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Abstract—The use of machine learning techniques able to
classify source code components in defective or not received a
lot of attention by the research community in the last decades.
Previous studies indicated that no machine learning classifier is
capable of providing the best accuracy in any context, highlight-
ing interesting complementarity among them. For these reasons
ensemble methods, that combines several classifier models, have
been proposed. Among these, it was proposed ASCI (Adaptive
Selection of Classifiers in bug predIction), an adaptive method
able to dynamically select among a set of machine learning
classifiers the one that better predicts the bug proneness of a
class based on its characteristics. In summary, ASCI experiments
each classifier on the training set and then use a meta-learner
(e.g., Random Forest) to select the most suitable classifier to
use for each test set instance. In this work, we conduct an
empirical investigation on 21 open source software systems with
the aim of analyzing the performance of several classifiers used
as meta-learner in combination with ASCI. The results show
that the selection of the meta-learner has not strong influence
in the results achieved by ASCI in the context of within-project
bug prediction. Indeed, the use of lightweight classifiers such as
NAIVE BAYES or LOGISTIC REGRESSION is suggested.

Index Terms—Bug Prediction; Classifier Selection; Ensemble
techniques

I. INTRODUCTION

Limited time and manpower represent serious threats to the
effective testing of a software system. Thus, the resources
available should be allocated effectively upon the portions of
the source code that are more likely to contain bugs. The
creation of bug prediction models [1] which allow to predict
the software components that are more likely to contain bugs
and need to be tested more extensively is a powerful technique
to deal with the allocation of testing resources.

Roughly speaking, a bug prediction model is a supervised
method where a set of independent variables is used to predict
the bug-proneness of a code components using a machine
learning classifier (e.g., Logistic Regression [2]). The model
can be trained using a sufficiently large amount of data available
from the project under analysis, i.e., within-project strategy,
or using data coming from other (similar) software projects,
i.e., cross-project strategy. A factor that strongly influences
the accuracy of bug prediction models is represented by the
classifier used to predict buggy components. In details, the
choice of the classifier can influence the accuracy of the
predictions up to 30% [3]. Moreover, several study [4]–[6]
demonstrated that the predictions of different classifiers are
highly complementary despite the similar prediction accuracy.

Based on such findings, an emerging trend is the definition
ensemble techniques [7] able to combine different models and

their application to bug prediction [4]–[6], [8]–[12]. Among
the ensemble techniques Di Nucci et al. [5] conjecture that
a successful way to combine classifiers can be obtained by
choosing the most suitable classifier based on the characteristics
of classes, rather than combining the output of different
classifiers. They proposed an adaptive prediction model, coined
as ASCI (Adaptive Selection of ClassIfiers in bug prediction),
which dynamically recommends the classifier able to better
predict the bug-proneness of a class, based on the structural
characteristics of the class. Specifically, given a set of classifiers
the approach firstly trains these classifiers using the structural
characteristics of the classes in the training set, secondly builds
a meta-learner (e.g., Random Forest) able to predict which
classifier should be used based on the structural characteristics
of the classes.

In this paper, we investigated the role of the meta-learner
on the accuracy of bug prediction models in the within-project
context. In particular, we considered 6 alternative classifiers
(e.g., DECISION TABLE (DT), DECISION TREE (C45), BINARY
LOGISTIC REGRESSION (LOG), MULTI-LAYER PERCEPTRON
(MLP), NAIVE BAYES (NB), and SUPPORT VECTOR MA-
CHINE (SVM)) with respect to the original Random Forest (RF)
as meta-learner. We experimented these variants of ASCI on
the data of 21 software systems extracted from the PROMISE
repository [13], comparing the accuracy achieved by the models.
The results highlight that the selection of the meta-learner in
ASCI has not a strong influence on accuracy of the prediction
models in the context of within-project bug prediction. Thus
the less complex alternative should be preferred.
Structure of the paper. Section II presents the related work.
Section III reports the design of the empirical study, while
Section IV presents the results. We discuss possible threats
that could affect the validity of our empirical study in Section
V, before concluding the paper in Section VI.

II. RELATED WORK

The selection the classifier to use represents a relevant
problem for the configuration of bug prediction models [2].
In the past, most of the bug prediction models made use of
Logistic Regression [14]–[18], Decision Trees [19]–[21], Radial
Basis Function Network [22], [23], Support Vector Machines
[24]–[26], Decision Tables [27], [28], Multi-Layer Perceptron
[29], or Bayesian Network [30].

Despite this, among such classifiers, none of them is actually
able to outperform the others [31]–[35] since their performance
strongly depend on the specific dataset considered [31]–[35].



Table I
CHARACTERISTICS OF THE SOFTWARE SYSTEMS USED IN THE STUDY

# Project Release Classes KLOC Buggy Classes (%)
1 Ant 1.7 745 208 166 22%
2 ArcPlatform 1 234 31 27 12%
3 Camel 1.6 965 113 188 19%
4 E-Learning 1 64 3 5 8%
5 InterCafe 1 27 11 4 15%
6 Ivy 2.0 352 87 40 11%
7 jEdit 4.3 492 202 11 2%
8 KalkulatorDiety 1 27 4 6 22%
9 Nieruchomosci 1 27 4 10 37%
10 pBeans 2 51 15 10 20%
11 pdfTranslator 1 33 6 15 45%
12 Prop 6.0 660 97 66 10%
13 Redaktor 1.0 176 59 27 15%
14 Serapion 1 45 10 9 20%
15 Skarbonka 1 45 15 9 20%
16 Synapse 1.2 256 53 86 34%
17 SystemDataManagement 1 65 15 9 14%
18 TermoProjekt 1 42 8 13 31%
19 Tomcat 6 858 300 77 9%
20 Velocity 1.6 229 57 78 34%
21 Zuzel 1 39 14 13 45%

More importantly, Ghotra et al. [3] highlighted that the selection
of an appropriate classifier might lead bug prediction models
to be more or less effective by up to 30%, while Panichella et
al. [4], Bowes et al. [6], and Di Nucci et al. [5] demonstrated
the high complementarity of different classifiers.

Thus, the identification of the classifier to use is not a trivial
task and for this reason a lot of effort has been devoted to
the definition of ensemble techniques [7], i.e., methodologies
able to combine different classifiers with the aim of improving
bug prediction performances. Between all, recently Di Nucci
et al. [5] proposed ASCI, an approach that dynamically
recommends the classifier able to better predict the bug-
proneness of a class based on its structural characteristics.
The empirical study, conducted in the context of within-project
bug prediction, showed that the approach is up to 5% more
effective than VALIDATION AND VOTING [36]. In this paper,
we built upon the findings reported above and provide an
empirical investigation into the role of the meta-learner when
using ASCI in bug prediction.

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to evaluate the impact
of the meta-learner selection on the performances of ASCI
when adopted for within-project bug prediction. The purpose
of the study is the better allocation of resources dedicated to
testing activities. The perspective is of researchers interested in
understanding how much the selection of the meta-learner has
effect on the bug prediction capabilities of ASCI, as well as
of practitioners who want to evaluate the usability of models
based on this ensemble technique.

Specifically, the research questions formulated in the study
is the following:

• RQ1. To what extent does the selection of the meta-learner
impact on the performances achieved by ASCI in the
context of within-project bug prediction?

A. Context Selection and Data Preprocessing

The context of the study was composed of the 21 software
systems shown in Table I. Specifically, we considered projects

having different scope (e.g., build or workflow management
systems) and different size (e.g., from 3 to 300 KLOC). Table
I reports the specific releases taken into account as well
as the detailed characteristics of the projects considered in
terms of (i) size, expressed as number of classes and KLOC,
and (ii) number and percentage of buggy classes. It is worth
noting that we considered two main factors when selecting the
dataset. Firstly, we selected only publicly available datasets to
guarantee a full replication of our experiments. Secondly, we
selected software systems from various application domains
and having different characteristics to reduce the threats to
external validity of our study [3], [37]. Thus, we picked up
a random sample of 21 systems available in the PROMISE
dataset [13] and mined by Jureczko and Madeyski [38], after
applying the guidelines proposed by Tantithamthavorn et al.
[39] to ensure data robustness: specifically, we did not consider
systems having more than 50% of buggy classes.

It is important to highlight that the considered dataset already
contained both independent and dependent variables used to
build the bug prediction models. More specifically, for each
class of the considered systems the independent variables were
represented by LOC and Chidamber and Kemerer metrics [40],
while the dependent variable was represented by a boolean
value indicating the bugginess of each class.

Once we selected the dataset, we applied some data prepro-
cessing activities guided by the framework proposed by Song
et al. [37] who suggested an ideal sequence of operations to
perform before training a bug prediction model. In particular:

1) As shown by Shepperd et al. [41], the PROMISE repository
might contain noise and/or erroneous entries that possibly
bias the results of bug prediction models. To deal with this
issue, they proposed a data cleaning procedure composed
of 13 corrections aimed at increasing the data quality. We
applied these steps to remove instances with conflicting
values or presenting missing values, etc. From the initial
dataset composed of 5,422 instances, we removed ' 1%
of instances. Thus the final dataset was composed of 5,361
instances.

2) Highly correlated independent variables can negatively
affect the capabilities of bug prediction models [42]. To
avoid this issue, we applied a feature selection algorithm,
namely Correlation-based Feature Selection (CFS) [43].
This method uses correlation measures and a heuristic
search strategy to identify a subset of actually relevant
features for a model.

3) Bennin et al. [44] demonstrated that the problem of data
unbalancing, i.e., datasets having a number of buggy
classes much lower than non-buggy ones, can bias the
performance of bug prediction models. For this reason,
we applied a data balancing algorithm, namely Synthetic
Minority Over-sampling TEchnique, i.e., SMOTE [45]
to ensure a similar proportion of buggy and non-buggy
classes in the training sets.



B. Baseline Selection

We compared the original version of ASCI that use RAN-
DOM FOREST (RF) as meta-learner with 6 variants using a
different classifier as meta-learner (e.g., DECISION TABLE
(DT), DECISION TREE (C45), BINARY LOGISTIC REGRES-
SION (LOG), MULTI-LAYER PERCEPTRON (MLP), NAIVE
BAYES (NB), and SUPPORT VECTOR MACHINE (SVM)).

We are aware of the possible impact of classifiers’ con-
figuration on the ability of finding bugs [46], however the
identification of the ideal settings in the parameter space of a
single classification technique would have been prohibitively
expensive [47]. For this reason, we applied the classifiers using
their default configuration.

C. Validation Strategies and Evaluation Metrics

As validation strategy, we adopted the 10-Fold Cross
Validation [48]. This methodology randomly partitions the
data into 10 folds of equal size, applying a stratified sampling
(e.g., each fold has the same proportion of bugs). A single
fold is used as test set, while the remaining ones are used as
training set. The process was repeated 10 times, using each
time a different fold as test set. Then, the model performances
were reported using the mean achieved over the ten runs. It
is important to note that we repeated the 10-fold validation
100 times (each time with a different seed) to cope with the
randomness arising from using different data splits [49].

As evaluation metrics, we avoid the computation of the
widely used accuracy and F-Measure, as they are threshold-
dependent metrics that can bias the interpretation of bug
prediction capabilities [49]. Conversely, to properly evaluate
the ability of our approach to predict the bug-proneness of
classes we relied on the Matthew’s Correlation Coefficient
(MCC) and the Area Under the ROC Curve (AUC-ROC). The
first measure indicates the extent to which the independent
and dependent variables are well related to each other. The
metric values range between -1 and 1 and values close to 1
indicate higher performances. As shown by Hall et al. [49],
this is the most reliable threshold-independent metric for the
evaluation of bug prediction models. The second measure,
ranging between 0.5 and 1, reports the overall capabilities
of a prediction model in discriminating buggy and non-buggy
classes. A metric values close to 1 indicate higher performances.
It is important to note that AUC-ROC and MCC are two
complementary metrics: while MCC statistically measures the
accuracy of the predictions obtained by the classifier, the AUC-
ROC gives an indication on its robustness [50] (i.e., how well
the classifier separates the binary classes).

As a final step of our analyses, we also statistically verified
the validity of our findings. To this aim, we exploited the
Scott-Knott ESD test [51]: this is an extension of the original
Scott-Knott test [52] that (i) applies a hierarchical clustering
algorithm to group together the performances of the cross-
project bug prediction models experimented based on the
statistically significance of the differences observed in terms of
MCC and AUC-ROC, and (ii) refines the clusters by merging

together groups whose differences are negligible in terms of
effect size [53].
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Figure 1. Boxplots of MCC achieved by the original ASCI (RF) and its
variants in the within-project bug prediction context.
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Figure 2. The likelihood of each technique in within prediction appearing
in the top Scott-Knott ESD rank in terms of MCC. Circle dots indicate the
median likelihood, while the error bars indicate the 95% confidence interval.
50% of likelihood means that a classification technique appears at the top-rank
for 50% of the studied datasets.

IV. ANALYSIS OF THE RESULTS

Figure 1 depicts the box plots of the MCC achieved on the
21 software systems in our dataset by the original version of
ASCI (RF) and its variants in the context of within-project
bug prediction (white asterisks highlight the means).

As shown, the original version of ASCI based on RANDOM
FOREST (RF) has similar performances as its variants. Indeed,
the median MCC achieved by this model (e.g., 32%) is the
same as the ones based on DECISION TABLE, DECISION
TREE, MULTI-LAYER PERCEPTRON, and SUPPORT VECTOR
MACHINE. Moreover, when using simpler classifier as meta-
learner such as BINARY LOGISTIC REGRESSION and NAIVE
BAYES the performances drop only by 1% in term of median
MCC.



Figure 2 shows the likelihood of each analyzed models to
appear in the top Scott-Knott ESD rank. As expected there
is no statistical significance between the considered models.
Despite this, MULTI-LAYER PERCEPTRON is the classifier that
acts better as meta-learner when applied to ASCI.
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Figure 3. Boxplots of AUC-ROC achieved by the original ASCI (RF) and its
variants in the within-project bug prediction contexts.
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Figure 4. The likelihood of each technique in within and global/local cross
prediction appearing in the top Scott-Knott ESD rank in terms of AUC-ROC.
Circle dots indicate the median likelihood, while the error bars indicate the 95%
confidence interval. 50% of likelihood means that a classification technique
appears at the top-rank for 50% of the studied datasets.

As an additional analysis aimed at measuring the robustness
of the experimented models, we computed the Area Under
the ROC Curve (AUC-ROC). Figure 3 shows the box plots
representing the performances of the within-project models
in terms of AUC-ROC. This analysis confirms our previous
findings (achieved in terms of MCC). Indeed, the selection
of meta-learner does not strongly influence the performance
achieved by ASCI. Indeed, all the models achieve 70% in
terms of AUC-ROC. These results are further confirmed by
the Scott-Knott ESD test in Figure 4.

Summary for RQ1. In the context of within-project
bug prediction, the selection of the meta-learner has not
strong influence in the results achieved by an adaptive
method for the dynamic selection of classifiers. The use
of the MULTI-LAYER PERCEPTRON classifier as meta-
learner improves the performances in a negligible way.
The use of lightweight classifiers such as NAIVE BAYES
or LOGISTIC REGRESSION is suggested.

V. THREATS TO VALIDITY

In this section we discuss the threats that might affect the
validity of the empirical study conducted in this paper.

Threats to construct validity. Threats in this category
regard the relationship between theory and observation. In
our work, a threat is represented by the dataset we relied on.
The dataset comes from the PROMISE repository [13], which is
widely considered reliable and, indeed, has been also used in
several previous work in the field of bug prediction [3], [4], [6],
[8], [10], [18], [54], [55]. Although we cannot exclude possible
imprecisions and/or incompleteness of the data used in the
study, we applied a formal data preprocessing recommended
by Shepperd et al. [41], which allowed us to reduce noise and
remove erroneous entries present in the considered datasets.
Moreover, it is important to note that to produce stable results
we just considered software systems having less than 50% of
buggy classes [39].

As for the experimented prediction models, we exploited
the implementation provided by the WEKA framework [56],
which is widely considered as a reliable source.

We are aware of the importance of parameter tuning for bug
prediction models. To minimize this threat we used the default
parameters for each classifier used in our study, since finding
the best configuration for all of them would have been too
expensive [47].

Threats to conclusion validity. They are related to the
relation between treatment and outcome. To reduce the impact
of the adopted validation methodology, we relied on the 10-
Fold Cross Validation methodology [48]. It is important to note
that we repeated the 10-fold validation 100 times (each time
with a different seed) to cope with the randomness arising from
using different data splits [49].

To ensure that the results would have not been biased by
confounding effects due to data unbalance [45] or highly
correlated independent variables [57], we adopted formal
procedures aimed at (i) over-sampling the training sets [45]
and (ii) removing non-relevant independent variables through
feature selection [43].

As for the evaluation of the performances of the experi-
mented models, we considered AUC-ROC and MCC, which
have been highly recommended by Hall et al. [49] to correctly
interpret the results. We excluded, instead, other widely-used
metrics such as precision, recall, and F-Measure [58] because
they are threshold-dependent and possibly hide the actual
performances of bug prediction models [49].



Threats to external validity. These are threats concerned
with the generalizability of the findings. We analyzed 21
different software projects coming from different application
domains and having different characteristics (i.e., developers,
size, number of components, etc.).

Finally, it is important to note that we built models based on
code metrics: as part of our future research agenda, we aim at
analyzing the impact of process- (e.g., the entropy of changes
proposed by [59]) and developer-related (e.g., the number of
developers working on a code component [16] [29]) metrics
on our findings.

VI. CONCLUSION

In this paper, we aimed at evaluating the role of the meta-
learner selection in ASCI, an adaptive method for the dynamic
selection of classifiers, in the context of within-project bug
prediction. Specifically, we compared the performances of the
original version of ASCI using RANDOM FOREST as meta-
learner with six variants using different classifiers. The case
study has been conducted on a set of 21 software projects from
the PROMISE dataset.

We found that the meta-learner selected when using ASCI
has not a strong impact on the prediction performance in
the context of within-project bug prediction. Using MULTI-
LAYER PERCEPTRON classifier as meta-learner increases the
performances only in a negligible way. Hence, lightweight
classifiers such as NAIVE BAYES or LOGISTIC REGRESSION
should be preferred as meta-learner for ASCI with respect to
RANDOM FOREST.

As future work, we plan to replicate the study in a different
context such as cross-project bug prediction. Moreover, we plan
to study (i) the role of the meta-learners in other ensemble
techniques such as CODEP [4] and (ii) the impact of the
ensemble techniques relying on a single classifier such as
BOOSTING and BAGGING [7] on the its performance.
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