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Abstract Change distilling algorithms compute a sequence of fine-grained
changes that, when executed in order, transform a given source AST into a
given target AST. The resulting change sequences are used in the field of
mining software repositories to study source code evolution. Unfortunately,
detecting and specifying source code evolutions in such a change sequence is
cumbersome. We therefore introduce a tool-supported approach that identifies
minimal executable subsequences in a sequence of distilled changes that imple-
ment a particular evolution pattern, specified in terms of intermediate states
of the AST that undergoes each change. This enables users to describe the
effect of multiple changes, irrespective of their execution order, while ensuring
that different change sequences that implement the same code evolution are
recalled. Correspondingly, our evaluation is two-fold. We show that our ap-
proach is able to recall different implementation variants of the same source
code evolution in histories of different software projects. We also evaluate the
expressiveness and ease-of-use of our approach in a user study.
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1 Introduction

The use of a Version Control System (VCS) has become an industry best
practice for developing software. Researchers in the field of mining software
repositories (MSR) leverage the resulting revision histories to study the evo-
lution of software systems. However, most VCSs record their revisions of the
source code in a code-agnostic manner. Differences between two revisions are
therefore only available from the VCS as lines of text that have been changed.
A more fine-grained representation, e.g., in terms of source code constructs
that have changed, is not readily available.

A change distilling algorithm (Fluri et al 2007; Chawathe et al 1996; Palix
et al 2015; Stevens and De Roover 2014) can be used to obtain more fine-
grained information about the differences between two revisions. Such an al-
gorithm takes two Abstract Syntax Trees (ASTs) as input, called the source
AST and the target AST respectively. It returns a sequence of change opera-
tions that, when applied in order, transforms the source AST into the target
AST. A change is either an insert, a move, a delete or an update of an AST
node. These changes provide fine-grained information about how the source
code constructs might have changed. Analyzing or querying such change se-
quences is an essential ingredient in many a MSR study (Christophe et al 2014;
Meng et al 2013; Lin and Whitehead 2015; Negara et al 2014; Martinez et al
2013).

In this paper we address a problem faced by many MSR researchers; the
problem of recognizing and extracting transformations of interest in the output
of a change distiller, such that these transformations are represented as a
minimal and executable edit script (i.e., a sequence of changes). Executable
means that applying the edit script on the initial source file results in edits
corresponding to the specified transformation. Minimal means that removing
any change from the script either prevents the script from being executed, or
renders the resulting transformation of the source file incomplete.

Manually recognizing a sought-after transformation in a distilled change
sequence is challenging. Change sequences tend to be large, with every change
potentially depending on the output of its predecessor. Changes that con-
tribute to the transformation need to be isolated from the others, while the
resulting edit script needs to remain executable.

Automated tool support is in order, but far from trivial to realize. A
straightforward tool might enable users to specify the sought-after transfor-
mation in terms of changes. Such a tool would however suffer from several
problems. Figure 1 depicts an example transformation, in which a field of the
class Example is renamed between two revisions. We want to extract the changes
that perform this field rename. Three potential change sequences that can be
returned by a distilling algorithm are shown at the bottom. In order to extract
the desired changes, the tool need would need to overcome the following two
problems:
– First, different change sequences can implement the same code transforma-
tion, as illustrated by Figure 1. The corresponding problem is two-fold. On
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public class Example {
  int y = 0; }

public class Example {
  int x = 0; }

1. update(“x”, “y”) 1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

1. insert(“int y = 0;”)
2. delete(“int x = 0;”)

Revision 1 Revision 2

Possible 
Changes 

Sequences 

Fig. 1: Three different change sequences that each rename the field x of revision
1 into the field y of revision 2.

the one hand, due to the heuristic nature of the distiller there is no straight-
forward way to know beforehand what change sequence will be output by a
distilling algorithm. Very different change sequences can be distilled for sim-
ilar modifications to similar files. On the other hand, it is not practical for a
user to enumerate all the change sequences that could possibly be distilled.
We call this problem the Change Equivalence Problem.

– Second, a change sequence must be applied in order as any change poten-
tially depends on a predecessor. Extracting an executable subset of changes
means that these dependencies must be incorporated in the resulting edit
script. Detecting these dependencies is not straightforward. Change distilling
algorithms internally immediately apply each change as it is distilled. In order
not to modify the original source code, a copy is made. As such, a change can
refer to three different ASTs; the original source code, the target source code,
and a copy of the original source code (denoted source’ ) that will eventually
look identical to the target source code after the execution of the algorithm.
For example, a delete can only be represented using nodes from the source
AST, as the node is not present in the target AST (otherwise it would not
have been removed), nor is it present in source’ as the delete has already
been applied. An insert on the other hand only has nodes that are present in
source’ and target, but not in source (otherwise it would not have been in-
serted). Computing dependencies between changes needs to account for these
three different ASTs, as comparing nodes from different ASTs for equality
produces incorrect results. We call this problem the Change Representation
Problem.

We present an approach that enables users to specify evolutions of Java
source code (e.g., a method rename refactoring was performed, the signature
of a method was modified and its callers are updated, etc.), and that returns
a minimal, executable source code transformation from a sequence of distilled
changes. Example use cases are creating higher-level changes that provide the
intent of groups of changes, detecting what additional changes are needed to
execute a desired transformation or detecting what non-transformation related
changes were applied to the source code.

This paper makes the following three contributions:
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– First, we present a dedicated approach for specifying and extracting exe-
cutable code transformations from a distilled sequence of Java source code
changes. We introduce the term “evolution query” for queries in this ap-
proach that describe the sought-after change subsequences as a sequence of
source code characteristics rather than as a sequence of changes. For a given
transformation, an evolution query describes the desired intermediate ASTs
characteristics that should hold along any sequence of changes that realizes
this transformation.

– Second, we describe how to execute evolution queries against a distilled
change sequence, which is represented as a graph of intermediate AST states.
This AST graph is, in turn, constructed from a change dependency graph
in which the order dependencies among changes in a change sequence are
made explicit. As such, our approach supports describing and evaluating
evolution queries in a manner that is agnostic to the concrete change sequence
computed by a distilling algorithm.

– Third and finally, we evaluate our approach by performing two experiments
and a user study. In the first experiment we specify, detect and extract min-
imal executable transformations of three refactorings across different open-
source projects. In the second experiment we use our approach in two indus-
trial projects, in the context of commit untangling. The approach is applied to
extract all instances of a similar modification occurring in a systematic edit.
The user study was performed to evaluate the usability and expressiveness
of our approach’s query language.

This paper is an extension of our paper published at the 24th edition of the
“International Conference on Software Analysis, Evolution and Reengineering”
(Stevens and De Roover 2017). The following is a summary of the main changes
that were made:

– The second experiment involving two industrial projects was added. Evolu-
tion queries are used to describe the effect of a systematic edit. Executing
such a query results in a minimal, executable edit script, which effectively
untangles the systematic edit from all other changes in the commit.

– The user study was added to assess the query language’s usability and
expressiveness.

– Additional visualizations of the change dependency graph of each exper-
iment have been added. These visualizations provide better insight into
the topology of these graphs, and how strongly connected changes depend
on each other. They also depict the changes that are part of the solution,
illustrating the dependencies between solution and non-solution changes.

– Finally, additional detail has been added to chapters 3 and 4, which re-
spectively define fine-grained changes and describe our approach.

2 Overview of the Approach

We propose an approach for specifying and extracting executable code trans-
formations in a distilled sequence of changes between a source and a target
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AST. Unique to this approach is that it enables specifying an evolution query
in terms of source code characteristics; those that intermediate ASTs, con-
structed by applying subsets of the sequence of distilled changes, must exhibit.
This shields users from the problems that specifying evolution queries in terms
of distilled changes gives rise to.

To make the notion of an evolution query more clear: it describes paths in a
so-called Evolution State Graph (ESG), constructed from a distilled change se-
quence. Figure 2 depicts the ESG for the distilled change sequence in the mid-
dle of Figure 1. The nodes of the ESG, called Evolution States (ES), contain
an AST state and the specific changes that transformed the source AST into
this state. An evolution query describes both the path and the code elements
that need to be present in the nodes along this path. These code elements
are described using the Ekeko logic program query language, developed by
De Roover and Stevens (2014).

Figure 3 depicts an overview of our approach. Two subsequent revisions
of the same file, called Rev1 and Rev2, are given as input. Note that, if the
user is interested in examining a range of revisions for a file, the approach can
be applied multiple times on each pair of subsequent revisions in this range.
The goal of our approach is to detect instances of a user-specified evolution
in the changes between Rev1 and Rev2. To this end, the files are passed as
inputs to a change distiller called ChangeNodes, detailed in Section 3. The
distiller’s output is a sequence of changes that transform the AST of the source
file into the AST of the target file. We convert this sequence into an auxil-
iary Change Dependency Graph (CDG) that makes the dependencies among
individual changes explicit. For instance, the CDG encodes the fact that an
AST node cannot be inserted by a change operation if its parent node has not
been inserted by a preceding change operation. Section 4.2 details all change
dependencies. Next, the Evolution State Graph is constructed. The process
starts from a single Evolution State node containing the original AST of the
source file. Future ES are created by executing changes without any unresolved
dependencies, for which the CDG is consulted. The solution to such a declar-
ative evolution query is an ES, containing an executable script of changes that
implements the evolution pattern specified by the user. This script consists of
the minimal amount of changes needed to implement the evolution pattern,
and any changes that would no longer be executable if the rest of the solution
were executed. As such, our approach ensures that the remainder of the change
sequence remains executable as well.

2.1 Ekeko, A Declarative Program Querying Language

In order to specify the source code characteristics intermediate AST should
exhibit we use the Ekeko program query language by De Roover and Stevens
(2014). Ekeko is a Clojure library for applicative logic meta-programming
against an Eclipse workspace. The library is primarily targeted to querying and
transforming Java code, but other language bindings (e.g. AspectJ and PHP)
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1. delete(“int x = 0;”)
2. insert(“int y = 0;”)

public class Example {
  int x = 0;
}

public class Example {
  
}

public class Example {
  int x = 0;
  int y = 0;
}

public class Example {
  int y = 0;
}

1.

2. 1.

2.

Changes Evolution State Graph

Fig. 2: Evolution state graph (ESG) for the middle sequence of distilled changes
of Figure 1. Edge labels correspond to applied changes.

converted

Code Rev1

Code Rev2
Change 
Distilling 
Algorithm

Change Sequence

Insert Move Insert …

Change Dependency Graph

Insert

Move

Insert

…

…

Evolution State Graph

ES

ES’

ES’’

Declarative Specification

Code Before

Code After

Sought-After Evolution Pattern

Operational Change Script

InsertInsert

outputs

navigates
consults

Fig. 3: Graphical overview of the approach: two code revisions are converted
to a change dependency graph. An evolution query, provided in a declarative
specification, consults this change dependency graph to produce an operational
change script that implements the desired evolution pattern.

have been implemented as well. Ekeko features a variety of different basic
logic predicates to query source code: this ranges from structural predicates
(e.g. to relate classes to subclasses, classes to their members, variable uses to
declarations, ...), to control flow predicates (to navigate control-flow graphs)
and data flow predicates (e.g. to perform alias analysis). The latter two types
of predicates are provided by Ekeko’s integration with the Soot framework
for bytecode analysis by Vallée-Rai et al (1999). Additional predicates can be
implemented by composing existing ones, or by interacting directly with the
Eclipse JDT and/or Soot framework.

The use of Ekeko in our approach does entail that users need to have some
basic knowledge on logic programming, and on Eclipse’s AST representation of
Java source code. We consider this a reasonable requirement, as our approach
is primarily targeted at (MSR) researchers.
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Several Ekeko predicates are used throughout this paper. Binary predi-
cate (ast ?kind ?node), for instance, reifies the relation of all AST nodes of a
particular type. Here, ?kind is a Clojure keyword denoting the unqualified name
of ?node’s AST node type. Solutions to the query (ast :MethodInvocation ?inv)

therefore comprise all method invocations in the source code.

Throughout this paper, we use a naming convention of predicates that reify
an n-ary relation consist of n components separated by a -, each describing an
element of the relation. Vertical bars | separate words within the description of
a single component. For example, binary predicate method-string|named unifies
its first argument with a method declaration and its second argument with
the string representation of the name of that method.

2.2 Motivating Example Revisited: Querying the ESG

Figure 4 illustrates the specification language of our approach. Depicted is a
logic query that finds instances of a field rename by navigating the ESG. The
query works by describing an AST in which the field is present, and a later
AST in which a field is added and removed. To this end, line 3 launches an
evolution query through the query-changes construct. It takes as input an ESG
and unifies its second argument with the end state of a matching path. Its third
argument is a collection of logic variables, made available to the remainder of
its arguments. These comprise a sequence of instructions that either verify that
the current ES adheres to the given logic conditions, or navigate to another
ES in the ESG. Lines 4–6 describe the initial state using in-current-es, which
introduces two variables es and ast. es is bound to the current ES of the query,
ast is bound to the AST of that ES1. Lines 5–6 describe the source code of
that AST, in which a field declaration ?field needs to be present at some
depth 2. Next, line 7 applies an arbitrary, non-zero, amount of changes using
the operator change->+. This will change the current ES for the remainder of
the expression. Finally, lines 8–12 state that the current ES needs to have a
newly field ?renamed. To this end, lines 11–12 ensure that ?field is not present in
the current AST, and that ?renamed is not present in the original AST. This is
done based on the name and the type of the field using the Ekeko predicate
ast-field|absent.

As this query was used as an initial example to introduce the syntax of
evolution queries, it does not yet take into account the fact that any field
accesses need to be renamed as well. A more refined version of this query,
which does consider field accesses, is presented later in Section 5.2.3.

Finally, notice how this query does not suffer from the change equivalence
and representation problems. The query supported by our approach only re-
quired the user to describe source code characteristics. The changes resulting

1 These are variables only visible in the body of in-current-es. If these variables need to be
available in other parts of the query a user needs to explicitly bind them to a logic variable.

2 Throughout this paper, logic variables are prefixed with a question mark.
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in this source code are returned as part of the query’s result. Users can there-
fore abstract away from the concrete changes that were distilled. By describing
ASTs instead of changes we solve the problem of different change sequences
implementing the same change pattern. This also makes it clear in which AST
a node resides. Where necessary, auxiliaries are provided to retrieve the cor-
responding node in a different intermediate AST.

1(defn field-rename [esg]
2 (run* [?es]
3 (query-changes esg ?es [?orig-ast ?field]
4 (in-current-es [es ast]
5 (== ?orig-ast ast)
6 (ast-field|ast ?field))
7 change->+
8 (in-current-es [es ast]
9 (fresh [?renamed]

10 (ast-field|ast ast ?renamed)
11 (ast-field|absent ast ?field)
12 (ast-field|absent ?orig-ast ?renamed))))))

Fig. 4: Querying an ESG for changes renaming a field.

2.3 Example Applications and the Corresponding Queries

We illustrate the advantages of our approach through two example applica-
tions. In the first example, we are tasked with determining whether and which
changes are responsible for introducing a new method in between two revi-
sions. In the second, more complex example, we detect which changes from a
distilled change sequence are responsible for eliminating a code clone.

2.3.1 Introduction of a Method

We first consider the problem of identifying the changes in a change sequence
that are responsible for introducing a new method in between two revisions of a
file. We define a method as newly introduced if no method with the same name
was present in the original code. At first sight, it might suffice for a solution
to the problem to query the change sequence for a single insert operation
that added a MethodDeclaration. Inadvertently, however, a change sequence will
be encountered in which the name of an existing MethodDeclaration has been
changed by an update or a move operation. Before long, the query will have
evolved into a large enumeration of potential change operations with a similar
effect. Operations that change the signature of the method, for instance, might
also have to be accounted for.

Instead, it is much easier to detect an intermediate AST in which a new
method is present, and retrieve the changes that led to the creation of this
AST. Figure 5 depicts a function that launches such an evolution query. The
function takes as input an ESG for a particular change sequence, and returns
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pairs of a method that has been introduced and the corresponding evolution
state (ES). To this end, the function launches a query on line 2 that will
find solutions for a pair of variables ?method and ?es. Lines 3–9 describe a path
through the ESG that ends in an evolution state ?es. Lines 3–5 describe the
initial state on this path, for which a logic variable ?absent is introduced. Line 5
binds this variable to the source AST, as so far no changes have been executed
on the path. To this end, we use in-current-es, which introduces two new
variables es and ast, bound to the current ES and its corresponding AST.
Line 6 executes an arbitrary, non-zero amount of changes using change->+.
Lines 7–9 verify that a new method is added to the current ES. To this end,
we bind ?method to any method declaration in the current ES, and verify that
that method was not present in the original AST using ast-method|absent. The
query returns all different ES that exhibit these characteristics.

1(defn introduced-method [esg]
2 (run* [?method ?es]
3 (query-changes esg ?es [?absent]
4 (in-current-es [es ast]
5 (== ?absent ast))
6 change->+
7 (in-current-es [es ast]
8 (ast-method ast ?method)
9 (ast-method|absent ?absent ?method)))))

Fig. 5: Querying an ESG for changes introducing a method.

2.3.2 Code Clone Elimination

For the final example application, we are tasked with finding the changes in
between two revisions that resulted in the removal of a code clone. Such an
application may be interesting to MSR researchers to detect how code clones
are removed, and what additional changes were performed next to the clone
removal. We will look for evidence of a removal technique involving the extract
method refactoring: the cloned code is extracted to a new method, and each
clone instance is replaced by a method invocation to the newly introduced
method. A concrete example of such a clone removal exists in the Apache
ANT3 project. Commit 6bdc259c2e818e1c86f944cbd8950e670294d944 removes a
code clone from file DirectoryScanner.java. Figure 6 depicts the changes dis-
tilled from this commit. We only show a small snippet of the original source
file, which is slightly over 1500 lines of code.The semantics of these changes
are explained in section 3. We assume that the code clone has already been
detected using an existing tool such as CCFinder Kamiya et al (2002), and
that the ESG has been created. We are only tasked with finding the specific
changes that implemented the clone removal.

3 https://ant.apache.org/
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Insert

Move

Delete

00 public void setIncludes(String[] includes) {
04   this.includes = new String[includes.length];
05   for (int i = 0; i < includes.length; i++) {
06     this.includes[i] = normalizePattern(includes[i]);
07   }
08 }
10
11 public void setExcludes(String[] excludes) {
12   this.excludes = new String[excludes.length];
16   for (int i = 0; i < excludes.length; i++) {
17     this.excludes[i] = normalizePattern(excludes[i]);
18   }
19 }
21   
22 private static String normalizePattern(String p) {
23   String pattern = p.replace('/', File.separatorChar)
24                  .replace('\\', File.separatorChar);
25   if (pattern.endsWith(File.separator)) {
26     pattern += "**";
27   }
28   return pattern;
29 }

00 public void setIncludes(String[] includes) {
04     this.includes = new String[includes.length];
05     for (int i = 0; i < includes.length; i++) {
06       String pattern;
07       pattern = includes[i].replace('/', File.separatorChar).replace(
08               '\\', File.separatorChar);
09       if (pattern.endsWith(File.separator)) {
10         pattern += "**";
11       }
12       this.includes[i] = pattern;
13     }
14   }
15 }
16    
17 public void setExcludes(String[] excludes) {
21   this.excludes = new String[excludes.length];
22   for (int i = 0; i < excludes.length; i++) {
23     String pattern;
24     pattern = excludes[i].replace('/', File.separatorChar).replace(
25             '\\', File.separatorChar);
26     if (pattern.endsWith(File.separator)) {
27       pattern += "**";
28       }
29       this.excludes[i] = pattern;
30     }
31   }
32 }

Fig. 6: Two revisions of class from the ANT project in between which a code
clone is extracted into a separate method normalizePattern, to which two in-
vocations are added. Overlaid is the output of our ChangeNodes change
distilling algorithm.

The first line of Figure 7 defines a function that takes as input an ESG,
the names of two methods containing cloned code, and the extracted method
AST node. The body of the function launches a logic query on line 2 returning
a collection of all possible bindings for ?es, which is the end node of a path
throughout the ESG. Line 3 describes the shape of this path through a regu-
lar path expression. Lines 5–9 bind cloneA and cloneB to the clones detected in
the source AST (i.e., setIncludes and setExcludes in the left revision in Fig-
ure 6). The child+ predicate unifies the given logic variable with any node of
the given AST. Line 10 navigates to a different node of the ESG by applying
an arbitrary, non-zero amount of changes. Lines 11–19 specify a strict imple-
mentation of the extract method refactoring. Lines 12–13 require the presence
of a method ?extracted in the current ES that is identical to the method given
as the extracted parameter to the function (i.e., normalizePattern in the right
revision in Figure 6). This ensures that an ES node of the ESG has been
reached in which all the changes extracting the cloned code have been ap-
plied. If not, the query will backtrack to line 10 and another change will be
applied. Next, lines 14–15 retrieve the version in that ES of the methods in
which the two instances of the cloned code resided originally (i.e., setIncludes
and setExcludes in the right revision in Figure 6). They use auxiliary construct
ast-method-method|corresponding to this end, which returns the corresponding
method from an ast for a given method. Finally, lines 16–19 ensure that the
methods containing cloned code have been extracted.
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1(defn clone-elimination [esg nameA nameB extracted]
2 (run* [?es]
3 (query-changes esg ?es

4 [?cloneA ?cloneB ?extracted ?aInvoc ?bInvoc ?aCurr ?bCurr]
5 (in-current-es [es ast]
6 (child+ ast ?cloneA)
7 (child+ ast ?cloneB)
8 (method-string|named ?cloneA nameA)
9 (method-string|named ?cloneB nameB))

10 change->+
11 (in-current-es [es ast]
12 (ast :MethodDeclaration ?extracted)
13 (ast-ast|same ?extracted extracted)
14 (ast-method-method|corresponding ast ?cloneA ?aCurr)
15 (ast-method-method|corresponding ast ?cloneB ?bCurr)
16 (child+ ?aCurr ?aInvoc)
17 (child+ ?bCurr ?bInvoc)
18 (method-invocation|invokes ?extracted ?aInvoc)
19 (method-invocation|invokes ?extracted ?bInvoc)))))))

Fig. 7: Querying an ESG for extract method refactorings.

3 Detailed Change Definitions

To compute the changes made in between two revisions of a file, we rely on our
own freely available4 change distiller called ChangeNodes (Christophe et al
2014; Stevens 2015). At its heart lies the algorithm presented by Chawathe et
al. Chawathe et al (1996), on which the ChangeDistiller (Fluri et al 2007)
tool was based as well. The main difference between both implementations is
that ChangeNodes works on the actual nodes provided by the Eclipse Java
Development Tools (JDT) project, while ChangeDistiller uses a language-
agnostic representation of nodes (to which JDT nodes are translated).

Accessing the children of a node is done through properties. For example,
an if statement has three properties; an expression property, a then and an else
property. Some properties may return a collection instead of a single item. Such
properties are called list properties. Some properties are mandatory, meaning
that the AST node must always have a non-null value for them. The “name”
property of a MethodDeclaration node is an example of a mandatory property.
Mandatory properties ensure that every AST always represents syntactically
legal Java code. Our ESG construction algorithm relies on them to ensure
the legality of the constructed intermediate AST states. As such, porting our
approach to a different language or source representation requires a means to
ensure that an AST represents syntactically legal code. We also require the
notion of a minimal representation of an AST node. A minimal representation
of a node is that node with no values for its non-mandatory properties, and
a minimal representation of the values of mandatory properties. For example,
the minimal representation of a MethodDeclaration is a method with a name,
but without arguments, body, etc . . .

We now define the semantics of the different types of change operations
produced by the change distiller. Note that these change operations are also

4 https://github.com/ReinoutStevens/ChangeNodes



12 Reinout Stevens et al.

used in the construction of the ESG. As a distilling algorithm applies changes
during its execution, thereby modifying the AST, a copy of the source AST
is made. Throughout this paper we call this copy source’ and indicate the
nodes inside with a quote as well. ESG construction assumes the following
changes:

insert(node’,original,parent’,removed’,property,index)

A node’ is inserted at location property of node parent’. In case property is a
child list property, the node is inserted at index index. Applying the insert
will only add a minimal representation of node’ to parent’. Node original

is the parent in the original AST, and can be null if the insert is part of
the subtree introduced by another change operation. Finally, removed’ is the
node that the insert operation overwrote in case a node was already present
in original at location property. If such a node was present its child nodes
are added to node’ so that later change operations can use them. If no such
node was present this value is null. During the execution of the algorithm
the removed node is still accessible through the matching data structure. For
example, the overwritten node can still be moved to a different location.

move(node’,original,parent’,preparent’,property,index)

A node’ is moved from preparent’ to location property of node parent’. In
case property is a list property, the node is moved to index index. Only a
minimal representation of the node will be moved. Its original location is
replaced by a placeholder node that still contains the subtree located at
node’. Thus, only the node is moved, and not the node and its complete
subtree. original is the representation of node’ in the original AST.

update(node’,original,property,value)

The value of node node’ at location property is updated to value. property

must be a simple property. As such, the value will be a Java object, and not
an AST node. original is the representation of node’ in the original AST.

delete(node’,original,parent’,property,index)

A node node’ and its complete subtree are removed at the value of property in
parent’. In case property is a list property, index indicates the index of node’
in its list. Note that node’ will not be present in source’ as the change has
already been applied. As such, node’ will not have a parent node. The parent
node before the application of the delete is captured by parent’. original is
the representation of node’ in the original AST.

Both a move and an insert produce minimal representations of an AST
node; inserting a node will only result in a minimal representation of that
node being added, and thus not the complete subtree. A move results in moving
the minimal representation of that node.Its original location is replaced by a
placeholder node that still contains the subtree located at node’. The subtrees
of these nodes will be introduced by later change operations.
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4 Conceptual Implementation

Having presented the necessary background on changes and change distilling,
we are ready to present our approach in more detail. We target the problem
of identifying executable subsequences in a distilled change sequence that im-
plement an evolution pattern of interest. Our approach recalls different subse-
quences that implement the same evolution pattern, specified as paths through
a graph of intermediate AST states. This spares users the “Change Equiva-
lence” and “Change Representation” problems identified in Section 1.

An Evolution State Graph (ESG) is constructed, against which our ap-
proach evaluates evolution queries. The evolution queries themselves feature
regular path expressions (de Moor et al 2002; Liu et al 2004) for describing
paths through the ESG, and the source code characteristics that have to be
encountered along this path. In general, a regular path expression describes
a path through a graph, for which conditions have to hold in nodes along
that path. They are akin to regular expressions, except that a) their elements
are evaluated against the nodes of a graph rather than the characters of a
string; and that b) some elements can explicitly navigate to another node of
the graph, against which the next element of the regular path expression will
be evaluated.

Like the Ekeko logic metaprogramming library that is used to evaluate
source code characteristics, the evaluation of these regular path expressions
is also implemented using logic programming. That is, finding matches of a
regular path expression in a graph is expressed as a unification problem: the
ESG itself, source code characteristics and the evolution query are all described
in a declarative manner, as a database of facts and relations. The unification
algorithm (of the core.logic library we used) is only tasked to find the possible
values for each logic variable in the query such that all facts and relations
hold.

Table 1 provides an overview of the constructs/relations that can be used
in our regular path expressions. We provide constructs for navigating an ESG,
such as change->+ which moves evaluation to either a direct or indirect successor
of the current node in the ESG. Keep in mind that an ESG is a directed
acyclic graph, which implies that all outgoing edges of an ES point to its
successor evolution states. We also provide constructs such as in-current-es

for evaluating logic conditions against the current node of the ESG. Such
embedded conditions comprise the primary means for describing the source
code characteristics that need to hold along a path of the ESG.

4.1 Usage of the evolution query language

Before presenting the construction of CDGs and ESGs, we will briefly discuss
the language constructs in Table 1, to give users of our approach a better idea
on how to make use of these constructs to write evolution queries.
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Table 1: Language for specifying evolution patterns through ESG-navigating
regular path expressions.

Navigation through the ESG
change->* change->* is a goal that changes the current state by applying an arbi-

trary, including zero, number of changes.
change->+ change->+ is similar to change->*, except that at least one change will be

applied.
change==>* change==>* is a goal that changes the current state by applying an arbi-

trary, including zero, number of changes and their dependent changes.
change==>+ change==>+ is similar to change==>*, except that at least one change will

be applied.
Characteristics of an ES
(in-current-es
[node ast]
& goals)

in-current-es binds es to the current evolution state of the evolution
query, and ast to the intermediate AST of that state. It verifies whether
the logic goals goals hold in this intermediate state. These goals can be
any Ekeko predicate.

Launching an Evolution Query
(query-changes
esg ?end

[&vars] &
goals)

query-changes launches a path query over esg and binds ?end to the end
node of that query. Logic variables vars are introduced and available in
the scope of the path query. goals is a sequence of the aforementioned
predicates that are proven for the given ESG.

The query-changes construct is needed to launch an evolution query. The
query itself, i.e. the goals parameter of query-changes, consists of a sequence of
in-current-es constructs that are interposed with navigation constructs. The
in-current-es construct is used to reason about properties of the current evo-
lution state, and navigation constructs are used to move the current evolution
state within an ESG. Informally, an evolution query describes a sequence of
evolution states that are of interest, where multiple changes can take place
between these states.

Most commonly, there are only two states that are of interest, one describ-
ing a “before” situation and one describing the “after” situation. This is the
case for all queries that are shown in this paper. However, we would like to
mention that some queries do involve more than two evolution states of inter-
est. For instance, a query to detect reverted bug fixes involves three states: one
state in which the bug is present, one where it is fixed, and one where the fix
is reverted. Another example with several evolution states involves detecting
refactoring plans (Pérez 2013), i.e. a specific sequence of refactorings that is
applied towards e.g. removing a particular code smell.

The most common navigation constructs are change->* and change->+. Both
of these move the current evolution state by applying multiple changes, until
an evolution state is found that matches description of the next in-current-es

in the query.

Note that Table 1 does not provide a navigation construct that applies
exactly one change. There is little use for such a construct in our current
approach, as it effectively forbids any other changes from taking place be-
tween two states of interest. Given that our ESG is constructed from distilled
changes, it considers all possible sequences to transform one AST into an-
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other. Consequently, in between two states of interest, it is likely that other
changes can be applied that are irrelevant to the query. This is not an issue
for change->* and change->+, as they can apply any number of changes.

Finally, there are the change==> and change==>* constructs, which respec-
tively are variants of change-> and change->* that also apply any dependent
changes. These two constructs are implemented as a more coarse-grained
means to navigate an ESG, as they reduce how often in-current-es constructs
need to be executed to test specific properties for the current state. Because
some Ekeko predicates to describe the desired properties of an ES are more
computationally expensive than others, change==> and change==>* can be used
to increase runtime performance, considering the trade-off that not all solu-
tions may be found.

4.2 Construction of a Change Dependency Graph

Section 4.3 will detail an algorithm for constructing the Evolution State Graph
(ESG) against which our approach evaluates evolution queries. The algorithm
relies on a model of the order dependencies among the changes in a distilled
change sequence. Even though such a sequence is by definition ordered (i.e.,
the distiller guarantees the sequence transforms the source AST into the target
AST when the changes are executed in order), additional order dependencies
are required because evolution queries are to identify (possibly non-continuous)
subsequences that implement a pattern of interest. Individual changes in such
a subsequence, can depend on any change that preceded them in the distilled
sequence.

A dependency A → B between changes A and B denotes that in order
to execute change B, one needs to execute change A first. We gather all de-
pendencies among the changes in a change sequence in a Change Dependency
Graph (CDG), of which the nodes correspond to changes and the directed
edges to dependencies. We compute the following kinds of dependencies:

Parent Dependency There is a parent dependency A →p B between changes
A and B if the subject of B is introduced by the application of A. Nodes
can be introduced either by an insert or by a move operation. We determine
this dependency by checking whether the subject of change B is part of the
subtree created by the application of change A.

Move Dependency There is a move dependency A→m B between changes A
and B if B removes part of A, rendering it impossible to move. This can
happen either by a delete or by an insert that overwrites the part of the AST
in which the node-to-be-moved resides.

List Dependency There is a list dependency A→l B between changes A and
B if they operate on elements of the same list, but the element of B has a
lower index than the element of A. Although changes A and B can be applied
independently of each other, the index of A will change depending on whether
B has already been applied or not.
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The subsequent ESG construction algorithm will require the CDG to be
acyclic. Particular combinations of the above dependencies can, however, in-
duce cycles in the graph. For example, the combination of two moves perform-
ing a swap operation result in a cycle as the application of either move renders
the other one inapplicable. Such cycles are removed by replacing one of these
moves with an insert.

4.3 Construction of the Evolution State Graph

We now explain how the Change Dependency Graph (CDG) from the pre-
vious section enables constructing the Evolution State Graph (ESG) that is
navigated through by a regular path expression. The ESG is a directed acyclic
graph that represents the possible ASTs that can be constructed by applying
some of the distilled changes. A single ESG node wraps a syntactically legal
AST and an ordered sequence of changes that were applied to construct that
AST. Two ESG nodes are connected if there exists an unapplied change that
transforms the AST of one into the AST of the other. The resulting edge is
labeled by the applied change. A single change can appear on multiple edges
in the graph.

The ESG has one source node (i.e., the node containing the original source
code with no applied changes) and one sink node (i.e., the node containing
the target source code and no unapplied changes). The graph is constructed
using the information provided by the CDG. Initially, the source node is con-
structed from the source AST. Successors of the source node are constructed
by applying a change without dependencies. The CDG facilitates the retrieval
of applicable changes given a set of applied changes. The ESG is constructed
on-demand; nodes and their ASTs are only created as needed when executing
an evolution query.

5 Evaluation - Change extraction experiments

After presenting our approach, we now seek to evaluate our approach in two
different ways. First, this section focuses on evaluating whether our approach
works as intended, and to gain insights into the output produced by the tool.
This is done by means of two experiments that extract changes in existing data
sets. Second, we also evaluate the usability and expressiveness of our query
language by means of a user study. This second part of the evaluation will
only be discussed in the next section (Sec. 6). In this section, we will focus
first on answering the following five research questions:
RQ1 Can a single evolution query identify the same evolution pattern in dif-

ferent change sequences?
RQ2 Is a minimal and executable change script returned, and can the remain-

ing distilled changes still be executed after the change script has been
executed?
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RQ3 How does the structure of the CDG relate to the approach’s runtime
performance?

RQ4 How does our approach compare to directly querying the output of a
distilled change sequence with respect to solution size, precision and the
number of changes that need be executed?

RQ5 In the solutions produced by the approach, how many changes in the
solution are directly relevant to the evolution query, compared to the
other changes in the solution?

The motivation behind these questions is as follows: RQ1 and RQ2 are
meant to verify that our approach works as intended: there can be multiple
solutions to an evolution query. The shortest solution effectively cannot be
minimized any further, while remaining an executable change sequence. RQ3
was added to gain insight into the main factors that affect the approach’s per-
formance. We hypothesize the structure of CDG plays a large role to determine
to what extent the approach scales to complex changes. RQ4 and RQ5 are in-
tended to examine the solutions produced by the approach in more detail.
That is, RQ4 compares our approach to a naive one, where the solution would
include all changes between the first ES, and the ES where the full evolution
pattern is found. Such a solution would also include any changes irrelevant
to the evolution pattern, i.e. not of interest to the user. RQ5 looks into the
solutions produced by our approach, to get a better idea how many changes
are of interest to the user, i.e. how many changes directly contribute to the
evolution pattern.

To answer these five questions, we perform two experiments, each of which
considers a different context to demonstrate that our approach can be applied
in multiple applications. In the first experiment, we extract changes that per-
form a well-known refactoring from commits of open-source projects. In the
second experiment we extract changes that represent a systematic edit, i.e. a
group of similar changes, from commits of two industrial projects.

In each experiment, we will attempt to specify the state of the source code
before and after the sought-after transformation by means of a declarative
evolution query (Section 5.2). It is known in advance which evolution patterns
should be found in each experiment, so RQ1 can be answered by verifying
that our approach does find the expected patterns. Each solution to such a
query should be an executable script of changes. When executed, this script
will transform the source code before the commit to a state that matches
the specified state of the code after the transformation. In other words, the
extracted changes will perform only the transformation specified in the query.
The remaining changes (those not included in the script) in the commit will,
when executed, transform the state of the code after the script’s transformation
to the state of the code after the entire commit. Part of answering RQ2 consists
of effectively executing this script, followed by the remaining changes, to verify
that this execution is valid does not produce any errors. If the execution were
invalid, this could be caused, for instance, by a change that tries to delete a
node that does not exist.
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The approach computes a minimal solution. That is, the smallest subset of
changes that implements the code evolution. To this end, it retrieves the ES
that matches the evolution query with the smallest amount of applied changes.
To complete the answer to RQ2, we will manually verify whether the solutions
(depicted in Table 5) are minimal. We also compute various metrics pertaining
to each research question (Section 5.5).

To answer RQ3, RQ4 and RQ5, various metrics are measured and dis-
cussed regarding the structure of the change dependency graph, the solutions
produced by the approach, and the time taken to run an evolution query.

Finally, note that in these experiments, we do not consider a notion of
false positive (or negative) results. For instance, in the first experiment we
consider extracting specific refactorings from changes. It is well possible that,
given some evolution query, the query may not describe all refactorings that
the writer of that query intended to find, which can be considered false pos-
itives. However, this is not due to evaluation process of evolution queries are
processed, as it considers all possible change sequences produced by a change
distiller. Instead, this simply indicates that the evolution query itself needs to
be modified, such that all desired results are described. Whether or not the
current constructs in evolution queries are sufficiently expressive to accurately
describe any desired evolution patterns is only illustrated with examples in
this paper, but not evaluated in these experiments.

In the remainder of this chapter, we will first describe the data set and
the queries that specify the sought-after transformations for each experiment,
followed by the experiments’ results and discussion.

5.1 Data Set - Refactoring Extraction Experiment

Our evaluation of the first experiment proceeds on a data set of commits that
each contain, among other changes, a “Replace Magic Constant”, “Remove
Unused Method” or “Rename Field” refactoring. This selection of refactorings
is sufficiently varied in the number of changes required to perform them, as
well as in the types of AST nodes affected by them. Additionally, we would like
to note that each of these refactorings represents a source code transformation
within one file. This is due to the fact that evolution queries currently reason
about the changes in one file. Supporting multiple files is left as future work,
and is discussed in more detail in Section 7.

Table 2 lists the identifier of each commit, the open source project repos-
itory it originates from, the name of the refactoring it contains, the name of
the class affected by the refactoring, and the oracle according to which the
commit contains the refactoring. The oracle is indicated by the subscript in
the first column. We have used two such oracles:

– The first oracle, denoted by a 1 subscript in Table 2, corresponds to a data set5

produced by the Ref-Finder (Prete et al 2010) tool which recognizes refac-

5 http://web.cs.ucla.edu/~miryung/inspected_dataset.zip
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Table 2: Data set of the refactoring extraction experiment

Id Ref. Project Commit Class
1 Constant1 ant d97f4f3 WeblogicDeploymentTool

2 Constant1 ant 34dc512 Jar

3 Constant1 ant a794b2b FixCRLF

4 Constant1 JMeter b57a7b3 AuthPanel

5 Constant1 JMeter 3a53a0a HTTPSampler

6 Constant1 JMeter 8275917 HTTPSampler

7 Method2 jdt.ui 678 JavaEditor

8 Method2 jdt.ui 2910 JavaNavigatorContentProvider

9 Method2 jdt.ui 2722 StubUtility2

10 Field2 jdt.ui.test 0277 MarkerResolutionTest

11 Field2 jdt.ui 2810 SourceAnalyzer

12 Field2 jdt.ui 2810 SourceProvider

13 Field2 jdt.ui 2810 InlineMethodRefactoring

torings in commit histories using coarse-grained change information (e.g.,
changes in the subtyping relation). We manually inspected all occurrences
of the “Replace Magic Constant” refactoring in this data set, discarded the
false positives, and —without loss of generality— discarded the commits that
span multiple files. The latter because our prototype implementation is cur-
rently limited to querying changes between two revisions of the same file. The
commits listed in Table 5 are all such commits in the RF data set.

– The second oracle, denoted by a 2 subscript, corresponds to a data set6 result-
ing from a study by Murphy-Hill et al (2012) of logs of developer interactions
with the refactoring functionality of their IDE. Each commit in this data set
has already been cross-checked by the authors with the interaction logs. After
filtering commits that span multiple files, we are left with 3 instances each
of the “Remove Unused Method” or “Rename Field” refactorings in Table 5.

Note that the commit identifiers listed in Table 2 differ depending on the
data set the commit stems from. For commits with subscript 1, the short iden-
tifier from the project’s GitHub repository is used. For commits with subscript

2, we use the same identifier as the authors of the original study.

5.2 Queries - Refactoring Extraction Experiment

We describe the queries used to identify the exact changes contributing to the
“replace magic constant”, “remove unused method” and “rename field” refac-
toring. The query results of this experiment, as well as the second experiment,
will be discussed later in section 5.5.

5.2.1 Query for “Replace Magic Constant”

Figure 8 depicts the query that identifies changes from a commit that im-
plement a “Replace Magic Constant” refactoring. This refactoring extracts a

6 http://multiview.cs.pdx.edu/refactoring/experiments/



20 Reinout Stevens et al.

1(query-changes esg ?es

2 [?not-present ?method ?literal value

3 ?cmethod ?field ?field-access]
4 (in-current-es [es ast]
5 (== ast ?absent)
6 (ast-method ast ?method)
7 (child+ ?method ?literal)
8 (literal-value ?literal ?value))
9 change->+

10 (in-current-es [es ast]
11 (ast-ast-field|introduced ?absent ast ?field)
12 (field-value|initialized ?field ?value)
13 (ast-method-method|corresponding ast ?method ?cmethod)
14 (child+ ?cmethod ?field-access)
15 (field-name|accessed ?field ?field-access)))

Fig. 8: Evolution query for those changes in a commit that implement a “Re-
place Magic Constant” refactoring.

literal string or number from the body of a method to a field, and updates
the method such that it references the newly introduced field. The first line
of Figure 8 launches the query for a path ending in an Evolution State ?es

through Evolution State Graph esg. Lines 2–3 introduce additional logic vari-
ables used throughout the query. Lines 4–8 describe the initial Evolution State
of the source code. Line 5 unifies the original AST with ?absent, so that it can
be used later to determine whether a fresh field has been introduced. Lines
6–8 identify a method ?method that contains a constant value ?value. Line 9 uses
the change->+ operator to apply one or more changes. Lines 10–15 describe a
future Evolution State, in which a new field has been introduced to replace
the constant value. To this end, the ast-ast-field|introduced ensures that
its third argument ?field is absent from its first AST argument, but present
in its second. Line 12 ensures that this field features the constant ?value as its
initializer expression. Line 13 uses ast-method-method|corresponding to retrieve
a method ?cmethod in the current Evolution State that corresponds to ?method

in the original one. The names and signatures of the methods are required to
match, but not their bodies. Finally, lines 14–15 ensure that this method now
accesses the newly introduced field.

5.2.2 Query for “Remove Unused Method”

Figure 9 depicts the query that identifies changes implementing a “Remove
Unused Method” refactoring. The query describes an initial Evolution State
containing an unused method, and a later Evolution State in which the method
is no longer present. Lines 3–6 describe the initial ES, in which method ?method

is unused. Line 6 uses method|unused/1, which implements a straightforward
name-based resolution mechanism to verify that ES does not contain an in-
vocation of this method. Line 7 applies one or more changes using change->+.
Lines 8–10 describe a successive ES, in which no method with the same name
as the name of ?method can be found. It also ensures that there is no call intro-
duced to the removed method.
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1(query-changes esg ?end

2 [?method]
3 (in-current-es [es ast]
4 (child+ ast ?method)
5 (ast :MethodDeclaration ?method)
6 (method|unused ?method))
7 change->+
8 (in-current-es [es ast]
9 (ast-method|absent ast ?method)

10 (method|unused ?method)))

Fig. 9: Evolution query for those changes in a commit that implement a “Re-
move Unused Method” refactoring.

1(query-changes esg ?es

2 [?original ?field ?accesses

3 ?count ?renamed ?renamed-accesses]
4 (in-current-es [es ast]
5 (== ast ?original)
6 (child+ ast ?field)
7 (ast-field ast ?field)
8 (ast-field-list|accesses ast ?field ?accesses)
9 (length ?accesses ?count))

10 change->+
11 (in-current-es [es ast]
12 (child+ ast ?renamed)
13 (ast-field ast ?renamed)
14 (ast-field|absent ?original ?renamed)
15 (ast-field|absent ast ?field)
16 (ast-field-list|accesses ast ?renamed ?renamed-accesses)
17 (length ?renamed-accesses ?count)
18 (ast-field|unaccessed ast ?field)))

Fig. 10: Evolution query for those changes in a commit that implement a
“Rename Field” refactoring.

5.2.3 Query for “Rename Field”

Figure 10 depicts the evolution query that identifies changes implementing a
“Rename Field” refactoring. Lines 4–9 describe an initial ES in which a field is
present. Lines 11–21 describe a later ES in which that field and its accesses are
absent, and in which a new field has been introduced that has the same number
of accesses. Line 5 unifies ?original with the AST of that ES, so that it can be
used in future ES. Next, lines 6–7 unify ?field with a field declaration of that
AST. Finally, lines 8–9 retrieve all the uses of that field in a list ?accesses with
length ?count. Line 10 uses change->+ to apply one or more changes. Lines 11–18
describe the later ES in which the refactoring has been completed. To this end,
lines 12–13 unify ?renamed with a field declaration. Line 14 uses ast-field|absent

to ensure that ?renamed is absent from the original AST, while line 15 ensures
that ?field is absent from the current AST. Next, lines 16–17 verify that this
new field is used as often as the original variable. Finally, the last line ensures
that no accesses to the original field are present in the AST.
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Table 3: Data of the second commit untangling experiment

Id Sys. Edit Project #Inst.
14 Introduce runnable TP Vision 7
15 Remove cast FPS Finance 37
16 Introduce fields and accessors FPS Finance 21

5.3 Data Set - Untangling Systematic Edits Experiment

The second data set of our evaluation comes from the code base of two indus-
trial partners. The first partner is TP Vision. TP Vision is a wholly-owned
subsidiary of TPV, an internationally-renowned PC monitor and TV manu-
facturer serving as original design manufacturer for well-known TV and PC
brands in the industry. TP Vision oversees Philips TV business in most re-
gions of the world. The second partner is FPS Finance, the federal public
service of finances in Belgium. It carries out various tasks in field of taxes and
finances, such as ensuring correct taxation is levied in due time, supervising
flows of goods, maintaining public property records and preventing fraud.

Part of the data set stems from a previous study in which we used frequent
itemset mining on the output of ChangeNodes to detect instances of similar
groups of changes, also called systematic edits (Molderez et al 2017). In this
evaluation we aim to extract all the instances of such a systematic edit in order
to untangle it from that commit. Note that the tool used in this study was
configured such that changes were grouped by method, and only one instance of
a systematic edit can be found per group. This implies that instances found by
the study are not larger than a method. Given this configuration, we selected
three of the most complex systematic edits for this experiment.

The three cases studied in this experiment are listed in Table 3. The
columns respectively represent describe the extracted systematic edit, in which
project it is located, and how many instances of the systematic edit are present.

Similar to the first experiment, we extract an executable change sequence
that, when applied, only the systematic edit is performed. That is, the code is
transformed such that the different instances of the systematic edit are present.
In order to untangle the commit we first create a commit in which only the
systematic edit has been applied, and a second final commit containing the
remaining changes.

5.4 Queries - Untangling Systematic Edits Experiment

In this section we describe the queries used to identify the exact changes
contributing to all the instances of the “introduce runnable”, “remove cast”
and “introduce field and accessors” systematic edits.
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1 - optionsfocuschange(OPTIONS_SHOW_ALL);
1 + new Handler().post(new Runnable() {
2 +   @Override
3 +   public void run() {
4 +     optionsfocuschange(OPTIONS_SHOW_ALL);
5 +   }
6 + }

Fig. 11: Figure depicting a single instance of the “introduce runnable” system-
atic edit, in which a call to optionfocuschange is wrapped in a Runnable.

1(let [target (:target esg)]
2 (query-changes esg ?es

3 change->*
4 (in-current-es [es ast]
5 (ast-methodinvoc|all-optionfocus ast ?options)
6 (ast-methodinvoc|all-optionfocus target ?all-options)
7 (list-list|same-length ?options ?all-options)
8 (fails
9 (fresh [?focus]

10 (membero ?option ?options)
11 (optionsfocus|not-wrapped-in-runnable ?option))))))

Fig. 12: Evolution query for those changes in a commit that are an instance
of the “Introduce Runnable” systematic edit.

1(defn ast-methodinvoc|all-optionfocus [?node]
2 (fresh [?name]
3 (ast :MethodInvocation ?node)
4 (has :name ?node ?name)
5 (name|simple-string ?name "optionsfocuschange")))

6(defn optionsfocus|not-wrapped-in-runnable [?options]
7 (all
8 (methodinvocation|optionsfocus ?options)
9 (fails

10 (fresh [?expr ?block ?run ?anonymous ?class]
11 (ast-methodinvoc|all-optionfocus ?options)
12 (ast-parent ?options ?expr)
13 (ast-parent ?expr ?block)
14 (ast-parent ?block ?run)
15 (methoddeclaration|name ?run "run")
16 (ast-parent ?run ?anonymous)
17 (ast-parent ?anonymous ?class)
18 (classinstance|name ?class "Runnable")))))

Fig. 13: Additional Ekeko predicates used by the evolution query

5.4.1 Query for the “Introduce Runnable” Systematic Edit

Figure 11 depicts one instance of the “introduce runnable” systematic edit.
Each instance of this edit modifies a call to optionfocuschange so that is wrapped
inside a Runnable such that the call becomes asynchronous.

Figure 12 depicts the evolution query that detects the changes that con-
tribute to all the instances of this systematic edit. The first line introduces
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a variable target, bound to the the AST of the target commit. Lines 2–11
launch an evolution query in which an arbitrary number of changes are ap-
plied until an ES is encountered that contains the same amount of calls to
optionfocuschange as the target source code. This is specified by lines 5–7. Lines
8–11 specify that every call to optionfocuschange must be wrapped in a Runnable.
To this end, the query uses negation-as-failure to ensure no call exists that is
not wrapped in a Runnable. Finally, note that two new Ekeko predicates were
defined, specifically for this evolution query, ast-methodinvoc|all-optionfocus

and optionsfocus|not-wrapped-in-runnable. Just to illustrate their definitions,
they are given in Figure 13. In short, both of these predicates are composed
of basic Ekeko predicates to navigate an AST, or check that an AST node
has a specific name or type.

5.4.2 Query for the “Remove Cast” Systematic Edit

Figure 14 depicts an instance of the “remove cast” systematic edit. Each in-
stance removes the cast to type Long for the return value of dto.getCodeValue.
Figure 15 specifies the evolution query that detects changes that contribute
to all the instances of this systematic edit. It works similar to the previous
query. It uses a custom predicate ast-invocs|getCodeValue (composed of basic
Ekeko predicates) to unify ?all-invocs with all the invocations of getCodeValue

in the target AST, and ensures that the sought-after ES has the same amount
of invocations. Lines 9–11 ensure that no call to getCodeValue is wrapped in a
cast expression.

1 - if (Long.valueOf((Long)dto.getCodeValue("A8476")) > 0) {
2 -   bcdMap.put("100",Long.valueOf((Long)dto.getCodeValue("A8476")));
1 + if (dto.getCodeValue("A8476") > 0) {
2 +   bcdMap.put("100",dto.getCodeValue("A8476"));

Fig. 14: Figure depicting a single instance of the systematic edit, in which the
value of a call to dto.getCodeValue is no longer cast to type Long.

5.4.3 Query for “Introduce Field and Accessors” Systematic Edit

Each instance of the final systematic edit introduces a new field, together
with a getter and a setter. This systematic edit occurs in practice when-
ever the code of FPS Finance needs to be updated to reflect new tax laws,
and several fields are introduced at once to represent new or updated en-
tries in tax forms. Figure 16 depicts the evolution query that detects changes
that contribute to all instances of this systematic edit. Lines 1–2 introduce
two variables original and target, bound respectively to the original and
target AST. Lines 3–15 specify the evolution query, which applies changes
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1(let [target (:target esg)]
2 (query-changes esg ?es

3 change->*
4 (in-current-es [es ast]
5 (fresh [?all-invocs ?invocs ?invoc]
6 (ast-invocs|getCodeValue target ?all-invocs)
7 (ast-invocs|getCodeValue ast ?invocs)
8 (list-list|same-length ?all-invocs ?invocs)
9 (fails

10 (membero ?invoc ?invocs)
11 (getcodevalue|wrapped-in-cast ?invoc))))))

Fig. 15: Evolution query for those changes in a commit that are an instance
of the “Remove Cast” systematic edit.

1(let [original (:original esg)
2 target (:target esg)]
3 (query-changes esg ?es

4 change->*
5 (in-current-es [es ast]
6 (fresh [?all-fields ?fields ?field ?getter ?setter]
7 (ast-ast-fields|introduced original target ?all-fields)
8 (ast-ast-fields|introduced original ast ?fields)
9 (list-list|same-length ?all-fields ?fields)

10 (fails
11 (membero ?field ?fields)
12 (child+-type curr :MethodDeclaration ?getter)
13 (field-declaration-method|getter ?field ?getter)
14 (child+-type curr :MethodDeclaration ?setter)
15 (field-declaration-method|setter ?field ?setter))))))

Fig. 16: Evolution query for those changes in a commit that are an instance
of the “Introduce Field and Accessors” systematic edit.

until an ES is encountered that has as many introduced fields as the tar-
get AST, and in which each field has a corresponding getter and setter.
Lines 7–9 ensure that the ES has the same number of introduced fields.
The predicate ast-ast-fields|introduced unifies its last argument with a list
of fields that are present in its second argument, but not in its first. Lines
10–15 use a negation-as-failure loop to ensure that every introduced field
has a getter ?getter and ?setter. Predicates field-declaration-method|getter and
field-declaration-method|setter unify their second argument with a method
that adhere to the convention of getters and setters.

5.5 Query Results

After presenting the queries of our experiments, we can now discuss their
results. We will first provide an overview of the results, while answering the
five research questions. After this, each of the experiments’ results is discussed
in more detail, illustrated with visualizations of their CDGs.

RQ1 and RQ2 - The first two research questions, RQ1 and RQ2, can be
answered affirmatively without showing any data. For RQ1, we have executed
each evolution query and can conclude that in each case, we can successfully
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use a single evolution query to identify the same pattern in different change
sequences created from source code that exhibits the desired pattern. For RQ2,
we manually verified that the solutions are both minimal and executable. To
ensure that a solution is minimal, it is necessary to distinguish between changes
that are relevant to the evolution query, and those that are irrelevant. This is
explained in more detail during the discussion of RQ5.

To answer the remaining RQs, we will discuss the results presented in
Table 4 and Table 5. The Id column in both of these tables also refers back to
the tables describing the experiments’ data sets, Table 2 and Table 3. Id 1-13
corresponds to the first experiment and Id 14-16 corresponds to the second
experiment.

RQ3 - Table 4 depicts metrics about the distilled changes and the corre-
sponding change dependency graph (CDG), and can be used to answer RQ3.
Column #Ch shows the total number of distilled changes for the file. Next,
column LP shows the length of the longest path through the CDG. Column
MP shows the median length of the paths through the CDG. Both indicate,
using our approach, how many changes need to be applied before a given
change becomes applicable. Were the output of a change distiller used di-
rectly, this would be all of the preceding changes in the distilled sequence. The
last columns show how connected the graph is: column #Co shows the number
of connected components in the CDG. Changes from one component can only
be connected with changes from the same component. Column #Single shows
the number of components that contain only a single node. Columns MaxIn
and MIn show respectively the maximum and median in-degree of the CDG
(i.e., the number of changes depending on a change). Finally, columns MaxOut
and MOut respectively show the maximum and median out-degree the CDG
(i.e., the number of changes that a specific change depends on).

The data in Table 4 concerns RQ3, which is about the relation between a
CDG’s structure and the running time of an evolution query. The total running
time of an evolution query can be found in the last column of Table 5. Note
that the process of change distilling and constructing the CDG is also included
in this running time. While not shown in the tables, change distilling and
CDG construction only needs to be executed once and consumes a relatively
smaller portion of the total running time, especially when a large CDG is
involved. Running the evolution query itself involves applying many possible
combinations of path sequences, while testing properties on evolution states.
As such, our main intuition is that the running time mainly increases together
with the number of changes in the CDG. This appears to be true in most
cases, looking at the #Ch column. However, Id 6, 7 and 12 each have a low
number of changes, but a relatively high runtime. Knowing this, we suspect the
number of connected components also is an important factor that influences
the runtime. The #Co column seems to confirm this, although this can only
be considered a rough indication, as we did not look into this any further. The
intuition behind this conclusion is that, with many connected components,
there are many changes that can be performed independently. This greatly
increases the number of possible change sequences, all of which are explored
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Table 4: Data describing the distilled changes and their corresponding change
dependency graph (CDG). The identifier (Id) column corresponds to the sys-
tematic edits in Table 2 and Table 3.

Id #Ch LP MP #Co #Single MaxIn MIn MaxOut MOut
Refactoring experiment (Section 5.1)

1 202 14 8 10 4 16 1 10 1
2 74 10 3 5 4 33 1 6 2
3 1244 20 6 2 1 235 1 49 2
4 245 10 4 17 15 106 1 11 1
5 149 7 2 36 18 11 1 6 1
6 25 5 2 4 0 5 1 4 1
7 11 2 1 10 9 1 1 1 1
8 5 1 1 5 5 0 0 0 0
9 291 8 2 28 24 91 1 10 1
10 10 4 2.5 5 4 1 1 3 1
11 63 7 2 25 22 1 1 6 2
12 27 6 2 12 10 3 1 3 2
13 221 14 3 41 33 41 1 9 2

Untangling experiment (Section 5.3)
14 388 10 3 54 31 27 1 11 1
15 433 29 2 101 51 41 1 10 1
16 315 4 2 63 0 4 0 1 1

when running an evolution query. In short, our answer to RQ3 is that these
data indicate the #Ch and #Co are the main factors that influence running
time. While we cannot affect the number of changes, it may be an interesting
path of future work to exploit the fact that groups of changes are independent
to reduce the runtime.

RQ4 and RQ5 - Table 5 describes the solutions and its changes, and can
be used to answer RQ4 and RQ5. Column #Sol depicts the number of changes
in the minimal, executable solution returned by the query. Next, Columns LS
and MS respectively depict the longest and median span, indicating the num-
ber of changes that separate two successive changes in the solution. Column
#DS depicts the total number of changes that would need to be applied were
the distilled output queried directly, before the described evolution pattern
would be recognized. Thus, the columns LS, MS and #DS indicate how many
irrelevant changes would need to be applied when not using our approach,
while #Sol indicates the total number of changes that actually need to be
applied using our approach.

The next three columns depict a manual classification of the solution into
either Evolution Implementing (#EI ), Evolution Supporting (#ES ) and Evo-
lution Linking (#EL) ones:

Evolution Implementing (EI) An EI change is an integral part of the sought-
after evolution pattern. In the “Rename Field” refactoring, for example,
the change modifying the name of the field is considered as evolution im-
plementing.

Evolution Supporting (ES) An ES change is not an integral part of the sought-
after evolution pattern, but is depended on by one of its EI changes. Without
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Table 5: Description of the evaluation’s solutions. The first column shows
the identifier. The next seven columns describe the minimal solution and its
changes. The last column describes the running time of the computation of
the result.

Id #Sol LS MS #DS #EI #ES #EL Time(s)
Refactoring experiment (Section 5.1)

1 8 29 8 82 4 4 0 33
2 4 11 7 23 4 0 0 19
3 10 300 68 1000 4 6 0 2054
4 5 135 23 199 4 1 0 106
5 5 96 8.5 118 4 1 0 1985
6 6 4 3 14 4 1 1 285
7 2 1 0.5 1 1 0 1 748
8 1 0 0 0 1 0 0 3
9 39 22 4.5 264 2 0 37 1536
10 3 3 2 9 3 0 0 53
11 13 13 3 57 13 0 0 8842
12 15 3 1 24 10 5 0 3133
13 6 77 29 213 6 0 0 5757

Untangling experiment (Section 5.3)
14 51 29 2 338 49 2 0 488
15 90 38 2 385 79 9 2 2247
16 314 1 1 314 314 0 0 3708

the ES change, the EI change would no longer be executable. For example,
an EI change inserting a field access into a method body depends on ES
changes preparing that method’s body.

Evolution Linking (EL) An EL change is included in the minimal solution,
but is neither an EI nor an ES change. EL changes ensure that the remain-
der of the distilled changes can still be executed after each change in the
solution has been executed. As such, they link the solution to the rest of
the distilled changes. For example, when parts of a method that fell victim
to the “Remove Method” refactoring are moved and subsequently changed
elsewhere, the minimal solution will include these moves as EL changes.
These changes could be removed from the solution by our approach.

Finally, the last column indicates the total running time in seconds for
distilling the changes, constructing the CDG, and finding a single minimal
solution. This is the running time of a single execution of an evolution query,
and only serves to provide the general order of magnitude of the running time.

Figure 17 illustrates this classification of the changes in the solution to the
“Replace Magic Constant” query against commit 8275917 (Id 6). Before the
commit, method getUrl() contained the constant 0 twice: once as a magic con-
stant on line 8, and once as part of a check for an empty list on line 5. In the de-
picted solution7, change 1 inserts a field “private static int UNSPECIFIED PORT;”,

7 Keep in mind that the approach currently only looks for minimal, executable solutions.
As illustrated in Figure 17, the approach disregards whether or not a distilled change se-
quence is realistic, i.e. a sequence that a developer might intuitively consider to transform
one piece of code into another.
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Move Insert

00 public class HTTPSampler extends AbstractSampler {
01   …
02 
03   public URL getUrl() throws MalformedURLException {
04     String pathAndQuery=null;
05     if (getQueryString().length() > 0) {
06       …
07     } 
08     if (getPort() == 0) {
09       return new URL(…);
10     } else {
11       …
12     }
13   …

00 public class HTTPSampler extends AbstractSampler {
01   public static final int UNSPECIFIED_PORT = 0;
02   …
03   public URL getUrl() throws MalformedURLException {
04     String pathAndQuery=null;
05     if (getQueryString().length() > 0) {
06      …
07     }
08     if (getPort() == UNSPECIFIED_PORT) {
09       return new URL(…);
10     } else {
11       …
12     }  
13   …

1
3

4 5

2

6

Fig. 17: Code snippet from the HTTPSampler class, in which a new field is intro-
duced (1,2). This field is initialized via a move of a constant (3), which itself
is replaced by a different move (4). Move 4 is an EL change as its node-to-be-
moved is overwritten by a later insert (6). Insert 5, unnecessarily, overwrites
the parent location of change 6, and is classified as an ES change.

change 2 inserts an initializer expression “...= 0;” into the field, and change
3 moves the latter 0 to replace the null in the initializer, leaving a copy of the
value behind on line 5 as it is a mandatory node (cf. the minimal representa-
tion of AST nodes discussed in Section 3). Change 4 then moves the former
0 from line 8 to replace the one on line 5. Change 5 overwrites the infix ex-
pression on line 8 as its textual representation differs too much between both
revisions. The left hand side is kept, while change 6 inserts a new field access
in the right hand side. Changes 1, 2, 3 and 6 in the solution are EI changes
implementing the actual sought-after refactoring. Change 5 is an ES change
as it is depended upon by change 6. Change 4 is an EL change as it would
no longer be applicable after the application of change 6, which overwrites
the node-to-be-moved. It is not required for the sought-after refactoring, Note
that we performed this classification manually, ensuring that the sum of #EI,
#ES, and #EL is always #Sol.

After presenting Table 5 in detail, we can now answer RQ4, which is
concerned with comparing our approach to finding minimal sequences, with a
naive approach that also includes irrelevant changes in its solutions. From the
LS, MS and #DS columns – indicating how solution changes are interspersed
between non-solution ones – we deduce that replaying the distilled change
sequence until a desired ES is found results in much larger solutions. We do
note that our returned solutions may still contain EL changes that a user, if
desired, wants to filter out. Nonetheless, the number of changes that would
have to be inspected is a lot lower than using a direct approach. We also want
to stress that our approach focuses on finding a minimal solution; if the goal
is to know whether a change sequence implements a certain code evolution
simply replaying the distilled changes until a desired state is encountered is
recommended.

Finally, the answer of RQ5 is concerned with the ratio of EI changes
compared to ES and EL changes. As Table 5 indicates, in most cases, nearly
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all changes are directly related to the sought-after evolution pattern. Conse-
quently, we conclude that most solutions would also be perceived as minimal
by users of our approach. This is meant in the sense that users may not be
interested in any ES or EL changes, even though these changes are necessary
to obtain a solution that is executable.

Having discussed each of the different research questions, the remainder of
this section discusses each of the evolution queries’ results in more detail.

Results for “Replace Magic Constant”: For each of the refactoring commits
from projects ant and JMeter (Id 1-6), the evolution query depicted in Figure 8
reports a minimal solution consisting of the 4 sought-after EI changes: two
for inserting a new field declaration and its name, one for copying the magic
constant to the field initializer, and one for replacing the constant with an
access to the inserted field. The remaining ES changes always prepare a parent
node for this field access. We already explained the EL change in the minimal
solution for commit 8275917 (Id 6) above using Figure 17.

Note that the size of the change sequence distilled for the different com-
mits containing this refactoring varies wildly, as does their complexity. As
demonstrated by columns #Sol and #DS, and Figure 18, the CDG reduces
the number of changes that need to be applied for any given change signifi-
cantly. Thus, the returned minimal solutions always consist out of a very small
number of changes. The minimal solution for commit a794b2b (Id 3), for exam-
ple, includes only 11 of the 1244 changes distilled in total. More than doubling
class FixCRLF from 429 to 972 lines of code, this commit contains many changes
unrelated to the sought-after ones. Here, we also find the largest span in the
distilled change sequence between any two solution changes: 300 successive
changes would have to be searched through to find the next change that is
part of the solution, and 1000 changes would be applied in total, compared to
10 changes using our approach.

Each of the minimal solutions can be replayed on the source code before
the commit. However, doing so might not eliminate every copy of the magic
constant. This is because our specified query is somewhat too relaxed. Its
minimal solution only needs to encompass the changes that eliminate a single
copy of the constant, leaving the changes that eliminate the remaining copies
behind. The query could be improved by, for instance, requiring that the final
evolution state has as many accesses to the newly introduced field as there were
copies of the constant. The danger of making queries this strict is that some
instances of the evolution pattern will no longer be recognized. This would
already be the case for the commit in Figure 17, where the same constant is
used for two different purposes.

Figure 18 depicts the CDG created for commit 34dc512 (Id 1) of the ant

project. Figure 19 depicts the CDG created for commit 3a53a0a (Id 5) of the
JMeter project. Every distilled change corresponds to a node in the graph.
Dependent changes are connected through an edge. The colors of the node
indicate the change type. Changes that are part of the minimal solution are
depicted as a pentagon. Figure 18 demonstrates that inserting blocks of code
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Fig. 18: CDG created for the commit with Id 1 in Table 4.

results in many parent dependencies. This is due to the minimal representation
of change operations (cf., Section 3). Both figures illustrate that the CDGs have
several connected components, with changes that can be applied independently
from each other.

Figure 20 depicts the CDG created for commit a794b2b (Id 3) of the ant

project. This figure illustrates the complexity of some of the CDGs. The high
number of distilled changes results in a complex CDG, where a manual detec-
tion of the dependencies is not feasible.

Results for “Remove Unused Method”: The sought-after refactoring can be
performed by a single change, namely a delete of the unused method. Inspect-
ing the results (Id 7-9) we note that this only holds for a single case. The
returned solution for StubUtility2 (Id 9) even contains 39 changes in total.
This is due to parts of the removed method being moved to different locations
by other changes. These moves are part of the solution, and are classified as
EL changes. We also note that there are 2 EI changes: two methods with the
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Fig. 19: CDG created for the commit with Id 5 in Table 4.

same name are removed. This is due to the declarative specification, requir-
ing that no methods with the same name are present. A stricter specification
would prevent this from happening.

Figure 21 depicts the CDG created for the StubUtility2 class (Id 9). This
figure clearly illustrates the evolution linking move operations (i.e., the blue
pentagons), and the single evolution implementing delete operation (i.e., the
red pentagon). The nodes-to-be-moved are all part of the subtree that will be
removed by the delete. Thus, the moves must be applied before the delete.
Two similar delete operations are present; one on the left side of the figure
that is not part of the solution and one in the top right corner of the figure
that is part of the solution. Each delete that is part of the solution removes
one of the two methods that share their name.

Results for “Rename Field”: The final results of our first experiment are for
the “Rename Field” refactoring (Id 10-13). The number of changes in the solu-
tion differ across the different instances. This is due to the nature of the refac-
toring, as it requires that every access is updated to reflect the name change.
Implementing this query without our approach, but by directly querying the
distilled changes, would be hard as the number of changes is not known before-
hand. These changes can also span the entire change sequence, as the accesses
can happen throughout the whole AST. We note that the running times for
all but one example are high compared to the other refactorings. This can
be attributed to the nature of the declarative description of the source code,
which takes several seconds to run on a single ES. Detecting the absence of an
element requires visiting all the nodes in the AST to ensure that the element
is not present, which is a slow process.
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Fig. 20: CDG created for the commit with Id 3 in Table 4.

Figure 22 depicts the CDG created for the InlineMethodRefactoring class.
This figure depicts the different evolution implementing updates that modify
the accesses to the the renamed field.

Results for “Introduce Runnable”: The solution for the “Introduce Runnable”
systematic edit (Id 14) consists of all but two EI changes. This means that
applying the solution results in a a new commit that only contains the re-
sult of the systematic edit. The two ES changes are due to a new call to
optionfocuschange that was added in the target source code. This call is added
in a new method, which is introduced by the two ES changes.

Figure 25 depicts the CDG created for these changes, and illustrates this.
There are 6 groups of changes that are part of the solution on the right hand
side of this figure. These represent the existing calls that are wrapped in a
Runnable. The group of changes that are part of the solution on the left are
the two ES changes that introduce a new method, and several changes that
introduce the Runnable and call to optionsfocuschange.
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Fig. 21: CDG created for the commit with Id 9 in Table 4.
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Fig. 22: Figure depicting the CDG created for the commit with Id 11 in Table 4.
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Fig. 23: CDG created for the commit with Id 15 in Table 4.

Fig. 24: CDG created for the commit with Id 16 in Table 4.
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Fig. 25: CDG created for the commit with Id 14 in Table 4.

Results for “Remove Cast”: The solution for the “Remove Cast” systematic
edit (Id 15) consists mostly out of EI changes. Figure 23 depicts the CDG of
the distilled changes. A large number of solution changes, depicted on the right
hand side, remove the cast by overwriting the existing cast expression with a
call to getCodeValue. A much more complex component is depicted on the left.
Some existing code was modified by non-solution changes, hereby also affecting
calls to getCodeValue. The extraction of these changes results in more ES and
EL changes being part of the solution. The resulting untangled commit will
contain some code that is not part of the systematic edit, but that is needed
when the remaining changes are applied to create the final commit.

Results for “Introduce Field and Accessors”: The final result is a commit (Id
16) that only contained changes that contribute to the systematic edit. Our
query successfully identified that all the changes were needed to introduce
the fields and corresponding accessors. Figure 24 depicts the CDG computed
for these changes. The changes in the top left introduce the field, while the
changes on the right introduce a getter and a setter.

6 Evaluation - User study

After having evaluated that our approach works as intended, this section fo-
cuses on evaluating the query language itself. We are interested specifically
in the usability and expressiveness aspects of the language. To this end, this
section addresses the following research questions:

RQ6 Is our query language sufficiently easy-to-use for researchers in the field
of software engineering?
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Fig. 26: Prior Ekeko experience of participants

RQ7 Is our query language sufficiently expressive to describe a wide variety
of code transformations?

To answer these two research questions, we performed a user study8 in
which participants were asked to use our query language to both understand
existing queries, and also write a few queries of their own.

6.1 User study demographics

Given that our approach is primarily meant to be used by researchers, our
user study was performed with 14 participants from academia (12 people of
the Software Languages Lab, Vrije Universiteit Brussel, and 2 people of the
Ansymo lab, Universiteit Antwerpen). Our group of participants consists of 3
postdocs, 9 Phd students and 2 Master’s students. All participants joined the
study on a voluntary basis. Eleven participants have experience working in the
broader field of software engineering. Six of those eleven participants specifi-
cally have experience in the area of mining software repositories, meaning they
are directly representative of our approach’s target audience.

None of the participants had prior experience using our approach, although
some have experience with the Ekeko metaprogramming library, as shown in
Fig. 26. This experience is relevant, as the desired properties of an entity state
are described in terms of Ekeko predicates (i.e. the goals in the in-current-es

construct).

6.2 User study design

At the beginning of the study, a 15 minute presentation is given to intro-
duce the participants to the main constructs used in the query language. One
simplification that we made when describing our query language is that we re-
stricted all queries to follow the form shown in Fig. 27. That is, all queries first
describe an evolution state with a “before” situation of interest, then several
changes are applied using the change->+ operator, followed by a description
of the “after” situation. This simplification allows participants to focus their

8 All material that was provided in the user study, including the study’s complete results,
are available online: http://soft.vub.ac.be/~tmoldere/qwalkeko
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1 (query-changes esg ?es [;local variables]
2 (in-current-es [es ast]
3 ; goals before-ES)
4 change->+
5 (in-current-es [es ast]
6 ; goals after-ES ))

Fig. 27: Template used for all queries in the user study.

attention on the essential parts of a query, i.e. the descriptions of evolution
states. We consider this a reasonable simplification, as most queries (includ-
ing all queries mentioned in this paper) typically follow the same form. In
addition to the introductory presentation, participants are also given a doc-
umentation page that provides a description and examples for the different
predicates available in our query language.

The user study itself proceeds in four phases:
Phase 1 - The first phase consists of three reading tasks, intended to

test whether the participants can understand a given query. In each task, a
specific query is given (without any comments or description) and four possible
matches for that query. Participants need to choose which of the given matches
are correct, as well as deduce from the query what its purpose is.

Phase 2 - After the reading tasks, the participants are asked to enter their
answers in an intermediate questionnaire, which also includes a few questions
to gauge their overall experience with the language so far.

Phase 3 - In this phase of the study, the participants are given three
writing tasks. These tasks are meant to test the ease-of-use of the language, as
well as test whether the language is expressive enough to solve these tasks in a
manner that is intuitive to the participants. In each writing task, participants
are asked to write a query such that it fits the given description and is able to
find the given match.

Phase 4 - The study concludes with a final questionnaire to measure the
participants’ experience regarding the learning curve, usability, expressiveness
and overall experience with the language.

These four phases are explained in more detail in the following sections.
The entire study, including the introductory presentation and filling in both
questionnaires, takes between 2 to 3.5 hours.

6.3 Reading tasks

There are three different reading tasks in the user study. As mentioned earlier,
a query and a number of possible matches are given in each task. If a possible
match contains the transformation that is described in the query, it is a correct
match. Each participant is then asked to select which of the potential matches
are correct, and to provide a short description of the query’s purpose.

Each given match is provided in the form of a before- and an after source
code file. The changes between the before- and after code may or may not
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contain the transformation described in the given query. If the changes do
contain this transformation, the match is correct. Note that the before and
after code may also contain changes that are irrelevant to the query, both to
represent a realistic commit and to highlight that our approach is able to ignore
these changes. To easily compare the before and after code, participants were
also given a textual diff of all possible matches. In addition, because our query
language examines code at the level of abstract syntax trees, participants also
had access to a simple AST browser9 to view the tree structure of all before
and after code. Having access to the AST structure is especially important to
easily determine the type names of AST nodes (needed in e.g. the /textttast
relation) and the names of properties (needed in e.g. the has relation). Without
such a browser, participants would have to explore the extensive reference API
documentation10 for Eclipse’s Java AST structure, which would both consume
a lot of time, and distract participants from working with our query language.

The queries that were given in the reading tasks do not contain any com-
ments, and the logic variables used in the query only provide an indication re-
garding what type of AST node is contained in each variable, not the query’s
purpose. An example of one of the queries we used, and one of its correct
matches, are given in Fig. 28 and Fig. 29. This particular query looks for the
removal of null checks. More specifically, it looks for an InfixExpression that
performs a null equality check on ?left in the “before” evolution state, then
it checks that ?left still appears in the “after” evolution state (assuming it is
needed elsewhere in the code), but no longer as part of a null check.

1(query-changes esg ?es

2 [?method ?expression ?right ?left ?after-method ?left-after]
3 (in-current-es [es ast]
4 (child+ ast ?method)
5 (child+ ?method ?expression)
6 (ast :InfixExpression ?expression)
7 (conde
8 (has :operator ?expression "==")
9 (has :operator ?expression "!="))

10 (has :leftOperand ?expression ?left)
11 (has :rightOperand ?expression ?right)
12 (ast :NullLiteral ?right))
13 change->+
14 (in-current-es [es ast]
15 (ast-method-method|corresponding ast ?method ?after-method)
16 (child+ ?after-method ?left-after)
17 (ast-equals ?left ?left-after)
18 (fails
19 (fresh [?expression-after ?right-after]
20 (parent ?left-after ?expression-after)
21 (has :rightOperand ?expression-after ?right-after)
22 (ast :NullLiteral ?right-after)))))

Fig. 28: Query that looks for removed null checks.

9 Based on the org.eclipse.jdt.astview plugin
10 This refers to the API documentation for all classes in the org.eclipse.jdt.core.dom

package.
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// Before
public class TreeNode {

public void addChild(TreeNode n) throws Exception {
if (n!= null) {

children.add(n);
} else {

throw new Exception("Cannot add null children");}}
...

}

// After
public class TreeNode {

public void addChild(TreeNode n) throws Exception {
children.add(n);

}
...

}

Fig. 29: Example of a correct match for Fig. 28.

The three reading tasks consist of the following three queries:

T1.1 Removal/rename of a formal parameter in an interface method
T1.2 Removal of a null check (shown in Fig. 28)
T1.3 Magic constant refactoring (also used in the previous evaluation, Fig. 8)

Based on the query description that the participants provided for each
task, we examined how many people found a correct answer, a partially correct
answer or an incorrect answer. A partially correct answer would be, for instance
in T1.1, only mentioning that a parameter is renamed in the query (even
though it can also be a removal). An answer that is either too abstract or
unrelated to the correct answer is deemed incorrect. For T1.1, there are 7
correct answers and 7 partial answers. For T1.2, there are 10 correct answers, 2
partial answers and 2 incorrect answers. For T1.3, there are 10 correct answers,
1 partial answer and 3 incorrect ones.

However, aside from the query description, if we consider which matches
were selected in each task, there are few fully correct answers. In T1.1, 4 par-
ticipants selected only the correct matches. For T1.2, there are 2 participants.
For T1.3, there are 4 participants. On the other hand, almost everyone did
select some (or too many) of the correct matches in all tasks.

These results seem to indicate that our participants do have a general un-
derstanding of the query language’s concepts, but the exact semantics of some
predicates may be more complex. In particular, several participants mentioned
in the intermediate questionnaire they found the fails predicate to be confus-
ing, which implements the “negation as failure” concept of logic programming.
It may be possible to prevent such confusion by providing additional/improved
documentation and examples. It also is worth noting that, during these tasks,
participants were not allowed to execute the queries. This complicates under-
standing the queries’ semantics, but this was necessary as executing the queries
would make it trivial to select which of the given matches are correct. These
reading tasks have primarily measured the understandability of our query lan-
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Fig. 30: Difficulty rating of the reading tasks

guage, which is an important factor of the language’s ease-of-use, and partially
addresses RQ6.

Participants were also asked to rate the difficulty of each task using a Likert
scale (Oppenheim 2000), as shown in Fig. 30. The difficulty ratings are rather
varied, but none of the reading exercises are considered trivial. This corre-
sponds to our expectations, as we chose our tasks to represent realistic uses
of our language, rather than design more artificial tasks that focus on testing
one specific predicate of the language at a time. While the latter approach
would be more useful to pinpoint which specific predicates are more difficult
or easier to understand, this would require a large amount of tasks and would
be less representative for testing the understandability of real-world queries.

6.4 Writing tasks

After the reading tasks and the intermediate questionnaire, the participants
are asked to perform three writing tasks. In each task, a query should be
written (from scratch) such that it produces the given match and corresponds
to the given description. The given match of each task is provided in the same
form as the reading tasks: a before- and after source code file, with access to
a textual diff and an AST browser.

The given descriptions for the three writing tasks are the following:

T2.1 Write a query that looks for methods that were private, but they are
now changed to public.

T2.2 Write a query that looks for the removal of an unused method. That
is, private methods that are never called. (This is a query also used in a
previous experiment, shown in Fig. 9.)

T2.3 Write a query that looks for migrations of Junit 3 tests to Junit 4 tests.
Main changes between Junit 3 and 4:
– Test classes no longer need to extend TestCase

– The setUp method can now have any name, but it should get a @Before

annotation. Likewise, the tearDown method can now have any name, but
it should get an @After annotation
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– Test methods no longer need the have a ”test” prefix in their name,
but should get a @Test annotation.

For each task, participants had to keep track of time and were given a 30
minute time limit. The time taken for T2.1 and T2.2 is given in the box plots11

of Fig. 31. The time for T2.3 was not included because, as can be inferred from
the task’s description, this task is significantly more complex than the other
two, and was not intended to be finished in 30 minutes. The idea for this task
was to gauge how much of the query could be completed within 30 minutes.

In case of T2.1, 10 (out of 14) participants were able to complete the task
successfully. For T2.2, 9 participants finished the task. After the study we
found that most of the remaining participants got stuck due to a minor bug in
our AST browser that does not show the (only) child of a Modifier AST node.
Visiting this child is one way to determine whether this AST node represents
a public or private keyword, which is part of T2.1 and T2.2. There are other
ways (as used by the other participants) in which visiting the children is not
necessary, e.g. by examining the source code representation of an AST node.
If anything, this issue shows that participants do rely on the AST browser as
a companion tool to help with writing queries.

While T2.3 was not intended to be completed within the allotted 30 min-
utes time, 2 participants did complete this task. Five people indicated they
were close to completion. In the questionnaire, several participants indicated
a need for some additional higher-level predicates for more commonly used
operations, such as retrieving a class’s superclass. It should be straightforward
to implement such predicates on top of the core Ekeko predicates.

We also manually examined the queries that the participants wrote to ex-
amine the degree of variation between the different solutions. For the most
part, the main form of variation consists of some participants (typically those
with prior Ekeko experience) opting to make more use of higher-level/compound
predicates compared to sticking a more limited collection of lower-level/core
predicates.

Finally, the difficulty rating given per writing task is given in Fig. 32.
As expected, T2.3 is considered the most difficult one. While the difficulty
ratings are not significantly different from those in the reading tasks, the query
language was sufficiently usable and expressive for most participants to solve
T2.1, T2.2 and (partially) T2.3.

6.5 User study results

After finishing the writing tasks, the user study is concluded with a final ques-
tionnaire, which asks the participants to directly rate the language’s usability,
expressiveness, its learning curve, its usefulness for the MSR community, and

11 This paper uses Tukey box plots (Frigge et al 1989), the default type of box plots
produced by the R language.
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Fig. 33: Final questionnaire ratings

to provide an overall rating. These results are given in Fig. 33. The y-axis for
each plot can be interpreted as ”higher is better”.

In case of usability, the rating ranges from 1 (difficult-to-use) to 5 (easy-
to-use). It is clear from the box plot that our language is generally considered
more difficult to use (with an average usability rating of 2.5). This result may
be partially attributed to the previously mentioned issue that some partic-
ipants had during the writing tasks. However, it can also be attributed to
a significant extent that some of the difficulty is inherent, as our approach
requires familiarity with both logic programming and the AST structure of
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Java source code. This is also reflected in the rating for the learning curve
(2.9 on average) , which ranges from 1 (steep) to 5 (smooth). In this cate-
gory, most people opted for 3. To rate the learning curve, each of the options
had specific labels; the label of option 3 is ”I understand the basics, and I
am confident I will become more proficient with some more practice.”. This
label also corresponds to our expectations of the learning curve, given the 2-3
hours of experience that our participants received in this study. Nonetheless,
as a few participants have mentioned, the usability of the approach can also
be improved with additional tool support, such as an autocompletion feature
while writing queries. Overall, considering the results of all tasks, the usability
rating and the learning curve rating, we can provide an answer to RQ6: while
there is a learning curve to become fluent with our approach, and there is
room for improvement in terms of tool support and predicate documentation,
the approach is sufficiently usable to write useful queries.

In terms of expressiveness, our approach generally has received high rat-
ings in Fig. 33 (4 on average). Expressiveness was also mentioned by several
participants when asked what they liked about the approach. Considering that
the tasks were also chosen to represent a wide variety of practical uses of our
approach, RQ7 can be answered: our query language is sufficiently expressive
to express a wide variety of code transformations.

While the last two ratings in Fig. 33 are more informal, we considered
it worth mentioning that the approach is perceived as useful to the MSR
research community by all participants, and that the approach received an
average overall rating of 3.5.

7 Limitations and threats to validity

This section focuses on limitations of the approach itself, and threats to validity
regarding the experiments that were performed.

7.1 Limitations

Performance - Runtime performance and memory usage are currently not a fo-
cus of the approach. However, as the experiments have shown, history queries
can take a long time to complete. This may be acceptable for empirical stud-
ies, but less so for developers who want to obtain near-instant answers to
their queries. The main parts of the approach that affect performance are the
following: first, importing the source of a revision from a version control sys-
tem can take several seconds due to data being written to disk, and Eclipse
updating its internal models. Second, distilling changes between two versions
has a time complexity of O(n2), where n is the maximum number of nodes in
either the source or target AST (Falleri et al 2014). Finally, the main factor
affecting performance is the structure of the CDG, as discussed in Section 5.
Some of these performance issues are mitigated: the execution of evolution
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queries is implemented such that solutions can be computed in an on-demand
manner. This makes it possible to write queries incrementally, which can be
tested quickly. As discussed in Section 4.1, there also are coarse-grained lan-
guage constructs, change==> and change==>*, which can be used to reduce the
search space of a query.

If the user needs to apply the approach to a range of revisions, further
optimizations are possible: while not discussed in this paper, we have also
implemented predicates to access version control information. (e.g. which files
are modified in a commit, who made the modifications, ..) This can be obtained
relatively quickly, compared to obtaining fine-grained change information. As
such, it may be possible to write an initial query in terms of version control
information to find any relevant revisions, and to write a subsequent query that
uses the fine-grained representation for only those relevant revisions. Finally,
to reduce memory usage, an incremental representation of the source code
could be used (Alexandru and Gall 2015). In such a representation, an initial
AST is created for the first revision containing that AST. Later revisions are
represented by only storing the modifications to that initial AST.

Multi-file support - Our approach currently receives two revisions of one
file as input. Consequently, transformations involving multiple files cannot be
easily expressed. For instance, an evolution query that can recognize modifi-
cations to an API, in which a method declaration and all calls to that method
are modified. A naive approach to supporting multiple files is to simply merge
the contents of all files into one large file. However, this creates an unfeasibly
large CDG with many connected components, which was discussed in RQ3 of
Section 5. To address this problem, partial order reduction techniques (Peled
1998), typically used to reduce the state space of concurrent systems, could
be repurposed to reduce the search space of a CDG.

7.2 Threats to validity

False positives - During the experiments, we only ran the evolution queries
on revision pairs that are known to contain the sought-after patterns. This
was done to reduce the total running time of the experiment. As such, we
cannot claim that these patterns were not found in any of the other revision
pairs. However, if additional matches would be found, this either means that
the oracle needs to be adjusted, or it means that the evolution query needs
to be modified. In either way, the evolution query itself cannot be blamed.
It can only produce solutions that match its specifications, which is why we
mentioned in Section 5 that a notion of false positives does not apply to our
approach.

Generalizability - The experiments focused on two types of transforma-
tions, refactoring and systematic edits. There may be other important types
of transformations that do not fit in one of these two categories. More impor-
tantly, as the approach is currently restricted to examining the evolution of
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one file at a time, our approach currently does not scale yet to more complex
transformations that span multiple files.

Intermediate evolution states - We have currently used our approach to
detect source code transformations where it is sufficient to identify only the
source and the target AST. For instance, the refactoring experiment looks for
an ES where the sought-after refactoring is not present yet, and an ES where
the refactoring has been applied. We have not thoroughly tested evolution
queries that also specify properties for any intermediate evolution states.

User study size - The user study of Sec.6 was performed with 14 partici-
pants, of which 6 have experience in the MSR field. This may not be statisti-
cally representative of the MSR community.

8 Related Work

Our work lies at the intersection of multiple domains: program and history
querying tools, history querying tools, change distilling algorithms and change
dependencies. Program querying tools identify source code elements that ex-
hibit user-specified characteristics. Enabling users to specify these characteris-
tics in logic-based languages has proven to result in expressive, yet descriptive
specifications. This requires reifying code as data in a logic language. Exam-
ples of such logic-based program querying tools include CodeQuest (Hajiyev
et al 2006), PQL (Martin et al 2005) and SOUL (De Roover et al 2011).
History querying tools extend the idea of program querying tools by allow-
ing querying the history of a software project instead of a single revision.
Early history querying tools, such as SCQL (Hindle and German 2005) and
V-Praxis (Mougenot et al 2009), extended a PQL by adding a revision ar-
gument to each predicate. More recent tools feature dedicated specification
languages. The Boa platform (Dyer et al 2013) allows efficient querying of
the history of a program by using MapReduce. History querying tools provide
a history of the source code, but offer no support to query concrete source
code changes that were performed. They do provide a good starting point to
integrate an evolution query language in.

ChangeDistiller (Fluri et al 2007) is a widely used implementation of
a distilling algorithm that has been implemented as a plugin in the Evolizer
platform. The algorithm itself is based on the algorithm presented by Chawathe
et al (1996). gumtree (Falleri et al 2014) is another distilling algorithm that
proposes a hybrid approach between line-based differencing and tree-based dif-
ferencing to improve the performance of the algorithm. In this paper we make
use of ChangeNodes, a distilling algorithm operating directly on Eclipse
JDT nodes. All algorithms provide similar output, and thus feature the same
problems as directly querying the output of ChangeNodes.

Changes and their dependencies have been used in various different con-
texts: The work of Martinez et al (2013) is most closely related to ours; it
makes use of ChangeDistiller to look for specific code change patterns re-
lated to bug fixing. These patterns are specified directly in terms of fine-grained



Querying Distilled Code Changes to Extract Executable Transformations 47

changes and their relations, whereas our evolution queries describe patterns at
a higher level, in terms of properties of the source code. Ebraert et al (2007)
have detected dependencies between recorded changes, while Uquillas Gómez
et al (2014) help integrators navigate changes and their dependencies. To this
end, they both build a FAMIX model and a corresponding change model that
models changes made to the FAMIX model. The level of changes they work
with are modifications to the FAMIX model, and are more coarse-grained
than AST nodes. They do provide some semantic dependencies while we limit
ourselves to syntactic dependencies.

The work of Yoon and Myers (2015) presents the AZURITE tool, which
extends the Eclipse IDE to selectively undo fine-grained code changes. To undo
a selection of previous code changes, the tool needs to detect any conflicts that
can occur between changes, which closely corresponds to the notion of depen-
dencies between changes. AZURITE operates using textual changes, which are
logged while the developer is typing code. Our approach makes use of more
fine-grained AST-level changes, which could be useful to detect conflicts at a
semantic level next to structural conflicts. Hayashi et al (2012) also use textual
changes, with the aim of restructuring changes to improve understandability,
which is closely related to the problem of commit untangling. Using AST-level
changes can be helpful to restructure according to semantic criteria.

The work of Servant and Jones (2012) presents a technique to obtain the
history of a set of lines of code, to determine when/who inserted/removed
each line in a project. The changes in this work are represented at a line-based
level. Our AST-based approach could supplement their work, in the sense that
evolution queries can be written to track the evolution of methods, statements,
variables, etc.

Finally, OperationSliceReplayer (Maruyama et al 2016) is an approach that
enables skipping uninteresting changes from a sequence of logged changes, in
order to construct a particular class member of a Java class. To this end, they
construct an “operation history graph”, which models changes and the differ-
ent class members present in the source code they affect. Their main goal is to
help developers understand how code has evolved by only replaying changes
that are of interest to the developer. The main difference with our approach
is that we focus on replaying distilled changes in different orderings to find a
minimal set that implements an evolution pattern, while they focus on skip-
ping changes in a change sequence in order to efficiently build a particular
class member. As such, their graph is based around storing dependencies be-
tween class members and their affecting changes, while our graph focuses on
dependencies between changes.

On a related note, Li et al. present an approach to slice software history
such that the changes that implement a particular feature/bug fix are grouped
together, with the aim of simplifying porting/transplanting certain function-
ality to different branches. To allow establishing semantically related changes,
this work represents changes at the AST-level.

Similar to one of our experiments, Weissgerber and Diehl (2006) present
a technique to identify refactorings from source code changes. Their model
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of changes is specifically targeted at this purpose, considering adding/remov-
ing/moving classes, parameters , fields, etc. The model used in our work is
general-purpose, as it could be used to describe changes in any (abstract syn-
tax) tree structure. Consequently, our approach requires some additional work
in describing the desired abstractions needed for an evolution query that de-
tects a particular refactoring. On the other hand, our approach can be applied
in a variety of different applications and contexts.

In summary, existing approaches either do not include low-level source code
changes, or do not feature a dedicated query language. In this paper, we have
presented such a query language and have integrated it in the history querying
tool QwalKeko by Stevens and De Roover (2014).

9 Discussion and Future Work

The presented work facilitates users in expressing and detecting evolution
patterns. Without our approach a user would have to manually inspect the
changes of a distilled change sequence in order to identify the changes imple-
menting the sought-after pattern. While cumbersome, such a manual approach
results in a minimal set of changes implementing a pattern. Our approach en-
ables users to express evolution characteristics through a declarative specifi-
cation.

Currently, we have only used our approach to detect refactorings, for which
the result is present in the target AST. In theory a sought-after transformation
could only be present in some ES, but not in the final ES. It is ill-advised to de-
tect such ES. First, the construction of the ES depends on the distilled change
sequence. As such, there is no way to know beforehand whether the desired ES
will actually be present, as an unexpected change sequence may be generated.
Second and finally, the worst-case performance in detecting a specific ES is an
issue. For a given set of changes with size N , N ! different sequences with length
N can be constructed in case no change has a dependency. As such, detecting
such ES requires replaying the different change sequences. To partially solve
this issue, we have introduced coarse-grained navigation predicates that apply
multiple changes at once, limiting the search space at the cost of removing
ES that may contain the solution. Another potential path of future work is to
lower the learning curve of our approach such that evolution queries can be
specified without any knowledge about Java AST structures. One option is to
provide integration with the Ekeko/X tool by De Roover and Inoue (2014), a
tool built on top of Ekeko where source code can be queried and transformed
in terms templates written in Java.

We want to investigate further applications of our approach. For instance,
we want to investigate whether we can cherry-pick changes from a commit,
e.g. to extract a single feature. This feature can be expressed as an evolution
query, and our approach returns a minimal executable edit script. We want to
see whether such an edit script can be applied on similar source code, such as
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code from a different branch. To this end, we can use our approach to detect
the differences between the source code across the two branches.

10 Conclusion

We have presented an approach to extracting a minimal executable edit script
from distilled change sequences. The change equivalence and change represen-
tation problems render specifying the sought-after transformation in terms of
the properties of the changes difficult. Instead, an evolution query describes
the source code prior and after the sought-after code transformation. Thus,
the transformation is specified in terms of the source code, solving the change
equivalence and change representation problems. Such a query can be matched
against any distilled code sequence. The approach detects whether the trans-
formation is present, and if so, returns a minimal executable edit script.

Acknowledgements

We would like to thank all participants of our user study. We would also like to
thank the anonymous reviewers for their detailed reading of this manuscript
and their high-quality feedback.

References

Alexandru CV, Gall HC (2015) Rapid multi-purpose, multi-commit code analysis. In: Proc.
of the 37th Int. Conf. on Software Engineering (ICSE15)

Chawathe SS, Rajaraman A, Garcia-Molina H, Widom J (1996) Change detection in hier-
archically structured information. In: Proc. of the Int. Conf. on Management of Data
(SIGMOD96)

Christophe L, Stevens R, De Roover C (2014) Prevalence and maintenance of automated
functional tests for web applications. In: Proc. of the Int. Conf. on Software Maintenance
and Evolution (ICSME14)

De Roover C, Inoue K (2014) The ekeko/x program transformation tool. In: Proc. of 14th
Int. Working Conf. on Source Code Analysis and Manipulation (SCAM14), Tool Demo
Track

De Roover C, Stevens R (2014) Building development tools interactively using the ekeko
meta-programming library. In: Proc. of the European Conf. on Software Maintenance
and Reengineering (CSMR14)

De Roover C, Noguera C, Kellens A, Jonckers V (2011) The SOUL tool suite for querying
programs in symbiosis with Eclipse. In: Proc. of the 9th Int. Conf. on Principles and
Practice of Programming in Java (PPPJ11)

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for
analyzing ultra-large-scale software repositories. In: Proc. of the Int. Conf. on Software
Engineering (ICSE13)

Ebraert P, Vallejos J, Costanza P, Paesschen EV, D’Hondt T (2007) Change-oriented soft-
ware engineering. In: Proc. of the 2007 Int. Conf. on Dynamic languages (ICDL07)

Falleri JR, Morandat F, Blanc X, Martinez M, Montperrus M (2014) Fine-grained and
accurate source code differencing. In: Proc. of the 29th Int. Conf. on Automated Software
Engineering (ASE14



50 Reinout Stevens et al.
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