAction , and an actionStep is returned that

contains the resulting program state. The tracer then continues by swapping its program state and moving on to the next

action. In effect, this means that execution of each consecutive action in the trace happens via the interpreter. 

Rule TE-GuardFailure describes a guard failure. Execution switches back to normal interpretation, restarting from the

point that corresponds with the guard failure. This point is determined by applying restart on the restart point given by

the guard and the current program state, as described in Section 3.2 . 

In rule TE-TraceEnd , the end of a non-looping trace has been reached. The tracer restarts normal interpretation from

some program point, determined by calling the restart function on the current program state and the restart point asso-

ciated with the end of the trace. 

Rule TE-RestartLoop handles reaching the end of a regular, looping trace, which means one full iteration of the loop is

completed. The trace is restarted by looking up the full trace belonging to the label and replacing the current empty one. 

3.4. Difference with meta-tracing 

Meta-tracing compilers, such as the RPython framework, do not directly trace the execution of a user-program, but rather

trace the execution of a language interpreter, while this interpreter executes the user-program [4] . By annotating their inter-

preters with certain hints [5] , e.g., for detection of loops in the user-program, language developers can guide tracing and

optimization of traces. The traces are then heavily optimized to produce efficient machine code corresponding to the rel-

evant operations performed by the user program. This enables the interpreter’s implementers to employ the benefits of

trace-based compilation without having to create their own dedicated tracing compiler. Furthermore, this makes it possible

for developers to rapidly create interpreters with an acceptable performance level [16] . 

In STRAF , the tracing interface described in Section 3.2 enables developers to compose STRAF with any interpreter satis-

fying this interface. The purpose of the tracing interface is also similar to the purpose of the hints provided in the language

interpreters for the RPython framework. In these respects, STRAF resembles meta-tracing compilation frameworks such as

the RPython framework. However, although STRAF ’s tracing interface and RPython’s hints share the same purpose, their

implementation and the extent to which both are used are significantly different. 

The extent of the tracing interface is far greater than that of the RPython hints: the tracing interface not only enables

detection of loops, but is also used to generate all instructions, including guard instructions, that must be recorded into the

trace. This implies that, unlike meta-tracing, traces are interpreter-specific: instructions are not generated by the tracer but
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Fig. 5. The difference between the STRAF framework and a meta-tracing framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the interpreter. As a consequence, the semantics of these instructions are generally opaque to the tracer. Optimization

of traces must therefore be performed by the interpreter, as opposed to the tracing compiler in the RPython framework,

implying that a developer of an interpreter is also responsible for the optimization of traces. 

Fig. 5 illustrates the difference between the STRAF framework and a general meta-tracing compiler, such as the RPython

framework. Whereas in meta-tracing, the language interpreter is generally described as running on top of the tracing com-

piler, in STRAF , the interpreter runs on the same level as the tracer, with the tracer delegating regular program execution

to the interpreter whenever required. Note also that the traces generated by STRAF are not machine code, but that they are

optimized sequences of instructions to be executed by the interpreter. 

4. Evaluating STRAF’s generality 

The strength of STRAF is its flexibility: it is general with respect to the set of interpreters that can be used, and it is

extensible , i.e., the framework itself can be extended with new features. Our evaluation of STRAF therefore focuses on eval-

uating these two aspects instead of, e.g., performance. Sections 5 and 6 evaluate STRAF ’s extensibility. This section demon-

strates the generality of STRAF by constructing interpreters for two different Scheme-like languages and integrating them

into STRAF . This indicates that a variety of interpreters can be built that are in correspondence with the interface specified

in Section 3.2 and, therefore, that STRAF does indeed accept multiple interpreters. At the same time, the presentation of

these interpreters serves as a guide for how other suitable interpreters may be built. 

4.1. Simple Scheme interpreter 

The first interpreter implements a non-trivial subset of the Scheme language. The interpreter is modeled after a variant of

a CESK-machine [12] and hence satisfies the first requirement of our framework to model the interpreter as a state machine

operating on some program state. Concretely, the program state consists of the standard control (C), environment (E), store

(S), and continuation stack (K) components, as well as a value stack and value register. These last two components simplify

implementing various transitions: the value register is used to store the value of the last evaluated subexpression, while the

value stack is used to temporarily save the current environment as well as already evaluated arguments in a function call. 

4.1.1. Evaluating expressions 

The interpreter determines how it should transition based on the content of its control component, which can either be

an expression to be evaluated or a continuation to be followed. The step function of the interpreter checks the control

and either calls stepEval with the expression to be evaluated or it calls stepKont with the corresponding continuation

frame and the last value v that was evaluated. Both functions return an interpreterStep , as specified in the declaration of

step in Section 3.2 . Listing 3 exemplifies how an expression of the form (set! variable exp) is evaluated via the,

partially elided, stepEval function. 

In the case of a set! expression, the returned interpreterStep includes an ActionSaveEnv() , for saving the current

environment on the value stack, and an ActionEvalPush(exp, FrameSet(variable))) , for simultaneously replac- 

ing the control component by the expression exp , as its value will have to be computed next, and pushing the continuation

FrameSet on the continuation stack. Finally, the SignalFalse component indicates that the evaluation of a set! ex-

pression cannot trigger the beginning nor the end of a loop directly. 

The returned actions are consecutively applied via the applyAction function. In the case of the Scheme interpreter,

the actions are data structures to be interpreted. For example, an ActionEvalPush is handled by returning an actionStep

(which is one possible ActionReturn ) containing a copy of the input program state with the continuation pushed onto the

stack kstack and the control component replaced by the expression exp . 
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Listing 4. A factorial function. 

Listing 5. Evaluating a function application. 

Listing 6. Completing a function application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This example demonstrates how interpretation of a program can be decomposed into selecting which actions to use

( step ) and applying them ( applyAction ). 

4.1.2. Loops 

This subset of Scheme does not offer iterative looping constructs such as for . Loops in an execution therefore stem from

recursion, as is the case for the factorial function depicted in Listing 4 . 

Since the interpreter cannot generally know whether a function is recursive, it signals the possible start of a loop during

the evaluation of every function application. Function application starts when all of its arguments are evaluated; arguments

are evaluated by consecutively pushing and popping FrameFunCallArgs continuation frames, as depicted in Listing 5 .

Each FrameFunCallArgs contains a reference to the evaluated operator, i.e., the function to be applied, and the list of ar-

guments yet to be evaluated. If there is still an argument arg left to be evaluated, stepKont returns an ActionEvalPush
to evaluate this argument next. If no arguments remain, the interpreter starts evaluating the function’s body: it moves to

the first expression of the function’s body and it pushes a FrameFunBody to evaluate the rest of the body afterwards.

Since this is the proper start of the function application, the interpreter passes a startLoop tracing signal along in the in-

terpreterStep . The label of the signal corresponds to the AST of the body of the function to be applied. If this signal causes

the tracer to start recording, tracing continues until the interpreter reaches the start of this function again, as this indicates

that one iteration of the loop has been completed. 

4.1.3. Non-looping traces 

Listing 6 depicts how the endLoop tracing signal is sent when the interpreter reaches the end of a function application,

i.e., when the list of expressions still to be evaluated in the function’s body is Nil , while handling a FrameFunBody
continuation frame. The label used in this signal is once more the full AST of the function’s body, which was passed via the

FrameFunBody continuation. As specified in Section 3.3 , an endLoop signal must carry a restart point for restarting normal

interpretation after completing the execution of the non-looping trace, so a RestartTraceEnded structure is included in

the signal. 

4.1.4. Guards 

Listing 7 shows how guard instructions are inserted into the trace in STRAF . The listing depicts the evaluation of if -
expressions, at the point at which the predicate has already been evaluated. 

The interpreter checks the value of the evaluated predicate and determines whether to evaluate the consequence or

the alternative branch. It adds a guard instruction that corresponds to the taken branch: if the condition was true , the

interpreter returns ActionGuardTrue and passes a reference to the other branch, i.e., the branch alt that was not taken.
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Listing 7. Continuing the evaluation of an if-expression. 

Listing 8. Handling an ActionGuardTrue . 

Listing 9. Partial implementation of the restart function. 

Listing 10. Example of a non-deterministic program [1, Chapter 4] . 

 

 

 

 

 

 

 

 

 

 

Listing 8 shows how such an ActionGuardTrue is handled. When this guard instruction is reached during the execu-

tion of the trace, the value of the condition is stored in the value register, similar to how the condition’s value was stored

there during the recording of the trace. The value register is therefore checked: if the value was again true , nothing needs

to be done so an actionStep is returned. Otherwise, the guard has failed so a guardFailed is returned. 

4.1.5. Restarting 

Listing 9 depicts part of the interpreter’s implementation of the interface’s restart function, for generating new pro-

gram states based on a restart point and the current program state. If the restart point is a RestartGuardIfFailed (cf.

Listing 7 ), it contains a reference to the branch that was not taken during the recording of the trace, and restart must

only generate a copy of the input program state with its control component replaced by the given branch. 

The implementation of guards and the restart function demonstrate that it is feasible to provide the functionality of

trace guards by including a restart point structure and a restart function. 

4.2. Non-deterministic ambeval interpreter 

To further demonstrate the generality of STRAF , we instantiate it with a second interpreter: an implementation for Abel-

son and Sussman’s non-deterministic ambeval [1, Chapter 4] . 

4.2.1. Introduction 

We first exemplify the non-determinism supported by this interpreter before discussing its implementation. Listing 10

shows a function that, upon exhaustive backtracking, returns all pairs of elements from two lists of which the sum is prime.
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Fig. 6. Undoing actions after execution has failed. 

Listing 11. Backtracking out of an function application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It relies on the predefined function an-element-of which selects an element from the given list, and returns another

element upon backtracking. 

Ambiguous programs make use of a primitive amb expression, which selects a value among its arguments, creating a

choice point in the execution of the program. The an-element-of function passes its input list to an amb expression to

select some element from this list. require evaluates the given prime? predicate and causes evaluation of the program

to fail when the predicate is false. When the program fails, execution backtracks to the last choice point: in this case, to

the point where a value for the variable b was chosen. This causes b to be bound to a new element of the list. When no

more elements remain, execution backtracks further to the definition of a where the process is repeated. The program can

therefore be thought of as non-deterministic ; any possible value is considered for each ambiguous variable but only those

values that satisfy all requirements are eventually used. 

4.2.2. Implementation 

The ambeval interpreter is challenging due to the possible interactions between backtracking and tracing. Its implementa-

tion is modeled once more after a CESK machine, with the exception that a separate failure continuation stack complements

the regular continuation stack in the interpreter states. When the interpreter encounters an amb -expression, it pushes a

FrameAmb continuation on this new stack. When execution fails, the interpreter pops a continuation from this same stack

such that it can continue from the last amb -expression with another value. 

To restart execution from the last amb -expression, the interpreter must undo any changes made in the meantime. For

instance, variables that have since been defined should be removed from the environment. To enable undoing such actions,

for each action that is applied, an opposite action is wrapped in a FrameUndoAction and pushed onto the failure con-

tinuation stack, as illustrated by Fig. 6 . When a failure is triggered, the interpreter executes the undo-actions saved on the

failure stack, thereby restoring the program state from the time at which the amb -expression it is restarting from was eval-

uated. Eventually, the interpreter will pop the FrameAmb continuation from the stack, at which point stack rewinding is

complete. 

In general, adapting the interpreter such that it saves these undo-actions on the failure continuation stack does not

interfere with tracing. The ambeval interpreter traces functions in a way that is identical to the previous interpreter: by

sending a startLoop signal to the tracer upon entering the body of a function and sending an endLoop signal upon its exit.

However, care must be taken during stack rewinding when a function is being traced. If the execution were to backtrack

behind the function call that is being traced , tracing should be aborted as this situation is similar to exiting from a function

before the function loops. Listing 11 exemplifies how undo-actions are applied and how the endLoop signal is sent. 
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Section 4.1.2 explained that the interpreter pushes a FrameFunBody onto the regular continuation stack when starting

a function application. When this continuation is therefore popped again while backtracking, the interpreter has reached the

point in the program at which it started evaluating the function application. If the tracer is tracing the function application

that it is now returning from, tracing should stop here, as it would backtrack out of the function otherwise. The interpreter

therefore sends an endLoop signal with a restart point of the form RestartTraceEnded . 
No further changes need to be made to this Ambeval interpreter to make it satisfy the required interface. 

4.3. Conclusion 

The interpreters presented here demonstrate the variety of interpreters that can be plugged into STRAF , and exemplify

executable implementations of the structures and signals described in Section 3.2 . Together, they serve to demonstrate the

generality of STRAF : its tracer can be reused to construct runtimes for different languages. 

5. Optimizing traces 

We now provide a first demonstration of STRAF ’s extensibility by using its optimize hook to implement a set of opti-

mizations that are common in the literature. For brevity, we give only a high-level description of the added optimizations,

but their implementation is available online. 2 The traces on which we apply these optimizations are recorded by the simple

Scheme runtime presented in Section 4.1 . 

Optimization of traces is encoded in the interpreter’s interface via the optimize function, which takes a trace as in-

put as well as the program state that was observed by the tracing machine when it started recording the given trace. As

the application of actions is deterministic, 3 saving the program state that was observed at the start of the trace recording

enables the optimizer to reconstruct, if necessary, each program state as it could have been observed while applying the

corresponding actions during the recording of the trace. These program states provide the optimizations with all available

concrete information, such as the contents of the store and the environment and hence the values that were observed for

all variables in the program. The states can be discarded after completing the optimizations. 

We implemented six different optimizations. Four of these represent well-known and widely used optimizations in the

domain of (trace-based) JIT compilation: 

Constant folding (O1) [9] Applications of arithmetic primitives that only use constants as arguments are replaced by the

resulting value. 

Arithmetic operations type specialization (O2) [7] Applications of generic arithmetic primitives, e.g., a generic plus op-

eration, are optimistically replaced by the equivalent type-specialized operation, e.g., a plus operation specialized for

floating point operands, if it was observed that all of its arguments belong to the same type. A guard is inserted to

verify whether the types of the arguments remain the same at run time. 

Variable folding (O3) The set of all free variables in a trace, i.e., the set of variables that are neither defined nor assigned

to inside the trace, is computed. The trace is extended with a loop-invariant header containing, for each variable, an

action for saving the current value of the variable in a specified register. Each read instance of these variables is then

replaced by an action for looking up this variable in the register, thereby avoiding a more costly double lookup of the

variable through the environment and the store. 

Action merging (O4) Some actions that are likely to appear immediately behind each other in a trace are merged.

Applying the merged action then has the same result as applying both actions separately. Increasing the granularity

of actions decreases the total time spent in dispatching actions. For example, an action for looking up a value could in

practice likely be followed by an action for popping a continuation from the continuation stack; these actions could

hence be merged into one action to perform both operations. The effect of the granularity of opcodes in traces was

previously described in [8] . 

In addition, we implemented two optimizations that respectively remove redundant saves and restores of the environ-

ment ( O5 ), and pushes and pops of the continuation stack ( O6 ). 

Listing 12 demonstrates how the type specialization optimization, can be implemented and how it uses the starting pro-

gram state to compute the state that would have been recorded for each action in the trace. This state is then used to

retrieve the operands of arithmetic operations. The optimization then checks whether each operand is of the same type and

if so replaces the generic operation by its equivalent type-specialized operation instead. 

The actual optimize function pipelines each of these six optimizations, passing along its input program start state

to each individual optimization that requires it. The purpose of adding these optimizations is not to provide a performant

execution environment for Scheme, but to demonstrate that STRAF is sufficiently extensible to support them. The optimize
hook with its two input parameters sufficed to implement all six optimizations, without requiring changes to the framework

itself. All implementations together, moreover, amount to a mere 500 lines of Scala code. 
2 https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/tracing/SchemeTraceOptimizer.scala . 
3 In practice, there are some instances of non-determinism, e.g., random , so the framework includes additional information for some actions while 

recording a trace. 
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Listing 12. Pseudo-implementation of type specialization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Benchmark results 

To illustrate the effectiveness of the listed optimizations, we include Fig. 7 , depicting the median time required, with

the 95% confidence intervals included, for STRAF to execute a set of benchmarks when no optimizations are applied. These

results serve as the baseline for Fig. 8 , which depicts the median execution time, normalized with respect to this baseline,

of executing the same benchmarks, first with each of the six optimizations enabled individually (O1-6), and finally with all

optimizations enabled (All). 

The benchmarks were executed on an Intel I7-4870HQ CPU at 2.50 GHz with 6 MB cache and 16 GB RAM, running 64bit

OS X 10.11.4 and Scala 2.11.7 on the Java Hotspot VM 25.92. Each benchmark is executed 30 times in a separate JVM. Mea-

surements are taken after JVM warmup was completed: we observed stable measurements after two iterations of execution

of the program. The median of the results and its 95%-confidence interval are reported. While executing these benchmarks,

we used the tracing compilation features described in Section 6 by defining a tracing threshold of 10 and enabling guard

tracing. 

The results show that the first four optimizations generally do not provide significant performance improvements. Re-

moving redundant saves and restores of the environment (O5) and removing redundant pushes and pops of continuation

frames (O6), do offer a small performance increase in some cases. Notably, the collatz benchmark is significantly slower

when applying these two optimizations. This benchmark produces one large trace of which the execution always leads to a

guard failure quickly. Thus, the overhead of applying both optimizations on this trace is never recouped, as execution of the

trace is quickly aborted. 

Fig. 9 depicts the total number of traces that were recorded during the execution of each benchmark. This number

includes both regular traces and traces produced after a guard failure has occurred (see Section 6.2 ). Note that both the

trace recording and optimization process as well as the benchmarks themselves are completely deterministic. The number

of recorded traces therefore does not vary over time. Also note the high number of (guard) traces produced by the col-

latz benchmark indicating that traces are quickly aborted due to failing guards, which in turn leads to more traces being

recorded. 

Regardless of their effectiveness, adding these optimizations to STRAF indicates that the framework is extensible, and

that optimizations can be implemented by using the optimize hook. 
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Fig. 7. Median execution time for the baseline execution (no optimizations applied). 
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Fig. 8. Normalized execution times with each of the six optimizations applied individually (O1-6), and with all optimizations applied (All). 
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5.2. Additional performance metrics 

Since we experiment with a highly conceptualized and thus comparably inefficient interpreter, the optimizations are not

as effective as they are in optimized systems. Inspired by Brunthaler [6] , we thus also measure their effects on a different

set of metrics beside performance and we compare with the baseline, unoptimized execution of the benchmarks. This gives

us a notion of the effect of the optimizations on the traces. 

1. The effectiveness of the action merging optimization ( O4 ), the removal of redundant environment saves and restores

( O5 ), as well as the removal of redundant continuation pushes and pops ( O6 ), is measured by total length of the gener-

ated traces. For brevity, we only report the combination of the three optimizations. 

2. The type specialization ( O2 ) optimizations is measured by the number of non-type specialized arithmetic operations that

are applied. 

3. The variable folding optimization ( O3 ) is measured by the number of variable lookups. 

Note that all figures depicting the baseline results use a log-scaled y -axis. 

5.2.1. Trace lengths 

Fig. 10 b illustrates that the action merging optimization, the removal of redundant environment saves and restores and

the removal of redundant continuation pushes and pops is effective at reducing the length of traces by at least 50% in all

cases. 

5.2.2. Generic arithmetic operations 

Fig. 11 depicts the total number of generic, non-type-specialized arithmetic operations that are executed during the to-

tal lifetime of each program, both while executing a trace or while interpreting the program. When enabling the type-

specialization optimization ( Fig. 11 b) the number of generic operations that are executed in the ack, count, loop2, mut-rec

and rotate programs, drops down to almost zero, as all arithmetic operations that take place in a trace are successfully

type-specialized. The only generic arithmetic operations left for these benchmarks are those that are executed outside of a

trace. In the case of the fact, fib, gcipd and widen benchmarks, the number of generic arithmetic operations also signifi-

cantly decreases. As the dderiv benchmark does not use any arithmetic operations inside a traced part of the program, the

optimization is ineffective. 

5.2.3. Variable lookups 

Fig. 12 depicts the total number of times a variable is looked up during the execution of each program, again both while

executing a trace and while interpreting the program. As the variable folding optimization avoids lookups of free variables

in the trace by placing these variables in read-only registers before executing the trace, we expect the number of variable

lookups to drop significantly, depending on the amount of free variables. As shown in Fig. 12 b, the number of variable

lookups indeed significantly drops across all benchmarks, from 13% for the collatz benchmark, to 67% for the fact benchmark.
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Fig. 10. Measuring the total length of all, combined traces. 

 

5.2.4. Constant folding 

In the case of this limited set of benchmarks, the constant folding optimization has no effect on any benchmark, as none

of the programs contain any arithmetic expression that only makes use of constant values. 
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Fig. 11. Measuring the number of generic arithmetic operations. 

 

 

 

 

6. Evaluating STRAF’s adaptability 

This section evaluates STRAF ’s extensibility by adding two mechanisms that are widely used in trace-based JIT compilers.

Specifically, we add a heuristic for detecting hot loops and a mechanism for starting traces from guard failures. These mech-

anisms build on the framework itself, so we describe them as variations on the semantics presented in Section 3 , although

they are directly included in our implementation. By demonstrating how STRAF can be extended with these features, we
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Fig. 12. Measuring the total number of variable lookups. 

 

 

 

provide an intuition of the effort for further extending or adapting STRAF . As we will show, including these mechanisms

requires only minimal changes. 

6.1. Hot loop detection 

Tracing compilation is most effective when applied to the parts where a program spends most of its time (i.e., the hot

parts) [14] ; optimizing rarely executed parts can reduce overall performance, because of the time it takes to do the tracing

and optimizations [13] . 
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Fig. 13. The updated tracing machine for hot loop detection. 

Fig. 14. The updated semantics of the normal interpretation phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In STRAF , tracing of a loop starts immediately once this loop is executed for the first time. Although this is adequate for

a basic implementation, it does not correspond well to the state-of-the-practice in tracing JIT compilers. Therefore, the first

evaluation of the adaptability of STRAF is a heuristic to detect hot loops in a program’s execution. A program loop is called

“hot” once it has been completed at least a fixed amount of times, i.e., once a threshold has been exceeded. This type of hot

loop detection is used for instance in HotpathVM [13] , TraceMonkey [14] , and SPUR [3] . 

6.1.1. Extending the tracing machine 

To detect hot loops, we extend the tracing machine to count the number of iterations that have been completed for each

loop, as shown in Fig. 13 . To this end, our extension implements a LabelCounterMap that associates a trace label to a counter,

similar to how TraceNodeMap associates a label to a trace node. When the interpreter enters a loop, i.e., when it sends the

startLoop signal, the counter for the loop’s label is updated. 

6.1.2. Semantics 

To add hot loop detection, we need to adapt the tracing semantics. Specifically, we need to change how tracing is started ,

i.e., how we transition from the normal interpretation phase of trace execution to the trace recording phase. The execution

of traces and tracing itself remain unchanged. We therefore only have to update the rules for normal interpretation by the

tracing machine (cf. Fig. 14 ). 

In rule NI-FirstEncounter , a loop carrying a label is entered that has not yet been seen before. Hence, no corresponding

entry in the list of label counters exists yet. The tracing machine therefore creates such a label counter, adds it to the

list, and continues interpretation. Rule NI-FirstEncounter specifies the case in which a loop is entered with a label that

is not yet hot; its counter is still below the threshold that is required to start tracing. The label’s counter is updated and

interpretation continues as before. In rule NI-LoopHot , a label is encountered that has become hot, causing the tracing
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Fig. 15. The tracing diagram updated with guard tracing semantics. 

Fig. 16. The updated tracing machine for guard tracing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

machine to start tracing. Note that rules Ni-ContinueInterpreting and NI-StartExecuting have remained unchanged and 

are therefore still in effect. 

6.2. Guard tracing 

Guard tracing mitigates the performance penalties of guard failures. Normally, a guard failure aborts the execution of a

trace and normal interpretation is restarted; the compiled and heavily-optimized trace is abandoned to interpret unopti-

mized code. Additionally, returning back to the interpreter is a slow operation on its own [2,8] . 

Guard tracing enables tracing from the point of a guard failure. Whenever the guard fails again, execution is switched

directly to the new trace instead of restarting interpretation. Guard tracing is used for instance by RPython [18] , Dynamo [2] ,

and SPUR [3] . In practice, guard tracing is only started when the guard failed often enough. For simplicity, we start tracing

immediately after a guard failure. Although suboptimal in practice, this is adequate for a basic implementation of guard

tracing. 

We call a trace recorded for a guard failure a guard trace , and a trace recorded from a loop a label trace . When a guard

failed and a guard trace is recorded, we say the trace with the failing guard spawned the guard trace. 

Fig. 15 depicts how the tracing state diagram presented in Fig. 2 is updated to accommodate these changes to the tracing

model: the edge corresponding with a guard failure in a trace in the original diagram has been replaced with two edges,

depicted in red, corresponding with the cases where a guard failure leads to either the recording of a new guard trace, or

to the execution of such a trace. 

6.2.1. Extending the tracing machine 

For guard tracing, we first redefine how traces are identified. Originally, traces could be identified only through their

label. Guard traces however can share labels, namely the label of the trace that spawned the guard trace. To once again

uniquely identify all traces, we use trace identifiers or trace ids. Fig. 16 formalizes these trace ids. A label trace id ltid just

wraps a label. A guard trace id gtid carries both a label and a guard identifier uniquely representing the failing guard. We

also change TraceNodeMap and LabelCounterMap so that they map these trace ids, instead of the labels, to trace nodes and

counters respectively. 

As we build this feature on top of the previous extension, hot loop detection, all other parts of the tracing machine are

identical to that of Section 6.1 . Language developers must, however, provide a mechanism of their choosing for identifying

individual guard instructions. 
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Fig. 17. Transition rules for enabling guard tracing. 

 

 

 

 

 

 

 

 

 

 

6.2.2. Guard instructions 

Making guards carry an identifier can be accomplished by making the identifier a parameter of the guard instruction.

We create this identifier alongside the guard itself; i.e., when the guard is inserted into a trace by the tracer during trace

recording. When a guardFailed signal is returned after the execution of an action, we include the guard identifier of the

guard that just failed: 

guard Failed ( RestartP oint , GuardID ) 

6.2.3. Semantics 

We now describe how the semantics of the tracing machine need to be updated. As guard tracing has no effect on the

normal interpretation of the program, we only alter the evaluation rules for trace recording and trace execution as depicted

by Fig. 17 . 

Trace recording. Recording a guard trace is identical to recording a label trace, up to the level of stopping their recording.

Recording is stopped when the interpreter sends a startLoop or endLoop signal carrying the label of the trace that initially

spawned the guard trace that is now being recorded. The updated trace recording rules are therefore almost identical to the

old rules, except that they now account for the fact that a trace identifier can take two different forms. For brevity’s sake

we fuse these forms together by defining a function label which, given a trace id, extracts the label used in that trace id.

Labels are components of both kinds of trace ids, so retrieving the label of a trace id is always possible. 
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Only rule TR-SameStart requires some adaptation. Recall that once recording of a trace is finished with a startLoop

signal, execution of the new trace is started immediately. This still holds true after the addition of guard traces, but finishing

the recording of a guard trace causes the tracer to start executing the label trace that initially spawned the guard trace,

instead of the guard trace itself. 

Rules TR-ContinueTracing and TR-SameEnd remain the same, except that the label of the recorded trace is first extracted

via the label function before it is compared with the label used in the startLoop or endLoop signal. 

Trace execution. The trace execution phase must be updated to account for the novel handling of guard failures. 

When a guard fails, the tracer must check whether a guard trace for the corresponding guard identifier already exists.

Rule NI-GuardTraceExists states that if a guard trace exists, the tracer swaps the trace that is currently being executed for

this guard trace. Rule NI-RecordGuardTrace expresses that if there is no existing trace, the tracer starts tracing the guard.

The guard trace id is constructed by combining the label of the trace being executed with the guard identifier carried back

in the guardFailed signal. The tracer restarts interpretation by constructing a new program state from the restart point

carried back in the guard and the current program state. 

Note that we use the generic term tid to refer to the trace id of a trace node. It is entirely possible that a guard failure

during the execution of a guard trace triggers the tracing machine to start recording a guard trace for that guard trace . In

that case, the label of the new trace’s id and the id of the trace that was aborted both equal the label of the label trace that

spawned the initial guard trace. 

Rule NI-RestartLoop’ specifies that if the tracer reaches the end of a looping trace, no matter which kind of trace is

being executed, the tracer restarts the loop by finding the label trace node associated to the label of the trace currently

being executed. In other words, if the tracer has reached the end of a looping guard trace, it does not restart this guard

trace itself, but rather the label trace that initially spawned this guard trace. Rules TE-NoSignal and TE-TraceEnd remain

unchanged. 

6.3. Conclusion 

We have extended the implementation and the formal semantics of STRAF with a means to detect hot loops and with the

capability to start recording traces from guard failures. Although our extensions correspond to straightforward incarnations

of these techniques, they are testament to the flexibility of STRAF . This is important given its purpose as an enabler of

future studies of various tracing compilation features. The changes required for these extensions are minimal, suggesting

that similar features might be added without extensive modifications, too. 

7. Discussion 

STRAF aims to be a minimalistic, but extensible framework for rapid prototyping of various techniques related to trace-

based JIT compilation —such as program analysis and trace optimization. Experiments that have been proven feasible in our

framework, can then be transposed to frameworks such as the the Mu Micro VM [22] to evaluate their performance in an

environment that more closely resembles real-world runtimes. 

As an example for such an experiment, we plan to investigate whether and how dynamic compilation could benefit

from advanced static knowledge of the program. We hypothesize that optimizations could benefit from extending their

scope of available information with data that lies beyond the boundaries of the trace. To this end, STRAF is integrated

into scala-am [19] , a Scala abstract interpretation framework using the AAM methodology [20] which enables an abstract

machine, e.g., a CESK machine [12] , for a language to double as both a concrete interpreter and as a static analyzer for this

language. We can therefore reuse the same abstract machine for performing static analysis of a program, and for plugging

the abstract machine in as a concrete interpreter into STRAF . As an abstract machine always models a state machine, the

abstract machine already satisfies one of the requirements for interpreters that were outlined in Section 3.2 . 

Sections 5 and 6 demonstrated how new features, respectively an optimization mechanism and two additional tracing

mechanisms, can be added to the compiler. Although we cannot predict the extent of the changes that will be required for

other extensions, they were minimal for the hot loop detection and guard tracing techniques. 

However, STRAF also has its limitations. Tracing can only be applied on interpreters that are state-based and which satisfy

the interface defined in Section 3.2 . Much of the responsibility for the resulting compiler’s correctness lies with the language

implementers. They are required to build an interpreter that sends the correct tracing signals to the tracer at the right times.

This is necessary for generating the proper guards and for correctly restarting normal interpretation after a guard failure. 

Furthermore, with our chosen design of giving maximal flexibility to the interpreters on how state and behavior are im-

plemented, optimizations are currently bound to a specific interpreter. While similar interpreters could reuse optimizations,

this is currently not possible in general. 

Finally, in its current state, STRAF itself does not feature a native code compiler. While this avoids a significant amount

of complexity, it also restricts experimentation to a conceptual level. We argue that this is indeed by design and simplifies

prototyping of ideas and their early evaluation. 
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8. Related work 

We described an early formalization and Scheme implementation of STRAF in prior work [21] . This paper refines that

formalization, provides a reference implementation in Scala that is integrated into an existing framework for executing

abstract machines using the AAM methodology [19] , and demonstrates the frameworks’ generality and extensibility. The

former by composing it with two different interpreters, and the latter by adding six optimizations, a hot loop detection

heuristic, and a guard tracing mechanism. 

As related work, we consider the RPython, Truffle, and SPUR meta-compilation frameworks and formal models meant to

investigate trace-based JIT compilation. 

8.1. RPython and Truffle 

Section 3.4 already compared STRAF and the RPython framework with respect to the difference to meta-tracing. Although

RPython has some similarity to our model, its purpose is to create performant interpreters with JIT facilities. Our framework

is aimed to study tracing compilation in general. 

Similar to the RPython framework, the Truffle framework facilitates the development of performant abstract-syntax-tree

(AST) interpreters [23] . It provides mechanisms for dynamic self-optimization of a program’s AST structure. Furthermore, it

uses the Graal compiler [17] to partially evaluate the ASTs at run time and then generate efficient native code for a modified

version of Java’s HotSpot VM [24] . 

SPUR [3] is a trace-based JIT compiler for Microsoft’s Common Intermediate Language (CIL) [11] , the intermediate lan-

guage to which languages such as C# and VisualBasic are compiled. By first compiling these languages to a common inter-

mediate language and then using SPUR to execute this intermediate language, only one JIT compiler has to be constructed

to serve all languages that are translatable to CIL. In their evaluation, Bebenita et al. [3] demonstrated that compiling a

Javascript program to CIL and subsequently executing the compiled code via SPUR achieves performance on par with a

dedicated trace-based JIT compiler for Javascript. 

While RPython, Truffle, and SPUR can all be used to investigate the effect of JIT compilation on user programs, one is

limited in further experimentation. For instance, to study the effect of JIT compilation features, one has to adapt a highly

complex framework that has grown over many years and is laced with performance compromises, making certain exper-

iments hard, if not infeasible. In contrast, STRAF is designed for this purpose. Furthermore, we also provide a complete

formal description of our framework to support precise reasoning over such experiments. 

8.2. Formalized tracing models 

Guo and Palsberg [15] and Dissegna et al. [10] set out to formally prove the soundness of certain optimizations on traces.

To this end, they developed small, formal models of trace-based compilation. Although they are successful in proving sound-

ness of optimizations and have delivered rather small tracing models, both models are tightly coupled to one particular

execution semantics, i.e., one particular interpreter for some language. Any changes to the execution semantics also require

extensive changes to the model of the tracing compiler itself. For the first model, detailed execution semantics are included,

but for every rule in these semantics, a near-identical copy of the rule has to be specified: the first rule expresses how

execution of an input program should proceed in the case the compiler is not tracing, while the second rule states how this

should be done when a trace is being recorded. The second model suffers from similar disadvantages, in that their tracing

compiler is difficult to adapt. 

9. Conclusion and future work 

STRAF is a framework for experimenting with trace-based JIT compilation for interpreters. It is designed to study the

various effects tracing compilation can have on the execution of programs. The framework is flexible both in the wide

variety of interpreters it supports, and in the extensions to the basic tracing scheme that it supports. 

We evaluated the first aspect with two interpreters and show how they can be plugged into STRAF . The first interpreter is

for an applicative Scheme dialect, while the second one is an ambeval evaluator, which uses back tracking. This demonstrates

that a wide range of languages can be supported. 

The second aspect is evaluated by both extending an interpreter with an optimization mechanism and by adapting

STRAF ’s semantics with extensions for two common features: a loop hotness detection mechanism to improve the selec-

tion of loops to trace, and a guard tracing mechanism to mitigate the performance penalty of aborting the execution of a

trace. Although our extensions correspond to a naive implementation of these mechanisms, they indicate that researchers

who wish to include additional mechanisms need only make minimal changes to the basic STRAF framework. 

In future work, we wish to investigate how to employ static analyses to further improve dynamic compilation facilities.

To this end, we integrated STRAF in a larger framework for developing static analyses via abstract interpretation. 
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