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Abstract12

Many functions in libraries and APIs have the notion of optional parameters, which can be13

mapped onto optional properties of an object representing those parameters. The fact that14

properties are optional opens up the possibility for APIs and libraries to design a complex “de-15

pendency logic” between properties: for example, some properties may be mutually exclusive,16

some properties may depend on others, etc. Existing type systems are not strong enough to17

express such dependency logic, which can lead to the creation of invalid objects and accidental18

usage of absent properties. In this paper we propose TypeScriptIPC: a variant of TypeScript19

with a novel type system that enables programmers to express complex presence constraints20

on properties. We prove that it is sound with respect to enforcing complex dependency logic21

defined by the programmer when an object is created, modified or accessed.22

2012 ACM Subject Classification Software and its engineering→ Object oriented languages,23

Theory of computation → Type theory, Software and its engineering → Data types and struc-24

tures25
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1 Introduction28

Static type checking enables the compile-time detection of type errors in programs, which29

would otherwise occur at run-time. To enable static type checking, developers have to30

include type declarations in their code. These type declarations also serve as documentation,31

which facilitates reasoning over code. Early type systems only describe the basic type32

of the values that could be stored in a variable, but throughout the years more complex33

types have been introduced, such as intersection types [26], union types, linear types [16]34

and dependent types [22]. Using these more expressive types, developers can express35

more sophisticated programs while retaining the compile-time guarantee that their code is36

correct.37

Dynamically typed languages have given rise to new challenges in type systems, such38

as flow-sensitivity and optional types. One such challenge in particular is using the absence39
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14:2 Static typing of complex presence constraints in interfaces

or presence of parameters to encode information. For example, a search function might40

require that at least one filter is specified, or objects might only be considered valid if a41

group of properties are all present or all absent. For singular properties, optional types42

can already express this. However, in order to fully resolve this challenge using static type43

systems, these inter-property constraints must be made explicit.44

These types of constraints are common for Web APIs [24], where the presence of a45

property can determine the structure of other properties in the object of which it is a46

member, or where the presence of a property even excludes other properties. However,47

inter-property constraints also exist in programming languages and libraries. We show48

several examples of inter-property constraints, classified into three categories:49

Exclusive constraints: exactly one of a set of properties must be present. In the Twitter50

API, users can be identified by either their user_id or their screen_name. Another51

example is found in the Python standard library, where the function os.utime2 sets52

both the access and modification time of a file. The documentation describes that the53

function takes two optional parameters to set the time: times and ns, moreover it states54

that “It is an error to specify tuples for both times and ns ”.55

Dependent constraints: constraints on a property depend on the presence or the value56

of another property. For example, properties explaining details of a picture (name,57

description) should not be present if the picture property itself is not present either. In58

Chart.js, a library for designing charts in JavaScript, the documentation for lines in a59

chart states that “If the steppedLine value is set to anything other than false, lineTension60

will be ignored”.361

Group constraints: a group of properties should either all be present or not present62

in an object. For example, latitude and longitude properties of a GPS location should63

always occur (or be omitted) together.64

We will use a running example from the Twitter API specification to demonstrate that65

state-of-the-art interfaces do not suffice to describe inter-property constraints. Table 166

shows the specification for sending a private message, with a typical translation to a67

TypeScript interface in Listing 1. Every object that contains the input data for sending a68

private message should adhere to the PrivateMessage interface.69

Property name Optional? Description
text required The text of your direct message.

user_id optional ID of the user who should receive the direct message.
screen_name optional Screen name of the user who should receive the direct message.

Note: One of user_id or screen_name are required.4

Table 1 Twitter API documentation for sending private messages5

The accompanying note in Table 1 indicates that there is an exclusive constraint imposed70

on the user properties. However, in TypeScript (and also in other languages) it is impossible71

to express that exactly one of user_id and screen_name is required. The question marks72

2 https://docs.python.org/3/library/os.html#os.utime
3 http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
4 At the time of writing, the note below the table was explicitly mentioned in the API. Recently, the

description has changed — omitting the note — but the constraint still holds.
5 https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/

api-reference/new-message

https://docs.python.org/3/library/os.html#os.utime
http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message
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after user_id and screen_name in Listing 1 denote that these properties are optional,73

but this means that the type system accepts objects containing none or both of the user74

properties. Similarly, a group constraint with latitude and longitude properties cannot be75

expressed: one can mark both properties as optional, but the type system will not reject76

the program when only one property is provided.77

78
1 interface PrivateMessage {79

2 text: string ;80

3 user_id ?: number ;81

4 screen_name ?: string ;82

5 }8384

Listing 1 TypeScript interface for the specification in Table 1

The lack of support for inter-property constraints in existing programming languages85

causes errors to be delegated to the runtime. In the best case, the API or library provides a86

detailed error message, stating which properties were incompatible. Sometimes no error87

message is returned at all, and a silent choice is made instead: if both user properties are88

provided, Twitter silently chooses the screen name over the user ID.89

Existing type systems are incapable of expressing inter-property constraints and stat-90

ically checking these constraints both at construction time and during updates. In this91

paper we describe a type system that can express such complex presence constraints over92

multiple properties of an object. We show how interfaces with support for inter-property93

constraints can be incorporated in programming languages in Section 2, and describe the94

key features of the type system in Section 3. Sections 4 and 5 present the formalisations of95

the language, as a variant of TypeScript. We prove that the type system enforces both type96

safety and constraint integrity (Section 6). Sections 7 and 8 discuss related work and future97

work, respectively. Section 9 contains concluding remarks.98

2 Programming with Inter-property Constraints99

In this section, we propose a syntax for expressing inter-property constraints and explain100

intuitively how they can be used. Unless otherwise noted, every code snippet in the101

rest of this paper is written in TypeScriptIPC, our version of TypeScript with support for102

inter-property constraints. The syntax of TypeScriptIPC differs little from the syntax of103

TypeScript. Instead, the type system makes optimal use of the information provided by the104

program about the structure of objects.105

2.1 Definition of interfaces with constraints106

To handle inter-property constraints, the interface declaration syntax needs to be extended.107

Listing 2 shows an example of an interface declaration, revisiting the Twitter specification108

we showed in Table 1. Interfaces now consist of two parts: next to the traditional property109

name–type declarations, they also contain a list of constraints over the presence and absence110

of those properties. The syntax of constraints is as follows:111

c ∈ Constraints ::= present(n) | (c) | c∧ c | c∨ c | ¬c | c→ c | c↔ c | c xor c112

As opposed to TypeScript and many other languages — where properties are required113

by default and can be made optional with a ? annotation — properties in TypeScriptIPC114

are optional by default and are made required by adding a present(n) constraint.115

ECOOP 2018



14:4 Static typing of complex presence constraints in interfaces

Lines 2–4 list the three properties for PrivateMessage, and their types in TypeScriptIPC.116

Lines 6 and 7 denote the constraints on the presence of those three properties. To improve117

the expressiveness of interfaces, constraints on the presence of a property can be combined118

with logical operators. The PrivateMessage interface lists two presence constraints: line 6119

requires the presence of the text property and line 7 is the inter-property constraint from120

our running example. Objects can only be of an interface type if all its constraints are121

satisfied.122

123
1 interface PrivateMessage {124

2 text: string ;125

3 user_id : number ;126

4 screen_name : string ;127

5 } constraining {128

6 present (text );129

7 present ( user_id ) xor present ( screen_name );130

8 }131132

Listing 2 Twitter private messaging API data expressed as interface with constraints

The constraint definition language does not list optional properties as an explicit133

constraint operation, as this can be expressed by the following constraint: present(n) ∨134

¬present(n), which is a tautology.135

Listing 3 shows another example of inter-property constraints, describing an interface136

of a picture object with required caption (line 7) and optional geolocation. However, the137

lat and long properties are dependent on the picture property: if the picture itself is138

not provided, the location should be omitted as well. In other words: the presence of the139

location properties implies that the picture must be present as well. These constraints are140

defined on lines 8 and 9. The fourth constraint on line 10 requires that the latitude and141

longitude properties are present or absent together.142

143
1 interface Picture {144

2 caption : string ;145

3 picture : string ;146

4 lat: number ;147

5 long: number ;148

6 } constraining {149

7 present ( caption );150

8 present (lat) → present ( picture );151

9 present (long) → present ( picture );152

10 present (lat) ↔ present (long );153

11 }154155

Listing 3 Interface with dependent and group inter-property constraints

Interfaces with inter-property constraints can also benefit from interface inheritance. For156

example, let us consider the case where we want a stricter version of the PrivateMessage157

interface in which only the screen name is allowed. Instead of creating a new interface,158

the existing interface can also be extended with extra constraints. Listing 4 shows an159

interface in which all properties and constraints of PrivateMessage are inherited, with an160

additional present(screen_name) constraint. As the xor constraint from PrivateMessage161

is still applicable, this interface implicitly forbids the presence of a user_id property.162

163
1 interface PrivateMessageStrict extends PrivateMessage {164

2 // reuse properties from PrivateMessage165

3 } constraining {166

4 present ( screen_name );167

5 }168169

Listing 4 Extending PrivateMessage to require the screen name property
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2.2 Object creation170

Listing 5 shows how three objects are created and assigned to three variables of type171

PrivateMessage. Even though the interface contains inter-property constraints, nothing172

changes for the programmer on a syntactical level. To type check this code snippet properly,173

the type system has to verify that the interface constraints are satisfied for that object. In the174

example, the first object (msg1) satisfies all constraints, including the exclusive constraint:175

only user_id is passed along as identification for the user. However, the type system has176

to generate errors for msg2 and msg3, as they both violate the exclusive constraint.177

178
1 var msg1: PrivateMessage = {text: "Hello", user_id : 42}; // correct179

2 var msg2: PrivateMessage = {text: "Hello"}; // error: none present180

3 var msg3: PrivateMessage = {text: "Hello",181

4 user_id : 42,182

5 screen_name : "Alice"}; // error: both present183184

Listing 5 Creating objects with inter-property constraints

The type system also needs to ensure that no constraints are violated when expressions185

with different interface types are assigned to each other, or when an instance of an interface186

is assigned to a variable with a regular object literal type.187

2.3 Property access188

When inter-property constraints are involved, reading object properties requires extra189

caution. The type system should only allow the access of a property when that property is190

guaranteed to be present. For example, the property text in the PrivateMessage interface191

is a required property and thus it is certain this property is always present in objects of192

type PrivateMessage.193

By contrast, the type system should reject programs where other properties of a194

PrivateMessage object are accessed. The exclusive constraint guarantees that exactly195

one of user_id and screen_name will be present, but it is not known which property196

actually is. The function getUserId (defined in Listing 6) tries to read the user_id of a197

PrivateMessage, which generates a type error as this property access is unsafe.198

To prevent errors from accessing undefined properties, programmers must verify199

whether properties are present before using them. For example, the function getUser first200

performs a test to check whether user_id is present. Inside the true branch, access to the201

user ID (line 6) must be allowed. Additionally, because there is an inter-property constraint202

between user_id and screen_name, the screen_name property is guaranteed to be absent203

even though we did not explicitly test for it. The inverse holds in the false branch.204

Similarly, in the function getLocation (which retrieves the longitude and latitude of a205

picture), the type system has to allow the access of long, which follows directly from the if206

statement. On top of that, the type system should also accept accessing the properties lat207

and picture, which are both guaranteed to be present if long is present.208

209
1 function getUserId (msg: PrivateMessage ) : number {210

2 return msg. user_id ; // error: user_id is not guaranteed to be present211

3 }212

4 function getUser (msg: PrivateMessage ) {213

5 if (msg. user_id !== undefined ) {214

6 msg. user_id ; // :: number ( present due to if statement )215

7 msg. screen_name ; // :: undefined (not present due to xor constraint )216

8 } else {217

9 msg. user_id ; // :: undefined (not present due to if statement )218

10 msg. screen_name ; // :: string ( present due to xor constraint )219

ECOOP 2018



14:6 Static typing of complex presence constraints in interfaces

11 }220

12 }221

13 function getLocation ( picture : Picture ) {222

14 if ( picture .long !== undefined ) {223

15 picture .long; // :: number ( present due to if statement224

16 picture .lat; // :: number ( present due to group constraint )225

17 picture . picture ; // :: string ( present due to dependent constraint )226

18 }227

19 }228229

Listing 6 Accessing properties

2.4 Property updates230

As with every object-oriented type system, the assignment of a new value to a property of an231

object should only succeed when the value is of the correct type. Inter-property constraints232

add an extra complication: assigning to a property might invalidate an inter-property233

constraint.234

Updating a property that was already guaranteed to be present is safe: the previous235

section showed that the type system will only assign the intended type to properties that236

are known to be present. Line 2 in Listing 7 illustrates this with the text property. The237

update of the user_id property on line 4 will fail, however: the type system disallows the238

property access, as explained in the previous section.239

Note that it is not allowed to assign the value undefined to properties of any type240

except Undefined, as this would make a required property absent (line 3). This principle241

is known as the strict null-checking mode of TypeScript. In Listing 7, it is only allowed to242

assign undefined to screen_name (line 8), as this property is known to be absent inside243

the consequent of the if statement.244

245
1 function setMsg (msg: PrivateMessage , text: string , user_id : number ) {246

2 msg.text = text; // ok247

3 msg.text = undefined ; // error: assigning undefined to present property248

4 msg. user_id = user_id ;// error: property with unknown presence status249

5250

6 if (msg. user_id !== undefined ) {251

7 msg. user_id = user_id ; // ok252

8 msg. screen_name = undefined ; // ok253

9 }254

10 }255256

Listing 7 Updating properties

The examples of Listing 7 only modify one property at a time. However, an inter-257

property constraint often requires the modification of several properties at once, as the258

object could be in a type-incorrect state inbetween several assignments. Let us consider the259

case in Listing 8 where a programmer wants to switch from user ID to screen name. The260

type system rejects this program, as it breaks the rules imposed by the strict-null checking261

mode. This behaviour is desirable: inbetween lines 3 and 4, the inter-property constraint of262

msg is violated: it contains neither user ID nor screen name.263

264
1 var msg: PrivateMessage = {text: "Hello", user_id : 42};265

2 if (msg. user_id !== undefined ) {266

3 msg. user_id = undefined ;267

4 msg. screen_name = "Alice";268

5 }269270

Listing 8 Changing an inter-property constraint is not possible with separate assignments



N. Oostvogels, J. De Koster, W. De Meuter 14:7

Our solution is to enable updating of multiple properties simultaneously, such that the271

object is never in an invalid state between consecutive assignment statements. We propose272

an assign(i, o) operator6 that returns a copy of object i, in which the properties from the273

object o are added or updated. Listing 9 shows how the assign operator switches from274

user_id to screen_name. Note that assign is functional: instead of modifying its first275

arguments, it returns a new object.276

277
1 var msg: PrivateMessage = {text: "Hello", user_id : 42};278

2 var msg2: PrivateMessage =279

3 assign (msg , { user_id : undefined , screen_name : "Alice"}); // correct280

4 var msg3: PrivateMessage =281

5 assign (msg , { user_id : undefined }); // incorrect282283

Listing 9 Using multi-assign to switch from user ID to screen name

While programmers can update any subset of the properties of an object, not all284

combinations are correct, as the msg3 example above shows. Intuitively, if an inter-property285

constraint exists between two or more properties, they should all appear together in the286

call to assign. The properties of an object can thus be divided into one or more “clusters”.287

For example a Picture object has a trivial cluster for caption, and a separate cluster for288

the long, lat and picture properties.289

3 Verifying Constraints in TypeScript290

The addition of constraints to interfaces has consequences on several facets of the type291

system. In the following sections, we explain how the type system of TypeScriptIPC deals292

with the creation, modification, and access of properties of interfaces with constraints.293

Because the constraint language expresses constraints with logical connectives, the type294

system uses several concepts from propositional logic to guarantee correctness.295

3.1 Object literals have to satisfy constraints296

The type system only accepts the assignment of an object literal to a variable with an297

interface type when that object satisfies the interface constraints. Using terminology from298

propositional logic, the type system requires that the object literal is a valuation [15] that299

satisfies the logical formulas of the interface (constraints). More specifically, an object300

literal defines a valuation, assigning truth values (presence and absence of properties)301

to proposition symbols (property names). Moreover, for every valuation v there exists a302

unique function v̂ which takes a proposition (here: the constraints) and returns true or303

false.304

3.2 Constraints dictate property presence305

As with other type systems, interface declarations contain a list of properties with their306

types. However, looking up a property of an interface may only succeed when the307

interface contains a constraint indicating that property is present. Of course, with complex308

inter-property constraints, these constraints may not be directly present in the constraint309

set. Instead, the type system relies on logical entailment (denoted �`) to verify whether a310

present(n) constraint follows from a set of constraints. Calculating logical entailments311

6 assign resembles the Object.assign function in JavaScript, but does not modify its input object.

ECOOP 2018



14:8 Static typing of complex presence constraints in interfaces

can be efficiently automated using deductive systems such as the Gentzen system [15].312

Returning to the PrivateMessage example, the type system verifies the following logical313

entailment for accessing the text property:314

{present(text); present(user_id) xor present(screen_name)} �` present(text)315

Similarly, inter-property constraints can also guarantee the absence of a property. In316

the case where neither the presence or absence of a property can be derived from the317

constraints, the type system should conservatively reject the access of that property. This318

also follows from the logical entailment. For example, the type checker rejects the function319

getUserId of Listing 6, because neither the presence nor the absence of user_id is a logical320

consequence of the interface constraints:321

{present(text); present(user_id) xor present(screen_name)} 2` present(user_id)322

{present(text); present(user_id) xor present(screen_name)} 2` ¬present(user_id)323
324

3.3 Explicit property presence tests325

In dynamic languages, it is common to perform runtime property presence tests. These326

presence tests can provide the type system with more information about the object being327

tested: in one branch it is certain that the property is present, while it is guaranteed to328

be absent in the other. For the true branch in the function getUser of Listing 6, the type329

system simply adds the new information (present(user_id)) to the set of constraints, to330

allow the access of the user_id property.331

That extra information can trigger other inter-property constraints, thus guaranteeing
the presence or absence of other properties. Using logical entailment, the type system can
prove that screen_name will not be present:

present(text);
present(user_id) xor present(screen_name);
present(user_id);

 �` ¬present(screen_name)

Similarly, the presence check on longitude in getLocation guarantees that the longit-332

ude is present, but also suffices to safely access latitude (by combining the constraint333

present(long) ↔ present(lat) with present(long)) and the picture itself (combining334

constraints present(long)→ present(picture) and present(long)).335

3.4 Interface–interface compatibility336

Normally, an instance of interface I0 is considered assignable to a variable with as type337

another interface I1 if I0 contains at least every property and method in the other interface.338

However, with the addition of constraints we must also take care that no instance of I0339

violates the constraints in I1. To guarantee that all constraints of I1 are satisfied, every340

constraint from I1 must be a logical entailment of the constraints in I0. Properties which341

are absent from I0 result in extra ¬present(n) constraints at the left-hand side of the342

entailment.343

For example, assigning a variable with a more strict interface type PrivateMessage2
(defined in Figure 1) to a variable of type PrivateMessage, gives rise to the following logical
entailment. Next to the constraints of PrivateMessage, the left side of the logical entailment
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1 interface PrivateMessage1 {
2 text: string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text );
7 present ( user_id );
8 present ( screen_name );
9 }

interface PrivateMessage2 {
text: string ;
user_id : number ;

} constraining {
present (text );
present ( user_id );

}

Figure 1 Other versions of the PrivateMessage interface

contains an extra constraint due the absence of the screen name in PrivateMessage2.
Without the third constraint, the logical entailment would not be valid.


present(text);
present(user_id);
¬present(screen_name)

 �` present(text) ∧
present(user_id) xor present(screen_name)

As for properties, one might expect that I0 may contain a superset of the properties in I1.344

However, this can lead to constraint violations: consider the following example, with two345

variations on the PrivateMessage interface (defined in Figure 1).346

347
1 var msg1: PrivateMessage1 = {text:"Hello",user_id :42, screen_name :"Alice"};348

2 var msg2: PrivateMessage2 = msg1;349

3 var msg3: PrivateMessage = msg2;350351

On line 2, a variable of type PrivateMessage1 is assigned to a variable of type352

PrivateMessage2 and line 3 assigns a variable of type PrivateMessage2 to a variable353

of the default PrivateMessage interface: both assignments would be allowed, as no con-354

straints are violated. However, line 3 would result in an object of type PrivateMessage355

that contains both user_id and screen_name, violating its constraints.356

Evidently, width subtyping is irreconcilable with a type system that requires the absence357

of properties. Therefore, the type system has to counter-intuitively require that the interface358

I0 only contains properties other than those in I1 when those properties are guaranteed to359

be absent. This is not the case for the second assignment (line 2) in the example:360

361 {
present(text); present(user_id); present(screen_name)

}
2` ¬present(screen_name)362

3.5 Updated objects have to satisfy constraints363

To verify that all constraints are still satisfied after a simultaneous update of multiple364

properties, the type system again uses valuations. However, as the update only affects a365

subset of the properties, the object literal in the second argument only serves as a valuation366

for a subset of the constraints.367

Consider the following example of an interface that indicates both the sender (with the368

s_* properties) and the receiver (r_*). Logically, these properties form separate clusters369

that are not affected by each other.370

ECOOP 2018



14:10 Static typing of complex presence constraints in interfaces

1 interface PrivateMessage3 {
2 text: string ;
3 r_user_id : number ;
4 r_screen_name : string ;
5 s_user_id : number
6 s_screen_name : string ;
7 } constraining {
8 present (text );
9 r_user_id xor r_screen_name ;

10 s_user_id xor s_screen_name ;
11 }

var msg: PrivateMessage3 =
{text: "Hello",

r_user_id : 42,
s_user_id : 43};

var msg2 = assign (msg ,
{ r_user_id : undefined ,

r_screen_name : "Alice"});

371

The assign at the right side only updates the receiver of the private message. Therefore,372

the constraints for the sender side do not have to be taken into account: the assign373

operation type checks if the object literal is a valid valuation of the constraint on line 9.374

This is the case, as undefined is interpreted as an absent property. Of course, the types375

of properties in the object literal must conform to those defined in the interface (with the376

exception of undefined properties). Note that an update is only valid when all properties377

of the cluster are updated.378

4 TypeScriptIPC: A Variant of TypeScript with Constraints379

Section 2 showed how constraints on the presence of properties can be added to TypeScript’s380

interfaces and Section 3 gave an informal idea of how the type system statically enforces381

that constraints stay satisfied throughout the program. In this section, we formalise these382

ideas in TypeScriptIPC, a variant of TypeScript.383

TypeScript is an extension of JavaScript which adds optional static typing. It provides384

extra features over JavaScript such as structural typing and named interfaces. To ensure385

compatibility with existing JavaScript code, type annotations in TypeScript are optional386

which enables developers to gradually convert existing JavaScript code to TypeScript.387

This section introduces TypeScriptIPC. The syntax, semantics and type rules presented388

in this section build upon those presented by Bierman et al. [7]. They present the type389

system in two parts: the first is a safe calculus (called safeFTS) which contains the core390

features of TypeScript, including structural typing, contextual types and the lack of block391

scoping in JavaScript. The second part expands safeFTS to a production-ready calculus,392

which is unsafe.393

TypeScriptIPC reuses most of safeFTS’s features, which are based upon TypeScript 0.9.5.394

However, as checking the presence or absence of properties is a key feature of TypeScriptIPC,395

we use the subtyping rules from the strict null checking mode in TypeScript 2.0. These396

make it illegal to assign null and undefined to variables of any other type, unless explicitly397

allowed.398

Our variant of TypeScript with constraints will focus on objects and interfaces. Contex-399

tual typing and constructs to deal with the lack of block scoping are omitted for clarity.400

As they are orthogonal to object creation and interfaces, they can be trivially added to the401

language presented in this paper.402

4.1 Syntax403

Figure 2 presents the syntax of TypeScriptIPC, which is based on the syntax presented404

in [7]. It features basic language expressions such as identifiers, literals, assignment and405

binary operators. Literals can be numbers n, strings s, or one of the following constants:406
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e, f ∈ Expressions ::= x (Identifier)
l (Literal)
{a} (Object literal)
e = f (Assignment operator)
assign(e, {a}) (Assign operator)
e ⊗ f (Binary operator)
e.n (Property access)
e(f) (Function call)
<T>e (Type assertion)
function (x : T) : S {s} (Function expression)

a ∈ Property assignments ::= n : e (Property assignment)
s, t ∈ Statements ::= e; (Expression statement)

if (e) {s} else {t} (If statement)
return; (Return statement)
return e; (Return value statement)
var x:T = e (Variable declaration)

Figure 2 Syntax of TypeScriptIPC

true, false, null and undefined, where null indicates the empty object and undefined407

is returned when accessing a property that is not present in an object.408

Objects are defined using object literals, which map property names to values. Multiple409

properties of an object can be updated at once using assign. This function returns a410

new object that contains all properties of the first argument. Properties from the second411

argument are either updated (when already present in the first argument) or added (other-412

wise). Function expressions are similar to those in JavaScript, but with type annotations413

for the parameters. Expressions can be cast to a type, but only when the cast is known to414

be correct. Statements and variable declarations are straightforward. TypeScriptIPC only415

features variable declarations where the type and the value for the variable are provided.416

The empty sequence is denoted with •, a concatenation is denoted using a comma, and417

a sequence of expressions is written as e. A sequence of property assignments {n : e} is an418

abbreviation for {n1 : e1, . . . , nn : en}, with n the length of the sequence. Similarly, (x : T)419

is a sequence of function arguments (x1 : T1, . . . , xn : Tn).420

To reduce the size and complexity of our formalisation, we omit parts of safeFTS that do421

not contribute to the necessary adaptations for inter-property constraints. More specifically,422

TypeScriptIPC does not support computed property accesses, untyped identifiers, call423

signatures without parameter types or return types, and untyped and uninitialised variable424

declarations.425

Figure 3 shows that TypeScriptIPC has three kinds of types: the top type any, primitive426

types and object types. An object type is represented by either a literal type or an interface427

type. Note that functions are represented as callable objects that contain one field with428

its type of the form (x : S):T. A sequence of types is denoted as T, and the sequence of429

properties and call signatures is analogous to their corresponding value sequences.430

Interfaces play a key role in expressing inter-property constraints, and their declaration431
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R, S, T ∈ Types ::= any
P
O

P ∈ Primitive types ::= number
string
boolean
void
Null
Undefined

O ∈ Object types ::= I (Interface type)
L (Literal type)

L ∈ Object literal types ::= {M}
M, N ∈ Type members ::= n:T (Property)

(x : S):T (Call signature)

Figure 3 Types of TypeScriptIPC

in TypeScriptIPC is different from other languages:432

D ∈ Declarations ::=

{
interface I {n : T} constraining {c}
interface I extends I {n : T} constraining {c} (I non-empty)

433

TypeScriptIPC interfaces first list the property (field or method) names, together with434

their types as usual. However, constraints on the presence of a property are specified in the435

constraining section, using the syntax presented in Section 2.1. By default, all properties436

are optional unless marked as present. In addition, the constraining section can impose437

inter-property constraints on properties of the interface. Interfaces can inherit properties438

and constraints from other interfaces. TypeScriptIPC does not allow interfaces to define439

properties with the same name as any of their superinterfaces. Furthermore, all properties440

are public.441

To retrieve the properties and constraints from a given interface, we define two auxiliary442

functions properties and constraints. Analogous to the inheritance of properties, constraints443

from the superinterfaces are simply accumulated.444

Property lookup (1)
Σi(I) = interface I {n : T} constraining {c}

properties(I) = {n : T}

Property lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

properties(I) = {n : T} ∪ properties(I)

Constraint lookup (1)
Σi(I) = interface I {n : T} constraining {c}

constraints(I) = {c}

Constraint lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

constraints(I) = {c} ∪ constraints(I)

Before analysis starts, all interface declarations are gathered and stored in a mapping445

Σi of interface names I to their respective declaration D. As in safeFTS, a program is a pair446
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(Σi, s) containing an interface table and a sequence of statements. TypeScriptIPC requires447

every interface to satisfy a set of sanity conditions:448

1. For every I ∈ dom(Σi), Σi(I) = interface I {n : T} constraining {c} or Σi(I) =449

interface I extends I {n : T} constraining {c};450

2. for every interface name I appearing anywhere in Σi, it is the case that I ∈ dom(Σi);451

3. there are no cycles in the dependency graph induced by the extends clauses of the452

interface declarations defined in Σi;453

4. for every interface name I in dom(Σi), there exists at least one valuation (that assigns454

truth values (indicating presence or absence) to proposition symbols (property names))455

that satisfies the constraints (constraints(I));456

5. for every interface name I in dom(Σi), none of the properties of I is allowed to be of457

type any or Undefined.458

The first three sanity conditions are common, and almost identical to those in safeFTS,459

the latter two are specifically for interfaces with inter-property constraints. The fourth460

condition prevents the declaration of interfaces with inherent contradictions, and the fifth461

condition prevents the assignment of undefined to an object property, which — at runtime462

— is equal to an absent property.463

4.2 Type System464

In this section we present the type system of TypeScriptIPC. Figure 4 shows the type rules of465

TypeScriptIPC, which are based on those of safeFTS. For clarity, we omit contextual typing466

and JavaScript’s lack of block scoping from the typing rules, which are orthogonal exten-467

sions to the contribution in this paper. The typing judgement is written as follows: Γ ` e : T,468

where given an environment Γ the expression e is of type T. Γ maps variables to types469

(x : T) and is extended as follows: Γ, x : T. For sequences, we write Γ ` e : T as shorthand470

for Γ ` e1 : T1, . . . , Γ ` en : Tn, with n the length of the sequence. S 5 T is an abbreviation471

for S1 5 T, . . . , Sn 5 T and we write S 5 T as shorthand for S1 5 T1, . . . , Sn 5 Tn.472

The rules that do not (directly) deal with interfaces are standard: I-Id looks up a variable473

in the environment. I-Number, I-String, I-Bool, I-Null and I-Undefined all type check a474

constant. The type of an object literal is a mapping of all property names onto the type of475

their expression (I-ObLit). In I-Op, the type system checks that the parameters have the476

expected type.477

4.2.1 Property lookup478

I-Prop first retrieves the type of the object, and then determines the type of the property479

using the lookup function:480

lookup(S, n) =



lookup(Number, n) if S = number

lookup(Boolean, n) if S = boolean

lookup(String, n) if S = string

T if S = {M0, n:T, M1}
lookup(Object, n) if S = {M} and n /∈ M

T if S = I and n : T ∈ properties(I)

and constraints(I) �` present(n)

Undefined if S = I and n : T ∈ properties(I)

and constraints(I) �` ¬present(n)

481
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I-Id
Γ, x:T ` x:T

I-Number
Γ ` n : number

I-String
Γ ` s : string

I-Bool
Γ ` true, false : boolean

I-Null
Γ ` null : Null

I-Undefined
Γ ` undefined : Undefined

I-ObLit Γ ` e : T
Γ ` {n : e} : {n : T}

I-Op
Γ ` e : S0 Γ ` f : S1 S0 ⊗ S1 = T

Γ ` e⊗ f:T
I-Prop

Γ ` e : S
lookup(S, n) = T

Γ ` e.n:T

I-Assign

Γ ` e : S Γ ` f:T
T 5 S

Γ ` e = f:T
I-Call

Γ ` e : {(x : S) : R}
Γ ` f : T T 5 S

Γ ` e(f) : R

I-Func
Γ, this : any, x : T ` s : R R 5 S

Γ ` function(x : T) : S {s} : {(x : T) : S}
I-Assert

Γ ` e : S
S 5 T

Γ ` <T>e : T

I-AssertInf

Γ ` {n : e} : {M} {Mp} = {n : T | n : T ∈ {M} ∧ T 6= Undefined}
{Mp} ⊆ properties(I) cp = {present(n) | n : T ∈ {Mp}}

{Mnp} = properties(I) \ {Mp} cnp = {¬present(n) | n : T ∈ {Mnp}}
v = cp ∪ cnp v̂(constraints(I)) = true

Γ ` <I>{n : e} : I

I-UpdateObj
Γ ` e : {M} Γ ` {n : e} : {N}

Γ ` assign(e, {n : e}) : {M} ] {N}

I-UpdateInf

Γ ` e : I I′ = slice(I, n, constraints(I))
Γ ` <I′>{n : e} : I′ n ∈ dom(properties(I)) n = dom(properties(I′))

Γ ` assign(e, {n : e}) : I

Figure 4 Type rules of TypeScriptIPC

Properties of primitive types are looked up in their associated interface type (lines 1–3).482

Looking up a property in an object literal type is as expected (line 4). When the property is483

not found in the object literal type, the lookup function searches the property in the Object484

type (line 5). The last two lines show how a property is looked up in a TypeScriptIPC485

interface. Simply looking up the property in the list of interface properties does not suffice:486

as shown in Section 3.2, the constraints on an interface type dictate the presence of its487

properties. If the property is guaranteed to be present, lookup returns its type, otherwise it488

returns Undefined. If neither the presence nor the absence of a property can be guaranteed,489

the lookup function is not defined.490

4.2.2 Assignment Compatibility491

In I-Assign, a new expression may only be assigned to an expression when the new492

expression has a type that is assignable to the type of the original expression. Similarly,493
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I-Call uses the assignment compatibility relationship to check that the parameters of the494

function call have the correct type. When type checking a function definition, I-Func495

extends the environment as usual with the type declarations for the parameters, and type496

any for the this variable. The return types of the function body must all be assignable497

to the declared return type. As only safe casts are allowed in TypeScriptIPC, casting an498

expression to another type is only allowed when the original type is assignable to the cast499

type (I-Assert).500

The assignment compatibility relation is defined in Figure 5, and is based on the rules501

of safeFTS. In safeFTS, interfaces are replaced by corresponding object literals. When an502

interface (indirectly) references itself in its field declarations, this can lead to an infinite type503

expansion. To deal with this, safeFTS defines assignment compatibility as a coinductive504

relation, which guarantees termination. In TypeScriptIPC, on the other hand, interfaces505

cannot be replaced by object literals, as interfaces may also contain constraints. Thus,506

assignment compatibility for interface fields with interface types in TypeScriptIPC must be507

checked against the interface definition instead of via a coinductive relation.508

First, assignment compatibility is transitive (A-Trans) and reflexive (A-Refl). Any type509

can be assigned to any (A-AnyR). null can only be assigned to itself or any, and undefined510

can only be assigned to itself, any or void (A-Undefined). For assigning primitive types,511

A-Prim looks up their interface type. An object literal type can be assigned to another512

object literal type when all the properties of the source object are also present on the target513

object, and properties are assignable pairwise (A-Object). A-Prop defines that assigning514

properties to each other is invariant. Assigning call signatures is contra-/co-variant (A-CS515

and A-CS-Void). A-Interface is as discussed in Section 3.4: interfaces must be at least516

as strict as the target interface to be considered assignment-compatible, and common517

properties should have the same type. Extra properties on I0 are not allowed, unless their518

absence can be proven from the contraints. A-IntObj allows assigning an interface to an519

object when the constraints on the interface guarantee that all properties are present.520

Due to width subtyping, the type of an object does not guarantee that only those521

properties are present at runtime (as can be seen in A-Object). However, width subtyping522

conflicts with inter-property constraints, that may require properties to be absent: the523

assignment of an object to an interface could possibly invalidate the interface constraints at524

runtime. Therefore, there is no assignment compatibility rule for assigning an object to an525

interface: TypeScriptIPC only allows the casting of a literal object to an interface. This is526

covered by the rule I-AssertInf (covered in Section 4.2.3). By only allowing object literals527

(instead of all object literal types), the type system has an exact view of the properties that528

are present and can thus guarantee that the interface constraints are satisfied.529

A small study7 on web APIs indicates that this is not a severe restriction. The study530

explored a list of GitHub projects that use an SDK to send requests to the Twitter and531

YouTube API. In 163 of the 180 studied API calls, the data was provided as an object literal.532

In 14 out of the 17 cases where the data argument was not an object literal, the object was533

defined directly above the API call.534

Note that, as a consequence, the examples in Section 2 that create objects with inter-535

property constraints (Listing 5) are only accepted by the type checker if they are first536

typecast to PrivateMessage.537

7 http://soft.vub.ac.be/~noostvog/typescriptipc/olrestriction.pdf
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A-Trans
R 5 S S 5 T

R 5 T
A-Refl S ` �

S 5 S
A-AnyR S ` �

S 5 any

A-Undefined
Undefined 5 void

A-Prim
I(P) 5 T

P 5 T

A-Object
{M0, M1} ` � M1 5 M2

{M0, M1} 5 {M2}
A-Prop

n : T 5 n : T

A-CS

T 5 S R1 6= void
R0 5 R1

(x : S) : R0 5 (y : T) : R1
A-CS-Void

T 5 S R ` �
(x : S) : R 5 (y : T) : void

A-Interface

∀n : S ∈ properties(I0) ∧ n : T ∈ properties(I1) : S = T
c0 = {¬present(n) | n : T ∈ properties(I0) \ properties(I1)}
c1 = {¬present(n) | n : T ∈ properties(I1) \ properties(I0)}

constraints(I0) ∪ c1 �`
∧

constraints(I1)
∧

c0

I0 5 I1

A-IntObj
properties(I) 5 {M} {n : T} = {M} constraints(I) �` present(n)

I 5 {M}

Figure 5 Assignment compatibility for types in TypeScriptIPC

4.2.3 Creating and updating538

The rule I-AssertInf covers the case where an object literal is cast to an interface. As539

explained in Section 3.1, the cast only succeeds when the properties of the object have540

the correct type and the presence and absence of properties form a valid valuation of the541

constraints. A property is considered absent when it is not in the object literal, or when its542

type is Undefined.543

I-UpdateInf and I-UpdateObj cover updating multiple properties of an object at once,544

using the functional assign function (see Section 3.5). When the type of the first argument545

of assign is an object literal type, I-UpdateObj simply combines (updates or adds, when546

the property is already present resp. not present in the first argument) the properties of547

the second argument with the first, using ]. More caution is required when the type of548

e is an interface, as updating properties could invalidate the constraints. As the second549

argument does not necessarily contain every property of the interface, it does not suffice to550

check whether the new properties satisfy all the constraints. To solve this, I-UpdateInf uses551

the slice function (defined below) to generate an interface that only contains constraints552

concerning the properties that are being updated. Given this generated interface, rule553

I-AssertInf is reused to verify whether the updated properties satisfy the applicable subset554

of constraints. An assign fails if any of the updated properties are not declared in the555

interface I, or when not all properties of I’ are part of the second argument of assign.556

To preserve soundness, assign does not modify its first argument; instead it returns a557

fresh object. Allowing assign to mutate the object would impose severe usage restrictions558

(such as in Flow [10] and RSC [34]), or requires tracking aliases (such as in DJS [11]).559

slice returns the transitive closure of all properties and constraints of the given interface560
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which are affected by the properties being updated. Formally, slice is defined as follows. It561

uses an auxiliary function f v which takes a constraint and returns all referenced properties.562
563

slice(I, p, c) =

{
interface I′ {p} constraining {c} if (p, c) ≡ (p′, c′)

slice(I, p′, c′) otherwise
564

565

where c′ = c∪ {c | c ∈ constraints(I) ∧ f v(c) ∩ p 6= ∅}
p′ = p∪ { f v(c)|c ∈ c′}

566

4.2.4 Sequence typing567

Finally, Figure 6 shows the type rules for sequences, which are of the form Γ ` s : R, where568

given an environment Γ the sequence of statements s has a set of return types R. These569

return types are collected from all return statements in the sequence. This is used by the570

type system to verify whether the types of all return statements in a function are assignable571

to the declared return type.572

All rules are default and identical to those in safeFTS, except for the type rules for if573

statements. As with latent predicates in occurrence typing [33], the type system uses the574

presence tests inside conditions of if statements to refine interface types in the branches.575

I-IfPresenceInterface shows the case where the condition contains a property presence test576

(cfr. Section 3.3) for a property of an object with an interface type.577

The function addConstraint adds the constraints to the interface, and performs a satis-578

fiability check to verify that there are no inconsistent constraints in the extended constraint579

set. In the case of inconsistencies (ie. when the formula present(n) ∧ ¬present(n) can be580

proven for any n), addConstraint will return the bottom type Undefined, preventing access581

to an invalid object. The definition of addConstraint is straightforward and omitted for582

lack of space. Note that the type assignment for e is overwritten in both branches using ],583

leaving type assignments for other variables as-is. Although Figure 6 only defines rules for584

a single pattern of conditional expressions, the type rule can be generalised to inequalities585

and combined logical expressions, like in [33]. If statements without presence tests are586

covered by I-IfGeneral.587

5 Operational Semantics of TypeScriptIPC588

TypeScript is a superset of JavaScript that adds typing. However, after compilation,589

TypeScript emits JavaScript code in which all types are erased, which means that the590

semantics of TypeScript (and TypeScriptIPC) are the same of those of JavaScript. However,591

we provide the operational semantics of TypeScriptIPC, which will be used in Section 6 to592

prove its soundness.593

A heap H is a partial function from locations (l) to heap objects (o) . A heap object is594

either a closure or an object map. A closure represents a function, and is a pair containing595

a lambda expression (where function(x){s} is shortened to λx.{s}) and a scope chain596

L. An object map represents an object literal, and is a partial function from variables (x)597

to values (v). A variable is either a program variable x, a property name n or the internal598

properties @this or @interface. A value is a location l or a literal l. A result r is a value599

or a reference, and a reference is a pair containing a location and a variable.600

An empty heap is indicated by emp, a heap cell by l 7→ o, a heap lookup by H(l, x),601

a heap update by H[l 7→ o] and the union of two disjoint heaps is indicated by H1 ∗ H2.602

H[(l, x) 7→ v] updates or extends an object map l with the element x. H(l, x) ↓ is true603
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I-EmpSeq
Γ ` • : • I-ExpSt Γ ` e : S Γ ` s : R

Γ ` e; s : R

I-IfPresenceInterface

Γ ` x : I n : S ∈ properties(I) Γ ` s : R
I− = addConstraint(I,¬present(n)) Γ ] x : I− ` t1 : T1
I+ = addConstraint(I, present(n)) Γ ] x : I+ ` t2 : T2

Γ ` if (x.n ≡ undefined) {t1} else {t2}; s : T1, T2, R

I-IfGeneral

Γ ` e : S Γ ` t1 : T1
Γ ` t2 : T2 Γ ` s : R

Γ ` if (e) {t1} else {t2}; s : T1, T2, R
I-Return Γ ` s : R

Γ ` return; s : void, R

I-ReturnVal Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

I-ITVarDec
Γ ` e : T T 5 S noDup(Γ, x : S) Γ ] x : S ` s : R

Γ ` var x : S = e; s : R

Figure 6 Sequence type rules in TypeScriptIPC

iff H(l, x) is defined. We define a helper function γ(H, r) that returns r if r is a value,604

otherwise (i.e. r is a reference (l, x)) it returns H(l, x) if defined and undefined otherwise.605

null is a distinguished location, and may not be in the domain of the heap.606

The evaluation rules use a scope chain to model the treatment of variables in JavaScript:607

JavaScript resolves variables dynamically against a scope object. A scope chain is a list of608

locations of the scope objects, and l : L is a concatenation of a location l to a scope chain L.609

A program is evaluated with a scope chain containing only the global JavaScript object lg.610

For each function call, a new scope object is created and prepended to the beginning of the611

scope chain. After evaluating the function call, that scope object is removed from the scope612

chain. The variable lookup function σ is defined as follows:613

σ(H, l : L, x) =

{
l if H(l, x)↓
σ(H, L, x) otherwise

614

The evaluation of an expression e is written as follows: 〈H1, L, e〉 ⇓ 〈H2, r〉, with H1 as615

initial heap and L as scope chain, evaluating to heap H2 with result r. As we often need to616

evaluate expressions to values instead of references, we define 〈H1, L, e〉 ⇓v 〈H2, v〉 as the617

combination 〈H1, L, e〉 ⇓ 〈H2, r〉 and γ(H2, r) = v.618

Figure 7 shows the semantics for evaluating expressions in TypeScriptIPC. The evaluation619

rules of TypeScriptIPC are almost identical to those in safeFTS, but omit block scoping.620

E-Oblit uses an auxiliary function new to create a new location in the object map, E-Update621

uses the auxiliary function clone to duplicate an object, and E-Prop’ uses the auxiliary622

function box to box primitive values. Note that we do not create bindings for all local623

variables up front: they are added to the local scope as they are declared and initialised.624

E-Update and E-TypeAssertInf are new. E-Update evaluates the functional update of625

multiple properties at once, and E-TypeAssertInf covers the casting of an object literal to626

an interface. Next to evaluating the object literal (as in E-ObLit), the internal property627

@interface indicates that the expression is of interface type I. In the next section, this628

property is used for linking the run-time interface in a location to the declared type in the629
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E-Id
σ(H, L, x) = l

〈H, L, x〉 ⇓ 〈H, (l, x)〉
E-Lit

〈H, L, l〉 ⇓ 〈H, l〉

E-this

σ(H, L, @this) = l1
H(l1, @this) = l
〈H, L, this〉 ⇓ 〈H, l〉

E-Op

〈H0, L, e1〉 ⇓v 〈H1, l1〉
〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊗ e2〉 ⇓ 〈H2, l1 ⊗ l2〉

E-ObLit

H1 = H0 ∗ [l 7→ new()]
〈H1, L, e1〉 ⇓v 〈H′1, v1〉 H2 = H′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H′m, vm〉 H = H′m[(l, nm) 7→ vm]

〈H0, L, {n1 : e1, . . . , nm : em}〉 ⇓ 〈H, l〉

E-Assign
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) 7→ v], v〉

E-Update

〈H0, L, e〉 ⇓v 〈H′0, l〉 H1 = H′0 ∗ [lr 7→ clone(l)]
〈H1, L, e1〉 ⇓v 〈H′1, v1〉 H2 = H′1[(lr, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H′m, vm〉 H = H′m[(lr, nm) 7→ vm]

〈H0, L, assign(e, {n1 : e1, . . . , nm : em})〉 ⇓ 〈H, lr〉

E-Prop

〈H0, L, e〉 ⇓v 〈H1, l〉
l 6= null

〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉
E-Prop’

〈H0, L, e〉 ⇓v 〈H1, l〉
H2 = H1 ∗ [l 7→ box(l)]
〈H0, L, e.n〉 ⇓ 〈H2, (l, n)〉

E-Call

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H′ = Hn+1 ∗ act(l, x, v, l2) 〈H′, l : L1, s〉 ⇓ 〈H′′, return v; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H′′, v〉

E-CallUndef

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H′ = Hn+1 ∗ act(l, x, v, l2) 〈H′, l : L1, s〉 ⇓ 〈H′′, return; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H′′, undefined〉

E-Func
H1 = H0 ∗ [l 7→ 〈λx.{s}, L〉]

〈H0, L, function(x){s}〉 ⇓ 〈H1, l〉
E-TypeAssert

〈H0, L, e〉 ⇓ 〈H1, r1〉
〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

E-TypeAssertInf

H1 = H0 ∗ [l 7→ {@interface 7→ I}]
〈H1, L, e1〉 ⇓v 〈H′1, v1〉 H2 = H′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H′m, vm〉 H = H′m[(l, nm) 7→ vm]

〈H0, L, <I>{n : e}〉 ⇓ 〈H, l〉

Figure 7 Operational semantics of TypeScriptIPC
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program. In E-Call, the auxiliary functions This and act are used:630

This(H, (l, x)) =

{
l if H(l, @this)↓
lg otherwise

631

act(l, x, v, l′) = l 7→ ({x 7→ v, @this 7→ l′})632
633

The evaluation relation for statement sequences is written as 〈H1, L, s1〉 ⇓ 〈H2, s〉, where634

s is a statement result (i.e. either return;, return v; or ;). These rules are omitted for635

brevity. Unlike safeFTS, the branches of if statements introduce a new scope, so variables636

declared there are not visible outside.637

6 Soundness638

The novelty of the TypeScriptIPC type system lies in its guarantee that all constraints639

imposed on objects are guaranteed to be satisfied throughout the execution of the program,640

including those over multiple properties. This property is captured in Lemma 1.641

Our proof of type soundness is structured identically to [7], albeit without support for642

block typing and contextual typing. We define a heap type Σ as a partial function from643

heap locations to types [3, 8] (either function types, object literal types, or interface types).644

Next, we introduce a number of judgments. First, we define a well-formedness judgment645

for heaps H |= � and a judgment that a heap H and scope chain L are compatible, written646

H, L |= �. This judgment requires that all scope objects in the scope chain exist on the647

heap. We use a judgment Σ |= H to denote that the heap H is compatible with the heap648

type Σ. This compatibility also requires that the constraints of interface types are satisfied,649

which we prove in Lemma 2. Finally, we depend on a function context(Σ, L) which builds a650

typing judgment describing the variables in the scope chain L, using the types in Σ. The651

] operator ensures that only the inner-most type for a variable is used: if a variable is652

present on both sides, the right instance is returned. Because E-TypeAssertInf attaches an653

@interface label to all interface variables in the heap, Σ can reconstruct interface types as654

well as function types and object literal types.655

context(Σ, []) = {}656

context(Σ, l : L) = context(Σ, L) ] Σ(l)657
658

We combine the judgments above to write Σ |= 〈H, L, e〉 : T to mean Σ |= H;659

H, L |= �; and context(Σ, L) ` e : T. We define an analogous judgment for statements, as660

Σ |= 〈H, L, s〉 : T. Finally, we add a judgment on the result of evaluation of expressions,661

written Σ |= 〈H, r〉 : T.662

Before we can prove the safety properties of our type system with respect to evaluation,663

we first show that the constraints of an interface type accurately predict the presence or664

absence of its properties at runtime.665

I Lemma 1 (Constraint–presence correlation). The type system of TypeScriptIPC guarantees666

that if the constraints of an interface contain a constraint present(n), it is certain that the property667

n is present at runtime in objects with that interface type. Similarly: if there is a constraint668

not(present(n)), it is certain that the property n will not be present.669

Proof. There are three cases to consider:670

Case 1: Construction Interfaces can only be constructed in three ways, which all ensure671

that the correlation holds:672
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Case 1a: I-AssertInf. When an object literal is cast to an interface, the interface673

constraints are verified against the properties in the object literal. The correlation is674

thus informed by the exact properties of the runtime object (E-TypeAssertInf) and675

enforced by the type system.676

Case 1b: I-Assign. When an instance of interface I0 is assigned to a variable of677

type interface I1, the type system requires that the constraints are satisfied via the678

assignment compatibility rule A-Interface. The correlation holds for the source object679

(with type I0) and the compatibility rule asserts that the properties of I1 must be680

respectively present or absent. Therefore, the correlation must hold after the cast as681

well. At runtime, nothing changes.682

Case 1c: I-Assert. Analogous to Case 1b: assignment compatibility dictates the683

presence and absence of properties in the source object. Nothing changes at runtime.684

Case 2: Property assignment The assignment of new values to object properties either685

happens on a per-property basis (Case 2a), or multiple properties at once using686

assign (Case 2b).687

Case 2a: I-Assign. When a new value is assigned to a property n of an interface, two688

typing rules are relevant: I-Prop (including the lookup function) and I-Assign. At689

runtime, the E-Assign rule simply overwrites the object property, so it is up to the690

type system to enforce the correlation. We assume the correlation holds before the691

assignment, so the constraints of the interface must state one of the following:692

present(n): the lookup function of I-Prop returns the type of n and I-Assign then693

allows the assignment of another value (following the typing rules). As this will694

only update the value of a property that is already present, this does not change695

the presence of n in the object, thus the correlation holds.696

¬present(n): the lookup function of I-Prop returns type Undefined. The assignment697

compatibility required by I-Assign will fail as no type is assignable to Undefined,698

except for undefined, in which case the property will remain absent. Again, the699

correlation holds.700

Neither: the lookup function of I-Prop is not defined in this case, so the program701

does not typecheck. Without this safety guard in place, the correlation would not702

hold.703

Case 2b: I-Update. The assign function updates multiple properties of an object.704

Again, we assume that the correlation holds before the assignment. The assign705

function returns a new object, of the same type as the first argument, in which706

the properties of the second argument are updated. Properties can become absent707

or present (by resp. assigning undefined or a value different from undefined), or708

simply change value. The assignment is only accepted by the type checker if the709

second argument of assign is assignable to the generated interface which covers its710

properties. Therefore, a change in presence for those properties is only allowed if the711

input interface did not already require their presence or absence. At runtime, rule712

E-Update first clones the object and then the properties are overwritten by those of713

the second argument. The correlation holds for both the generated interface (because714

of assignment compatibility and isolation) and the rest of the object.715

Case 3: After a presence test In case of an if statement that tests the presence of an interface716

property, the newly gained information is added to the constraints of the type in both717

branches (function addConstraint in I-IfPresenceInterface). Here the property follows718

from the program flow: if the field presence test succeeds the type system can only719

conclude that the present constraint applies, and vice versa when the presence test fails.720
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Outside of the if statement, the present constraint is discarded again. Even though721

the runtime value does not change, this is again an example of the properties of the722

runtime value informing the the type system and thus the correlation. J723

From Lemma 1, we can prove that a well-typed program does not violate constraints at724

runtime. We add an additional condition to the heap–heap type compatibility rule stated725

above as Σ |= H: (the fields function returns field names of an object at runtime)726

I Lemma 2 (Correctness of interface types at runtime). For heap locations tagged as interface727

types, i.e. those where Σ(l) = I, the following is required:728

1. Every interface object is tagged as such:729

H(l, @interface) = I′ ∧ I′ 5 I;730

2. All properties are correctly typed:731

∀n ∈ fields(l) : n:T ∈ properties(I) ∧H, Σ ` (l, n) : T′ ∧ T′ 5 T.732

3. The constraints are satisfied by a valuation over the presence or absence of properties:733

v = cp ∪ cnp and v̂(constraints(I)) = true734

where cp = {present(n) | n ∈ fields(l)}735

where cnp = {¬present(n) |n ∈ properties(I) ∧ (¬H(l, n)↓∨ H(l, n) = undefined)}736

where fields(l) = {n | H(l, n) ↓ ∧ n 6= @interface∧H(l, n) 6= undefined}737738

This lemma is not only unaffected by explicit property presence tests, it guarantees it739

because of property 3. Assuming an object (with interface type I) is well-formed before740

the presence test, then the strengthened interface type I′ in the taken branch must more741

closely resemble the state of the runtime object.742

Proof. By induction on the evaluation rules. Most rules do not directly modify the heap,743

so we only focus on the rules that potentially invalidate this condition.744

E-TypeAssertInf This evaluation rule is responsible for instantiating interface types on the745

heap, given an object literal. Property 1 follows from the evaluation rule. Properties 2 and746

3 follow directly from the type system.747

E-Assign There are three sub-cases: e1 can either resolve to a variable reference, an object748

property, or an interface property:749

In case of a variable reference to an interface I, the three properties follow directly from750

assignment compatibility between I and the interface type I’ assigned to e2.751

In case of a property belonging to an object: the three properties cannot be invalidated.752

In case of an interface property: it depends on whether this expression is trying to add753

a new property or update a present property. The type system assigns type Undefined754

to properties which are guaranteed to be absent, and rejects programs that access755

properties whose presence is unknown.756

For property update, we prevent users from modifying the @interface property (pre-757

serving property 1). Properties 2 and 3 are guaranteed by assignment compatibilty.758

E-Update This rule first clones the source object (for which all properties are already759

satisfied) before assigning the new fields. Property 1 follows from the evaluation rule:760

the @interface tag is cloned along with other fields. We now consider the generated761

interface I′ in I-UpdateInf. slice ensures that the interface contains the smallest possible762

subset of constraints and properties such that all constraints in I either do not mention any763

properties from I′ or are part of the constraints in I′. For the fields in I′, the properties764

2 and 3 are guaranteed by the I-UpdateInf rule. For fields not in I′, properties 2 and 3765

continue to hold, as they cannot be affected by the assign operation by definition.766
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E-ObLit This rule creates a new object on the heap, but cannot invalidate existing interface767

types on the heap.768

E-Prop’, E-Func These rules create a heap location for respectively properties of literal769

objects and a closure, but neither can affect existing interface types on the heap.770

E-Call, E-CallUndef The heap modifications made by these two rules are limited to771

evaluation of sub-expressions or the allocation of a new scope object to hold the new772

function’s local variables. In the latter case, we rely on the fact that extension cannot affect773

existing interface types on the heap. J774

Finally, we can combine Lemma 2 with the existing proof of safeFTS to obtain proof of775

type safety in the presence of constraints.776

I Theorem 3 (Subject reduction).777

If Σ |= 〈H, L, e〉 : T and 〈H, L, e〉 ⇓ 〈H′, r〉778

then ∃Σ′, T′ such that Σ ⊆ Σ′, Σ′ |= 〈H′, r〉 : T′ and T′ 5 T.779

If Σ |= 〈H, L, s〉 : T and 〈H, L, s〉 ⇓ 〈H′, s〉780

then ∃Σ′, T′ such that Σ ⊆ Σ′, Σ′ |= 〈H′, s〉 : T′ and T′ 5 return(T).781

7 Related Work782

To the best of our knowledge, TypeScriptIPC is the first language that statically verifies all783

aspects of programming with inter-property constraints: defining, initialising, accessing784

and updating objects with inter-property constraints. In this section, we give an overview785

of existing work related to various aspects of the type system presented in this paper.786

Dependent and refinement types787

Dependently typed languages [5, 36] allow programmers to write more expressive types,788

by parametrising types on values. There are no restrictions on what dependent types can789

express, which comes at the cost of decidability. Refinement types are a restricted form of790

dependent types where types are “refined” with predicates that are statically decidable,791

for example through SMT solvers. Refinement types have been used to verify many792

different properties [35, 14, 29, 23, 6, 11, 34]. We limit our discussion of refinement types to793

the applications that are close to our work: refinement types for dynamic programming794

languages and object-oriented programming languages.795

DJS [11] extends a subset of JavaScript with dependent types, which allows (with some796

modifications) the expression of inter-property constraints over object properties. However,797

DJS requires extensive knowledge on heap typing from the developer. This significant798

annotation overhead is acknowledged in the paper. Contrast this to TypeScriptIPC, which799

proposes a lightweight extension to regular TypeScript interfaces.800

In [34], Vekris et al. introduce RSC, a lightweight refinement system for TypeScript. RSC801

allows invariants to be imposed in classes and objects, including inter-property constraints802

on properties. However, the soundness of these invariants is guaranteed by restricting803

invariants to be imposed on immutable properties. Flanagan et al. introduce Hoop [13], a804

hybrid object-oriented programming language with refinement types and object invariants.805

Hoop requires refinements and variants to be pure and therefore refinements can only806

be placed on immutable data. In [23], Nystrom et al. introduce a form of dependent807

types for objects in X10. Again, constraints can only be imposed on immutable fields.808

To conclude, although refinement type systems are often able to express inter-property809
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constraints, none of them support inter-property constraints after the initialisation phase:810

updating properties that are part of inter-property constraints is impossible. In contrast,811

TypeScriptIPC allows single-property updates of objects, and guarantees that the constraints812

remain satisfied.813

Type refinements814

The type system of TypeScriptIPC extracts property presence information from conditional815

expressions. This concept is known as occurrence typing [32, 33] or type refinement, which816

narrows (or strengthens) variable types based on predicates in conditional expressions. Sev-817

eral static type systems for dynamic languages such as TypeScript [2], Hack [1], Flow [10],818

λS [17] and [20] support refining types using tests on the type of a value. Recently, a hybrid819

occurrence-refinement type system was proposed in [21]. As this paper demonstrates,820

occurrence typing can also be applied to objects with inter-property constraints.821

Constraint-based programming822

The constraint-centric interfaces introduced in this paper should not be confused with823

constraint-based programming [30]. Constraint-based programming is a discipline that824

finds solutions for a number of variables given constraints over these variables. By contrast,825

TypeScriptIPC uses constraints and flow information to determine the most specific presence826

information for properties of objects.827

Type systems for dynamic languages828

In recent years, several formalisations for TypeScript have been proposed. As already men-829

tioned earlier, TypeScriptIPC is based on earlier work [7] by Bierman et al., who formalised830

both sound and unsound features of TypeScript, including features such as contextual831

typing and the lack of block scoping in JavaScript. There exist several other approaches832

for adding gradual typing to dynamic languages such as TypeScript [27, 28] and Dart [19].833

These approaches focus on improving the combination between sound and unsound parts834

of type systems for dynamic languages, which is orthogonal to the goal of our paper:835

enabling programmers to express inter-property constraints and statically enforcing them.836

837

There already exist several research efforts that focus on the dynamic nature of objects in838

JavaScript [4, 31, 18, 9], providing a static type system that verifies the usage of objects, such839

as property additions, accesses and updates. The focus of this paper is not on supporting840

JavaScript’s object types, but on extending object types with inter-property constraints.841

Accessing and updating object properties with inter-property constraints is allowed, but842

only when it does not invalidate the object constraints.843

Optional object properties844

TypeScriptIPC is not the first language to impose constraints on the presence of an object845

property. In TypeScript, objects (and methods) can contain optional properties (and846

parameters). In strict null checking mode, the type of an optional property in TypeScript is847

automatically transformed to a union type, combining the original type with Undefined.848

Similarly, programmers can only assign null to value types in C# if that type is indicated849

as a nullable type. To support the notion of required and optional properties in Java,850

there also exist Java frameworks that provide support for @NonNull annotations (such as851
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[12, 25]). However, all of these languages and frameworks are restricted to single-property852

constraints (types and presence) and cannot express inter-property constraints.853

8 Future Work854

This paper introduces the concept of constraints in programming languages. Going forward,855

we would like to further expand the expressiveness of constraint-centric interfaces. So far,856

TypeScriptIPC only supports inter-property constraints on the presence of properties. In857

the future, we plan to add support for value-dependent constraints, where the presence of858

a property depends on the value of another property. The introduction already listed an859

example of a value-dependent constraint in the Chart.js library: “If the steppedLine value860

is set to anything other than false, lineTension will be ignored”. Another example can be861

found in the Google Maps API for rendering directions8, where “the infoWindow property is862

ignored when the property suppressInfoWindows is set to true”. To enable value-dependent863

constraints, we plan on using TypeScript’s literal types that limit types to a set of predefined864

values.865

In this paper we only considered constraints as applied to interfaces, but constraints866

could also be imposed on the parameters of a function definition. Listing 10 shows the867

(simplified) function utime from the Python standard library, which imposes a NAND868

constraint on two of its parameters.869

870
1 function utime(path: string , times: array , ns: array) {871

2 // ...872

3 } constraining {873

4 present (path );874

5 ¬( present (ns) ∧ present (times ));875

6 }876877

Listing 10 Hypothetical example of a function with inter-parameter constraints

Finally, this paper highlighted the need for updating multiple properties at once. In878

the future, we plan on updating multiple object properties in place without increasing the879

annotation burden, by means of alias tracking or stronger heap types.880

9 Conclusion881

This paper shows how complex constraints on the presence of interface properties can882

be statically enforced in programming languages. We introduced a type system with883

constraint-centric interfaces, which express constraints on the presence of properties in the884

desired pattern.885

To achieve this, the type system is extended with four new features: 1) Interfaces carry886

constraints on their properties; 2) The type system uses if statements to enrich variable887

types of interfaces used in the condition with extra information about property presence;888

3) Accessing and updating a property of an object is only allowed when the constraints can889

statically guarantee its presence; 4) Finally, a novel procedure assign allows the (functional)890

updating of multiple properties at once, which is necessary to safely update properties that891

are part of an inter-property constraint.892

Implementation The implementation of TypeScriptIPC is available at https://github.893

com/noostvog/TypeScriptIPC.894

8 https://developers.google.com/maps/documentation/javascript/reference/3/directions
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