GUARDIA: specification and enforcement of JavaScript security
policies without VM modifications’

Angel Luis Scull Pupo
Vrije Universiteit Brussel
Brussels, Belgium
angel.luis.scull.pupo@vub.be

ABSTRACT

The complex architecture of browser technologies and dynamic
characteristics of JavaScript make it difficult to ensure security in
client-side web applications. Browser-level security policies alone
are not sufficient because it is difficult to apply them correctly and
they can be bypassed. As a result, they need to be completed by
application-level security policies.

In this paper, we survey existing solutions for specifying and
enforcing application-level security policies for client-side web ap-
plications, and distill a number of desirable features. Based on these
features we developed GUARDIA, a framework for declaratively
specifying and dynamically enforcing application-level security
policies for JavaScript web applications without requiring VM mod-
ifications. We describe GUARDIA enforcement mechanism by means
of JavaScript reflection with respect to three important security
properties (transparency, tamper-proofness, and completeness). We
also use GUARDIA to specify and deploy 12 access control policies
discussed in related work in three experimental applications that
are representative of real-world applications. Our experiments indi-
cate that GUARDIA is correct, transparent, and tamper-proof, while
only incurring a reasonable runtime overhead.

KEYWORDS

Language design; DSL; Security Policy; Web Security; JavaScript;
Reflection; Runtime Enforcement

ACM Reference Format:

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix. 2018. GUARDIA:

specification and enforcement of JavaScript security policies without VM
modifications. In 15th International Conference on Managed Languages &
Runtimes (ManLang’18), September 12—14, 2018, Linz, Austria. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3237009.3237025

1 INTRODUCTION

Today, web applications are no longer monolithic, built using in-
house code only. Instead, they can be considered as mashups of
content and code included from different third-party sites. However,
the inclusion mechanism of browsers is all or nothing: all JavaScript
code included from different sources has the same privileges to
access sensitive resources such as cookies, location, etc. Developers

“Produces the permission block, and copyright information

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ManLang’18, September 12—14, 2018, Linz, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6424-9/18/09...$15.00
https://doi.org/10.1145/3237009.3237025

Jens Nicolay
Vrije Universiteit Brussel
Brussels, Belgium
jens.nicolay@vub.be

Elisa Gonzalez Boix
Vrije Universiteit Brussel
Brussels, Belgium
elisa.gonzalez.boix@vub.be

are thus forced to trust any code that they include into a page.
This exposes web applications to various security threats of which
Cross Site Scripting, Cross Site Request Forgery, and Sensitive Data
Exposure are among the most well-known [11, 14, 18].

Efforts have been undertaken at the browser level to mitigate
(some of) these security threats by means of security policies. A
Browser’s Content Security Policy (CSP) enables developers to
inform the browser about the sources from which the application is
allowed to load resources. A Same-Origin Policy (SOP), on the other
hand, restricts the content a web page can access to only resources
of the same origin. Nevertheless, the implementations of SOP and
CSP present inconsistencies across different browsers and can be
bypassed [4, 22, 27]. As a result, browser-level security efforts must
be complemented with application-level security policies to secure
web applications.

In this paper, we present an internal DSL called GUARDIA for
specifying and enforcing application-level access control security
policies in JavaScript. GUARDIA combines a declarative policy specifi-
cation language with a decoupled enforcement mechanism, making
it possible to experiment with different enforcement techniques
that do not require VM modifications. To the best of our knowl-
edge this combination is unique in the context of JavaScript web
applications. GUARDIA’s default policy enforcement mechanism for
access control policies is based on ECMAScript’s reflection.

The contributions of this paper are threefold:

(1) introduction of an internal DSL for the declarative specifica-
tion of security policies in JavaScript;

(2) identification of the possibilities and limits of policy en-
forcement based only on reflection with respect to security
properties such as completeness, transparency, and tamper-
proofness;

(3) evaluation of the applicability and performance impact of
dynamic reflection-based enforcement on 3 open source web
applications and 10 private real-world web applications.

The remainder of the paper is organized as follows. We first
survey existing solutions for specifying and enforcing application-
level security policies for client-side web applications, and distill a
number of desirable features. Section 3 introduces GUARDIA’s spec-
ification language and Section 4.1 describes GUARDIA’s modular
enforcement APIL The main ideas of an enforcement mechanism
based on JavaScript’s reflective capabilities are presented in Sec-
tion 4.2. We evaluate the combination of GUARDIA’s specification
language and its dynamic enforcement in Section 5.

https://doi.org/10.1145/3237009.3237025
https://doi.org/10.1145/3237009.3237025

Manlang’18, September 12-14, 2018, Linz, Austria

2 RELATED WORK

A security policy restricts application behavior to prevent vulner-
abilities from occurring or being exploited. An application-level
security policy expresses a program property that must hold dur-
ing the entire application’s execution. Schneider et al. [23] classify
security policies in three classes:

(1) access control policies restrict what operations principals can
perform on objects,

(2) information flow policies restrict what principals can infer
about objects from observing system behavior, and

(3) availability policies restrict principals from denying others
the use of a resource.

In this paper, we focus on access control policies!. We sur-
veyed existing solutions for specifying and enforcing access con-
trol security policies for web applications, including HV[9], Core-
Script [13, 29], BrowserShield [20], WebJail [25], ConScript [17],
ObjectViews [16], JSand [1], Phung et al. [19], Richards et al. [21]
and Drossopoulou et al. [6]. From this survey, we identified three
design choices and associated benefits and shortcomings.

2.1 General-purpose vs. domain-specific
specification languages

Some approaches express access control policies in a full-fledged
general-purpose programming language (GPL) like JavaScript or
C++[1,9, 17, 19, 20, 29]. This provides developers with the freedom
of using the complete set of features of the host language. However,
relying on a GPL for a domain specific concern (security) may
introduce more accidental complexity [8].

Designing a domain-specific language (DSL) for expressing se-
curity policies aims to free policy designers from the accidental
complexity of a GPL. Some approaches propose a standalone (exter-
nal) DSL language for the purpose of expressing security policies,
different from the host language of the application (e.g., [6, 13]).
Relying on a new language potentially results in more freedom of
expressiveness, but at the cost of having to learn the language first.

An internal DSL combines the best of the two worlds, as it pro-
vides the flexibility of an external DSL while both the application
and its security policy specifications are written in the same host
language. This is the approach taken by WebJail for JavaScript and
C++, and by ObjectViews for JavaScript.

2.2 Imperative vs. declarative specifications

Access control security policies are usually specified at the granular-
ity of methods and properties of built-in objects. Many approaches
propose imperative specifications of policies [1, 9, 17, 19-21]. This
offers flexibility, but can lead to security misconfigurations and
inconsistencies that can be exploited by attacks. The main dis-
advantage of an imperative specification is that developers are
responsible for ensuring that policies are tamper-proof (i.e., they
cannot be bypassed) and do not contain bugs or errors that result in
new vulnerabilities. Additionally, imperative policies are generally
difficult to combine and reuse due to the fact that they can assert
various overlapping and conflicting concerns [10, 12]. Alternatively,

IFor conciseness, we use the terms access control policy and security policy inter-
changeably in the rest of the paper.

A. Scull et al.

security policies can be declaratively specified [6, 13, 29]. A declara-
tive approach offers a well-defined interface for specifying policies,
constraining developers to particular patterns for defining a pol-
icy. This leads to less error-prone code and frees developers from
manually writing enforcement code [12]. However, a declarative
policy specification language usually requires policy developers
to use new notations for expressing their policies, and additional
support for enforcing them in an engine, parser, or compiler. For
example, in CoreScript developers describe policies in XML.

ConScript, ObjectViews, and Phung et al. [19] employ an hybrid
approach in which policies are specified in an aspect-oriented man-
ner, but security checks are written in an imperative manner. None
of these approaches provide a mechanism to combine policies.

2.3 Modified vs. unmodified runtime for
enforcement

An enforcement mechanism can be implemented as part of the
target runtime by relying on VM modifications [9, 17, 21, 25]. A dis-
advantage of requiring VM modifications is the limited portability
of the resulting security mechanism, which must be reimplemented
and customized for each target runtime. Because JavaScript is the
lingua franca for programming web applications, VM modifications
are not a viable option in this context due to the many browser and
backend implementations.

Alternatively, enforcement can be achieved by modifying the
application by means of meta-programming. Many approaches pro-
vide policy enforcement on the fly by employing the host language’s
runtime reflective capabilities [1, 16]. It is possible, however, that
the reflective capabilities of a language are too limited to moni-
tor all security-relevant operations. This, in turn, may restrict the
types of policies that can be enforced. For example, in JavaScript
security policies can only be applied at object level when using
proxies, as proxies cannot be used to track primitive values and
their operations.

A second option without requiring a modified runtime is to
employ code instrumentation to rewrite the target program and
selectively inject code to protect those points where security is
needed. This technique is employed by CoreScript [29] and Virtual
Values [3]. However, code instrumentation has a negative impact
on performance.

2.4 Coupled vs. decoupled enforcement

In many imperative approaches developers mix the code specifying
security policies with their enforcement [1, 9, 17, 19, 21, 25]. Devel-
opers have to manually encode or call the enforcement mechanism
to perform the security checks. This decreases code reusability and
maintainability.

Specifying security policies with a DSL enables a decoupling
between the specification language and the enforcement mecha-
nism [29]. The security policy language then interacts with the
enforcement mechanism by means of a well-defined interface that
provides runtime information regarding a security-relevant opera-
tion. The only approach that provides decoupling is CoreScript, in
which the developer has to provide the action that the enforcement
mechanism needs to take for a given policy.

GUARDIA

2.5 Problem Statement

The previous observations have inspired the design of a novel ap-
proach for specifying and enforcing application-level access control
policies, called Guarbia. To the best of our knowledge, GUARDIA is
the first approach to explore an internal DSL embedded in JavaScript
for declaratively specifying security policies that features a de-
coupled enforcement mechanism without requiring VM modifi-
cations. Table 6 in Appendix A summarizes existing approaches
and GUARDIA with respect to the analyzed design choices. More in
detail, GuARDIA is the result of the following design decisions.

e The main design choice of our work is to explore language-
based security that does not require VM modifications.

e Inspired by [6] and CoreScript [29], GUARDIA explores a
domain-specific policy specification language.

o In contrast to those approaches, we explore an internal DSL
embedded in JavaScript to express and compose complex
policies. As both the target application and its security poli-
cies are written in the same language (JavaScript), this design
choice may reduce the learning curve.

o A declarative specification of policies enables the decoupling
between specification and enforcement. GUARDIA goes one
step further than CoreScript and also allows developers to
use different meta-programming APIs for the enforcement
mechanism (e.g. JavaScript proxy API, Virtual Values, code
instrumentation APIs [5, 24], etc.).

In this paper we more closely examine the consequences of
the following design decisions: (1) choosing a declarative policy
language as an internal DSL in JavaScript, and (2) employing an
enforcement mechanism for access control security policies that
solely relies on JavaScript proxies, so that VM modifications are
not required. After introducing the GUuARDIA policy specification
language in the next section, we discuss the possibilities and limi-
tations of only using reflection with respect to important security
properties such as transparency, tamper-proofness, and complete-
ness in Section 4.

3 DECLARATIVE SPECIFICATION OF
SECURITY POLICIES USING AN INTERNAL
DSL

In this section, we describe the specification language of GuarDIA
that allows to declaratively express application-level access con-
trol security policies for client-side web applications written in
JavaScript. GUARDIA provides a predefined set of fundamental poli-
cies that can be composed to build more complex ones. Fundamental
policies alleviate the burden of correctly writing security policies,
while the built-in composition mechanism provides the flexibility
of imperative specifications.

Table 1 provides the overview of GUARDIA’s policy specification
API, which we detail in this section.

3.1 Attacker model

We assume that an attacker has found a way to bypass all security
mechanisms provided by the browser (e.g., using unsanitized input)
and was able to store JavaScript code in the application database
as part of a user input mechanism (e.g., a user comments system).

B N ST R

ManlLang’18, September 12-14, 2018, Linz, Austria

When a victim visits a page that loads and executes the attacker code
as part of rendering that page, this attacker code is executed in the
browser with the same privileges as the code of the page. Especially
if the victim is an authenticated user of a sensitive application, the
attacker is able to obtain sensitive information. In the same manner
an attacker can cause application misbehavior by, for example,
exhausting the application’s resources.

3.2 Security policies in GUARDIA

In GUARDIA, a security policy is represented as an object that speci-
fies a number of interception points used by the enforcement mech-
anism to monitor the application at runtime. This object defines two
types of interception points that monitor security-relevant read and
write operations, such as a method invocation or the assignment to
a property in the target object, respectively. Developers can register
listeners to monitor these read and write operations.

In contrast to Web]Jail, GUARDIA is not limited to a predefined
set of components and objects on which the policies can be speci-
fied. Like CoreScript, developers can declaratively specify policies.
However, GUARDIA’s developers are still using JavaScript to specify
the policies, while CoreScript ones have to switch to a different
language (XML). Developers using GuaRrDIA do not have to write
imperative advice code to implement the enforcement of the poli-
cies, because the advice code is implicit in the declaration of the
policy.

Listing 1 shows a first sample policy in GUARDIA to monitor
security-relevant read operations. More concretely, it shows an
example policy definition that denies a read operation on the open
method, which can be used to create new windows and get access
to security sensitive methods [19]. The whenread field takes an array
of predicates that are evaluated on each read operation. A policy
predicate (or simply a predicate) in GUARDIA is a closure that re-
turns a boolean value, and is called by the enforcement mechanism
to decide whether the actual call upholds the security invariant ex-
pressed by a policy. Similarly, the readListener field (line 4) takes an
array of listeners that are notified on each read operation. Each reg-
istered listener is a JavaScript object that contains a notify function.
The notify function (line 5) is executed each time a property is ac-
cessed or a method is invoked. This function receives as parameters
the dynamic information related to the actual invocation. Unlike
predicates, listeners do not return any value and their execution
does not influence the enforcement.

Listing 1: Definition of a policy that denies a read operation
on the open method.
const pol = {

whenRead: [Deny(['open'1)],

whenWrite: [...],

readListeners: [{

notify: (tar, prop, rec, args) => {
// update some state...
3],
writeListeners: [...]

Besides whenRead and readListeners, GUARDIA also supports the
dual write operations: whenwrite and writeListeners. In the remainder
of this section, we introduce the different constructs in GUARDIA’s

Manlang’18, September 12-14, 2018, Linz, Austria

A. Scull et al.

Construct Description
Allow(arr : Array) => TBase Allow the execution of the supplied properties
Deny(arr : Array) => TBase Deny the execution of the supplied properties

Not(p: TBase) => TBase

Negates the result of the policy predicate given as parameter

And(pArr: Array) => TBase

Perform logical AND using predicates given as parameters

Or(pArr: Array) => TBase

Perform logical OR using predicates given as parameters

ParamAt((...ps)=> Boolean, pIdx: Number, Apply afunction to one parameter of the actual execution

arr : Array) => TBase

StateFnParam((...ps)=>
String, arr : Array) => TBase

Boolean,s: Apply a function to one state during an execution step

getVType(idx: Number, fn :
Object

Function) =>

Returns an object in the following way fn(params[idx]), where
params is injected by the enforcement mechanism.

installPolicy(pol: Object) => Object

Returns an object that deploys the policy

on(tar: Object) => Object

Returns a secured object

Table 1: Guarpi1A’s API

API for specifying and installing policies by means of examples
from literature.

3.2.1 Policy 1: Prevent resource abuse. Client-side resource abuse
in JavaScript can adversely affect user experience to the point that
the application becomes unusable [19]. There exist certain meth-
ods in the DOM API that can be exploited for this kind of attack
such as prompt and alert [4, 17, 19]. Listing 2 shows how to create a
policy that prevents resource abuse of the methods prompt, alert
and confirm in GUARDIA. At each invocation, the policy checks
the name of the property being accessed. If the property is one of
the property names specified by the policy, then the invocation is
denied. To express this policy, we employ the Deny function which
takes as argument a list of data and method properties that should
be blocked upon access. Line 2 employs the installPolicy func-
tion to specify that the policy advice code should be executed when
the user attempts to read a property upon the window object.

Listing 2: Policy 1: Prevent resource abuse.

let noResAbuse = Deny(['alert', 'prompt', 'confirm']);
installPolicy ({whenRead:[noResAbuse]}).on(window);

GuaRrDIA also provides the Allow function which takes as param-
eter a list of properties that should not be blocked upon access.

Allow and peny form the core primitives to build a simple policy
in GUARDIA. Simple policies can be combined into more complex
ones using the following higher-order policies predicates based on
the three traditional logical operators:

o the Not function receives as parameter a policy predicate
object A and returns a policy object predicate B that negates
the behavior of A.

o the and function returns a predicate that evaluates to true if
both of the predicates given as parameter return true.

o the or function returns a predicate that evaluates to true if
one of the predicates given as parameter returns true.

These higher-order policy predicates are crucial to be able to
specify control flow policies. Control flow policies specify the control
flow path that an execution should take. In what follows we specify
two sample control flow policies from literature in GUARDIA.

3.2.2 Policy 2: Prevent dynamic creation of iframe elements. In
this case, the execution of the document.createElement(tag) function
must halt only when the value of the tag attribute is equal to iframe.
As pointed out in Phung et al. [19], such a policy aims to solve
attacks that can happen by restoring built-in methods from another
page.

Listing 3 shows how to build a no dynamic iframe creation policy
by negating the combination of a Allow and a Paramat function. The
paramAt function returns a policy predicate that checks whether
some property holds for specific parameter of a method invocation.
In this example, Paramat uses the function equals to ensure that the
value of the tag passed as argument to function createElement is not
equal to 'iframe’. ParamAt primitive has three parameters:

o a predicate function that has two parameters;

o a function that safely extracts the value from the actual call
argument, and passes that value to the predicate function;

o avalue that is used by the predicate function.

In Listing 3 the equals function at line 1 is the predicate function.
The function call getvType(o, String) at line 3 is intended to safely
extract and use the call’s arguments. The first argument, ¢ in this
example, represents the position of the argument in the call’s ar-
guments list. The second argument is a constructor that converts
the extracted value, to a string in this case, ensuring that equals
function will receive a string value as first argument. Line 4 deploys
the policy on the document object to prevent the dynamic creation
of iframe tags.

Listing 3: Policy 2: Prevent dynamic creation of iframe.

let equals = (a, b) => a ===
let notIframe = Not(And(Allow(['createElement']), ParamAt(equals,
getVType(@, String), 'iframe')));

GUARDIA

installPolicy({whenRead: notIframe}).on(document);

3.2.3 Policy 3: Limit number of popup windows. Kikuchi et al.
[13] and Meyerovich et al.[17] define a policy to limit the number
of attempts to open a popup window. This control-flow policy is
actually a stateful policy that increments a counter each time a
window is opened. Phung et al. [19] suggest that such a policy
should also check that the new window has a location and status
bar. We extended the invariant of this policy to also check that the
URL is in a whitelist.

Listing 4 shows how to implement the resulting policy in GUARDIA.

The policy specification verifies that the first parameter of the call
to the open method is in a whitelist of URLs, and that the second
parameter contains a location and status bar. The policy employs
GUARDIA’s StateFnParam primitive to assert upon some state of the
application at a particular invocation as shown in line 22. Like
paramat, this primitive should be combined with other primitives to
limit an execution path to a certain behavior.

Listing 4: Policy 3: Limit number of popup windows.
var lstnr = {
notify: function (tar, name, rec, args) {
if (name === 'open') {
var winOpCnt = ac.getState('winOpenCount');
if (winOpCnt) {

winOpCnt += 1;
ac.setState('winOpenCount', winOpCnt);
} else {
ac.setState('winOpenCount', 1);
3
3
}
}
let contains = (a, b) => { return a.indexOf(b) != -1 }

let lessThan = (a, b) => { return a < b }
let limitWin
Or (And(
Allow(['open']),
ParamInList(0,urls),
ParamAt(contains, getVType(1, String), 'location=yes'),
ParamAt(contains, getVType(1, String), 'status=yes'),
StateFnParam(le, 'winOpenCount',3)),
Not (Allow(['open'1)))

installPolicy({whenRead:[limitWin],
readListeners:[1stnr]}).on(window)

Examples shown in Listings 2 to 4 return closures intended to
be used in the hooks (whenread and whenwrite) shown in Listing 1. In
GUARDIA, security policies must be deployed on objects. The result
of deployment is an object containing the security properties that
hold for all invocations on the target object. Listing 5 shows how to
deploy a policy for the window object using the predicate in Listing 4.

Listing 5: Policy deployment example.
installPolicy({
whenRead: [Not (And(Allow(['open']),
StateFnParam(lessThan,
'popupCount ',
201

}) .on(window);

ManlLang’18, September 12-14, 2018, Linz, Austria

4 ENFORCEMENT OF SECURITY POLICIES
USING JAVASCRIPT REFLECTION

To ensure that a target program satisfies a certain security policy,
an enforcement mechanism is required that will notify or halt the
system when the policy is violated [2, 23]. When a security policy
is specified in the form of a predicate, the enforcement mechanism
checks whether this predicate is true at each individual step of the
program execution. Related work identifies the following desiderata
for an enforcement mechanism [2, 4, 20].

(1) Completeness: an enforcement mechanism should be able to
monitor and check all security-relevant operations that may
be expressed by policies.

(2) Transparency: an enforcement mechanism should not alter
the behavior of the program to be secured.

(3) Tamper-proofness: it should be impossible to subvert the
enforcement mechanism itself.

Because GUARDIA’s enforcement mechanism is decoupled from
the policy specification API, this enables us to investigate different
meta-programming techniques to enforce policies without VM mod-
ifications. In this paper, we explore an implementation of GUARDIA’s
enforcement mechanism employing the reflective capabilities of
the host language itself (JavaScript).

4.1 Decoupled enforcement mechanism

GuaRrDIA decouples the specification of a policy from its enforce-
ment. This forces a clear separation of these two concerns, and
enables GUARDIA to be configured with different enforcement mech-
anisms. Figure 1 shows the interaction between different semantic
blocks that make up GUARDIA.

receive e

policy - N
{ installPolicy())
~o _-

register ~o

Figure 1: GuarpiA’s policy deployment and enforcement
process.

To better explain the decoupling from policy specification and
enforcement, consider again the case that a programmer wants
to prevent resource abuse via the DOM API. To this end, she de-
signs a policy such as Listing 2 describing what should be protected
(i.e., alert, prompt, etc.) and when the enforcement must be called
(i.e., whenread). Next, suppose the secured program reaches the call
window.alert('Foo'). At this point, the enforcement will look for the
policy configuration object associated with the target of the call
(window). Then, the filter(...) method of all whenread policy pred-
icates is provided with the runtime information of the call. The
runtime information includes the target (window), the method being
read (alert), and the parameters ('Foo'). If all predicates return true,
then the call is executed, otherwise an exception is thrown and

Manlang’18, September 12-14, 2018, Linz, Austria

Ordinary object Exotic object

%] Object to be protected

™ Proxy holding security policy
(O Method

Figure 2: Wrapping enforcement approach in Guarbia.

the call is not executed. Note that the test of the policy is encap-
sulated in the policy predicate and is not part of the mechanism
that monitors the execution. GUARDIA can be configured with any
enforcement mechanism that is able to monitor the execution and
call guardia.enforce(...) with the appropriate runtime information
whenever the application is about to read or write an object prop-
erty (e.g. Virtual Values, Aran 2).

4.2 Enforcement by means of JavaScript
reflection

In this paper we focus on the default GuArRDIA enforcement mecha-
nism based on JavaScript’s reflective capabilities using proxies [7].
A JavaScript proxy is an object that acts as a wrapper of another
JavaScript object. By intercepting operations performed on the
wrapped object, a proxy provides the means to change the se-
mantics of those operations. A proxy object is created using the
Proxy(target, handler) constructor, where target is the object to be
wrapped and handler define various properties that enable behav-
ioral intercession.

In order for the enforcement mechanism to adhere to the com-
pleteness requirement, policies should be deployable on all types
of Javascript objects. However, browser host environments provide
exotic objects such as window, document, location, etc. Exotic objects
differ from ordinary objects in that they do not implement the de-
fault behavior for one or more of the essential internal methods
that must be supported by all objects [7]. This adds extra difficulties
to an enforcement mechanism based on proxies, as exotic objects
require different monitoring strategies for policy enforcement. In
what follows, we detail the enforcement using proxies upon both
ordinary and exotic JavaScript objects.

4.2.1 Enforcement upon ordinary JavaScript objects. A reference
to an ordinary (i.e., non-exotic) object can be freely reassigned
with a proxy that secures it. This is shown on the left hand side
of Figure 2. To prevent problems with aliasing and ensure that
attackers only have access to the secured version of a sensitive
object, the enforcement mechanism must secure objects right after
their creation.

Listing 6 illustrates how object proxy handlers are implemented
in GUARDIA. Of particular interest are the get and set properties,

https://github.com/lachrist/aran

T CR

A. Scull et al.

which reify the semantics of how object properties should be read
and written, respectively.

Listing 6: GUARDIA proxy handler’s implementation.

let handler = {
get: function (trgt, prop, rcvr) {

for(let pol of policy['whenRead'1){
if(!pol.filter(trgt, prop, rcvr, 'propertyRead')){
throw new Error('Not_allowed!')}}}

notify(policy['readlListeners'], trgt, prop);
return Reflect.get(trgt, prop, rcvr);
}

set: function(trgt, prop, value, rcvr){

}
I

let target = new Proxy(trgt, handler);

Whenever a property read occurs on a secured object, the proxy
intercepts this and forwards the operation to the get method of its
handler. Lines 4-9 specify the semantics of GuarbIa for verifying
whether the property read is allowed. First, GUARDIA iterates over
each policy predicate contained in the whenread property of the policy
configuration object (line 4). The method filter is called on each
predicate with the runtime information provided in the actual call,
which determines whether the call violates the policy or not (line 5).
If any policy is violated, the handler throws by default an exception,
thereby preventing the actual read operation on the underlying
secured object (line 6). Otherwise, all the registered listeners are
notified (line 8) and the read operation on the underlying object
is performed (line 9). A similar approach holds for property write
operations, which are intercepted by the set method on the handler.

4.2.2 Enforcement upon exotic objects. Exotic objects pose a
challenge to a reflective enforcement approach because they are
read-only references according to the HTML5 standard [28]. De-
velopers are able to modify these objects by adding or deleting
properties, but it is forbidden to change their references>.

Instead of wrapping the entire object as in the case of ordinary
objects, it is necessary to wrap each method of the exotic object with
a proxy enforcing the relevant security policies. This is shown on
the right hand side of Figure 2. This approach respects the invariants
of the exotic object, while still introducing the necessary checks on
security-sensitive operations on those objects.

To illustrate this approach in a concrete example, we take Policy 2
(Section 3.2.2), which prevents dynamic creation of iframe objects
by disallowing the call expression document.createElement('iframe").
Instead of wrapping the entire document object, GUARDIA only wraps
the document.createElement function object as shown in Listing 7.
The handler has to intercept a function invocation, and therefore
implements an apply operation.

Listing 7: Function proxy handler’s implementation.

let handler = {
apply : function (target, thisArg, argumentsList){
//Check the security policies
return Reflect.apply(target, thisArg, argumentslList)}

3 An exception to this rule is the location object that, when assigned with a location,
causes the browser to navigate to that location.

GUARDIA

3

Object.defineProperty(document, 'createElement', {
configurable: false,
writable: false,
value: new Proxy(document.createElement, handler)}

);

Line 3 in Listing 7 is a placeholder for the enforcement code that
verifies whether the function call is allowed. Checking the predi-
cates contained in the relevant policy configuration objects uses a

similar mechanism as in Section 4.2.1. The method object.defineProperty

enables the addition or modification of a property on an object.
Lines 7-10 replace the original document.createtlement function ob-
ject with the wrapped one on document. The properties configurable
and writable are set to false to prevent any subsequent modification
of the document.createElement property.

4.3 Limitations and discussion

Using only proxies as the basis for a policy enforcement mecha-
nism has an impact on completeness, transparency, and tamper-
proofness of the resulting mechanism. In the following subsections,
we discuss how well GUARDIA’s enforcement mechanism described
in Section 4.2 achieves these properties, and point out some of the
challenges such a reflection-based enforcement strategy introduces.

4.3.1 Completeness. GUARDIA’s proxy enforcement mechanism
does not require any modification of the underlying JavaScript
runtime, but it is not fully complete. This is because of the location
object, an exotic DOM object that is non-configurable, including its
methods. It is impossible to wrap the location object with proxies
that intercept security-relevant operations such as changing the
location by invoking location.assign.

4.3.2 Transparency. The goal of GUARDIA’s proxy enforcement
mechanism is to achieve transparency w.r.t. the original (unsecured)
application by ensuring that the behavior of wrapped target objects
remain unaffected. To this end, we conducted experiments to inves-
tigate how proxies behave in real-world applications on different
browsers when using popular libraries such as JQuery. First experi-
ments revealed some issues. In particular, JQuery presented errors
when methods on the window or document objects were wrapped. Fur-
ther investigation showed that JQuery uses the tostring function
of methods on host objects to assert whether the containing host
objects are native or not. However, this check fails when proxies
wrap these functions. GUARDIA overcomes this problem by binding
the wrapped tostring function to the target object instance instead
of the proxy.

Our experiments also revealed that proxies do not behave trans-
parently on DOM Node objects. The node. appendchild(child) function,
for example, checks that the argument value is of type Node. When
this method receives a proxy, the type check fails and the node is
not added to the tree. To overcome this problem, GUARDIA han-
dles Node instances as exotic objects: instead of wrapping the entire
object, every function on the object is wrapped.

4.3.3 Tamper-proofness. Making GUARDIA itself secure is chal-
lenging in JavaScript, especially when the specification is done
using an internal DSL and the host language’s reflective capabilities
are employed as the basis of the enforcement mechanism. Javascript

ManlLang’18, September 12-14, 2018, Linz, Austria

is a prototype-based language, and therefore attackers can attempt
to change the behavior of the system by altering the prototype
chain of objects that make up or participate in the security mecha-
nism. In the remainder of this section we discuss three attacks that
can compromise the tamper-proofness of GUARDIA’s enforcement
based on proxies: (1) redefinition of tosString and valueof functions,
(2) function aliasing, and (3) prototype poisoning.

Redefinition of tostring and valueof functions. Listing 8 shows a
code snippet that demonstrates how an attacker could provide an
object that redefines the tostring function. The first invocation of
this function returns a ’good’ URL, but subsequent invocations
return a ’bad’ URL provided by the attacker. If the 1iarobj object
is used during policy evaluation to verify whether a URL is white-
listed, the whitelist policy can be bypassed.

Listing 8: Example of tostring redefinition.

var liarObj = {
value : 'good',
toString : function() {
var result = this.value;
this.value = 'bad';
return result;
}
3
console.log(liarObj.toString()) // good
console.log(liarObj.toString()) // bad
To avoid this problem, GUARDIA adopts the same approach as
Magazinius et al. [15] and converts all policy parameters to primi-
tive values once, and only uses the converted values in subsequent
target invocations.

Function aliasing. GUARDIA’s policy specification language relies
on the names of functions and properties to validate their invo-
cation. Relying on names to ensure security is a straightforward
way to restrict access to certain data or functionality. However,
in JavaScript, it is easy to create function aliases because func-
tions are first-class objects allocated on the heap. For example, the
window.open function can be aliased with a function myFun by assign-
ment: myFun = window.open. An attacker could then use the aliased
function to circumvent the security policy enforcement mecha-
nism [17, 19].

To prevent the risks associated with aliasing, the deployment
of security policies must be realized before any other code is ex-
ecuted that can create aliases of target objects. If this is the case,
then all aliases that are created refer to the secured object so that
the underlying target object is never exposed to client code. Addi-
tionally, GUARDIA freezes wrapped methods by means of calling
Object.freeze on them. Freezing wrapped functions avoids the alias-
ing problem by preventing method overriding.

Prototype poisoning. An attacker could take advantage of an
object’s prototype inheritance chain to compromise GUARDIA’s
tamper-proofness. Because every JavaScript object is created in an
extensible and configurable state, properties can be freely added and
modified at any point during the object’s lifetime. An attacker could
therefore attempt to subvert the execution of the target program by
changing the prototype of a built-in (e.g., object, String, Array, etc.) or
policy object, with the goal of abusing the inheritance chain to inject
an alternative implementation of some method to bypass a security

Manlang’18, September 12-14, 2018, Linz, Austria

policy. This type of attack is referred to as object subversion [15].
For example, callers of the object.prototype. tostring function always
expect a string representation of the object on which it is invoked.
An attacker could inject a tostring function similar to the one shown
in Listing 8 for compromising the security of the application.

Using ECMAScript 5 property descriptors, an object can be
marked as non-extensible so that it is not possible to add new prop-
erties to the object after creation, or non-configurable so that any
attempt to change its non-configurable properties fails. In order to
prevent unintended changes to GuarDpIA’s enforcement constructs,
GuARrDIA makes use of these descriptors in its implementation. The
elements being frozen after their creation include all the objects that
are involved in the definition of and interaction with GUARDIA’s
API (Table 1), and standard objects. These deliberately imposed
constraints on the prototype chain of built-in objects such as object
and string could affect the transparency of programs that rely on
changing the prototype of those objects. However, during our ex-
periments (Section 5) we encountered few problems as a result of
this strategy (see Section 5.2.3).

5 EVALUATION

To evaluate GuaRDIA with respect to the design decisions detailed
in Section 2, we conducted three kinds of experiments. In a first
experiment, we expressed 13 different security policies in GUARDIA
extracted from literature (Section 3 and Appendix B). This enables
us to compare the expressivity of GUARDIA to that of related ap-
proaches (Section 5.1). A second experiment consisted of applying
GuaRDIA to both synthetic benchmarks, three experimental web
applications, and 10 real-world web applications. Finally, we con-
ducted a third experiment to evaluate the performance implications
of our approach on both synthetic benchmarks and the experimen-
tal applications (Section 5.3).

5.1 Expressivity Compared To Related Work

We evaluated the expressiveness of GUARDIA’s specification lan-
guage by expressing 13 policies found in related work [9, 17, 19, 29].
Table 2 gives an overview of these policies and their origin. A check-
mark denotes that a paper describes and supports the policy, while
a missing checkmark does not imply that a paper does not support a
policy but rather that it does not describe the policy. Table 2 extends
the table presented in [4] with the type of attack that each policy
aims to prevent. In contrast to the original table, we consider only
11 distinct policies (denoted as Policy 1-11) because several policies
could be combined into a single policy.

Table 2 shows that all resulting 11 policies analyzed in related
work can be expressed in GUARDIA. For each policy, we compared
the specification in GUARDIA with the specification in related work.
Due to space limitations, we report on this comparison for only 4 out
of the 11 policies below. Appendix B includes the implementation
of the 7 remaining policies in GUARDIA.

5.1.1 CoreScript. We compare Policy 1 specified in CoreScript
(Figure 3) to the specification in GuarDIA (Listing 2). This policy
prevents resource abuse by denying the creation of alert windows.

Originally, CoreScript security policies were described using a
formalism based on edit automata [29], but in a follow-up paper [13]
developers can also encode policies by writing XML files. The XML

A. Scull et al.

<template name = ”"FuncReplacement” >
<object> obj </object>
<property> prop </property>
<states> sI,s2 </states>
<replacementAction>
... filtering code . ..
< /replacementAction>
</template>

(Get, window, alert) / ... filtering code...
(Call, window, alert) / ... filtering code...

s1 s2
(not accessed) /(Set, window, alert) \ (accessed)

Figure 3: (Policy 1) Prevent resource abuse in Core-
Script [29].

in Figure 3) specifies Policy 1. In CoreScript, developers identify
the object, property, or method to which code rewriting must be
applied. Instead of forcing the developer to think in term of state
and transitions, which may not be common knowledge among
developers and security engineers, GUARDIA uses a declarative and
arguably more descriptive approach for specifying security policies.

In contrast to GUARDIA, CoreScript forces developers to know
how to write the replacement action code. The replacement action
should perform the actual enforcement of the policy. In our view it
is less error-prone to specify a policy that prevents certain behavior
than to manually write code that should behave similar to the
replaced code, while at the same time taking care of the enforcement
and transparency with regard to normal program execution. In
GuARDIA developers are not burdened with writing enforcement
code. The semantics of the operations and their properties, such
as transparency and tamper-proofness (with the limitations we
discussed), are provided by the underlying enforcement used by
GUARDIA, and therefore well understood.

5.1.2 ConScript. Listing 3 (Section 3) introduced Policy 2 in
GUARDIA to prevent dynamic iframe creation. We compare this pol-
icy to the equivalent ConScript policy specification [17] given in
Listing 9. As mentioned in Section 2, ConScript specification fol-
lows an aspect-oriented approach in which a pointcut is declared to
intercept relevant calls, in this case to document.createElement. Con-
Script forces programmers to write code for both policy specifi-
cation and enforcement in the language of the VM. As a result,
programmers have to manually ensure the completeness, trans-
parency, and tamper-proofness of the enforcement mechanism. In
contrast, GUARDIA developers only have to declare security policies
without programming their enforcement.

Listing 9: (Policy 2) Prevent dynamic creation of iframe in
ConScript (extracted from [17]).

around(document.createElement, function (c : K, tag : U) {

let elt : U = uCall(document, c, tag);

if (elt.nodeName == "IFRAME") throw 'err'; else return elt; });
ConScript relies on VM modifications and can only be applied

to Internet Explorer 8, while GUARDIA runs in any browser that

implements the ECMAScript 2015 standard. On the other hand,

GUARDIA’s specification of Policy 2 is slightly more verbose than

its ConScript equivalent.

5.1.3 Hallaraker and Vigna’s Auditing System for JavaScript. List-
ing 10 shows Policy 3 specified in Hallaraker and Vigna’s auditing
system for JavaScript (HVAS) [9]. This policy limits the number of
popups that a window can open. The equivalent GUARDIA policy
specification was given in Listing 4 (Section 3). Policies in HVAS

GUARDIA

ManlLang’18, September 12-14, 2018, Linz, Austria

Attack type Security policy HV Yuetal. Phung ML GUARDIA
[9] [29] etal. [17]
[19]

Forgery Limited number of popup windows opened (Policy 3) v 4 v v v

Forgery No popup windows without location and status bar v v
(Policy 3)

Resource abuse Prevent abuse of resources like modal dialogues v 4 v v v
(Policy 1)

Restoring built-ins Disallow dynamic iframe creation (Policy 2) v v v

from frames

Information leakage = Disable page redirects after document. cookie read v v v v v
(Policy 6)

Information leakage Only redirect to whitelisted URLs (Policy 10) v v v

Information leakage Restrict XMLHttpRequest to secure connections and v v

whitelist URLs (Policy 9)

Information leakage Disallow setting of src property of dynamic images v v
(Policy 11)

Impersonation XMLHttpRequest is restricted to HTTPS connections v v
(Policy 9)

Impersonation / Disallow open and send methods of XHR object v v v
Information leakage (Policy 4)

Man in the middle postMessage can only send to the origins in a v v

whitelist (Policy 7)

Run arbitrary code Disallow string arguments to setInterval & v v
setTimeout (Policy 8)

Information Leakage Disable geoposition API (Policy 5) v

Table 2: Comparison of approaches in security policies. Policy numbers 1-11 refer to the policies discussed in Sections 3 and 5

and Appendix B

are specified as a state transition model. While both specifications
are expressed in more or less the same amount of code, the number

of allowed popup windows is hardwired in the HVAS specification.

In HVAS, the policy designer has to write as many if statements
as the number of popups that are allowed, which hampers code
maintainability and reusability. In contrast, GUARDIA’s specification
parametrizes the maximum allowed number of popup windows as
an argument of the policy.

Listing 10: (Policy 3) Limit number of popup windows in
HVAS (extracted from [9]).

if((event.method.name==open)&&
(event.method.object=="window")){
if(stateW4.includes(event.host)){
log("Script_has_opened_5_windows. _Possibly_a_malicious_script!")
}
else if(stateW3.includes(event.host)){
stateW3.delete(event.host);
stateW4.add(event.host);
3
else if(stateW2.includes(event.host)){
stateW2.delete(event.host);
stateW3.add(event.host);
}
else if(stateWl.includes(event.host)){

S N

stateWl.delete(event.host);
stateW2.add(event.host);
3
else{
stateWl.add(event.host);
1}
Furthermore, the GUARDIA specification makes it straightforward
to add and combine additional policy predicates for imposing ad-
ditional restrictions as part of the policy. Recall that the code in
Listing 4 also restricts the URLs that can be opened (line 18), and
that the location and status bar of the newly opened windows must
be visible (lines 19-20).

5.1.4 Lightweight Self-Protecting JavaScript. We compare Light-
weight Self-Protecting JavaScript (LWSPJS) [19] to GUARDIA by
means of Policy 4 that prevents impersonation attacks using the
XMLHt tpRequest (XHR) object by disallowing calls to its open and send
methods.

Listing 11: (Policy 4) Prevention of impersonation attacks in
LWSP]JS (extracted from [19]).

var XMLHttpRequestURL = null;
enforcePolicy ({ target : XMLHttpRequest , method:
function(invocation){

'open' 3},

N

Manlang’18, September 12-14, 2018, Linz, Austria

XMLHttpRequestURL = stringOf(invocation ,1);
return invocation.proceed();

DB

enforcePolicy({ target : XMLHttpRequest , method: 'send'},

function(invocation){
XMLHttpRequestPolicy(invocation);
D;

var XMLHttpRequestPolicy = function(invocation){
//allow the transaction if the URI is in the whitelist
if (AllowedURL (XMLHttpRequestURL))
return invocation.proceed () ;
policylog('XMLHttpRequest_is_suppressed: '+
'potential_impersonation_attacks') ;

Listing 11 shows the specification of Policy 4 in LWSPJS, in
which the URL passed to the open method is forced to be a String.
The policy deployed upon the send method verifies that the URL
string is contained in the whitelist of URLs. Developers have to
manually specify the enforcement code (lines 3-7,9 11, and 13-18)
and consequently most of the code in Listing 11 is dedicated to the
enforcement.

Listing 12 shows the equivalent code for Policy 4 in GUARDIA,
which requires less code than LWSPJS to express the same policy,
while the intention of the policy is still explicit. This is because
GuUARDIA does not require developers to manually write the en-
forcement code.

Listing 12: (Policy 4) Prevention of impersonation attacks in
GUARDIA.
const openPol = Or(And(Allow(['open']),
ParamAt(isIn, getVType(0, String), whitelList)),
Deny(['open'1));
XMLHttpRequest = installPolicyCons(openPol, XMLHttpRequest);

5.2 Applicability

To assess the applicability of a reflection-based policy enforcement,
we used GUARDIA’s enforcement mechanism based on proxies to
secure three types of programs: small synthetic benchmarks, exper-
imental web applications, and real-world web sites.

Listing 13 shows how developers can include the necessary
files needed to secure their application with GUARDIA. First, the
implementation file (guardia. js) containing GUARDIA’s constructs
must be included. Additionally, developers include a file (typically
called policies. js) that contains any number of application-specific
GuARrDIA policies such as those discussed in this paper (see Ta-
ble 2). Besides including the required files, and depending on the
type of application, other small changes may be required to de-
ploy GuarbIA. For Single Page Applications, including GUARDIA in
the initial page suffices to secure the entire application. For sites
that reload the browser window for each request, GUARDIA can be
added by using a proxy mechanism in the server that modifies each
response.

Listing 13: Guardia policy deployment example.

<html>
<head>
<script src="path/to/guardia. js"></script>
<script src="path/to/policies.js"></script>
</head>

A. Scull et al.

<body> ...
</html>

</body>

5.2.1 Correctness on synthetic benchmarks. A suite of synthetic
benchmarks was used to drive forward the implementation of
GUARDIA by testing new functionality and avoiding regressions.
Each program in the set of synthetic benchmarks is implemented
in such a way that it is straightforward to determine whether a vul-
nerability (or some other kind of behavior) is present or absent. We
then developed GuARDIA policies targeting these benchmarks and
verified for each synthetic benchmark whether the results of policy
enforcement agreed with the expectations. For more details on the
suite of synthetic benchmarks, we refer the interested reader to
the publicly available implementation of the GuARDIA framework?,
which contains this test suite.

5.2.2 Practicality and transparency. GUARDIA was tested on three
experimental applications: Juice Shop, NodeGoat and SoundRedux.
Juice Shop and NodeGoat are part of the Open Web Application Se-
curity Project (OWASP) project, which serves as learning resource
for application security. By design, both applications have secu-
rity holes that can be used by developers and penetration testers to
learn how to protect their applications. SoundRedux provides a fully
functional application in a complex scenario. Because all three ap-
plications use contemporary JavasScript libraries and frameworks,
securing them with GuaRrDIA provides a good notion of how practi-
cal our approach is. It also enables us to assess the transparency of
GUARDIA’s enforcement mechanism based on proxies in real-world
scenarios.

OWASP Juice Shop. Juice Shop? is a typical online shopping
application with search, listing, and shopping basket functionalities,
in which users are required to register and login. Juice Shop has
been intentionally designed to include the entire OWASP Top Ten
vulnerabilities and other security flaws. It is developed entirely
using JavaScript technologies in both the back-end and the front-
end. Its front-end technologies includes JQuery, Angular]S, and
Twitter Bootstrap.

As mentioned before, GUARDIA is implemented as a JavaScript
library and can therefore be deployed in any standard ECMAScript
5 (or more recent) runtime environment, including web contexts,
using standard mechanisms. Juice Shop is a Single Page Application,
so GUARDIA must only be included once in this application.

We applied GUARDIA’s implementation of the policies described
in Table 2 to Juice Shop to protect the application from Reflected
Cross Site Scripting attacks [18, 26]. We found that we were able
to enforce all policies except Policy 10, which targets the location
object. As explained in Section 4.2.2, the location object imposes
strong invariants that makes it impossible to protect it without
relying on VM modification.

OWASP NodeGoat. NodeGoat © is a vulnerable web application
that manages employee retirement savings. The application offers
typical functionalities such as user login and registration. Registered
users have a private dashboard page in which they can modify their
preferences and manage their benefits.
*https://github.com/scull06/guardia

Shttps://github.com/bkimminich/juice-shop
®https://github.com/OWASP/NodeGoat

GUARDIA

NodeGoat has similar security vulnerabilities as those found in
Juice Shop. It is developed using current technologies and includes
libraries such as JQuery and Twitter Bootstrap. We therefore applied
the same set of security policies to NodeGoat as to Juice Shop and
obtained the same results in terms of security.

SoundRedux. SoundRedux ” is a client-side web application that
serves as an interface to the SoundCloud ® application, which en-
ables exploring the SoundCloud music database. In contrast to
NodeGoat and Juice Shop, SoundRedux is not a deliberately inse-
cure web application, and is fully functional instead.

SoundRedux is developed using popular software libraries such
as React ? and Redux '°. To deploy Guarpia in SoundRedux, we
modified its index page by adding a script tag for including GUARDIA
itself, and a second one pointing to our set of security policies.

In contrast to the previous two applications, we did not perform
any kind of attack on SoundRedux through its interface, as the
application does not have any obvious security breaches and it is
not the aim of this paper to discover security holes. Instead, we
found that deployed policies were fully and correctly enforced by
running code in the browser’s developer console that attempts to
bypass the deployed policies. We also verified that safe code was
unaffected, showing that GUARDIA’s behavior is transparent with
respect to the SoundRedux application.

5.2.3 Transparency on web applications. In another experiment
we applied our set of GUARDIA policies (Table 2) to 10 real world
web applications (Table 3) to verify that these web sites continue to
perform as expected in the presence of GUARDIA. The selection of
the applications is based on the Alexa top 500 ranking!?, from which
we selected the sites based on their purpose (i.e. news, shopping,
entertainment, social network, etc.). Although the web sites vary
in their intended use, all involve substantial amounts of complex
JavaScript code that runs in the browser.

We employed the Burp Suite 12 to deploy our policies in these
applications. Burp enables to intercept responses from these web
sites and to inject GUARDIA policies. As a result, when the page
is rendered in the browser it contains the deployed policies. Be-
cause the applications listed in Table 3 do not have evident security
holes, we again tested the policies of Table 2 by writing code in the
browser’s console attempting to bypass these policies.

The result of the experiment was that all sites, except YouTube,
continued to function as designed in the presence of GUARDIA.
Closer inspection revealed that YouTube attempts to override prop-
erties that were secured and sealed by Guarpia policies. The Vimeo,
eBay, Reddit and BBC web sites also did not render correctly at
first. Inspecting the produced error trace indicated that these ap-
plications were attempting to create iframe elements dynamically
and that GUARDIA was preventing this behavior. These web sites
executed normally after removing Policy 2, which disallows the
dynamic creation of iframe elements.

"https://github.com/andrewngu/sound-redux
8https://soundcloud.com/
“https://facebook.github.io/react/
Ohttp://redux.js.org/
Uhttps://www.alexa.com/topsites
2https://portswigger.net/

ManlLang’18, September 12-14, 2018, Linz, Austria

Application Type Deployed
google.com Search Engine 4
baidu.com Search Engine 4
bbc.com News Site 4
reddit.com News Site v
youtube.com Entertainment
vimeo.com Entertainment v
amazon.com Online Shopping 4
taobao.com Online Shopping v
ebay.com Online Shopping v
linkedin.com Social Network v

Table 3: Real-world applications tested with GuarDIA.

5.3 Performance

To assess GUARDIA’s performance impact, we measured the run-
time overhead of deploying GUARDIA policies in the three types of
benchmark programs we experiment with: small synthetic bench-
marks, experimental web applications, and real-world web sites.
These experiments were performed on a MacBook Pro with a 2.5
GHz Intel Core i7 processor equipped with 16 GB of DDR3 RAM.

Policy

document.createElement()
document.write()
window.setTimeout()
window.setInterval()

w
[=)}
"

Simple Predicate 1. 1.13x 1.22x 1.22x

Simple + Combined Predi- 1.92x 1.28x 1.33x 1.31x
cate

10 Simple Predicates 3.67x 1.78x 1.50x 1.42x

Table 4: Overhead of GuarDIA on synthetic benchmarks.

5.3.1 Performance on synthetic benchmarks. Table 4 shows the
overhead introduced by GuarDpIA on synthetic benchmarks that
call a particular function using different policy constructs.

o Simple Predicate is a policy that enforces a single predicate
(e.g. Deny(['write‘])).
e Combined Predicate is a policy that enforces a single predi-
cate using policy combinators (e.g. Not (Allow(['write'1))).
To measure the overhead we ran the program 100000 times for every
combination of policy construct and function. Each row of the table
indicates the slowdown ratio between the average overhead and the
average baseline. The average overhead of our worst case scenario
is a 2.01x slowdown.

Manlang’18, September 12-14, 2018, Linz, Austria

A. Scull et al.

Application Description LOC Load time (ms) Load time with GUuARDIA (ms) Overhead polchecks
Juice Shop Online Shop 39220 36.65 42.22 1.15x 56
NodeGoat Social Security App 16455 222.05 239.32 1.08x 25

SoundRedux Soundcloud Client 48880 103.43 277.95 2.69x 71

Table 5: Experimental applications tested with GuarbpIA.

5.3.2 Performance on experimental applications. We measured
the performance impact of using GUARDIA to deploy Policy 2 and
Policy 8 in Juice Shop, NodeGoat, and SoundRedux. Other policies
were either not triggered (e.g., Policies 6, 7, 11), or were difficult
to measure because they require user interaction to open or close
popups windows (e.g., Policy 1 and Policy 3).

Each application was loaded 100 times to determine the aver-
age load time. The time spent by the browser to load the main
document was measured by computing time differences using
performance.now(). Table 5 relates the lines of JavaScript Code (LOC),
the page load time without and with GuarDpIa, and the overhead
provoked by GUARDIA. polchecks is the number of calls to the policy
check in each request.

From the results in Table 5 we conclude that there is negligible
overhead when enforcing Policy 2 and Policy 8 during each page
load. Although the policy checks are triggered several times in each
application, this does not significantly impact the performance of
those applications.

5.3.3 Performance on real-world applications. We attempted to
measure the performance overhead introduced by Guarpia on the
applications listed in Table 3. To this end we used mitmproxy 3
to cache the responses of applications. Next, we recorded page
load times with and without GuarDIA policies. However, we found
that the performance impact introduced by Guarbpia is negligible
compared to the variance introduced by the amount of resources
(images, scripts, styles, etc.) loaded by these applications. Which
made impossible to measure the performance impact introduced
by GuARDIA.

5.4 Extensibility

Although GuarDpIA was developed primarily for securing client-
side applications, both its specification language and enforcement
mechanisms can be extended to other application domains and
runtime environments that feature objects and functions.

Nothing prevents our current implementation of GUARDIA to be
used in server-side JavaScript applications. There it can be used,
for example, to safely exchange valuable resources such as data-
base connection objects with untrusted code by only allowing read
operations.

GuarbiA facilitates extensibility by decoupling specification
from enforcement. Dynamic enforcement of GUARDIA policies de-
pends on the meta-programming facilities present in the underlying
runtime environment. We believe that enforcement through code
writing is always a viable option, even in the absence of advanced
reflective capabilities in the target language (Section 6).

Bhttps://mitmproxy.org/

6 CONCLUSION

In this paper, we presented GUARDIA, an internal DSL for declara-
tively specifying and dynamically enforcing application-level secu-
rity policies for JavaScript web applications without requiring VM
modifications. GUARDIA enables the specification of composable
security policies that combines the flexibility of imperative specifi-
cation languages with the ease of development provided by more
declarative solutions. To evaluate our declarative policy specifica-
tion language, we implemented 13 access control security policies
from related work and found that GuarpiA’s specification language
is capable of expressing all of them.

Security policies in our approach are enforced by the underlying
enforcement mechanism, which is decoupled from the specifica-
tion language, which frees developers from manually enforcing
security policies. In this paper, we focus on the default GuarRDIA
enforcement mechanism that employs JavaScript’s reflective capa-
bilities. This mechanism wraps target objects with proxies that
intercept security-relevant invocations, and therefore does not
require VM modifications. We discussed the limitations of this
reflection-based enforcement mechanism with respect to complete-
ness, transparency, and tamper-proofness.

We also evaluated the applicability and performance impact
of our dynamic enforcement mechanism in three experimental
applications and 10 real-world web sites. Our experiments indicate
that the reflection-based enforcement mechanism of GUARDIA is
correct, transparent, and tamper-proof, while incurring a reasonable
runtime overhead. We believe the lessons learned from our study
can be used by other application-level security policy approaches,
as well as to stir future improvements on JavaScript VM.

Future Research Avenues. We are experimenting with a differ-
ent enforcement mechanism for GUARDIA that combines enforce-
ment based on proxies with code rewriting to provide a higher
level of completeness than the enforcement described in this paper.
This enables GUARDIA to be used for enforcing information flow
policies, which cannot be covered by an enforcement mechanism
that solely relies on the built-in reflective capabilities of JavaScript.
Code rewriting mechanisms also enable a more uniform reasoning
about a program’s value properties, which alleviates some of the
tamper-proofness challenges we needed to solve when using only
reflection-based policy enforcement. Repeating our experiments
using enforcement by code rewriting is ongoing work.

REFERENCES

[1] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: Complete Client-side Sandboxing of Third-party
JavaScript Without Browser Modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC ’12). ACM, New York, NY,
USA, 1-10. https://doi.org/10.1145/2420950.2420952

https://doi.org/10.1145/2420950.2420952

GUARDIA

[2] JamesP. Anderson. 1972. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51. U.S. Air Force Electronic Systems Division.

[3] Thomas H Austin, Tim Disney, Cormac Flanagan, Thomas H Austin, Tim Disney,
and Cormac Flanagan. 2011. Virtual values for language extension. Vol. 46. ACM.

[4] Nataliia Bielova. 2013. Survey on JavaScript security policies and their en-
forcement mechanisms in a web browser. The Journal of Logic and Algebraic
Programming 82, 8 (Nov. 2013), 243-262.

[5] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen
De Roover. 2016. Linvail - A General-Purpose Platform for Shadow Execution of
JavaScript. SANER (2016), 260-270.

[6] Sophia Drossopoulou, James Noble, and Mark S. Miller. 2015. Swapsies on
the Internet: First Steps Towards Reasoning About Risk and Trust in an Open
World. In Proceedings of the 10th ACM Workshop on Programming Languages
and Analysis for Security (PLAS’15). ACM, New York, NY, USA, 2-15. https:
//doi.org/10.1145/2786558.2786564

[7] Ecma International. 2015. ECMAScript 2015 Language Specification (6th ed.).
Ecma International, Geneva. http://www.ecma-intemational.org/ecma—262/6.0/
ECMA-262.pdf

[8] D Ghosh. 2011. DSLs in Action. Manning. 351 pages.

[9] Hallaraker, O and Vigna, G. 2005. Detecting malicious JavaScript code in Mozilla.

IEEE.

Kevin W Hamlen, Micah Jones, and Meera Sridhar. 2012. Aspect-Oriented Run-

time Monitor Certification. In Tools and Algorithms for the Construction and

Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,

Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Springer Berlin Heidelberg,

Berlin, Heidelberg, 126-140.

Xing Jin, Tongbo Luo, Derek G. Tsui, and Wenliang Du. 2014. Code Injection

Attacks on HTML5-based Mobile Apps. CoRR abs/1410.7756 (2014). http://arxiv.

org/abs/1410.7756

Micah Jones and Kevin W Hamlen. 2010. Disambiguating aspect-oriented security

policies. In Proceedings of the 9th International Conference on Aspect-Oriented

Software Development, AOSD 2010, Rennes and Saint-Malo, France, March 15-19,

2010. ACM Press, New York, New York, USA, 193-204.

Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura, and Igor Serikov.

2008. JavaScript Instrumentation in Practice. In Programming Languages and

Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 326-341.

Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The

Unexpected Dangers of Dynamic JavaScript. In 24th USENIX Security Sym-

posium (USENIX Security 15). USENIX Association, Washington, D.C., 723-

735. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/lekies

Jonas Magazinius, Phu H Phung, and David Sands. 2012. Safe Wrappers and Sane

Policies for Self Protecting JavaScript. In Informatics. Springer Berlin Heidelberg,

Berlin, Heidelberg, 239-255.

Leo A Meyerovich, Adrienne Porter Felt, and Mark S Miller. 2010. Object views:

Fine-Grained Sharing in Browsers. In the 19th international conference. ACM

Press, New York, New York, USA, 721-730.

Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and

Enforcing Fine-Grained Security Policies for JavaScript in the Browser. In 2010

IEEE Symposium on Security and Privacy. IEEE, 481-496.

G K Pannu. 2014. A Survey on Web Application Attacks. IJCSIT) International

Journal of Computer Science and ... (2014).

Phu H. Phung, David Sands, and Andrey Chudnov. 2009. Lightweight Self-

protecting JavaScript. In Proceedings of the 4th International Symposium on Infor-

mation, Computer, and Communications Security (ASIACCS "09). ACM, New York,

NY, USA, 47-60. https://doi.org/10.1145/1533057.1533067

Charles Reis, John Dunagan, Helen] Wang, Opher Dubrovsky, and Saher Esmeir.

2007. BrowserShield: Vulnerability-driven filtering of dynamic HTML. ACM

Transactions on the Web (TWEB) 1, 3 (Sept. 2007), 11-es.

Gregor Richards, Christian Hammer, Francesco Zappa Nardelli, Suresh Jagan-

nathan, and Jan Vitek. 2013. Flexible Access Control for Javascript. SIGPLAN

Not. 48, 10 (Oct. 2013), 305-322. https://doi.org/10.1145/2544173.2509542

H Saiedian and D Broyle. 2011. Security vulnerabilities in the same-origin policy:

Implications and alternatives. Computer (2011).

Fred B Schneider. 2000. Enforceable security policies. ACM Transactions on

Information and System Security (TISSEC) 3, 1 (Feb. 2000), 30-50.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.

Jalangi: a tool framework for concolic testing, selective record-replay, and dy-

namic analysis of JavaScript. In ... Joint Meeting on Foundations of ACM,

615-618

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter

Joosen. 2011. WebJail: least-privilege integration of third-party components in

web mashups. ACSAC (2011), 307-316.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher

Kruegel, and Giovanni Vigna. 2007. Cross-Site Scripting Prevention with Dynamic

Data Tainting and Static Analysis. In NDSS07.

(11

[12]

[13]

[14

[15

[16]

[17]

[18]

[19]

[20

[21

[22]

[23

[24

[25

[26

ManlLang’18, September 12-14, 2018, Linz, Austria

[27] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy.. In ACM Conference on Computer and Communications
Security. ACM Press, New York, New York, USA, 1376-1387.

WHATWG. 1017. HTML Standard. html.spec.whatwg.org.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. 2007. JavaScript
instrumentation for browser security. ACM SIGPLAN Notices 42, 1 (Jan. 2007),
237-249.

A RELATED WORK SURVEY

Table 6 summarizes the existing solutions for specifying and en-
forcing access control security policies surveyed in Section 2 with
respect to the design choices identified.

B ADDITIONAL SECURITY POLICIES

B.0.1 Policy 5: Disable geoposition API. Geo-location API allows
to gather the physical location of the device. In spite of that browsers
have a policy that asks user explicitly for using the geolocation
information, it is desirable to deactivate the use of this feature
programmatically.

Listing 14: Policy 5: Disable geoposition API in GUARDIA.

G.installPolicy({
whenRead: [G.Deny(['getCurrentPosition', 'watchPosition',
'clearWatch'1)]
}).on(navigator.geolocation)

B.0.2 Policy 6: Disable page redirects after document. cookie
read. Cookies are commonly used by web servers to store data
regarding to a user session. If an attacker is allowed to make a
request after reading information stored in cookies, this could cause
leakage of valuable information [13, 17, 19]. There are different
ways to make a request to an external site, but here we present
a policy that disallows changing the location property of the
window to avoid such an attack.

Listing 15 shows how to construct such a policy by combining
a listener (lines 1 to 4) and the predicate of the policy (lines 5 to
10). In the predicate, any attempt to change the location triggers
the execution of StateFnParam that verifies if cookieRead is false.
Otherwise, it is not allowed to change the location. Lines 10 to 13
install the policy.

Listing 15: Policy 6: Disable redirects after

document.cookie read in GUARDIA.

page

var lstnr = {
notify: (t,p,r,a) => {
if(p === 'cookie'){
setState('cookieRead',true) }}3}
var noRedirect = Or(
And(Allow(['location']),
StateFnParam(equals, 'cookieRead', false)),
Not (Allow(['location']))

)

installPolicy({
whenWrite: [noRedirect],
readListeners: [lstnr]

}) .on(window)

B.0.3 Policy 7: Allowing a whitelist cross-frame messages. Cross-
origin communication using window.postMessage can lead to at-
tacks such as Cross Site Scripting and Denial of Service. The policy
below is intended to prevent these kinds of attacks by checking that

https://doi.org/10.1145/2786558.2786564
https://doi.org/10.1145/2786558.2786564
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://arxiv.org/abs/1410.7756
http://arxiv.org/abs/1410.7756
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://doi.org/10.1145/1533057.1533067
https://doi.org/10.1145/2544173.2509542

LT P R ORI

[S ST RN

Manlang’18, September 12-14, 2018, Linz, Austria

A. Scull et al.

GPL or Imperative or Modified runtime Decoupled enforcement?
DSL Declarative enforcement?
Specifications
HV[9] GPL imperative yes no
ConScript[17][9] GPL imperative yes no
Richards et al. [21] GPL imperative yes no
Phung et al. [19] GPL imperative no no
JSand[1] GPL imperative no no
BrowserShield[20] GPL imperative no unknown
CoreScript [13, 29] External declarative no yes but only policy code
DSL
Drossopoulou et al. [6] External declarative not applicable not applicable
DSL
ObjectViews[16] Internal partially no no
DSL declarative
(inspired by AOP)
WebJail[25] Internal imperative yes no
DSL
GUARDIA Internal declarative no yes
DSL

Table 6: Overview of surveyed approaches with respect to the analysed design choices .

the origin URL of the message is white-listed. The predicate of the
policy verifies, by means of ParamInList, that the second parame-
ter of the invocation of postMessage is contained in a whitelist of
URLs. If this is not the case, then the invocation of postMessage is
denied.

Listing 16: Policy 7: Allowing a whitelist cross-frame mes-
sages in GUARDIA.

var urls = ['http://google.com', 'http://facebook.com'];

var whtList = Or(And(Allow(['postMessage']),
ParamInList(1,urls)), Deny('postMessage'));

installPolicy({whenRead: [whtList]}).on(window);

B.0.4 Policy 8: Disallow string arguments to setinterval and set-
Timeout functions. This policy aims to disallow the execution of
arbitrary code as described in [17]. Functions setTimeout and set-
Interval can accept a closure or string as callback argument. As
such, these functions can be abused to run malicious code.

Listing 17 shows how we express a policy to restrict the execu-
tion of these functions to closures. In the policy below the execution
of setTimeout and setInterval is permitted only if the first pa-
rameter of the invocation is a function.

Listing 17: Policy 8: Disallow string arguments to setInterval
and setTimeout functions in GUARDIA.
var pol = Or(
And(Allow(['setTimeout', 'setInterval'l),
ParamAt (typeOf, getVType(@,XFunction),Function)),
Not(Allow(['setTimeout','setInterval'l)));
installPolicy({whenRead: pol}).on(window);

B.0.5 Policy 9: Restrict XM_HttpRequest to secure connections and
whitelist URLs. Phung et al. [19] prevent impersonation attacks
using the XMLHttpRequest object by restricting its open method
to whitelist URLs. Meyerovich et al. [17] propose a policy that
enforces an HTTPS request when user and password arguments
are supplied to the open method. Here we implement a security
policy that compose these approaches.

Listing 18: Policy 9: Restrict XMLHttpRequest to secure connec-
tions and whitelist URLs in GUARDIA.
var startsWith = (a,b) => {return a.startsWith(b)}
var isHTTPS = StateFnParam(1,startsWith, 'HTTPS')
var pol = Or(And(

Allow(['open']),

ParamInList(1,urls),

iSHTTPS,

Not (ParamAt(equals, 3,undefined)),

Not(ParamAt(equals,4,undefined))),

And(

Allow(['open']),

ParamInList(1,urls),

Not (isHTTPS)),Not(Allow(['open'1)));
XMLHttpRequest = installPolicyCons(pol, XmlHttpRequest);

B.0.6 Policy 10: Only redirect to whitelisted URLs. Both Pungh
et al. [19] and Meyerovich et al. [17], propose a policy to prevent
redirection to another web site by means of changing the location
property of the window and document objects.

Listing 19 illustrates this policy in GUARDIA. Redirections and
setting of source locations are allowed only for URLSs that are con-
tained in a whitelist.

GUARDIA

Listing 19: Policy 10: Only redirect to whitelisted URLs in
GUARDIA.
const urls = ['http://google.com', 'http://facebook.com']
const whtList = Or(And(Allow(['location']),
ParamInList(Q,urls)),
Deny('location'))
installPolicy({whenWrite:[whtList]}).on(document);

B.0.7 Policy 11: Disallow setting of src property of images. This
policy was studied by [19] with the aim of preventing leakage
of information by changing the source location of images, forms,
frames, and iframes.

Listing 20: Policy 11: Disallow setting of src property of im-
ages in GUARDIA.

let image = document.createElement('img');

const pol = Or(And(
Allow(['src'1),
ParamInList(@, url)),
Not(Allow(['src'1)));

image = installPolicy({whenRead:[pol]l}).on(image);

ManlLang’18, September 12-14, 2018, Linz, Austria

	Abstract
	1 Introduction
	2 Related Work
	2.1 General-purpose vs. domain-specific specification languages
	2.2 Imperative vs. declarative specifications
	2.3 Modified vs. unmodified runtime for enforcement
	2.4 Coupled vs. decoupled enforcement
	2.5 Problem Statement

	3 Declarative Specification of Security Policies Using an Internal DSL
	3.1 Attacker model
	3.2 Security policies in Guardia

	4 Enforcement of Security Policies Using JavaScript Reflection
	4.1 Decoupled enforcement mechanism
	4.2 Enforcement by means of JavaScript reflection
	4.3 Limitations and discussion

	5 Evaluation
	5.1 Expressivity Compared To Related Work
	5.2 Applicability
	5.3 Performance
	5.4 Extensibility

	6 Conclusion
	References
	A Related Work Survey
	B Additional Security Policies

