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Jens Nicolay∗1, Quentin Stiévenart1, Wolfgang De Meuter1, Coen De Roover1

1 Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
{jnicolay,qstieven,wdmeuter,cderoove}@vub.ac.be

SUMMARY

We present a static analysis for determining whether and to what extent functions in JavaScript programs
are pure. To this end, the analysis classifies functions as either pure functions, observers, or procedures.
A function is pure if none of its executions generate or depend upon externally observable side-effects. A
function is an observer as soon as one of its executions depends on an external side-effect but none of its
executions generate observable side-effects. Otherwise, the function is classified as a procedure. Function
executions and associated callers are found by traversing all reachable function execution contexts on the
call stack at the point where an effect occurs.
Our approach is based on a flow analysis that, in addition to computing traditional control and value flow,
keeps track of read and write effects. To increase the precision of our purity analysis, we combine it with an
intraprocedural analysis that determines freshness of variables and objects.
We formalize the core aspects of our technique, and discuss its implementation and results on common
JavaScript benchmarks. Results show that our approach is capable of determining function purity in
the presence of higher-order functions, dynamic property expressions, and prototypal inheritance. When
compared to existing purity analyses, we find that our approach is as precise or more precise than the existing
analyses.
Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Theoretically, the only observable effect of a function is turning input arguments into a resulting
value. However, in imperative programming languages such as JavaScript, a callable entity
(function, constructor, method . . . ) can do more than that, such as reading and assigning variables,
and loading and storing object properties. Anything a JavaScript function does besides producing
a value, is called a side effect of that function. When a function modifies a resource reachable by
a caller, the function generates an observable side effect. Side effects external to the function also
play a role. When a function accesses a program resource other than one of its input arguments, and
this resource is modified in between function executions, then that function depends on an external
side effect.

This paper presents a static analysis that determines the purity of a function based on the
side effects that function generates or depends upon during its executions. Our analysis classifies
functions as either pure, observer, or procedure. A function is pure if none of its executions generate
or depend upon externally observable side effects. A function is an observer as soon as one of its
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executions depends on an external side effect, but none of its executions generate observable side
effects. We call all other functions procedures. Our analysis determines the observable extent of a
side effect in terms of all functions that are in the process of computing a result when the effect
occurs by traversing the stack [25]. We develop a formal definition of observability and purity in
Sections 3 and 4.

There exist different definitions of purity, of which the strictest one corresponds to our
classification of pure [13]. A weaker form of purity only requires that a function does not generate
observable side effects [33], so that functions classified as observers by our analysis are considered
to be pure as well. A function that is not pure is impure. Our notion of purity allows unobservable
side effects, therefore allowing functions that allocate, access, and modify memory locations to still
be pure. Additionally, we consider that pure functions may return locally allocated objects.

Research in different areas has demonstrated that purity aids program understanding,
specification, optimization, testing, debugging, and maintenance [3, 13]. Therefore, detection,
verification, and enforcement of purity is useful for software engineering purposes. Purity facilitates
establishing security and confidentiality aspects of software applications. Pure functions are more
secure than impure ones, or at least simplify security analysis, because they interfere less with the
rest of the program [5, 9]. Purity also potentially reduces the number of bugs and makes it easier
to reproduce them [13]. Pure functions can be safely called from assertions and contracts [4, 18],
they allow for more and better program optimizations [7, 31], and they can speed up concurrency
analyses by eliminating non-interfering interleavings. Purity analysis and any side-effect analysis it
is based on also have immediate applications in program optimization, as they enable the detection
of referentially transparent expressions and the application of memoization and parallelization in
programs. We discuss these applications in more detail in Section 10. Proving the absence of side
effects has many more advantages and applications that are discussed extensively in related work
on purity and side-effect analysis (Section 5).

1.1. Challenges

Developing a static purity analysis for JavaScript is challenging in several ways. Some of these
challenges are the result of general language properties and features such as object support and
higher-order functions that JavaScript shares with other languages, and which makes the purity
analysis we develop in this paper more broadly applicable than just JavaScript. Other challenges,
such as constructor calls and other semantic features and corner cases, are specific to JavaScript.

1.1.1. Variable vs. object property effects A purity analysis for JavaScript must distinguish between
effects on variables and effects on object properties. Variables denote a memory location containing
a specific value. When a variable has an object or any other compound data structure as value, then
two resources are involved on which effects may occur: the variable itself, and the object it has as a
value. Consequently, effects on these resources have to be distinguished as well.
1 function f()
2 {
3 var o;
4 o = {x:3}; // variable write
5 o.x = 42 // property write
6 }

While it is possible to consider the entire accessed or modified object as the target of a property
effect, our analysis takes the property name into account. Therefore, on line 5 in the above example
the generated effect is not an “object write effect” on object o but a “property write effect” of
property x on object o. This not only provides more detail when reporting about the presence of
effects, but also improves precision when reasoning over interference and dependence based on side
effects (e.g., Sections 1.1.5 and 10.3).

1.1.2. Precise control and value flow information Our purity analysis examines the observability of
an effect in the context of every function execution that is active [16, 25]. The set of active execution
contexts can be obtained by traversing the call stack. In the example program below, the property
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PURITY ANALYSIS FOR JAVASCRIPT THROUGH ABSTRACT INTERPRETATION 3

write effect on line 5 results in functions h (directly) and g (indirectly) mutating object o that exists
in the caller state at their respective call sites (lines 6 and 4). Therefore the property write effect
is observable to callers of g and h, and the analysis considers both functions to be procedures.
Function f on the other hand is pure, because object o is not visible by callers of f, and therefore
the property write effect on o is not observable to callers.

1 function f() // pure
2 {
3 var o={};
4 function g(p) { h(p) } // procedure
5 function h(q) { q.x=4 } // procedure
6 g(o)
7 }
8 f()

1.1.3. Higher-order functions While in the above example control flow is straightforward to
determine, JavaScript features higher-order functions that complicate control flow and which any
purity analysis must handle. In the following example, function g is passed as an argument to
function f.

1 var z=0;
2 function g(p) { z=z+1; p.x=z} // procedure
3 function f(h) { var o={}; h(o)} // procedure
4 f(g)

It is clear that function g is a procedure because it writes to global property z and mutates an object
through its parameter. However, a purity analysis must determine that the application of function
h in the body of f on line 3 executes function g. It therefore must classify function f also as a
procedure, because f indirectly mutates z.

1.1.4. Closures JavaScript has closures and, unlike purity analyses for more traditional object-
oriented languages without closures, a purity analysis for JavaScript must handle free variables.

1 function f() // pure
2 {
3 function g() // pure
4 {
5 var z = 10;
6 function h() { z = 20 }; // procedure
7 h()
8 }
9 g()

10 }
11 f()

In the example above, when z is assigned on line 6, the call stack consists of function executions
of h, g, and f. Function h is a procedure because it mutates z, which is a free variable of h and
therefore exists in the caller state in this example. Function g is pure, because z is local to g.
Function f is also pure, because z is not part of its scope.

1.1.5. Finer-grained classification scheme Our analysis classifies functions that depend on external
side effects as observers. To determine which functions are observers, the analysis must detect
resources that are read by functions and that are modified in between two function executions.

1 var o = {x:123};
2 var p = Object.create(o);
3 function f() // observer
4 {
5 return p.x
6 }
7 f();
8 o.x = 456;
9 f()
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In the above example, object o defines a property x (line 1) and object p inherits this property
through its prototype o (line 2). Function f is applied twice, with a mutation of property o.x in
between the two executions. Function f is an observer because its resulting value depends on the
value of an object property that is mutated in between two executions of f.

This example also illustrates the usefulness of taking the property name into account when object
property effects are involved. If the property read by f on line 5 would be different from the property
mutated on line 8, then f would not depend on an external side effect and be considered pure in this
example.

1.1.6. Semantic corner cases In JavaScript it is not always straightforward to determine the correct
side effects. Because of the semantics of the language, variable x in the example program below is
actually a property of the global object.
1 var x;
2 this.x = 10; // property write
3 function f()
4 {
5 var y;
6 x = 10; // property write
7 y = 20; // variable write
8 }

Assigning to x on line 6 must generate a property write effect on the global object, identical to the
effect generated on line 2, and not a variable write effect.

Another example of non-obvious effects happens when assigning an array index that is equal or
greater than the current length of the array. This generates an additional write effect on the length
property of that array.

1.1.7. Constructor vs. function calls A final challenge that we mention concerns the fact that
functions in JavaScript are also constructors when invoked through new.
1 function f() { this.x = 10 } // procedure
2 new f(); // no observable side effects
3 f(); // generates observable write effect

When function f in the above example is invoked as a constructor (line 2), then this results in a
pure function execution because this in the body of f is bound to a freshly allocated object. The
regular function application on the next line results in an impure execution of f because this is
bound to the global object during execution. As a result, function f is a procedure.

1.2. Overview of Our Approach

Our approach for designing a static purity analysis, depicted in Figure 1, is based on an abstract
interpretation [8] of the program that integrates control flow, value flow, and effects. Abstract
interpretation is a good match for static analysis, because it provides a theory to develop static
analyses that are correct and provide meaningful results about the runtime behavior of programs.

We define a core imperative language, JS0, that represents an interesting and non-trivial subset of
standard JavaScript semantics (Section 2). The semantics of this input language is expressed as an
abstract state machine that is instrumented to register read and write effects on resources. Resources
in our semantics are variables and objects, which are allocated in a store at specific addresses.
Starting from an initial evaluation state, all possible successor states are explored. The result of
state exploration is a flow graph, which is a representation of the runtime behavior of the input
program in terms of control flow, value flow, and effects.

Our purity analysis then examines the flow graph to determine whether a given function can be
classified as pure, observer, or procedure by looking at all effects during and in between function
executions (Section 3). For every effect, the analysis traverses the call stack to obtain all active
function executions in the program state associated with the effect. When in the context of a function
execution an observable write effect is detected, then the applied function is labeled a procedure.
For dependence on external effects, the purity analysis looks for read–write–read sequences in the
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Fun ↦ Class

Var ↦ Freshness

Flow analysis  
(Section 2)

Freshness analysis  
(Section 4)

Purity analysis  
(Section 3)flow graphprogram function purity

variable and  
object freshness

Figure 1. Overview of our approach.

program involving the same resource, with the initial and subsequent read occurring in executions
of the same function.

Effects are observable to a caller when the address of an accessed or modified resource is mapped
in the caller store that is in effect at function entry. Although checking addresses of resources for
determining observability is attractive because it is a close fit with the store semantics of the abstract
machine, we find that this technique is problematic in a static analysis setting: because an analysis
must complete in finite space and time, the set of addresses is made finite, which decreases the
precision of address-based purity analysis. We therefore attempt to recover some of this precision
by defining a lexical and intraprocedural freshness analysis on top of a flow graph (Section 4). A
variable that is created in the function scope of an executing function is fresh in that execution
context, while an object reference is fresh in a function execution if the referenced object was
allocated during that execution. The purity analysis can use freshness of variables and objects to
mask certain read and write effects, thereby increasing the precision of the purity analysis.

After explaining our approach in detail, we give an overview of related work (Section 5). We
then discuss our implementation (Section 6), work out an example of each of the analyses presented
in this paper (Section 7), and describe the setup and outcome of our experiments (Section 8). The
remainder of the paper presents limitations (Section 9) and applications (Section 10) of our purity
analysis.
The contributions presented in this paper are the following:

• We present an abstract machine for a core JavaScript-like language that tracks read and
write effects generated by accessing and modifying variables and object properties during
interpretation.

• We introduce a purity analysis over a flow graph annotated with effects.
• We define a lexical freshness analysis for variables and objects to improve the precision of

our purity analysis.
• We implement our purity analysis for a substantial subset of JavaScript and experiment with it

on several JavaScript benchmarks. We find that the analysis is capable of determining function
purity with sufficient precision to be useful to client applications.

This paper is an extended version of “Detecting Function Purity in JavaScript” [27], published at
the 2015 Working Conference on Source Code Analysis and Manipulation (SCAM’15). It differs
from the earlier version in the following key aspects:

• The abstract machine for our core JavaScript-like language now tracks read effects in addition
to write effects.

• Tracking read effects enables our purity analysis to consider “observers” as an additional
purity class in its classification of functions. Consequently, the reported results are more fine-
grained than in our earlier work, which in turn allows us to map these results onto different
definitions of purity that exist in literature.

• We simplified the formulation of the freshness analysis incorporated by our purity analysis,
and explicitly limit it to the most recent function application (the running execution context).
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6 J. NICOLAY, Q. STIEVENART, W. DE MEUTER, C. DE ROOVER

This simplification improves running times, yet our experiments showed that this incurred no
precision loss.

• We increased the number of benchmarks to which we apply our analysis from 7 to 10. We
also compare our experimental results to three existing approaches for determining function
purity.

2. FLOW ANALYSIS

To reason about runtime program properties, a static analysis models the runtime behavior of a
program and queries this model for the properties of interest. In this section we introduce a core
JavaScript language, JS0, and a flow analysis that models the execution of a JS0 program as a
flow graph from which information about control flow, value flow, and effects can be extracted.
JS0 is a higher-order, functional, and object-oriented language. Because function call and return is
the dominant control-flow pattern in higher-order, functional programs, the flow analysis models
call/return as a pushdown analysis [37, 20] instead of a more classic but less precise finite-state
analysis.

Notation and Conventions We use ] to denote disjoint union: if X = Y ] Z, then Y = X \ Z.
The notationX = x : X ′ deconstructs a sequenceX into its first element x and the restX ′. We write
〈〉 for the empty sequence. The power domain of set X is denoted as P(X). The empty function is
denoted as [], and for all inputs returns the bottom element ⊥ of its range. The notation f [x 7→ y]
denotes function extension and yields a function f ′ such that:

f ′(z) =

{
y if z = x,
f(z) else.

We write the function restriction (or narrowing) of a function f to domain X as f |X , such that
(f |X)(x) = f(x) if x ∈ X and (f |X)(x) = ⊥ else. Function joining happens in a pointwise fashion.
If t is the join operator for the range of the function, then [x 7→ y1] t [x 7→ y2] = [x 7→ y1 t y2].
In particular,

⊔
{[x0 7→ y0], . . . , [xn 7→ yn]} = [x0 7→ y0] t . . . t [xn 7→ yn]. When a function is

defined using several (numbered) cases, then it is assumed that the cases are considered in order
and do not fall through.

2.1. Input Language: JS0

To simplify the formalization of our analysis, we work on a core functional language JS0 with
assignment and mutable objects. This input language, depicted in Figure 2, most notably features
objects as maps, higher-order functions, prototypal inheritance, and assignment. Although JS0 is
a small language, its set of features is sufficiently representative and challenging for performing
purity analysis. In Section 6.1 we describe a number of extensions to JS0 such as primitives and
conditionals. Our implementation (Section 6), which we used to validate our approach, supports
an even larger subset of traditional features of JavaScript such as variable declarations, iteration,
non-local return flow, and other typical features of JavaScript, including type coercions and parts of
the standard built-in functions and objects. We assume that every element in JS0 is uniquely labeled
so that different occurrences of the same expression can be distinguished.

2.2. Semantics of JS0

The small-step semantics of the input language is expressed as an abstract machine [12] that
transitions between states.

The resulting machine is a variation on the CESIK?Ξ abstract machine described in Johnson and
Van Horn [20]. This machine actually is an abstract abstract machine because it operates on abstract
values, although it can be parameterized to express concrete semantics.
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PURITY ANALYSIS FOR JAVASCRIPT THROUGH ABSTRACT INTERPRETATION 7

e ∈ Exp ::=s [simple expr]
| f [function]
| v(s) [function call]
| s0.v(s1) [method call]
| new v(s) [new expr]
| v=e [assignment]
| s.v [property load]
| s.v=e [property store]
| return s [return]

s ∈ Simple ::=v [reference]
| this [this expr]

f ∈ Fun ::=function (v){var vh; e}
v ∈ Var = a set of identifiers

Figure 2. Input language JS0.

ς ∈ State ::= ev(e, ρ, σ, ι, κ,Ξ) [eval state]
| ko(d, σ, ι, κ,Ξ) [kont state]

ρ ∈ Env = Var ⇀ Addr [environment]
σ ∈ Store = Addr ⇀ (D + Obj ) [store]

d ∈ D = P(Addr + Prim) [value]
Prim = {undef} [primitive value]

ω ∈ Obj = (Var ⇀ D)× (“proto” 7→ D)× (“call” 7→ P(Callable)) [object]
c ∈ Callable ::= (f, ρ) [callable]
ι ∈ LKont = Frame∗ [frame]
φ ∈ Frame ::= as(v , ρ) [assignment frame]

| st(s, v , ρ) [property store frame]
κ ∈ Kont ::= ε | τ [meta-continuation]
τ ∈ Ctx ::= (e, c, darg, athis, σ) [execution context]

Ξ ∈ KStore = Kont ⇀ P(LKont ×Kont) [stack store]
a ∈ Addr is a set of addresses [address]
eff ∈ Eff ::= Wv(a, v) [variable write effect]

| Wp(a, v) [property write effect]
| Rv(a, v) [variable read effect]
| Rp(a, v) [property read effect]

E ∈ P(Eff ) is a set of effects [effects]

Figure 3. State-space of the abstract machine semantics.

Figure 3 shows the abstract state-space of the machine. In the remainder of this section we detail
the components and the operation of the abstract machine.
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8 J. NICOLAY, Q. STIEVENART, W. DE MEUTER, C. DE ROOVER

2.2.1. States A machine state is either an evaluation state (ev), or a continuation state (ko). In an
evaluation state, the machine evaluates an expression e in environment ρ. In a continuation state,
the machine is ready to continue evaluation with a value d it has just computed.

2.2.2. Environment and Store An environment ρ maps variables to addresses. Addresses represent
a location in the store σ, and the store maps addresses to values. Looking up the value of a variable
therefore consists of first looking up that variable’s address, and then referencing this address in the
store.

2.2.3. Values Values in our semantics are addresses (a) and the undefined value (undef ).
An address is a pointer to an object. Objects (ω) are represented as maps from properties to
values. Properties “call” and “prototype” are two special properties that are distinct from all other
properties, and are used to implement function objects and object prototypes, respectively.

2.2.4. Stacks The stack is modeled as a local continuation (ι) delimited by a meta-continuation (κ).
The local continuation is a (possibly empty) list of frames, and acts like a “regular” stack, on top of
which frames can be pushed and from which topmost frames can be popped. The local stack in JS0
contains pending variable assignments and property stores in the local function.

The meta-continuation is either empty (ε), or a stack address (τ ) pointing to underlying stacks
stored in a stack store (Ξ). The meta-continuation serves two purposes:

1. Meta-continuations serve as stack addresses pointing to underlying caller stacks, which are
stored in a stack store (Ξ).

2. Meta-continuations play the role of execution contexts that are generated at call sites (except
for the root context ε that is created at the start of program evaluation). The meta-continuation
stored inside a program state is the execution context on top of the stack and is called the
running execution context.

The result of indirection introduced by meta-continuations is an abstraction of a linear stack into
a graph. Nodes in this graph are combinations of a local continuation with a meta-continuation,
while edges indicate reachability as encoded in the stack store. Traversing the stack from top to
bottom in a program state happens by first traversing the local continuation ι of that state (if not
empty), and then looking up the underlying stacks by following outgoing edges. This process repeats
until the root context ε is encountered. A single stack address can have more than one underlying
stack, represented by multiple outgoing edges in the stack graph, indicating a loss of control-flow
precision. A stack address may also directly or transitively be reachable from itself, forming loops in
the stack graph. Traversing the stack therefore always involves keeping a set of visited stack nodes
to avoid infinite recursion.

The graph representing a (potentially unbounded) stack is guaranteed to be finite when stack
frames and stack addresses are selected from finite sets. For our abstract machine semantics we use
the AAC stack address allocator [20], generating stack addresses that contain five components:

1. the call expression (e) that is involved,
2. the callable (c) that is invoked,
3. the argument (darg) to the function application,
4. the this pointer (athis) in the context of the call,
5. and the caller store (σ) that is in effect at function entry.

It can be verified by inspection of the state space (Figure 3) that this stack allocation scheme is finite
when the set of syntactic variables (Var) and the set of value store addresses (Addr ) is finite.

These five components also completely determine the outcome of a function execution. Therefore,
this stack allocation scheme results in maximally attainable call/return precision under any given
abstraction of the components that make up stack addresses. Under concrete semantics, full
call/return precision is preserved and the graph representing the stack of a terminating program
is a linked list.
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PURITY ANALYSIS FOR JAVASCRIPT THROUGH ABSTRACT INTERPRETATION 9

2.2.5. Effects Four types of effects are tracked: reading and writing of variables (Rv, Wv), and
reading and writing of object properties (Rp, Wp). They are generated by transitions between
states.

2.2.6. Program Injection The injection function I : Exp→ State turns an expression into an initial
evaluation state with empty environment, initial store, empty local continuation, and the root context
as meta-continuation.

I(e) = ev(e, [], σ0, 〈〉, ε, [])
where κ0 = (e,⊥,⊥, a0, σ0)

σ0 = [a0 7→ []]

The initial store σ0 maps the global object at address a0, which we assume to be globally available.

2.2.7. Address Allocation Address allocation is a parameter of the semantics that can be used to
control the context-sensitivity of the resulting analysis. Any address allocation scheme is sound [24],
although to simplify the semantics we assume that addresses for objects (in Obj ) are distinct from
addresses for all other values (in D). We assume the presence of allocation functions allocVar for
allocating variables, allocCtr for allocating constructor objects, allocFun for allocating function
objects, and allocProto for allocating prototypes of function objects.

To express concrete semantics, we can take Addr = N and

allocX (e, ρ, σ, ι, κ) = 1 + max(Dom(σ)),

where allocX is one of the allocation functions and Dom returns the domain of a function.
For abstract semantics, a monovariant allocation scheme that generates addresses based on

allocation sites (0CFA) would be Addr = Exp with

allocVar(e, ρ, σ, ι, κ) = e

and similar definitions for the other allocators.

2.2.8. Simple Expressions Function evalSimple : Simple× Env × Store ×Kont 7→ D × P(Eff )
evaluates simple expressions: references and this expression. It not only returns the resulting
value, but also the set of generated effects. The following three cases define evalSimple.

1. To evaluate a variable reference v , first the address of the variable is looked up in the lexical
environment. If the variable is available in the environment, then the value associated with its
address a in the store is returned and a variable read effect Rv(a, v) is generated.

evalSimple(v , ρ, σ, κ) = (σ(a), {Rv(a, v)})
if v ∈ Dom(ρ)

where a = ρ(v)

2. If a variable v is not available in the environment, a property lookup is performed on the
global object at address a0, and a property read effect Rp(a0, v) is generated.

evalSimple(v , ρ, σ, κ) = (ω(v), {Rp(a0, v)})
where ω = σ(a0)

3. The value for a this expression is retrieved from the running execution context, and no
effects are generated.

evalSimple([[this]], ρ, σ, (e, c, darg, athis, σ)) = ({athis},∅)
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2.2.9. Property Lookup Relation lookupProp looks up a property by traversing the prototype chain
of an object. If the property is not found in the chain, undefined is returned.

lookupProp(v , a, σ)

=


(ω(v), {Rp(a, v)}) if v ∈ Dom(ω)

({undef},∅) if ω(“proto”) = ∅
lookupProp(v , a′, σ) else

where ω = σ(a)

a′ ∈ ω(“proto”)

2.2.10. Function Call Function evalCall applies a callable (or closure) (f, ρ) to an argument darg
in a certain program state. It extends the function’s static environment ρ and the store σ by binding
parameters to their argument values and local variables to undefined. To simplify the semantics,
we assume a single parameter and a single local variable declaration that is hoisted to the beginning
of the function scope (see Section 6.1.5 for extensions).

Parameter κ is the execution context of the caller, while parameter κ′ represents the execution
context for the call itself. The stack store Ξ is extended by allocating the caller stack (ι, κ) at stack
address κ′. Evaluation of the body of the function happens in the static environment and store
extended with the binding of the argument (ρ′ and σ′), with an empty local continuation 〈〉, and the
execution context for the call κ′.

evalCall((f, ρ), darg, σ, ι, κ,Ξ, κ
′) = ev(e, ρ′, σ′, 〈〉, κ′,Ξ′)

where f = [[function (v){var vh; e}]]
ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ darg, ah 7→ {undef}]
a = allocVar(v , ρ, σ, ι, κ)

ah = allocVar(vh, ρ, σ, ι, κ)

Ξ′ = Ξ t [κ′ 7→ {(ι, κ)}]

2.2.11. Transition Relation Using the auxiliary functions from previous sections, we can now
define the transition relation 7→ of our abstract machine. In order to determine function purity, we
must be able to reason about effects that occur as a result of reading and modifying variables and
object properties during evaluation. We therefore make read and write effects explicit by modeling
them on the transition relation that transitions between states.

(7→) v State× State× P(Eff )

Rules for transitions from evaluation states (ev) correspond with the different syntactic cases,
while rules for transitions from continuation states (ko) correspond with the different kinds of
continuations. We list the different cases for 7→.

1. A simple expression is evaluated by delegating to evalSimple.

ev(s, ρ, σ, ι, κ,Ξ) 7→ (ko(d, σ, ι, κ,Ξ), E)

where (d,E) = evalSimple(s, ρ, σ, κ)

2. Evaluating a function expression yields a reference to a function object (ωf ) that is allocated
in the store. Following JavaScript semantics, a function object has a fresh object assigned to
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its prototype property.

ev([[

f︷ ︸︸ ︷
function (v){var vh; e}]], ρ, σ, ι, κ,Ξ) 7→ (ko({a}, σ′, ι, κ,Ξ),∅)

where a = allocFun(f, ρ, σ, ι, κ)

a′ = allocProto(f, ρ, σ, ι, κ)

σ′ = σ t [a 7→ {ωf}, a′ 7→ {ωproto}]
ωf = [“call” 7→ {(f, ρ)},

“proto” 7→ ∅,
prototype 7→ {a′}]

ωproto = [“proto” 7→ ∅]

3. A function call is evaluated by first evaluating operator and argument, and then applying the
evalCall helper function with a reference to the global object (a0) as this value.

ev([[

e︷ ︸︸ ︷
v(s)]], ρ, σ, ι, κ,Ξ) 7→ (evalCall(c, darg, σ, ι, κ,Ξ, κ

′), E)

where (df , Ef ) = evalSimple(v , ρ, σ, κ)

(darg, Earg) = evalSimple(s, ρ, σ, κ)

af ∈ df
ωf = σ(af )

c ∈ ωf (“call”)

κ′ = (e, c, darg, a0, σ)

E = Ef ∪ Earg

4. For a method call additionally the method is looked up in the receiver, and the receiver is set
as value for this in the new execution context.

ev([[

e︷ ︸︸ ︷
s0.v(s1)]], ρ, σ, ι, κ,Ξ) 7→ (evalCall(c, darg, σ, ι, κ,Ξ, κ

′), E)

where (dthis, Ethis) = evalSimple(s0, ρ, σ, κ)

(darg, Earg) = evalSimple(s1, ρ, σ, κ)

athis ∈ dthis

(df , Ef ) ∈ lookupProp(v , athis, σ)

af ∈ df
ωf = σ(af )

c ∈ ωf (“call”)

κ′ = (e, c, darg, athis, σ)

E = Ethis ∪ Earg ∪ Ef

5. A constructor call allocates a new object on the heap, and sets a reference to this object as
value for this in the new execution context. The internal prototype of the new object is the
value of the prototype property of the invoked constructor. The caller store in the context

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr



12 J. NICOLAY, Q. STIEVENART, W. DE MEUTER, C. DE ROOVER

is the store without the newly created object.

ev([[

e︷ ︸︸ ︷
new v(s)]], ρ, σ, ι, κ,Ξ) 7→ (evalCall(c, darg, σ

′, ι, κ,Ξ, κ′), E)

where (df , Ef ) = evalSimple(v , ρ, σ, κ)

(darg, Earg) = evalSimple(s, ρ, σ, κ)

af ∈ df
ωf = σ(af )

c ∈ ωf (“call”)

athis = allocCtr(e, ρ, σ, ι, κ)

ω = [“proto” 7→ ωf (prototype)]

σ′ = σ t [athis 7→ {ω}]
κ′ = (e, c, darg, athis, σ)

E = Ef ∪ Earg

6. Variable assignment pushes a continuation to assign the value of the right hand side to the
variable. No effects are generated during this step.

ev([[v=e]], ρ, σ, ι, κ,Ξ) 7→ (ev(e, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = as(v , ρ)

7. Loading a property involves evaluating the receiver, and looking up the property in that
receiver.

ev([[s.v ]], ρ, σ, ι, κ,Ξ) 7→ (ko(d, σ, ι, κ,Ξ), E)

where (dr, Er) = evalSimple(s, ρ, σ, κ)

a ∈ dr
(d,E′) ∈ lookupProp(v , a, σ)

E = Er ∪ E′

8. Like assignment, storing a property requires evaluating the right hand side and pushing a
continuation to perform the actual property update.

ev([[s.v=e]], ρ, σ, ι, κ,Ξ) 7→ (ev(e, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = st(s, v , ρ)

9. Function return computes a return value and clears the local continuation.

ev([[return s]], ρ, σ, ι, κ,Ξ) 7→ (ko(d, ρ, σ, 〈〉, κ,Ξ), E)

where (d,E) = evalSimple(s, ρ, σ, κ)

10. When the machine has to continue with an assignment frame on top of the stack, it assigns the
value computed for the right hand side to the variable on the left, if the variable is in scope. It
then continues with this value, generating a variable write effect.

ko(d, σ,as(v , ρ) : ι, κ,Ξ) 7→ (ko(d, σ′, ι, κ,Ξ), E)

if v ∈ Dom(ρ)

where a = ρ(v)

σ′ = σ t [a 7→ d]

E = {Wv(a, v)}
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11. If the variable is not found in the environment, the machine performs a property update on the
global object, generating a property write effect.

ko(d, σ,as(v , ρ) : ι, κ,Ξ) 7→ (ko(d, σ′, ι, κ,Ξ), E)

where ω = σ(a0)[v 7→ d]

σ′ = σ t [a0 7→ ω]

E = {Wp(a0, v)}

12. Storing a property always happens directly on the receiver and does not require traversing
prototype links. It generates a property write effect.

ko(d, σ, st(s, v , ρ) : ι, κ,Ξ) 7→ (ko(d, σ′, ι, κ,Ξ), E)

where (dr, Er) = evalSimple(s, ρ, σ, κ)

a ∈ dr
ω = σ(a)[v 7→ d]

σ′ = σ t [a 7→ ω]

E = Er ∪ {Wp(a, v)}

13. When the machine reaches a state with an empty local continuation, the machine dereferences
the stack address to obtain an underlying stack. If no stacks are found in the stack store, then
the machine has reached a program exit and halts, and the current value is the result value of
the program. Else, the machine has reached a function exit, which is the consequence of either
an explicit return, or of an implicit return by reaching the end of a function body. When
exiting a constructor call, a reference to the newly created object is returned.

ko(d, σ, 〈〉, κ,Ξ) 7→ (ko(d′, σ, ι′, κ′,Ξ),∅)

where (ι′, κ′) ∈ Ξ(κ)

d′ = {athis}
([[new v(s)]], , , athis, ) = κ

14. When exiting a regular function call, the current value is returned.

ko(d, σ, 〈〉, κ,Ξ) 7→ (ko(d, σ, ι′, κ′,Ξ),∅)

where (ι′, κ′) ∈ Ξ(κ)

2.2.12. Flow Graph We determine function purity by reasoning about effects that happen during
program evaluation. We therefore construct a flow graph representing program evaluation, in which
nodes are reachable states, and edges are transitions between states that are labeled with the effects
that occur on transition. Let ↪→ be transition relation 7→ with the effects removed:

ς ↪→ ς ′ ⇐⇒ ς 7→ (ς ′, E).

Let ς0 be the initial state for expression e:

ς0 = I(e).

Evaluation of an expression e can be expressed as computing the transitive closure of ↪→ after
injection.

E(e) = {ς | ς0 ↪→∗ ς ′}

The definition of flow graph Ge for expression e then is as follows:

ς
E−→ ς ′ ∈ Ge ⇐⇒ ς ∈ E(e) and ς 7→ (ς ′, E)

Static analysis requires a finite flow graph for every possible program. We can guarantee finiteness
by plugging in finite sets for Var and Addr into the state-space of the analysis (Figure 3). When
analyzing a finite program (finite Var) using a monovariant allocation policy (finite Addr ), then the
entire state space is finite as well and ↪→, which is monotonic, has a least fixpoint.
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14 J. NICOLAY, Q. STIEVENART, W. DE MEUTER, C. DE ROOVER

3. PURITY ANALYSIS

Using the flow graph from the previous section, our analysis determines function purity by
examining all effects in the context of all function executions. The analysis traverses all states
(Section 3.1), and for every effect in a state it traverses the call stack (Section 3.2) to determine
in which execution contexts the effect is observable. The result of the purity analysis is a map P
from functions to their effect class.

class ∈ Class = {pure, obs, proc} [effect class]
P ∈ Purity = Fun 7→ Class [function purity]

R ∈ Read = Res 7→ P(Fun) [read table]
O ∈ Obs = Res 7→ P(Fun) [observer table]

res ∈ Res = Addr + (Addr × Var) [resource]

The effect class (Class) is a join semi-lattice in which ⊥ @ pure @ obs @ proc, so that for
example pure t obs = obs and proc t pure = proc. The effect class of a function is proc if an
execution of that function generates observable side effects, obs if a function execution depends
on external side effects but none generate observable side effects, and pure otherwise.

Our purity analysis navigates the flow graph Ge and updates effect maps P , R and O . Mapping
P maps functions onto their effect class. During a function execution, if an observable write effect
is generated, then the applied function becomes a procedure (proc) in P .

For dependence on external effects, the analysis looks for read–write–read sequences involving
the same resource and with the initial and subsequent read occurring in an execution of the same
function. If a function reads an external resource, this effect is tracked in the read table (R). If a
resource is modified, then all functions that have a read dependency on that resource are added to
the observer table (O) as potential observers of modifications of the resource. If a function reads
a resource and is mapped in the observer table as a potential observer for that resource, then that
function becomes an actual observer of an external effect, and its effect class at that point is joined
with obs in P .

We consider variables and object properties to be resources (Res) on which read and write effects
are possible.

The purity analysis that we present in this section is finite if the underlying flow graph is finite,
because the purity maps monotonically increase in a finite domain.

3.1. Graph Traversal

We define a function travGraphP that navigates flow graph Ge and propagates information about
effects per procedure. The result of graph traversal is a map from functions to effect classes.

travGraphP : P(State)× P(State)× Purity × Read ×Obs → Purity

The first parameter of function travGraphP is the set of seen states, which is initially empty. The
second parameter is the “work list”, which actually is a set of states that still need to be visited.
Graph traversal starts at the initial state ς0 of the flow graph. The final three parameters are the effect
maps of the analysis needed to implement the algorithm sketched at the start of this section. These
maps are initially empty. The initial argument for purity analysis therefore is (∅, {ς0}, [], [], []).

The following three cases define travGraphP .

1. If the work list of states W is empty, the analysis terminates and the map of effect class per
function P is returned.

travGraphP (S,∅,P ,R,O) = P

2. If a state in the work list W is already in the set of seen states S, it is removed from the work
list and traversal continues.

travGraphP (S ∪ {ς},W ] {ς},P ,R,O) = travGraphP (S ∪ {ς},W,P ,R,O)

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr



PURITY ANALYSIS FOR JAVASCRIPT THROUGH ABSTRACT INTERPRETATION 15

3. The interesting case is when the analysis encounters a state ς that it has not yet seen with the
current effect maps. For every effect eff in the set of effects E associated with an outgoing
transition from state ς in the flow graph, the analysis delegates to effect handler handleP . The
handler returns potentially updated effects maps, and if any of these maps increases the set of
seen states is cleared to make sure that at the end of graph traversal the analysis has visited
each state with the maximum attainable effect maps.

travGraphP (S,W ] {ς},P ,R,O) = travGraphP (S′,W ′,P ′,R′,O ′)

where (P ′,R′,O ′) =
⊔
{handleP (eff , ς,P ,R,O)

| eff ∈ E ∧ (ς
E−→ ς ′) ∈ Ge}

W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge}

S′ =

{
∅ if P 6= P ′ ∨ R 6= R′ ∨O 6= O ′

S ∪ {ς} else

Function handleP is an intermediate dispatcher that forwards to handleWrite and handleRead
after building the resource.

handleP : Eff × State× Purity × Read ×Obs → Purity × Read ×Obs

The first two parameters of this function are an effect and a state in which the effect occurs. The
remaining parameters are the effect maps that will potentially be updated. In case of an effect on an
object, function handleP combines the address of the object and the property name into a resource.
Otherwise the effect is on a variable and the corresponding resource is the address of the variable.
The four cases for handleP are as follows.

1. Variable write effect:

handleP (

eff︷ ︸︸ ︷
Wv(a, ), ς,P ,R,O) = handleWrite(eff , a, ς,P ,R,O)

2. Property write effect:

handleP (

eff︷ ︸︸ ︷
Wp(a, v), ς,P ,R,O) = handleWrite(eff , (a, v), ς,P ,R,O)

3. Variable read effect:

handleP (

eff︷ ︸︸ ︷
Rv(a, ), ς,P ,R,O) = handleRead(eff , a, ς,P ,R,O)

4. Property read effect:

handleP (

eff︷ ︸︸ ︷
Rp(a, v), ς,P ,R,O) = handleRead(eff , (a, v), ς,P ,R,O)

Handling a read potentially updates the effect class of a function and the read table. The
effect handler handleRead delegates to helper function travStackR to inspect all active function
executions.

handleRead : Eff × Res × State× Purity × Read ×Obs

→ Purity × Read ×Obs

handleRead(eff , res, ς,P ,R,O) = (P ′,R′,O)

where (P ′,R′) = travStackR(eff , res, ς,∅, {κ},P ,R,O)

(. . . , κ, ) = ς
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Handling a write potentially updates the effect class of active functions and the observer table for
the affected resource. The effect handler handleWrite delegates to helper function travStackW to
inspect all active function executions. Updating observers does not depend on the observability of
the write effect. If a resource is written, then every procedure that has a read dependency on that
resource is unconditionally moved to the observer table.

handleWrite : Eff × Res × State× Purity × Read ×Obs

→ Purity × Read ×Obs

handleWrite(eff , res, ς,P ,R,O) = (P ′,R,O ′)

where O ′ = O t [res 7→ R(res)]

P ′ = travStackW (eff , res, ς,∅, {κ},P)

(. . . , κ, ) = ς

3.2. Stack Traversal

Our purity analysis determines the observability of an effect for every function that is computing a
return value at the point at which the effect is produced. It needs to find all the dynamic extents in
which the effect occurs and does so by traversing the execution context stack. Because continuations
in our semantics are delimited by function applications, we ignore local continuations entirely, and
instead focus on meta-continuations and stack addresses in the stack store.

The stack-traversing operation travStackR propagates an effect down the stack while
remembering the execution contexts that it has already seen to avoid infinite recursion.

travStackR : Eff × Res × State× P(Kont)× P(Kont)× Purity × Read ×Obs → Purity × Read

The first parameter of travStackR is an effect that is propagated down the stack. The second
parameter is the resource targeted by this effect: a value store address for effects on variables, or a
value store address coupled to a property name for effects on object properties. The third parameter
is the program state in which the effect occurs and from which the call stack is obtained. The fourth
parameter is the set of seen execution contexts, and is initially empty. The set of seen contexts is
used to prevent infinite cycles when traversing the stack. The fifth parameter is the work list of
execution contexts that still need to be visited, and initially contains the running execution context
of the program state in which stack traversal is performed. The final three parameters are the effect
maps, of which potentially the purity and read map are updated during stack traversal. Function
travStackR has to consider five distinct cases.

1. Stack traversal terminates when the work list is empty. The purity and read maps are returned.

travStackR(eff , res, ς, S,∅,P ,R,O) = (P ,R)

2. An execution context that was already visited is not visited again.

travStackR(eff , res, ς, S ∪ {κ},W ] {κ},P ,R,O) = travStackR(eff , res, ς, S ∪ {κ},W,P ,R,O)

3. The root context ε signals that the bottom of the stack has been reached. We do not treat the
root (program) context as an execution context, so the effect maps are not updated.

travStackR(eff , res, ς, S,W ] {ε},P ,R,O) = travStackR(eff , res, ς, S ∪ {ε},W,P ,R,O)

4. If a read effect occurs on an address that is mapped in the caller store σ, then the effect is on
a resource that is reachable by the caller. In this case the function being applied (f ) is marked
as read-dependent on the resource by adding it to R. If this function is registered as a potential
observer for the read resource, then the function is marked as an observer in P . Both the caller
store σ and the applied function f are components of the current execution context τ , which
is added to the set of seen contexts. Context τ is also dereferenced in the stack store to add all
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underlying execution contexts to the work list.

travStackR(eff , res, ς, S,W ] {τ},P ,R,O) = travStackR(eff , res, ς, S′,W ′,P ′,R′,O)

if a ∈ Dom(σ)

where S′ = S ∪ {τ}
W ′ = W ∪ {κ′ | ( , κ′) ∈ Ξ(τ)}

P ′ = P t
⊔
{f 7→ obs | f ∈ O(res)}

R′ = R t [res 7→ {f}]
(. . . ,Ξ) = ς

( , (f, ), , , σ) = τ

5. If the read address is not in the domain of the caller store, then the effect is local to the function
execution and can be masked. Because the effect also cannot be observed in underlying
execution contexts, the analysis does not need to examine underlying stacks to add contexts
to the work list. The current execution context τ is added to the set of seen contexts.

travStackR(eff , res, ς, S,W ] {τ},P ,R,O) = travStackR(eff , res, ς, S ∪ {τ},W,P ,R,O)

Function travStackW similarly traverses the stack, checking whether the address of the written
resource is mapped in the caller store of an active function execution.

travStackW : Eff × Res × State× P(Kont)× P(Kont)× Purity × Read ×Obs → Purity

The signature of travStackW is similar to the signature of travStackR, but it only potentially updates
the purity map. The function also has to consider five distinct cases.

1. Stack traversal terminates when the work list is empty. The purity map is returned.

travStackW (eff , res, ς, S,∅,P) = P

2. An execution context that was already visited is not visited again.

travStackW (eff , res, ς, S ∪ {κ},W ] {κ},P) = travStackW (eff , res, ς, S ∪ {κ},W,P)

3. The root context ε signals that the bottom of the stack has been reached, so the effect maps
are not updated.

travStackW (eff , res, ς, S,W ] {ε},P ,R,O) = travStackR(eff , res, ς, S ∪ {ε},W,P ,R,O)

4. If the address of the written resource is mapped in the caller store of an active function
execution, then the effect is observable from the point of view of the caller, and the function
is marked as a procedure in P . The current execution context τ is added to the set of seen
contexts, and τ is dereferenced in the stack store to add all underlying execution contexts to
the work list.

travStackW (eff , res, ς, S,W ] {τ},P) = travStackW (eff , res, ς, S′,W ′,P ′)

if a ∈ Dom(σ)

where S′ = S ∪ {τ}
W ′ = W ∪ {κ′ | ( , κ′) ∈ Ξ(τ)}
P ′ = P t [f 7→ proc]

(. . . ,Ξ) = ς

( , (f, ), , , σ) = τ

5. If the written address is not in the domain of the caller store, then the effect is local to the
function execution and can be masked. The effect cannot be observed in underlying execution
contexts and the current execution context τ is added to the set of seen contexts.

travStackW (eff , res, ς, S,W ] {τ},P) = travStackW (eff , res, ς, S ∪ {τ},W,P)
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1 function F(f) {
2 var a = this;
3 a.f = f;
4 }
5
6 F.create =
7 function (n) {
8 var f;
9 if (n < 1) {

10 f = null;
11 } else {
12 f = F.create(n-1);
13 }
14 return new F(f);
15 }
16
17 F.create(3);

Figure 4. Example program with recursive pattern.

4. FRESHNESS ANALYSIS

Address-based purity analysis from Section 3 is a close fit with the store semantics of the abstract
machine presented in Section 2.2. Resources are represented as addresses, coupled to property
names for property effects, and side effects are determined based on the addresses read from and
written to. While effect masking based on addresses is attractive in a store semantics, it is also
problematic in a typical static analysis setting, which motivates the addition of lexical freshness
analysis.

4.1. Motivation

In concrete semantics, resources that should be distinct are treated as such, because they are
referenced through distinct addresses. When our abstract machine is configured with concrete value
and stack store allocators, addresses are generated with full precision, and the machine allocates
like a regular interpreter for JavaScript would at runtime. As a result, concrete side-effect analysis
determines procedure side effects with full precision, i.e., with no false positives or negatives. It
follows that effect masking based on addresses then also is fully precise. However, in a static analysis
setting this is not realistic.

4.1.1. Problem: Limited Precision for Addresses To guarantee that an analysis runs in reasonable
(finite) time and space, our compile-time analysis sacrifices precision primarily by limiting the
number of addresses the abstract machines allocator may choose from while analyzing the input
program. This strategy is at the heart of static analysis techniques for higher-order languages like
AAM [36] and AAC [20], on which we based our semantics. For example, 0CFA is a widely used
address allocation policy for abstract semantics in which every syntactic variable is its own address
(Section 2.2.7).

When effect masking hinges on addresses, we must assess the impact of this precision loss on our
approach. As it turns out, the precision loss can be problematic, as the following examples illustrate.

Example 1. The program depicted in Figure 4 represents the essence of a pattern for constructing
a composite data structure. Suppose that every object created on line 14 is allocated at a single
address a. When constructor F on line 14 is called after the recursive call F.create on line 12
in the else branch, that recursive call has already allocated an object at address a. Therefore, our
purity analysis concludes that property load a.f on line 3 in the constructor writes to an address that
already exists in the caller store. As a result, constructor F is imprecisely considered to be impure,
although a constructor should be allowed to mutate the object referenced by its this parameter
without generating an observable side effect.
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In the same example program in Figure 4, we identify a second problem. Suppose that variable
f on line 8 is always allocated at the same address. Then, in a recursive call to F.create both
assignments to f (lines 10 and 12) are considered to be a write to an address that exists in the caller
store, imprecisely regarding constructor F as impure.

The above example—involving write effects, but read effects suffer the same fate—shows that
effect masking based solely on addresses suffers from inherent imprecision introduced by selecting
addresses from a finite set. We say “inherent”, because while it is always possible to recover
some loss of precision by for example generating context-sensitive addresses (e.g. using 1CFA
allocation [34]), at one point or another the machine will run out of fresh addresses for a particular
resource. Increasing context-sensitivity may cause more function executions to be considered free
from observable side effects by our analysis, but it takes only a single function execution with an
observable side effect for the applied function to be marked as exhibiting side effects, and increasing
context-sensitivity only delays the inevitable.

4.1.2. Solution: Lexical Freshness The precision of address-based purity analysis can be improved
by taking into account certain invariants that are independent of addresses and therefore of the actual
choice of address allocation policy. For example, mutating the newly created object in a constructor
call is never an observable side effect. Similarly, writing to a local variable does not generate an
observable side effect either. These and other invariants have one thing in common that we want to
check for: freshness.

We develop a lexical freshness analysis for variables (for variable effects) and objects (for
property effects). Unlike address-based purity analysis, we only consider variable and object
freshness in the running execution context, i.e., the execution context on top of the stack resulting
from the most recent function application. The reason is that address-based purity analysis is
based on stack reachability and the stack embodies dynamic scope, while variables are lexically
scoped. Therefore, applying freshness analysis in underlying execution contexts without performing
additional analysis such as escape analysis would be unsound.

4.2. Variable Freshness

Under concrete semantics, whenever evaluation enters the body of a function, parameters and local
variables are always freshly allocated. Therefore a variable is fresh with respect to the running
execution context if it is a local variable in that context, no matter where the variable is allocated
in the store. The handler for a variable effect can then be defined without the need for checking the
address of that variable.

4.2.1. Extending Purity Analysis With Variable Freshness Variable freshness analysis plugs into
the address-based purity analysis from Section 3 by adding two additional handlers for effects on
variables that shortcut the previous cases of handleP . These handlers only relies on lexical scoping
information offered by predicate isLocal ⊆ Var × Fun, which returns whether a variable is declared
in an enclosing scope of a given function scope or not.

1. Writing to a local variable is not observable to callers.

handleP (Wv( , v), (. . . , κ, ),P ,R,O) = (P ,R,O)

if isLocal(v , f)

where ( , (f, ), , , ) = κ

2. Reading a local variable is not observable to callers.

handleP (Rv( , v), (. . . , κ, ),P ,R,O) = (P ,R,O)

if isLocal(v , f)

where ( , (f, ), , , ) = κ
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4.3. Object Freshness

The goal of our object freshness analysis is to determine whether expressions only reference fresh
objects or not, without involving object addresses. An object is fresh with respect to the running
execution context if it was created in that context. Objects differ from variables in that object
references are first-class values and object references are not statically anchored by scopes like
variable references are. Instead, references to objects are allowed to flow freely throughout a
program. Whenever an object is allocated, a reference to that object is returned in the form of
an address. This reference is a first-class value that can be stored, either by binding to variables or
parameters, or assignment to variables and object fields. Consequently, object freshness analysis is
more complex in our approach than variable freshness.

We express object freshness by a join semi-lattice Freshness in which⊥ @ fr @ unfr, so that for
example fr t unfr = unfr. An expression is fresh (fr) if it only references fresh objects, else it is
unfresh (unfr).

ψ ∈ Freshness = {fr,unfr}

Determining object freshness in all program states requires two operations: a function that
determines the freshness of expressions, and an analysis that propagates object freshness of variables
in the running execution context.

We start by defining a function fresh that returns whether an expression only references fresh
objects or not.

fresh : Exp×Kont × Fresh → Freshness

F ∈ Fresh = Var ⇀ Freshness

The first parameter of function fresh is the expression (e) of which the freshness has to be
determined. The second parameter is the running execution context (κ) in which this expression
appears. The third parameter (Freshness) is a map from variables to object freshness that is in effect
when determining the object freshness of the expression. The following cases define function fresh.

1. The object freshness of a local variable is looked up in map F .

fresh([[v ]], κ,F ) = F (v)

if v ∈ Dom(F )

2. An object constructed through new is fresh.

fresh([[new v(s)]], κ,F ) = fr

3. Freshness of an assignment expression is determined by the freshness of its value, i.e., its right
hand side.

fresh([[v=e]], κ,F ) = fresh(e, κ,F )

4. A reference to a newly constructed object through this in a constructor is fresh.

fresh([[this]], ([[new v(s)]], . . .),F ) = fr

5. All other expressions are not fresh.

fresh(e, κ,F ) = unfr

When provided with a map F ∈ Fresh that indicates whether a variable only points to fresh
objects or not, function fresh can determine object freshness in all program states. We formalize an
object freshness analysis to compute F that operates on the same flow graph as the purity analysis
it aims to improve. The analysis propagates F until it reaches a fixpoint, and a current value of F is
used through function fresh to compute updates to F during this fixpoint computation.
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In our approach, object freshness only propagates through variable assignment within the running
execution context. Resources that exist in an outer function scope are conservatively considered
unfresh. The object freshness analysis does not track freshness through, for example, function calls
or property loading and storing: for these kinds of object flow, purity analysis relies entirely on the
underlying abstract interpretation and the addresses it allocates.

4.3.1. Graph Traversal Like the purity analysis from Section 3, object freshness analysis
piggybacks on the underlying flow graph for control flow by using traversal function travGraphF

that delegates to handleF to update map F for newly encountered states.

travGraphF : P(State)× P(State)× Fresh → Fresh

The first parameter of travGraphF is the set of seen states. The second parameter is the work list of
states, i.e., states that still need to be visited. The third parameter is a map from variables to object
freshness, and represents the result this analysis computes. The initial argument for the freshness
analysis is (∅, {ς0}, []), where ς0 is the initial state of the flow graph. To use the results of object
freshness analysis, function travGraphF has to be called before travGraphP , which performs the
actual purity analysis.

We define travGraphF using three cases.

1. If the work list of states W is empty then graph traversal has finished and the map Fresh from
variables to object freshness is returned.

travGraphF (S,∅,F ) = F

2. If the state pulled from the work list is already in the set of seen states S, it is removed from
the work list and traversal continues.

travGraphF (S ∪ {ς},W ] {ς},F ) = F

3. For a state that was not yet encountered, function travGraphF delegates to handleF . If the
latter function updates the freshness of variables, then the set of seen states is cleared before
traversal continues to ensure that at the end of graph traversal the analysis has visited each
state with the maximum attainable object freshness for each variable.

travGraphF (S,W ] {ς},F ) = travGraphF (S′,W ′,F ′)

where W ′ = W ∪ {ς ′ | (ς −→ ς ′) ∈ Ge}
F ′ = handleF (ς,F )

S′ =

{
∅ if F 6= F ′

S ∪ {ς} else

Object freshness information for variables is propagated through states, and is potentially updated
when an evaluation state for an assignment expression is encountered. Continuation states do not
modify the freshness map, because the analysis tracks freshness through expressions rather than
values. State handler handleF implements this logic.

handleF : State× Fresh → Fresh

The first parameter of this function is a program state, and the second parameter is a map from
variables to object freshness.

1. For a variable assignment expression, predicate isLocal ⊆ Var × Fun is used to determine
whether the variable being assigned is local to the running function execution. If this is the
case, then freshness is propagated from the right hand side to the left hand side. Else, the
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variable becomes unfresh.

handleF (ev([[v=e]], ρ, σ, ι, κ,Ξ),F ) = F ′

where F ′ =

{
F t [v 7→ fresh(e, κ,F )] if isLocal(v , f)

F t [v 7→ unfr] else

κ = ( , (f, ), . . .)

2. For any other state the freshness map remains the same.

handleF (ς,F ) = F

4.3.2. Extending Purity Analysis With Object Freshness Object freshness analysis plugs into the
address-based purity analysis from Section 3 by adding three additional handlers for property effects
that must be checked before the existing property effect handlers defined in that section. These
handlers operate in the running execution context and avoid using store addresses for determining
purity when a fresh object is involved, improving the precision of the resulting purity analysis.
Let F ∈ Fresh be the result of performing object freshness analysis. We define the three additional
handlers as follows.

1. A property write effect happens through an explicit property store or when assigning to a
top-level variable, although in the latter case the global object is never fresh during function
execution. Storing a property on a fresh object in the running execution context is not
observable to the most recent caller.

handleP (Wp( , ),

ς︷ ︸︸ ︷
ko(d, σ, st(s, v , ρ) : ι, κ,Ξ),P ,R,O) = (P ,R,O)

if fresh(s, κ,F ) = fr

2. A property read effect is the consequence of an explicit property access through lookupProp
or when reading from a top-level variable (the latter case again involving an unfresh global
object). Reading a property on a fresh object as a consequence of a property load in the
running execution context is not observable to the most recent caller.

handleP (Rp( , ), ev([[s.v ]], ρ, σ, ι, κ,Ξ),P ,R,O) = (P ,R,O)

if fresh(s, κ,F ) = fr

3. Similar to the previous case, reading a property on a fresh object as a consequence of a method
call in the running execution context is not observable to the most recent caller.

handleP (Rp( , ), ev([[s0.v(s1)]], ρ, σ, ι, κ,Ξ),P ,R,O) = (P ,R,O)

if fresh(s0, κ,F ) = fr

5. RELATED WORK

5.1. Side-effect and Purity Analysis

There exists a large body of work on purity and closely related concepts such as side-effect analysis,
referential transparency, and memoization. We give a small overview of related work.

Salcianu and Rinard [33] present a purity analysis that is based on an underlying pointer analysis
(JPPA). Their analysis first constructs parameterized points-to graphs for every method, in which
nodes are objects and edges are heap references. A later interprocedural step instantiates these
points-to graphs at every call. The goal of the analysis is to distinguish objects allocated during
invocation of a method from objects that already exist in the caller state. From a high-level
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perspective, our approach is comparable: we also perform an intraprocedural analysis to compute
freshness, which we then complete with interprocedural information to determine purity. However,
our intraprocedural step consists of an instrumentation of the language’s semantics and is closer
to how an interpreter works, whereas the approach of Sacianu and Rinard computes a points-to
graph for every program point, which requires complex manipulation of graphs. Because JPPA
targets Java programs, it does not support higher-order functions and closures, while our approach
does. Extending JPPA to support more language features would require adapting the complex graph
construction parts. With our approach, the changes would follow from the semantics of the language
features. Like our approach, JPPA requires a whole-program analysis.

Pearce introduces JPure [29], a modular purity analysis based on annotations that express
freshness and locality, two concepts that map closely to how we use these terms in this work.
When the focus is on maintaining purity, no whole-program interprocedural analysis is required.
JPure is rooted in Java, and can automatically infer annotations. Similar to our technique, the tool
starts from an intraprocedural dataflow analysis to model freshness and locality of object references.
Purity inference then interprocedurally propagates information using static class hierarchy.

Madhavan et al. [23] present the pointer analysis used in Salcianu and Rinard [33] as an abstract
interpretation. As the work of Madhavan et al. is a different formulation of the same technique used
in JPPA, it is subject to the same limitations. Namely, extending it to support higher-order functions
and closures would require a reformulation of the semantics, while this is incorporated at the core of
our approach. Our work is also based on abstract interpretation, but is different from original JPPA
formulation and thus also from its abstract interpretation reformulation.

Huang et al. [17] present ReImInfer, a type inference analysis for reference immutability in Java.
ReIm, the underlying type system, qualifies references as being readonly, mutable, or polyread, the
latter signifying that a reference is immutable in the current context but may not be in other contexts.
Methods are pure if none of their parameters, including this, are inferred to be mutable. Like the
purity analysis we present in this paper, ReImInfer is context-sensitive when applying viewpoint
adaptation. Our execution contexts are more precise than any approach discussed in [17], but
at the expense of running time and scalability. ReImInfer does not handle higher-order language
constructs.

Rytz et al. [32] present a modular type-and-effect system for purity in Scala. It is strongly
influenced by JPure and it also relies on annotations, while our analysis does not. Their effect
system is flow-insensitive to make it suitable for higher-order languages, while our work is both
flow-sensitive and capable of handling higher-order constructs.

Pitidis and Sagonas [30] treat purity in the setting of the functional language Erlang. They take the
stricter definition of purity where a function also may not depend on external side effects. Similar to
our approach, higher-order functions are supported. However, the authors mention that the dataflow
analysis they rely on is “pretty simple” and “not so accurate”, without giving more information. In
this work, we employ a state-of-the-art flow analysis offering maximal call/return precision.

Finifter et al. [13] discusses purity from the point of view of a deterministic object-capability
language (Joe-E) based on Java. Purity of methods can be enforced by statically declaring all
parameters as having an immutable type. Declaring parameters as immutable is sufficient in a
language that does not have closures with mutable free variables, but would not apply in our setting
of JavaScript, which does have mutable free variables.

We adopted the term effect class from Gifford and Lucassen [14]. In their work on combining
functional and imperative programming languages, they look at all possible combinations of
reading, writing, and allocation of memory locations by expressions with the goal of classifying
these expressions accordingly.

Functions can call other functions, and when an effect occurs an effect analysis must traverse the
stack to find all “active” functions, i.e., functions that are in the process of computing a result. This
is what Might and Prabhu [25] formulated as Harrisons dependence principle [16], which inspired
us to use stack traversal to determine the observable extent of side effects. Reformulated in the
context of side-effect and purity analysis, Harrison’s principle states that a side effect occurs for all
functions on the call stack. Might and Prabhu present a finite-state dependence analysis and does
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not treat compound values and objects. Our work employs a more precise pushdown analysis and
supports objects.

5.2. Static Analysis of JavaScript

We use JIPDA† as the underlying abstract interpreter for producing flow graphs. There exist several
other JavaScript analysis tools such as WALA‡, TAJS [19], and JSAI [21]. We conjecture that it
is possible to implement our approach in these tools. JIPDA was constructed as a prototype for
analyzing a small subset of JavaScript following the AAC method [20] based on abstract machines,
and therefore exposes the program representation and information required for performing our
purity analysis by design. Enabling the implementation of our approach on top of existing tools
therefore necessitates the effort of extending or adapting these tools so that the required program
information becomes available.

Any implementation of our side-effect and purity analysis requires a flow analysis that models
store-allocated resources, effects on these resources, and the call stack. It must also be able
to associate the applied function and corresponding caller store with each function execution.
Additionally, our object freshness and purity analysis require a flow-sensitive program analysis.
We formulated our analyses on top of a flow graph that exposes the necessary information—more
specifically nodes in this graph represent program states and edges are annotated with effects that
occur on transition between states.

6. IMPLEMENTATION

We implemented the purity and freshness analyses discussed in previous sections as a proof of
concept§. The prototype implementation is structured according to the approach we outline in this
work. At the base level, we use JIPDA as the underlying abstract interpreter for producing flow
graphs. We define our freshness analysis to be executed on top of the produced flow graphs. Our
purity analysis consumes a flow graph and (optionally) the results of freshness analysis that was run
over the same graph.

Our implementation extends and optimizes the syntax and semantics of JS0 as presented
in Section 2. We now discuss the most important extensions (Section 6.1) and optimizations
(Section 6.2), some of which are also used in the detailed analysis examples presented in Section 7.

6.1. Extensions

We designed JS0 to be sufficiently representative to expose the important points in the design of
a purity analysis for JavaScript, omitting many constructs found in JavaScript and many other
mainstream languages to simplify the presentation. In this section we augment JS0 with some of
these omitted constructs that we also incorporated in our implementation, and which should ease
the task of implementors of our approach in a realistic setting.

6.1.1. Primitive values The only type of value directly expressible in JS0 are objects, represented
by addresses in the semantics. The value undefined can be obtained indirectly by looking up
a non-existing property. Extending JS0 with primitive values starts by expanding the set of simple
expressions Simple with sets that represent these values. We illustrate this by showing the extensions

†https://github.com/jensnicolay/jipda
‡http://wala.sf.net
§https://github.com/jensnicolay/jipda/tree/jsep/protopurity
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for the undefined value, null, numerals, booleans, and strings.

s ∈ Simple ::= . . .

| b [primitive value]
b ∈ Prim ::=undefined [undefined value]

| null [null value]
| num [number value]
| true [true value]
| false [false value]
| str [string value]

num ∈ Num = a set of numerals
str ∈ Str = a set of strings

The state-space of JS0, given in Figure 3, already contains the set Prim as an extension point for
plugging in additional primitive values. In Section 2 it only contains value undef , because it is the
only primitive value required for expressing the semantics of JS0 as described in the remainder of
that section. The set Prim must now be enlarged to also contain the other types of primitive values,
and additionally we introduce the abstraction function α : Prim→ Prim that maps primitive values
to their abstracted values and on which Prim depends. For expressing concrete semantics, α can be
the identity function. For (finite) abstract semantics, primitive values can be mapped to their type,
resulting in the following definitions for Prim and α.

Prim = {undef ,null,num,bool, str}
α(undefined) = undef

α(null) = null

α(num) = num

α(true) = bool

α(false) = bool

α(str) = str

Finally, a new case is added to the evaluator for simple expressions from Section 2.2.8.

evalSimple(b, ρ, σ, κ) = ({α(b)},∅)

6.1.2. Primitive operators JavaScript has unary and binary operators such as typeof and +. For
brevity, we illustrate the addition of binary operators only. First, the syntax of JS0 is extended with
binary expressions and operators.

e ∈ Exp = . . .

| s1 � s2 [binary expression]
� ∈ BinOps ={+,-,*, . . .} [binary operator]

Next, the abstract machine semantics for JS0 are extended with a transition rules for handling binary
operators.

ev([[s1 � s2]], ρ, σ, ι, κ,Ξ) 7→ (ko(d, ρ, σ, ι, κ,Ξ), E)

where (dr, E0) = evalSimple(s, ρ, σ, κ)

(dr, E1) = evalSimple(s, ρ, σ, κ)

d = α(�)(d, d′′)
E = E0 ∪ E1
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To work with abstract values, operators themselves also must be abstracted and we illustrate this for
addition. If we take ⊕ = α([[+]]), then we can define ⊕ as follows.

⊕({num}, {num}) = {num}
⊕({num}, {string}) = {string}

⊕({num, string}, {num}) = {num, string}
⊕({num}, {bool}) = {num}

. . .

6.1.3. Conditional expressions Adding a conditional expression such as if–then–else to JS0
poses no additional diffulties. First, the syntax of JS0 is extended.

e ∈ Exp ::= . . .

| if (s) e0 else e1

We define an if frame to continue with the then or else branch (or both), depending on the result
of evaluation the condition.

φ ∈ Frame ::= . . .

| if(e0, e1, ρ)

We can now define two additional transition rules for the abstract machine.

1. When evaluating an if expression, the machine steps into the condition expression, pushing
an if frame on the stack.

ev([[if (s) e0 else e1]], ρ, σ, ι, κ,Ξ) 7→ (ev(s, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = if(e0, e1, ρ)

2. When a condition evaluated to a truthy value, then the else branch is taken. Helper predicate
isTruthy ⊆ D returns whether this is the case.

ko(d, σ, if(e0, , ρ)) : ι, κ,Ξ) 7→ (ev(e0, ρ, σ, ι, κ,Ξ),∅)

if isTruthy(d)

3. When a condition evaluated to a falsy value, then the else branch is taken. Helper predicate
isFalsy ⊆ D returns whether this is the case.

ko(d, σ, if( , e1, ρ)) : ι, κ,Ξ) 7→ (ev(e1, ρ, σ, ι, κ,Ξ),∅)

if isFalsy(d)

Examples of falsy values in JavaScript are undefined, null, false, the number zero, and the
emtpy string, while truthy values include true, non-zero numbers, and non-empty strings. It is
possible that an abstract value is both truthy and falsy, so that both branches of an if are taken. For
example, using the type abstraction defined earlier, both isTruthy({bool}) and isFalsy({bool})
are true.

6.1.4. Sequence expression Adding support for sequences follows the same pattern as for other
compound expressions, starting with extending the syntax.

e ∈ Exp = . . .

| e1;e2

A sq frame is used by the machine to continue evaluation of the remainder of the sequence.

φ ∈ Frame ::= . . .

| sq(e, ρ)
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Two additional transition rules, one for evaluating and one for continuing the evaluation of a
sequence expression, are added to the abstract machine.

1. When evaluating a sequence expression, the machine starts by evaluating the first expression
of the sequence, pushing a sq frame to evaluate the remainder of the sequence.

ev([[e1;e2]], ρ, σ, ι, κ,Ξ) 7→ (ev(e0, ρ, σ, φ : ι, κ,Ξ),∅)

where φ = sq(e1, ρ)

2. Continuing with a value of an expression in a sequence moves evaluation to the next
expression in that sequence, discarding the value.

ko( , σ, sq(e1, ρ)) : ι, κ,Ξ) 7→ (ev(e1, ρ, σ, ι, κ,Ξ),∅)

6.1.5. Variable declarations The semantics in Section 2 assumed a single local variable hoisted to
the top of its function scope. In JavaScript, however, local variables can be declared using the var
keyword anywhere a statement is allowed. In JS0 we encode a variable declaration as an expression.

e ∈ Exp = . . .

| var v

A variable declaration using var is hoisted to the top of its immediately enclosing function scope,
no matter where the declaration appears, and its implicit initial value is always undefined.
Evaluating a hoisted var declaration therefore consists of calling the allocVar allocator function
from Section 2.2.7 to generate a store address, and allocating undefined at that address. When
evaluation moves to the actual function body, the remaining var declaration statements are no-ops.

ev([[var v ]], ρ, σ, ι, κ,Ξ) 7→ (ko({undef}, ρ′, σ′, ι, κ,Ξ),∅)

where ρ′ = ρ[v 7→ a]

σ′ = σ t [a 7→ {undef}]
a = allocVar(v , ρ, σ, ι, κ)

In case an initializer expression is present, the implicit initial value of all hoisted variables is
still undefined and declaration sites with initializer expressions are evaluated as assignment
expressions.

In addition to variable declaration statements, JavaScript also features function declarations,
which are also hoisted to the top of the function scope in which they are declared but, unlike variable
declarations with initializers, evaluating a hoisted function declaration immediately evaluates the
function and the remaining function declaration statements are always no-ops.

6.1.6. Update expressions JavaScript has four types of update expressions: pre- and postincrement,
and pre- and postdecrement. From the perspective of language semantics, we can also distinguish
between an update of a variable and update of an object property. We illustrate how JS0 is extended
with a post-increment expression for variables—support for the other update variants is similar.

First, the syntax of JS0 is extended with variable post-increment expressions.

e ∈ Exp ::= . . .

| v++

Next, a transition rule for evaluating a variable post-increment expression is added to the
abstract machine. Because of the semantics of an a posteriori update the store is updated with
the incremented value d′ but the initial value d is returned as a result. Unlike the transition rules so
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far, an update expression generates a read and write effect within a single step on the same resource.

ev([[v++]], ρ, σ, ι, κ,Ξ) 7→ (ko(d, σ′, ι, κ,Ξ), {Rv(a, v),Wv(a, v)})
where a = ρ(v)

d = σ(a)

d′ = ⊕(d, α(1))

σ′ = σ t [a 7→ d′]

6.1.7. Additional control-flow constructs The rules of the abstract machine for JS0 define the
control-flow, most commonly by stepping into and out of expression by pushing and popping a
single stack frame, respectively. In this fashion, additional traditional iterative constructs such as
for and while–do loops can be expressed.

Calling a function is more involved because of the bounding of local continuations with meta-
continuations, but essentially is represented by pushing a meta-continuation on the stack that
serves as a marker for function return using a return expression. Returning from functions is
different from other ko transition rules because it may involve popping more than one frame at a
time. Pushing other kinds of marker frames enables the implementation of other “frame-skipping”
control-flow operators such as continue, break, and try–catch.

6.1.8. Direct style The syntax and semantics of JS0 in Section 2 make use of simple expressions
(s ∈ Simple) to simplify the presentation. It is straightforward to extend the language to allow a
more direct style of programs in which any kind of expression is allowed at program points that
we restricted to simple expressions only. For example, allowing any kind of expression e ∈ Exp in
binary expressions would involve one ev rule to evaluate the left expression, pushing an le frame,
one ko rule that continues with le and evaluates the right expression pushing a ri frame, and finally
another ko rule that continues with ri, performs the actual addition, and continues with the result.
From this example it is clear how using simple expressions avoids the definition of specific frames
and rules for handling these frames on the stack.

6.1.9. Other extensions Our implementation further extends the input language and semantics
that we presented so far in this section. The proof-of-concept implementation is closer to full-
fledged JavaScript and includes support for arrays and implicit type coercions. The implementation
also supports computed properties. Instead of working with a set of names (strings), the abstract
interpreter used in our implementation works with abstract names that come from the value lattice
Prim used to represent all primitive values during interpretation. Emitted property events therefore
also contain abstract names and looking up property names happens through subsumption instead
of equality.

We also added many of the built-in JavaScript functions and objects that were required to run the
benchmark programs for our experiments (Section 8).

6.2. Optimizations

Our implementation contains two important optimization techniques to improve performance and
precision of the flow analysis and purity analysis.

6.2.1. Abstract garbage collection Our proof-of-concept implementation uses abstract garbage
collection (AGC) as a technique to increase performance and precision of abstract
interpretation [10]. Abstract garbage collection reclaims unused addresses and, in principle, should
increase the precision of an address-based purity analysis. Disabling AGC on smaller and synthetic
benchmarks only incurred a small negative impact on precision, which was dominated by the
absence or presence of freshness analysis. Furthermore, AGC was required to run the larger
benchmarks. Scaling up the abstract interpreter and client analyses, also to better assess the impact
of AGC, is an ongoing effort.
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1 z = 0;
2
3 function f()
4 {
5 var o;
6 o = {}; // unobservable variable write
7 o.x = 123; // unobservable property write
8 z = 4; // observable property write
9 f()

10 }
11
12 f()

Figure 5. Example program with infinite recursion used for performing abstract flow analysis, freshness
analysis, and purity analysis.

6.2.2. Abstract counting The formalization of the flow analysis we present in Section 2 is the
abstract semantics using weak updates to modify the store by using join (t). Our prototype
implements abstract counting [26], a technique that determines when it is safe to perform strong
store updates during abstract interpretation. Strong updating replaces a previous store value with a
new value, which increases precision.

Abstract counting is useful for handling variable declarations (Section 6.1.5) with improved
precision. Hoisted function-scoped variables are implicitly initialized to value undefined,
and without strong updates this implies that these variables are considered as possibly being
undefined during their lifetime, even when assigned another value before being referenced.
Especially in combination with abstract garbage collection, abstract counting results in an increased
possibility of strong updates of local variables, where their initial (previous) value is replaced by
rather than joined with a new value.

7. EXAMPLE

We illustrate our full approach on the example program in Figure 5. This program contains a sole
function f that recursively calls itself, resulting in an infinite loop. Function f is impure because it
writes property z on the global object on line 8. However, when the observable property write on
line 8 is removed, function f is pure because the variable write in line 6 is on a local variable and
the property write on line 7 targets a fresh object.

We start the example by performing flow analysis, resulting in a flow graph annotated with
effects (Section 7.1). Next, we perform purity analysis by only looking at addresses of resources
(Section 7.2). Finally, we show how freshness analysis improves the precision of address-based
purity (Section 7.3).

7.1. Flow Analysis

Figure 6 gives a schematic overview of the flow graph produced by the flow analysis presented
in Section 2 and with some of the extensions described in Section 6.1. The example uses abstract
semantics, allocating each resource at a single address (which in this example maps one-to-one on
using allocation sites as addresses) and abstracting primitive values (primarily numerical values in
the example) to their type.

Starting from the initial state ς0, the flow graph progresses linearly until state ς39, where the
computation of the flow graph reaches a fixpoint by transitioning to state ς24, which was explored
earlier.

The flow graph can be divided into three segments by looking at the running execution context.

1. The first segment (ς0–ς7) has root context ε as its running context. Properties z and f are
added to the global object in this segment. It ends with the first application of f on line 12,
which introduces execution context τ1.
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!0

!1

!24

!25

!39

!23

!7

!8

⟦f()⟧9

⟦f()⟧9

⟦f()⟧12

"2

"1

#

Figure 6. Overview of the finite flow graph generated by the flow analysis for the non-terminating program
in Figure 5. State ς7 represents the evaluation of the application of function f on line 12. States ς23 and ς39
represent the evaluation of the application of function f on line 9. After stepping state ς39, the flow graph
computation reaches a fixpoint by transitioning to the previously seen state ς24. The states and transitions
between states ς24–ς39 are similar to those between states ς8–ς23. The three vertical bars indicate the extent
of the three execution contexts, and the coloring of each state represents the running execution context: white
for the root context ε, light gray for τ1, and dark gray for τ2. Details of the program states and transitions are

given in Figure 7.

2. The second segment (ς7–ς23) represents the first execution of f with τ1 as running context and
runs until the second application of f .

3. The third segment (ς24–ς39) represents all subsequent executions of f as a result of the
function application on line 9, and has execution context τ2 as its running context.

The details of the program states and transitions between them are given in Figure 7. From the
details we observe that the store reaches a fixpoint in state ς18, denoted by σ5 and obtained after
adding property x to object o. This allows the control flow to reach a fixpoint in state ς39, where
applications of f result in an identical execution context τ2 containing caller store σ5. As a result,
states in the third segment are similar to the states in the second segment, only differing in their
stacks (execution context τ2 and stack store Ξ2 in the third segment instead of τ1 and Ξ1 in the
second segment, respectively) and value stores (σ5 in the third segment, subsuming the value stores
appearing in the second segment).

7.2. Address-Based Purity Analysis

Based on the flow graph computed by flow analysis, we perform purity analysis by looking at the
addresses of resources as described in Section 3. For simplicity, we only distinguish between pure
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ς0 : ev([[z=0;

f︷ ︸︸ ︷
function f() {...};f()]],

ρ0, σ0, 〈〉, ε,Ξ0)

where ρ0 = []
σ0 = [a0 7→ ω0]
Ξ0 = []

7→

{Wp(a0, [[f]])}

ς1 : ev([[z=0]], ρ0, σ1, φ0 : 〈〉, ε,Ξ0)

where σ1 = σ0 t [af 7→ ωf , a0 7→ ω1]
φ0 = sq(f [[f()]], ρ0)
ω1 = ω0[[[f]] 7→ {af}]
ωf = [“call” 7→ {cf}]
cf = (f, ρ0)
af = allocFun(f, . . .)

7→

ς2 : ev([[0]], ρ0, σ1, φ1 : φ0 : 〈〉, ε,Ξ0)

where φ1 = as([[z]], ρ0)

7→

ς3 : ko({num}, σ1, φ1 : φ0 : 〈〉, ε,Ξ0)

7→

{Wp(a0, [[z]])}

ς4 : ko({num}, σ2, φ0 : 〈〉, ε,Ξ0)

where σ2 = σ1 t [a0 7→ ω2]
ω2 = ω1[[[z]] 7→ {num}]

7→

ς5 : ev(f, ρ0, σ2, φ2 : 〈〉, ε,Ξ0)

where φ2 = sq([[f()]], ρ0)

7→
ς6 : ko({undef}, σ2, φ2 : 〈〉, ε,Ξ0)

7→

ς7 : ev([[f()]], σ2, 〈〉, ε,Ξ0)

7→

{Rp(a0, [[f]])}

ς8 : ev([[var o; ...; f()]], ρ1, σ3, 〈〉, τ1,Ξ1)

where ρ1 = ρ0[[[o]] 7→ av ]
σ3 = σ2 t [av 7→ {undef}]
av = allocVar([[o]], . . .)
τ1 = ([[f()]]12, cf , 〈〉, a0, σ2)
Ξ1 = Ξ0 t [τ1 7→ {(ε,Ξ0)}]

7→

ς9 : ev([[var o]], ρ1, σ3, φ3 : 〈〉, τ1,Ξ1)

where φ3 = sq([[o={};...;f()]], ρ1)

7→

ς10 : ko({undef}, σ3, φ3 : 〈〉, τ1,Ξ1)

7→

ς11 : ev([[o = {}]], ρ1, σ3, φ4 : 〈〉, τ1,Ξ1)

where φ4 = sq([[o.x=123;...;f()]], ρ1)

7→

ς12 : ev([[{}]], ρ1, σ3, φ5 : φ4 : 〈〉, τ1,Ξ1)

where φ5 = as([[o]], ρ1)

7→

ς13 : ko({ao, σ3}, φ5 : φ4 : 〈〉, τ1,Ξ1)

7→

{Wv(av , [[o]])}

ς14 : ko({aω}, σ4, φ4 : 〈〉, τ1,Ξ1)

where σ4 = σ3[av 7→ {aω}]

7→
ς15 : ev([[o.x=123]], ρ1, σ4, φ6 : 〈〉, τ1,Ξ1)

where φ6 = sq([[z=4;f()]], ρ1)
7→

ς16 : ev([[123]], ρ1, σ4, φ7 : φ6 : 〈〉, τ1,Ξ1)

where φ7 = st([[o]], [[x]], ρ1)

7→

ς17 : ko({num}, σ4, φ7 : φ6 : 〈〉, τ1,Ξ1)

7→

{Rv(av , [[o]]),Wp(aω , [[x]])}

ς18 : ko({num}, σ5, φ6 : 〈〉, τ1,Ξ1)

where σ5 = σ4 t [aω 7→ ω3]
ω3 = ω2[[[x]] 7→ {num}]

7→

ς19 : ev([[z=4]], ρ1, σ5, φ8 : 〈〉, τ1,Ξ1)

φ8 = sq([[f()]]9, ρ1)

7→

ς20 : ev([[4]], ρ1, σ5, φ9 : φ8 : 〈〉, τ1,Ξ1)

where φ9 = as([[z]], ρ1)

7→

ς21 : ko({num}, σ5, φ9 : φ8 : 〈〉, τ1,Ξ1)

7→

{Wp(a0, [[z]])}

ς22 : ko({num}, σ5, φ8 : 〈〉, τ1,Ξ1)

7→

ς23 : ev([[f()]]9, ρ1, σ5, 〈〉, τ1,Ξ1)

7→

{Rp(a0, [[f]])}

ς24 : ev([[var o; ...; f()]], ρ1, σ5, 〈〉, τ2,Ξ2)

where τ2 = ([[f()]]12, cf , 〈〉, a0, σ5)
Ξ2 = Ξ1 t [τ2 7→ {(ε,Ξ1)}]

7→

. . . 7→

ς39 : ev([[f()]]9, ρ1, σ5, 〈〉, τ2,Ξ2)

7→

Rp(a0, [[f]])

ς24

Figure 7. Details of the flow analysis for the example program depicted in Figure 5. The transition relation
7→ is annotated with a set of effects when this set is not empty.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr



32 J. NICOLAY, Q. STIEVENART, W. DE MEUTER, C. DE ROOVER

and impure methods and disregard observers in the example. This means that we are only interested
in write effects and only require the purity effect map P ∈ Purity of our purity analysis but not
maps Read and Obs .

Graph traversal starts at state ς0 with P = []. The property write effects that occur in the root
context ε do not affect P because they do not occur in the context of a function execution. The
outgoing edge of state ς13 is annotated with variable write effect Wv(av, [[o]]) in running execution
context τ1 with caller store σ2. Because av /∈ Dom(σ2), stack traversal in state ς13 is limited to the
running context τ1, and map P is not modified in the process:

travStackW (eff 1, av , ς13,∅, {τ1},P) = travStackW (eff 1, av , ς13, {τ1},∅,P)

= P

where eff 1 = Wv(av , [[o]])

When purity analysis visits state ς17, it is the case that aω /∈ Dom(σ2), so again P is not modified:

travStackW (eff 2, aω, ς17,∅, {τ1},P) = travStackW (eff 2, aω, ς17, {τ1},∅,P)

= P

where eff 2 = Wp(aω, [[x]])

However, when the purity analysis visits state ς21, it processes property write effect eff 3 targeting
the global object allocated at address a0 which is mapped in the caller store: a0 ∈ σ2. Because eff 3

is observable to the caller of f, function f is marked as a procedure in P :

travStackW (eff 3, a0, ς21,∅, {τ1},P) = travStackW (eff 3, a0, ς21, {τ1}, {ε},P ′)
= travStackW (eff 3, a0, ς21, {τ1, ε},∅,P ′)
= P ′

where P ′ = P t [[[f]] 7→ proc]

eff 3 = Wp(a0, [[z]])

When purity analysis visits effects eff 1 and eff 2 again in the third segment of the flow graph, the
result is different from visiting these effects in the second segment. In state ς29, the running context
is τ2 with caller store σ5 for which we have av ∈ σ5 and aω ∈ σ5. Therefore, in state ς29 for effect
eff 1, function f is (imprecisely) marked as a procedure in P :

travStackW (eff 1, av , ς29,∅, {τ2},P)

= travStackW (eff 1, av , ς29, {τ2}, {τ1},P ′)
= travStackW (eff 1, av , ς29, {τ2, τ1},∅,P ′)
= P ′

where P ′ = P t [[[f]] 7→ proc]

Purity analysis traverses the stack by moving from τ2 to τ1, because Ξ2(τ2) = {( , τ1)}, but does
not inspect underlying execution contexts because eff 1 is not observable outside τ1.

In state ς33 and for effect eff 2 the address-based purity analysis similarly marks f to be a
procedure as the result of loss of precision in the abstract semantics.

The result is that address-based purity will reach a fixpoint with P = [[[f]] 7→ proc], even when
the observable write effect for the property store on line 8 would not be present.

7.3. Purity Analysis With Lexical Freshness

The freshness analysis presented in Section 4 is able to remove the false positives obtained in
Section 7.2 for effects eff 1 and eff 2 in the third segment of the flow graph.

Variable write effect eff 1 = Wv(av , [[o]]) in state ς29 occurs in running context τ2 =
( , (f, ρ0), . . .) that executes function f. Because predicate isLocal(av , f) holds, writing to local
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variable o is intercepted in the state handler of purity analysis and classified as non-observable:

handleP (eff 2, τ2,P) = P

For object property write effect eff 2 = Wp(aω, [[x]]), object freshness analysis determines that
variable o only points to fresh objects on line 7. It propagates map F ∈ Fresh through the flow
graph, starting with F0 = [] in initial state ς0. Although in ς1 property z on the global object
is written, the statement syntactically assigns a to a variable and because initial expression 0
is not fresh, we have F1 = [[[z]] 7→ unfr]. The fact that this property write is considered as a
(syntactic) variable write in the context of freshness analysis is not problematic, because our
flow and purity analysis correctly distinguish between variable and property effects, regardless of
syntactic appearance.

The next variable assignment expression is evaluated in state ς11, where freshness analysis updates
F1 to F2 = F1 t [[[o]] 7→ fr]. At this point no variable assignment or other expressions in other
program states add new information to F2 and so object freshness analysis reaches a fixpoint after
visiting all states once.

Variable o is marked as fresh when visiting state ς33 with frame φ7 = st([[o]], [[x]], ρ1) on top of
the local continuation stack. Because fresh([[o]], τ2,F2) = fr, property write on line 7 is considered
as unobservable to callers of function f:

handleP (eff 2, ς33,P) = P

As a result, purity analysis with lexical freshness reaches a fixpoint with P = [] when line 8 is
removed from the example program in Figure 5 (but still considers f impure in the unmodified
program).

8. EXPERIMENTS

In this section we report on several experiments we ran to evaluate the purity analysis presented
in this paper. Before describing the actual evaluation of our approach and its results in terms
of correctness, soundness, precision, and performance (Section 8.3), we give an overview of the
abstract machine configurations (Section 8.1) and benchmark programs (Section 8.2) used during
evaluating. We conclude the section with a comparison of our approach to existing tools in terms of
precision (Section 8.4).

8.1. Abstract Machine Configurations

The abstract machine implementation is parameterized to be able to express both concrete and
abstract semantics. To perform the evaluation, we use a concrete and an abstract configuration.

• In the concrete configuration, the abstract machine is configured with a concrete value store
allocator (Section 2.2.7) that uses unique natural numbers as addresses. This configuration
also equips the abstract machine with a concrete lattice for values and operations, which
borrows from the underlying JavaScript runtime. In this configuration, the AAC stack store
allocator (Section 2.2.4) guarantees full call/return precision. The value store is modified
using strong updating. As a result, the concrete configuration performs flow analysis with
full precision, because no unnecessary merging occurs.

• The abstract configuration uses the abstract 0CFA value store address allocator
(Section 2.2.7), which uses syntactic elements as addresses. This configuration uses a type
lattice in which primitive values are abstracted into sets of primitive types. The stores are
weakly updated, except when abstract counting allows strong updating for the value store
(Section 6). Using the abstract configuration guarantees that the computed flow analysis is
finite, but at the cost of introducing imprecision.
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Benchmark Suite LOC Functions
access-nbody SunSpider 165 11
controlflow-recursive SunSpider 21 3
crypto-sha1 SunSpider 210 8
math-spectral-norm SunSpider 46 5
tree-add JOlden 157 6
navier-stokes Octane 384 29
richards Octane 496 32
bisort JOlden 230 11
em3d JOlden 242 13
mst JOlden 245 18

Table I. Overview of the 10 selected benchmarks. Suite is the benchmark suite from which the benchmark
originates. LOC is the approximate number of lines of code. Functions is the total number of functions called

in the benchmark under abstract semantics.

8.2. Benchmarks

8.2.1. Type of Benchmark Programs During implementation and evaluation, we used two types of
test programs:

1. Small unit test programs that test a specific feature that is challenging for purity analysis and
the underlying flow analysis, such as higher-order functions, dynamic property expressions,
and prototypal inheritance. These programs are designed in such a way that it is possible
to manually specify the expected outcome of an analysis. A unit test therefore consists of a
program paired with its expected outcome.

2. Larger existing benchmark programs taken from the SunSpider¶ and Octane‖ JavaScript
benchmark suites, and programs from the Java JOlden∗∗ benchmark suite that we converted
to JavaScript. (Section 8.4).

8.2.2. Benchmark Programs In the evaluation (Section 8.3), we report on the precision and
performance of purity analysis on a selected set of 10 existing benchmark programs that each
contain a number of challenges for our purity analysis. Table I lists these benchmark programs
together with their size and number of functions that are called under abstract semantics. We give a
short description of the benchmark programs.

• access-nbody is a SunSpider benchmark program that models the orbits of Jovian planets.
It focuses mostly on arithmetic, loops, and property access.

• controlflow-recursive is a SunSpider benchmark program that tests different
recursive patterns by invoking three different recursive pure functions: Fibonacci, tak, and
Ackermann.

• crypto-sha1 is a Sunspider benchmark program that tests cryptographic functions, and
mostly covers bitwise operations and string operations. The majority of the functions that are
actually called in this benchmark are pure functions.

• math-spectral-norm is a SunSpider benchmark program that calculates the spectral
norm of an infinite matrix. It contains arrays and loops.

• tree-add is a JOlden benchmark program that computes a recursive sum of values in a
balanced B-tree. The code in this program makes heavy use of objects and is predominantly
recursive and functional in nature.

• navier-stokes is an Octane benchmark program implementing a 2D NavierStokes
equations solver. The program passes around numeric arrays between functions that update
these arrays in place, making these functions impure.

¶https://www.webkit.org/perf/sunspider/sunspider.html
‖https://developers.google.com/octane
∗∗ftp://ftp.cs.umass.edu/pub/osl/benchmarks
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• richards is an Octane benchmark program that simulates an OS kernel. This program
mostly covers property load and store, and function and method calls.

• bisort is a JOlden benchmark implementation of the traveling salesman problem. It uses a
binary tree as data structure and focuses on recursion and property load and store.

• em3d is a JOlden benchmark program that simulates electromagnetic wave propagation in a
3D object. It uses a singly linked list as data structure, and contains mostly loops and property
load and store.

• mst is a JOlden benchmark program that computes the minimum spanning tree of a graph.
The program maintains an array of singly linked lists, and focuses on loops, objects, and
method calls.

We chose these programs in a pragmatic way, looking for the presence of a variety of control flow,
data structures, and types of effects, but that were not too complex to analyze in terms of the use of
JavaScript semantics and built-in functions and objects. For example, benchmark crypto-sha1
has, as can reasonably be expected, a number of pure functions, enabling us to evaluate whether our
purity analysis implementation is capable of detecting them. On the other end of the spectrum is,
for example, the navier-stokes benchmark, which passes around and manipulates arrays and
in which most functions are therefore impure.

8.3. Evaluation

We report on the correctness, soundness, precision, and performance of purity analysis results on
our set of unit tests and benchmark programs.

8.3.1. Correctness When testing correctness, we check that the actual outcome of concrete
purity analysis is equal to the expected outcome. We manually specified the expected function
classification (pure, observer, or procedure) for an extensive set of unit tests and benchmark
programs. We mechanically checked that the actual results of concrete purity analysis without
freshness analysis are equal to the expected outcome. We then verified that this remains the case
with freshness analysis enabled. From this evaluation we conclude that, for the set of programs
under test, our implementation is correct.

We verified correctness of the underlying flow analysis in the same manner.

8.3.2. Soundness The result of abstract purity analysis is sound when it reflects all outcomes that
are computed by concrete purity analysis. We mechanically checked whether the classifications
computed by abstract purity analysis subsume the concrete computed classifications after
abstraction [2]. For example, when abstract purity analysis predicts a function to be pure while
the concrete analysis computes it as a procedure (or an observer), then that constitutes an unsound
result for the abstract analysis. We conclude that the results of abstract purity analysis for our set of
test programs are sound.

We verified soundness of the underlying flow analysis in the same manner.

8.3.3. Precision Precision is tested using a similar setup as used for soundness. A sound abstract
purity analysis is allowed to overapproximate, i.e., is allowed to predict possibilities that do not
occur under concrete semantics. We quantify abstract analysis precision by measuring the amount
of false positives, which are abstract results that are less precise than their concrete counterpart.
For example, when abstract purity analysis predicts a function to be a procedure while the concrete
analysis computes it as pure (or an observer), then that constitutes a false positive for the abstract
analysis. The fewer false positives, the higher the precision of the abstract analysis.

For the benchmarks in Table I, we determined the precision of our abstract purity analysis with
freshness enabled and also compared it to the abstract purity analysis without freshness to assess
the impact of lexical freshness analysis.

Concrete vs. abstract analysis The concrete purity analysis without lexical freshness computes
effect classes with full precision. The abstract purity analysis with freshness analysis enabled is our
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— Concrete — — Abstract —
Benchmark pure obs proc pure obs proc
access-nbody 6 1 4 6 1 4
controlflow-recursive 3 0 0 3 0 0
crypto-sha1 7 0 1 7 0 1
math-spectral-norm 2 0 3 2 0 3
tree-add 3 0 2 2 1 2
navier-stokes 3 0 24 3 0 24
richards 8 1 23 8 1 23
bisort 5 0 5 5 0 5
em3d 9 0 3 3 0 9
mst 8 0 7 6 1 8

Table II. Purity analysis results for the concrete configuration without lexical freshness and the abstract
configuration with freshness enabled. For each benchmark we report the number of functions in each effect

class as determined by our analysis.

— Without fresh — — With fresh —
Benchmark pure obs proc pure obs proc
access-nbody 1 1 9 6 1 4
controlflow-recursive 3 0 0 3 0 0
crypto-sha1 6 0 2 7 0 1
math-spectral-norm 2 0 3 2 0 3
tree-add 1 0 5 3 1 2
navier-stokes 3 1 25 3 1 25
richards 4 1 27 8 1 23
bisort 4 1 8 6 1 6
em3d 3 0 10 4 0 9
mst 5 1 12 7 1 10

Table III. Purity analysis results for the abstract configuration without lexical freshness and the abstract
configuration with freshness enabled. For each benchmark we report the number of functions in each effect

class as determined by our analysis.

most precise abstract analysis (see next experiment). Table II lists the number of functions in each
effect class as reported by the analysis for the two configurations. Only functions that are actually
applied in the concrete are considered.

The results show that our approach can classify functions with high precision for our set of 10
benchmarks. In 7 out of 10 benchmarks, the abstract purity analysis is as precise as the concrete
analysis, i.e., fully.

Benchmark em3d is an outlier in the negative sense; we discuss this benchmark in more detail in
the next experiment.

Impact of lexical freshness To assess the impact of lexical freshness analysis under the abstract
configuration, we compare the precision of purity analysis without freshness (i.e., address-based)
to the analysis with freshness enabled. Table II lists the number of functions in each effect class
as reported by the analysis for the two settings. All functions that are applied during abstract
interpretation are taken into account, which may be more functions than under concrete semantics.

From the benchmark results, we observe that incorporating freshness analysis improves precision
in 7 out of 10 benchmarks. For example, tree-add is a JOlden benchmark that we converted from
Java into JavaScript. Although it is a small benchmark, it exhibited poor precision when analyzed
without freshness: only 1 pure function was detected out of 6 functions that are determined pure
with freshness analysis enabled. The pattern in Figure 4, illustrating some of the weaknesses of
address-only purity analysis, was distilled from this benchmark.

Generalizing over the cases in which freshness analysis has no or only a small impact on
precision, we make two observations.
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— Without fresh — — With fresh —
Benchmark Flow time Purity time Purity time
access-nbody ε ε ε
controlflow-recursive ε ε ε
crypto-sha1 ε ε ε
math-spectral-norm ε ε ε
tree-add 0’01” ε ε
navier-stokes 2’50” 3’18” 3’08”
richards 4’33” 0’50” 0’37”
bisort 0’07” 0’03” 0’01”
em3d 0’02” 0’12” 0’10”
mst 0’04” 0’15” 0’12”

Table IV. Flow and purity analysis timing under the abstract configuration. Flow time is the running time of
the flow analysis creating a flow graph. Purity time is the running time of the purity analysis on top of the

flow graph. We use ε to denote a running time smaller than 1 second.

• When the precision of the address-based purity analysis is already high, there is no or
not much room left for freshness analysis to improve precision. This is the case for
navier-stokes for example.

• The nature of the program can make it difficult for our freshness analysis to detect fresh
resources. This is the case for em3d for example. Unlike navier-stokes, which is also
a array-heavy benchmark, em3d is also object-heavy by storing objects in these arrays and
featuring a linked list. The object-based freshness analysis from Section 4 does not track this
type of object flow.

8.3.4. Performance The performance of an analysis is measured as the time it takes for an analysis
to compute an answer and the memory it takes to do so. We tested the performance of our
implementation to evaluate how it performs on current off-the-shelf hardware. The experiments
were performed on a machine equipped with a quad-core 2.8 GHz Intel Core i7 processor and 16
GB of DDR3 memory. V8 †† version 5.4.0 was used as JavaScript runtime. Although there were 4
physical (8 logical) cores available on the test machine, our implementation is single-threaded and
does not benefit from additional cores.

Table IV lists, for our set of 10 benchmark programs, the running time of abstract flow analysis,
and the running time of abstract purity analysis with and without lexical freshness.

From the results, we conclude that performance is suitable for use by clients that do not require
on-the-fly results such as on-demand static analysis tools. We also observe that incorporating lexical
freshness analysis improves the overall running time of the analysis because lexical freshness avoids
stack traversal when effects occur on fresh resources.

We did not measure memory consumption in detail but we obtained the best performance when
executing the test runner that produces Table IV with the available memory limited to 8 GB.
Limiting available memory to 4 GB still allowed the test setup to finish but notably increased the
running time of our test runner due to garbage collection overhead. Limiting the memory to 2 GB
resulted in an out-of-memory error.

8.4. Comparison to Existing Work

Comparing our approach to existing approaches in terms of results is difficult because to the
best of our knowledge, our previous work [27] is the first purity analysis that specifically targets
JavaScript. The analysis that we present here extends our original analysis into one that additionally
handles read effects and is therefore capable of classifying functions into a ternary scheme
(pure/observer/procedure) instead of a binary one (pure/impure). Other related work (Section 5)
focuses primarily on method purity for Java and analyzes benchmarks from the JOlden suite.

††https://developers.google.com/v8/
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ReImInfer JPPA JPure
Program JIPDA = + − = + − = + −
bisort 5 5 0 0 5 0 0 5 0 0
tree-add 3 3 0 0 2 0 1 3 0 0
em3d 4 3 1 1 3 1 1 3 1 1
mst 6 5 0 1 5 0 1 5 0 1

Table V. Comparison between multiple purity analyses on benchmarks from the JOlden suite. Column
JIPDA shows the number of functions identified as pure (pure or obs in our terminology) by our tool.
Column = counts the methods which are detected as pure by both JIPDA and the other tool. Column +
shows the number of functions detected as pure by the other tool but not by JIPDA. Column − shows the

number of functions identified as pure by JIPDA but not by the other tool.

Programs tree-add, bisort, em3d, and mst are JOlden benchmarks that we manually
converted to JavaScript. We compare our results (JIPDA) for these benchmarks with ReImInfer [17],
JPPA [33], and JPure [29] in Table V. We manually verified and compared the results reported by
each tool on every method or function that is present in both the original program and the JavaScript
translation of the benchmark.

The results show that JIPDA is on par with currently existing tools. Only for em3d, JIPDA misses
a pure function detected by the other tools, while the other tools miss a pure function that is correctly
detected by JIPDA. Therefore, in that benchmark, every tool detect 4 out of 5 pure functions. For
the mst benchmark, only JIPDA detects the 6 pure functions, while all the other tools miss one
pure function. For bisort and tree-add, JIPDA detects all pure functions as pure, while JPPA
misses one pure in tree-add.

From this experiment, we conclude that for our set of 10 benchmarks our approach is as precise
as existing approaches and sometimes is able to detect more pure functions.

9. LIMITATIONS AND FUTURE WORK

Despite the fact that our purity analysis for JavaScript is capable of determining function purity with
sufficient precision to be useful in a number of software engineering scenarios and applications
(Section 10), there is still room for improvement. We identified the following limitations, and
overcoming these limitations is considered future work.

9.1. Soundness of Analyses

We empirically demonstrated that the results produced by our implementation of our flow and
purity analysis are sound for a suite of challenging benchmark programs. Empirical soundness was
established by verifying that every abstract analysis result subsumes the corresponding concrete
result [2]. We believe that this enables the use of our implementation in a variety of scenarios that
require sufficient confidence in the soundness of the results. Using the analysis in an optimizing
compiler, however, would require more thorough soundness guarantees.

Assuming the flow analysis is sound, we believe that formally proving soundness of address-based
purity analysis (Section 3) would present no major obstacle because effects and address freshness
represent minor additions to the original abstract state-space and semantics of the flow analysis,
respectively. Proving correctness of concrete lexical object freshness analysis (Section 4.3) and
proving it sound in the abstract semantics represents more challenging future work.

9.2. Scalability

The purpose of our implementation is to demonstrate the feasibility of using stack reachability for
determining function purity and also for performing experiments. Performance and scalability were
not our primary concerns and our experimental results show that scalability is an issue.

An inherent limitation of the purity analysis that we presented is that it is a whole-program
analysis that can be costly to perform. In a similar but simpler setting, the worst-case computational
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cost of AAC flow analysis [20], the technique employed in our purity analysis, was found to be
O(n8) [15], with n

A modular analysis, on the contrary, can be performed on parts of the program. This usually
results in a more performant analysis, especially in scenarios where an input program is reanalyzed
after only parts of it are modified. At this point it is unknown whether and how the techniques
proposed in this work can be modularized. Other related work also describes tools that require an
underlying whole-program analysis [23, 33], while alternate approaches—primarily those rooted in
type systems—are modular in nature [13, 17, 29, 32].

9.3. Limited JavaScript Semantics

Real-world JavaScript applications include dynamic, asynchronous, and event-driven features, and
web applications in particular also target the Document Object Model (DOM). These features are
not modeled in our semantics and are not supported by our implementation, but would be time-
consuming to model and implement on the level of a flow analysis. However, we believe these
and other features are not essential to our approach to purity analysis and therefore out of scope
for this work. For example, consider asynchronous computation in JavaScript, which is organized
around the concept of “Jobs” and “Job Queues” [11]. A Job can only start when the call stack is
empty and runs to completion, and therefore asynchronous computation does not interfere with how
our analysis determines effects, freshness, and purity with respect to function application contexts.
The DOM, as another example, can be accessed and manipulated by JavaScript as a collection of
objects and (asynchronous) functions. Although the DOM is complex, it inherently does not pose
any additional challenging difficulties for determining purity following our approach.

In summary, our approach to purity analysis works with any flow analysis that models store-
allocated resources, effects on these resources, and a call stack that allows function calls to be
associated with contexts, regardless of other language features and global environments that are
supported.

9.4. Limited Object Freshness Analysis

The lexical object freshness analysis of Section 4.3 was designed as a supporting analysis for
function purity analysis, and as such does not offer full precision, even when the underlying flow
graph does. However, object freshness analysis still improves the precision and performance of our
purity analysis. Modifying our object freshness analysis (or the underlying flow analysis) so that
freshness analysis becomes fully precise in the concrete, and evaluating the impact on precision in
the abstract, is an interesting but challenging avenue for future work. Storeless semantics [6] and
access paths [22] are relevant and more formally established techniques to reason over the heap and
value flow without requiring store semantics.

10. APPLICATIONS

In this section we discuss some immediate applications of the purity analysis we presented. We
consider each application as an interesting avenue of future research.

10.1. Referential Transparency

Expressions that are referentially transparent can always be replaced by their value without
changing the behavior of the program [35]. Referentially transparent expressions must be pure,
but additionally should not allocate resources.

Our approach can be extended to including tracking of allocation effects, so that referential
transparency can become a classification of functions in our purity analysis that is more precise
than (i.e., “above”) purity: all referentially transparent procedures are pure, but the inverse is not
necessarily true. Referential transparency enables optimizations such as lazy evaluation, common
subexpression elimination, memoization (Section 10.2), and parallelization (Section 10.3). We
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plan on performing this extension to investigate how and to which extent it is possible to exploit
referential transparency to optimize concrete and abstract interpretation.

10.2. Memoization

Memoization is a fundamental optimization technique that avoids recomputing previously computed
results by storing them in a table from which they can be looked up, effectively trading in space for
time [1]. In the context of programming languages, a typical memoization target is a procedure call.
If calling conditions match previously seen calling conditions, then execution of the function body
is skipped and cached values are returned instead. If memoization is done at the program level (i.e.,
not in the interpreter) and only returned values are cached (but no other program state), then the
memoized function must be pure. Although the goal of memoization is to increase performance,
memoization itself introduces overhead because it stores cached results and requires lookups in this
cache.

A memoization analysis would build upon purity analysis by requiring functions that are
candidates for memoization to at least be pure in the strictest sense (Section 1). Unlike the purity
analysis presented in this work, memoization also takes fresh resources as return values of functions
into account. For example, if a function returns a fresh pair, and that pair is cached in the memo table,
then the pair is shared between all callers of the memoized function. This is problematic if the pair
is subsequently modified. A memoization analysis could disallow memoization for functions that
are not referentially transparent. An additional verification on functions that return fresh resources
would be to disallow subsequent modification of the returned resource, ensuring that resources
cached as return values are immutable.

Another difficulty for memoization analysis is the common scenario in which resources are passed
as arguments to functions. Memoization has to decide under which condition resources are equal.
For example, if an array is passed as an argument, the memoization algorithm has to decide during
memo lookup whether the argument array is equivalent to a cached entry. This can happen by
comparing memory locations or by recursively comparing the contents of the array. We agree with
Finifter et al. [13] that equivalence of arguments is a parameter of function memoization.

10.3. Parallelization

In Nicolay et al. [28], we describe a program transformation that automatically parallelizes higher-
order imperative Scheme programs. The key idea in that work is to look at every series of nested let
expressions that appear in a program, and decide where it is possible to evaluate binding expressions
in parallel. The approach must be instantiated with a sufficiently precise dependence analysis,
for dependent expressions cannot safely be evaluated in parallel. Expression e2 is dependent on
expression e1 if e1 is evaluated before e2 and e2 accesses or modifies a resource that was accessed
or modified before by e1.

The implementation of the underlying flow and dependence analysis in Nicolay et al. [28] has
some limitations. It builds on the finite-state dependence analysis by Might and Prabhu [25]. It also
does not separately model the individual elements of vectors but considers vectors to be a single
resource, which leads to a precision penalty.

The approach presented in this paper overcomes these shortcomings. We use a pushdown analysis
that offers more precise call/return precision than a classic finite-state analysis. Our side-effect
analysis models the individual elements of an array (up to the precision offered by the value lattice).
In future work we will recast the flow analysis with effects presented in this work into a dependence
analysis with the goal of parallelizing higher-order imperative programs with more precision.

11. CONCLUSION

We presented a purity analysis for JavaScript that handles closures, higher-order functions, and
prototypal inheritance. We employ pushdown flow analysis to compute the control and value flow
of a program, while generating effects when variables and object properties are read and written.
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By comparing addresses in effects with addresses in caller stores associated with active function
executions on the call stack, we distinguish observable from unobservable side effects. Doing this
for all read and write effects in all executions of a function enables us to classify functions as pure,
observer, or procedure.

While flow analysis is adequate for tracking object flow in a program, it does however lose
precision when the number of addresses it can choose from is limited. We therefore add a lexical
freshness analysis for variables and objects to identify unobservable effects that would be considered
observable by the address-based purity analysis. Adding freshness analysis improves precision of
our purity analysis considerably, and reduces execution time, as demonstrated in our preliminary
experiments.

When comparing our purity analysis against existing solutions, we find that our implementation is
as precise, and sometimes more precise, than results produced by other tools. Despite its limitations,
we believe our analysis is capable of determining function purity with sufficient precision to be
useful in a number of software engineering scenarios.
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