
Untangling Composite Commits
Using Program Slicing

Ward Muylaert, Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
{ward.muylaert;coen.de.roover}@vub.be

Abstract—Composite commits are a common mistake in the use
of version control software. A composite commit groups many
unrelated tasks, rendering the commit difficult for developers to
understand, revert, or integrate and for empirical researchers to
analyse. We propose an algorithmic foundation for tool support to
identify such composite commits. Our algorithm computes both
a program dependence graph and the changes to the abstract
syntax tree for the files that have been changed in a commit. Our
algorithm then groups these fine-grained changes according to the
slices through the dependence graph they belong to. To evaluate
our technique, we analyse and refine an established dataset of
Java commits, the results of which we also make available. We
find that our algorithm can determine whether or not a commit
is composite. For the majority of commits, this analysis takes
but a few seconds. The parts of a commit that our algorithm
identifies do not map directly to the commit’s tasks. The parts
tend to be smaller, but stay within their respective tasks.

I. INTRODUCTION

Version control systems (VCS) are widely used to manage
the history of code bases. Prominent examples include Git,
SVN, and Mercurial. A developer may “save” their changes
into units called commits. Best practice suggests each commit
should only contain changes related to one task. Such commits
are called single-task or atomic commits [1, 2]. In this manner,
the VCS can be used to keep track of how the program under
development evolves. VCS also support, for example, reverting
individual changes or porting changes to other versions of
the code base. On the research side, VCS provide a trove of
software evolution information open to analysis.

However, developers do not necessarily follow the best
practice of creating only single-task commits [3]. For example,
a small bug may end up being fixed while work is underway
on another feature. The bug fix and the new feature then end
up in the same commit. Floss refactoring is another problem:
refactoring in order to prepare an implementation for a new
feature, after which all changes are committed together [4].
These situations result in composite commits: larger commits
that combine many unrelated changes.

Composite commits occur on a regular basis. A study
by Herzig et al. found that up to 15% of Java bug fixes
contain multiple unrelated changes [5]. Tao and Kim found
that between 17% and 29% of investigated revisions were
composite [2]. Nguyen et al. found that 11% to 39% of all the
fixing commits used for mining archives were composite [6].

Composite commits may cause several problems. We pro-
vide four examples. Individual changes are more difficult to
revert if they are a part of a larger commit. Changes are also
more difficult to integrate if they are part of a composite
commit with other unrelated changes. A code reviewer will
have a harder time understanding larger commits of unrelated
changes [7]. This in turn will lead to lower quality feed-
back [8]. A researcher analysing commit data, finally, may
need to decide on the “one” motivation for a commit even
though many comprise various unrelated changes.

The chances of developers abandoning composite commits
by themselves are slim. Tool support is required to identify
commits as composite and to decompose them into single-
task commits. The first type of tool suffices to warn developers
that are about to commit unrelated changes. The second type
of tool is also of use to researchers analysing the individual
tasks commits are composed of.

We propose program slicing as a foundation for such tool
support. Program slicing is a program analysis that answers
questions about the influence of program statements on other
program statements [9, 10]. We extend this idea: our founda-
tion for tool support applies program slicing to source code
changes. We hypothesise that related changes affect source
code from the same program slice and thus that a commit may
be decomposed into related changes using the created program
slices. Intuitively, this states that changes that belong together
also have control or data dependencies on one another.

Tao and Kim [2] propose a related approach that also
incorporates program slicing. Their approach slices line-based
changes. Our approach slices changes to the abstract syntax
tree (AST) and is therefore more fine-grained. Our AST-level
changes are computed through a change distiller, a program
that accepts two file versions and distils what changes were
made to go from one version to the other. The approach taken
by Tao and Kim also incorporates various other techniques
unrelated to slicing. We focus solely on slicing in this work,
to assess its value in isolation.

To analyse our approach, we make use of a dataset of
commits stemming from five Java projects, gathered by Herzig
and Zeller [11]. We first analyse this dataset and refine it
further to fit the context of this work. We make the results of
this refinement available via https://soft.vub.ac.be/∼wmuylaer/
publications.

https://soft.vub.ac.be/~wmuylaer/publications
https://soft.vub.ac.be/~wmuylaer/publications


Our results indicate that slicing on changes to the abstract
syntax tree largely meets the stated goals. Our technique
is able to categorize commits as single-task or composite.
In identifying the individual tasks our technique at times
produces finer-grained results. That is to say, it may identify
several different parts that should actually belong together as
one task. This is still better than the alternative in which the
technique considers different tasks as one big part. As such,
the results of our technique can still prove useful for code
reviewing, reverting, or integrating.

Specifically, our paper has the following contributions:
1) A technique to slice around changes to an abstract syntax

tree.
2) The application of this technique to decide whether a

commit handles a single task.
3) The application of this technique to identify different

parts of a commit.
4) An evaluation of our approach.
This paper is structured as follows. We detail the compo-

nents of our technique in Section II, and the dataset used
in its evaluation in Section III. The evaluation method and
its results are presented in Section IV. Finally, Section V
discusses related work.

II. OVERVIEW OF THE APPROACH

We want our technique to take as input a commit that needs
to be analysed. We want our technique to output the clusters
of related changes that it considers the commit to comprise.
To achieve this, our technique consists of four major parts, as
depicted in Figure 1. First, the commit is distilled into fine-
grained changes to the program’s abstract syntax tree (AST).
Second, the system dependence graph (SDG) is created for
every file in the commit. Third, for every fine-grained change,
our technique slices on it in the system dependence graph.
Finally, changes are grouped by means of the slices they
belong to. We have implemented our technique for commits to
Java programs. The rest of this section provides further detail
into each of the four steps. We will use the example shown
in Figure 2 as a running example. The example in question is
part of composite commit 5e2cdc061 of the ArgoUML project,
trimmed for the sake of the example.

A. Fine-Grained Change Distilling

In step one, we make use of a change distiller. A change
distiller can be used after the fact, when handed “blobs”
of changes (in our case: commits). A change distiller will
consider these blobs and split them into fine-grained changes
following some algorithm. Another option to obtain fine-
grained changes would be by means of a change logger.
However, this would require the logger to be installed on

1Full identifier is 5e2cdc061a0572d4007f4bc84382fff80f29e726. Note that
this identifier does not match up with what may be found online. At the time
of the creation of the dataset (see Section III), not all projects were managed
by Git. Herzig and Zeller converted these other repositories to Git themselves,
so this identifier only makes sense within their dataset.

developers’ machines beforehand. While possible within a
company, this is not a feasible approach for many researchers.

To distil the changes from a commit, we make use of
CHANGENODES [12]. CHANGENODES is an implementation
of the CHANGEDISTILLER algorithm [13] which in turn is
based on work by Chawathe et al. [14]. The CHANGENODES
implementation operates on the abstract syntax tree (AST) of
a Java program. The AST in question is created using the
Eclipse Java Development Tools (JDT). Given two versions
of a program, CHANGENODES performs tree differencing on
their ASTs and returns a list of Insert, Update, Move, and
Delete operations. One could compare this list of operations
to the changes as produced by the diff tool. Applying
diff’s changes on the first version of the program results
in the second version of the program. Similarly, applying
the list of operations on the AST of the first version of the
program, results in the AST of the second version of the
program. CHANGENODES thus provides fine-grained changes
describing the diff style changes in the commit. In our
scenario the two versions used as input for CHANGENODES
are (1) the version of the program with the changes of the
commit under analysis not yet applied, and (2) the version of
the program after the commit under analysis is applied.

Figure 3 depicts the output of CHANGENODES for our
running example. CHANGENODES computed nine AST-level
change operations that have the same effect as the original
commit. In our example, they are all of the Update type: the
names of the variables are updated. We numbered the distilled
changes for future reference.

B. System Dependence Graph

In the second step, our technique uses program dependence
graphs (PDGs). Program dependence graphs contain both
control and data flow dependencies as dependence edges.
For the sake of the explanation of the following paragraph,
we make the following explicit distinction. A procedure de-
pendence graph is the program dependence graph for one
method or procedure. Method calls are not resolved. A system
dependence graph is the program dependence graph for a
combination of procedure dependence graphs. The method
calls are used to link different procedure dependence graphs.
Our SDGs are for the entire file in which changes occur.

For the implementation of this second step, we opted
to extend the open-source TINYPDG tool [15, 16, 17].
TINYPDG creates a procedure dependence graph of a Java
method from an AST provided by the Eclipse Java Devel-
opment Tools (JDT). This was a convincing point in its
selection. It enables our implementation to link results from
TINYPDG back to CHANGENODES, as both operate on
the same AST. TINYPDG does, however, only work on an
intra-procedural level. Our implementation therefore renders
TINYPDG inter-procedural using the algorithm introduced
by Horwitz et al. [18]. Using this algorithm, our extended
version of TINYPDG combines the procedure dependence
graphs of the different methods into one SDG. Note that our
implementation does this on a per file basis.



Commit

ChangeDistillerChanged files

Slicer

SDG creation

Changed files

c₁, c₂, …

Grouping changesS(c₁), S(c₂), …

SDG₁, SDG₂, …
Untangled commitsPartition

Fig. 1. Overview of our approach. The input is a commit, the output the untangled single-task commits that make up the commit. The four main parts of
our approach are each described in detail in Section II.

1 public FigActionState() {
2 - _bigPort = new FigRRect(10 + 1, 10 + 1, 90 - 2,

↪→ 25 - 2, Color.cyan, Color.cyan);
3 + bigPort = new FigRRect(10 + 1, 10 + 1, 90 - 2,

↪→ 25 - 2, Color.cyan, Color.cyan);
4 - _bigPort.setCornerRadius(_bigPort.getHalfHeight

↪→ ());
5 + bigPort.setCornerRadius(bigPort.getHalfHeight())

↪→ ;
6 - _cover = new FigRRect(10, 10, 90, 25, Color.

↪→ black, Color.white);
7 + cover = new FigRRect(10, 10, 90, 25, Color.black

↪→ , Color.white);
8 - _cover.setCornerRadius(_cover.getHalfHeight());
9 + cover.setCornerRadius(getHalfHeight());

10 - _bigPort.setLineWidth(0);
11 + bigPort.setLineWidth(0);
12 - addFig(_bigPort);
13 + addFig(bigPort);
14 - addFig(_cover);
15 + addFig(cover);
16 }

Fig. 2. Difference view for commit
5e2cdc061a0572d4007f4bc84382fff80f29e726 of ArgoUML. Used as
running example for Section II.

1 Update: _bigPort SimpleProperty[org.eclipse.jdt.core
↪→ .dom.SimpleName,identifier]

2 Update: _bigPort SimpleProperty[org.eclipse.jdt.core
↪→ .dom.SimpleName,identifier]

3 Update: _bigPort SimpleProperty[org.eclipse.jdt.core
↪→ .dom.SimpleName,identifier]

4 Update: _bigPort SimpleProperty[org.eclipse.jdt.core
↪→ .dom.SimpleName,identifier]

5 Update: _bigPort SimpleProperty[org.eclipse.jdt.core
↪→ .dom.SimpleName,identifier]

6 Update: _cover SimpleProperty[org.eclipse.jdt.core.
↪→ dom.SimpleName,identifier]

7 Update: _cover SimpleProperty[org.eclipse.jdt.core.
↪→ dom.SimpleName,identifier]

8 Update: _cover SimpleProperty[org.eclipse.jdt.core.
↪→ dom.SimpleName,identifier]

9 Update: _cover SimpleProperty[org.eclipse.jdt.core.
↪→ dom.SimpleName,identifier]

Fig. 3. The distilled changes for commit
5e2cdc061a0572d4007f4bc84382fff80f29e726 of ArgoUML, the running
example of Section II. Note that the actual distilled changes also indicate
where in the abstract syntax tree they are supposed to be inserted, updated,
moved, or deleted.

The entire system dependence graph created for the running
example is too large to include here. Instead we show an
extract of the relevant parts in Figure 4.

C. Program Slicing

In step three, our technique performs program slicing [9].
The idea behind program slicing is as follows. Given a variable
of interest v in a statement s, backwards program slicing on v
retrieves the statements that may affect that v in that location.
Executing a program reduced to those statements that affect
variable v should, in theory, compute the same run-time values
for v as if the entire program were executed.

A common static aproach to backwards slicing relies on
a program dependence graph. Since the program dependence
graph establishes the dependencies for all parts of a program,
the information to slice is already present. Specifically, back-
wards slicing on a node n in a program dependence graph
amounts to determining what other nodes n can be reached
from.

Our extension to TINYPDG implements the backwards
slicing algorithm for system dependence graphs introduced
previously by Horwitz et al. [18]. To determine what node to
slice on, our technique once more considers the fine-grained
change operations provided by CHANGENODES. For a fine-
grained change operation c, we identify the original location
oc of the abstract syntax tree node affected by the change. This
location is used to find the node nc in the system dependence
graph such that oc is present in nc. Slicing on node nc

produces the slice S(c). For ease of notation we will just write
ci ∈ S(cj) to indicate the situation in which node nci belongs
to the slice around node ncj . Such a slice is computed for
every fine-grained change operation.

For the running example, our technique links the change
operations described in Figure 3 to the nodes of the system
dependence graph in Figure 4. We refer to the nodes in
the graph by the number between < and > present in
the node. Change operations c1 through c5 are linked to
nodes 74 . . . 75, 76, 76, 80, and 87, respectively. This leads
to slices {73 . . . 94, 74 . . . 75}, {73 . . . 94, 74 . . . 75, 76},
{73 . . . 94, 74 . . . 75, 76}, {73 . . . 94, 74 . . . 75, 80}, and
{73 . . . 94, 74 . . . 75, 87}. The calculations for change
operations c6 through c9 happen analogously.



FigActionState <73...94>

_bigPort = new FigRRect(10 + 1,10 + 1,90 - 2,25 - 2,Color.cyan,Color.cyan); <74...75>

_bigPort.setCornerRadius(_bigPort.getHalfHeight()); <76>

_bigPort

_bigPort.setLineWidth(0); <80>

_bigPort

addFig(_bigPort); <87>

_bigPort

_cover = new FigRRect(10,10,90,25,Color.black,Color.white); <77>

_cover.setCornerRadius(_cover.getHalfHeight()); <78>

_cover

addFig(_cover); <88>

_cover

Enter FigActionState <73...94>

truetrue

true true truetrue true

Fig. 4. Relevant parts of the system dependence graph for the running example of Section II. Solid lines with the label true are control dependencies.
Dashed lines are data dependencies. The label indicates what makes it a data dependency.

D. Change Grouping

Finally, our technique needs to decide which change oper-
ations belong together. To do so, we define the equivalence
relation ≡S between changes. Using the equivalence relation
then enables partitioning the set of change operations into
disjunct sets.

To define ≡S , we first define the helper relation ≡′S .

ci ≡′S cj ⇐⇒ ci ∈ S(cj) ∨ cj ∈ S(ci)

In other words, change operations ci and cj are related by
≡′S if and only if ci is in the backwards slice on cj or vice-
versa. Note that the relation ≡′S is not an equivalence relation.
By definition of how slicing works, this relation is reflexive.
The relation is also clearly symmetric due to its symmetric
definition. The relation is however not necessarily transitive.
We cannot state that if ci ≡′S cj and cj ≡′S ck, then ci ≡′S ck.
Consider for this the following simplified situation. cj is part
of the root node of a program dependence graph with two
children. ci is part of one of the child nodes. ck is part of the
other child node. Slicing in this situation results in S(ci) =
{ci, cj}, S(cj) = {cj}, and S(ck) = {cj , ck}. Then ci ≡′S cj
and cj ≡′S ck, but ¬(ci ≡′S ck). The relation ≡′S is thus not
an equivalence relation.

We use ≡′S to define ≡S . Specifically, ≡S is the transitive
closure of ≡′S :

ci ≡S cj ⇐⇒ ∃ck1 , . . . , ckn : ci ≡′S ck1 , . . . , ckn ≡′S cj

In other words, there is a relation ≡S between two change
operations ci and cj if there is a chain of change operations,
each connected with the next one by relation ≡′S , that links
ci to cj .

Algorithmically, our technique uses ≡′S to build the partition
for ≡S . The following steps are followed, given the change
operations, their slices, and an empty set to hold the partition.

1) If a change operation is not in relation ≡′S with any
change operation in any of the existing subsets in the
partition, create a new subset with that change operation
in it.

2) If a change operation is in a relation with an element
(or more elements) of exactly one existing subset in the
partition, place the change operation in that subset.

3) If a change operation is in a relation with two (or more)
elements of different subsets, join the subsets together
and add the change operation to it.

In terms of the partition, i.e., these subsets of change
operations, we rephrase our hypothesis as: A commit is a
single-task commit if and only if our technique does not split
up the commit into different subsets of change operations.

Applying this relation to the running example, we see that

c1 ∈ S(c2) ∧ c1 ∈ S(c3) ∧ c1 ∈ S(c4) ∧ c1 ∈ S(c5)

and thus

c1 ≡′S c2 ∧ c1 ≡′S c3 ∧ c1 ≡′S c4 ∧ c1 ≡′S c5

giving finally

c1 ≡S c2 ≡S c3 ≡S c4 ≡S c5.

Similarly, we can see that

c6 ≡S c7 ≡S c8 ≡S c9.

There is no further connection between changes, so there are
two equivalence classes. Our algorithm considers the running
example to consist of two distinct parts.

III. DATASET

We now introduce the well-established dataset of commits
that we will use to evaluate our hypothesis. Subsequent
sections will evaluate our approach on a refinement of this
dataset, to which we apply data cleansing through automated
filtering and manual commit verification first.

The dataset of commits stems from five Java programs as
used by Herzig and Zeller in [5, 11]. We are not aware of
version numbers assigned to this dataset. For reproducibility
purposes, we provide the exact one we used via https://soft.
vub.ac.be/∼wmuylaer/publications. The programs in question
are: ArgoUML, GWT, Jaxen, JRuby, and XStream. These
projects were chosen for meeting the following quality criteria:
to be under active development (at the time of their analysis),
to have at least 48 months of active history, to have more than
ten active developers, and to feature a reasonable number of
identifiable bug fixes. For each of the projects, Herzig and
Zeller manually identified single-task and composite commits
using commit and issue information. Using the single-task

https://soft.vub.ac.be/~wmuylaer/publications
https://soft.vub.ac.be/~wmuylaer/publications


commits, Herzig and Zeller also created artificial composite
commits for each of the five projects. In order to see how our
approach deals with actual situations, we do not consider this
set of artificial composite commits for our evaluation. Instead,
we limit ourselves to the real-world commits in the dataset.
Table I depicts the number of commits present for each type
of commit in each of the projects. Table I also provides the
median number of Java files found per commit.

The prototype implementation of our technique is limited
in the types of files it supports. We used this information to
perform an automated filtering of the commits in the dataset
which were known to be affected by these limitations. In terms
of file types, our prototype does not support non-Java files
that might appear in a commit. Our prototype also failed to
construct the system dependence graph for some of the Java
files, as evidenced by an exception being thrown during its
analysis. We marked the corresponding commits in the dataset
as causing failures. In the case of two files, moreover, no
exception was thrown but graph construction timed out (i.e.,
took longer than an hour).

In terms of changes to the files affected by a commit,
there are some limitations too. Program or system dependence
graphs do not take comments into account. It follows that our
approach cannot either. Moreover, in our prototype implemen-
tation, the graph construction algorithm only works on code
contained within methods. As such, changes to, for example,
class or field declarations are ignored. Finally, for some change
operations, our implementation failed to identify a matching
node in the system dependence graph. This can be the case
when something is inserted without a tie to the original code.
Meaning, CHANGENODES categorises the change as an insert
and not a move or an update of code that was already in
the program. As our system dependence graph considers the
original version of the code, this insert may not be linked to
any meaningful node. Taking these limitations into account,
our automated filtering step removes commits for which no
files with valid change operations remain. Only the ones
remaining are considered for any further evaluation. Table I
depicts the number of each type of commit per project after
the automated filtering step. The table also depicts the median
number of Java files per commit for these remaining commits.
Finally, Table I depicts the median number of valid change
operations per Java file.

Following the automated filtering described above, we per-
formed a detailed manual verification of the 504 commits
that remain from the original dataset. We inspected the code
changed by each commit as well their accompanying commit
message. We looked for the presence of the following aspects.

• One of the tasks in a composite commit is the fixing of
comments, formatting, or other style issues. The presence
of such a task in a composite commit means our technique
would not be able to correctly distinguish tasks.

• The commit consists of many changes to statements
that TINYPDG cannot handle, or is centred around such

changes. An example is the try-catch statement.2

• The commit consists of many repeated changes in other-
wise unrelated locations. Consider, for example, commit
ba2f8bd23 of the JRuby project. In this commit, a null
check is added to several different methods. While con-
ceptually related, this is not a relation our technique can
possibly discern.

• Our approach considers the project before the changes.
If the commit primarily consists of new files, then our
approach cannot do anything.

• Finally, we also consider whether the dataset categorised
a commit correctly. By this we mean the commit was
marked as comprising many tasks while it was actually
just a single task, or vice-versa.

In case of uncertainty in our analysis, we left the data of the
dataset as is. In this manner, we avoid personally influencing
the data.

Our manual analysis filtered out another 116 of the 504
commits. Among the 116, 35 had formatting (e.g., whitespace
changes) as one of the tasks. In 13 occasions, TINYPDG
would not be able to handle the types of changes. Repeated
changes occurred 53 times. Finally, 20 of the commits had
a majority of new files being added. We point out that these
numbers do not add up to 116; some commits were placed in
multiple categories.

We are left with 388 commits for the evaluation of our
approach. Of these, 359 commits passed all our scrutiny. We
found the other 29 commits to be categorised incorrectly.
The main culprit for incorrect categorisations, may be a
different interpretation of what a composite commit is. Take,
for example, commit 26d69d464 of the GWT project. This
commit refers to two issues in its commit message: “Fix
for issues #966 and #867; escapes HTML end tags from
string literals in compiler output.”. Despite there being two
issues mentioned, there is but one fix that happens to fix the
both of them. These types of commits were marked as being
composite in the dataset, but we consider them to only perform
a single task. As such, to perform the evaluation, we switch
the categorisation for these commits.

Table I describes what is left of the dataset. With these
remaining commits, we will evaluate our approach. As men-
tioned before, Table I depicts the number of commits, the
median number of Java files per commit, and the median
number of valid change operations per Java file.

After filtering out commits that cannot be used to evaluate
our approach, the dataset contains 388 commits which will
be used for the evaluation.

IV. EVALUATION

To analyse our hypothesis, we consider two research ques-
tions.

2 While there is code for this present within TinyPDG, we saw no notice of
it in the generated PDGs. We decided not to dig into debugging this particular
potential bug.

3The full identifier is ba2f8bd229c62aa68acf176fa5c7578a4e7670e1.
4The full identifier is 26d69d46ad7fbb01ac5a2cd9a03084f73e9cff51.



TABLE I
DESCRIPTIVE STATISTICS FOR THE ORIGINAL DATASET BY HERZIG AND ZELLER [5, 11], THE DATASET AFTER AUTOMATED FILTERING, AND THE

DATASET AFTER OUR MANUAL COMMIT VERIFICATION. IN CASE OF AGGREGATED NUMBERS (I.E., THOSE PER COMMIT OR PER FILE), THE MEDIAN IS
GIVEN.

Original After automatic filtering After manual filtering and verification

Commits Java files
per commit Commits Java files

per commit
Change operations

per file Commits Java files
per commit

Change operations
per file

ArgoUML single-task 125 1 75 1 5 76 1 5
composite 168 2 112 2 4 63 2 6

GWT single-task 44 1 19 1 7.5 21 1 6.5
composite 68 3.5 46 2 7.5 30 2 7.5

Jaxen single-task 32 1 22 1 5 16 1 5.5
composite 12 1 6 1 5 3 1 9

JRuby single-task 200 1 60 1 4 60 1 4
composite 271 1 112 1 5 81 1 6

XStream single-task 37 2 26 1 4 21 1 6
composite 37 3 26 2 7.5 17 2 9

Total single-task 438 202 194
composite 556 302 194

RQ1 Does our technique correctly identify composite com-
mits?

RQ2 Does our technique correctly identify the single tasks
within a commit?

We will use the dataset described in Section III to answer
these research questions. The remainder of this section consists
of the following three parts. We describe the research method
for each research question, provide the results for each answer,
and discuss any threats to validity.

A. Research Method

Our hypothesis concerns entire commits. The implementa-
tion of our technique, however, works on a per file basis. Its
output is the number of sets in the partition of the file, i.e.,
the number of clustered changes for that file. Commits may
contain many changed files and as such we need to reconcile
the two. We define the following metric to do this.

PARTITIONcommit = max
file ∈ commit

PARTITIONcommit

Using that, we define classification by our technique as fol-
lows.

COMPOSITEcommit = (PARTITIONcommit > 1)

In other words, our technique considers a commit composite
if at least one file had more than one set of change operations
in the file’s partition.

1) Composite Commit Identification: We apply our tech-
nique to all commits in the dataset. Commits are classified as
either composite or single-task in the dataset. Our technique
classifies a commit as either composite or single-task. Thus
there are four possible results to consider in the evaluation of
a commit.

1) Composite commit correctly identified as composite. A
true positive.

2) Single-task commit correctly identified as single-task. A
true negative.

3) Single-task commit incorrectly identified as composite.
A false positive.

4) Composite commit incorrectly identified as single-task.
A false negative.

We will provide the number of times each of these possi-
bilities occurred. We will also provide the precision and recall
based on those numbers. Finally, the F-score, which combines
precision and recall into a single number, is provided. These
three metrics provide a number between 0 and 1 where 1 is
the situation in which everything is correct. Results will be
reported on a per project basis.

2) Single-Task Identification: Here too our technique is
applied to all commits in the dataset. The results from the pre-
vious research question remain relevant here. However, for this
research question we will look at the results with a focus on
the single-task commits, rather than on the composite commits.
If our technique is good at identifying single-task commits,
then that is a strong indication it is good at identifying single
tasks. However, it is not sufficient: what if the technique just
overapproximates single tasks?

To avoid this possibility, we will also look into the number
of sets reported by our technique for composite commits (the
PARTITIONcommit metric mentioned before). The dataset states
for some composite commits how many tasks they comprise.
We will compare the numbers reported by our technique to
the numbers present in the dataset. If the numbers match up,
this is an indication that the sets in the partition identify single
tasks correctly within a composite commit. We will make this
comparison in two ways.

1) Looking at how often the number of sets of the partition
matches up exactly.

2) By performing a Wilcoxon signed-rank test to see if
there is a significant difference between the two. As
usual with this test, the null hypothesis H0 states that
the numbers are drawn from the same population. In
other words, rejection by this test indicates the number



of sets of the partition reported by our technique is
significantly different from the number of sets expected
by the dataset.

Note that this would just be an indication of correct
partitioning, not a certainty. To be a certainty, the partition
calculated by our technique should match up with one in the
dataset. We cannot make this comparison here as we lack
the data to compare to, i.e., the dataset does not specify
which groups of fine-grained changes a composite commit is
comprised of.

To further mitigate this issue, we have three computer
scientists evaluate the output produced by our tool. For a
random selection of 31 commits, the computer scientists are
tasked to rate the output of our tool on a five level Likert
scale. We will provide the mean of their replies per person.
They are also asked whether the clustered changes should be
further combined, further split up, or neither of the two. For
this, we will consider for how many commits they thought
it should go one way or the other. Even if only one of the
reviewers wants to see the clustering done differently, we will
still count that commit as needing improvement. This final
question is important in knowing whether our clusters cross
task boundaries or not.

B. Results

We present the results and a conclusion for research ques-
tions one and two.

1) Composite Commit Identification: An overview of the
results in identifying composite commits is given in Table II.
As mentioned, this table depicts the total number of commits,
the number of true positives, the number of true negatives, the
number of false positives, and the number of false negatives.
It also gives the calculated precision, recall, and F-score based
on those results. All the numbers are provided per project.

In interpreting these results, it is important to keep the
number of commits per commit type in mind for each project.
This data was provided in Section III, specifically in Table I.
All else being equal, a higher or lower number of composite
commits versus single-task commits would result in higher or
lower precision, respectively.

In the results, the numbers for the Jaxen project are notice-
ably lower than for the other results. There were few commits
for this project and the majority of those commits were single-
task. Only three composite commits were analysed for the
Jaxen project. We are thus inclined to attribute this result,
at least partially, to these factors. For the other projects, the
numbers are more positive. Both precision and recall seem to
be around 70%. The F-score too is around that ratio. Here we
feel obliged to point out that for the GWT and JRuby projects,
more composite than single task-commits are present. This
affects the precision in a positive manner.

The results are positive, but not overwhelmingly so. Our
technique correctly identifies a large number of commits, but
also fails more often than desired.

Not at all Not really Neutral Somewhat Completely
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
ro

fr
ep

lie
s

Person 1
Person 2
Person 3

Fig. 5. Results of a small survey into whether the results by our change
clustering makes sense.

Our technique correctly identifies composite commits. The
F-score of the identification is 70%.

2) Single-Task Identification: We consider again Table II,
but now from the point of view of the single-task commits.
To do this, we calculate the relevant precision, recall, and F-
scores. The results are depicted in Table III. Besides the GWT
project, all resulting F-scores are over 65%. For Jaxen and
XStream the results are even more positive. As in the previous
section, the result is positive, but not overwhelmingly so. We
consider the other test results.

The next step was the comparison of the number of tasks
our technique identifies for a commit against the number
of tasks in that commit according to the dataset. While we
performed a validation of our dataset in Section III, we note
that this validation did not include an analysis of the number
of partitions of a commit as described by the dataset. Table IV
summarises the results of comparing our technique to the
numbers present in the dataset. The dataset did not provide
any information regarding the number of tasks in a commit for
any of the commits in the Jaxen project. As such, no results
are present for the Jaxen project.

The results we encounter here are negative. Identifying the
exact number of results proves difficult for our technique. The
dataset’s number of tasks making up the commit was found in
only a quarter of the cases for the four projects for which data
was available. Similarly, the p-value of the Wilcoxon signed-
rank test for all four cases does not reject the null hypothesis.
Recall that H0 states that the numbers (from our technique
and from the actual task count) are drawn from the same
population, i.e., that there is no significant difference between
the two. Note that not rejecting H0 does not imply that there
is a connection.

The results of our small survey are more positive. The raw
results are visualised in Figure 5. The mean result for each of
the reviewers was 4.39, 3.90, and 3.06. As mentioned, this is
a five level Likert scale: a 3 is the middle, anything higher is



TABLE II
IDENTIFICATION OF COMPOSITE COMMITS ON A PER PROJECT BASIS. TIME IS THE MEDIAN TIME TAKEN TO ANALYSE A COMMIT.

Commits True positive True negative False positive False negative Precision Recall F-score Time (s)

ArgoUML 139 45 51 25 18 0.64 0.71 0.68 2
32% 37% 18% 13%

GWT 51 18 12 9 12 0.66 0.6 0.63 2
35% 24% 18% 24%

Jaxen 19 2 13 3 1 0.4 0.67 0.5 0
11% 68% 16% 5%

JRuby 141 48 46 14 33 0.77 0.59 0.67 5
34% 33% 10% 23%

XStream 38 12 17 4 5 0.75 0.71 0.73 0
32% 45% 11% 13%

TABLE III
THE PRECISION, RECALL, AND F-SCORE FOR THE IDENTIFICATION OF

SINGLE-TASK COMMITS. THESE ARE CALCULATED USING THE ABSOLUTE
NUMBERS PRESENT IN TABLE II.

Precision Recall F-score

ArgoUML 0.74 0.67 0.7
GWT 0.5 0.57 0.53
Jaxen 0.93 0.81 0.87
JRuby 0.58 0.77 0.66
XStream 0.77 0.81 0.79

TABLE IV
IDENTIFYING THE NUMBER OF SINGLE TASKS WITHIN A COMPOSITE

COMMIT. ONLY COMMITS FOR WHICH THE NUMBER OF PARTITIONS IS
PRESENT IN THE DATASET ARE CONSIDERED.

Composite
commits

Correct number
of sets

Wilcoxon
p-value

ArgoUML 33 7 (21%) 0.57
GWT 28 7 (25%) 0.97
Jaxen 0 — —
JRuby 65 15 (23%) 0.61
XStream 16 4 (25%) 0.13

a positive response. Two of the reviewers were rather positive
about the output, one remained more neutral. In terms of ways
to improve the clustered changes, 3 of the 31 cases were
considered to need further splitting up of the created clusters of
changes. For 10 of them the opposite was true: more changes
should be combined into one cluster. No changes should be
made in the other 18 cases.

This result mitigates, to some extent, the issue of not having
the same number of clusters as the dataset. Our clusters of
changes are more fine-grained: a need to combine changes
implies a created cluster of changes does not span across
multiple tasks in a commit. If the clusters would span across
tasks, they would no longer help with the analysis. Instead,
the individual clusters stay within their tasks and each manage
to identify a part of their task. This ensures the clusters are
not rendered useless when analysing or reviewing a commit.
A reviewer may still use the different clusters of changes
knowing each cluster contains changes that belong together.
The reviewer can then still further combine the clusters as
they deem necessary.

Our approach is able to identify when a commit performs
a single task with an F-score around 70%. Our approach
creates more fine-grained parts than those that are counted
in the dataset. A manual review by some computer scientists
finds that the clusters of changes are contained within their
respective tasks in a commit. As such, the clusters can still
be used for code review, integration, and reversion.

Finally, we have a brief look into the scalability of our
approach. To do so, we consider the time it takes to analyse
a commit. The median time for analysis per commit on a
per project basis is depicted in Table II. Note that time was
recorded with a precision of seconds, thus entries stating 0
imply a time under 1 second. For the majority of commits, the
analysis takes but a few seconds. There were outliers, however,
with 42 commits taking a minute or more and six of those
taking over five minutes.

C. Threats to validity
The evaluation of our approach is dependent on the correct-

ness of the dataset we use as a ground truth. This is true in
its most basic form: stating whether a commit is composite or
not. This is also true in the number of single tasks it discerns
in a composite commit. As described in Section III, we tried to
mitigate this to some extent by performing a manual filtering
phase. We were conservative in this manual filter phase, so
errors may still be present. Mistakes in either could partially
invalidate our evaluation.

TINYPDG is not able to handle some Java statements, like
try-catch. Our manual filter phase only removed commits
where these statements were the main part of what was being
changed. This results in a possibly subpar analysis.

Our implementation may have bugs. This in turn affects
the results of analysing commits and the evaluation of those
results. Also in our implementation, we enable binding reso-
lution, as provided by the Eclipse JDT library, to create the
abstract syntax tree. We enable binding resolution in order to
resolve method calls and the like to their definition. In this,
we are bound by the precision of this static binding resolution.
This can further influence the results.

Horwitz et al.’s algorithm [18] is not entirely state of the
art. Improvements have been made over the years to enable a



better handling of, for example, classes and objects. This may
negatively affect our results.

It is possible unrelated tasks touch overlapping parts of
the code in the same way. When committed together, our
technique may not be able to distinguish the two. We do not
see a way around this situation with just our approach.

V. RELATED WORK

Tao and Kim [2] perform a similar approach to ours. They
employ the ZeroOneCFA points-to analysis built into the T.J.
Watson Libraries for Analysis (WALA). This is done at the
level of changed lines, not at the level of fine-grained changes
like we use. Moreover, the work uses more than only program
slices to determine which changes are related. Formatting
changes, for instance, are also considered to separate changes
into change groups. In addition, string comparisons are used to
relate, for example, the addition of a .clone() method call
in several locations without any static dependencies. While this
string comparison adds some extra relations between changes,
it does not always prove beneficial. The authors mention an
example in which their technique related changes that did not
belong together. Despite the similarity in program slicing, we
feel our work is sufficiently different. We focus specifically
on the program slicing in isolation to analyse how well it
behaves on its own. Tao and Kim only look at the results of
their combined analysis.

Barnett et al. [19] also attempt to decompose changes. To do
so, they consider “diff-regions”. These regions are the result of
performing a textual difference and splitting them up to stay
within one method or within one type. Barnett et al. work with
limited information: only the before and after of changed files
are provided in one changeset (i.e., one commit). They do not
have access to the entire project. Instead they make use of
any method definitions that are present to link the diff-regions
if they belong to the same method, if one diff-region uses a
method whose definition appears in another diff-region, or if
two diff-regions use a method defined in a file present in the
changeset. Our work differs in that we make use of more than
just the relation between definitions and uses. As we make
use of a program dependence graph, all control and data flow
dependencies are mapped, providing a richer picture.

Kreutzer et al. [20] use both line-based changes, by mak-
ing use of the diff tool, as well as fine-grained changes
by making use of ChangeDistiller [13]. To match changes
together, Kreutzer et al. look at a string representation of these
changes. They then look for the longest common subsequence
to determine similarity in changes. This information is then
used to cluster changes together. We too make use of change
distilling, but our methods of defining similarity strongly
differ. We rely on the dependencies that show up in the
program dependence graph, not on patterns.

Just like Kreutzer et al., Kirinuki et al. [21] also use the
longest common subsequence to look for patterns. They anal-
yse the changed program statements between many revisions.
If patterns are repeated across many revisions, Kirinuki et al.
consider them composite and add them to their database. When

new commits are made to that project, the new commit can
be compared to the patterns in the database. If there are more
similarities than a certain threshold, the commit is deemed
composite. This differs from our work in the same way as the
previous paragraph, we do not look for patterns in the changes.

Herzig and Zeller [11] combine many different metrics by
means of confidence voters. They looked at changes on the
level of addition and removal of method calls and method
definitions, which is more coarse-grained than our approach.
To decide similarity, they combined various metrics such
as, for example, the distance within a file, the similarity in
package names, or the distance in a call graph. We do not
take any of these metrics into account and instead rely on
slicing in the program dependence graph.

A completely different approach is performed by Dias
et al. [1]. They make use of a change logger, a program
installed by developers that tracks fine-grained changes as they
are made. They then link the fine-grained changes together
based on attributes such as date, were the changes performed
close together, or are they part of the same class. They employ
a form of machine learning to use these metrics to decide
whether commits are composite. We purposefully did not opt
to use change loggers. Requiring a change logger renders the
throves of repositories already out there useless. Even with
yet-to-be-developed software, it may not be feasible to require
its developers to install appropriate change loggers. Privacy
reasons could be cited or the developer may just find it too
cumbersome to bother to set things up.

Arima et al. [22], finally, try to achieve the opposite. They
consider the issue of one task being spread across multiple
commits. To detect the issue, they construct a weighted
directed graph of methods in which two commits are repre-
sented. Depending on the distance between two methods in the
graph, their approach decides whether the different commits
should have been one commit.

VI. CONCLUSION

We want to help developers, code reviewers, and researchers
with tool support for decomposing composite commits ac-
cording to the tasks they perform. For the foundation of this
tool support, we start from the hypothesis that related changes
belong to one and the same program slice in a program depen-
dence graph. The corresponding algorithm performs program
slicing on the change operations computed for a commit by a
change distiller, and clusters the resulting fine-grained change
operations according to the slices they belong to. We evaluated
our technique on a dataset of commits stemming from five
Java projects [11]. We first analysed this dataset and further
refined it to fit our context. We found that our technique is able
to identify single-task and composite commits. We also found
that our technique creates more fine-grained clusters than those
counted by the dataset we used. A manual review indicated
that in the situations where there is no one-to-one mapping
from cluster to task, each cluster of changes still stays within
one single task. We conclude that our approach is capable
of alerting developers about commits that are composite,



prompting action on their part. It also enables identifying the
individual parts of said commit. This way, the commit can be
corrected before being pushed to other members of the team
or the public at large.

VII. FUTURE WORK

In future work, we may consider different clustering criteria.
For example, employing a relation similar to the useUsesIn-
Diff relation used by Barnett et al. [19] could create extra
connections in our graph and thus fewer sets in the partitions.

In this paper we sliced on the program dependence graph
of the version of the code before the commit was applied.
For larger additions, it may be more interesting to slice in the
program dependence graph for the new version of the code.

Slicing can be done in two directions. We performed
backwards slicing, considering the statements that affect a
certain statement. One could also slice forwards, considering
the statements affected by a certain statement. Forwards slicing
might contain forks that match larger areas of the program
dependence graph, this might influence precision. Alterna-
tively, a best-of-both-worlds approach might combine the two
directions to perform some sort of “optimal” slicing.

For an industrial setting, our technique needs to be able to
analyse a commit reasonably fast. Our analysis only took a
few seconds for the majority of analysed commits. However,
several commits took over a minute to analyse. Optimisations
to our research prototype are likely to be in order.

NOTES

We thank Herzig and Zeller for sharing the dataset used
to evaluate our commit slicing technique. The results of the
analysis (both manual and automated) and the scripts used to
produce the evaluation can be found via https://soft.vub.ac.be/
∼wmuylaer/publications. Ward Muylaert is an SB PhD fellow
at FWO.

REFERENCES

[1] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and
S. Ducasse, “Untangling fine-grained code changes,” in
International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), 2015.

[2] Y. Tao and S. Kim, “Partitioning composite code changes
to facilitate code review,” in International Conference on
Mining Software Repositories (MSR), 2015.

[3] M. Konopka and P. Navrat, “Untangling development
tasks with software developer’s activity,” in International
Workshop on Context for Software Development, 2015.

[4] E. Murphy-Hill and A. P. Black, “Refactoring tools:
Fitness for purpose,” IEEE Software, 2008.

[5] K. Herzig, S. Just, and A. Zeller, “The impact of tangled
code changes on defect prediction models,” Empirical
Software Engineering, 2015.

[6] H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Fil-
tering noise in mixed-purpose fixing commits to im-
prove defect prediction and localization,” in International

Symposium on Software Reliability Engineering (ISSRE),
2013.

[7] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How
do software engineers understand code changes? - an ex-
ploratory study in industry,” in International Symposium
on the Foundations of Software Engineering (FSE), 2012.

[8] A. Bacchelli and C. Bird, “Expectations, outcomes, and
challenges of modern code review,” in International
Conference on Software Engineering (ICSE), 2013.

[9] M. Weiser, “Program slicing,” in International Confer-
ence on Software Engineering (ICSE), 1981.

[10] J. Silva, “A vocabulary of program slicing-based tech-
niques,” ACM Computing Surveys, 2012.

[11] K. Herzig and A. Zeller, “The impact of tangled code
changes,” in International Conference on Mining Soft-
ware Repositories (MSR), 2013.

[12] R. Stevens and C. De Roover, “Extracting executable
transformations from distilled code changes,” in Interna-
tional Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017.

[13] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall,
“Change distilling: Tree differencing for fine-grained
source code change extraction,” IEEE Transactions on
Software Engineering, 2007.

[14] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically structured
information,” in International Conference on Manage-
ment of Data (SIGMOD), 1996.

[15] Y. Higo and S. Kusumoto, “Enhancing quality of code
clone detection with program dependency graph,” in
Working Conference on Reverse Engineering, 2009.

[16] ——, “Code clone detection on specialized PDGs with
heuristics,” in European Conference on Software Main-
tenance and Reegineering, 2011.

[17] Y. Higo. TinyPDG: A library for building intraprocedural
PDGs for Java programs. [Online]. Available: https:
//github.com/YoshikiHigo/TinyPDG

[18] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” ACM Transactions on
Programming Languages and Systems, 1990.

[19] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping
developers help themselves: Automatic decomposition of
code review changesets,” IEEE International Conference
on Software Engineering, 2015.

[20] P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, and
M. Philippsen, “Automatic clustering of code changes,”
in International Conference on Mining Software Repos-
itories (MSR), 2016.

[21] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey!
are you committing tangled changes?” in International
Conference on Program Comprehension (ICPC), 2014.

[22] R. Arima, Y. Higo, and S. Kusumoto, “A study on
inappropriately partitioned commits how much and what
kinds of IP commits in Java projects?” in International
Conference on Mining Software Repositories (MSR),
2018.

https://soft.vub.ac.be/~wmuylaer/publications
https://soft.vub.ac.be/~wmuylaer/publications
https://github.com/YoshikiHigo/TinyPDG
https://github.com/YoshikiHigo/TinyPDG

	Introduction
	Overview of the Approach
	Fine-Grained Change Distilling
	System Dependence Graph
	Program Slicing
	Change Grouping

	Dataset
	Evaluation
	Research Method
	Composite Commit Identification
	Single-Task Identification

	Results
	Composite Commit Identification
	Single-Task Identification

	Threats to validity

	Related Work
	Conclusion
	Future Work

