
A Graph-based Dataset of Commit History
of Real-World Android apps

Franz-Xaver Geiger
Vrije Universiteit Amsterdam

The Netherlands
f.geiger@student.vu.nl

Ivano Malavolta
Vrije Universiteit Amsterdam

The Netherlands
i.malavolta@vu.nl

Luca Pascarella
Delft University of Technology

The Netherlands
l.pascarella@tudelft.nl

Fabio Palomba
University of Zurich

Switzerland
palomba@ifi.uzh.ch

Dario Di Nucci
Vrije Universiteit Brussel

Belgium
ddinucci@vub.ac.be

Alberto Bacchelli
University of Zurich

Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT
Obtaining a good dataset to conduct empirical studies on the en-
gineering of Android apps is an open challenge. To start tack-
ling this challenge, we present AndroidTimeMachine, the first,
self-contained, publicly available dataset weaving spread-out data
sources about real-world, open-source Android apps. Encoded as a
graph-based database, AndroidTimeMachine concerns 8,431 real
open-source Android apps and contains: (i) metadata about the
apps’ GitHub projects, (ii) Git repositories with full commit history
and (iii) metadata extracted from the Google Play store, such as
app ratings and permissions.

CCS CONCEPTS
• Software and its engineering→ Maintaining software;

KEYWORDS
Android, Mining Software Repositories, Dataset

1 INTRODUCTION
Since mobile apps differ from traditional software and require to
tackle new problems (e.g., power management and privacy protec-
tion [5, 7, 15, 16]), researchers are conducting empirical studies—
especially by mining software repositories—to understand and sup-
port mobile software development.

As an example of recent research on apps, Malavolta et al. ana-
lyzed more than 11,000 apps published in the Google Play store
and investigated the end users’ perceptions about various hybrid
development frameworks [12]. Also, Linares-Vásquez et al. mined
54 Android apps from the Google Play store to find programming
practices that may lead to an excessive energy consumption [5].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196460

A common challenge when investigating apps is accessing candi-
date subjects (i.e., the app binaries or source code). A widely adopted
approach is to gather information from open-source software (OSS)
market places, F-Droid1 [4, 9, 13]. Nevertheless, relying on F-Droid
impacts the number of projects that can be considered, as it only
contains metadata of 2,697 apps.2 Moreover, for every study, re-
searchers have to (i) systematically explore several online reposito-
ries to find analyzable apps, (ii) filter out source code not intended
for the Android platform, and (iii) verify apps’ consistency within
official distribution channels.

To improve this situation, we propose AndroidTimeMachine, a
graph-based dataset with data linked from different sources con-
cerning the development and publication process of 8,431 OSS
Android apps. We combine information from GitHub and Google
Play to create a unified dataset including (i) metadata of GitHub
projects, (ii) full commit and code history, and (iii) metadata from
the Google Play store. This dataset is the largest collection of
published OSS Android apps with linked source code and store
meta-data that we know of. The connected nature of this dataset
and the included revision history allow a holistic view on OSS
Android apps from development to publication on Google Play.

AndroidTimeMachine is composed of two main parts: A graph-
based database (which facilitates understanding and navigation by
focusing on links between apps, repositories, commits, and con-
tributors) and a Git server hosting a mirror of all 8,431 GitHub
repositories (thus providing a self-contained snapshot of the apps
within the dataset). AndroidTimeMachine is publicly accessible at
http://androidtimemachine.github.io and it is available as a Docker
container image, which runs an instance of a Neo4J database with
all the metadata and a GitLab server hosting all the mirrored
GitHub repositories.

2 DATASET
Creating AndroidTimeMachine involved retrieving large quantities
of information from several sources and combining it by linking it
based on available identifiers. During this process we had to deal
with limitations on how these sources select and publish data and
how they restrict access, e.g., through rate limits. We detail the

1https://f-droid.org/en/
2References counted on March 12, 2018 from https://gitlab.com/fdroid/fdroiddata/

tree/747a2662f82665b66c70cbcee5520068282d20ee/metadata

https://doi.org/10.1145/3196398.3196460
http://androidtimemachine.github.io
https://gitlab.com/fdroid/fdroiddata/tree/747a2662f82665b66c70cbcee5520068282d20ee/metadata
https://gitlab.com/fdroid/fdroiddata/tree/747a2662f82665b66c70cbcee5520068282d20ee/metadata


MSR ’18, May 28–29, 2018, Gothenburg, Sweden F. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci, and A. Bacchelli

process we used to identify the Android apps in our dataset (Sec-
tion 2.1), the structure of our Neo4j database (Section 2.2), and the
distribution of our dataset (Section 2.3). Furthermore, we showcase
how the data can be used (Section 2.4) and point out limitations in
Section 2.5.

2.1 Apps Identification
To create our dataset we defined a 4-step process (see Figure 1),
which: (1) identifies open-source Android apps hosted on GitHub,
(2) extracts their package names, (3) checks their availability on the
Google Play store, and (4) matches each GitHub repository to its
corresponding app entry in the Google Play store. 3

1. Find Android
manifest files
in GitHub
(378 610)

2. Extract package
names from
Android manifest
files (112 153)

3. Select package
names available
on Google Play
(9 478)

4. Match GitHub
repositories to
Google Play
pages (8 431)

bigquery-public-data:
github_repos

Google Play GitHub API v3

8 431 apps
metadata

8 216 repositories

Figure 1: App Identification Process

Step 1. Identification of Android manifest files in GitHub.
Step 1 aims at finding all repositories on GitHub potentially con-
taining the source code of an Android app. Since each Android app
is required to contain an XML file named AndroidManifest.xml
(which describes the app metadata and how it interacts with the
Android system [11]), we performed this step by searching for
AndroidManifest.xml files across all repositories on GitHub. Our
search has been performed on the publicly-availableGitHubmirror
available in BigQuery.4 This mirror contains information about
files in all open-source repositories on GitHub, making it a good in-
terface for finding repositories containing certain file types [3]. Our
query returned 378,610 AndroidManifest.xml files across 124,068
repositories (search performed in October 2017).
Step 2. Extraction of Android package names. Repositories
may contain more than one manifest file, e.g., when they host
the code of more than one app (e.g., free and paid versions) or in-
clude third-party code (e.g., libraries with their own manifest file).
This complicates matching repositories to apps and warrants the
heuristic algorithm in step 4. In every AndroidManifest.xml file,
the root element must also include a package attribute containing
the unique identifier of the app in the Google Play store. In this
step we queried the BigQuery table containing the raw contents of
all AndroidManifest.xml files and extracted the package names
of their corresponding apps. The result of this query was a collec-
tion of 112,153 package names. This step still contained duplicated
package names, mainly due to frequent usage of common names for
test or toy projects, inclusion of libraries, or because repositories
got forked [8]; this was taken care of in the following step(s).
Step 3. Selection of package names in Google Play. In this step
we aimed at excluding all test, library, or toy projects. By using the
package name as app identifier, we filtered out all those apps for
which there was no corresponding webpage in the Google Play

3Code and queries at: https://github.com/androidtimemachine/open_source_
android_apps

4https://cloud.google.com/bigquery/public-data/github

store. This filtering step excluded all unpublished and non-existent
package names, leading to 9,478 potentially-real app identifiers.
Metadata for these apps was downloaded from the app store using
a publicly available web scraper called node-google-play.5

Step 4. App-repository matching. In this step, Google Play
pages got mapped to GitHub repositories, via heuristics. We linked
a package name to a repository if the repository was the only
one containing an AndroidManifest.xml file for a given package
name (77.1%). If more than one repository existed with the same
package name, we searched metadata of the Google Play entry for
mentions of GitHub repository URLs. We matched a repository to
the package name if we found links to exactly one repository (6.6%).
Finally, in cases in which neither of the two previous approaches
resulted in a match, we selected the most popular repository based
on number of (i) forks, (ii) watchers, and (iii) subscribers (5.0%). We
discarded 1,047 package names for which we could not determine
a unique match or which were not accessible on GitHub anymore.

These four steps resulted in a collection of 8,431 real Android
apps whose source code is available in 8,216 GitHub repositories.

2.2 Database Structure
To make data about OSS Android applications easily accessible
and queryable, we designed and populated a graph-based database
representing all the data gathered during the app identification
process and the metadata related to each GitHub commit within
the dataset (e.g., number of changes and contributors). The database
is persisted using Neo4j (i.e., a graph DBMS6), thus researchers can
use algorithms from graph theory for investigations (e.g., recon-
structing the chain of commits across the whole lifetime of the app
and identifying apps in a certain category with at least n active
developers in a certain timeframe); morever, our dataset can be
accessed: (i) with Cypher, a domain-specific graph query language,
(ii) via a native Java API, and (iii) via a dedicated HTTP REST API.

Figure 2 shows the structure of the database. Data points are
stored as nodes connected by relationships (i.e., the edges of the
graph); both nodes and edges can have properties.
Node types and their properties. Android apps are represented
as nodes of type App. They include the package name used to iden-
tify the app as string property id. The node type GooglePlayPage
holds the metadata we mined from the Google Play entry of the
app, such as its title, package name, average rating, and requested
permissions. The GitHubRepository node represents a GitHub
project with its id (i.e., the fixed internal identifier for repositories
on GitHub). All other properties of GitHubRepository nodes rep-
resent a subset of data accessible through GitHub API v3, such
as the owner, forks count, and repository name. A Commit node
describes a commit of the Git repository. The id property is the
full hash of the commit. The node also contains short_id, num-
ber of changed lines (additions, deletions, total), as well as
the commit title and message. Both authors and committers are
represented by the node type Contributor. This node type has
an email and a name property. Contributor nodes get merged by
email, i.e., only the latest name seen during creation of the database
is accessible. They can be differentiated by their relationship to a

5https://github.com/dweinstein/node-google-play-cli
6http://neo4j.com

https://github.com/androidtimemachine/open_source_android_apps
https://github.com/androidtimemachine/open_source_android_apps
https://cloud.google.com/bigquery/public-data/github
https://github.com/dweinstein/node-google-play-cli
http://neo4j.com


A Graph-based Dataset of Commit History of Real-World Android apps MSR ’18, May 28–29, 2018, Gothenburg, Sweden

id String

App
docId String
uri String
title String
versionCode Int
starRating Float
permissions List
. . .

GooglePlayPage

id Long
owner String
name String
forksCount Int
ownerType String
parentId Long
. . .

GitHubRepository

id String
short_id String
title String
message String
additions Int
deletions Int
total Int

Commit

name String
message String

Tag

name String

Branch

email String
name String

Contributor

PUBLISHED_AT

IMPLEMENTED_BY
[ manifestPaths, gradleConfigPaths, mavenConfigPaths ]

BELONGS_TO

BELONGS_TOBELONGS_TO

POINTS_TOPOINTS_TO

PARENT

AUTHORS
[ timestamp ]

COMMITS
[ timestamp ]

Figure 2: Schema of our dataset, as persisted in Neo4j (a
graph database management system).

Commit. Finally, Git tags and branches are stored as nodes of type
Tag and Branch, respectively. Both node types have a property
name. Tags may also include the message stored with the tag.
Relationships between nodes. Relationships are directed graph
edges between nodes and can contain properties. PUBLISHED_AT
relations connect App nodes to their corresponding Google Play
node. The link between an app and its corresponding GitHub
repository (IMPLEMENTED_BY ) contains the following proper-
ties: the paths to its Android manifest files (manifestPaths) and
the paths to its build configuration files (gradleConfigPaths or
mavenConfigPaths). Branches, tags, and commits are linked to a
GitHub repository with edges of type BELONGS_TO. A POINTS_TO
relation connects Branch and Tag nodes to a Commit. Version con-
trol history between commits is represented with the PARENT
relation, which is a many-to-many relation due to the nature of
branches and merges of Git. The COMMITS and AUTHORS rela-
tionship indicate the Contributor who authored and committed a
change. Both relationships store a timestamp of their event.

2.3 Dataset Availability
As explained in Section 2, our dataset is composed of: (i) a Neo4j
graph database with metadata of identified apps and (ii) a list of
GitHub repositories. For ease of use and reproducibility, we make
available a Docker-based containerized version of the entire data
with pre-installed software necessary to show, explore, and query
the data. Docker containers are a good way of sharing runnable
environments with all dependencies included [2].

The total size of allGit repositories in the dataset is 136GB. Since
not all researchers may need to access the full dataset, we split the
data into two containers, where one Docker image contains the
Neo4j database7 and the second container serves as a snapshot of

7https://hub.docker.com/r/androidtimemachine/neo4j_open_source_android_
apps/

all GitHub repositories in the dataset cloned to a local Gitlab.8
All information from the graph database is also available in CSV
format in the Git repository of the docker image.9

2.4 Dataset Usage
Researchers can access our dataset through the Neo4j and Gitlab
web interfaces, as well as through their respective REST-based APIs.
The Gitlab web server and its API are accessible on port 80,10
while the Neo4j instance can be accessed through default ports
7474 for the HTTP protocol and port 7687 for the bolt protocol
used for Cypher queries.11 In the Neo4j database, the snapshot
attribute of GitHubRepository nodes links to the address of the
corresponding repository in our GitLab instance. Documentation
on how to run the container and access the data is in the Docker
image repository.7

The connected nature of the graph database facilitates many
potential research questions. In the following we showcase queries
and analyses supported by our dataset.12

Scenario 1. Select apps belonging to the Finance category with
more than 10 commits in a given week.
WITH apoc.date.parse ('2017-01-01', 's', 'yyyy -MM-dd ') as start ,

apoc.date.parse ('2017-01-08', 's', 'yyyy -MM-dd ') as end

MATCH (p:GooglePlayPage) <-[:PUBLISHED_AT ]-(a:App)

-[: IMPLEMENTED_BY ]->(: GitHubRepository) <-[:BELONGS_TO]-

(: Commit)<-[c:COMMITS ]-(: Contributor)

WHERE 'Finance ' in p.appCategory AND start <= c.timestamp < end

WITH a.id as package , SIZE(COLLECT(DISTINCT c)) as commitCount

WHERE commitCount > 10

RETURN package , commitCount

Scenario 2. Select contributors who worked on more than one app
in a given year.
WITH apoc.date.parse ('2017-01-01', 's', 'yyyy -MM-dd ') as start ,

apoc.date.parse ('2017-08-01', 's', 'yyyy -MM-dd ') as end

MATCH (app1:App) -[: IMPLEMENTED_BY ]->(: GitHubRepository)

<-[:BELONGS_TO ]-(: Commit)<-[c1:COMMITS|AUTHORS]-(c:Contributor)

-[c2:COMMITS|AUTHORS]->(:Commit) -[: BELONGS_TO]->

(: GitHubRepository) <-[: IMPLEMENTED_BY ]-(app2:App)

WHERE c.email <> 'noreply@github.com ' AND app1.id <> app2.id

AND start <= c1.timestamp < end AND start <= c2.timestamp < end

RETURN DISTINCT c LIMIT 20

Scenario 3. Providing our dataset in containerized form allows
future research to easily augment the data and combine it for
new insights. The following is a very simple example showcas-
ing this possibility. Assuming all commits have been tagged with
self-reported activity of developers, select all commits in which the
developer is fixing a performance bug. We apply a simple tagger,
but a more advanced model (e.g., [14]) would lead to better results.
MATCH (c:Commit) WHERE c.message CONTAINS 'performance '

SET c :PerformanceFix

Also, given these additional labels, performance related fixes can
then be used in any kind of query via the following snippet.
MATCH (c:Commit:PerformanceFix) RETURN c LIMIT 20

8https://androidtimemachine.github.io/dockerImages
9https://github.com/AndroidTimeMachine/neo4j_open_source_android_apps/

tree/master/data
10Username: root – password: gitlab. Documentation of the Gitlab API is avail-

able in the container at endpoint /help/api/README.md and a potentially newer
version at https://docs.gitlab.com/ce/api/

11Neo4j documentation available at https://neo4j.com/graphacademy/
12Some of the examples rely on the Neo4j plugin APOC, which can be installed by

mapping an external directory into the Docker image: https://guides.neo4j.com/apoc

https://hub.docker.com/r/androidtimemachine/neo4j_open_source_android_apps/
https://hub.docker.com/r/androidtimemachine/neo4j_open_source_android_apps/
https://androidtimemachine.github.io/dockerImages
https://github.com/AndroidTimeMachine/neo4j_open_source_android_apps/tree/master/data
https://github.com/AndroidTimeMachine/neo4j_open_source_android_apps/tree/master/data
/help/api/README.md
https://docs.gitlab.com/ce/api/
https://neo4j.com/graphacademy/
https://guides.neo4j.com/apoc


MSR ’18, May 28–29, 2018, Gothenburg, Sweden F. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci, and A. Bacchelli

Scenario 4. Metadata from GitHub and Google Play can be com-
bined and compared. Both platforms have popularity measures, e.g.,
star ratings, which are returned by the following query.
MATCH (r:GitHubRepository) <-[:IMPLEMENTED_BY]-

(a:App) -[: PUBLISHED_AT]->(p:GooglePlayPage)

RETURN a.id, p.starRating , r.forksCount , r.stargazersCount ,

r.subscribersCount , r.watchersCount , r.networkCount

LIMIT 20

Scenario 5. Is a higher number of contributors related to the suc-
cess of an app? The following query returns the average rating on
Google Play and the number of contributors to the code by app.
MATCH (c:Contributor) -[:AUTHORS|COMMITS]->(:Commit)

-[: BELONGS_TO ]->(: GitHubRepository) <-[: IMPLEMENTED_BY]-

(a:App) -[: PUBLISHED_AT]->(p:GooglePlayPage)

WITH p.starRating as rating , a.id as package ,

SIZE(COLLECT(DISTINCT c)) as contribCount

RETURN package , rating , contribCount LIMIT 20

2.5 Dataset Limitations
We only considered applications available in the Google Play store.
This limitation is mitigated by the fact that Google Play is the
official Android app store and offers the largest selection of Android
apps [1]. We mined Google Play from a server in our region, thus
limiting the data collection to the apps available here.

Data selection can be biased by the presence of the source code
on GitHub. We consider this acceptable considering that, in the
recent years, GitHub has been the most known platform for the
open-source community and it offers a large and diverse selection
of OSS projects [6].

Searching candidate repositories using the GitHub API was not
possible due to limitations on the number of results returned by
each query. Indeed, even when stratifying search queries (e.g., by
filesize, with a byte-level granularity), not all the results could be
retrieved. We overcame this issue by using BigQuery.

Resorting to a heuristic approach for matching Google Play
listings to GitHub repositories entails the risk of mismatches. Es-
pecially the 5.0% of apps that were linked by popularity measures
might have been wrongly classified. However, confidence of cor-
rect matches is high for the 77.1% of apps for which only a unique
repository contains an AndroidManifest.xml file.

3 RELATEDWORK
Previous studies created data collections of OSS Android applica-
tions. For their study on app releases, Nayebi et al. [13] linked 69
F-Droid apps with version control repositories. Where available,
metadata from Google Playwas included. A similar dataset of OSS
Android apps was constructed by Krutz et al. [9] to facilitate secu-
rity research [10]. Das et al. [4] used F-Droid as a starting point for
identifying open-source Android apps. They built a dataset for the
analysis of performance related commits of mobile applications by
matching apps listed on F-Droid against GitHub repositories. Later,
the apps were filtered considering their availability on Google
Play. The final dataset was composed of 2,443 apps.

These datasets have the advantage that F-Droid contains exe-
cutable app packages which our collection does not include. How-
ever, AndroidTimeMachine covers more apps than listed on F-Droid
because we identify candidate repositories searching the Android
app manifest; this approach provides a more realistic sample of

open-source Android apps and increase the number and diversity
of apps to perform research on.

4 CONCLUSIONS
We created AndroidTimeMachine, a dataset of 8,431 real-world
open-source Android apps. It combines source and commit history
information available on GitHub with the metadata from Google
Play store. The graph representation used for structuring the data
eases the analysis of the relationships between source code and
metadata. The dataset is provided as Docker container to improve
its accessibility and extensibility.

ACKNOWLEDGMENTS
Bacchelli and Palomba gratefully acknowledge the support of the
Swiss National Science Foundation through the SNF Project No.
PP00P2_170529. Di Nucci is funded by the Belgian Innoviris TeamUp
project INTiMALS.

REFERENCES
[1] Ben Martin. 2017. The Global Mobile Report - comScore’s cross-market compari-

son of mobile trends and behaviours. (2017). ComsCore white paper.
[2] Ryan Chamberlain and Jennifer Schommer. 2014. Using Docker to support

reproducible research. DOI: https://doi.org/10.6084/m9.figshare 1101910 (2014).
[3] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,

andHarald C. Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In Proceedings of the 14th International Conference on Mining Software
Repositories. IEEE Press, 323–333.

[4] Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. 2016. A Quantitative
and Qualitative Investigation of Performance-Related Commits in Android Apps.
In 2016 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. 443–447.

[5] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-based energy profiling of android apps:
Simple, efficient and reliable?. In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on. IEEE, 103–114.

[6] Georgios Gousios and Diomidis Spinellis. 2017. Mining software engineering
data from GitHub. In Proceedings of the 39th International Conference on Software
Engineering Companion. IEEE Press, 501–502.

[7] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real challenges
in mobile app development. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on. IEEE, 15–24.

[8] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2016. An in-depth study of the promises and perils
of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.

[9] Daniel E. Krutz, Mehdi Mirakhorli, Samuel A. Malachowsky, Andres Ruiz, Jacob
Peterson, Andrew Filipski, and Jared Smith. 2015. A dataset of open-source
Android applications. In Proceedings of the 12th Working Conference on Mining
Software Repositories. IEEE Press, 522–525.

[10] Daniel E. Krutz, Nuthan Munaiah, Anthony Peruma, and Mohamed
Wiem Mkaouer. 2017. Who Added That Permission to My App? An Analysis of
Developer Permission Changes in Open Source Android Apps. IEEE, 165–169.
https://doi.org/10.1109/MOBILESoft.2017.5

[11] Li Li. 2017. Mining androzoo: A retrospect. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on. IEEE, 675–680.

[12] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. 2015.
Hybrid mobile apps in the google play store: An exploratory investigation. In
Proceedings of the Second ACM International Conference on Mobile Software Engi-
neering and Systems. IEEE Press, 56–59.

[13] Maleknaz Nayebi, Homayoon Farrahi, and Guenther Ruhe. 2016. Analysis of
marketed versus not-marketed mobile app releases. In Proceedings of the 4th
International Workshop on Release Engineering. ACM, 1–4.

[14] Luca Pascarella, Franz-Xaver Geiger, Fabio Palomba, Dario Di Nucci, Ivano Mala-
volta, and Alberto Bacchelli. 2018. Self-Reported Activities of Android Developers.
In 5th IEEE/ACM International Conference on Mobile Software Engineering and
Systems. ACM, New York, NY, to appear.

[15] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192–1223.

[16] Anthony I Wasserman. 2010. Software engineering issues for mobile applica-
tion development. In Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM, 397–400.

https://doi.org/10.1109/MOBILESoft.2017.5

	Abstract
	1 Introduction
	2 Dataset
	2.1 Apps Identification
	2.2 Database Structure
	2.3 Dataset Availability
	2.4 Dataset Usage
	2.5 Dataset Limitations

	3 Related Work
	4 Conclusions
	Acknowledgments
	References

