
Implementing a Performant Scheme Interpreter for the

Web in asm.js

Noah Van Esa, Quentin Stievenarta, Jens Nicolaya, Theo D’Hondta, Coen
De Roovera

aSoftware Languages Lab, Vrije Universiteit Brussel, Belgium,
{noahves,qstieven,jnicolay,tjdhondt,cderoove}@vub.ac.be

Abstract

This paper presents the implementation of an efficient interpreter for a Scheme-
like language using manually written asm.js code. The asm.js specification
defines an optimizable subset of JavaScript which has already served well
as a compilation target for web applications where performance is critical.
However, its usage as a human-writable language that can be integrated into
existing projects to improve performance has remained largely unexplored.
We therefore apply this strategy to optimize the implementation of an in-
terpreter. We also discuss the feasibility of this approach, as writing asm.js
by hand is generally not its recommended use-case. We therefore present a
macro system to solve the challenges we encounter. The resulting interpreter
is compared to the original C implementation and its compiled equivalent
in asm.js. This way, we evaluate whether manual integration with asm.js
provides the necessary performance to bring larger applications and run-
times to the web. We also refactor our implementation to assess how more
JavaScript code can cohabit with asm.js code, improving maintainability of
the implementation while preserving near-native performance. In the case of
our interpreter, this improved maintainability enables adding more complex
optimizations. We investigate the addition of function inlining, for which we
validate the performance gain.

Keywords: Optimization, JavaScript, asm.js, Interpreters, Performance
2000 MSC: 68N15, 68N20

Preprint submitted to Computer Languages, Systems and Structures 2017-04-28

1. Introduction

Our study starts with the implementation of an efficient interpreter for a
Scheme-like language in JavaScript. Using JavaScript as a host language to
build an interpreter enables a new language on the web that inherently be-
comes available to millions of users, as nearly each platform today is equipped
with a browser that includes a JavaScript virtual machine. In terms of perfor-
mance, however, a high-level language such as JavaScript does not meet the
necessary requirements for an efficient language implementation. JavaScript
in particular has a highly dynamic nature that does not allow for efficient
static analysis and optimization. Typically, a JavaScript engine features a
JIT compiler complimented with other dynamic optimizations [11] to achieve
acceptable performance in a dynamic setting. However, for an efficient lan-
guage implementation, we do not want to compromise performance in the
host language. We therefore turn to a more optimizable, restricted subset of
JavaScript, asm.js [12], as a means to improve the efficiency of performance-
critical JavaScript applications such as an interpreter. By eschewing many of
JavaScript’s dynamic features, asm.js promises to deliver near-native perfor-
mance on the web. asm.js limits the JavaScript to numerical types, top-level
functions, and one large binary heap. With the addition of static typing,
an optimizing JavaScript engine is able to compile and optimize asm.js code
ahead of time. Because it remains a strict subset of JavaScript, existing
JavaScript engines are automatically backward compatible with asm.js.

At this time, asm.js is mainly used as a compilation target. Developers
start with an existing C/C++ application which they can then efficiently port
to the web by compiling it to asm.js using Emscripten [21]. Our approach,
however, is different. We start with an existing JavaScript implementation
and attempt to improve its performance by integrating asm.js. The idea here
is that using asm.js for the core components of a JavaScript application im-
proves the overall performance of that application. Such a mix of JavaScript
and asm.js is possible, since the latter can interface with external JavaScript
code. We therefore apply this strategy to our interpreter and rewrite its
most crucial components (such as the memory management) into asm.js. As
a result, we iteratively refactor our application by lowering down its modules
into asm.js one-by-one. This produces a series of successive implementations,
where we expect to see an improvement in performance for each iteration.
We then benchmark each such milestone to measure the actual performance
impact of this asm.js integration process.

2

Another point of interest is that we write this asm.js code by hand. This
is unconventional, as asm.js mainly serves as a compilation target and is
therefore not designed to be written manually. As a result, we encounter
several challenges in our attempt to do so. For instance, we notice a severe
lack of readability and maintainability in asm.js applications. These are not
really issues for a compiler, but they do complicate the usage of handwritten
asm.js at larger scales. Furthermore, asm.js can be considered a low-level
language, offering similar functionality as C in a JavaScript syntax. All data
also has to be encoded into numbers and bytes, as asm.js only supports nu-
merical types. The top-level array holding these numbers has to be managed
manually, since asm.js does not support any form of garbage collection.

These challenges, however, do not limit the possibilities of asm.js. To deal
with the restrictions in readability and maintainability, we propose a solution
using macros. By using a specialized macro expander, many practical lim-
itations can be hidden into a more convenient syntax. Such a preprocessor
enables writing certain parts of the asm.js code indirectly as a high-level,
domain-specific language, and therefore defines a more human-writable di-
alect of the language. We illustrate this topic further in Section 3.1.

Afterwards, we take a step back and compare our handwritten implemen-
tation to the conventional strategy of compiling an existing C application into
asm.js. We also compare the performance of our implementation with that
of an equivalent version as well as the native implementation itself. In order
to make this comparison, we first add some interpreter optimizations directly
into the asm.js code. This also enables us to evaluate the maintainability of
macro-enabled asm.js applications. The impact on development effort can
then determine whether it is worth to write such asm.js code by hand.

Having JavaScript and asm.js code cohabit introduces new challenges
for the interoperability between the two. We identify the limitations and
propose a solution that introduces a level of indirection through handles.
This allows us to refactor the compiler component of our interpreter back
in plain JavaScript, for improved maintainability without sacrificing perfor-
mance. This enables adding more complex optimization to the compiler with
lower effort, and we investigate this by adding function inlining.

In conclusion, we advocate using asm.js for performance-critical com-
ponents of an application, while using more high-level JavaScript for the
components that are not performance-critical, instead of writing most of the
application in asm.js.

We focus our study on the implementation of an interpreter for two rea-

3

sons. First, we argue that writing an interpreter is a flexible approach to
support a new language on a platform, in this case the web browser. In
general, writing an interpreter requires less effort than implementing a com-
piler for the same language. Second, although easier to obtain, interpreters
generally are not as fast as compiled code, and their relative performance
becomes worse when the host language itself is (partly) interpreted. It is
therefore interesting to examine whether and how it is possible to improve
their performance by moving to a more low-level host language, asm.js. These
reasons make the implementation of an interpreter for a dynamic language
an excellent target for our experience report. Our work therefore presents a
systematic approach that starts with a simple interpreter and later integrates
asm.js to achieve an efficient web implementation of a dynamic language.

Overall, this paper highlights the development efforts and resulting per-
formance improvements of integrating asm.js into an existing application. It
provides an experience report of our particular usage of asm.js and makes
the following contributions:

• An overview of the performance impact that can be achieved by inte-
grating asm.js into existing projects.

• A solution by introducing a macro preprocessor to improve readability,
maintainability and performance when writing asm.js code by hand.

• A novel approach to achieve an efficient web implementation of a dy-
namic language by integrating asm.js into a simple interpreter. We
illustrate this using our own handwritten implementation of a garbage-
collected Scheme interpreter, in which we integrated asm.js to enable
good performance on the web.

• A comparison between two different strategies using either handwritten
or compiled asm.js to port runtimes and codebases to JavaScript.

• A solution to have JavaScript and asm.js code cohabit at runtime with-
out leading to corrupt references.

This is an extended version of previous work [20]. This journal paper
extends the conference publication in multiple ways.

• In the original paper, most of the components are lowered down into
asm.js in order to achieve near-native performance for a Scheme inter-

4

preter written in JavaScript. Notably, the compiler is written in low-
level asm.js, and is not easy to extend. In this version, we investigate
how to bring maintainability of the compiler back, by rewriting some
components of our final version of the interpreter into plain JavaScript.
We identify that sharing pointers between asm.js and JavaScript is
problematic, and introduce handles to solve this problem. We end up
with an interpreter where the performance-critical components are still
written in low-level asm.js, while other components such as the com-
piler are implemented in high-level JavaScript. We demonstrate that
we still achieve the same near-native performance in this version.

• The usage of high-level JavaScript in the components that are not
performance-critical allows us to extend our compiler with more op-
timizations. We describe how we added function inlining to the inter-
preter, and discuss the performance impact of this feature.

• We discuss related work on WebAssembly, a future open standard in-
spired by asm.js destined to be a portable and efficient code format for
the web.

2. Setting

We apply the strategy of integrating asm.js to the field of interpreters,
where performance is usually a critical requirement. The language that the
interpreter executes is Slip1, a variant of Scheme. An implementation of the
language is available in C and is being used in a course on programming lan-
guage engineering2. It served as the basis for the design and implementation
of our own interpreter, named slip.js3.

The semantics of Slip [5] closely resembles that of Scheme. Differences
are subtle and mostly limited to the usage of certain natives and special
forms. Slip intends to go back to the original roots of the language and
throws away many of the recent, non-idiomatic additions that are targeted
more towards industrial engineering rather than an academically designed
language. For instance, it considers define to be the most appropriate con-
struct for variable binding, and only provides a single let-form. Slip also

1Simple Language Implementation Platform (also an anagram for LISP).
2http://soft.vub.ac.be/∼tjdhondt/PLE
3https://github.com/noahvanes/slip.js

5

http://soft.vub.ac.be/~tjdhondt/PLE
https://github.com/noahvanes/slip.js

enforces left-to-right evaluation of arguments, since not doing so is usually
related to an implementation issue rather than a sound design choice.

The first version of the interpreter uses plain JavaScript only. It is ported
over from a metacircular implementation of Slip and serves as a useful pro-
totype that can be gradually lowered down to asm.js. Doing so enables the
design of an efficient interpreter in a high-level language, without dealing
with the complexity of asm.js as yet.

2.1. Stackless design

The initial interpreter design employs continuation-passing style (CPS) to
build up a custom stack in the heap instead of using the underlying JavaScript
stack. We call the result a “stackless” design because it does not rely upon
the runtime stack of the host language to store the control context. As a
consequence, stack overflows are no longer caused by exceeding the JavaScript
stack size, but depend on the available heap memory instead.

The custom stack can be seen as a concrete representation of the cur-
rent continuation. Having full control over evaluation contexts facilitates the
implementation of advanced control constructs such as first-class continu-
ations [18, Ch. 3] in our language. It also makes it easier to iterate over
the stack for garbage collection, since the stack can indirectly summarize all
‘active’ references to allocated objects on the heap.

As a result of using CPS, all functions calls appear in tail position.
With the arrival of proper tail recursion in the current ES6 specification
of JavaScript and in WebAssembly (cf. Section 9), these tail calls should
be properly optimized so that they do not cause any stack overflows. How-
ever, the feature is not yet available in all mainstream browsers and other
runtimes, even when they support most of the other features of the ES6
specification. As a subset of JavaScript, asm.js currently does not offer this
feature either. Therefore we use a trampoline to avoid uncontrolled stack
growth. This ensures that our tail calls do not grow the JavaScript stack.

More formally, a trampoline can be defined as a function that keeps on
calling its argument thunk until it becomes false [9, p. 158]. Such a tram-
poline loop can be implemented in asm.js (or JavaScript) using an iterative
construct as illustrated below.

function run(instr) {
instr=instr |0;
for(; instr;instr=FUNTAB[instr &255]()|0);

}

6

Using this iterative loop, each function returns the function table index
of the next function to be called. As discussed, we build up our own stack
in the heap to store the continuation frames.

Note that, as a low-level language, asm.js is statically typed. It uses the
bitwise OR operator as a type annotation for 32-bit integers. For example,
the line instr=instr|0; in the previous code snippet indicates that the
type of parameter instr is a 32-bit integer. Using the bitwise OR operator
instead of custom type annotation allows asm.js to remain fully backward
compatible with the existing JavaScript specification. JavaScript engines
that do not specifically optimize asm.js (AOT) can execute this statement
without changing the semantics of a program. Similarly, the lack of first-class
functions in asm.js forces the usage of an explicit function table FUNTAB to
implement the trampoline. The use of this function table and the bitwise
AND operator in the index is further explained in Section 3.2.

2.2. Optimized memory model

Instead of relying on the underlying memory management of JavaScript,
the interpreter allocates its own memory chunks. It is accompanied by an
iterative mark-and-sweep garbage collector. The memory model takes over
many optimizations from the original C implementation, such as the usage of
tagged pointers. This allows us to inline simple values and avoids indirections
to unnecessary memory chunks.

Using a custom chunked memory model is a necessary provision, since
asm.js does not provide any support for objects or garbage collection. More-
over, Slip keeps all its runtime entities in a single large address space. This
makes it easier to map this heap onto the single memory array that is used
to store values in asm.js.

2.3. Register-machine architecture

Experiments we conducted with the C implementation of Slip showed
that using explicit registers can result in significant performance improve-
ments. We therefore opted for a register-machine architecture in asm.js as
well. According to the specification [12], asm.js is able to store the con-
tents of these registers efficiently by mapping them to raw 32-bit words. A
register-machine architecture is possible in our implementation because the
evaluation process is in CPS and therefore only uses tail calls. Such an iter-
ative process is known to require only a fixed amount of iteration variables,
and in our implementation around twenty dedicated registers are available for

7

this purpose. Each register serves a specific purpose and is shared through-
out the entire interpreter infrastructure. For instance, the KON-register stores
the current continuation, whereas the FRM and ENV hold the current frame
and environment.

With only tail calls and no local variables or arguments, the host stack
of JavaScript remains untouched. This facilitates the implementation of
garbage collection, since all local variables and arguments currently in scope
can be accessed through the registers and heap-allocated stack. All refer-
ences in the registers are automatically updated after triggering a garbage
collect.

2.4. Imperative style

Finally, due to the transformation to CPS and the usage of registers, the
interpreter follows a very low-level, imperative style. In fact, the evaluator
shows a lot of similarity with the explicit-control evaluator from the SICP
handbook [1, pp. 547–566]. Having such code in the initial prototype makes
the transition to the low-level constructs of asm.js easier later on.

3. asm.js integration

3.1. Integration process

The integration process lowers down the modules in the interpreter to
asm.js, starting with the most performance-critical ones. Each iteration is
expected to improve performance of the previous one by refactoring another
component. Completing this process then results in an interpreter that is
almost entirely written in asm.js.

System decomposition. Figure 1 shows the interpreter pipeline. The program
input is first preprocessed by two analyzers, a parser and a compiler. The for-
mer constructs a basic abstract syntax tree (AST), while the latter performs
some optimizations at compile-time. The compiler employs a rich abstract
grammar that is able to provide more static information to the interpreter
than the original AST. This takes away some of the processing work for the
evaluator and thus improves runtime performance. A pool is used to store
all the symbols for enabling efficient comparisons using pointer equivalence.
The resulting AST is then interpreted by the evaluator, which forms the core
of the interpreter. Finally, a printer presents resulting values appropriately.
Two other important modules are the abstract grammar and the memory

8

Figure 1: Interpreter pipeline.

management. The abstract grammar module defines the AST nodes that
are produced by the compiler and the parser. Slip.js uses these AST nodes
extensively as a unified abstract grammar for both values and expressions.
The memory management is responsible for managing these AST nodes in
the global heap. It provides procedures to allocate memory regions (which
we refer to as chunks) for AST nodes in the heap. The memory management
also provides procedures for garbage collection to automatically free unused
chunks when allocation requires more memory. As indicated by the heavy
line in Figure 1, these critical modules form the foundation for the entire
interpreter infrastructure.

Milestones. While lowering down the modules into asm.js, four different mile-
stones were identified. asm0 refers to the original prototype version in plain
JavaScript. It makes no use of asm.js. asm1 is the first step in the integra-
tion process. It lowers down the memory management into asm.js, as it is
one of the most critical components in the interpreter. asm2 also refactors
the abstract grammar and merges it with the memory management into a
single asm.js module. asm3 is the biggest leap in the refactoring process.
Due to limitations in working with multiple asm.js and non-asm.js modules
(cf. Section 5) most of the other components are lowered down into a single
asm.js module at once. Figure 2 shows how much of the total code in each
version is written in asm.js. These ratios are not representative of the actual
contribution of asm.js, as some components are more important than others.
Instead, they merely visualize how the asm.js and JavaScript mix evolved
over time.

9

asm.js ratio

ASM0 ASM 1 ASM 2 ASM 3

TOTAL 4122 4135 4232 4520

PLAIN JS 4122 3837 3209 880

ASM.JS 0 298 1023 3640

100%

PLAIN JS ASM.JS

24%

76%

PLAIN JS ASM.JS

7%

93%

PLAIN JS ASM.JS

81%

19%

PLAIN JS ASM.JS

asm0
Total LOC: 4122

asm1
Total LOC: 4135

asm2
Total LOC: 4232

asm3
Total LOC: 4520

Figure 2: asm.js integration process.

Overview. The integration process starts with the most performance-critical
components of our application, in this case the memory management and
abstract grammar. Afterwards, other core modules such as the evaluator
and natives are lowered down into asm.js as well. The colors in Figure 1
indicate the final result after all the refactoring up to asm3. Modules colored
black are completely written in asm.js, whereas the grey boxes indicate the
presence of regular JavaScript. The only component that does not use any
asm.js is the printer, hence the white box in the diagram.

The memory management and the abstract grammar are the first com-
ponents lowered down into asm.js. This choice is motivated by the fact that
they are frequently used throughout the interpreter, and therefore have a
considerable impact on performance. This transition is also quite gentle,
since the memory model was already designed at the bit-level in the proto-
type. Similar performance considerations also hold for the evaluator and the
natives that make up the core of the interpreter and should therefore be opti-
mized as much as possible. Having the compiler and parser partially lowered
down into asm.js has more to do with convenience to facilitate interaction
with other modules, rather than true performance concerns. They are only
invoked once before execution and are not considered a bottleneck in the in-
terpreter. For this reason, the parser is not entirely written in asm.js. String
manipulation is also much easier in traditional JavaScript, so the parser relies
on a separate external module to iterate over the input program string. The
same argument also holds for the pool. Designing an efficient map between
Slip symbols (i.e. strings) and their respective index in the pool is not trivial
in asm.js. This is much easier in JavaScript, since we can simply use an
object for this map. As a consequence, the pool module still communicates
with external JavaScript to query the map for existing symbols. The printer
uses no asm.js at all. It is invoked only once after evaluation to print the

10

resulting output string.

3.2. Macros to the rescue

Manually integrating asm.js into the interpreter turned out to have some
practical limitations. Its low-level style enforces duplication and lacks proper
mechanisms for abstraction. This results in poor maintainability for non-
trivial applications, such as our interpreter. For this reason, we started to
rely on the generated nature of asm.js and turned to macros. Macros help
to avoid low-level asm.js constructs by providing a language that is more
readable and writable by humans.

We use sweet.js4 as a macro expander. It is an advanced, hygienic macro
expander for JavaScript (and therefore also asm.js) that provides a macro
framework similar to how Scheme provides syntax-case and syntax-rule
macro definitions. It can be run against a source file with macro definitions
to produce a pure JavaScript file with all macros expanded. We discuss some
of our use-cases of macros.

Constants. Constants are useful in the interpreter for many different pur-
poses, such as the efficient enumeration of tags for the different abstract
grammar items. However, asm.js only offers mutable variables, which are
comparably less efficient and cannot be used as compile-time constants (e.g.
in the branches of a switch statement). We therefore define a macro define
for introducing constants, which works similarly to the #define preprocessor
directive in C. The multi-step expansion of macros in sweet.js can be used
to implement define as a macro that in turn defines a new macro for a
constant’s name.

macro define {
rule { $nam $val } => {

macro $nam {
rule {} => {$val}

}
}

}

AST nodes. Another macro, called struct, is more domain-specific and en-
ables us to concisely define the abstract grammar of the interpreter, similar

4https://www.sweetjs.org

11

https://www.sweetjs.org

to how one defines a struct type in C. The macro transforms the description
of an AST node into an actual implementation used by slip.js. It automati-
cally generates a constructor and accessors that are implemented as macros
themselves for efficiency (cf. Section 4.2). The generated code deals with all
necessary asm.js annotations and calculates the required amount of bytes to
be allocated through the memory manager. Its main purpose therefore is to
improve readability and flexibility, and avoid duplication.

Function table. With the transformation to CPS (cf. Section 2.1) and the
register-machine architecture (cf. Section 2.3), it becomes natural to think
of functions and calls as instruction sequences and jumps between them.
We therefore introduce macro instructions that enables expressing control
in the interpreter using labels and gotos. While this decision may appear
questionable at first, it is no different from having zero-argument functions
that are only called in tail position. The main reason to use a macro for
expressing control is because functions are not first-class in asm.js, making
it impossible to return them to the trampoline or store their reference some-
where in the heap. A numerical encoding of functions therefore is required
to simulate function pointers. For this purpose, we employ a function table,
which asm.js allows as long as all functions have an identical signature. The
index of a function stored in the function table can then be used as a pointer
to that function. However, managing all these pointers manually becomes
unmaintainable at larger scales, as it becomes hard to associate each func-
tion with its corresponding index. Moreover, asm.js requires that the size of
the function table is a perfect power of two, so that it can be indexed us-
ing a bitwise AND operator with a full bit mask instead of doing additional
boundary checks at run-time. The instructions macro therefore takes the
following steps:

1. it transforms all labels into zero-argument functions with the corre-
sponding instruction sequence as body,

2. it puts all these functions into a function table and uses padding to
increase its size to a power of two, and

3. it defines a constant to replace each function name with a function
pointer according to the index that function got in the function table.

This last step is done using the define macro, so that each function name

12

automatically gets replaced with its index into the function table. Padding
involves adding extra nop functions at the end of the function table.

4. Optimization

The previous sections discussed how the interpreter was first designed in
a high-level language (JavaScript), and then systematically translated into a
low-level subset (asm.js). In order to evaluate the maintainability of hand-
written, macro-enabled asm.js applications, however, it is also interesting to
add new functionality directly into that asm.js code. We therefore apply a
series of optimizations to asm3 and produce an improved version called asm4.
We then put this final version into perspective by comparing its performance
with the original C implementation in Section 5.2.

4.1. Interpreter optimizations

Most of the optimizations included in asm4 are traditional interpreter
optimizations [18, Ch. 6]. We highlight some of them below.

Lexical addressing. The first major improvement is the implementation of
lexical addressing. Slip, as a dialect of Scheme, employs static binding, where
free variables are looked up in lexical environments. The exact frame and
offset where a variable can be found therefore can be determined without
executing the program. Lexical addressing builds up a static environment
at compile-time, and replaces each variable occurrence with the index of the
frame in the environment and the variable’s offset into that frame (also known
as lexical addresses or de Bruijn indices [4]). This process is done through a
new component, the dictionary, called from the compiler. The evaluator can
then use these indices to access a variable in constant time instead of looking
up the variable at runtime.

Rich abstract grammar. Other large performance improvements are achieved
by further diversifying the abstract grammar and detecting more static fea-
tures at compile-time. Doing so provides more information to the evalu-
ator and further improves runtime performance of the interpreter. For in-
stance, any proper Slip implementation should support tail call optimization.
Whether a function call is in tail-position is a static feature, and therefore it
makes sense to detect such tail calls at compile-time. Another major heuris-
tic observation is that most function applications have a simple expression
(such as a variable) in operator position. Simple expressions can simplify

13

the operation of the interpreter, because they can be immediately evalu-
ated. Unlike compound expressions, an interpreter does not need to step
into simple expressions, and “remember” where to continue after evaluating
a subexpression by pushing a continuation on the stack. Therefore, detecting
and marking applications with simple operators with a special AST node at
compile-time enables optimization of their execution at run-time.

Tagged pointers. In order to avoid unnecessary chunks and indirections, the
initial prototype already employs tagged 32-bit pointers to inline small val-
ues. These include small integers, lexical addresses of variables and special
values like booleans and the empty list (null). More precisely, if the LSB
is set, the other 31 bits can hold any immediate value instead of an actual
pointer. Further elaborating this strategy using a Huffman encoding of tags
makes the usage of these bits more efficient. This enables more values to be
inlined, which reduces memory access even further, while still maintaining a
reasonable value range for each immediate type. For instance, small integers
only use two bits for their tag, leaving the remaining 30 bits free to represent
a numerical value. Local variables on the other hand require five bits to
recognize their tag. This still gives them a substantial range of 227 values to
indicate the offset of the variable in the frame.

Enhanced stackless design. The stackless design from Section 2.1 uses a
continuation-passing style in conjunction with a trampoline to avoid growing
the underlying JavaScript stack. Using our own stack simplifies the im-
plementation of garbage collection and advanced control constructs such as
first-class continuations. However, returning to the trampoline causes a small
performance overhead, as each jump requires to return an index to the tram-
poline and lookup the function in the function table. We therefore allow some
jumps to call the corresponding function directly, instead of returning to the
trampoline first. Such a call will make the stack grow, as JavaScript does not
implement tail call optimization. Hence, while the design is no longer com-
pletely stackless, the stack still remains bounded by the maximum nesting
depth of expressions in the program.

4.2. asm.js optimizations

Another improvement in performance involved optimizing the code we
write and generate in the underlying language, in this case asm.js. One weak
point in writing asm.js by hand is that it is designed as a compilation tar-
get. Some JavaScript engines therefore assume that common optimizations,

14

such as the inlining of procedures, are already performed while generating
the asm.js code in the first compilation step. This enables faster AOT-
compilation of asm.js later on. To compensate for this, our handwritten
application requires some profiling to manually identify and optimize certain
bottlenecks in performance.

We therefore inline the most common functions in our interpreter by re-
placing them with macros. Doing so avoids the overhead of function calls
by replacing the call with the functions body at compile-time. A macro ex-
pander enables us to factor out these function bodies into isolated macros,
thereby maintaining the benefits of procedural abstraction. The multi-step
expansion of macros in sweet.js also makes it possible to define macros that
generate other macros. For instance, the struct-macro generates macros for
the accessors and mutators of the AST nodes. Such a technique achieves sig-
nificant performance improvements with a relatively small amount of effort.

Besides inlining common functions on the level of the interpreter, it can
also be beneficial for performance to inline functions in the user program.
This is the subject of Section 7.

5. Performance impact of asm.js integration

In order to evaluate performance, the runtimes of a fixed benchmark suite
are measured for different versions of the interpreter. These include the four
milestones discussed in Section 3.1 (asm0,asm1,asm2,asm3), as well as addi-
tional version asm4 that implements the interpreter optimizations described
in Section 4. This version can also be compared with the original Slip imple-
mentation and the asm.js output that the Emscripten compiler [21] generates
from this C implementation. Once we have evaluated the performance of
these different versions, we can draw some conclusions that allow us to find
a more optimal balance between development effort and performance gains.
This will lead to our final implementation, asm5, where some of the com-
ponents in asm4 are brought back into high-level JavaScript. As discussed
in Section 6, doing so can improve maintainability without making any sac-
rifices in performance with respect to asm4. In fact, we later exploit the
improved maintainability to implement more complicated optimizations in
the interpreter, which result in increased overall performance (cf. Section 7).

A description of the benchmarks is given below. Most of them originate

15

from the Larceny R7RS benchmark suite5.

tower-fib A metacircular interpreter is executed on top of another metacir-
cular interpreter. In this environment, a slow recursive Fibonacci is
called with input 16. This benchmark also serves as a useful test case,
since it uses many features of the interpreter, and therefore provides
good coverage.

nqueens Backtracking algorithm to solve the n-queens puzzle where n = 11.

qsort Uses the quicksort algorithm to sort 500000 numbers.

hanoi The classical Hanoi puzzle with problem size 25.

tak Calculates the Takeuchi function (tak 35 30 20) using a recursive
definition.

cpstak Calculates the same function as tak, this time using a continuation-
passing style. A good test of tail call optimization and working with
closures.

ctak This version also calculates the Takeuchi function in a continuation-
passing style, but captures the continuation using call/cc. It therefore
mainly tests the efficiency of this native function.

destruct Test of destructive list operations (set-car! and set-cdr!).

array1 A Kernighan and Van Wyk benchmark that involves a lot of alloca-
tion/initialization and copying of large one-dimensional arrays.

mbrot Generates a Mandelbrot set. Mainly a test of floating-point arith-
metic.

primes Computes all primes smaller than 50000 using a list-based sieve of
Eratosthenes.

Each version of the interpreter runs on top of the three major JavaScript
VMs found in today’s browsers: SpiderMonkey, V8, and JavaScriptCore.
SpiderMonkey deserves particular attention here, as it is the only VM im-
plementing AOT-compilation for asm.js and should thus benefit most from

5http://www.larcenists.org/benchmarksAboutR7.html

16

http://www.larcenists.org/benchmarksAboutR7.html

asm.js code. The V8 engine found in the Chrome browser does not im-
plement full AOT-compilation for asm.js. Nevertheless, its TurboFan opti-
mizing compiler6 aims to improve asm.js performance by taking advantage
of its low-level style, which opens up many opportunities for optimization.
Similarly, JavaScriptCore does not specifically detect asm.js code either. In-
stead, it takes a more modular approach to optimization by implementing
an advanced multi-tier JIT architecture7. One of these tiers performs type
inference, which works very well for statically typed asm.js code. The final
tier uses an LLVM compiler back-end and applies aggressive LLVM optimiza-
tions that again work best for low-level code such as asm.js. We therefore
expect all engines to benefit in some way from asm.js code [12].

The native C implementation is compiled using Apple’s version (6.1) of
the LLVM compiler. The test machine is a MacBook Pro (Mid 2012) with a
2.6GHz Intel Quad-Core i7 and 16GB 1600Mhz DDR3 RAM. The VMs were
allocated with a 1GB heap to run the benchmarks.

5.1. Integrating asm.js

We first evaluate the performance impact of integrating asm.js into an
existing JavaScript application. We compare the benchmark results of asm0,
asm1, asm2 and asm3, representing different milestones in the asm.js integra-
tion process (cf. Section 3.1). We slightly modify asm0 to use the underlying
JavaScript memory management for allocation and garbage collection, in-
stead of the memory model described in Section 2.2. This enables a more
representative comparison between JavaScript and asm.js, as JavaScript al-
ready provides built-in memory management. Figure 3 shows a relative per-
formance speedup for each version in SpiderMonkey, which optimizes the
execution of asm.js using AOT-compilation. We obtain these ratios by nor-
malizing all measurements with respect to those of asm0 and summarize them
with their geometric means [8]. These results show that integrating asm.js
into the original JavaScript prototype (asm0) does not yield the expected
performance improvement. In fact, when we only lower down a single com-
ponent into asm.js (asm1), the entire system slows down by a factor greater
than 5. On the other hand, the final version with all modules refactored into
asm.js does significantly perform better than the original version. In this
case, we are seeing a performance improvement of around 80%.

6http://v8project.blogspot.com
7https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/

17

http://v8project.blogspot.com
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/

Table 1

native slip.js (asm4) compiled

1,0 1,185 1,742

native compiled asm4

tower-fib 3583 4711 3518 1,31481998325426

nqueens 1033 1864 1296 1,80445304937076

qsort 2749 5003 3948 1,81993452164423

hanoi 3890 7204 4046 1,85192802056555

tak 772 1483 878 1,92098445595855

cpstak 936 1517 985 1,6207264957265

ctak 3118 4541 5222 1,45638229634381

destruct 4216 7801 4350 1,8503320683112

array1 2710 5900 3518 2,17712177121771

primes 3461 6105 3832 1,76394105749783

tower-fib

nqueens

qsort

hanoi

tak

cpstak

ctak

destruct

array1

primes

0 2000 4000 6000 8000

native compiled asm4

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

native slip.js (asm4) compiled

Table 1-1

asm0 asm1 asm2 asm3

1,0 0,1912 0,26 5

0

1

2

3

4

5

asm0 asm1 asm2 asm3

Table 1-1-1

asm0 asm1 asm2 asm3

�1

Figure 3: relative speedups in SpiderMonkey
(higher is better).

In order to explain these results, we profile each version to determine what
causes the initial slowdown. As it turns out, a lot of overhead in SpiderMon-
key is caused by calling in and out of asm.js code. This is a known issue with
asm.js code that is compiled ahead of time: external JavaScript interfaces
asm.js modules through a set of exported functions and vice versa. Passing
arguments to those functions requires JavaScript values to be converted and
(un)boxed, even between two asm.js modules. Moreover, the function call
itself causes trampoline entries and exits in asm.js that build up a severe
performance penalty as well. For this reason, it is recommended to contain
most of the computation inside a single asm.js module.

For our application, asm1 and asm2 have a lot of calls in and out of asm.js
modules, as they refactor the memory model (asm1) and abstract grammar
(asm2). Other components rely heavily on these modules, as previously dis-
cussed in Section 3.1. In this case, the overhead caused by frequently calling
into these asm.js modules is apparently larger than the performance benefits
we achieve, hence the slowdown. On the other hand, asm3 uses only a single
asm.js module for all the components in the interpreter. Moreover, all major
computation resides inside this module. It only calls to external JavaScript
for special services (such as I/O) and infrequent tasks (such as parsing and
printing). This explains why it does not suffer from the aforementioned
overhead and thus greatly benefits from the integration with asm.js.

It is also interesting to examine the performance impact of asm.js on
other, non-optimizing engines. After all, we expect asm.js to provide us with
general performance improvements, as it claims to be an optimizable sub-

18

set of JavaScript. Figure 4 shows how JavaScriptCore, an engine that does
not perform AOT-compilation for asm.js code, handles the different iterative
versions. The results shown are geometric means of relative speedups. In

1,0 2,13 2,94 3,57

0

1

2

3

4

asm0 asm1 asm2 asm3

�2

Figure 4: relative speedups in JavaScriptCore
(higher is better).

general, we can conclude that the integration of asm.js is beneficial for the
other engines in terms of performance. These engines do not compile asm.js
ahead-of-time, and therefore do not benefit as much from its presence com-
pared to SpiderMonkey. However, even typical JIT execution of asm.js is
able to achieve a significant performance increase over the original version
here up to 70%. Moreover, the engine does not suffer from the performance
overhead of asm1 and asm2, unlike SpiderMonkey.

5.2. Comparison

We now look at an optimized version of asm3, which we refer to as asm4.
Table 1 shows how this version performs in today’s most common JavaScript
engines. These results demonstrate that the AOT-compilation of asm.js (in
SpiderMonkey) is able to provide a significant performance improvement over
traditional JIT execution (in JavaScriptCore, V8).

To put these numbers in a wider perspective, we can compare the results
from SpiderMonkey with the runtimes of an equivalent native C implemen-
tation of Slip. This is a useful comparison to externally validate the results
of our strategy. It enables us to determine whether integrating asm.js code
into a JavaScript application can bring performance close to native speed.
The native C implementation of Slip roughly implements the same level of

19

SpiderMonkey JavaScriptCore V8
tower-fib 3518 6865 12142
nqueens 1296 2433 4677
qsort 3948 6934 14219
hanoi 4046 8899 18711
tak 878 1629 3374
cpstak 985 2110 4412
ctak 5222 7112 20380
destruct 4350 10029 19643
array1 3518 7724 16161
mbrot 12838 23648 49252
primes 3832 8185 16912

Table 1: runtimes of asm4
(in milliseconds; lower is better).

optimization as asm4, which is described in Section 4. It features the same
underlying memory model and garbage collector (cf. Section 2.2), stackless
design (cf. Section 2.1), abstract grammar, and module decomposition (cf.
Section 3.1) as asm4. Therefore, the native C interpreter operates similarly
to our own asm.js implementation.

We can also use the native version for another comparison. We can com-
pile the native C implementation to asm.js using the Emscripten compiler.
This represents the typical use-case for asm.js as a compilation target for ex-
isting C/C++ applications. Comparing the performance of our handwritten
asm.js code to that of the Emscripten compiler is useful for several reasons.
Handwriting asm.js code by hand is unconventional, so the performance po-
tential of this strategy is not immediately clear. By comparing the perfor-
mance of both versions, we can determine whether handwritten asm.js can
be efficient in terms of performance compared to what a compiler is able to
output. Additionally, it is interesting to see how both strategies compare.
One can start with a C application and compile to asm.js using Emscripten,
or one can also start with a JavaScript application and gradually integrate
asm.js code. The first strategy probably requires more effort for the first
step (writing an application in C versus writing it in JavaScript). The sec-
ond strategy is usually more demanding in terms of producing asm.js code
(manual integration vs. using a compiler). In the case of an interpreter, both
are plausible strategies to bring a flexible language VM to the web.

20

We refer to the native C implementation as native and to the asm.js
code compiled with Emscripten as compiled. Figures 5 and 6 illustrate how
these versions compare in terms of performance.

Table 1

native slip.js (asm4) compiled

1,0 1,185 1,742

native asm4 compiled

tower-fib 3583 3518 4711 1,31481998325426

nqueens 1033 1296 1864 1,80445304937076

qsort 2749 3948 5003 1,81993452164423

hanoi 3890 4046 7204 1,85192802056555

tak 772 878 1483 1,92098445595855

cpstak 936 985 1517 1,6207264957265

ctak 3118 5222 4541 1,45638229634381

destruct 4216 4350 7801 1,8503320683112

array1 2710 3518 5900 2,17712177121771

primes 3461 3832 6105 1,76394105749783

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

native slip.js (asm4) compiled

Table 1-1

asm0 asm1 asm2 asm3

1,0 0,1912 0,26 5

0

1

2

3

4

5

asm0 asm1 asm2 asm3

Table 1-1-1

asm0 asm1 asm2 asm3

0

1

2

3

4

asm0 asm1 asm2 asm3

0

2000

4000

6000

8000

tower-fib nqueens qsort hanoi tak cpstak ctak destruct array1 primes

native asm4 compiled

�1

Figure 5: comparison of runtimes using SpiderMonkey
(in milliseconds; lower is better).

Overall, we see that the performance of asm4 is comparable to that of
the native version. We only experienced a slowdown factor of 1.19 in our
benchmarks. Typically, asm.js code that is compiled from C/C++ with Em-
scripten is only twice as slow as the native version [21]. In our experiments,
the slowdown factor for the compiled version in SpiderMonkey was 1.74.
This makes it around 46% slower than our handwritten implementation.

However, we have to interpret these results carefully. While asm4 is very
similar to the C implementation, they are not completely identical. For in-
stance, there is difference in how both interpreters represent the stack. The
native implementation uses a linked-list representation in the heap, while
asm4 stores the stack contiguously in memory. One case in which this differ-
ence becomes obvious is the ctak benchmark, which tests the performance
of call-with-current-continuation. To construct the current continua-
tion in asm4, the entire stack must be copied into a separate data structure,
while the linked-list implementation only needs to copy the pointer to the
current stack. As a result, native and compiled perform significantly better
on this benchmark compared to asm4. On the other hand, using a contiguous

21

Table 1

native slip.js (asm4) compiled

1,0 1,185 1,742

native asm4 compiled

tower-fib 3583 3518 4711 1,31481998325426

nqueens 1033 1296 1864 1,80445304937076

qsort 2749 3948 5003 1,81993452164423

hanoi 3890 4046 7204 1,85192802056555

tak 772 878 1483 1,92098445595855

cpstak 936 985 1517 1,6207264957265

ctak 3118 5222 4541 1,45638229634381

destruct 4216 4350 7801 1,8503320683112

array1 2710 3518 5900 2,17712177121771

primes 3461 3832 6105 1,76394105749783

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0

native slip.js (asm4) compiled

Table 1-1

asm0 asm1 asm2 asm3

1,0 0,1912 0,26 5

0

1

2

3

4

5

asm0 asm1 asm2 asm3

Table 1-1-1

asm0 asm1 asm2 asm3

0

1

2

3

4

asm0 asm1 asm2 asm3

0

2000

4000

6000

8000

tower-fib nqueens qsort hanoi tak cpstak ctak destruct array1 primes

native asm4 compiled

�1

Figure 6: slowdown factor over native using SpiderMonkey
(lower is better).

stack might be beneficial for general performance due to better cache rates
and automatically reclaimed memory from stack frames (causing less garbage
collections). The C implementation tries to avoid allocation of fresh stack
frames by deallocating stack frames into a pool and reusing these pooled
frames whenever possible. In general, these subtle differences make it hard
to make a rigorous performance comparison between both versions. There-
fore these results should not be interpreted as a net performance gain or loss
over the native implementation. Instead, the comparison is useful to show
that both implementations have similar performance characteristics. One
implementation does not significantly outperform the other, and it is clear
that asm.js brings the performance of our interpreter much closer to native
speeds. These particular results only show a small sacrifice in performance
for asm4, which is acceptable considering that it is immediately available on
web platforms and its many users.

In the same way, we can also compare asm4 to the compiled version.
Again, we cannot draw precise conclusions here. Instead, it appears that
both strategies can result in asm.js applications that are close to native
speed. The preferred strategy therefore most likely depends on the devel-
opment effort, which we previously discussed. The availability of an existing
C or JavaScript implementation could be a decisive factor. However, com-
pilation to asm.js is not always straightforward, as Emscripten requires the
original source code to be “portable”. For instance, the C implementation
of Slip is not completely portable in this sense due to unaligned memory
reads and writes. This resulted in some problems when working with floats

22

in SpiderMonkey, which is why we have omitted the mbrot benchmark here.
Similarly, JavaScriptCore was unable to run the compiled version unless we
lowered the LLVM optimization level (which in turn degraded performance).
Emscripten specifies the behavior of unportable C code as undefined. More-
over, we argue that our approach is more flexible, because one can start
with a straightforward JavaScript application, and incrementally integrate
as much asm.js as necessary to achieve acceptable performance.

6. Revisiting asm.js integration

In our initial integration described in Section 3.1, we refactored most of
the modules into asm.js. Doing so allows us to evaluate the development ef-
fort and performance gains of integrating asm.js into an existing JavaScript
application. In addition, by directly implementing the optimization of asm4
in asm.js we are able to assess the maintainability of handwritten asm.js
code. It is clear that while asm.js provides significant performance improve-
ments, it also introduces an extra development effort, both in the short term
when writing components in low-level asm.js as well when evolving these
components in the long term. Hence, a better solution is to lower down only
the most critical components in order to improve maintainability and reduce
development effort, while still maintaining the performance benefits of asm.js

In this Section, we rewrite asm.js components that are not performance-
critical into plain JavaScript, resulting in version asm5 of our interpreter.
We note that the most critical components in an interpreter are those used
heavily during evaluation: the evaluator itself, the abstract grammar, the
memory management and the natives. Hence their implementation in asm.js
yields the significant performance improvements, as we measured in Section 5.
On the other hand, the compiler, the printer, the pool and the dictionary are
only used once before (or after) evaluation8. Hence for these components we
can sacrifice performance for development effort and maintainability, without
impacting the overall performance of our interpreter (which is measured by its
evaluation time). As such, by implementing components such as the compiler
in high-level JavaScript it becomes easier to further extend the interpreter
with more complex (compile-time) optimizations. We demonstrate this in
the next section by adding an important optimization, function inlining, to
our improved high-level implementation of the compiler.

8except in the presence of calls to meta-level natives such as eval, read or display.

23

Finally, note that it is not just possible to reuse the JavaScript implemen-
tations of these components from asm2. While these were implemented in
plain JavaScript, they already were prototyped in a low-level style, using reg-
isters and a continuation-passing style with a trampoline to allow for a more
direct translation to asm.js later on. Furthermore, to facilitate the memory
management and interoperability with other components, the decision was
made to lower almost all components down to asm.js in asm3. However, now
that we implement some components in high-level JavaScript, we encounter
several challenges to ensure correct interoperability between JavaScript com-
ponents and the asm.js environment. More precisely, we discuss how handles
are introduced to avoid a new memory management problem that occurs
when refactoring components back to JavaScript.

6.1. Using handles to avoid corrupt references

While JavaScript provides automatic memory management, asm.js does
not have a built-in garbage collector (GC). Instead, an asm.js module has
access to one large ArrayBuffer that serves as the heap and is allocated
from the JavaScript host code when initializing an asm.js module. Without a
built-in garbage collector, code written in asm.js has to manage this memory
heap itself. Therefore our interpreter implements a mark-and-sweep garbage
collection algorithm to free unused objects (chunks) from the memory heap.
As previously discussed, our interpreter can easily collect the ‘root set’ of
active references by iterating over the Slip stack and registers. Our mark-
and-sweep garbage collector includes a compacting phase, so that after a
garbage collect all ’active’ memory is contained in one contiguous block,
followed by another contiguous block of free memory. This avoids gaps of
free memory between active chunks, but also implies that chunks may move
to another location in the heap, causing corrupted memory references if not
all references are updated to point to their new memory location after a GC.
In our asm.js module, however, references on the stack and in the registers
are easy to update.

There is a problem when plain JavaScript code refers to objects residing
in the asm.js memory heap. Consider Figure 7, in which a JavaScript variable
exp contains a reference to some object inside the memory array managed by
our asm.js interpreter. At some point during evaluation, a garbage collection
is triggered and during the compaction phase our collector relocates objects
in the asm.js heap. Pointers in the asm.js world are managed by the inter-
preter and are correctly updated to point to the new location of their values.

24

However, because variable exp is not under control of the asm.js interpreter
(it is not on the stack, in a register, or even inside the asm.js module), our
memory manager can not update the reference after GC. Consequently, it
may now point to an incorrect location, making it a corrupt reference. The
resulting situation is shown in Figure 8. Note that the JavaScript variable
is also not included in the root set of active references. This means that if
no other reference in the asm.js module were to exist to that same chunk, it
would have been freed incorrectly by our GC algorithm.

Figure 7: Cohabitation of JavaScript and asm.js, exp is a JavaScript object pointing to
the same memory location as VAL.

Figure 8: Cohabitation of JavaScript and asm.js after compaction, the VAL pointer has
been modified by the GC, but exp points to the wrong location.

To resolve the problem of corrupted references in JavaScript code due to
our compacting collector, we resort to handles. Instead of pointing directly
into asm.js memory, references in JavaScript now point into a handle memory
that resides in asm.js, as illustrated in Figure 9. When compaction happens,
the handle memory is updated by the garbage collector in the asm.js module
so that all its pointers point to the correct memory location. Because the
JavaScript index into the handle memory does not change, each JavaScript

25

object still points (indirectly) to the correct memory location, as shown in
Figure 10. Allocating and releasing handles in the handle memory is man-
aged by a free list. To ensure proper interaction between JavaScript and
asm.js modules, raw references are not allowed to escape from asm.js into
JavaScript. Instead, we enforce that all escaped references are first con-
verted to handles, so that corrupted references in JavaScript are no longer
possible. As a result, before calling JavaScript functions from asm.js, all
arguments that reference objects in the asm.js heap are first converted to
handles by extending the handle memory with a new handle pointing to the
argument reference. Similarly, besides primitive datatypes JavaScript func-
tions can only return handles. Therefore, after calling a JavaScript function,
any reference return value is dereferenced in the handle memory. In the op-
posite direction, asm.js functions that can be called from JavaScript return
handles instead of a raw memory references. asm.js functions also have to
dereference any handles they might be passed as arguments from the outer
JavaScript environment.

Figure 9: Cohabitation of JavaScript and asm.js with the use of handles, before
compaction.

Figure 10: Cohabitation of JavaScript and asm.js with the use of handles, after
compaction. The JavaScript variable exp did not need to be updated and still points to

the correct location.

26

The size of the handle memory has to be managed as well, otherwise it
would keep growing as new handles are created and would eventually consume
all available memory. Most of the handles result from the local variables of
a function (stored on the JavaScript stack), and should be freed on function
exit, when they are no longer needed. Doing this manually would be tedious,
especially in the presence of exceptions that can be thrown during the ex-
ecution of the function. However, this process cannot be automated easily,
as it would require performing reflective operations to retrieve the local vari-
ables declared with var in a function, which is not possible in JavaScript.
We therefore opted for a semi-automated solution. When asm.js values are
used in JavaScript, we do not bind them to vars, but we attach the handles
explicitly to a JavaScript handle object, which is initially empty on function
entry and bound to the this keyword. At function exit, all handles that
are attached to the handle object can be freed. To automate the process,
we extend the Function prototype with a lifting function, so that a call to
a lifted function first creates an empty handle object, then calls the origi-
nal function with this bound to the handle object, and after this call frees
all the handles that were attached to the handle object. In order for this
strategy to work, JavaScript functions should adhere to certain rules. Only
handles whose lifetime is bound to the dynamic extent of the function should
be bound to the this object as previously described. Using such handles af-
ter a function has returned (for instance by storing them in a global data
structure) is not allowed, because these handles will have been automatically
freed on function exit. If a handle has to be available outside of the dynamic
extent of a function, it should not be attached to the this object, so that
it is explicitly protected from being automatically freed. Only handles can
be attached to this, other local variables should just use vars. Note that
there is no particular reason why we chose to use this other than conven-
tion. As an alternative, we could have passed the handle object as an extra
argument to the function. While this solution can be expressed natively in
JavaScript using prototypes, one can arguably automate and separate this
concern better using an aspect-oriented library for JavaScript. Alternatively,
this mechanism could also be automatically generated using some preproces-
sor or macro expander.

6.2. Impact on maintainability

Using handles we are able to remove asm.js code from non-critical compo-
nents, thereby improving readability and maintainability. To illustrate this,

27

Table 2 contains an excerpt of the compilation of conditionals written in
asm.js with the use of macros (in asm4, on the left), and in JavaScript with
the use of handles (in asm5, on the right). The JavaScript version is more
readable, more maintainable and less prone to bugs. This is because it is
written at a higher level, avoiding the low-level characteristics of asm.js. For
instance, in asm.js we are forced to explicitly manage a stack for the garbage
collection, and use a continuation-passing style to simulate exceptional con-
trol flow. Instead, we now get access to the high-level features of JavaScript,
such as first-class functions, exception management and JavaScript objects.

In addition to the improved readability, we compare the code size of the
components that were rewritten in plain JavaScript in Table 3.

We observe that especially the compiler gains from the refactoring, as its
size is almost halved in terms of lines of code. However, the total code size is
not significantly reduced, as it goes from 6804 lines of code in asm4 to 6631
lines of code in asm5. This is because of two additions that were required to
make the refactoring possible: the management of the handle memory (110
LOCs), and the technique of storing handles in the this object (40 LOCs).
However, these additions are a one-time effort and would not further increase
the code size when further extending other components. If, for example, the
compiler is further extended with a new optimization (in Section 7), both
the effort as well as the additional LOCs would be smaller. The overall code
size also slightly increased because the code was split into multiple files.

Overall, bringing non-critical components back to JavaScript allows us to
reduce the complexity of our implementation.

6.3. Impact on Performance

We previously observed significant performance increases when integrat-
ing asm.js (cf. Section 5). We therefore can expect the opposite to hap-
pen when moving from asm.js back to plain JavaScript, especially when this
refactoring introduces handles and pointer indirection. This indirection has a
negative impact on performance because an extra dereference step is required
every time an object is accessed in memory.

However, although the refactored components in Table 3 run slower than
their asm.js originals, we observed that this did not incur any significant
loss of performance when evaluating Slip programs. The reason is that the
refactored components are only called during the compilation phase. The
compilation phase is typically only a small fragment of the running time of

28

C_compileIf {
if(!(isPair(LST)|0)) {

err_invalidIf ();
goto error;

}

EXP = pairCar(LST)|0;
LST = pairCdr(LST)|0;

if(!(isPair(LST)|0)) {
err_invalidIf ();
goto error;

}

claim ()
push(KON);
push(LST);
push(TLC);
TLC = __FALSE__;
KON = C_c1_if;
goto C_compile;

}

C_c1_if {
TLC = pop ()|0;
LST = peek ()|0;
EXP = pairCar(LST)|0;
LST = pairCdr(LST)|0;
poke(VAL);

if(isNull(LST)|0) {
...

}

if(isPair(LST)|0) {
...

}

err_invalidIf ();
goto error;

}

function compileIf(exp ,tailc ,inline) {
if(! isPair(exp))

compilationError(err.invalidIf);

this.predicate = car(exp);
this.branches = cdr(exp);

if(! isPair(this.branches))
compilationError(err.invalidIf);

this.alternative = cdr(this.branches);

if(asm.fisNull(this.alternative))
...

else if (asm.fisPair(this.alternative)) {
...

} else
compilationError(err.invalidIf);

}

Table 2: Compiling conditionals, in asm.js with macros (asm4, left), and in JavaScript
(asm5, right).

29

Component asm4 asm5
Compiler 637 368
Parser 236 227
Dictionary 69 67
Symbol pool 79 22

Table 3: Physical LOCs of components that are translated from asm.js to plain
JavaScript.

a program, which is dominated by evaluation of the rich abstract grammar
items generated by the compiler.

To verify this claim, we ran the benchmarks of Section 5 on asm4 and
asm5. and observed that running times were similar in both versions (varying
from a slowdown of 2% to a speedup of 4%). One exception is the tower-fib
benchmark, which makes heavy use of eval, requiring the compiler to be
called multiple times at runtime and therefore resulting in a 35% slowdown
at worst. In general, programs that use meta-level natives such as eval and
load invoke the refactored parser and compiler, and will therefore run slower.
However, in most conventional programs the usage of such natives is limited
or non-existent.

This experiment demonstrates the philosophy and strength of our ap-
proach. We use asm.js for the core components of our JavaScript application,
in this case the run-time infrastructure of the interpreter. This ensures that
overall performance goals for the interpreter are met, as confirmed by the
running times of our benchmarks. For the components that do not signifi-
cantly impact overall performance, we use plain JavaScript instead of asm.js
to improve maintainability and reduce development effort. This negatively
impacts the individual performance of these components. The refactored
parser and compiler run significantly slower than their previous versions, as
we already observed in the tower-fib benchmark. Stress-testing the parser
revealed that the JavaScript version is two orders of magnitude slower than
its previous asm.js implementation. However, because the parser generally
does not play a significant part in the overall evaluation process, we consider
the use of JavaScript for the parser and compiler beneficial.

7. Adding function inlining

With the non-critical components written in plain JavaScript, it becomes
less of a burden to experiment and extend the interpreter. We can for exam-

30

ple add more advanced compiler optimizations to the high-level JavaScript
implementation of the compiler.

In this section, we investigate adding function inlining as an optimization
offered by the interpreter. Function inlining consists of replacing function
calls by copies of the function body in the user program, with the goal of
increasing performance by avoiding the overhead of function calls at the
expense of increasing the code size [16]. We chose inlining as it is considered
one of the most valuable optimizations, is not trivial to implement and has
already been explored for Scheme-like languages in related work [19, 7].

7.1. Inlining in practice

We recall that when the interpreter evaluates an expression, it first parses
this expression into an AST, and then compiles this AST into an enriched
grammar that actually gets evaluated. Inlining happens at compile-time,
when compiling the AST into an enriched grammar term.

We opt for an annotation-driven approach to inlining. A function def-
inition can be annotated by using define-inline instead of define. The
compiler will try to inline functions defined through define-inline if it
fulfills certain requirements (see Section 7.2). This implies that annotated
functions are only eligible for inlining, but the final decision is always up to
the compiler. On the other hand, annotating functions with define-inline
is always safe for the user. Potential inlining problems, such as variable and
parameter shadowing, are all taken care of by the compiler and if inlining is
not possible, the annotation will simply be ignored. However, functions de-
fined using define-inline can not be reassigned, as doing so would require
replacing the function bodies that are already inlined. Because of the pres-
ence of eval and the interactive nature of Slip’s read-eval-print-loop, it is
not possible to perform whole-program analysis and detect such assignments
before the inlining decision is made. Hence, when attempting to reassign an
inlined function, an error will be thrown to the user. Another solution to
this problem would be to implement speculative inlining [7], which is beyond
the scope of this paper.

7.2. Implementation

An important performance benefit from inlining comes from the fact that
arguments at the call site can usually be directly substituted in the func-
tion body. However, one needs to be careful about this, as this generally

31

only applies to simple arguments, such as numbers, variables and other lit-
eral values. As an example, consider a program with the following call to
sum-of-squares, where f is a function that performs some complex operation
and possibly includes side effects.

(define -inline (square x)
(* x x))

(define -inline (sum -of -squares x y)
(+ (square x) (square x)))

(sum -of-squares x (f x))

Naive inlining results in a program that is not equivalent to the original:

(+ (* x x) (* (f x) (f x)))

In this version of the program, the work done by f and its potential side
effects are duplicated, which breaks correctness. To remedy this situation,
we require that complex expressions in argument positions have to be com-
puted once before being inlined. The resulting code to evaluate would be
conceptually equivalent to the following.

(let (($y (f x)))
(+ (* x x)

(* $y $y)))

In practice, we do not introduce let-bindings as it requires introducing
new lexical frames during evaluation. Doing so would cause an extra over-
head, as certain design choices in our implementation make it somewhat
expensive to capture and extend the current environment. Instead, we in-
troduce a new abstract grammar item, which we internally call a bind. This
binding operation more closely resembles a traditional define, which is also
the preferred form of binding in Slip. The main difference is that variables
introduced with these bindings are treated as temporaries, which are only
scoped to the inlined body and whose memory locations can be reused after
the function has been inlined.

Another problematic situation is the one of recursive functions [19]. When
recursive functions are inlined, the compiler has to be careful and bound
the inlining, otherwise it would keep replacing a recursive function call by
its body indefinitely. However, it can be beneficial to inline a function for
several iterations, as doing so has an effect similar to loop unrolling [19].
Because of this, the user can specify a global parameter for the maximum
allowed inlining depth, which specifies how deep a particular function can be

32

inlined. Setting the depth to zero disables inlining, while setting it to one
causes only simple functions to be inlined, but not recursive ones. Setting
the depth to values higher than one will also enable inlining for recursive
functions up to a given depth in order to achieve the effect of loop unrolling.
Note that recursive functions are only inlined within their own body (up to
the specified inlining depth), but not at the external call sites.

Even though the user has to annotate functions that have to be inlined
with define-inline, this is only an advice to the compiler, which takes the
final decision of whether or not to inline a function. The compiler maintains
certain restrictions on inlining, based both on the inlined function and its call
site. The reasons behind these restrictions are twofold. On one hand, we want
to limit the inlining to small functions, as otherwise the function call overhead
becomes proportionally small and the increase in code size can negatively
impact performance [19]. While our restrictions are not directly size-based,
larger functions are more likely to violate one of them. On the other hand, we
exclude certain rare situations that would make the implementation either
too complex or inefficient when taken into account. For instance, the compiler
does not inline functions that themselves contain nested function definitions.
Such functions are typically too large to benefit from inlining, and nested
function definitions extend the lexical scope of the function that is being
inlined. By enforcing certain restrictions in our implementation, the compiler
is allowed to make certain assumptions about the current execution frame
while inlining a function body, simplifying the implementation of inlining.

When the compiler performs inlining, it checks that the requirements are
met. The decision on whether a candidate function for inlining is actually
inlined or not happens when compiling the function call, not when compiling
the function definition. If any of the assertions fail because a restriction
is violated, an exception is thrown and the interpreter falls back to regular
compilation of the function call. When this happens, that function is marked
and is no longer considered for inlining later on at other call sites. Note that
exceptional control flow is not available in asm.js, and is one of the reasons we
were previously forced to employ a continuation-passing style. Its availability
in JavaScript to help us implement inlining is one of the benefits from having
the compiler written in a high-level language.

7.3. Validation

We validate our implementation by running specific benchmarks that may
profit from inlining. In Table 4, we compare the results of running bench-

33

marks with inlining disabled (no inlining, i.e. define-inline is equivalent
to a regular define) and with inlining enabled (inlining), where a maximum
inlining depth of 4 is used.

no inlining inlining speedup
sum-of-squares 3066 2114 31%
matrix-multiplication 8777 4522 48%
loop 12852 12119 6%
fib 6033 5447 10%
hanoi 4026 3144 21%

Table 4: runtimes of asm5 with and without inlining
(maximum inlining depth set to 4, times are in in milliseconds; lower is better).

We chose the following benchmarks because of the opportunities they
contain for applying function inlining:

• sum-of-squares: the sum-of-squares function, called 107 times.

• matrix-multiplication: multiplication of two-dimensional matrices,
defined on top of multiple layered data abstractions (called 106 times).

The call to sum-of-squares can be executed more efficiently at run-time,
because it is reduced to a simpler expression at compile-time once the user-
defined function calls have been inlined. In total, the evaluator can therefore
avoid three extra function calls, which results in a significant speedup. The
same argument also holds for the second benchmark. However, in this case
the speedup is even larger. This is because matrix multiplication is defined
on top of multiple abstractions whose overhead can all be avoided with in-
lining. In fact, the matrix multiplication at the top layer can be completely
reduced to a large expression that does not include any function call to a
user-defined procedure defined in one of the layers.

Additionally, we also included benchmarks to assess the performance impact
of unrolling recursive functions with inlining.

• loop: a tail-recursive function computing Fibonacci numbers, called
once on the number 108.

• fib: a tree-recursive function computing Fibonacci numbers, called
once on the number 36.

34

• hanoi: another tree-recursive function, solving the Hanoi towers prob-
lem with input 25. This benchmark is also in the set of performance
benchmarks we used in Section 5.

Note that loop unrolling has a larger effect on tree-recursive functions
here, because the inlining depth has an exponential loop unrolling effect on
them (e.g. with an inlining depth of 4 the tree-recursive Fibonacci function
actually gets inlined 24 times). This of course also dramatically increases
their code size. The reason why the hanoi benchmark has a better speedup
is because it is almost a best-case scenario for the inlining: 3 out of 4 argu-
ments passed to the recursive calls are simple arguments that can be directly
substituted in the bodies of the next iterations. In the fib benchmark, this
is not possible, because the only argument that is passed in the recursive
calls in a complex one that still has to be computed and bound at run-time.

8. Related and future work

There are a number of approaches to implement dynamic languages on
the web [21] . However, most of these approaches focus on porting exist-
ing applications to the web instead of providing near-native performance for
full language implementations in the browser. For instance, one common
approach to support a new language is plain compilation to JavaScript. Sev-
eral examples of such implementations exist9. However, as the main focus
in these implementations is portability rather than performance, they usu-
ally target high-level JavaScript instead of asm.js. As previously discussed,
a more straightforward approach is to write an interpreter for a language
in JavaScript. Several examples of such interactive programming environ-
ments can be found online10. They allow easy experimentation with new lan-
guages in the browser, but usually the obtained performance is significantly
worse than the performance of existing native implementations for these lan-
guages [6]. Emscripten [21] enables an implementation approach with more
focus on performance by compiling an existing VM written in C/C++ to
asm.js. Emscripten provides a compiler back-end to generate asm.js from
the LLVM intermediate representation format [15]. Any language that com-
piles into the LLVM IR can therefore be compiled into asm.js. Existing

9http://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
10http://repl.it

35

http://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
http://repl.it

language implementations such as LuaVM and CPython have already been
ported to the web using this strategy. In Section 5 we discuss this strategy
when describing the compilation of the original C implementation of Slip to
asm.js using the Emscripten toolchain.

PyPy.js [14] provides a Python interpreter for the web. It relies on
PyPy [3] which implements Python in a restricted subset of Python that
compiles to C. The C code can subsequently be compiled to asm.js via Em-
scripten. This is a different strategy from ours, since the asm.js code is
generated and not written by hand as in slip.js. PyPy.js also features a
customized JIT back-end which emits and executes asm.js code at runtime.

LLJS [17] is a low-level dialect of JavaScript that was initially designed
to experiment with low-level features and static typing in JavaScript, but
it never reached a mature and stable release. While our approach uses
domain-specific macros that translate directly into asm.js, LLJS defines a
more general-purpose, low-level language that can also translate into asm.js.

WebAssembly [10] (wasm) is an open standard for a portable and efficient
code format suitable for compilation to the web. wasm is a next step in
bringing native performance to the web, and resolves the shortcomings of
using asm.js for this purpose. Advancing asm.js would mean that JavaScript
increasingly has to be extended with low-level operations and data structures
for it to serve as a compilation target (asm.js being a subset of the language),
turning it into a bottleneck. By moving to a new format that is not a subset
of JavaScript, wasm is able to overcome these difficulties. WebAssembly
no longer has to make any compromises to stay backward compatible with
JavaScript, making it easier to add new features that are required to reach
native levels of performance. However, because asm.js and wasm have a
common low-level nature, tool infrastructure (compilers) can reuse and share
existing infrastructure for both formats [2]. Like asm.js, wasm is not really
regarded as a programming language, but as a format that is meant to be
generated and manipulated by tools [2]. However, next to a binary format,
wasm also has one or more textual formats that are in the process of being
defined and proposed, so it will be possible to directly program in wasm.

We introduced inlining in our interpreter to assess the effort required to
add complex optimizations. We therefore did not focus on further maturing
the inlining itself, although related work shows useful improvements that
could be included. For instance, [19] presents an algorithm to make better
decisions on when to inline to avoid uncontrolled code size growth. Inlining
is presented not only as an optimization useful to eliminate function call

36

overheads, but also as a means to enable other compiler optimizations (such
as constant propagation, constant folding and dead-code elimination) across
function boundaries. We avoided the problem of reassigning inlined functions
by simply throwing an error when the user attempts to do so. In [7], a
speculative approach is taken to deal with this issue. Interestingly, the paper
does not focus on inlining user-defined, but rather native functions. Indeed,
applying optimizations to native functions would be interesting to combine
with our existing inlining of user-defined functions to improve performance
even further. Finally, we refer to [13] as an excellent general reference for
many of the aspects of inlining in functional languages.

9. Discussion

The idea of embedding low-level code into another (higher-level) language
to improve performance is not new. For example, C applications can contain
inlined assembly code, and many high-level programming languages have a
native interface to call performance-critical procedures written in a lower-
level language like C. This kind of approach also lies at the core of our own
asm.js integration strategy: we start with a high-level JavaScript applica-
tion and rewrite critical sections of the code in asm.js that is called from
JavaScript to improve the overall performance.

Our experiment however reveals several limitations to this approach in
our particular setting: the high overhead of calling in and out of asm.js code
prevents us to apply fine-grained optimizations11. As discussed, performance
benefits are only realized when large computations are contained in asm.js,
forcing the use of coarse-grained and isolated asm.js modules. In the case
of our interpreter, we had to refactor the entire run-time infrastructure to
asm.js to avoid calling back into JavaScript during evaluation. It would be
preferable to only lower down smaller but critical pieces of code one at a
time, such as the implementation of certain frequently used natives in our
language (e.g. + or cons). In general, one would then be able to start
with a straightforward interpreter for a dynamic language, and afterwards
gradually refactor the code to asm.js in small steps, using detailed and fine-
grained profiling information to determine the next part(s) of code to be
lowered down, which was the initial goal of our experiment.

11a ‘flaw’ in asm.js, since it did not envision this use-case in its design.

37

Fortunately, things are improving with the arrival of WebAssembly, which,
at the time of writing is still in its development stage.As a successor to asm.js,
WebAssembly currently has laid out several goals [10] that are very appealing
to our approach. For instance, it aims to provide a human-editable textual
format for the language, as well as a binary representation. One of the design
goals of asm.js was to remain backward compatible with JavaScript, result-
ing in syntactic overhead. WebAssembly’s new textual format is designed
to allow more natural reading and writing, for instance by dropping all the
type coercions that were previously required for asm.js validation. In doing
so, WebAssembly claims to open up more possibilities for testing, optimiza-
tion, and experimentation. For our integration strategy, this should make it
much easier to write WebAssembly code by hand. It would be interesting
to examine to what extent the improved textual format could eliminate the
need to use macros, which are currently a necessary tool for our approach.
WebAssembly also provides a better programming model, for instance by
supporting (zero-cost) exceptions. Another benefit is that WebAssembly fa-
cilitates integration with JavaScript code. For instance, unlike asm.js, wasm
code is able to access garbage-collected JavaScript objects and integrates into
the ES6 module system. Furthermore, it seems likely that the overhead of
calling in and out of JavaScript is lower compared to asm.js, allowing the
application of our integration strategy at a finer level of granularity.

With more focus on integration with JavaScript and a human-editable
text format, WebAssembly becomes more appealing than asm.js in our pro-
posed integration strategy for improving the performance of existing JavaScript
applications. Given these recent developments, it would be interesting to re-
peat our experiments using WebAssembly instead of asm.js. The current
design choices promise to improve on many shortcomings that we encoun-
tered, mainly in terms of development effort. We believe that, once stable
and mature, WebAssembly is a better fit for our approach than asm.js.

10. Conclusion

Overall, our experiments allow us to evaluate the impact of integrating
asm.js and writing asm.js applications by hand in general. In terms of per-
formance, our strategy of integrating asm.js into a JavaScript application
yields considerable improvements, as we achieve near-native performance on
the web. Additionally, we can make the following conclusions on the usage
of asm.js:

38

• Using asm.js to improve the efficiency of web applications comes down
to a tradeoff between development effort and performance. We con-
cluded that the optimal strategy is to limit the usage of asm.js only to
the performance-critical components of a JavaScript application. This
way, one can preserve maintainability and reduce development effort,
while still maintaining the performance benefits of asm.js.

• Frequently calling in and out of asm.js modules compiled ahead-of-time
causes a major overhead in terms of performance. Integrating asm.js
into an existing JavaScript application is therefore only beneficial if all
computation can reside in a single asm.js module.

• A macro preprocessor is necessary to alleviate the challenges in read-
ability, maintainability and performance when writing asm.js by hand.

• In the case of interpreters, our integration strategy yields considerable
performance improvements that result in an efficient language imple-
mentation on the web. Furthermore, by implementing our compile-time
optimizations in high-level JavaScript, we can easily implement addi-
tional advanced optimizations to further improve the run-time perfor-
mance of the interpreter.

References

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Com-
puter Programs, Second Edition. MIT Press, 2 edition, 1996.

[2] V. M. S. S. . Ben L. Titzer. A Little on V8 and WebAssembly. https:
//ia601503.us.archive.org/32/items/vmss16/titzer.pdf.
[Accessed: 23/06/2016].

[3] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In I. Rogers, editor, Proceedings
of the 4th workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems, ICOOOLPS
2009, Genova, Italy, July 6, 2009, pages 18–25. ACM, 2009.

[4] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381 –
392, 1972.

39

https://ia601503.us.archive.org/32/items/vmss16/titzer.pdf
https://ia601503.us.archive.org/32/items/vmss16/titzer.pdf

[5] T. D’Hondt. A brief description of Slip. https://github.com/
noahvanes/slip.js/raw/master/varia/Slip.pdf, 2014. [Accessed:
18/09/2015].

[6] L. Domoszlai, E. Bruel, and J. M. Jansen. Implementing a non-strict
purely functional language in javascript. Acta Universitatis Sapientiae,
3:76–98, 2011.

[7] M. Feeley. Speculative inlining of predefined procedures in an R5RS
scheme to C compiler. In Implementation and Application of Functional
Languages, 19th International Workshop, IFL 2007, Freiburg, Germany,
September 27-29, 2007. Revised Selected Papers, pages 237–253, 2007.

[8] P. J. Fleming and J. J. Wallace. How not to lie with statistics:
The correct way to summarize benchmark results. Commun. ACM,
29(3):218–221, 1986.

[9] D. P. Friedman and M. Wand. Essentials of programming languages (3.
ed.). MIT Press, 3 edition, 2008.

[10] W. W. C. Group. WebAssembly. http://webassembly.org.
[Accessed: 13/12/2016].

[11] B. Hackett and S.-y. Guo. Fast and Precise Hybrid Type Inference for
JavaScript. SIGPLAN Not., 47(6):239–250, June 2012.

[12] D. Herman, L. Wagner, and A. Zakai.
asm.js specification. http://asmjs.org.
[Accessed: 04/08/2015].

[13] S. L. P. Jones and S. Marlow. Secrets of the glasgow haskell compiler
inliner. J. Funct. Program., 12(4&5):393–433, 2002.

[14] R. Kelley. PyPy.js. http://pypyjs.org.
[Accessed: 02/12/2015].

[15] C. Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

40

https://github.com/noahvanes/slip.js/raw/master/varia/Slip.pdf
https://github.com/noahvanes/slip.js/raw/master/varia/Slip.pdf
http://webassembly.org
http://asmjs.org
http://pypyjs.org

[16] R. Leupers and P. Marwedel. Function inlining under code size con-
straints for embedded processors. In J. K. White and E. Sentovich,
editors, Proceedings of the 1999 IEEE/ACM International Conference
on Computer-Aided Design, 1999, San Jose, California, USA, Novem-
ber 7-11, 1999, pages 253–256. IEEE Computer Society, 1999.

[17] Mozilla. LLJS: Low-Level JavaScript. http://lljs.org. [Accessed:
11/08/2015].

[18] C. Queinnec. Lisp in small pieces. Cambridge University Press, 2003.

[19] M. Serrano. Inline expansion: When and how? In Programming Lan-
guages: Implementations, Logics, and Programs, 9th International Sym-
posium, PLILP’97, Including a Special Track on Declarative Program-
ming Languages in Education, Southampton, UK, September 3-5, 1997,
Proceedings, pages 143–157, 1997.

[20] N. Van Es, J. Nicolay, Q. Stievenart, T. D’Hondt, and C. De Roover.
A performant scheme interpreter in asm.js. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8,
2016, pages 1944–1951, 2016.

[21] A. Zakai. Emscripten: an llvm-to-javascript compiler. In C. V. Lopes
and K. Fisher, editors, Companion to the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011, pages 301–312. ACM, 2011.

41

http://lljs.org

	Introduction
	Setting
	Stackless design
	Optimized memory model
	Register-machine architecture
	Imperative style

	asm.js integration
	Integration process
	Macros to the rescue

	Optimization
	Interpreter optimizations
	asm.js optimizations

	Performance impact of asm.js integration
	Integrating asm.js
	Comparison

	Revisiting asm.js integration
	Using handles to avoid corrupt references
	Impact on maintainability
	Impact on Performance

	Adding function inlining
	Inlining in practice
	Implementation
	Validation

	Related and future work
	Discussion
	Conclusion

