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Abstract
For decades developers of distributed systems assumed a stable connection
between clients and servers. Recently, we witnessed an increase in hardware
innovations leading to a vast collection of Internet-connected devices, such as
smartphones and smartwatches. As these devices become ever more portable
user mobility increases leading to volatile connections. This forces developers
to design applications that are robust against partial failures. In other words,
applications should provide functionality that is available even offline.

The CAP theorem (Brewer, 2000) states that distributed systems cannot
remain both available and consistent under network partitions. This forces
programmers to choose between availability and consistency. Many languages
provide support to encode available data, e.g. by copying objects across the
network. However, programmers need to manually implement a consistency
layer to keep the data synchronized. This task is error-prone given the inher-
ent complexity of consistency models. Recently, replicated data types were
proposed to alleviate these issues (Shapiro, Preguiça, Baquero, & Zawirski,
2011b). However, only a limited portfolio of data types are available (e.g.
lists ands sets). So far, there is no generally applicable approach to design-
ing available systems. As a result, programmers implement ad hoc solutions
which require advanced knowledge of replication and consistency.

In this thesis we propose CScript, a distributed programming language
providing two types of distributed objects: available and consistent objects.
Applications can share these objects in order to achieve high availability while
keeping critical parts consistent. The novelty of the language are its high-
level constructs for availability and consistency, which free the programmer
from low-level concerns such as replication and data consistency.

CScript introduces SECROs, a novel general-purpose replicated data type.
Programmers use dedicated language constructs, called state validators, to
declare the behaviour of SECROs in the face of concurrent operations. This
information is used to automatically detect and solve conflicts. As such, SE-
CROs form a general-purpose solution to designing available systems, thereby
omitting the need for manual ad hoc approaches.

To evaluate our solution we compare a real-time collaborative text editor
built atop SECROs with an implementation that uses a state-of-the-art avail-
able data type, namely JSON CRDTs (Kleppmann & Beresford, 2017). The
evaluation consists of a qualitative and a quantitative analysis. The former
compares the text editors from a code viewpoint. The latter performs a num-
ber of benchmarks that quantify various properties of both approaches. Our
results show that SECROs are more flexible than the traditional CRDT ap-
proach. The benchmarks also show that SECROs efficiently manage memory
but incur a performance overhead.
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Samenvatting

Jarenlang zijn programmeurs van gedistribueerde systemen uitgegaan van
stabiele verbindingen tussen de gebruikers en de servers. Onlangs waren we
getuige van een toename in hardware innovaties, leidende tot een waaier aan
nieuwe toestellen die verbonden zijn met het Internet, zoals smartphones
en smartwatches. Aangezien deze toestellen draagbaarder worden zijn de
gebruikers mobieler, hetgeen leidt tot onstabiele verbindingen. Deze onsta-
biliteit vereist dat programmeurs applicaties bouwen die robust zijn tegen
gedeeltelijke storingen van het gedistribueerde systeem. Applicaties moeten
dus offline functionaliteit aanbieden, in de mate van het mogelijke.

Het CAP theorema (Brewer, 2000) stelt dat gedistribueerde systemen
niet beschikbaar én consistent kunnen zijn wanneer netwerk partities zich
voordoen. Dit dwingt de programmeur om te kiezen tussen beschikbaarheid
en consistentie. Ook al dienen de meeste programmeurs deze keuze te maken
zijn er geen gedistribueerde programmeertalen die hulp aanbieden voor de on-
twikkeling van zowel beschikbare als consistente systemen. Vele talen bieden
manieren aan om data beschikbaar te maken, bv. door objecten te kopiëren
over het netwerk. Programmeurs dienen echter manueel een consistentie laag
te implementeren die deze data consistent houdt. Dit is een moeilijke op-
dracht aangezien de complexiteit van consistentie modellen.

Onlangs werden gerepliceerde datatypes voorgesteld om deze problemen
tegemoet te komen (Shapiro et al., 2011b). Er is echter maar een beperkt
portfolio aan beschikbare datatypes, bv: lijsten en verzamelingen. Tot nu toe
is er geen algemeen toepasbare aanpak voor de ontwikkeling van beschikbare
systemen. Dit dwingt de programmeur om applicatie specifieke oplossingen
te gebruiken, hetgeen gevorderde kennis van replicatie en consistentie vergt.

In dit proefschrift stellen we CScript voor, een gedistribueerde program-
meertaal die twee soorten objecten aanbiedt: beschikbare en consistente
objecten. Applicaties kunnen objecten delen om hoge beschikbaarheid te
behalen maar kritische delen toch consistent te houden. De innovatie van
de taal zijn de high-level constructies voor beschikbaarheid en consistentie,
welke de programmeur bevrijden van low-level problemen zoals replicatie en
data consistentie.

CScript introduceert SECRO’s, een nieuw gerepliceerd datatype dat alge-
meen toepasbaar is. Programmeurs gebruiken specifieke abstracties, genaamd
state validators, om het gedrag van SECRO’s te definiëren in het geval van
gelijktijdige operaties. Deze informatie wordt gebruikt om conflicten au-
tomatisch op te sporen en op te lossen. Dit zorgt ervoor dat SECRO’s een
algemeen toepasbare aanpak zijn voor de ontwikkeling van beschikbare sys-
temen waarbij geen applicatie-specifieke mechanismes nodig zijn.

Om onze oplossing te evalueren vergelijken we een real-time gedeelde
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tekst editor die gebouwd is bovenop SECRO’s met een versie die gebouwd is
bovenop een state-of-the-art beschikbaar datatype, namelijk JSON CRDTs
(Kleppmann & Beresford, 2017). De evaluatie bestaat uit twee delen: een
kwalitatief en een kwantitatief onderzoek. Het kwalitatief onderzoek vergeli-
jkt de implementatie van beide text editors. Het kwantitatieve onderzoek
voert een aantal experimenten uit die verscheidene performantie aspecten
van de tekst editors kwantificeren. Onze resultaten tonen aan dat SECRO’s
expressiever en flexibeler zijn dan de traditionele aanpak. Bovendien on-
thullen de experimenten dat SECRO’s efficiënt omgaan met geheugen maar
een aanzienlijke performantie kost met zich meedragen.
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1
Introduction

At its inception, the web was mostly comprised of thin clients who displayed
the html content provided by servers. A stable connection between clients
and servers was vital to the functioning of the application. When loosing
connectivity the application would abruptly stop working.

Over the past decades hardware evolved at a fast pace, leading to a realm
of Internet-connected computing devices. Think for instance of tablets and
smartphones. On the other hand, similar evolutions have not been witnessed
at a software level. As clients become increasingly mobile, applications can no
longer assume connections to be stable. However, applications should remain
responsible even in the face of disconnections. Today’s expectations are that
applications can work offline. This requires offloading computations from the
server to the client, leading to what is known as a thick client architecture.

Hence, many applications evolved from a thin to a thick client architec-
ture. These two architectures provide different guarantees with regard to the
consistency of data. In a thin client architecture clients always fetch the latest
information from the server. However, a connection is required in order for
the application to work. We say that the application guarantees consistency
but not availability. On the other hand, a thick client architecture does not
require a constant connection between the clients and the server. However,
clients may see outdated information while being offline. This means that
the application guarantees availability but not consistency.
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To add further complexity, the CAP theorem (Brewer, 2000) states that
distributed systems are affected by a trade-off between availability and con-
sistency. This means that programmers need to choose between availability
and consistency at the implementation level. This choice is reflected by
modern applications which typically maximize offline availability but keep
critical parts consistent. A banking application may for instance provide
offline functionality but needs to keep the user’s balance consistent.

Although most application developers face the aforementioned trade-off,
distributed programming languages do not aid the programmer with the
development of available and consistent systems.

Our vision is that the next generation of general-purpose distributed pro-
gramming languages will provide constructs for implementing both available
applications and consistent applications. We believe that with the appropri-
ate language constructs and abstractions, the complexities that arise from
the trade-off can be hidden behind the language. This frees the programmer
from low-level concerns such as replication and data consistency.

To showcase the feasibility of our vision, we design and implement CScript,
a distributed programming language with high-level constructs for building
both available systems and consistent systems. Using these constructs pro-
grammers have a means to develop highly available applications that keep
critical parts consistent.

1.1 Research Context
The research conducted throughout this dissertation lies in the intersection
of concurrent programming, distributed systems and databases. We briefly
describe each field and how it relates to our work.

Concurrent programming Many systems face situations where different
computations compete for shared resources. We say that these com-
putations are concurrent. The main challenges faced by concurrent
systems are: data consistency, race conditions, deadlocks and livelocks.
Our research is concerned with the problem of data consistency. More
precisely, components of a distributed system may issue updates con-
currently, in which case CScript strives to maintain consistency of the
data, to the extent possible.

Distributed systems A distributed system consists of various computers
which appear as a single coherent system to the users (Tanenbaum
& Van Steen, 2007). Distributed systems are subject to a number of
problems, including: different memory access models, latency, partial
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failures and concurrency. Our research is mainly related to the prob-
lem of partial failures. In essence, CScript strives to keep the system
available under partial failures by means of available data structures.

Databases For a couple of decades all research on data consistency focused
on implementing distributed transactions within databases. Nowadays,
data consistency has become important at a programming language
level, since programmers explicitly need to choose between availability
and consistency. CScript employs various consistency models to provide
well-defined consistency guarantees.

1.2 Problem Statement

The CAP theorem states that distributed systems cannot be available, con-
sistent and partition tolerant at the same time. Instead, distributed systems
can achieve only two of these three properties. This forces programmers
to choose between availability and consistency, since partition tolerance is
a requirement on any real-world distributed system. The problem is that
implementing either one, availability or consistency, is intrinsically difficult
and there is no language that aids the programmer with this trade-off.

Providing language support for availability and consistency raises a num-
ber of essential research questions. First, which type of language constructs
are needed to ease the development of both available systems and consistent
systems. Ideally, we want to solve the problem at a high-level of abstraction,
for instance through available and consistent data structures. However, some
problems are bound to low-level solutions, think for instance of the two-phase
commit protocol (Bernstein, Hadzilacos, & Goodman, 1987) for implement-
ing distributed transactions. We thus need to shape the required language
constructs and additionally define the semantics of these constructs.

Over the past decades, consistency has been extensively studied leading
to a wide range of solutions, including consensus algorithms (Lamport, 1998;
Ongaro & Ousterhout, 2014) and dedicated language constructs such as far
references (Van Cutsem, Mostinckx, Gonzalez Boix, Dedecker, & De Meuter,
2007). However, research is needed to integrate these solutions together with
availability in one language. Furthermore, research on availability is still in
progress and dedicated language constructs need yet to be developed. Al-
though available data structures exist - e.g. CRDTs (Shapiro et al., 2011b)
- they are limited to specific data types and subject to severe restrictions.
Hence, developers often resort to ad hoc solutions. This means that develop-
ers need to manually implement availability at the core of their applications.
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This is a difficult task which requires advanced knowledge of replication and
consistency. This leads to our second research question, namely whether a
generic available data type that omits the need for ad hoc solutions can be
designed.

To summarize, this dissertation is centered around the following research
questions:

RQ. 1 Which language constructs are needed to simplify the development
of both available systems and consistent systems, and how can we in-
tegrate these constructs in one distributed programming language?

RQ. 2 Is it possible to design a general-purpose data type that guarantees
availability?

1.3 CScript: An Object-oriented Approach

To support programmers with the development of available and consistent
distributed systems, we build a novel programming language containing na-
tive support for availability and consistency. First, we explore existing lan-
guage constructs and data types for availability and consistency. We then
use these constructs and data types to develop CScript, an extension of
JavaScript with first-class replicas and services. Replicas are high-level con-
structs for developing available and consistent data structures. These data
structures can be composed into services, which can be distributed over the
network.

Replicas Replicas are a special type of object. Programmers can define
two types of replicas: available and consistent replicas. Available
replicas provide availability but guarantee only eventual consistency
(Tanenbaum & Van Steen, 2007; Vogels, 2009). This means that users
may read different values but eventually at some point in time all users
will see the same value. Consistent replicas guarantee strong consis-
tency at the cost of availability. This means that users always have a
consistent view on the replica, however, they need to be online to issue
updates.

Services CScript allows replicas to be bundled into larger components,
called services. Services expose specific functionality and are CScript’s
unit of distribution. This means that applications can share function-
ality by exchanging services. CScript ensures that the replicas which
make up the service fulfill their availability or consistency guarantee.
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In the context of RQ. 2, we notice that the behaviour that is expected
from available data types depends on the application at hand. How to handle
concurrent operations thus depends on the semantics of the application. For
this reason programmers often resort to ad hoc solutions. To address this
issue, CScript allows programmers to specify the concurrent behaviour of
available replicas through a set of invariants. Afterwards, programmers can
implement arbitrary available data structures that behave accordingly to the
declared invariants.

1.4 Contributions
The main goal of this dissertation is to design and implement a distributed
programming language with built-in support for availability and consistency.
We now outline the main contributions of this thesis:

CScript Within the field of distributed programming, we propose CScript,
a distributed programming language including available and consis-
tent data types at its core. The novelty of the language is to provide
high-level constructs for implementing both available and consistent
distributed objects, thereby freeing the programmer from low-level con-
cerns such as replication and data consistency.

SECROs In the context of available data types, we propose SECROs, a
general-purpose data type for implementing available data structures.
SECROs are used in conjunction with state validators, which are lan-
guage constructs to specify the concurrent behaviour of SECROs.
State validators come in two forms, preconditions and postconditions,
and are associated to the operations of a SECRO. In essence, program-
mers express invariants over the state of the object. These invariants
must hold prior or after the execution of the associated operation.
When facing concurrent operations, SECROs use the state validators to
find an execution of the operations that satisfies the declared invariants.

1.5 Thesis Structure
This thesis is structured as follows: first, we describe the findings of our liter-
ature study in Chapter 2. Afterwards, Chapter 3 presents our novel SECRO
data type, including a formal definition, its implementation and a couple of
examples. We then transition to CScript in Chapter 4, describing the con-
structs for distributed programming provided by the language, by means of
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a motivating grocery list example. In Chapter 5 we detail the main design
considerations behind the implementation of CScript. Chapter 6 evaluates
CScript by means of a comparison between the SECRO data type in CScript
and a state-of-the-art approach. First, we compare both approaches from a
programming language perspective. Afterwards, we benchmark various per-
formance aspects, including memory usage, execution time and throughput.
Finally, Chapter 7 completes this dissertation with a final conclusion, which
describes the research performed in the context of this thesis and provides
directions for future work.



2
Literature Study

Programmers of distributed systems face a number of problems which are
inherent to distribution. Central to this dissertation are the problems of con-
currency, partial failures and the lack of a global clock. In order to acquire a
broad understanding of the complexities associated with the design and im-
plementation of distributed programming languages, we conduct a literature
study reviewing state-of-the-art techniques in distributed programming.

We start with a brief introduction on distributed systems, in Section 2.1,
covering the basics of distributed programming and the major challenges that
arise from distribution. Following the introduction, Section 2.2 presents the
CAP theorem, a conjecture affecting every distributed system. Section 2.3
provides an overview of the different consistency models that are known in
the literature. We then turn our attention to the consistency protocols that
implement these models, in Section 2.4. In Sections 2.5 and 2.6, we ana-
lyze data types that are designed from the ground up to provide specific
consistency guarantees. We then present a brief classification of distributed
programming languages, in Section 2.7. We discuss each language with re-
gard to its constructs for distributed programming, and how those constructs
relate to the CAP theorem. Finally, Section 2.8 concludes this chapter with
a brief recapitulation of the insights gathered from this literature study.
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2.1 Distributed Systems
The literature provides various definitions of distributed systems. For the
purpose of this dissertation, we stick to the definition by (Tanenbaum &
Van Steen, 2007): “A distributed system is a collection of independent com-
puters that appears to its users as a single coherent system.”

This definition consists of two important aspects. The first aspect is
that a distributed system consists of autonomous components. Components
do not share memory and may perform operations simultaneously. Hence,
concurrency is inherent to every distributed system. The second important
aspect is that a distributed system appears as a single system to its users.
This requires the system to mask failures when possible.

Due to the nature of distributed systems, a number of fundamental chal-
lenges arise (Coulouris, Dollimore, Kindberg, & Blair, 2012). First, the pro-
grammer is forced to deal with different memory access models. Secondly,
the programmer must take into account phenomena such as latency, con-
currency and partial failures (Waldo, Kendall, Wollrath, & Wyant, 1994).
Finally, distributed systems lack a global clock for ordering the events that
occur. We outline each of these problems below and analyze their impact on
the programmer.

Memory Access Models A distributed system consists of various address
spaces, spread over different machines with no form of shared memory
whatsoever. Hence, pointers are not shared because they are meaning-
less in a different address space.
The lack of globally shared memory is an additional source of complex-
ity for the programmer. In the object-oriented programming paradigm,
one can imagine the need for sharing an object between different ma-
chines. However, sharing requires deep copying the object to the remote
address space. This results in two separate instances which need to be
manually kept consistent.

Latency Since components of a distributed system do not share memory,
they communicate by means of message passing on the network. Those
messages must gap the physical distance between the components,
which induces a delay on communication. The time it takes to cover
that distance is non negligible and commonly referred to as latency.
Because latency is non negligible, programmers must carefully design
applications to minimize network communication. Furthermore, delays
on communication can be better hidden with an asynchronous commu-
nication model, as it does not block the program execution indefinitely.
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Concurrency Distributed systems consist of autonomous components that
can issue requests concurrently. Therefore, components are a source of
concurrency. It is the programmer’s task to build a system that remains
consistent in the face of concurrent operations, while still achieving a
decent amount of parallelism.

Partial Failures In a distributed system individual components, links, and
other elements of the network are subject to failures. Since components
are autonomous, the failure of one component does not imply the failure
of other components. Therefore, failures are said to be partial.
Since partial failures frequently occur in distributed systems, it is the
programmer’s duty to design and implement a system that is able to
cope with these failures, up to a certain degree.

No Global Clock In essence, distributed systems lack a global clock for
ordering the events that occur. Additionally, one cannot rely on the
physical clocks of individual machines as they are subject to the phe-
nomena of clock drift and clock skew (Tanenbaum & Van Steen, 2007).
Therefore, distributed systems typically rely on logical clocks. Logical
clocks prescribe a partial ordering of the events, that is in accordance
with the happened-before relation (Lamport, 1978).

In an attempt to ease the development of distributed applications, early
research in distributed object-oriented computing proposed a unified vision
of objects (Waldo et al., 1994). The rationale behind this approach is to
make abstraction from the location of objects. To this end, the locality of
an object is hidden behind the message passing operations. This means that
programmers manipulate local and remote objects in the same way.

As described by (Waldo et al., 1994), merely unifying the object models
does not suffice, as it does not address the fundamental problems of dis-
tributed systems. Instead, distributed programming languages must provide
native support to cope with latency, concurrency and partial failures.

2.2 CAP Theorem
From previous section we know that real-world distributed systems are sub-
ject to partial failures. Therefore, distributed systems are designed to be
robust against partial failures. In practice, coping with partial failures gives
rise to an important trade-off, which is formulated by the CAP theorem.

We first explain the different properties (C, A and P) of this theorem.
Assume a model in which distributed components can read from and write
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to a conceptually shared piece of data. Strong consistency (C) implies that
every read observes the latest write. Availability (A) means that components
can always issue read and write requests. Hence, the data is available all the
time. Finally, partition tolerance (P) means that network partitions do not
affect the usability of the system. In other words, components can continue
to issue read and write requests when the network is partitioned.

The CAP theorem (Brewer, 2000) states that a distributed system cannot
be strongly consistent, available and partition tolerant at the same time.
Instead, only two of these three properties can be achieved in combination.
Since distributed systems are subject to partial failures, they need to pick
partition tolerance. This means that in the face of a network partition the
system must choose between availability (AP) or consistency (CP).

Consistency

Availability Partition 
Tolerance 

AC CP

AP

Figure 2.1: Illustration of the CAP theorem

Distributed systems are categorized as AC, AP or CP (cf. Figure 2.1)
based on their properties. We briefly discuss each category below.

AC Systems AC systems do not model partition tolerance. In the absence
of partitions, the system can guarantee both, availability and consis-
tency. Hence, components can read and write at any moment in time.
Additionally, reads always return the most recent information. How-
ever, AC systems cannot cope with partial failures. This is undesirable
since real-world distributed systems are subject to partitions.

AP Systems AP systems favor availability over consistency. This means
that components can read from or write to the data at any time. How-
ever, partitions may cause reads to return stale information.

An example of an AP system is the Domain Name System (DNS).
The DNS name space consists of various domains and each domain is
managed by an authority (Tanenbaum & Van Steen, 2007). When an
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authority updates its domain it may take a while before users observe
the update. In the meantime, users read stale information.

CP Systems CP systems favor strong consistency over availability. This
means that reads always return up-to-date information. Think for in-
stance of distributed transactions, where an update either takes place
on all copies or does not take place. Hence, every node of the network
has a consistent view of the data. However, updates require agreement
(i.e. consensus) between the nodes of the network. Reaching consensus
is costly and may be hampered by partial failures, thereby affecting the
write availability of the system.

Despite its drawbacks, strong consistency can be a hard requirement,
for instance in banking systems. In that case, availability is deliberately
discarded in favor of consistency.

Building further on the insights gathered by (Waldo et al., 1994), we argue
that distributed programming languages should provide native support for
availability (AP) and consistency (CP).

2.3 Consistency Models

Nowadays, distributed systems replicate data to improve the availability,
performance and scalability of the system. In the presence of a partial failure
it may be possible to fetch the data from another copy, which improves the
system’s availability. Secondly, distributed systems can reduce access times
by placing copies geographically closer to the user, or improve the system’s
scalability by balancing the work load over replicated nodes.

On the other hand, replication raises potential consistency problems.
Users expect read operations to return the most recent information, i.e. the
value of the latest write. However, when a copy (aka replica) is updated it
becomes different from the other copies. Users may thus observe different
values depending on the copy that is read from.

Without a global clock (see Section 2.1) the system cannot determine
precisely which write operation is the latest. To address this problem the
literature defines a number of consistency models. These models restrict the
values that a read operation can return (Tanenbaum & Van Steen, 2007). In
essence, a consistency model is a set of rules that provides specific consistency
guarantees, if those rules are respected by the programmer.

In what follows we analyze a number of consistency models. First, Sec-
tion 2.3.1 describes the strong consistency model. Afterwards, Sections 2.3.2
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and 2.3.3 present two weaker consistency models: eventual consistency and
strong eventual consistency.

2.3.1 Strong Consistency

When dealing with replicated data, the strong consistency model guarantees
all copies to be consistent at all times. This implies that after an update
completes, all subsequent accesses - possibly by different users - return the
updated value. Hence, all users have a consistent view on the system.

Strong consistency requires updates to take effect on all copies before
subsequent operations can take place. This means that replicas need to
be synchronized. However, synchronization may be hampered by partial
failures. In that case, the system does not proceed with the update such
that the replicas remain consistent. Hence, when facing a network partition,
strong consistency comes at the cost of availability (see CAP theorem in
Section 2.2).

2.3.2 Eventual Consistency

We previously explained that distributed systems replicate data to improve
the performance and scalability of the system. However, keeping all copies
strongly consistent is expensive (see Section 2.3.1). Furthermore, we know
from the CAP theorem (Section 2.2) that a distributed system cannot guar-
antee both availability and strong consistency.

To meet these problems one can relax the consistency guarantees that
are expected from the system. One such model is eventual consistency (EC).
Eventual consistency (Tanenbaum & Van Steen, 2007; Vogels, 2009) pre-
scribes that updates eventually propagate to all copies. In the meantime,
users may observe temporal inconsistencies.

Notice, however, that concurrent writes cause additional problems since
the copies need to agree which write operation is the latest. This requires
synchronization of the copies.

2.3.3 Strong Eventual Consistency

(Shapiro et al., 2011b) proposed strong eventual consistency (SEC), a spe-
cial form of eventual consistency which guarantees replicas that received the
same updates, possibly in a different order, to be in a consistent state. This
property is called strong convergence.

Strong convergence implies that replicas converge without synchroniza-
tion. Hence, it suffices to propagate the updates between the replicas. As
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such, all replicas experience the same updates and thus converge towards the
same state.

The fact that replicas converge without synchronization is a major advan-
tage of SEC over EC. First, it eases the development of eventually consistent
systems. Second, systems achieve better performance and scalability.

2.4 Consistency Protocols

The previous section described the consistency guarantees provided by dif-
ferent consistency models. We now turn our attention to consistency pro-
tocols, which describe the implementation of these models. We follow the
same structure as the previous section and set of with the implementation of
strong consistency, followed by eventual and strong eventual consistency.

2.4.1 Strong Consistency

As previously explained, the strong consistency model guarantees all users
to have a consistent view on the data. Hence, updates require agreement of
the nodes that make up the system, such that all copies are updated consis-
tently. Since copies are not allowed to diverge, we are essentially applying a
pessimistic replication strategy in combination with a distributed consensus
algorithm.

In theory, there is no algorithm that can always reach consensus in a
distributed system (Fischer, Lynch, & Paterson, 1985). This results from
the fact that distributed consensus algorithms cannot guarantee termina-
tion. However, in practice some consensus algorithms have proven to work
well, including Paxos (Lamport, 1998) and the two-phase commit protocol
(Bernstein et al., 1987).

2.4.2 Eventual Consistency

As explained in Section 2.3.2, eventual consistency is a relaxation of the
consistency guarantees, which allows replicas to exhibit temporal inconsis-
tencies. However, if we stop updating the data, eventually all replicas reach
a consistent state again.

In practice, eventual consistency boils down to using optimistic replica-
tion. Optimistic replication is a replication strategy that allows replicas to
temporarily diverge. Replicas can thus be updated immediately without re-
quiring prior consensus of the system. However, concurrent updates may
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lead to inconsistent replicas. Eventually consistent systems solve this prob-
lem by means of a conflict resolution strategy which synchronizes the replicas.
Many of these strategies discard updates in order to solve the conflict. For
instance, if two updates conflict, discarding one update is all it takes to solve
the conflict. Although this approach seems odd it is widely used because of
its simplicity, for example in “last-writer-wins” strategies (Burckhardt, 2014).

2.4.3 Strong Eventual Consistency

Remember that strong eventual consistency (SEC) is a special form of even-
tual consistency, which guarantees replicas to be consistent if they received
the same updates (strong convergence). An important subtlety is that the
order in which updates are delivered is immaterial and may be different at all
replicas. Intuitively, the strong convergence property holds for commutative
operations.

Designing data types for commutativity is the fundamental idea behind
conflict-free replicated data types (CRDTs). CRDTs are abstract data types
that implement strong eventual consistency.

A main advantage of SEC is that it suffices to propagate the updates
to all replicas. Eventually, all updates are delivered at all replicas which
guarantees the replicas to be in a consistent state. Hence, this approach does
away with synchronization, yielding higher performance and scalability. For
this reason, SEC is of special interest to this dissertation. We dedicate the
following section to CRDTs.

2.5 Conflict-free Replicated Data Types

Conflict-free replicated data types (CRDTs), proposed by (Shapiro et al.,
2011b), are abstract data types that implement strong eventual consistency.
CRDTs leverage some mathematical properties to ensure conflict freeness.
In the absence of conflicts, replicas that experienced the same updates - pos-
sibly in a different order - are in a consistent state. Hence, programmers
do not need to rely on conflict resolution strategies to ensure eventual con-
sistency. This makes CRDTs interesting for the development of large-scale
applications.

Conflict-free replicated data types come in two variants: state-based and
operation-based CRDTs. The former typically allows for simple reasoning,
whereas the latter is often preferred in practical systems. Both are equivalent
which is particularly useful. We refer the interested reader to the proof of
equivalence in section 3.2 of (Shapiro et al., 2011b).
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2.5.1 State-based Convergent Replicated Data Type
(CvRDT)

A state-based CRDT is a tuple (S, s
i

, Q, U,m), consisting of the replica’s
state domain1 S, the replica’s current state s

i

, a set of (side-effect free!)
query methods Q, a set of update methods (aka mutators) U and a merge
method m : S ⇥ S ! S. A replica’s public interface typically consists of Q
and U and should not be circumvented. Programmers use the query methods
Q to read (parts of) the internal state. On the other hand, update methods
U mutate the replica’s internal state.

When experiencing a mutation, the replica transitions from its current
state s

i

to the new state s
i+1, and disseminates the resulting state s

i+1 over
the network. To process incoming state updates, replicas merge the received
state s

r

with their own state s
i

, resulting in a new state m(s
i

, s
r

) = s
i+1.

To achieve strong eventual consistency, CvRDTs rely on the mathematical
property of a join semilattice, that is a partially ordered set equipped with
a least upper bound (LUB) for all value pairs (Davey & Priestley, 2002).
First, the CvRDT’s state domain S must form a join semilattice, with a
partial order denoted . Second, all update methods U must result in a
monotonically non-decreasing state. The resulting state subsumes the orig-
inal state, s

i

 s
i+1 = u(s

i

). Finally, the merge method m computes the
LUB of its input states and must be associative, commutative and idempo-
tent. As a result of the above properties, replicas that received the same
updates converge towards the LUB of the involved states.

Although state-based CRDTs guarantee SEC, they suffer from a major
drawback. Every mutation requires the entire resulting state to be exchanged
over the network. As a solution, (Almeida, Shoker, & Baquero, 2015) pro-
pose �-CRDTs, an adaptation of CvRDTs where delta-states are exchanged,
resulting in smaller messages.

2.5.2 Operation-based Commutative Replicated Data
Type (CmRDT)

An op-based CRDT is a tuple (S, s
i

, Q, U) that does not define a merge
method. Again, S is the object’s state domain, s

i

the current state, Q a
set of accessors and U a set of update methods. When an update causes the
object to transition to a new state, the operation is broadcasted to all replicas.
Since query operations do not incur side effects, only update operations are
exchanged.

1
The set of all possible states.
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We emphasize the fact that (Shapiro et al., 2011b) assume the operations
to be delivered in a causal order. Still, concurrent operations exhibit no
ordering and arrive in an arbitrary order that may be different at all replicas.
Therefore, op-based CRDTs guarantee SEC by imposing commutativity of
these operations. As such, the order in which replicas apply the operations
does not affect the final outcome. For this reason, op-based CRDTs are often
called “Commutative Replicated Data Type” (CmRDT).

Replica A

Replica B

Replica C

O1

O2

= correct = wrong

(a) Incorrect execution order.

Replica A

Replica B

Replica C

O1

O2

= correct = hold back

(b) Corrected operation order.

Figure 2.2: Achieving consistency without causal-order broadcasting. The
time axis is drawn horizontally, with time increasing from left to right.

Often times the communication mechanism does not guarantee causal-
order broadcasting. This is problematic since operations do not necessarily
arrive in the order they occurred. Hence, the replicas will converge only if
all operations are commutative. In practice, it is often not possible to design
all operations to commute. However, with causal order broadcasting, only
the operations which may occur concurrently need to be commutative. To
illustrate the aforementioned problem, Figure 2.2a depicts the case where
operation O2 arrives at replica C, before its dependency O1. This forms
a problem if O1 and O2 do not commute. Such anomalies occur due to
phenomena such as congestion and network partitions.

To guarantee SEC in the absence of a causal-order broadcasting mech-
anism, op-based CRDTs are extended with a dependency set maintaining
the object’s causal dependencies. The execution of an update method gener-
ates a unique identifier that is added to the object’s dependency set. When
broadcasting an operation, its unique ID as well as the dependency set are
included in the message. Upon receiving an operation, the operation is held
back until all dependencies are met (cf. Figure 2.2b). As such, we simulate
causal-order broadcasting by manually tracking causal dependencies. How-
ever, a replica’s dependency set grows monotonically over time, eventually
becoming a problem as messages get longer.
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2.5.3 Example CRDTs

(Shapiro, Preguiça, Baquero, & Zawirski, 2011a) introduce a portfolio of
CRDTs, including counters, registers, sets, graphs and other data types. To
illustrate some frequently recurring design strategies for CRDTs, we now
review a few of these data types. A basic understanding of these design
strategies is needed to understand the remainder of this dissertation. Notice
that we describe a state-based implementation of the examples because it
provides a better understanding of the data type compared to its op-based
implementation.

Grow-only Counter The state domain of a counter consists of all positive
natural numbers, N+. Furthermore, (N+,) forms a join-semilattice
where the join of two natural numbers returns the bigger one, i _ j =
max{i, j} where i, j 2 N+.
Similarly, a grow-only counter (G-Counter) is a tuple:

(S, ~V , {value}, {increment},merge)

The counter’s internal state consists of a vector ~V = (c1, c2, . . . , cn),
maintaining a counter value for each of the n nodes in the cluster.
Therefore, the counter’s state domain S is the set of all counter vec-
tors: {~V | k~V k = n ^ 8i 2 [1, n] : ~V [i] 2 N+}. The update method
increment increments the node’s own vector entry, for node i this
yields: ~V [i] := ~V [i] + 1. The query method value returns the actual

counter value, which is the sum of the vector entries,
nP

i=1

~V [i]. Finally,

merging two G-Counters computes the LUB of the corresponding vec-
tor entries, merge( ~V1, ~V2) = 8i 2 [1, n] : ~V1[i] _ ~V2[i].

Positive-Negative Counter For regular counters additional problems
arise since decrement operations violate the monotonicity of the semi-
lattice. In other words, the state resulting from a decrement oper-
ation does not subsume the original state, s

i

⇥ s
i+1 = u(s

i

) where
u = decrement.
A counter CRDT supporting both, increments and decrements, is called
a Positive-Negative counter (PN-counter). A PN-counter is a tuple:

(S, (P,N), {value}, {increment, decrement},merge)

The internal state consists of two G-Counters: P and N . The P
counter counts increments whereas N counts decrements. Therefore,
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the counter’s actual value is P �N =
nP

i=1
P [i]�

nP
i=1

N [i]. Finally, merg-

ing two PN-counters consists of merging the corresponding P and N
counters.

This example showcased the use of two grow-only counters to circum-
vent the decreasing nature of a decrement operation. In practice, many
complex CRDTs are a combination of basic CRDTs.

Grow-only Set Other classical examples include the implementation of
sets. The simplest form is a grow-only set CRDT (G-Set):

(S, s, {contains}, {add},merge)

The state domain S consists of all possible sets, and the subset re-
lation ✓ defines the lattice’s partial order . Initially, the internal
state s is the empty set ;. contains checks for the presence of an
element in the set. The add operation adds an element e to the set s,
resulting in a new set that subsumes the old, add(e) = {s, e} ◆ {s}.
Hence, the add operation is monotonically non-decreasing. Finally,
merge computes the LUB of two G-Sets, which is defined to be the
union: merge(s1, s2) = s1 [ s2.

Two-phase Set Extending a set to support removal of elements is prob-
lematic, since deletion infringes the monotonicity of the semilattice.
Similarly to PN-counters, this problem can be circumvented by care-
fully designing the set as a combination of two G-Sets. The resulting
data type is a two-phase set (2P-Set) CRDT:

(S, (A,R), {contains}, {add, remove},merge)

Set A is used to add elements, whereas R acts as a remove set. Upon
removing an element, remove adds the element to R. An element is
considered present in the set if it occurs in A \R. By design, elements
occurring in R are permanently deleted. Finally, the merge procedure
computes the LUB of two 2P-Sets. To this end, merge computes the
union of the corresponding add (A) and remove (R) sets.

This example showcased the use of tombstones, namely the elements
in R, to delete elements. Due to the monotonicity condition, CRDTs
cannot delete elements. Instead, tombstones are used to mark elements
as deleted. Tombstones are a typical design strategy for simulating
delete functionality in CRDTs.
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2.5.4 Conclusion

Remember that eventually consistent systems may face conflicting updates.
To deal with conflicts, the system relies on a conflict resolution strategy
which synchronizes the replicas. However, synchronizing the replicas comes
at a cost. Therefore, SEC goes a step further and avoids the need for syn-
chronization altogether.

A protocol for SEC are conflict-free replicated data types. CRDTs are
abstract data types that avoid conflicts by design. Hence, there is no need
for conflict resolution strategies. This results in better performance and
scalability.

The literature distinguishes between state-based and op-based implemen-
tations for CRDTs. The former disseminates the entire state, whereas the
latter disseminates the operations. In general, the op-based style reduces
network traffic whereas the state-based style avoids repeated computations.
Hence, choosing an implementation depends on the size of the state and the
cost of operations.

However, CRDTs exhibit some major drawbacks. The literature provides
only a limited portfolio of basic conflict-free data structures. This forces
developers to resort to ad hoc, application-specific mechanisms for eventual
consistency. These mechanisms are error-prone and result in brittle systems
(Shapiro et al., 2011b; Almeida et al., 2015; Kleppmann & Beresford, 2017).

Furthermore, complex systems require tailored CRDTs. However, CRDTs
are not generally applicable as they require the operations to commute, or the
state to form a join-semilattice. This renders the design of custom CRDTs a
challenging task which requires advanced knowledge of replication and con-
sistency techniques.

A final problem arises from the use of tombstones to simulate deletions.
Because elements are never actually deleted and tombstones are continu-
ously added, memory usage grows unbounded. Solving this problem requires
a distributed garbage collection algorithm that is able to recognize and ap-
propriately remove tombstones. However, tombstone removal is left to the
programmer.

2.6 A General-purpose JSON CRDT

Up till now, literature has focused on developing new conflict-free replicated
data types, including counters, sets, graphs and so on. However, considerable
research efforts are needed to solve the aforementioned applicability issue of
CRDTs. With this goal in mind, (Kleppmann & Beresford, 2017) proposed a
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general-purpose conflict-free replicated JSON data type, which is a general-
ization of CRDTs. The proposed CRDT resembles generic JSON documents,
i.e. a collection of lists and maps that can be arbitrarily nested. As such,
the JSON CRDT reduces the need for ad hoc, application-specific strategies
towards eventual consistency.

As explained in Section 2.4.2, some conflict resolution strategies discard
updates to solve conflicts. (Kleppmann & Beresford, 2017) consider this
undesirable as it incurs a loss of data. Therefore, a major design principle of
the JSON CRDT is not to drop updates.

2.6.1 Structure of a JSON Document

A JSON CRDT exhibits a structure similar to a JSON document, that is
a tree of branch and leaf nodes. Branch nodes consist of lists and maps,
whereas leaf nodes are primitive values. We briefly summarize the different
components of a JSON document:

Primitives The proposed data structure supports four primitive types:
null, booleans, numbers and strings. Values are primitives, lists and
maps.

List A list is a sequence of ordered values. Elements contained by the list
are the node’s children. The list interface allows programmers to fetch
the element at a given position, to insert a value after a certain element
or to delete a specific element.

Map A map is a dictionary of key-value pairs that allows bindings to be
added, modified and deleted dynamically. Keys are immutable and the
children exhibit no ordering. If the keys represent field names, this
data structure is better known as an object.

The novelty of JSON CRDTs is that the aforementioned components can
be nested. Hence, developers can build complex structures by composing
lists and maps in arbitrary ways. To illustrate this, Listing 2.1 shows the
implementation of a custom GroceryList data type. To create a grocery
list with a given name the constructor initializes a new key-value pair in the
global JSON CRDT (Line 3). The list’s name is the key and the value is
an empty list. To add items the addItem method fetches the grocery list
(Line 7) and prepends the item to the list (Lines 8 and 9). To delete an
item from a grocery list, the removeItem method searches the item in the
list (Lines 14 to 18) and deletes it (Line 16).
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1 class GroceryLis t {
2 con s t ruc to r (name) {
3 doc . get (name) = [ ] ;
4 }
5
6 addItem ( l i s t , item ) {
7 doc . get ( l i s t )
8 . idx (0 )
9 . i n s e r tA f t e r ( item ) ;

10 }
11
12 removeItem ( l i s t , item ) {
13 var l s t = doc . get ( l i s t ) ;
14 f o r (var i = 1 ; i <= l s t . l ength ; i++) {
15 i f ( l s t . idx ( i ) == item ) {
16 l s t . idx ( i ) . d e l e t e ( ) ;
17 }
18 }
19 }
20 }

Listing 2.1: Using JSON CRDTs to build a grocery list application. doc
is a globally available JSON CRDT. Syntax is JavaScript’s class syntax in
combination with the API proposed by (Kleppmann & Beresford, 2017).

The above code snippet showcased the simplicity of the model. We de-
fined a custom data type that guarantees SEC, without having to implement
conflict resolution ourselves. Therefore, JSON CRDTs are said to be general-
purpose.

2.6.2 Implementation

(Kleppmann & Beresford, 2017) detail an op-based implementation of the
JSON CRDT. Hence, concurrent operations are designed to be commutative.
We briefly analyze the different aspects of this implementation, paying special
attention to the commutativity design.

List Insertions Lists allow elements to be inserted at arbitrary positions.
Due to the distributed nature of the system, two or more elements can
be concurrently inserted at the same position in a list. To guarantee a
consistent order across all replicas, the elements are ordered based on
their unique ID.

Assignments Maps are the only data structure that allow values to be
reassigned. Entries of a map are multi-value registers (mv-registers)
which hold a value. A value can be updated by reassigning the register.
A mv-register is a special register CRDT, designed to keep all values
in the face of concurrent assignments. The mv-registers internally used
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by maps differ from traditional mv-registers described in the literature.
Upon concurrent assignments, the register attempts to merge the values
in a meaningful manner. When some values cannot be merged, the
register stores them separately.

Merge Procedures (Kleppmann & Beresford, 2017) define strategies for
merging lists and maps meaningfully. Two or more lists are merged
by appending them. To break ties consistently, lists are appended
according to a total order (e.g. based on IP address). Notice that
identical values (lists, maps or primitives) are not merged, since they
are already equal.

Similarly to lists, the merger of two or more maps consists of the union
of their bindings. If a given key occurs more than once, the values are
in turn merged.

Deletions Complex data types (i.e. lists and maps) use tombstones to pro-
vide delete functionality. Hence, deleting an element merely marks the
element as deleted. This guarantees delete to commute with the other
operations. Figure 2.3 depicts the insertion of an element Y after X,
while concurrently X is deleted. The order in which the operations are
applied on the linked list is immaterial. Since delete does not actually
remove the element, Y can always be inserted after X (see Figure 2.3b).

F O X

insertAfter(X, Y)

delete(X)

F O X Y

F O X Y

(a) Insert then delete.

F O X

delete(X)

insertAfter(X, Y)

F O X Y

F O X

(b) Delete then insert.

Figure 2.3: Making list insertions and deletions commutative using
tombstones. Tombstones are marked in red.

Besides the operations discussed so far, complex data types can also be
cleared. Clearing a list or map is done by reassigning the register to
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an empty list, respectively an empty map. Empty list and map assign-
ments are treated specially. Instead of overwriting the register - which
is not commutative - the individual elements of the list, respectively
the map, are deleted. As such, complex data types can be “cleared” in
a commutative manner.

Nesting JSON CRDTs cannot be nested, however, the lists and maps that
make up the CRDT can be nested (see Section 2.6.1). Therefore, cur-
sors are used to unambiguously identify positions within the document.
A cursor describes the path from the root of the document to the node
at hand.

When an operation executes at a certain position in the document, a
cursor identifying that position is created. The replica then dissemi-
nates the operation and its cursor to the other replicas.

2.6.3 Conclusion

This section described JSON CRDTs, a generic CRDT which partly solves
the applicability problem of CRDTs. Using JSON CRDTs, programmers
can create new eventually consistent data types without having to deal with
conflict resolution. These data types can be of arbitrary complexity, since
lists and maps can be nested.

The problem is that JSON CRDTs exhibit severe shortcomings. Differ-
ent applications have different semantics, therefore requiring different be-
haviours. However, programmers cannot define application-specific merge
procedures as in Bayou (Terry et al., 1995).

Secondly, in the absence of applicable merge procedures, individual values
are stored by the register. This technique, known as “semantic resolution”
(Meiklejohn & Van Roy, 2015), leaves conflict resolution to the programmer,
which is a difficult task.

2.7 Distributed Programming Languages

Recall that our thesis focuses on programming language abstractions for
availability (AP) and consistency (CP). Therefore, we conclude this liter-
ature study with a brief classification of distributed programming languages.
The languages are classified and analyzed according to the level of support
they provide for availability and consistency.

The classification in Table 2.1 contains a number of early influential
distributed programming languages, including Argus, Distributed SmallTalk
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and Emerald. Additionally, we investigated a number of recent research
efforts, including AmbientTalk, Lasp and Geo.

Language AP CP
Argus 7 Actions
Distributed Smalltalk Copy RMI
Emerald Move RMI
AmbientTalk Isolates Far References

Geo Caching Linearizability &
Cache Coherence Protocol

Lasp CRDTs 7

Table 2.1: Classification of distributed programming languages, based on
support for availability and consistency.

2.7.1 Argus

Argus, proposed by (Liskov, 1988) was developed to facilitate the imple-
mentation of object-oriented distributed systems. The authors realized that
concurrency and partial failures pose major difficulties for the implementa-
tion of distributed systems. Therefore, Argus includes high-level constructs
that free the programmer from consistency problems, race conditions and
other typical problems.

In Argus, distributed systems are built around guardians, which form the
unit of distribution. A guardian is a black box encapsulating one or more ob-
jects, called resources. Programmers cannot fiddle with a guardian’s internal
state since all accesses and invocations are regulated by the guardian’s API.
Methods of a guardian are called handlers, and each handler invocation runs
in a separate process.

A second remarkable abstraction are actions. Actions are atomic methods
that exhibit two important properties: serializability and totality. Serializ-
ability guarantees the outcome of a concurrent execution to equal a sequen-
tial execution. Hence, actions are robust against concurrency. On the other
hand, totality guarantees the activity to either complete entirely or not at
all, in which case the action is said to be aborted.

In addition to regular objects, Argus provides atomic objects. Whereas
regular objects implement methods, atomic objects implement actions. Pro-
grammers benefit from the fact that atomic objects synchronize their actions
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and recover from aborted actions. Hence, if a partial failure causes an action
not to complete entirely, the action is aborted and the atomic object recovers
to its previous consistent state. In order to guarantee atomicity a two-phase
commit protocol is used (Bernstein et al., 1987).

To conclude, Argus provides the programmer with actions, a special type
of method that guarantees strong consistency. Actions are thus a CP lan-
guage construct, as shown in Table 2.1. On the other hand, Argus does not
provide language constructs for availability.

2.7.2 Distributed Smalltalk

Distributed Smalltalk (DS), presented by (Bennett, 1987), is a variant of
Smalltalk that aims at improving the communication and interaction between
different Smalltalk nodes. DS extends Smalltalk with transparent remote
invocations, distributed garbage collection and object mobility.

Programmers can access remote objects and interact with the objects by
means of remote method invocations (RMI). The language thus hides the
locality of an object, making invocations on remote objects transparent to
the user.

RMI can be seen as a consistency mechanism as it guarantees a single,
consistent, instance of the object. However, RMI introduces a single point
of failure which tremendously impacts the availability of the object.

Remarkably, DS also addresses the mobility of objects. Programmers can
use the move and copy primitives to move or copy an object to another node
respectively. By incorporating native support for replication through the
copy operation, DS thus lays the foundations for available systems.

However, DS does not provide any consistency guarantees on copied ob-
jects. Hence, copies of an object can co-exist without being consistent. A
second drawback is the limited support for object mobility. Moving objects
requires the receiver to know the object’s entire class hierarchy. This may
lead to subtle compatibility problems, due to inconsistencies between the
sender’s and the receiver’s classes. Regarding compatibility, the language
performs some basic checks but cannot provide additional guarantees.

In conclusion, distributed Smalltalk provides native support for both
availability and consistency. We explained that RMI is a consistency mecha-
nism whereas the copy primitive is a replication mechanism (see Table 2.1).

2.7.3 Emerald

Emerald is a distributed object-oriented programming language, primarily
designed to experiment with the mobility of objects in a distributed environ-
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ment (Jul, Levy, Hutchinson, & Black, 1988). To this end, Emerald includes
extensive language support for object mobility.

In Emerald, inter-object communication is carried out by remote invo-
cations. Similarly to Distributed Smalltalk, remote invocations constitute
a communication mechanism that guarantees consistency in the absence of
replication. Therefore, we list remote invocations as a CP construct in Ta-
ble 2.1. Notice that Emerald’s remote invocations differ from traditional
RMI, the details of which are immaterial to the present discussion.

Emerald differentiates itself from Distributed Smalltalk, in that it pro-
vides extensive support for object mobility. Programmers can migrate objects
from one node to another using the move primitive. By migrating objects
one can improve failure coverage, therefore, we list move as an AP language
construct in Table 2.1. Object migration can also increase performance by
placing the data geographically closer to the user. In addition, objects can be
attached to form groups of objects that move together. Other functionality
includes fixing and unfixing the location of objects at particular nodes.

Besides the mobility model, Emerald introduces novel parameter passing
semantics for remote method invocations. The fundamental idea is to move
argument objects to the callee. As such, all arguments are locally avail-
able when the method executes. This avoids a number of costly additional
remote invocations that would arise from interactions with the arguments.
Programmers can choose to return the objects to the caller after the method’s
execution or to keep the objects at the receiver. The former is named “call-
by-visit” whereas the latter is named “call-by-move”.

2.7.4 AmbientTalk

AmbientTalk, originally described by (Van Cutsem et al., 2007), is a dis-
tributed object-oriented programming language featuring an actor-based,
event-driven concurrency model.

AmbientTalk has a built-in publish-subscribe mechanism for service dis-
covery. This mechanism allows programs to discover objects that export
specific services in an ad hoc network. Upon discovering a service, the user
acquires a remote reference to the discovered service object. This reference
works only via asynchronous message passing, and is called a far reference.
Note that far references are resilient to partial failures. In the face of a net-
work partition, the far reference buffers all messages until the remote object
becomes available again, at which point the buffered messages are flushed.

Conceptually, remote objects behave as shared, consistent objects, even
though only a single instance exists underneath. Therefore, far references
are a consistency mechanism (see Table 2.1). Analogous to the previous
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languages, the remote object forms a single point of failure which affects the
object’s availability.

AmbientTalk also includes native support for replication through isolates.
Isolates are self-contained first-class objects which cannot access their sur-
rounding lexical scope. This allows isolates to be passed by value and as such
form the basis for replication. Hence, isolates are a language construct for
availability, listed in Table 2.1.

Finally, we observe that AmbientTalk includes native support for both,
strong consistency (far references) and availability (isolates). However, dis-
tributed objects cannot guarantee both properties (see Section 2.2) and Am-
bientTalk provides no middle ground. Hence, if availability is key and some
form of consistency is expected, the programmer will need to manually im-
plement an eventually consistent layer atop isolates.

2.7.5 Geo

Geo, recently proposed by (Bernstein et al., 2017), is an actor system specif-
ically designed for geographically distributed actors. Geo targets actors in
large cluster environments, such as datacenters, which can be separated by
a considerable physical distance. Due to the physical distance between data-
centers, inter-actor communication may entail high latency. Therefore, Geo
uses caching and replication techniques to hide the latency and benefit from
data locality where possible.

Geo supports “single-instance” and “multi-instance” caching policies for
actors. The former ensures a single consistent instance of the actor, by
caching the actor’s state only at one node. The latter replicates the actor to
every cluster, by caching the actor’s state in one node of every cluster.

Although caching improves availability and performance, caching can lead
to stale information. Therefore, Geo includes native support for various
consistency models (see Section 2.3). First of all, actors support linearizable
reads and writes. Linearizability guarantees strong consistency of single-
instance actors. For “multi-instance” caching policies, Geo coordinates the
actors to act as a single latest version, using a distributed cache coherence
protocol.

In contrast to the previously analyzed languages, Geo provides a “Ver-
sioned API” which is a middle ground between availability and consis-
tency. The Versioned API is a variation on the global sequence protocol
(Burckhardt, Leijen, Protzenko, & Fähndrich, 2015), that guarantees even-
tual consistency of the actors.

To summarize, we explained that Geo actors can be replicated to differ-
ent clusters by means of the multi-instance caching policy. To keep these



Conclusion 28

replicated actors strongly consistent, Geo provides a distributed cache co-
herence protocol. Weaker consistency models can also be adopted using the
Versioned API. Hence, Geo is a full-fledged actor system with native sup-
port for availability as well as strong and eventual consistency. Support for
availability and strong consistency is described in Table 2.1.

2.7.6 Lasp

Lasp (Meiklejohn & Van Roy, 2015) is a distributed programming language
designed to simplify the development of large-scale distributed systems. To
this end, Lasp provides conflict-free replicated data types as first-class values.

Developing complex coordination-free systems requires the composition
of CRDTs, which is challenging and error-prone. To cope with this prob-
lem, Lasp supports composition of CRDTs through a functional API. The
functional API includes the map, filter and fold primitives. Each func-
tional primitive takes a CRDT as input and produces a new CRDT. Hence,
functional primitives can be composed in arbitrary ways, allowing complex
CRDT transformations through an intuitive API.

1 {ok , S1} = la sp : d e c l a r e ( r iak_dt_orset ) ,
2 {ok , _} = la sp : update (S1 , {add_all , {1 ,2 ,3} , a ) ,
3 {ok , S2} = la sp : d e c l a r e ( r iak_dt_orset ) ,
4 {ok , _} = la sp :map(S1 , fun (X) �> X ∗ 2 end , S2 ) .

Listing 2.2: Applying the functional map operation on a set CRDT. Example
from (Meiklejohn & Van Roy, 2015).

Listing 2.2 illustrates the functional API by means of an example. First,
the example creates an empty set CRDT and populates it with the numbers
1, 2 and 3 (Lines 1 and 2). Afterwards, Line 4 maps over the set multiplying
each number by two, and stores the resulting set CRDT in S2.

To conclude, Lasp supports intuitive composition of CRDTs in a way
that guarantees strong eventual consistency. However, Lasp does not provide
native support for the strong consistency model. Therefore, we classify Lasp
as an AP language in Table 2.1.

2.8 Conclusion

The development of distributed systems is affected by the CAP theorem
(Brewer, 2000) which implies a trade-off between strong consistency and
availability. Therefore, many applications favor availability over strong con-
sistency and instead guarantee a weaker form of consistency, known as even-
tual consistency. Strong eventual consistency (SEC), proposed by (Shapiro
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et al., 2011b), is a variation on eventual consistency that avoids the need for
synchronization, yielding better scalability and performance. To the best of
our knowledge, conflict-free replicated data types (CRDTs) currently remain
the only mechanism to guarantee strong eventual consistency.

The potential of SEC raises special interest from large-scale distributed
systems. The integration of this consistency model into real-world applica-
tions is however hampered by significant barriers. First, building complex
systems requires application-specific CRDTs that are tailored to the needs
of the application. However, conflict-freeness requires the operations to be
commutative. This is a strong requirement which affects the applicability of
CRDTs. Hence, CRDTs are not flexible, which renders the design of custom
CRDTs particularly challenging.

In an attempt to circumvent the aforementioned problem, programmers
may resort to JSON CRDTs (Kleppmann & Beresford, 2017), which are so
called general-purpose CRDTs. However, JSON CRDTs exhibit hardcoded
concurrent behaviours which contradicts their general applicability. Further-
more, JSON CRDTs resort to semantic resolution (see Section 2.6.3) when
falling short of applicable merge procedures. This implies that programmers
need to manually solve the conflict. We argue that semantic resolution is
undesirable as it places the burden of conflict resolution on the programmer.

Finally, our classification of distributed programming languages revealed
that most languages only provide limited support for availability and con-
sistency. With the exception of Geo, none of the presented programming
languages includes native support for eventual consistency, let alone strong
eventual consistency.
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3
Strong Eventually Consistent

Replicated Objects

Although distributed systems could greatly benefit from CRDTs, their inte-
gration within real-world systems is challenging. In this chapter we explore
the integration of strong eventual consistency (SEC) with the object-oriented
programming paradigm, by introducing strong eventually consistent repli-
cated objects (SECROs).

SECROs provide a flexible interface which does not require the opera-
tions to be commutative, while still guaranteeing SEC. To resolve conflicts
SECROs use a semi-automatic conflict resolution strategy that is based on
application-level semantic information declared by the programmer.

We start with a formal definition of strong eventually consistent replicated
objects in Section 3.1. Following this definition, Section 3.2 focuses on repli-
cation and outlines the provided consistency guarantees. We then present
two examples that differentiate SECROs from traditional approaches, in Sec-
tion 3.3. Section 3.4 presents a pseudocode implementation of the SECRO
data type, followed by a time complexity analysis. Afterwards, Section 3.5
outlines a number of advanced insights. Finally, Section 3.6 concludes this
chapter with a synopsis of the SECRO data type.
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3.1 Formal Definition
A strong eventually consistent replicated object (SECRO) is a tuple (v

i

, s0, si,
Q,M, h), consisting of a version number v

i

, the object’s initial state s0, the
current state s

i

, a set of (side-effect free!) query operations Q, a set of
mutators M and an operation history h. The object’s public interface consists
of Q and M . Programmers access (parts of) the internal state through the
query operations and update the internal state using mutators. Notice that
mutations do not affect the initial state s0. Instead, mutations update the
current state s

i

m�! s
i+1 and are added to the operation history.

Building further on this definition, we now outline a number of funda-
mental concepts.

Mutators A mutator is a triple (o, p, a) consisting of an update operation
o, a precondition p and a postcondition a. The update operation is a
function: o : A1 ⇥ . . . ⇥ A

n

! R, that takes n arguments (where A
i

denotes the type of the i-th argument) and returns a result of type R.
In the face of concurrent operations the SECRO data type relies on
preconditions and postconditions to determine a conflict-free ordering
of the operations. Preconditions and postconditions are so-called state
validators.

State Validators Programmers define state validators to specify a data
type’s behaviour in the face of concurrency. State validators are declar-
ative rules that are associated to certain operations. Those rules ex-
press invariants over the state of the object and as such translate the
semantics of the operations. State validators come in two forms, namely
preconditions and postconditions.

Preconditions Preconditions specify invariants that must hold prior
to the execution of their associated operation. As such, precondi-
tions approve or reject the state before applying the actual update.
In case of a rejection, the update is aborted.
Mathematically, we define a precondition to be a function p :
S ⇥ A1 ⇥ . . . ⇥ A

n

! B where S is the SECRO’s state domain.
The precondition thus takes n+1 arguments, namely the object’s
current state s

i

followed by the n arguments passed to the update
operation o, and returns a boolean indicating whether to approve
or reject the state.

Postconditions Postconditions specify invariants that must hold af-
ter the execution of their associated operation. In contrast to
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preconditions, an operation’s associated postcondition does not
execute immediately. Instead, the postcondition executes after
all concurrent operations complete. As such, postconditions ap-
prove or reject the state that results from a group of concurrent,
potentially conflicting operations.
Mathematically a postcondition is a function a : S ⇥ S ⇥ A1 ⇥
. . . ⇥ A

n

⇥ R ! B where S is the SECRO’s state domain. The
postcondition expects n+3 arguments which are respectively the
SECRO’s initial state s0, the resulting state, the n arguments
passed to the update operation o and finally the return value of
o. The postcondition returns a boolean indicating whether to
approve or reject the resulting state.

Operation History The definition of a SECRO introduces the concept of
an operation history h. The operation history maintains the sequence of
mutations that were successfully applied, i.e. the sequence of operations
that were approved by both, the associated pre and postcondition.

Commit As mutations are added to the operation history, a replica’s his-
tory grows over time. To avoid unbounded growth of the operation
history, SECROs introduce a commit operation. The commit opera-
tion commits the current operation history, lifting the replica to a new
version v

i

! v
i+1. To this end, the replica’s version number is incre-

mented, the initial state is replaced by the current state (s0  s
i

) and
the operation history is discarded, yielding a blank history: h 0().

Notice that preconditions are less expressive than postconditions. How-
ever, preconditions avoid unnecessary computations by rejecting invalid
states prior to the operation’s execution. Furthermore, preconditions prevent
operations from running on a corrupted state, thus improving the system’s
robustness.

3.2 Replication and Consistency
Whereas the previous section focused on the formal definition of strong even-
tually consistent replicated objects (SECROs), we now turn our attention to
replication and the consistency model of SECROs.

SECROs embed the strong eventual consistency model into an optimistic
replication protocol. Similarly to op-based CRDTs, update operations prop-
agate between the replicas. For the sake of simplicity we assume a causal or-
der broadcasting mechanism without loss of generality, i.e. a communication
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medium in which messages arrive in an order that is consistent with the causal
happened-before relation. If the underlying communication mechanism does
not guarantee causal order broadcasting, one can resort to manually tracking
causal dependencies, as explained in Section 2.5.2.

Even though we rely on causal order broadcasting, concurrent operations
arrive in arbitrary orders at the replicas. In contrast to CRDTs we do not
impose concurrent operations to commute. Therefore, replicas must agree
on the same ordering of operations in order to remain eventually consistent.
Our goal is to pick an ordering of the operations that is in accordance with
the application-dependent semantics. We refer to such an ordering as being
a “valid execution”.

Definition 1 A valid execution is an ordering of the operation history
m1, . . . ,mn

in which no pre- or postcondition is violated:
8m

i

2 h : p
i

^a
i

where 1  i  n, n = |h| and m
i

= (o
i

, p
i

, a
i

) is a mutation.

At any moment in time a replica may receive an operation that is concur-
rent with one or more other operations. Since operations do not commute,
receiving an operation requires the replica to re-organize its operation his-
tory such that it forms a valid execution. Re-ordering the history is a local
operation which does not involve network communication. This results from
the fact that replicas are deep copied. Hence, each replica carries the pre-
conditions and postconditions that are needed to re-order the history. Notice
that re-organizing a replica’s history yields a different state. Therefore, the
replica’s current state s

i

is updated every time the history changes.

1

2

1

1

network 
partition 

  

commit

(a) During the network partition.

2

2

2

2

 

commit 

broadcast 
commit 

(b) After the network partition.

Figure 3.1: Committing a replica in the face of a network partition.

In the previous section we introduced the commit operation which seals
the operation history and lifts the replica to a new version (v

i

! v
i+1). Since
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commit operations are also broadcasted, all replicas seal their old version
and transition to the committed version. If we later receive an operation
that applies to an old version, the operation is ignored. Therefore, commit
should be used with care.

In Figure 3.1a the upper replica commits while suffering from a network
partition. Therefore, the upper replica resides in version 2 while the other
replicas are still in version 1. Meanwhile, the lower replicas perform a num-
ber of operations, O1 till O

n

. Due to the network partition, the operations
are concurrent with the commit. Therefore, when the partition fades away
(Figure 3.1b), the commit is broadcasted and all replicas transition to version
2, thereby discarding operations O1 . . . On

.
If programmers use SECROs and associate preconditions and postcondi-

tions to the operations, the framework will take care of the following aspects:

1. Replicas converge towards the same valid execution (i.e. eventual con-
sistency).

2. Replicas that received the same updates have identical operation his-
tories (i.e. strong convergence).

3. Replicas eventually take on a valid execution if one exists, or issue an
error if none exists (safety and liveness guarantee).

Notice that SECROs cannot guarantee that a valid execution exists. This
is because preconditions and postconditions determine which sequences of op-
erations are valid executions. Hence, it is the programmer’s responsibility to
ensure that a valid execution exists. We define the set of all valid executions,
denoted H, as follows:

H = {h | 8m
i

2 h : p
i

^ a
i

} where m
i

= (o
i

, p
i

, a
i

) is a mutation

H consists of all re-orderings of the operation history that are valid according
to the application-dependent semantics. We assume that for every set of
concurrent operations some ordering of the operations is valid. As a result,
programs that yield no valid execution - i.e. H = ; - are inherently wrong.
Examples of faulty programs include programs with contradicting invariants.

Definition 2 A faulty program is a program for which no valid execution
exists: @h : 8m

i

2 h : p
i

^ a
i

where m
i

= (o
i

, p
i

, a
i

) is a mutation.

To conclude, SECROs provide programmers with a means to define repli-
cated objects that are tailored to the needs of the application and guarantee
strong eventual consistency. By specifying invariants programmers implicitly
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define custom concurrent behaviours. Hence, SECROs are general-purpose
objects that guarantee strong eventual consistency and an outcome that is
in accordance with the application-dependent semantics.

3.3 Examples
We now illustrate the usage of SECROs through two examples. The first
example implements a replicated linked list allowing insertions at arbitrary
positions as well as deletions. The second example is a variation on the first
example to implement an ordered linked list. Since both examples build on
a traditional linked list, we first discuss the underlying linked list in Sec-
tion 3.3.1.

For the sake of simplicity both examples assume that the lists contain no
duplicate values. As such, we can easily refer to relative positions by referring
to a certain element. This assumption does not imply a loss of generality as
we can always identify list elements using unique IDs and refer to relative
positions using those IDs.

3.3.1 Linked List

The examples presented throughout this chapter build on a traditional im-
plementation of a linked list. We assume that the linked list supports the
public interface shown in Figure 3.2.

LinkedList

+ length: Number

+ getValue(Number): Any

+ getNode(Number): Node 

Node

+ insertAfter(Any): Node

+ delete(): Boolean

+ contains(Any): Boolean 

+ idxOf(Any): Number

1 1..*

Figure 3.2: UML class diagram of the linked list.

Figure 3.2 depicts two classes, LinkedList and Node. Conceptually, a
linked list is a sequence of nodes where nodes store a value. The linked
list defines four methods: getNode, getValue, contains and idxOf. The
getNode method returns the node at a certain index in the list. Lists are
indexed starting from 1 such that position 0 refers to the head of the list (i.e.
the position before the first element). As such, elements can be prepended
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to the list by inserting them after the head of the list. Similarly, getValue
returns the value at a certain position in the list. Additionally, contains and
idxOf serve to check whether the list contains a certain value, respectively,
compute the index of a certain element. When the element does not occur
in the list, idxOf returns 0, i.e. the index of the head of the list.

Besides navigating through the list, programmers can also manipulate
the list. To this end, we first fetch a node using the list’s getNode method.
Afterwards, we use the node’s insertAfter method to insert an element
after the node, or its delete method to delete the node.

3.3.2 Replicated Linked List

This example illustrates the implementation of a replicated linked list that
supports insertions and deletions, and behaves correctly in the face of concur-
rent operations. In order to define “correct behaviour” we explicitly capture
the programmer’s expectations:

insertAfter(element, value) This operation inserts the given value after
a certain element in the list. Hence, we expect that after executing the
operation, the value effectively appears behind the element.

delete(value) This operation deletes a certain value from the list. Hence,
we expect that after deleting a value, the value no longer occurs in the
list.

In order to turn the traditional linked list (see Section 3.3.1) into a repli-
cated linked list that meets the above expectations, we define the following
SECRO:

(v1, s0, si, {getAt}, {insertAfter, delete}, h)
Initially, both the replica’s initial state s0 and the current state s

i

contain
an empty linked list, s0 = s

i

= 0( ). Furthermore, the replica defines a query
operation getAt and two mutators insertAfter and delete. Additionally,
each replica maintains an operation history h which initially is empty. The
getAt query fetches an element at a certain index, whereas the insertAfter
and delete mutators perform insertions and deletions respectively. The
mutators (i.e. insertAfter and delete) are extended with state validators
which translate the programmer’s expectations into invariants.

Throughout this chapter we extensively rely on pseudocode. Therefore,
Table 3.1 clarifies the adopted notation. Notice that the underlying imple-
mentation ensures that self refers to the replica’s current state s

i

. This
state includes one field named list, which contains the linked list from Sec-
tion 3.3.1.
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Syntax Description
def name(arguments): method definition
var <- val variable assignment
for val in col: traversing a collection
# comments

Table 3.1: Overview of the adopted pseudocode syntax.

The getAt Query Operation

Listing 3.1 shows the getAt query operation which returns the value at a
certain index in the list. To this end, Line 2 delegates the call to the getValue
method (see Figure 3.2) of the underlying list.

1 def getAt ( idx ) :
2 return se l f . l i s t . getValue ( idx )

Listing 3.1: Pseudocode implementation of the getAt query operation.

The insertAfter Mutator

The insertAfter mutator is a triple:

insertAfter = (insert, preInsert, postInsert)

insert is the actual insertion operation whereas preInsert and postInsert
are the operation’s associated precondition and postcondition.

1 def i n s e r t ( element , va lue ) :
2 idx <� s e l f . l i s t . idxOf ( element )
3 node <� s e l f . l i s t . getNode ( idx )
4 return node . i n s e r tA f t e r ( va lue )

Listing 3.2: Pseudocode implementation of the insert operation.

Listing 3.2 contains the insert operation. This operation relies on the
API of the underlying linked list to insert the element. First, the operation
determines the index of the element after which to insert value (Line 2).
Afterwards, Lines 3 and 4 fetch the actual node and insert the value after
that node.

In order to ensure correct behaviour of the replicated linked list in the
face of concurrent updates, we associate a precondition and a postcondition
to the insertion operation. Recall from Section 3.1 that preconditions take
n + 1 arguments, namely the state prior to the execution of the associated
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operation (which we will refer to as s
B

), followed by the n arguments re-
ceived by that operation. On the other hand, postconditions take two more
arguments, being the resulting state (which we denote s

A

) as well as the
operation’s return value1.

1 def p r e I n s e r t (sB , element , va lue ) :
2 return element == ni l | |
3 sB . l i s t . conta in s ( element )

Listing 3.3: Precondition for insertions.

Listing 3.3 defines the precondition for insertion operations. This pre-
condition states that the element after which to insert the value must exist
(Line 3). A corner case arises when prepending values to the list, which is
indicated by nil. Therefore, the precondition performs an additional check
on Line 2.

1 def po s t I n s e r t (sB , sA , elem , val , r e s ) :
2 return sA . l i s t . idx_of ( elem ) <
3 sA . l i s t . idx_of ( va l )

Listing 3.4: Postcondition for insertions.

Finally, Listing 3.4 defines the postcondition. The postcondition is almost
a literal translation of the aforementioned expectations, namely that the
inserted element val must occur behind the original element elem.

A subtlety arises from the fact that users may concurrently insert different
values at the same position in the list. As a result, only one of the values
can occur at that position. Therefore, the postcondition does not enforce the
value to occur right after the element, but rather behind the element.

The delete Mutator

The delete mutator is a triple:

delete = (del, /, postDel)

The del operation is the actual delete operation. Notice that this mutator
does not define a precondition.

1 def de l ( va l ) :
2 i f s e l f . l i s t . conta in s ( va l ) :
3 idx <� s e l f . l i s t . idxOf ( va l )
4 s e l f . l i s t . getNode ( idx )
5 . d e l e t e ( )

Listing 3.5: Pseudocode implementation of the delete operation.

1sB denotes the state Before the operation’s execution, whereas sA denote the state

After the execution.
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Listing 3.5 shows the del operation. First, the operation checks whether
the value occurs in the list (Line 2). If the value occurs in the list, the
operation computes the index (Line 3), fetches the node using this index
(Line 4) and deletes the node (Line 5).

In contrast to the insertAfter mutator, we do not define a precondition
for deletions. Intuitively, one might design a precondition to ensure that the
value exists. However, if peers concurrently delete the same element only the
first deletion observes the element, in which case the others would fail.

1 def postDel (sB , sA , val , r e s ) :
2 return ! sA . l i s t . conta in s ( va l )

Listing 3.6: Postcondition for deletions.

Finally, Listing 3.6 defines the postcondition for deletions. The postcon-
dition states that the deleted element val may not occur in the resulting list
(Line 2).

Conclusion

By defining three state validators (preInsert, postInsert and postDel) on
top of the sequential linked list implementation, we are able to transform the
list into a replicated linked list that behaves as expected.

Conceptually, the state validators define an implicit conflict resolution
strategy. In the face of conflicting insertions and deletions, the invariants
prescribe an ordering of the operations in which the insertions precede the
deletions, and as such solve the conflicts.

Finally, this example showcased a major advantage of SECROs over
CRDTs. Whereas various implementations of a linked list CRDT can be
found in the literature (Letia, Preguiça, & Shapiro, 2009; Roh, Jeon, Kim,
& Lee, 2011), all of them resort to tombstones to mark elements as deleted.
Hence, CRDTs simulate deletions whereas SECROs support true deletions
by re-organizing the operation history.

3.3.3 Ordered Linked List

We now modify the replicated linked list from the previous example with
different concurrent behaviour. Assuming peers perform sorted insertions
(using insertAfter), the resulting list must be sorted. However, when two
or more peers concurrently insert an element at the same position in the list,
the replicas agree on an arbitrary ordering of the insertions. Our goal is to
modify this behaviour such that concurrent insertions result in an ascending
order of the elements.



41CHAPTER 3. Strong Eventually Consistent Replicated Objects

1 3 7 1 3 7

1 3 4 7

insertAfter(3, 4)

1 3 5 7

insertAfter(3, 5)

1 3 4 5 1 3 5 47 7

1 3 5 4 7 1 3 4 5 7

network 
communication

Figure 3.3: Concurrent list insertions at the same position.

To clarify the goal of this example Figure 3.3 depicts the interactions
between two peers, Alice (left) and Bob (right). Initially, both start with
a replicated linked list 0(1, 3, 7). Alice issues insertAfter(3,4) while con-
currently Bob issues insertAfter(3, 5). When exchanging the operations,
both peers notice that the operations are concurrent. Since concurrent op-
erations have no predefined order, the resulting list will be 0(1, 3, 5, 4, 7) or
0(1, 3, 4, 5, 7) depending on the IDs of the operations. In this example we want
to force the concurrent insertions to yield the sorted order: 0(1, 3, 4, 5, 7).

In order to achieve the desired behaviour, we only need to modify the
postInsert postcondition from the previous example (Listing 3.4).

1 def po s t I n s e r t (sB , sA , elem , val , r e s ) :
2 idx <� sA . l i s t . idx_of ( va l )
3 prev <� �1
4 next <� +1
5 i f idx > 1 :
6 # Not the first element

7 prev <� sA . l i s t . getValue ( idx �1)
8 i f idx < sA . l i s t . l ength :
9 # Not the last element

10 next <� sA . l i s t . getValue ( idx+1)
11 return prev < va l && val < next

Listing 3.7: Postcondition for ordered concurrent insertions.

Listing 3.7 contains the modified postcondition. First, the postcondition
computes the index of the inserted element val (Line 2) and assumes that
the preceding and succeeding values are �1 and +1 respectively (Lines 3
to 4). Afterwards, the postcondition fetches the actual values that precede
and succeed the element (Lines 5 to 7 and 8 to 10) and enforces the previous
value to be smaller and the next value to be larger (Line 11). Since the first
and last elements do not have a preceding, respectively, a succeeding value,
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Lines 5 and 8 perform some extra checks. Recall that the first element starts
at position 1.

The described postcondition implicitly forces concurrent insertions to ex-
ecute in ascending order. This yields a single valid execution2.

To conclude, this example showcased the general applicability of SECROs.
Whereas JSON CRDTs hardcode specific concurrent behaviour in the merge
procedures, SECROs provide state validators as a mechanism to effectively
customize concurrent behaviour. We emphasize the fact that JSON CRDTs
cannot reproduce this example since they hardcode different concurrent be-
haviour.

3.4 Implementation

This section showcases a partial pseudocode implementation of the strong
eventually consistent replicated data type. First, Section 3.4.1 depicts the
evaluation of query operations. Afterwards, Section 3.4.2 focuses on applying
updates, paying special attention to the use of state validators to guarantee
correctness and strong eventual consistency. Finally, Section 3.4.3 reviews
the implementation of the commit operation.

Remember from Section 3.1 that every replica maintains a version number
and two states, being the initial state s0 and the current state s

i

. Therefore,
replicas are objects containing four fields: version, initial_state, state
and history. The initial_state field corresponds to s0 whereas the state
field corresponds to s

i

. Notice that self refers to the replica object itself.
Additionally, this section introduces specific notation: <

h

refers to the
causal “happened-before” relation and |

c

denotes concurrent operations.
When an operation occurs in the operation history of a replica, we say that
the operation is delivered at the replica. Hence, operation A happened before
B (A <

h

B) if operation A was delivered before executing B. On the other
hand, two operations are concurrent if neither one happened before the other
(Lamport, 1978), i.e. A |

c

B () A ⌅
h

B ^ B ⌅
h

A.

3.4.1 Applying Queries

Listing 3.8 shows how query operations are evaluated. Since query operations
are side effect free, it is safe to apply them directly on the replica’s internal
state. Hence, the code fetches the replica’s current state (Line 2) and applies
the query on that state (Line 3). This yields the query’s return value.

2
We assumed a list without duplicates.
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1 def apply_query ( r ep l i c a , query ) :
2 s t a t e <� s e l f . s t a t e
3 return apply ( s ta te , query )

Listing 3.8: Applying a query operation on a replica.

3.4.2 Applying Updates

Before delving into the implementation of update operations, we clarify the
notion of a mutator. In contrast to Section 3.1, we use the term “mutator”
or “update” to refer to the actual update operation o instead of the triple
(o, p, a).

1 def i ssue_update ( opera t i on ) :
2 op <� make_op( opera t i on )
3 r e s u l t <� apply_update ( op )
4 broadcast ( op )
5 return r e s u l t
6
7 def make_op( opera t i on )
8 c l o ck <� log ica l_timestamp ( )
9 uid <� generate_unique_id ( )

10 return ( c lock , operat ion , uid )

Listing 3.9: Issuing an update operation.

Whenever a replica experiences an update, the replica invokes
issue_update. As shown in Listing 3.9, issue_update generates a descrip-
tion of the update (Line 2). This description includes the operation, a logical
timestamp and a unique ID identifying the update (Lines 7 to 10). After-
wards, issue_update relies on apply_update to perform the actual update
(Line 3) and broadcasts the operation to the other replicas (Line 4). Finally,
issue_update returns the operation’s result value on Line 5.

Listing 3.10 shows the receive_update operation which handles updates
sent by other replicas. Upon receiving a remote operation, receive_update
delegates the operation to apply_update (Line 2). Notice that the received
operation is not broadcasted.

1 def rece ive_update ( op ) :
2 return apply_update ( op )

Listing 3.10: Receiving updates.

Remember from Section 3.2 that updates do not necessarily commute.
Therefore, replicas maintain an operation history that is organized to guar-
antee strong eventual consistency and “correct” behaviour. The key is to
design a deterministic algorithm such that replicas that received the same
updates pick the same valid execution.
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However, operations are timestamped with logical clocks, and, therefore,
only exhibit a partial order (see Section 2.1). In other words, concurrent
operations are incomparable. Hence, if two clocks (C1 and C2) are concurrent
C1 |c C2, then neither C1 <h

C2, C2 <h

C1, nor is C1 = C2. As a result, a set of
n concurrent operations has n! potential orderings, namely all permutations.

To avoid the complexities that arise from partial orders, we design the
operation history to exhibit a total order defined by <

h

. To this end, the
operation history is a sequence of groups, where each group is a set of con-
current operations (i.e. unordered). We order the groups according to the
following total order:

G1 <h

G2 () 8O 2 G1 : 8O0 2 G2 : O <
h

O0 (3.1)

Hence, a group G1 happened before a group G2 if every operation in G1

causally precedes the operations from G2. Recall that two operations are
concurrent if neither one happened before the other. Similarly, we define
two groups to be concurrent if neither group happened before the other, i.e.
G1 |c G2 () G1 ⌅

h

G2 ^ G2 ⌅
h

G1. Therefore, as soon as an operation
O1 of group G1 is concurrent with an operation O2 from G2, both groups are
concurrent since O1 |c O2 implies that G1 ⌅h

G2 and G2 ⌅h

G1. For the same
reason we define an operation O to be concurrent with a group of operations
G, if the operation is concurrent with at least one operation from the group:

O |
c

G () 9O0 2 G : O |
c

O0 (3.2)

Hence, applying an update operation O requires inserting the operation
in the right group(s) of the operation history, according to the above total
order. Afterwards, the replica can enumerate all potential executions by
permuting the group to which it added the operation. Finally, the replica
uses the application-dependent invariants (i.e. the pre and postconditions) to
find a valid execution among the set of permutations. Once a valid execution
is found, this ordering becomes the replica’s new history. This approach lies
at the basis of the apply_update function shown in Listing 3.11.

1 def apply_update ( op ) :
2 h i s t o r y <� s e l f . h i s t o r y
3 concurrent_groups <� get_concurrent_groups ( op , h i s t o r y )
4 i f concurrent_groups i s empty :
5 h i s t o r y <� insert_group ( ' ( op ) , h i s t o r y )
6 ( va l id , r e su l t , s t a t e ) <� i s_va l i d ( h i s to ry , op )
7 i f va l i d :
8 s e l f . h i s t o r y <� h i s t o r y
9 s e l f . s t a t e <� s t a t e

10 return r e s u l t
11 else :
12 group <� merge_groups ( concurrent_groups )
13 group <� cons ( op , group )
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14 group <� s o r t ( group )
15 permutat ions <� permute ( group ) # lazy!

16 for permutation in permutat ions :
17 i f r e sp e c t s_cau sa l i t y ( permutation ) :
18 po t en t i a l_h i s t o ry <� replace_groups_by ( h i s to ry , concurrent_groups ,

group )
19 ( va l id , r e s u l t , s t a t e ) <� i s_va l i d ( potent i a l_h i s to ry , op )
20 i f va l i d :
21 s e l f . h i s t o r y <� po t en t i a l_h i s t o ry
22 s e l f . s t a t e <� s t a t e
23 return r e s u l t
24 throw faulty_program_exception

Listing 3.11: Applying an update operation.

The implementation of apply_update listed above, starts by fetching
all groups that are concurrent with the update operation (Line 3). Two
possibilities arise, either the operation is concurrent with no groups (Lines 4
to 10) or the operation is concurrent with one or more groups (Lines 11
to 23).

In the former case, the operation forms a singleton group 0(op) and
insert_group returns a new history in which the group is inserted at its
correct position (Lines 4 to 5), according to the <

h

relation (Equation (3.1)).
Afterwards, Line 6 checks the validity of the extended operation history us-
ing the is_valid operation (see Listing 3.12). If the history is approved, the
code updates the replica’s history and current state, and returns the opera-
tion’s result (Lines 7 to 10). Otherwise, the code jumps to Line 24 and raises
an exception since the application’s invariants cannot be met.

In the latter case the operation is concurrent with one or more groups.
Since the operation makes the groups concurrent, the groups are merged and
the operation is added to the merged group (Lines 12 and 13). Line 14 sorts
the resulting group according to the following total order:

O1 < O2 () (C1 <h

C2) _ (C1 |c C2 ^ p1 < p2)

where O
i

= (C
i

, p
i

) is an operation
C

i

= a logical timestamp
p
i

= the operation’s unique ID

Since replicas receive concurrent operations in arbitrary orders, sorting
the group enforces all replicas to start from the same ordering. As such, the
replicas generate permutations deterministically, i.e. in the same order, on
Line 15. For the sake of performance, permutations are generated lazily.

After sorting the group, apply_update loops through the permutations
searching for the first valid execution (Lines 16 to 23). From Equation (3.2)
it follows that some operations within the merged group may still be causally
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related. Therefore, Line 17 discards permutations that violate causality. For
permutations that respect causality, the code constructs a potential history
by replacing the concurrent groups by the merged permuted group (Line 18).
To this end, the replace_groups_by function returns a new history in which
the permuted group replaces the first concurrent group and the remaining
concurrent groups are deleted. Afterwards, the is_valid function is used to
tentatively execute the potential history similarly as before (Lines 19 to 23).
However, if the potential history is rejected, the code jumps back to Line 16
and generates the next permutation. Finally, if all permutations are rejected,
Line 24 throws an exception since the application’s invariants cannot be met.

Finally, remains to discuss the implementation of is_valid which relies
on the application’s invariants to approve or reject a history. The idea is to
tentatively execute the updates from the history, using the preconditions and
postconditions to validate each intermediate state. If an update is rejected
by one of its invariants, then the entire operation history is corrupted and
the history is rejected.

1 def i s_va l i d ( h i s to ry , newOp) :
2 s ta t e_d ic t <� new Map( )
3 s t a t e <� copy ( s e l f . i n i t i a l _ s t a t e )
4 r e s u l t <� ni l

5 for group in h i s t o r y :
6 for opera t i on in group :
7 pre <� get_precondi t ion ( opera t i on )
8 s ta t e_d ic t . s e t ( opera t i on . id , copy ( s t a t e ) )
9 i f pre ( s t a t e ) :

10 r e s <� apply ( s ta te , ope ra t i on )
11 i f opera t i on == newOp :
12 r e s u l t <� r e s
13 else :
14 return ( false , nil , ni l )
15 for opera t i on in group :
16 post <� get_postcondi t ion ( opera t i on )
17 o r i g i n a l S t a t e <� s ta t e_d ic t . get ( opera t i on . id )
18 i f ! post ( o r i g i n a l S t a t e , s t a t e ) :
19 return ( false , nil , ni l )
20 # All pre - and postconditions succeeded

21 return ( true , r e s u l t , s t a t e )

Listing 3.12: Validating an operation history.

Listing 3.12 contains the is_valid function. Recall that updates may not
alter the replica’s initial state. Instead, updates are added to the operation
history. For this reason, is_valid copies the replica’s initial state (Line 3)
before tentatively executing the history’s operations.

Lines 5 to 19 loop through the groups of the operation history. Each group
is traversed twice, once to assert the preconditions and apply the updates
(Lines 6 to 14) and once to assert the postconditions (Lines 15 to 19). When
is_valid first loops over the operations of the group, it fetches the opera-
tion’s precondition (Line 7) and uses this precondition to validate the current
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state (Line 9). If the precondition holds is_valid applies the update, other-
wise it returns a triple (false, nil, nil) indicating the failure (Lines 10
to 14). Notice that the code also stores a copy of the state prior to the ex-
ecution of the precondition (Line 8) because this state will be passed as an
argument to the postcondition. The second time is_valid loops through the
group, it validates the state that results from this group of concurrent opera-
tions. Therefore, is_valid fetches each operation’s postcondition (Line 16)
and calls the postcondition with the original state (Line 17) and the resulting
state (Line 18). If a postcondition fails, then by Definition 1 the history is not
a valid execution and is_valid returns a failure status (Line 19). Finally, if
all preconditions and postconditions succeed, the code reaches Line 21 and
returns the resulting state as well as the operation’s return value.

3.4.3 The Commit Operation

As explained in Section 3.1, commit seals the operation history of a replica,
thereby lifting the replica to a new version. This means that the replica’s
initial state is updated and the replica starts off with a blank history. As
such, commit avoids the operation history to grow unbounded. However,
operations that are concurrent with the commit are discarded, since those
operations belong to the previous version (see Figure 3.1).

Similarly to regular operations, replicas may issue commits concurrently.
Therefore, we design commit operations to commute. This ensures that
replicas converge in the face of concurrent commits.

1 def issue_commit ( ) :
2 commit_state <� s e l f . s t a t e
3 op <� make_op( "commit" , commit_state )
4 apply_commit ( op )
5 broadcast ( op )
6
7 def make_op( operat ion , s t a t e = ni l ) :
8 v e r s i on <� s e l f . v e r s i on
9 c l o ck <� log ica l_timestamp ( )

10 uid <� generate_unique_id ( )
11 return ( s ta te , ver s ion , c lock , operat ion , uid )

Listing 3.13: Issuing a commit operation.

Whenever a replica experiences a local commit, the replica invokes
issue_commit which is shown in Listing 3.13. This function creates a descrip-
tion of the commit operation (Line 3). make_op is extended (cf. Listing 3.9)
as to include the replica’s version number and current state in the descrip-
tion (Lines 7, 8 and 11). The latter is needed since replicas are bound to use
the committed state. After generating the description, issue_commit dele-
gates the call to apply_commit (Line 4) and broadcasts the commit operation
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(Line 5).
Listing 3.14 shows the receive_commit function which handles com-

mits sent by other replicas. Upon receiving a remote commit operation,
receive_commit delegates the operation to apply_commit (Line 2).

1 def receive_commit ( commit ) :
2 apply_commit ( commit )

Listing 3.14: Receiving a commit operation.

We now turn our attention towards the commutativity design of commit.
When two or more replicas concurrently issue a commit, the commit opera-
tions are exchanged and eventually the replicas notice the conflict. To break
ties consistently, replicas elect the commit with the smallest ID, thereby dis-
carding the others. As such, the order in which commits are received is
immaterial, since replicas systematically pick the commit with the smallest
ID.

1 def apply_commit ( d e s c r i p t i o n ) :
2 # destructure the description

3 ( s ta te , ver s ion , c lock , op , id ) <� d e s c r i p t i o n
4 i f ve r s i on == s e l f . v e r s i on :
5 update_version ( s ta te , id , true )
6 else i f ve r s i on == s e l f . v e r s i on � 1 :
7 i f id < latest_commit :
8 update_version ( s ta te , id , fa l se )
9

10 def update_version ( s ta te , commit_id , increment_vers ion ) :
11 s e l f . i n i t i a l _ s t a t e <� s t a t e
12 s e l f . s t a t e <� s t a t e
13 s e l f . h i s t o r y <� ' ( )
14 s e l f . latest_commit <� commit_id
15 i f increment_vers ion :
16 s e l f . v e r s i on <� s e l f . v e r s i on + 1

Listing 3.15: Committing a replica.

Listing 3.15 shows the apply_commit function which distinguishes be-
tween three cases: either the commit operation commits the current state,
the previous state or an elder state. In the first case, the committed version
matches the replica’s current version (Line 4). Hence, apply_commit calls
update_version (Line 5) which increments the replica’s version number, re-
places the replica’s initial and current states by the committed state, clears
the operation history and stores the ID of this commit operation (Lines 11
to 16).

In the second case, the version number matches the replica’s previous ver-
sion (Line 6). This means that the commit operation applies to the previous
version v

i�1. As a result, this commit operation (say c2) is concurrent with
the commit (c1) that caused the replica to update its version: v

i�1 ! v
i

.
This follows from the fact that if c1 <

h

c2 then c2 is aware of the newer
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version v
i

and c2 would commit version v
i

instead of v
i�1. To ensure conver-

gence, replicas retain the commit operation with the smallest ID. Therefore,
if this commit operation has a smaller ID than the latest commit (Line 7),
the replica calls update_version to overwrite its state by the committed
state, clear the history and store the ID of this commit operation (Lines 11
to 14). The replica’s version number is not incremented, since the concurrent
commit already did.

Finally, commits that match elder versions are ignored because they are
lagging behind. This cannot happen if a causal order broadcasting mecha-
nism is used.

1 def rece ive_update ( op ) :
2 # Destructure the operation

3 ( s ta te , ver s ion , c lock , operat ion , id ) <� op
4 i f ve r s i on == s e l f . v e r s i on :
5 return apply_update ( op )

Listing 3.16: Ignoring operations that apply to elder versions.

Similarly, operations that apply to previous versions of a replica are ig-
nored. To this end, Listing 3.16 extends the receive_update function (cf.
Listing 3.10) with an extra check (Line 4).

3.4.4 Time Complexity Analysis

We conclude this section about the implementation of SECROs, with a brief
analysis of its time complexity. First, we analyze the time complexity of
query operations. Afterwards, we analyze the time complexity of mutations.

Since query operations are side-effect free they are directly applied on the
replica’s current state s

i

(see Listing 3.8). As a result, the time complexity
of apply_query depends on the query operation at hand, O(query).

O(is_valid) = O(|s|) +O(n · (pre+ op+ post)) (3.3)
= O(|s|+ n · b) (3.4)

O(apply_update) = O(n!) ·O(is_valid) (3.5)
= O(n!) ·O(|s|+ n · b) (3.6)
= O(n! · |s|+ n! · n · b) (3.7)

Regarding the execution of updates (apply_update in Listing 3.11), worst
case all n operations are concurrent. As a result, the history consists of a
single group which contains all update operations. Afterwards, when loop-
ing through the permutations of this group (Line 16), this potentially re-
sults in n! iterations. Regarding the loop’s body, respects_causality and
replace_groups_by can be implemented in O(n). However, validation of
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the history is at best linear, i.e. ⌦(n). Therefore is_valid dominates the
loop’s execution time, yielding Equation (3.5).

Equation (3.3) presents the running time of is_valid. First, we copy the
replica’s internal state: O(|s|), on Line 3 in Listing 3.12. Afterwards, we loop
through the operations of each group in the history (Lines 5 and 6), which is in
O(n·body). For each operation we execute its precondition, the operation and
its postcondition (Lines 9, 10 and 18), yielding O(body) = O(pre+op+post).
Equation (3.4) rewrites the body’s execution time as b.

Finally, Equation (3.6) rewrites is_valid’s time complexity. We then
use the distributive property to merge the different terms, which yields the
final time complexity of update operations, shown in Equation (3.7).

We conclude that the time complexity of update operations is bound to
the size of the replica’s internal state, the number of update operations since
the latest commit and the performance of the operations and their associated
state validators.

3.5 Insights

We now outline a number of advanced insights. First of all, commutative
operations are conflict-free, hence, they do not require preconditions or post-
conditions. Note, however, that those operations must be commutative with
every other operation, including itself.

Regarding performance, Section 3.4.4 revealed an O(n! · |s|+n! ·n ·b) time
complexity for update operations. Although this time complexity is bad, we
argue that in practice this is often acceptable. For the sake of clarity, we
distinguish between the total number of operations n, and the number of
concurrent operations c contained by the group we are re-organizing (Line 15
in Listing 3.11). Therefore, we rewrite the time complexity as O(c! · |s|+ c! ·
n · b), where in the worst case all operations are concurrent c = n.

Assuming reasonable network connectivity, operations are exchanged
within relatively small time spans. Hence, peers that are offline will soon
regain connectivity and broadcast their operations. Therefore, most replicas
experience acceptable amounts of concurrent operations, yielding c⌧ n.

However, even if c is small enough for c! to be neglected, the time com-
plexity remains O(|s|+n·b), where b depends on the application’s operations,
preconditions and postconditions. Therefore, if operations are linear (b = n),
the complexity becomes quadratic: O(|s|+ n2).

To cope with the aforementioned problem, practical systems must period-
ically commit replicas. As such, the operation history remains small enough
for the performance to be acceptable. Committing replicas is key to achieve
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decent performance.
To get a better understanding, assume a commit strategy in which repli-

cas are committed every X operations. As a result of this strategy replicas
support no more than X concurrent operations. Hence, for a commit in-
terval of X = 1 we get the best performance, but give up on concurrency.
On the other hand, if replicas are never committed (X = 1) they can in
theory support an infinite amount of concurrent operations, at the cost of
performance.

Commit thus entails a trade-off between performance and concurrency.
Frequently committing replicas leads to better performance but less concur-
rency. On the other hand, occasionally committing replicas leads to more
concurrency at the cost of performance. Hence, the rate at which replicas
are committed is application-specific.

3.6 Conclusion
Up till now conflict-free replicated data types (CRDTs) were the only mecha-
nism for implementing strong eventual consistency. However, CRDTs require
operations to commute which affects their general applicability and poses
major challenges for their integration into real-world distributed systems.

To address the aforementioned problems, we proposed strong eventu-
ally consistent replicated objects (SECROs), a data type that guarantees
SEC without restrictions on the operations. Programmers express invariants
which define the object’s behaviour in the face of concurrent operations. As
such, arbitrary objects become SEC replicated objects.

In contrast to CRDTs, designing application-specific SECROs requires
no craftsmanship in distributed programming. Replicated objects are imple-
mented similarly to their local counterpart, with the addition of preconditions
and postconditions to define custom behaviour.
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4
CScript

This chapter describes CScript, a distributed programming language that
eases the development of both, available and consistent distributed systems.
First, Section 4.1 briefly motivates the need for CScript and provides a high-
level introduction to the language. Afterwards, Section 4.2 discusses a gro-
cery list application which acts as a motivating example throughout this
chapter. Section 4.3 provides an overview of the CScript language. We then
introduce services, a central concept of the CScript language, in Section 4.4.
Section 4.5 introduces a special type of object, called replica. Finally, Sec-
tion 4.6 concludes this chapter with a brief discussion of CScript’s current
limitations.

4.1 Introduction

When facing network partitions, real-world distributed systems are forced
to choose between consistency (CP) or availability (AP). Although every
distributed system faces these complexities, merely a few programming lan-
guages include native support to help the programmer with this task (see
Table 2.1). To the best of our knowledge, no distributed programming lan-
guage supports both strong consistency (CP) and strong eventual consistency
(i.e. AP with an additional weak consistency guarantee). Since there is a
growing need for such languages, we developed the CScript language.
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CScript is a domain-specific language for distributed programming which
extends JavaScript1 with language constructs for replication and consistency.
CScript embeds native support for strong consistency (CP) and availability
(AP). In contrast to other distributed programming languages, CScript of-
fers a wide range of available (AP) constructs. Those constructs support
different consistency models, including “no consistency” and “strong eventual
consistency” (see Section 2.3).

4.2 Motivating Example

Throughout this chapter we showcase the CScript language using a grocery
list application as a motivating example. Therefore, we first describe the
functional requirements of the grocery list application. Afterwards, we de-
scribe the non-functional requirements as well as the structure of the appli-
cation.

Figure 4.1: Overview of the grocery list application.

1
CScript runs on top of the NodeJS runtime.
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4.2.1 Functional Requirements

Figure 4.1 shows an overview of the grocery list application. The application
displays all grocery lists under the “Lists” section. To create a new grocery
list, the user must enter a name for the list as well as their nickname, and
click on the “Create” button. The newly created list will then appear among
the other lists.

Users can add items to a grocery list by clicking the plus button next
to the list. The user will be prompted to enter a name and the requested
quantity of the item. Afterwards, the item appears in the grocery list. If one
needs more pieces of that item, the quantity can be incremented by clicking
the plus button next to the item. Notice that every item displays a progress
status. For mangos this is 2/3 which indicates that two out of the three
requested mangos were bought.

Additionally, users can buy a certain quantity of an item by clicking the
shopping button next to the item. The user will be prompted how many
pieces he wants to buy. The user then enters a quantity and confirms his
request, whereafter he waits for an answer from the system. The system will
either approve or reject the buy request and inform the user of this decision.

Finally, users can delete items from a grocery list by clicking the delete
button next to the item. The item then disappears from the list. Note,
however, that the item may later reappear if someone else adds the item.

4.2.2 Non-functional Requirements

In addition to the functional requirements, the grocery list application defines
the following non-functional requirements:

Automatic Sharing Grocery lists must be shared between all users.
Hence, when a user creates a new grocery list, the other users must
automatically see that list on their application.

Consistent Purchases Users should not be able to buy the same item con-
currently since buying an item twice is a waste of money. Hence, the
system must guarantee purchases to happen consistently. To this end,
users must explicitly request approval from the system before buying
an item.

Offline Availability At any moment in time users should be able to add,
delete or update items of a grocery list, otherwise they may forget about
it. This implies that all functionality (except purchases) must be offline
available. However, if a user updates a shared grocery list while being
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offline, his list becomes different from the others. The system will need
to solve this problem when the user comes back online.

4.2.3 Structure of the Application

We now discuss the internal structure of the grocery list application. To this
end, we use the application’s class diagram, shown in Figure 4.2.

GroceryService

+ name: String 
+ author: String

+ add(GroceryItem): void
+ buy(String, Integer): Promise 
+ delete(String): void

GroceryList

+ add(GroceryItem): void 
+ delete(String): void
+ bought(String, Integer): void
+ get(): GroceryItem[]
+ get(String): GroceryItem

ItemDescription

+ requested: Integer 
+ bought: Integer

GroceryItem

+ name: String

<<External>>
Inventory

+ stock: Map<String, Integer> 

+ approve(String, Integer, Integer): Boolean

1 1contains

1 1relies on

0..*1

1

1
contains

Figure 4.2: UML class diagram of the grocery list application.

A grocery list consists of two components: an available list and a
consistent inventory of purchases. These components are bundled into a
GroceryService. Additionally, grocery services also encapsulate the grocery
list’s name and author, whose combination uniquely identifies the grocery
service.

The items of a grocery list are maintained by a GroceryList object. For
each item the object keeps an ItemDescription containing the requested
quantity and the number of purchased pieces. Using the add and delete
methods we can add new items, respectively, delete items from the list. The
bought method informs the list that a certain quantity of an item was bought.
The list then updates the item’s description and refreshes the user interface.

Finally, every grocery service relies on a strongly consistent Inventory.
This inventory is an external entity that maintains an overview of all pur-
chases. Hence, for each item of the grocery list, the inventory stores the
number of purchased pieces.
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4.3 Language Overview

Before we delve into the different aspects of CScript, we give a high-level
overview of the language.

Service

Replica

SECRO

+ commit(): void

1..*

1

ConsistentReplica

CvRDT

+ merge(CvRDT): void

+ equals(CvRDT): boolean

<<Interface>> 

Serializable

+ tojson(): Any

+ static fromjson(Any): CvRDT

ORSet<T>

+ add(T): boolean

+ has(T): boolean

+ delete(T): boolean

+ merge(ORSet<T>): void 

+ equals(ORSet<T>): boolean

GMap<K,V>

+ set(K, V): void

+ merge(GMap<K,V>): void

+ equals(GMap<K,V>): boolean

Map

ES6 Map

AvailableReplica

+ onUpdate(Service => void): void

 + onRemoteUpdate(Service => void): void

LWWSet<T>

+ add(T, LogicalTime): void

+ has(T, LogicalTime): boolean

+ remove(T, LogicalTime): void

Factory

+ registerSerializableType(Any): void

 + registerAvailableType(Any): void

1

1

0..*
registered at

creates

Figure 4.3: UML class diagram of the CScript language.

Figure 4.3 describes CScript in the form of a class diagram. Services form
the basic building blocks of CScript. A service is a collection of data objects,
which are called replicas. CScript supports two types of replicas, namely
available and consistent replicas. These replicas are flexible, fine-grained
constructs for implementing available or consistent components. Remarkably,
services can be partly consistent and partly available.

The rest of this class diagram will gradually be explained throughout this
chapter. Also notice that JavaScript does not support interfaces and abstract
classes, however, the class diagram includes them to illustrate the conceptual
ideas.
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4.4 Services

CScript extends JavaScript with replicated data containers, called services.
Each service encapsulates a number of replicas, which are objects with an ad-
ditional availability or consistency guarantee, and coordinates between the
replicas in order to provide certain functionality. CScript also provides a
peer-to-peer publish-subscribe mechanism (Eugster, Felber, Guerraoui, &
Kermarrec, 2003). This publish-subscribe mechanism allows applications to
discover services without knowing their physical address beforehand.

Since services are exchanged over the network, every service must be self-
contained. This implies that services may not depend on their lexical scope.
Hence, services resemble AmbientTalk’s isolates (see Section 2.7.4).

4.4.1 Defining Services

To illustrate the use of services, Listing 4.1 shows the implementation of the
GroceryService from our motivating example. Recall from Section 4.2.3
that a GroceryService maintains the actual grocery list as well as an inven-
tory.

1 service GroceryServ ice {
2 rep g r o c e r yL i s t = new GroceryLis t ( ) ;
3 rep inventory = new Inventory ( ) ;
4
5 con s t ruc to r (name , author )
6 this . name = name ;
7 this . author = author ;
8 }
9

10 add ( item ) {
11 return this . g r o c e r yL i s t . add ( item ) ;
12 }
13
14 d e l e t e ( itemName) {
15 return this . g r o c e r yL i s t . d e l e t e ( itemName) ;
16 }
17
18 buy ( itemName , buyingQuantity ) { /* ... */ }
19 }

Listing 4.1: Implementation of the grocery service.

Listing 4.1 defines the GroceryService using the service keyword
(Line 1). Similarly to class definitions in ES62, services have a constructor
method which initializes the object (Lines 5 to 8). This grocery service con-
tains two regular fields, namely the grocery list’s name and author (Lines 6
and 7).

2
ECMAScript 6
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Additionally, this GroceryService defines two replicas: groceryList
and inventory (Lines 2 and 3). The former replica is the actual grocery list
whereas the latter replica is the inventory.

Finally, the grocery service defines three methods: add, delete and buy
(Lines 10 to 18). The add and delete methods are used to add, respectively,
delete grocery items. To this end, both methods delegate the call to the
underlying grocery list. The buy method is shown in Listing 4.2.

1 buy ( itemName , buyingQuantity ) {
2 return new Promise ( ( r e so l v e , r e j e c t ) => {
3 const stockQuantity = this . g r o c e r yL i s t . get ( itemName) . bought ;
4 this . inventory
5 . then ( inventory => {
6 return inventory . approve ( itemName , stockQuantity ,

buyingQuantity )
7 })
8 . then ( accepted => {
9 i f ( accepted ) {

10 this . g r o c e r yL i s t . bought ( itemName , buyingQuantity ) ;
11 r e s o l v e ( ) ;
12 }
13 else {
14 r e j e c t ( "Buy request rejected." ) ;
15 }
16 }) ;
17 }) ;
18 }

Listing 4.2: Buying a certain quantity of a grocery item.

Recall from Section 4.2.2 that users need explicit approval from the in-
ventory in order to buy an item. Therefore, the buy method (Listing 4.2)
needs to coordinate between the inventory and the local grocery list. The
inventory is an external entity, hence, all communication is asynchronous.
As a result, the buy method is also asynchronous.

The buy method expects two arguments: the name of the item and the
quantity the user wants to purchase. The method returns a promise that will
be resolved if the buy request is approved and rejected otherwise. First, the
method asks its local grocery list how many pieces of this item were already
purchased and stores that amount as stockQuantity (Line 3). Afterwards,
the method sends a buy request to the inventory (Line 6). This request
includes the item’s name and the quantity the user wants to buy, but also the
number of pieces the user believes were already purchased. Hence, informally
this buy request translates to: "The user would like to buy X pieces of item
A given that he has N pieces of that item at home". In case a concurrent buy
request occurs, the user’s local view - which is included in the buy request
- becomes inconsistent and this conflict is detected by the inventory. The
inventory will accept the request only if the user’s local view is consistent
with the inventory.
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Upon receiving an answer from the inventory (Lines 8 to 16) the method
checks whether the buy request is accepted or rejected. In case the re-
quest is accepted, the method informs the grocery list that the user bought
buyingQuantity pieces of the item and resolves the promise (Lines 10
and 11). Otherwise, the method indicates the failure by rejecting the promise
(Line 14).

4.4.2 Exporting and Discovering Services

To exchange services between applications, CScript has a built-in topic-based
publish-subscribe mechanism (Eugster et al., 2003). Programmers export
services on the network using the publish as construct. This construct
expects two arguments, a service and a type tag, and makes the service
remotely discoverable under the given type tag.

1 deftype Grocery
2 function createGrocery (name , author ) {
3 const g s e r v i c e = new GroceryServ ice (name , author ) ;
4 publish g s e r v i c e as Grocery ;
5 p r o c e s s S e r v i c e ( g s e r v i c e ) ;
6 return g s e r v i c e ;
7 }

Listing 4.3: Exporting grocery services on the network.

In our motivating example, each time the user creates a new grocery
list the user interface sends a message to the back-end. The back-end then
calls the createGrocery function with the list’s name and author, whose
implementation is shown in Listing 4.3. First, the function creates a new
grocery service with the received name and author (Line 3). Afterwards on
Line 4, the function publishes the newly created service under the Grocery
type tag. Notice that this type tag was previously defined using the deftype
construct on Line 1. Finally, the function returns the newly created service
on Line 6. For the moment, ignore the processService call on Line 5.

To discover published services CScript provides the subscribe with con-
struct. This construct expects two arguments: a type tag and a callback.
Whenever a service of the given type becomes available, the associated call-
back is triggered.

1 const s e r v i c e s = new Map( ) ;
2 subscribe Grocery with g s e r v i c e => {
3 const name = g s e r v i c e . name ,
4 author = g s e r v i c e . author ,
5 id = �${name} by ${ author } � ;
6 s e r v i c e s . s e t ( id , g s e r v i c e ) ;
7 p r o c e s s S e r v i c e ( g s e r v i c e ) ;
8 }

Listing 4.4: Subscribing to grocery services.
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Listing 4.4 subscribes to services of the Grocery type (Line 2). The pro-
vided callback is parametrized with the discovered service. Upon discovering
a service, the program fetches the service’s name and author (Lines 3 and 4)
and uses this information to create a unique identifier for the service (Line 5).
Finally, the program stores the discovered service, on Line 6.

Notice that name and author are properties of the service. When dis-
covering the service the program gets a copy of those properties. These
properties are not kept consistent.

4.5 Replicas

CScript replicas are objects which provide an additional availability or con-
sistency guarantee (see Figure 4.3). The object’s methods define the replica’s
public interface. Programmers cannot access a replica’s internal state as this
would circumvent the replica’s interface. First, Section 4.5.1 shows how to
define replicas. Section 4.5.2 elaborates on consistent replicas and showcases
the implementation of the strongly consistent inventory. Afterwards, Sec-
tion 4.5.3 elaborates on available replicas and shows the implementation of
the actual grocery list.

4.5.1 Defining Replicas

Services define replicas using the rep keyword, similarly to variable defi-
nitions. In contrast to variables, replicas are instance properties of the
service. Listing 4.5 shows a fragment from the implementation of the
GroceryService. On Lines 2 and 3 the service defines two replicas:
groceryList and inventory.

1 service GroceryServ ice {
2 rep g r o c e r yL i s t = new GroceryLis t ( ) ;
3 rep inventory = new Inventory ( ) ;
4 // ...

5 }

Listing 4.5: Definition of the GroceryService’s replicas.

Depending on the type of object that is assigned to the replica, the replica
will either be available or consistent. Hence, CScript distinguishes between
available and consistent data types. Objects that are of an available type
result in available replicas. Whereas objects that are not of an available type
result in consistent replicas.

As we will see later in this chapter, the GroceryList type is an available
data type. Hence, Line 2 results in an available replica: groceryList. On
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the other hand, Inventory is not an available data type, therefore inventory
is a consistent replica (Line 3).

4.5.2 Consistent Replicas

Consistent replicas guarantee strong consistency, even in the face of concur-
rent operations. Interactions with consistent replicas may however require
network communication. For this reason, property accesses and method in-
vocations are asynchronous, as previously observed in the implementation of
the buy method (Lines 4 to 16 in Listing 4.2).

1 class Inventory {
2 con s t ruc to r ( s tock = [ ] ) {
3 this . s tock = new Map( stock ) ;
4 }
5
6 approve ( itemName , stockQuantity , buyingQuantity ) {
7 i f ( buyingQuantity <= 0)
8 return fa lse ;
9

10 const t rueStock = this . s tock . getOrElse ( itemName , 0) ;
11 i f ( t rueStock === stockQuantity ) {
12 this . s tock . s e t ( itemName , t rueStock + buyingQuantity ) ;
13 return true ;
14 }
15 else {
16 return fa lse ;
17 }
18 }
19 }
20
21 Map. prototype . getOrElse = function ( key , notSetValue ) {
22 return this . has ( key ) ? this . get ( key ) : notSetValue ;
23 } ;

Listing 4.6: Implementation of the grocery inventory.

Listing 4.6 shows the implementation of the Inventory class. This class
maintains a dictionary that maps items to the number of purchased pieces
(Line 3). Since the grocery list application does not model consumptions,
the number of purchased pieces equals the amount the user has in stock.
Additionally, the constructor accepts an optional parameter to initialize the
inventory (Line 2). This parameter must be an associative array containing
[itemName, amount] bindings.

Inventories also define the approve method which validates buy requests
(Lines 6 to 18). This method takes three arguments: the item’s name, the
stock quantity the user is aware of and the quantity the user wants to buy.
First, the inventory ensures that the user wants to purchase at least one piece
(Lines 7 and 8). Then on Line 10, the inventory fetches the amount that is
in stock. Finally, the inventory ensures that the user’s view on the stock is
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consistent with the inventory’s stock. To this end, the inventory checks that
the user’s stockQuantity argument corresponds to the trueStock (Line 11).
If the user’s view is consistent, the inventory accepts the buy request and
updates its stock (Lines 12 and 13). Otherwise, the inventory rejects the buy
request (Lines 15 to 17).

To conclude, we implemented the grocery list’s inventory as a regular
ES6 class. Hence, Inventory is not an available data type. Therefore, the
GroceryService’s inventory is a consistent replica (Line 3 in Listing 4.5).

4.5.3 Available Replicas

Besides consistent replicas, CScript also offers native support for available
replicas. Available replicas guarantee local availability and strong eventual
consistency (see Section 2.3.3).

We start with an overview of some built-in available data types. After-
wards, we explain how to define new available data types. As an example,
we discuss the implementation of the GroceryList class from our motivating
example. Finally, we describe how applications react to updates.

Built-in Available Data Types

CScript contains a number of built-in available data types which can be
used to create available replicas. Table 4.1 gives an overview of these data
types. The interface of these data types is depicted in CScript’s class diagram
(Figure 4.3). Notice that the ORSet and LWWSet data types are well-known
in the literature. For a detailed explanation we refer the reader to (Shapiro
et al., 2011a).

Data Type Description

GMap Grow-only dictionary.
Cannot update or remove bindings.

ORSet Observed-removed set data structure.
LWWSet Last-write-wins-element set data structure.

Table 4.1: Overview of CScript’s built-in available data types.

Defining New Available Data Types

New available data types are defined by providing a concrete implementation
for either the abstract CvRDT or SECRO class (see Figure 4.3). In addition,
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the implemented data type must be self-contained (i.e. an isolate) and must
also be registered at the factory of available data types, called Factory.

In the first approach, we define a new state-based CRDT (see Section 2.5)
by extending the abstract CvRDT class. To this end, we must implement four
concrete methods which are outlined below.

merge(CvRDT): void Instance method which merges the replica with the
received CvRDT replica. Since the replica’s state forms a join semilat-
tice, merge updates its state to the least upper bound of both states.

equals(CvRDT): boolean Instance method which returns a boolean indi-
cating whether the received CvRDT replica equals this replica or not.
Two CvRDT replicas are equal if their states are equal.

tojson():Any Instance method which transforms the replica into a native
JavaScript representation which is serialized and disseminated over the
network.

static fromjson(Any):CvRDT Class method which parses a replica’s native
representation and returns a replica instance.

In the second approach we define custom available data types using SE-
CROs. To this end, we define a concrete class which extends the abstract
SECRO class. Recall from Section 3.1 that SECROs consist of query methods
and mutators. Mutators consist of the actual update operation, a precon-
dition and a postcondition. In CScript query methods are decorated with
@accessor. Pre and postconditions are defined similarly to instance methods
but are prefixed with the pre and post keywords respectively.

1 class GroceryLis t extends SECRO {
2 cons t ruc to r ( i tems = [ ] ) {
3 super ( ) ;
4 this . i tems = new Map( ) ;
5 items . forEach ( this . add . bind ( this ) ) ;
6 }
7
8 @accessor
9 get ( ) { /* ... */ }

10
11 add ( item ) { /* ... */ }
12 post add ( s tate , o r i g i n a l S t a t e , args , r e s ) { /* ... */ }
13
14 bought ( itemName , quant i ty ) { /* ... */ }
15 pre bought ( s ta te , itemName , quant i ty ) { /* ... */ }
16
17 d e l e t e ( itemName) { /* ... */ }
18
19 to j s on ( ) { /* ... */ }
20 s t a t i c f romjson ( items ) { /* ... */ }
21 }
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22
23 Factory . r eg i s t e rAva i l ab l eType ( GroceryLis t ) ;

Listing 4.7: Structure of the available GroceryList data type.

Listing 4.7 gives an overview of the GroceryList’s structure. This gro-
cery list maintains a dictionary of items and their corresponding description
(Line 4). In addition, the constructor accepts an optional argument to ini-
tialize the grocery list with some items (Lines 2 and 5).

The code uses the @accessor decorator to mark get as a side effect free
query method (Lines 8 and 9). Line 12 uses the post keyword to define a
postcondition for the add method. Similarly, Line 15 defines a precondition
for the bought method.

To complete the registration of this new available data type, Line 23
registers the GroceryList class at the factory of available data types. From
this point on, CScript treats the GroceryList as an available data type.

mangos: {requested: 5, bought: 3} 

lasagna: {requested: 2, bought: 0} 

add( {item: "lasagna",
requested: 1} )

mangos: {requested: 5, bought: 3} 

lasagna: {requested: 2, bought: 0} 

mangos: {requested: 5, bought: 3} 

lasagna: {requested: 3, bought: 0} 
mangos: {requested: 5, bought: 3} 

delete("lasagna")

mangos: {requested: 5, bought: 3} 

lasagna: {requested: 1, bought: 0} 

mangos: {requested: 5, bought: 3} 

lasagna: {requested: 1, bought: 0} 

network communication

Alice's 
Grocery List 

Bob's 
Grocery List 

Figure 4.4: Concurrently incrementing and deleting grocery items.

Before we dive into the actual implementation of the grocery list’s query
and update methods, Figure 4.4 illustrates the application’s expected be-
haviour. Initially, both Alice and Bob start with the same grocery list. Alice
then requests one more lasagna, while concurrently Bob deletes the lasag-
nas from his grocery list. Since Bob was unaware of Alice’s addition, the
resulting state must contain Alice’s lasagna. To achieve this behaviour, the
grocery list associates a postcondition to the add method.

1 add ( item ) {
2 const d e s c r i p t i o n = this . i tems . getOrElse ( item . name , { reques ted : 0 ,

bought : 0}) ;
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3 d e s c r i p t i o n . r eques ted += item . reques ted ;
4 this . i tems . s e t ( item . name , d e s c r i p t i o n ) ;
5 }
6
7 post add ( o r i g i n a l S t a t e , s ta te , args , r e s ) {
8 const [ item ] = args ,
9 addedQuantity = item . requested ,

10 r e su l t i ngQuant i ty = s t a t e . i tems . getOrElse ( item . name , 0) . r eques ted ;
11 return r e su l t i ngQuant i ty >= addedQuantity ;
12 }

Listing 4.8: Adding items to a grocery list.

Listing 4.8 shows the grocery list’s add method and its associated post-
condition. add starts by fetching the item’s description on Line 2. If the item
does not yet exist, it creates a new item description. Afterwards, add incre-
ments the description’s requested quantity with the quantity of the added
item (Line 3). Finally, Line 4 adds the item to the grocery list.

In order to achieve the behaviour illustrated in Figure 4.4, add’s post-
condition must ensure that the requested quantity is added to the grocery
list. In other words, Alice’s postcondition states that the resulting grocery
list must contain at least one requested lasagna.

Line 7 defines add’s associated postcondition. The postcondition takes
four arguments: the replica’s original state, the state resulting from add, an
array containing the arguments that were received by add and add’s return
value (see Section 3.1). First, the postcondition extracts the quantity from
the added item (Line 9). Afterwards, it uses the replica’s resulting state
to fetch the requested quantity after the operation’s execution (Line 10).
Finally, Line 11 ensures that the resulting state contains at least the quantity
that was added.

1 d e l e t e ( itemName) {
2 this . i tems . d e l e t e ( itemName) ;
3 }
4
5 bought ( itemName , quant i ty ) {
6 const quan t i t i e s = this . i tems . get ( itemName) ;
7 qu an t i t i e s . bought += quant i ty ;
8 }
9

10 pre bought ( s ta te , itemName , quant i ty ) {
11 return this . i tems . has ( itemName) ;
12 }

Listing 4.9: Implementation of the grocery list’s bought and delete methods.

Listing 4.9 defines the delete and bought methods. Grocery items
are deleted by removing the corresponding entry from the items dictionary
(Line 2). Remember from Section 4.2.3 that bought informs the grocery list
that a certain quantity of an item was bought. Hence, the method fetches
the item’s description (Line 6) and updates the number of bought pieces
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(Line 7). However, concurrent deletions may delete the item before call-
ing bought. Therefore, bought’s precondition ensures that the item exists
(Line 11).

1 @accessor
2 get (name) {
3 i f (name) {
4 const quan t i t i e s = this . i tems . getOrElse (name , { reques ted : 0 , bought : 0})
5 return new GroceryItem (name , qu an t i t i e s . requested , q u an t i t i e s . bought ) ;
6 }
7 else {
8 const i tems = [ ] ;
9 this . i tems . forEach ( ( quan t i t i e s , name) => {

10 const { requested , bought} = quan t i t i e s ;
11 items . push (new GroceryItem (name , requested , bought ) ) ;
12 }) ;
13 return i tems ;
14 }
15 }
16
17 to j s on ( ) {
18 return this . get ( ) ;
19 }
20
21 s t a t i c f romjson ( items ) {
22 return new GroceryLis t ( i tems ) ;
23 }

Listing 4.10: Implementation of the grocery list’s get method and the
serializable interface.

Finally, Listing 4.10 shows the implementation of the query method get
and the Serializable interface (see Figure 4.3). The get method takes
an item’s name and returns that item from the grocery list (Lines 3 to 6).
If no name is provided, get returns all items from the grocery list. To
this end, get traverses the dictionary of grocery items (Lines 9 to 12) and
accumulates all items in an array (Line 11). It then returns the array to the
caller (Line 13). Additionally, the grocery list implements the compulsory
Serializable interface. The tojson method uses get to transform the
grocery list into an array representation that can be serialized3. Conversely,
the fromjson method turns the array representation into a GroceryList
SECRO.

Reacting to Updates

Replicas emit two events to which applications can listen:

RemoteUpdate Replicas trigger a RemoteUpdate event each time the
3
CScript can serialize arrays whose content is serializable. The GroceryItem class

implements the Serializable interface. Therefore, the array can be serialized.



Replicas 68

replica experiences a remote update. A remote update is an update
that originates from an operation on another replica.

Update Replicas trigger an Update event each time the replica applies an
update. Hence, this event includes both local and remote updates.

Figure 4.5 depicts a sequence diagram of our grocery application which
clarifies the distinction between both events. We number the messages and
refer to message i as m

i

. The sequence diagram illustrates the case where Al-
ice and Bob conceptually share a grocery list. First, Alice needs something,
therefore she adds an item to the grocery list (m1). Her grocery list replica
disseminates the update to Bob’s replica (m2). Afterwards, her replica trig-
gers the Update event (m3). As a reaction to this event, the back-end informs
Alice’s front-end about the update (m4), which refreshes the UI (m5).

On Bob’s side, when the replica receives the update (m2), both the Update
and RemoteUpdate events are triggered (m7). Similarly, as a reaction to the
update the back-end sends the new list to the front-end (m8), which updates
the UI accordingly (m9).

:UI groceryList 
:Replica  :UIgroceryList 

:Replica

3: trigger 
<<Update>> 

:Alice :Bob
need 

something 
1: add(item) 

2: add(item) 

4: update UI 

5: refresh

6: observe item 

7: trigger
<<Update>>
<<RemoteUpdate>>

8: update UI 

9: refresh

10: observe item 

Figure 4.5: Sequence diagram illustrating updates of the grocery application.

To react to the events that are triggered by a replica, developers add
listeners to those events using the replica’s onUpdate and onRemoteUpdate
methods.

1 function p r o c e s s S e r v i c e ( g s e r v i c e ) {
2 const name = g s e r v i c e . name ,
3 author = g s e r v i c e . author ,
4 g roce ryRep l i ca = g s e r v i c e . g r o c e r yL i s t ;
5
6 g roce ryRep l i ca . onUpdate ( updatedList => {
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7 const i tems = updatedList . get ( ) ;
8 updateUI (name , author , i tems ) ;
9 }) ;

10 }

Listing 4.11: Listening to update events.

Listing 4.11 shows the processService function. This function is called
each time a new grocery service is created or discovered (Listings 4.3 and 4.4).
To keep the user interface up-to-date, the function adds a listener to the
Update event (Lines 6 to 9). Each time the replica experiences an update, the
listener fetches the new grocery list (Line 7) and updates the user interface
accordingly (Line 8). The updateUI function pushes the new grocery list
to the front-end, using the list’s name and author to uniquely identify the
grocery list.

4.6 Limitations
We conclude this chapter about the CScript language with a brief discussion
of the language’s current limitations.

Isolates Recall that services are exchanged over the network. Therefore,
services must be isolates (i.e. self-contained). However, CScript is
built on top of JavaScript which does not reify the lexical environment.
As a result, CScript cannot enforce services to be isolates, which places
additional responsibility on the application developer. The same holds
for available replicas

Inter-network communication Published services are exported on the lo-
cal area network. Therefore, CScript applications need to be on the
same local network in order to exchange services. If inter-network com-
munication is required, CScript must be extended with a centralized
peer and service discovery mechanism.

Op-based CRDTs CScript does not yet support operation-based CRDTs.
Therefore, available data types are implemented either as state-based
CRDTs or SECROs. As a result, developers are bound to simulate
operation-based CRDTs. If all operations are commutative, this can
be achieved using SECROs without preconditions or postconditions.

Polling Unlike available replicas, consistent replicas do not emit events when
applying updates. Therefore, developers resort to traditional tech-
niques like polling. In others words, application developers are bound
to periodically query the replica in order to observe updates.
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5
Implementation

This chapter describes the main design considerations behind the implemen-
tation of CScript. First, we focus on the network architecture of CScript ap-
plications, thereby explaining CScript’s peer discovery and publish-subscribe
mechanisms. Afterwards, we turn our attention towards the high-level im-
plementation of services and replicas.

5.1 The CScript Network and Communication

CScript applications are designed to run on a decentralized network where
no peer lookup infrastructure may be available. Even though the network
provides zero-infrastructure, peers need a way to discover each other. Sec-
tion 5.1.1 explains how CScript achieves peer discovery.

Once peers discovered each other, they need a way to interact with one
another. To this end, CScript provides a publish-subscribe mechanism which
allows peers to share services. First, Section 5.1.2 describes CScript’s network
architecture. Afterwards, Section 5.1.3 builds further on this knowledge to
detail the implementation of CScript’s publish-subscribe scheme.

Finally, remember from Sections 2.5 and 3.2 that CRDTs and SECROs
require update operations to propagate to all replicas in a causal order.
Therefore, Section 5.1.4 details the implementation of CScript’s causal order
broadcasting mechanism.
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5.1.1 Peer Discovery

CScript’s built-in peer discovery mechanism relies on UDP multicasting. Ap-
plications periodically multicast their identity over the network, thereby in-
forming the other peers of their presence. Upon receiving a multicast mes-
sage from a previously unknown peer, the application establishes a reliable
bidirectional communication link with the discovered peer, i.e. one which
provides exactly-once in-order message delivery.

UDP multicasting is unreliable, this implies that messages may be lost
or arrive out of order. However, UDP multicasting is made reliable by con-
tinually retransmitting the messages, as explained by (Cachin, Guerraoui, &
Rodrigues, 2011).

5.1.2 Network Architecture

As explained in the previous section, CScript guarantees all peers to even-
tually discover each other. Furthermore, applications maintain reliable bidi-
rectional communication links with the discovered peers. As a result, ap-
plications form a full mesh peer-to-peer overlay network, as illustrated in
Figure 5.1.

= Node 

= Node running CScript application

Figure 5.1: A full mesh peer-to-peer CScript overlay network.
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In order to clarify the architecture shown in Figure 5.1, we outline the
different aspects of a full mesh peer-to-peer overlay network:

Overlay network CScript applications are interconnected, thereby forming
a logical network on top of the physical network. In Figure 5.1, circles
represent the nodes of a network. Additionally, nodes running a CScript
application are colored green. This collection of green nodes forms a
logical overlay network on top of the underlying physical network.

Peer-to-peer system A peer-to-peer system is a collection of nodes which
form a decentralized and self-organizing system (Coulouris et al., 2012).
All nodes (aka peers) have roughly equal functionality, and act as both
clients and servers. In other words, every node provides resources to the
system (server aspect) and consumes resources from the system (client
aspect). In CScript, the resources being produced and consumed are
services.

Full mesh topology A full mesh topology is a network topology in which
all nodes are interconnected. Hence, there is a direct communication
link between every pair of nodes. The green lines in Figure 5.1 repre-
sent reliable bidirectional communication links between CScript appli-
cations.

5.1.3 Publish/Subscribe Mechanism

As explained in Section 4.4, CScript has a built-in publish-subscribe mecha-
nism. Applications publish services using the publish as construct and sub-
scribe to services using the subscribe with construct. Whenever a match-
ing service is found, the application is notified. Recall that both constructs
expect a type tag, which acts as a topic for the publication or subscription.

CScript’s publish-subscribe mechanism provides decoupling in time, space
and synchronization. These properties result in a loose coupling between
the producers and consumers of information, which is highly desirable in
distributed environments (Eugster et al., 2003).

Time decoupling CScript applications can exchange services without be-
ing online at the same time. Hence, publishing a service does not
require the subscribers to be online. Similarly, subscribers can discover
services even though the original publisher is offline.

Space decoupling CScript applications are able to exchange services with-
out holding references to each other. The interacting parties agree on
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a type tag, which is used for service discovery. Hence, the publish-
subscribe mechanism achieves decoupling in space by introducing a
level of indirection.

Synchronization decoupling Publishing a service does not block the
publisher’s control flow. Conversely, subscribers are notified asyn-
chronously when a matching service is discovered. Hence, CScript’s
publish-subscribe mechanism is decoupled in synchronization.

We now describe the implementation of CScript’s publish-subscribe mech-
anism, and how it provides the aforementioned decoupling guarantees. To
this end, we depict the various phases of publish-subscribe shown in Fig-
ure 5.2.

S subscribesub
scri

be

subscribe

(a) Subscribing to a type

tag.

S
pub

lish

P

(b) Publishing a service.

P

P

(c) Subscriber becomes a

publisher.

P

P

(d) Disconnection of the

original publisher.

P

SP

publish

(e) Publication by non

original peer.

P

P S

(f) Transitive chain of

publishers.

Figure 5.2: Illustration of transitivity in the publish-subscribe mechanism.
Publishers and subscribers are indicated with "P" and "S" respectively, grey
nodes are neither of both. Disconnected peers are indicated with a dashed
red circle and gradient green color. The left node publishes a service, which
eventually arrives at the right node, even though both are not online at the
same time.

Peers can publish services and subscribe to services freely. Upon subscrib-
ing to services of a particular type tag, the subscriber informs all peers of his
subscription (Figure 5.2a). These peers store the subscription and inform the
subscriber of all previously published services which match the subscription.
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Since every peer keeps track of all subscriptions, publishers are aware of all
subscribers. Hence, upon publishing a service the publisher sends the service
to the subscribers (Figure 5.2b).

When subscribers receive a service they automatically become publishers
of that particular service (Figure 5.2c). This is possible since the subscriber
has a local copy of the service. By turning subscribers into publishers we
achieve transitive service discovery. For instance, assume that the original
publisher disconnects (Figure 5.2d), whereafter another node subscribes (Fig-
ure 5.2e). This subscriber can get the service from the top publisher, which
once also was a subscriber. Hence, this example illustrates that service dis-
covery requires only a transitive chain of subscribers (Figure 5.2f) from the
original publisher (left node) to the final subscriber (right node). As such,
subscribers can discover services whose original publisher is offline. This
transitive property thus guarantees decoupling in time.

Regarding decoupling in space, we previously mentioned that type tags
abstract the physical location of services. As such, peers do not need to
manually maintain references to each other. Additionally, CScript’s publish-
subscribe mechanism is decoupled in synchronization. This stems from
JavaScript’s concurrency model which does not allow blocking operations.
Hence, publish and subscribe are non-blocking operations, and applications
are notified asynchronously of a matching service, by executing the associated
callback.

Theoretically, peers could run out of memory when facing too many sub-
scriptions. This results from the fact that peers store all subscriptions. Typ-
ically, peer-to-peer applications solve this problem by distributing the data
(i.e. subscriptions) over the peers of the network, in a way that ensures avail-
ability of the data. Afterwards, peers perform a distributed lookup to locate
the data of interest. Well known techniques for distributing and locating
data in peer-to-peer networks include flooding and distributed hash tables
(Wehrle, Götz, & Rieche, 2005).

However, the limited scalability does not constitute a problem, since
CScript applications run on local networks. In practice, local networks con-
tain a limited amount of peers, making it unlikely to run out of memory.
As an example, assume that every peer allocates 100MB of memory to store
the subscriptions. As a bare minimum, subscriptions maintain an ip address
and a type tag. Assume IPv4 addresses and type tags of maximum 20 uni-
code encoded characters. As IPv4 addresses take up 32 bits and a unicode
encoded character may take up to 4 bytes (32 bits), we know that a sub-
scription requires maximally 32+ 20⇥ 32 = 672 bits. Hence, the system can
accommodate 8⇥108 bits

672 bits/subscription = 1190 476 subscriptions.
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5.1.4 Causal Order Broadcasting

Recall from Section 2.5 and Chapter 3 that operation-based CRDTs and
SECROs disseminate update operations over the network. To this end, we
assumed a causal order broadcasting mechanism. Hence, for any two opera-
tions o1 and o2, if o1 <h

o2 then o2 can never be delivered before o1. In other
words, o1 must be delivered before o2 at all replicas. We say that o1 <h

o2 if
any of the following relations apply (Cachin et al., 2011):

FIFO order Some replica r
i

applies operation o1 before applying o2.

Network order Some replica r
i

receives operation o1 and later applies o2.

Transitivity There is an operation o0 such that o1 <h

o0 and o0 <
h

o2.

To ensure causal order delivery of operations, CScript relies on its full
mesh network topology (see Section 5.1.2). Whenever a replica applies an
update, CScript broadcasts1 the update operation to all replicas. Upon re-
ceiving such an update operation, replicas re-broadcast the operation. This
means that every replica disseminates each operation exactly once. This
approach guarantees causal order delivery in all three cases listed above.

In the first case, a replica r
i

applies an operation o1 and later applies oper-
ation o2. Hence, the replica also broadcasts operation o1 before o2. Since the
underlying communication mechanism guarantees in-order message delivery,
all replicas receive o1 before o2.

Replica A

Replica B

Replica C

O1

O2

= correct = wrong

(a) Violation of the causal order.

Replica A
O1

O2

=  correct =  ignored

Replica B

Replica C

(b) Solution with re-broadcasts.

Figure 5.3: Causal order broadcasting in CScript. The time axis is drawn
horizontally, with time increasing from left to right.

Figure 5.3 illustrates the second case. Replica B receives operation o1 and
later applies operation o2. In Figure 5.3a replica B only broadcasts operation
o2 which leads to replica C receiving operation o2 before o1. This violates the

1
To broadcast the operation CScript sends the operation to each peer using the reliable

communication links.
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causal order. In Figure 5.3b replica B first re-broadcasts operation o1 where-
after it broadcasts operation o2. Therefore, all replicas receive operation o1
before o2 and re-broadcast them in this order2.

In the third case, operation o1 happened before operation o0 which in its
turn happened before operation o2. Therefore, operation o1 is broadcasted
before o0 and o0 is broadcasted before o2. Hence, all three operations are
delivered in causal order at the replicas.

Since the aforementioned communication scheme guarantees causal or-
der broadcasting, we do not need to explicitly maintain dependencies (see
Section 2.5). This constitutes a major advantage of this approach, since de-
pendency sets grow unbounded over time. On the other hand, every replica
broadcasts each operation once, which implies higher network traffic. How-
ever, the messages are considerably smaller.

5.2 Services And Replicas
The previous section explained the low-level implementation of CScript’s peer
discovery and publish-subscribe mechanisms. We now turn our attention to
the high-level implementation of services and replicas. First, we explain
how services and replicas are exchanged between the peers. Afterwards, we
analyze the nesting of objects and replicas within other replicas and explain
how CScript keeps these replicas consistent.

5.2.1 Parameter Passing Semantics

As explained in Chapter 4, services contain available and consistent replicas.
When peers exchange services, the replicas must fulfill their availability or
consistency guarantee. To this end, services and replicas define their own
parameter passing semantics.

Exchanging Consistent Replicas

Consistent replicas must guarantee strong consistency such that all peers
have a consistent view on the replica’s state. In other words, once an update
completes, all subsequent accesses must observe the updated value. To this
end, consistent replicas are passed by far reference (Van Cutsem et al., 2007).

When passing a replica by far reference, the receiver acquires a proxy
to the replica. Method invocations and property accesses on this proxy are
relayed to the replica through asynchronous messages. As a result of this

2
Replicas only re-broadcast an operation the first time they receive that operation.
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design, only a single instance of the replica exists which is therefore consis-
tent. The price to pay is that the replica forms a single point of failure. If
the owner of the replica cannot be reached, the replica becomes unavailable,
even for simple read accesses.

Exchanging Available Replicas

Remember from Section 4.5.3 that available replicas must guarantee avail-
ability and strong eventual consistency. Hence, the availability requirement
requires peers to have a local copy of the replica which can be accessed and
updated at any moment in time. However, merely copying replicas does
not guarantee strong eventual consistency. Therefore, available replicas are
passed by replication.

Pass by replication extends pass by copy with an additional consistency
mechanism. When a peer discovers a service of interest, the service’s available
replicas are copied. Therefore, available data types must be serializable (see
Section 4.5.3). CScript supports two available data types, namely state-
based CRDTs and SECROs. To guarantee strong convergence updates are
propagated to all replicas. When the replica is a state-based CRDT, CScript
disseminates the replica’s state. On the other hand, if the replica is a SECRO,
CScript disseminates the update operations in a causal order.

Exchanging Services

Whenever a peer discovers a service of interest, the service is passed by copy.
This means that methods and properties are copied, unless these properties
are replicas in which case they are exchanged according to the replica’s mes-
sage passing semantics. This implies that services must be self-contained,
i.e. isolates (see Chapter 4).

Since properties are passed by copy, updates take effect locally and do
not propagate to the other copies. Hence, properties of replicated services
are not kept consistent. Therefore, properties are typically used to exchange
immutable data.

5.2.2 Nesting Replicas

We conclude this chapter about CScript’s implementation with a brief dis-
cussion on the nesting of objects within replicas, and additionally the nesting
of replicas within other replicas.

First, we consider consistent replicas, which are regular JavaScript objects
that are passed by far reference (see Section 5.2.1). As a result of the pass
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by far reference semantics, only a single instance of the replica exists. Hence,
this replica is consistent, even though objects are arbitrarily nested. In other
words, consistent replicas are strongly consistent JavaScript objects, and
any nested object inherits this strong consistency property. Furthermore,
available replicas cannot be nested within consistent replicas (and vice-versa),
because a partition-tolerant system cannot guarantee both availability and
strong consistency (see Section 2.2).

We now consider available replicas. Available replicas encapsulate their
internal state. Hence, in contrast to consistent replicas, the replica’s internal
state is a black box which can only be accessed or updated through its public
interface. In order to guarantee consistency, a replica’s interface may not be
circumvented. We briefly discuss how CScript enforces this.

First of all, regular JavaScript objects can be nested arbitrarily within
available replicas. Nested objects belong to the replica’s internal state.
Therefore, programmers should not be able to manipulate nested objects
directly. In other words, programmers may not hold references to nested
objects. In practice, there are three ways in which programmers can obtain
references to nested objects:

Passed as argument Objects can be passed as arguments to the methods
of a replica. Since the replica may store the arguments internally,
argument objects are considered nested within the replica. However,
the programmer now holds a reference to the nested object.

Returned as value Methods of a replica may return nested objects. As
such, programmers can obtain a reference to the replica’s internal state.

Shared object A badly designed replica may rely on an object from its
lexical scope. As a result, the replica does not encapsulate the object,
and the programmer can directly access the object. Therefore, we
require available replicas to be isolates (see Section 4.5.3).

In order to avoid the first case, CScript deep copies the arguments that
are passed to the methods of a replica. Programmers can thus continue to use
the object without affecting the nested object. In fact, we make immutable
copies, since SECROs rely on tentative executions. In other words, methods
may be retried multiple times, in which case each execution must receive the
same arguments as those that were originally passed by the programmer.

Similarly to the first case, CScript deep copies objects that are returned by
the methods of a replica. Hence, programmers can modify returned objects
without affecting the replica’s internal state.
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Finally, the last case should not occur since replicas must be isolates.
However, CScript cannot enforce this constraint, as explained in Section 4.6.

We now turn our attention towards the nesting of available replicas.
When a replica r1 is nested within another replica r2, we call r1 a nested
replica and r2 the containing replica. Nested replicas form an integral part
of the containing replica’s internal state. Since replicas encapsulate their
internal state, programmers cannot manipulate nested replicas directly. In-
stead, programmers rely on the public interface of the containing replica.
As a result, nested replicas can only be mutated by their containing replica,
thereby avoiding the consistency problems that arise when the containing
and nested replicas can be mutated independently.

Counter SECRO

+ count(): Integer 

+ increment(): void

Register<V> SECRO

- value: V 

+ read(): V 

+ write(V): void

contains

1

1

(a) Class diagram of a

counter that contains a

register.

User A User B

Ti
m
e

counter.increment() register.write(0)

register.write(0) counter.increment()

counter.count() --> 0 counter.count() --> 1

(b) Replicas end up in an inconsistent state.

Figure 5.4: Example of a register replica that is nested within a counter
replica. The replicas are mutated independently which leads to inconsisten-
cies. Blue arrows indicate network communication.

Figure 5.4 shows a register replica that is nested within a counter replica.
User A increments the counter while concurrently user B writes 0 to the
register. Afterwards, the operations are exchanged. The problem is that the
operations apply to different replicas, hence the replicas do not detect the
conflict. This leads to an inconsistent state where user A observes a counter
value of 0 and user B observes a counter value of 1.

Figure 5.5 depicts the same example but this time the nested replica can-
not be updated directly. Instead, user B calls the counter’s reset operation
which behind the scenes writes 0 to the register. When the operations are
exchanged the counter replicas detect that the operations are concurrent.
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Counter SECRO

+ count(): Integer 

+ increment(): void

+ reset(): void

Register<V> SECRO

- value: V 

+ read(): V 

+ write(V): void

encapsulates
1

1

(a) Class diagram of a

counter that encapsu-

lates a register.

User A User B

Ti
m
e

counter.increment() counter.reset()

counter.reset() 
counter.increment() 

counter.count() --> 1

counter.increment() 
counter.reset() 

counter.reset() 
counter.increment() 

counter.increment() 
counter.reset() Conflict 

Detected 

counter.count() --> 0
counter.count() --> 1
counter.count() --> 0

(b) Concurrent operations are detected and re-ordered.

Figure 5.5: Avoiding consistency problems with nested replicas by allowing
interactions on the containing replica only. Blue arrows indicate network
communication.

Therefore, the replicas re-order the operations. This yields two possible or-
derings: reset();increment() or increment();reset(). As a result, when
the users read the counter value they both observe the same value which is
either 1 or 0.

Finally, a method of a replica may return a reference to one of its nested
replicas. This leads to the problems described above. To avoid these anoma-
lies, CScript raises an error when a method of a replica returns another
replica.
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6
Evaluation

This chapter evaluates our novel programming language CScript by means
of a comparison between CScript’s SECRO data type and JSON CRDTs
(see Section 2.6). To this end, we use a real-time collaborative text editor,
which is described in Section 6.1, for both approaches. The evaluation is
structured into two parts: a qualitative and a quantitative analysis. The
qualitative analysis compares the implementation of the text editors, in Sec-
tion 6.2. The quantitative analysis, presented in Section 6.3, consists of
various experiments which quantify the memory usage, execution time and
throughput of the text editors. Section 6.4 finalizes this chapter with a brief
conclusion of both analyses.

6.1 Use Case: Real-time Collaborative Text
Editor

Before comparing SECROs in CScript to JSON CRDTs, we implement a
real-time collaborative text editor, using both approaches. Users of this
application create shared text documents which can be edited simultaneously
by multiple users. Collaborative text editors are the prototypical use case in
the literature on CRDTs (Shapiro et al., 2011b).

Figure 6.1 depicts the class diagram of text documents. A text document
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Character

+ id: ID 
+ char: Char

+ static compare(Character): Int 

Document

+ insertAfter(ID, Char): Character 
+ delete(ID): void

1 *

ID is a type
alias for String. 

Figure 6.1: Class diagram of a text document.

is a sequence of characters, where each character is identified by a unique ID.
Characters are inserted at relative positions in the text document, i.e. after
another character (which is called the reference character). Therefore, the
document’s insertAfter method expects two arguments, a character ID and
the character to insert. Using the document’s delete method one can delete
characters based on their ID. Notice that the described text editor performs
single character manipulations. Hence, we insert or delete characters instead
of entire words, sentences or paragraphs.

6.1.1 CScript Implementation

We now use the SECRO data type provided by CScript to implement a naive
and an efficient text editor. The naive implementation stores the characters of
the document in a linked list, whereas the efficient implementation organizes
text documents as a balanced tree of characters.

Naive List Implementation

In the following, we present a naive text editor which organizes text docu-
ments as a linked list of characters. This means that insertions and deletions
require a linear traversal of the list. For small documents this may be ac-
ceptable, however, for large documents this is not.

Listing 6.1 shows the structure of the text editor. The Document class
extends the abstract SECRO class (Line 1), implements the serializable inter-
face (Lines 17 to 24) and registers itself at the factory of available data types
(Line 27).

1 class Document extends SECRO {
2 cons t ruc to r ( content = new LinkedLis t ( ) ) {
3 super ( ) ;
4 this . _content = content ;
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5 }
6
7 i n s e r tA f t e r ( characterID , char ) { /* ... */ }
8 pre i n s e r tA f t e r ( s ta te , characterID , char ) { /* ... */ }
9 post i n s e r tA f t e r ( o r i g i n a l S t a t e , s ta te , args , newCharacter ) { /* ... */ }

10
11 d e l e t e ( character ID ) { /* ... */ }
12 post de l e t e ( o r i g i n a l S t a t e , s ta te , args , r e s ) { /* ... */ }
13
14 @accessor
15 indexOf ( id ) { /* ... */ }
16
17 to j s on ( ) {
18 return this . _content ; // LinkedList is a serializable type

19 }
20
21 s t a t i c f romjson ( content ) {
22 var ed i t o r = new TextEditor ( content ) ;
23 return ed i t o r ;
24 }
25 }
26
27 Factory . r eg i s t e rAva i l ab l eType (Document ) ;

Listing 6.1: Structure of the naive SECRO text editor.

Listing 6.1 shows the Document SECRO. The constructor initializes the
document’s contents to an empty or existing linked list (Lines 2 to 5). Lines 7
to 12 define the insertAfter and delete mutators and their associated
preconditions and postconditions. Finally, the indexOf accessor (Lines 14
and 15) computes the index of a character based on its ID.

1 i n s e r tA f t e r ( charID , char ) {
2 const prev = charID === null ? 0 : this . indexOf ( charID ) ,
3 cha rac t e r = new Character ( char , generate_id ( ) ) ;
4 this . _content . idx ( prev ) . i n s e r tA f t e r ( cha rac t e r ) ;
5 return cha rac t e r ;
6 }
7
8 pre i n s e r tA f t e r ( s ta te , charID , cha rac t e r ) {
9 return charID === null | |

10 s t a t e . indexOf ( charID ) !== �1;
11 }
12
13 post i n s e r tA f t e r ( o r i g i n a l S t a t e , s ta te , args , newCharacter ) {
14 const [ charID , char ] = args ;
15 return s t a t e . indexOf ( charID ) < s t a t e . indexOf ( newCharacter . id ) ;
16 }

Listing 6.2: Implementation of the insertAfter mutator of the naive
SECRO text editor.

Listing 6.2 shows the implementation of the insertAfter method and
its associated precondition and postcondition. To insert a character (char)
the method creates an internal Character representation and inserts it at
the correct position in the linked list (Lines 3 and 4). The precondition
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(Lines 8 to 11) ensures that the reference character1 exists, whereas the
postcondition (Lines 13 to 16) ensures that the inserted character occurs
behind the reference character. Notice that the above implementation is
conceptually identical to the replicated link list example shown in Chapter 3.
Therefore, we do not go into more detail but refer the reader to Section 3.3.2
for a detailed discussion on insertions in a replicated linked list.

1 d e l e t e ( charID ) {
2 var idx = this . indexOf ( charID ) ;
3 i f ( idx != �1) {
4 this . _content . idx ( idx )
5 . d e l e t e ( ) ;
6 }
7 }
8
9 post de l e t e ( s ta te , o r i g i n a l S t a t e , args , r e s ) {

10 const [ charID ] = args ;
11 return s t a t e . indexOf ( charID ) === �1;
12 }

Listing 6.3: Implementation of the delete mutator of the naive SECRO text
editor.

Listing 6.3 shows the implementation of the delete method and its as-
sociated postcondition. To delete a character with a given ID (charID),
the method locates the character inside the list using the indexOf accessor
(Line 2). If the character occurs in the list, the method fetches the actual
character (Line 4) and deletes it (Line 5). Additionally, the postcondition
ensures that the deleted character does not occur in the list anymore (Lines 9
to 12).

Efficient Tree Implementation

We now introduce the implementation of an efficient text editor which stores
text documents as a balanced tree of characters in order to support insertions
and deletions in logarithmic time. Note that the text editor needs to organize
the tree in a way that reflects the ordering of the characters in the document.
Informally, given a node N , nodes in its left subtree must occur before N in
the document, whereas nodes in the right subtree must occur after N in the
document.

Although the index of a character reflects its position within the docu-
ment, the text editor cannot organize the tree according to absolute character
indexes, as they are not stable. In other words, absolute character indexes
may change over time due to insertions and deletions. To illustrate the
problem, Figure 6.2 shows a text document and its tree representation. In

1
The character after which to insert the new character.
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h e l o

1 2 3 4

(a) A simple text document.

2
"e"

3
"l"

4
"o"

1
"h"

(b) The document’s tree representation.

Figure 6.2: A text document and its tree representation. Numbers indicate
the characters’ indexes.

Figure 6.3, we insert a character in the document, which affects the index
of all succeeding characters (red indexes). Hence, in order to remain cor-
rect, every affected node of the tree is updated accordingly, thereby making
insertions and deletions linear operations.

h e l l o

1 2 3 4 5

(a) Modified text document.

2
"e"

4
"l"

5
"o"

1
"h"

3
"l"

(b) Modified tree representation.

Figure 6.3: A text document and its tree representation. Red numbers indi-
cate index changes compared to Figure 6.2.

On the other hand, the unique IDs of characters are stable, however,
they do not reflect the ordering of the characters. Hence, the tree cannot be
organized according to character IDs either.

To solve this problem, the text editor organizes the tree according to a
custom numbering scheme which a) reflects the position of the characters,
and b) is stable (i.e. a character’s numbering does not change over time).
This scheme generates stable positions based on the positions of the previous
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and next characters:

new_position(prev, next) =

8
>>><

>>>:

1, if ¬prev ^ ¬next
next
2 , if ¬prev

prev + 1, if ¬next
prev+next

2 , otherwise

When inserting a character, its position is the average of the previous and
next positions (last case). The first three cases are corner cases, which arise
when the document is empty (1st case), when prepending a character to the
document (2nd case) and when appending a character to the document (3rd

case). Notice that this numbering scheme reflects the order of the characters
since the generated position is smaller than the next position and bigger than
the previous position. Furthermore, a character’s position does not change
over time, therefore positions can be used to uniquely identify characters.

h e  l  l o

1 2 2.5 3 4

(a) Modified text document.

2
"e"

3
"l"

4
"o"

1
"h"

2.5
"l"

(b) Modified tree representation.

Figure 6.4: A text document and its tree representation. Red number is the
position of the newly added character.

Assume the same text document and positions as in Figure 6.2. If a user
inserts an extra “l” before the existing “l”, this results in the text document
and tree shown in Figure 6.4. Looking at the document’s positions, we
notice that the position of the other characters remains unchanged. Hence,
we managed to organize a text document as a balanced tree of characters.

We now describe the implementation of a tree-based text editor using
SECROs. The text editor relies on the AVL tree data structure provided by
the Closure library (Google, 2016).

1 class Document extends SECRO {
2 cons t ruc to r ( t r e e = new AvlTree ( ( c1 , c2 ) => c1 . pos � c2 . pos ) ) {
3 this . _docTree = t r e e ;
4 }
5
6 i n s e r tA f t e r ( pos , char ) { /* ... */ }
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7 pre i n s e r tA f t e r ( s ta te , pos , char ) { /* ... */ }
8 post i n s e r tA f t e r ( o r i g i n a l S t a t e , s ta te , args , newChar ) { /* ... */ }
9

10 d e l e t e ( pos ) { /* ... */ }
11 post de l e t e ( o r i g i n a l S t a t e , s ta te , a rgs ) { /* ... */ }
12
13 @accessor
14 hasPos i t i on ( pos ) { /* ... */ }
15
16 @accessor
17 dete rminePos i t i on ( prev ) { /* ... */ }
18
19 to j s on ( ) {
20 return this . _docTree ; // AVL tree is serializable

21 }
22
23 s t a t i c f romjson ( t r e e ) {
24 return new Document ( t r e e ) ;
25 }
26 }
27
28 Factory . r eg i s t e rAva i l ab l eType ( TextEditor ) ;

Listing 6.4: Structure of the efficient text editor, which organizes its
document as a balanced tree of characters.

Listing 6.4 shows the structure of the Document SECRO. The text editor
uses the third-party AVL tree (Line 2) and turns it into a SECRO. To this
end, the text editor defines the necessary preconditions and postconditions
on its insertAfter and delete operations (Lines 6 to 11).

Since the implementation re-uses an existing tree data structure, the doc-
ument’s API forwards the insert and delete operations to the underlying AVL
tree. The remainder of this section presents the implementation of the doc-
ument’s API, i.e. the insertAfter, delete and hasPosition methods.

Note that Listing 6.4 also shows two accessors: hasPosition and
determinePosition (Lines 13 to 17). The former returns a boolean indi-
cating whether or not a certain position occurs in the document. The latter
uses the aforementioned numbering scheme to compute a new stable position
based on the reference position.

1 i n s e r tA f t e r ( pos , char ) {
2 const newPos = this . de te rminePos i t i on ( pos ) ,
3 newChar = new Character ( char , newPos ) ;
4 this . _docTree . add (newChar ) ;
5 return newChar ;
6 }
7
8 pre i n s e r tA f t e r ( s ta te , pos , char ) {
9 return pos === null | | s t a t e . ha sPos i t i on ( pos ) ;

10 }
11
12 post i n s e r tA f t e r ( o r i g i n a l S t a t e , s ta te , args , newChar ) {
13 const [ pos , char ] = args ,
14 o r i g ina lChar = { char : "dummy" , pos : pos } ;
15 return ( pos === null && s ta t e . _docTree . conta in s (newChar ) ) | |
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16 s t a t e . _docTree . indexOf ( o r i g ina lChar )
17 < s t a t e . _docTree . indexOf (newChar ) ;
18 }

Listing 6.5: Inserting a character in a tree-based text document.

Listing 6.5 contains the implementation of the insertAfter method, its
precondition and postcondition. The pos argument on Line 1 is the position
of the reference character. On Line 2 the method computes a stable position
for the character it is inserting. Using this position the method creates a
new character on Line 3. Finally on Lines 4 and 5, the method inserts the
character in the tree and returns the newly added character. Again, the
precondition (Lines 8 to 10) and postcondition (Lines 12 to 18) check that
the reference character exists and that the newly added character occurs at
the correct position in the resulting tree.

1 d e l e t e ( pos ) {
2 return this . _docTree . remove ( pos ) ;
3 }
4
5 post de l e t e ( o r i g i n a l S t a t e , s ta te , a rgs ) {
6 const [ pos ] = args ;
7 return ! s t a t e . ha sPos i t i on ( pos ) ;
8 }

Listing 6.6: Deleting a character from a tree-based text document.

Finally, characters are deleted by removing them from the underlying tree
(Lines 1 to 3 in Listing 6.6). To this end, the character’s stable position is
used, since it uniquely identifies the character in the tree. Afterwards, the
postcondition on Lines 5 to 8 ensures that the character does not occur in
the tree anymore.

6.1.2 JSON CRDT Implementation

In order to implement a collaborative text editor using JSON CRDTs, we
need a JavaScript implementation of this data type. Since we could not find
any, we implemented our own JSON CRDTs in JavaScript. To guarantee a
fair comparison with SECROs, we used the same technology stack as is used
by CScript. For a detailed description of the data type and its API, we refer
the reader to the original paper by (Kleppmann & Beresford, 2017).

We now present the implementation of a collaborative text editor on top
of the JSON CRDT. Recall from Section 2.6 that JSON CRDTs support two
data structures: linked lists and maps. However, neither of both is suited to
implement an efficient tree data structure, i.e. one which provides lookups,
insertions and deletions in logarithmic time. Therefore, using JSON CRDTs
programmers can only implement a naive text editor.



91 CHAPTER 6. Evaluation

1 import { c r jd t , L inkedLis t } from "crjdt" ;
2 class Document {
3 con s t ruc to r ( ) {
4 c r j d t . doc = new LinkedLis t ( ) ;
5 }
6
7 i n s e r tA f t e r ( charID , char ) {
8 const idx = charID === null ? 0 : this . indexOf ( charID ) ,
9 cha rac t e r = new Character ( char , generate_id ( ) ) ;

10 i f ( idx !== �1) {
11 c j r d t . doc . idx ( idx )
12 . i n s e r tA f t e r ( cha rac t e r ) ;
13 return cha rac t e r ;
14 }
15 }
16
17 d e l e t e ( charID ) {
18 const idx = this . indexOf ( charID ) ;
19 i f ( idx !== �1)
20 c j r d t . doc . idx ( idx )
21 . d e l e t e ( ) ;
22 }
23
24 indexOf ( charID ) { /* ... */ }
25 }

Listing 6.7: Implementation of a naive text editor using JSON CRDTs.

Listing 6.7 shows the implementation of the collaborative text editor.
Upon creating a new text document, the JSON CRDT is initialized with an
empty linked list of characters (Lines 3 to 5).

Similarly as before, characters are inserted after reference characters.
Hence, insertAfter (Line 7) takes two arguments: the character to insert
(char) and the ID of the reference character (charID). insertAfter then
computes the index of the reference character (Line 8), fetches the reference
character (Line 11) and inserts the new character behind it (Line 12).

Finally, characters can also be deleted from a text document. To this
end, delete computes the character’s index in the list (Line 18), fetches the
character (Line 20) and finally deletes the character (Line 21).

6.2 Qualitative Analysis

We now compare the implementations of the list-based text editors, from a
programming language perspective. To this end, we discuss code similarities
and differences between the SECRO and JSON CRDT implementations.

Listings 6.8 and 6.9 compare the implementations of the insertAfter
and delete methods. To insert a character after a reference character, both
approaches rely on the API of the underlying linked list. Hence, their im-
plementations are almost identical. Notice that the JSON CRDT version
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performs an extra check on Line 5 to ensure that the reference character
exists. In the SECRO version this check is performed by the precondition
(Line 11). The main difference between both approaches is that the SECRO
version requires a precondition and a postcondition (Lines 9 to 14).

Similarly, both versions rely on the API of the underlying linked list to
delete characters from the text document (Line 21 in Listings 6.8 and 6.9).
Hence, their implementations are almost identical. However, the SECRO
version requires an additional postcondition (Line 24).

To conclude, the implementation of the list-based text editor is very sim-
ilar in both approaches. The main difference lies in the fact that SECROs
require the programmer to define preconditions and postconditions. In terms
of lines of code, the SECRO version tends to be slightly longer. However, pro-
grammers can customize concurrent behaviour and use different data types
like the tree described in Section 6.1.1, which is not possible using JSON
CRDTs (see conclusion of Section 2.6).

We emphasize the fact that JSON CRDTs are not general-purpose enough
to implement a tree-based text editor. In essence, the constructs provided
by JSON CRDTs (lists and maps) are not sufficient to implement any kind
of data type on top of them. On the contrary, SECROs can re-use any
JavaScript data type. This is showcased by the SECRO implementation of
the tree-based text editor (see Section 6.1.1), which uses a third-party AVL
tree and turns it into a replicated data type.

6.3 Quantitative Analysis
In the second part of this chapter, we evaluate our SECRO data type by
means of a comparison to JSON CRDTs. To this end, we perform a number
of experiments which quantify memory usage, execution time and throughput
of the previously implemented text editors. Keep in mind that SECROs
were designed to ease the development of custom strong eventually consistent
(SEC) data types. Hence, our goal is not to outperform JSON CRDTs, but
rather to evaluate the practical feasibility of SECROs.

6.3.1 Experimental Set-up

All experiments were performed on the “Isabelle” cluster of the Software
Languages Lab at the Vrije Universiteit Brussel. The specifications of this
cluster are shown in Table 6.1. Depending on the nature of the experiment,
it was either run on a single worker node or on all ten nodes. We specify this
for each benchmark.
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Root Node
Model HP ProLiant DL120 Gen9
CPU Intel Xeon E5-1620 v4 @ 3.50 GHz
RAM 32 GB
SSD 200 GB
10 x Worker Node
Model HP ProLiant DL20 Gen9
CPU Intel Xeon E3-1240 v5 @ 3.50 GHz
L1 Cache 256 KiB
L2 Cache 1 MiB
L3 Cache 8 MiB
RAM 32 GB
SSD 200 GB
Network
Nodes Interconnection 10 Gbit twinax

Table 6.1: Specifications of the Isabelle cluster.

6.3.2 Methodology

To get statistically sound results we repeated each benchmark at least 30
times, yielding a minimum of 30 samples per measurement. Each benchmark
started with a couple of warmup rounds, to annihilate the effects of program
initialization. Furthermore, we disabled NodeJS’ V8 optimizing compiler to
avoid just-in-time compiler optimizations which may considerably affect the
measured execution times.

Regarding the statistical analysis of our measurements, we discard sam-
ples that are affected by garbage collection, if needed for the benchmark at
hand (e.g. the execution time benchmarks). Then, for each measurement
including at least 30 samples, we compute the average value and the corre-
sponding 95% confidence interval.

6.3.3 Memory Benchmarks

To compare the memory usage of the SECRO and JSON CRDT text editors,
we performed an experiment in which 1000 operations were executed on each
text editor. We continuously alternated between 100 character insertions
followed by deletions of those 100 characters. We forced garbage collection
after each operation, and measured the heap usage. The resulting measure-
ments are shown in Figure 6.5. Green and red columns indicate character
insertions and deletions respectively. Notice that forcing garbage collection
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is needed to get the real-time memory usage. Otherwise, the memory usage
keeps growing until garbage collection gets triggered.
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Figure 6.5: Comparison between the memory usage of the SECRO and JSON
CRDT text editors. Error bars represent the 95% confidence interval for the
average taken from 30 samples. This experiment was performed on a single
worker node of the cluster.

Figure 6.5 confirms our expectation that the SECRO text editors are
more memory efficient than the CRDT text editor. The memory usage of
the CRDT text editor grows unbounded. This results from the fact the
characters are not deleted. Instead, tombstones are used to mark characters
as deleted. Conversely, SECROs support true deletions by re-organizing
concurrent operations in a non-conflicting order. Hence, all 100 inserted
characters are deleted by the following 100 deletions. This results in lower
memory usage.

Figure 6.6 compares the memory usage of the list and tree text editors.
We conclude that the tree implementation consumes more memory than the
list implementation. The reason is that nodes of a tree maintain pointers to
their children, whereas nodes of a singly linked list maintain only a single
pointer to the next node. Secondly, we observe a staircase pattern. This pat-
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Figure 6.6: Comparison between the list and tree implementations of the
SECRO text editor. Error bars represent the 95% confidence interval for the
average taken from 30 samples. This experiment was performed on a single
worker node of the cluster.

tern indicates that memory usage grows when characters are inserted (green
columns) and shrinks when characters are deleted (red columns). Finally,
memory usage increases linearly with the number of executed operations,
even though we delete the inserted characters and commit the replica after
each operation. Hence, SECROs entail a small memory overhead for each
executed operation. This linear increase is shown by the dashed regression
lines.

6.3.4 Execution Time Benchmarks

We now present a number of experiments which quantify the execution time
of operations. First, we analyze the performance overhead of SECROs us-
ing an artificial example. Afterwards, we compare the performance of the
SECRO and JSON CRDT text editors. Note that all experiments were per-
formed on a single worker node of the cluster.
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Overhead of SECROs

To quantify the performance overhead of SECROs we measure the execution
times of 500 constant time operations, for different commit intervals. Each
operation computes 10 000 tangents and has no associated precondition or
postcondition. Hence, the resulting measurements reflect the best-case per-
formance of SECROs.
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Figure 6.7: Execution time of a constant time operation in function of the
number of experienced operations, for different commit intervals. Error bands
represent the 95% confidence interval for the average taken from a minimum
of 30 samples. Samples affected by garbage collection were discarded.

Figure 6.7 depicts the execution time of the aforementioned constant time
operation. If we do not commit the replica (red curve), the operation’s
execution time increases linearly with the number of operations. Hence,
SECROs induce a linear overhead. This means that operations which can be
performed in constant time are performed in linear time by our SECRO data
type. This results from the fact that the replica’s operation history grows
with every operation. Furthermore, each operation requires the replica to re-
organize the history. To this end, the replica generates permutations of the
history until a valid ordering of the operations is found (see Listing 3.11).
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Since we defined no preconditions or postconditions, every order is valid.
The replica thus generates exactly one permutation and validates it. To
validate the ordering, the replica executes each operation (see Listing 3.12).
Therefore, the operation’s execution time is linear to the size of the operation
history. In this case, the operation history contains all operations.

Remember from Section 3.5 that commit implies a trade-off between con-
currency and performance. Small commit intervals lead to better perfor-
mance but low concurrency, whereas large commit intervals support more
concurrent operations at the cost of performance. This benchmark illustrates
the performance aspect of the trade-off.

For a commit interval of 50 (blue curve), we observe a sawtooth pat-
tern. The operation’s execution time increases until the replica is committed,
whereafter it falls back to its initial execution time. This is because commit
clears the operation history.

When choosing a commit interval of 1 (green curve), the replica is com-
mitted after every operation. Hence, the history contains a single operation
and does not need to be reorganized. This results in a constant execution
time, independent of the number of experienced operations.

In conclusion, SECROs induce an important overhead on the execution
time of operations if replicas are not committed periodically. The rate at
which replicas are to be committed depends on the application at hand.

Appending Characters to a Text Document

We now analyze the performance of character insertions using the list im-
plementation of the SECRO text editor. Figure 6.8 shows the time it takes
to append a character to the text document in function of the document’s
length. Notice that a document length of 200 implies that 199 insertion op-
erations preceded the depicted operation. If we do not commit the replica
(red curve), append exhibits a quadratic execution time. This is because
the SECRO induces a linear overhead (see previous section) and append is a
linear operation. Hence, append’s execution time becomes quadratic.

For a commit interval of 100 (blue curve) we again observe a sawtooth
pattern. In contrast to Figure 6.7 the peaks increase linearly with the size of
the document, since append is a linear operation.

If we choose a commit interval of 1 (green curve) we get a linear execution
time. This results from the fact that we do not need to re-organize the
replica’s history. Hence, we execute only a single append operation.
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Figure 6.8: Time to append a character to the text document in function of
the document’s length. Error bands represent the 95% confidence interval
for the average taken from a minimum of 30 samples. Samples affected by
garbage collection were discarded. This experiment was performed on the
list implementation of the SECRO text editor.

SECRO vs JSON CRDT Text Editor

We now compare the performance of the naive SECRO and JSON CRDT
text editors. To this end, we appended 1000 characters to a text document,
and measured the time of each append operation. For the SECRO version
we committed the replica after each operation.

From Figure 6.9 we conclude that character insertions exhibit a linear
time complexity in both versions. Notice however that the JSON CRDT
text editor is more performant, since the execution time grows less fast (i.e.
has a smaller slope).

List vs Tree Text Editor

Remember from Section 6.1.1 that we implemented two text editors in the
SECRO approach. The first version is a naive text editor which organizes
the document as a linked list of characters. The second is an efficient text
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Figure 6.9: Time to append a character to a document, for the naive SECRO
and JSON CRDT text editors. The SECRO version committed the replica
after each append operation. Error bands represent the 95% confidence in-
terval for the average taken from a minimum of 30 samples. Samples affected
by garbage collection were discarded.

editor which organizes the document as a balanced tree of characters in order
to provide logarithmic time lookups, insertions and deletions.

Figure 6.10 depicts the time it takes to append a character to the docu-
ment. Contrary to our expectations, the list implementation is faster than
the tree implementation. To determine the cause of this counterintuitive ob-
servation we measured the different parts that make up the total execution
time:

Execution time of operations Total time spent on executing append op-
erations.

Execution time of preconditions Total time spent on executing precon-
ditions.

Execution time of postconditions Total time spent on executing post-
conditions.
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Figure 6.10: Time to append a character to a document, for the list and tree
implementations of the SECRO text editor. Replicas were never commit-
ted. Error bars represent the 95% confidence interval for the average taken
from a minimum of 30 samples. Samples affected by garbage collection were
discarded.

Copy time As explained in Section 3.4.2, each operation requires the replica
to reorganize its history and then tentatively validate this history. To
validate the history (see Listing 3.12), the replica deep copies the ob-
ject whereafter the operations, preconditions and postconditions are
executed on the copy. Furthermore, the replica copies the object be-
fore each precondition. The total time spent on copying objects (i.e.
the document) is the copy time.

Figures 6.11a and 6.11b depict the detailed execution time for the list and
tree implementations respectively. One immediately observes that the total
execution time is dominated by the copy time. Furthermore, the tree imple-
mentation spends considerably less time executing operations, preconditions
and postconditions, than the list implementation. This results from the fact
that the balanced tree provides logarithmic time insertions whereas inser-
tions in a linked list are linear. On the other hand, the tree implementation
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spends more time on copying the document than the list implementation.
The reason for this is that copying a tree entails a higher overhead than
copying a linked list, since more pointers need to be copied.

A crucial insight is that each operation appends a single character to the
document. Hence, for each insertion the replica first copies the entire tree of
characters. This incurs a time overhead which kills the speedup gained from
logarithmic time insertions.
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Figure 6.12: Execution time of an operation which appends 100 characters to
a text document, in function of the document’s length. Replicas were never
committed. Error bars represent the 95% confidence interval for the average
taken from a minimum of 30 samples. Samples affected by garbage collection
were discarded.

To validate this hypothesis, we re-executed the benchmark shown in Fig-
ure 6.10 but this time each operation inserts 100 characters. Figure 6.12
shows the resulting execution times. As expected, the tree implementation
now outperforms the list implementation. The reason for this is that the
speedup obtained from 100 logarithmic insertions exceeds the copying over-
head induced by the tree. In practice, this means that single character ma-
nipulations are too fine-grained. Instead, we must switch to insertions and
deletions of entire words, sentences or even paragraphs.
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From the previous benchmarks we know that deep copying the document
raises a considerable overhead. However, we are forced to copy the document
since JavaScript objects are mutable. Hence, this problem is not inherent to
SECROs, but rather a side-effect of JavaScript’s mutability. To decouple
this problem from SECROs, we now quantify the copy overhead induced by
JavaScript.

0

5

10

15

0 25 50 75 100
Insertions per operation

C
op

y 
tim

e 
in

 m
ill

is
ec

on
ds

Version
Tree
List

Copy Time

Bands represent the 95% CI.
Plotted copy time of the 50th operation.

Figure 6.13: Time to copy a document in function of the number of inser-
tions per operation. The replica was committed after each operation. For
each configuration (1, 10, or more insertions per operation) we executed
the operation 50 times and measured the copy time of the 50th execution.
Measurements are indicated using asterisks. Error bands represent the 95%
confidence interval for the average taken from a minimum of 30 samples.
Samples affected by garbage collection were discarded.

Figure 6.13 plots the copy time for varying number of insertions per op-
eration. We conclude that the copy time is linear to the number of insertions
per operation. Furthermore, the copy time is slightly higher for documents
which are organized as a tree of characters (as previously observed in Fig-
ures 6.11a and 6.11b). The reason for this is that nodes of a tree maintain
pointers to their children, whereas nodes of a singly linked list only maintain
a single pointer to the next node.
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Figure 6.14: A simple linear regression model of the copy time. Error bands
represent the 95% confidence interval for the regression line. Measurements
are the average of at least 30 samples and are indicated by dots. Samples
affected by garbage collection were discarded.

Figure 6.14 quantifies the copy overhead by fitting a linear model to our
measurements. For both versions the model is a good representation since the
coefficients of determination (r2) are close to one. Based on the slopes of the
linear models we conclude that the tree implementation induces an additional
copy overhead of 0.02ms per insertion, compared to the list implementation.

We expect that the copy time overhead can be avoided altogether by
switching to an immutable language. As such, we do not need to explicitly
copy objects. Instead, operations produce new objects which extend the
original object.

6.3.5 Throughput Benchmarks

The experiments presented in the previous section focused on the execution
time of sequential operations on a single node. We now transition to a dis-
tributed scenario, and measure the throughput of the text editors under high
computational loads.



Quantitative Analysis 106

To this end, we use all 10 worker nodes of the cluster and let them simul-
taneously perform a considerable amount of operations on the text editor.
The total amount of operations is equally spread over the nodes of the cluster.
We then measure the time to convergence, i.e. the time that is needed for all
nodes to process all operations and reach a consistent state. As an example,
if we have a total of 1000 operations, each node executes 100 operations.
Assuming that the nodes converge after 8 seconds, we find a throughput of
1000
8 = 125 operations per second.
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Figure 6.15: Throughput of the naive SECRO and JSON CRDT text editors,
in function of the number of concurrent operations. The SECRO version
committed the document replica at a commit interval of 100. Error bars
represent the 95% confidence interval for the average taken from 30 samples.

Figure 6.15 depicts how the throughput of the naive text editors varies
in function of the load. We notice that the SECRO text editor scales up to
50 concurrent operations, at which point it reaches its maximal throughput.
Afterwards, the throughput quickly degrades. Additionally, we observe that
under high loads (100 concurrent operations and more) the JSON CRDT
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version achieves a higher throughput than the SECRO version. Hence, the
JSON CRDT text editor scales better than the SECRO text editor.

List vs Tree Text Editor
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Figure 6.16: Throughput of the list and tree SECRO text editors, in function
of the number of concurrent operations. Replicas were committed every 50
insertions. Error bars represent the 95% confidence interval for the average
taken from 30 samples.

Figure 6.16 compares the throughput of the list and tree implementa-
tions. Both versions scale up to 50 concurrent operations, whereafter the
throughput degrades. We also notice that the list implementation achieves
slightly higher throughput rates than the tree implementation. The reason
for this is that each operation inserts only a single character. Hence, the copy
time overhead exceeds the speedup we get from organizing the document as
a tree (see Section 6.3.4).
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6.4 Conclusion

We evaluated CScript by comparing its novel SECRO data type with JSON
CRDTs. At the basis of this comparison lies a real-time collaborative text
editor, which is the prototypical example in the literature on CRDTs (Shapiro
et al., 2011b). The evaluation consisted of two parts: a qualitative and a
quantitative analysis.

The qualitative analysis revealed that both approaches yield similar im-
plementations. The main difference is that SECROs require the programmer
to define preconditions and postconditions. These are necessary for SECROs
to provide strong eventual consistency while being a truly general-purpose
replicated data type. On the other hand, JSON CRDTs are not general-
purpose enough to implement any kind of applications. We demonstrated
this by implementing a collaborative text editor that organizes text docu-
ments as a balanced tree of characters. SECROs require only minor changes
to the list-based text editor, whereas, JSON CRDTs cannot reproduce this
example at all.

In the quantitative analysis we compared both approaches in terms of
memory usage, execution time and throughput. To this end, we performed
a multitude of experiments using the previously implemented text editors.

The memory benchmarks revealed that the SECRO text editor consumes
considerably less memory than the JSON CRDT text editor. The memory
usage of the JSON CRDT version actually grows unbounded due to the use
of tombstones.

Regarding the execution time of operations, the experiments showed that
SECROs induce a linear overhead which is proportional to the size of the
operation history. This results from the fact that replicas validate their his-
tory for each operation. We have seen that this overhead can be kept within
acceptable bounds by periodically committing the replica. Commit implies a
trade-off between performance and concurrency. In many applications con-
currency is limited, Google Docs for instance allows a maximum of 100 si-
multaneous collaborators (Google, 2018). Hence, deciding on an appropriate
commit strategy depends on the application and needs to be fine-tuned by
the programmer.

We also compared the list and tree implementations. At first, the tree
implementation did not provide the expected speedup because single charac-
ter insertions are too fine-grained. However, by inserting more characters per
operation a considerable speedup was achieved. With 100 insertions per op-
eration and a document length of 5000 characters the three implementation
is roughly twice as fast as the list implementation. In practice, this means
that operations of the text editor should manipulate entire words, sentences
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or even paragraphs.
Finally, we measured how the text editor’s throughput varies in function

of the load. We found that the JSON CRDT text editor scales better than
the SECRO text editor. This results from the fact that JSON CRDTs can
directly apply the operations it receives, whereas SECROs need to re-order
the operations which can be costly if there are many concurrent operations.
JSON CRDTs thus achieve better scalability at the cost of generality. On
the other hand, the scalability of SECROs needs to be fine-tuned, but one
has a truly general-purpose available replicated data type.



Conclusion 110



7
Conclusion

In this dissertation, we explored programming language support for availabil-
ity and consistency of distributed applications. Remember that distributed
systems replicate data to improve the availability, performance and scala-
bility of the system. However, when updating a copy it becomes different
from the other copies. This means that programmers need to keep the copies
consistent to some extent.

Keeping the copies strongly consistent requires agreement between the
nodes that make up the system such that they update the copies consistently.
This forces the programmer to implement a distributed consensus algorithm
(Lamport, 1998; Ongaro & Ousterhout, 2014) which is a challenging task.
Furthermore, users cannot issue updates while being offline, since the other
copies cannot be informed of the update. Hence, strong consistency comes
at the cost of availability.

Another possibility is to favor availability over strong consistency such
that users can continue to use the system even though they are offline. How-
ever, updates may now lead to inconsistencies which need to be resolved
by the application developer. Solving these conflicts is a difficult task and
depends on the behaviour that is expected from the application. For this rea-
son, the literature provides no general-purpose data type for implementing
arbitrary available data structures.

Although the aforementioned problems are faced by most distributed
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programmers, there is no distributed programming language that aids the
programmer with the development of both consistent systems and available
systems. The development of such a language raises a number of essential
research questions which are central to this dissertation:

RQ. 1 Which language constructs are needed to simplify the development
of both available systems and consistent systems, and how can we in-
tegrate these constructs in one distributed programming language?

RQ. 2 Is it possible to design a general-purpose data type that guarantees
availability?

7.1 Our Approach

To address the aforementioned research questions we design and implement
CScript, a next generation distributed programming language. CScript tack-
les the problems of availability and consistency at the level of objects. Objects
are kept strongly consistent by serializing all updates on a single copy of the
object. This object acts as the master copy. On the other hand, objects
are made available by allowing updates to happen concurrently on different
copies of the object. In order to keep these copies consistent, we propose the
use of state validators.

State validators are language constructs for expressing invariants over the
state of an object. Programmers use state validators to specify the behaviour
that is expected from available objects in the face of concurrent operations.
The idea is to use this information to detect and solve the conflicts that
arise. As a proof of concept, CScript provides a generic object data type
for implementing available data structures that behave accordingly to the
declared invariants.

7.1.1 A Distributed Object-oriented Model for Replica-
tion

The goal of our research is to augment the object-oriented programming
model with dedicated language support for replication. The key idea is to
design one language (CScript) that offers objects that can be replicated and
for which the programmer can specify whether the object should be available
or strongly consistent. If the object is available it will be only eventually
consistent. Conversely, strongly consistent objects are not fully available
upon network partitions.
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In CScript, replicated objects are called replicas. There are two types of
replicas, namely available and consistent replicas. Available replicas cannot
be nested within consistent replicas and vice versa. This results from the
CAP theorem which states that a system cannot provide both guarantees
when facing network partitions.

CScript also allows programmers to combine replicas into larger compo-
nents, called services. Services offer specific functionality and can be shared
between the different peers of the system. Upon sharing a service with a
peer, the peer receives a copy of the service. CScript ensures that the ser-
vice’s replicas fulfill their availability or consistency guarantee.

Consistent Replicas

To ensure that consistent replicas remain strongly consistent, CScript main-
tains a single copy of the object and serializes all updates on that copy.
This implies that in the face of disconnections, updates are buffered until
reconnection. Developers thus perceive these objects as available, however,
operations are buffered.

Available Replicas

In CScript, available replicas are replicated to all peers of the distributed
system. This guarantees availability since every peer has a local copy from
which he can read or write.

However, conflicts can arise if two or more peers concurrently update their
local copy. Even though these updates are individually correct, their combi-
nation may violate some invariant leading to an inconsistent state (Shapiro
et al., 2011b). To make these copies consistent again the conflict must be
resolved.

To deal with these problems, available replicas are passed-by-replication
in CScript. This means that the replica is passed-by-copy to the receiver
and that dedicated mechanisms are used to keep the copies consistent to
the extent possible. In contrast to consistent replicas, users may observe
temporal inconsistencies, however, at some point in time the copies become
consistent again.

The consistency guarantees provided by a system are described by its
consistency model. Such models restrict the values that a read operation
may return (Tanenbaum & Van Steen, 2007). The implementation of a
consistency model is called a consistency protocol.

In CScript, available replicas implement the strong eventual consistency
(SEC) model. This model prescribes that replicas that received the same
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operations, possibly in a different order, are consistent. CScript provides
two abstractions that rely on two different protocols for this model, namely
conflict-free replicated data types (CRDTs) and strong eventually consistent
replicated objects (SECROs).

CRDTs CRDTs are special data types that require concurrent operations
to commute. Conflicts are thus avoided by design since any ordering of
the operations yields the same outcome. However, imposing operations
to commute is a severe restriction which does not allow programmers
to implement any kind of available data structure.

SECROs A SECRO is a general-purpose data type for implementing arbi-
trary available data structures. Programmers use dedicated language
constructs, called state validators, to specify the concurrent behaviour
of SECROs through a set of invariants. Since operations do not nec-
essarily commute, reaching a consistent state requires the replicas to
execute all operations in the same order. Therefore, SECROs re-order
concurrent operations based on the declared invariants. As such, con-
current operations cannot lead to unexpected behaviour.

To re-order the operations, we designed a deterministic algorithm that
yields the same order at all replicas, independent of the order in which
the operations were received and without having to communicate be-
tween the replicas. CScript embeds a proof-of-concept implementation
of SECROs.

7.1.2 Evaluation

To evaluate CScript, we compare SECROs with the JSON CRDT
(Kleppmann & Beresford, 2017), which is a CRDT implementation of a
general-purpose data type. Although the JSON CRDT does not directly
provide replicated objects, it allows developers to implement custom CRDTs
without having to deal with conflicts. Hence, the JSON CRDT is said to
generalize CRDTs to any general-purpose data structure. In particular, we
compare CScript’s SECROs to JSON CRDTs by means of a collaborative
text editor application. The application was proposed in the original JSON
CRDT paper (Kleppmann & Beresford, 2017) and is the prototypical exam-
ple in the literature on CRDTs.

Our evaluation consists of two parts: a qualitative and a quantitative
analysis. The qualitative analysis compares the implementation of the SE-
CRO and JSON CRDT text editors. We found that the main difference lies
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in the fact that JSON CRDTs hardcode concurrent behaviours, whereas SE-
CROs rely on the invariants defined by the programmer. As a result, the
SECRO implementation yields slightly more lines of code but is more flexi-
ble. This means that programmers can customize the concurrent behaviour
of replicated objects as to match the needs of the application, which is not
possible using JSON CRDTs. Hence, SECROs are truly general-purpose but
require developers to define state validators. This places the responsibility
of developing correct data types on the programmer but at a much higher
level of abstraction than CRDTs. Developers declare what is expected from
the data type, rather than specifying how low-level conflicts must be solved
or avoided.

To demonstrate the flexibility of SECROs we implemented a text editor
that stores documents as a tree of characters. The SECRO implementation
re-uses a third-party AVL tree and turns the tree into an available repli-
cated data type. This showcased the flexibility of CScript to convert any
JavaScript data type into a SECRO in just a few steps. On the opposite,
using JSON CRDTs programmers are bound to two data structures: lists
and maps. These data structures are not suited to implement an efficient
tree data structure, i.e. one which provides logarithmic time lookups, inser-
tions and deletions. Hence, JSON CRDTs are not general-purpose enough
to implement an efficient tree-based text editor.

The quantitative evaluation focuses on measuring the performance of SE-
CROs and JSON CRDTs with respect to a number of parameters: memory
usage, time complexity, and throughput.

We found that SECROs efficiently manage memory, whereas the memory
usage of (JSON) CRDTs grows unbounded. The time complexity bench-
marks revealed that SECROs induce a linear time overhead which is propor-
tional to the size of the operation history. Commit has shown to be crucial
in order to keep the execution time within acceptable bounds. Finally, the
JSON CRDT text editor scales better than the SECRO text editor.

Regarding the tree-based text editor, our experiments revealed that the
tree structure induces a certain copy overhead. To reap the benefits of the
tree structure, operations should manipulate (i.e. insert or delete) entire
words, sentences or even paragraphs. However, single character manipula-
tions are too fine-grained.

To summarize, we demonstrated that general-purpose available data
types offering strong eventual consistency can be designed but re-ordering
the operations is costly. The costs can be mitigated by periodically commit-
ting the replicas. Deciding on the appropriate commit strategy depends on
the application and needs to be fine-tuned by the programmer.
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7.2 Contributions

The research conducted throughout this dissertation led to several contribu-
tions. We outline each contribution within its respective domains:

CScript Within the field of distributed programming, we contribute
CScript, a distributed programming language with native support for
availability and consistency. CScript’s innovation is a distributed
object-oriented programming model that offers replicated objects for
which the programmer can specify whether the object should be
strongly consistent or available (and only eventually consistent).

SECROs In the context of available data types and consistency, we con-
tribute SECROs, a new consistency protocol for the strong eventual
consistency model. SECROs are a general-purpose data type for build-
ing available data structures. Since operations do not commute con-
flicts can occur. How to solve these conflicts depends on the behaviour
that is expected from the application.

Programmers use state validators to translate the expected behaviour
into a set of invariants. State validators are associated to the operations
of a SECRO and validate its state. We propose two state validators:
preconditions and postconditions. The former avoids operations from
running on a corrupted state, whereas the latter ensures that concurrent
operations lead to a correct state.

When facing concurrent operations, SECROs use the state validators
to re-order the operations in a way that satisfies the declared invariants.

JavaScript JSON CRDT To compare SECROs with JSON CRDTs, we
implemented the JSON CRDT data type in JavaScript, based on
the formal semantics described by (Kleppmann & Beresford, 2017).
We thus contribute an implementation of the JSON CRDT to the
JavaScript community.

7.3 Limitations And Future Work

We see four directions for future work. First, CScript maintains only a single
copy of strongly consistent objects and serializes all updates on that copy.
This copy forms a single point of failure and may become a performance
bottleneck. Future work should address these problems by replicating the
object to all peers. To keep the copies strongly consistent a distributed
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consensus algorithm (Lamport, 1998; Ongaro & Ousterhout, 2014) will be
needed.

Second, CScript targets peer-to-peer applications that run on top of full
mesh networks, i.e. nodes are transitively connected. Future work could
explore the integration of CScript with client-server architectures like the
web. This requires a centralized peer lookup infrastructure and a central
message broker for the publish-subscribe mechanism (see Chapter 5).

Third, the SECRO benchmarks in Chapter 6 revealed that the copy time
dominates the execution time of operations. We argued that copying the
state is needed because JavaScript is a mutable language and operations are
executed tentatively. To validate our argument, future work should imple-
ment SECROs in a purely functional language.

Finally, the evaluation revealed that SECROs must be committed peri-
odically in order to keep the performance within acceptable bounds. Up till
now, we committed SECROs at fixed intervals. This might not be an optimal
solution. Future work could investigate new commit strategies. A possibility
would be to commit replicas whenever all copies are online at the same time.
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