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ABSTRACT

Automatically generating test cases plays an important role to re-
duce the time spent by developers during the testing phase. In last
years, several approaches have been proposed to tackle such a prob-
lem: amongst others, search-based techniques have been shown
to be particularly promising. In this paper we describe Ocelot,
a search-based tool for the automatic generation of test cases in
C. Ocelot allows practitioners to write skeletons of test cases for
their programs and researchers to easily implement and experiment
new approaches for automatic test-data generation. We show that
Ocelot achieves a higher coverage compared to a competitive tool
in 81% of the cases. Ocelot is publicly available to support both
researchers and practitioners.

CCS CONCEPTS

• Software and its engineering → Maintaining software;
Search-based software engineering;
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1 INTRODUCTION

Software testing —and, in particular, test case writing— is one of
the most human-intensive and time-consuming activities in soft-
ware development life-cycle [1]. Therefore, noticeable effort has
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been devoted toward automated test-data generation, applying and
possibly combining approaches like random testing, symbolic, and
concolic execution [3, 7, 10, 16, 20]. Search-based approaches have
also been proved to be particularly well-suited [8, 13].

While many search-based tools are nowadays available for Java,
some of which very mature and used in practice (e.g., EvoSuite
[6]), the same is not true for C. Indeed, the tools developed in
the past, like TESTGEN [5], QUEST [2], and GADGET [15], are
quite dated and not available (neither as executable binaries). To
the best of our knowledge, the most recent search-based tools for
test-data generation in C are: i) IGUANA, proposed by McMinn
[14], developed in Java and relying on JNI to interface with C;
ii) Austin, introduced by Lakhotia et al. [12], developed in OCaml
and based on the CIL framework1; iii) CAVM, recently proposed by
Kim et al. [9], developed in C, C++, and Python and based on CLang
and gcc for source code instrumentation. Considering that both
IGUANA and CAVM are not publicly released, the only available
tool for test-data generation in C is Austin. However, despite being
open source2, this project is not active anymore. In summary, C
remains a widely used language (ranked 2nd in the TIOBE Index for
May 20183) and, for this reason, we believe that the search-based
research community should put some effort into actively developing
test-data generation tool for this programming language.

In this paper, we take a step in such a direction and we present
Ocelot, a search-based test-data generation tool for C that provides
an extensible framework to quickly implement different types of
search-based approaches.Ocelot is also able to automatically write
test suites, relying on the LibCheck framework4. We empirically
evaluate Ocelot with respect to Austin on 26 functions from 3
open-source C programs, and we show that Ocelot achieves a
higher branch coverage in 81% of the cases. Ocelot is publicly
available5 along with its documentation6.

2 BACKGROUND

In the context of white-box coverage-driven testing, the automatic
test-data generation consists of the generation of a (possibly min-
imal) set of inputs (TD) for a given target program P to reach a
desired amount of code coverage (e.g., branch coverage). To achieve
this goal, a search-based test-data generator (TDG) uses a search
1 http://www.cs.berkeley.edu/~necula/cil/ 2 https://github.com/kiranlak/austin-sbst
3 https://www.tiobe.com/tiobe-index/ 4 https://libcheck.github.io/check
5 https://ocelot.science/ 6 https://ocelot.gitbook.io/manual/
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Figure 1: The Workflow of Ocelot

algorithm, calling P with many combinations of inputs (test data),
with the aim of maximizing the total achieved coverage. This pro-
cess continues until the specified search-budget (e.g., number of
iterations) is over. Therefore, generating test data requires a con-
tinuous interaction between the target program and the test-data
generator. When TDG calls P with a given input, P has to provide
feedback about the branches covered with that input to TDG.

Since C is a procedural programming language, it is possible to
consider functions as the units to test (P ). This makes test genera-
tion conceptually different compared to object-oriented languages
(e.g., Java), where the units to test are classes with a state [21]. Fur-
thermore, automatically generating test data for C presents unique
technical challenges. The main technical challenge (C1) is the in-
strumentation of P , necessary to register what happens in P when
TDG tests a specific input. Indeed, the object language of C de-
pends on the target architecture and it is necessary to find a way
to instrument P , without tying to a specific architecture/operating
system, to grant a certain level of portability. A second technical
challenge (C2) regards the integration betweenTDG and P∗ (i.e., the
instrumented P ). It is necessary to devise a mechanism to i) make
the input generated by TDG suitable for P∗ and ii) to make P∗ able
to communicate with TDG. A final major research and technical
challenge (C3) regards one of the main peculiarities of C, i.e., point-
ers. Consider a function that takes as input (int* a, int b). At
some point in the function, there is a condition if (*a == b). A
test-data generator should be able to generate test data that evaluate
such a condition as true. While Java has a more rigid and implicit
typing rule (i.e., objects are stored as references, primitive types are
stores by values), in C it is possible to have mixed situations, that
makes handling data types in TDG more difficult.

3 OCELOT

The architecture of Ocelot is inspired by IGUANA [14]: it is de-
veloped in Java and uses JNI as interface with the target program
to try different combinations of test data. Running Ocelot con-
sists of two distinct macro-phases: build and run. Figure 1 shows
the phases of test-data generation in Ocelot. In the build phase,
the target program is instrumented, wrapped in a JNI library and
then compiled. The output of such a phase is a static library. This
library is linked by Ocelot and used in the run phase, where a
search-based algorithm is exploited to identify a set of inputs that
maximize the code coverage. The output of this phase is a set of test
data that can be used to test the target program. Ocelot also pro-
vides two additional optional phases: minimize and write. During
the minimize phase, test data that do not contribute to improve the

code coverage are removed, while during the write phase, skeletons
of actual test cases are written. Such skeletons lack the assertions,
that should be manually added, and they are based on the LibCheck
framework.

3.1 Build Phase

The build phase consists of: i) instrumenting the target program (i.e.,
transforming P to P∗), ii) wrapping it in the JNI library, iii) generat-
ing themakefile, and iv) compiling the static library.Ocelot directly
instruments the C source code, making it able to potentially work
regardless of the target architecture. Specifically, it adds probes
near the control structures to track the exact steps executed in P .
Existent tools (e.g., gcov or lcov) are not used, since they do not
report the runtime values of the variables, needed to compute part
of the fitness function for some approaches. During the wrapping
sub-phase, Ocelot adds to the target function a set of pre-defined
C functions to integrate P∗ in Ocelot through JNI. Moreover, it
adapts some of those files to handle the specific inputs required
by P . Indeed, while the static Java interface to call P remains the
same, each target function has its own input types. The wrapping
sub-phase handles the information that will be passed by Ocelot
during the run phase and translate it into actual C variables that
will be passed to P∗ for the execution. Finally, Ocelot generates
themakefile (depending on the operating system and on the special
requirements of the target program) and it compiles the JNI library.

3.2 Run Phase

The run phase consists of: i) generating inputs for P , ii) calling the
JNI interface to execute the code, iii) grabbing the execution events
and simulating them on the Control Flow Graph of P , and iv) evalu-
ating the inputs and giving feedback to generate other inputs. The
input generation and the feedback mechanism strongly depend
on the specific test-data generation strategy used. For example, a
strategy based on random search would randomly generate inputs
and ignore the evaluation, adding all the generated test data to the
resulting test suite. On the other hand, the execution and simulation
sub-phases are common to all the strategies. After the execution
of P∗, a list of events (i.e., the actual evaluations of conditions and
fitness function) is generated. Such a list is used to simulate the
events on the Control Flow Graph of P to easily compute the fitness
function necessary to give feedback to the strategy.

3.3 Features

Ocelot provides some additional features compared to the state-
of-the-art tools. First of all, it implements different search-based
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Figure 2: The CLion plugin configuration for Ocelot

approaches and it is easily extensible. Indeed, Ocelot is not tied to
any specific approach. It implements LIPS [19], MOSA [18], AVM
[11], and the random approach [17] while, for instance, CAVM [9]
is only based on AVM [11], while Austin implements AVM and
AVM+ [12]. Furthermore, it supports different budget-handling and
minimization strategies that can be combined together with the
aforementioned algorithms. Thus, Ocelot is not designed to work
only with a specific type of algorithm and, therefore, it is easily
extensible with new test-data generation strategies. With respect to
other tools (e.g., Austin), Ocelot is based on Eclipse CDT7. Hence,
it is able to automatically detect the data types of the parameters
and to fully instrument code.

Ocelot strongly relies on a configuration file, in which all the
parameters for all the phases have to be specified. For example, this
file contains themaximum number of evaluations, the desired target
coverage, the name of the target function, the path to the file with
the target function, and so on. Since there are many parameters
that can be set, we also developed a user interface for Ocelot,
implemented in a CLion8 plugin. This plugin allows developers to
easily use Ocelot for their projects. While, as previously stated,
the command line allows to make experiments, the CLion plugin
is focused on practitioners and, therefore, it supports by default
the write mode able to generate skeletons of test cases. It adds
a configuration page for Ocelot in the general configuration of
CLion. Moreover, it introduces an item in the “Code” menu (i.e.,
“Generate TC”). When clicking on this item, the plugin shows a
window with all the functions of the current files for which the
developer could generate test-data. Finally, the plugin automatically
recognizes the signature of each function, allowing the users to
specify, for each parameter, the ranges of possible values. Figure 2
shows the Ocelot configuration window in CLion.

4 EVALUATION

In this sectionwe report a comparison betweenOcelot andAustin,
the only available search-based tool for automatically generating
test-data in C, to the best of our knowledge. We were not able to
compare Ocelot to CAVM or IGUANA, since these tools are not
publicly available. Note that our goal was to compare Ocelot with

7 https://www.eclipse.org/cdt/ 8 https://www.jetbrains.com/clion/

competitive search-based tools, so we did not consider test data
generation tools for C based on other approaches, such as CUTE
[20] and DART [7]. This comparison will be part of future work.

As previously shown in Section 3, Ocelot provides a broader
number of features compared to other state-of-the-art tools . More-
over, it is more flexible and easily extensible. Amongst the others,
Ocelot allows to generate tests relying on different meta-heuristics.
Being the goal of the evaluation to check whether Ocelot is a good
alternative to Austin, we set Ocelot to run with AVM, i.e., the
search-algorithm employed by Austin.

With our study we aim to compare out-of-the-box the perfor-
mance of these tools. It is worth noting that Austin requires an
explicit pointer constraints in the source code of the target function
to instantiate any pointer. Thus, a pointer will not be instantiated if
the code does not compare it to NULL. We argue that this an impor-
tant limitation for the usability of the tool. Therefore, as done in
previous work [9], we decide to not manually modify the subjects
to evaluate the tools in a real-world scenario.

To compare the tools, we run both of them on a subset of 26
functions coming from 3 different C open source projects: GIMP,
GLS, and SGLIB. GIMP is the open source GNU image manipulation
software; GLS stands for GNU Scientific Library; SGLIB is a library
offering generic utilities. It is worth noting that this set of func-
tions has been used both in our previous work and in the paper
that introduced Austin [12, 19]. Table 1 lists the set of functions,
representing the context of the comparison. In total, we take into
account 400 branches for 26 functions.

As done in previous work [9], we set 1000 evaluations for each
branch of the function under test as search budget. Moreover, for
the same reason, we do not impose any time limit constraints.

We run the tools 20 times for each function; we then compare the
achieved branch coverage relying on the non-parametric Wilcoxon
Rank Sum Test [4] with significance level α = 0.05. Significant
p-values allows us to reject the null hypothesis, i.e., that the two
tools achieve the same coverage. Moreover, we rely on the Vargha-
Delaney (Â12) statistic [22] to estimate the effect size, i.e., the mag-
nitude of the difference between the measured metrics. Â12 <= 0.5
means that Ocelot reaches a higher coverage than Austin, while
Â12 > 0.5 has the opposite meaning. Vargha-Delaney statistics also
classifies such effect size into four different levels: negligible; small;
medium; large [22]. For the experiments, we execute both the tools
on a virtual machine with 8 cores and 32GB RAM, running Ubuntu
16.04 LTS. We make available two docker images on DockerHub
—one for each tool— to foster the replicability of the results9,10.

4.1 Results

Table 1 summarizes the branch coverage results with the compar-
ison between Austin and Ocelot. The table shows the average
coverage achieved over 20 runs along with the p-values obtained
with the Wilcoxon test and the Vargha-Delaney statistic. We type-
set the statistically significantly results (i.e., p-value≤ 0.05) in bold,
highlighting the tool reaching the highest coverage. From Table
1 we notice that Ocelot performs better than Austin in 21 out
26 cases (≈ 81%), while the opposite happens in only one case. In
detail, the coverage improvement ranges from a minimum of 43%
9 https://hub.docker.com/r/giograno/austin/
10 https://hub.docker.com/r/giograno/ocelot/
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Table 1: Comparison between Austin and Ocelot

Program Function Branches Austin Ocelot p-value Â12

SGLIB sglib_int_array_quick_sort 48 0.17 0.93 0.00 0.00 (L)
SGLIB sglib_int_array_heap_sort 44 0.19 1.00 0.00 0.00 (L)
SGLIB sglib_int_array_binary_search 14 0.32 0.75 0.00 0.00 (L)
GLS gsl_poly_eval_derivs 12 0.58 1.00 0.00 0.00 (L)
GLS gsl_poly_solve_cubic 20 0.55 0.55 0.15 0.55 (N)
GLS gsl_poly_solve_quadratic 14 0.64 0.63 0.07 0.65 (S)
GLS gsl_poly_complex_solve_quadratic 14 0.64 0.64 0.56 0.55 (N)
GLS gsl_poly_complex_solve_cubic 22 0.73 0.42 0.00 1.00 (L)
GIMP gimp_cmyk_to_rgb 2 0.00 1.00 0.00 0.00 (L)
GIMP gimp_cmyk_to_rgb_int 2 0.00 0.68 0.00 0.00 (L)
GIMP gimp_hsl_to_rgb 4 0.00 0.75 0.00 0.00 (L)
GIMP gimp_hsl_to_rgb_int 4 0.00 0.76 0.00 0.00 (L)
GIMP gimp_hsv_to_rgb 10 0.00 0.80 0.00 0.00 (L)
GIMP gimp_rgb_to_cmyk 8 1.00 1.00 NaN 0.50 (N)
GIMP gimp_rgb_to_hsl 14 0.00 0.17 0.00 0.00 (L)
GIMP gimp_rgb_to_hsl_int 28 0.00 0.85 0.00 0.00 (L)
GIMP gimp_rgb_to_hsv4 26 0.00 0.78 0.00 0.00 (L)
GIMP gimp_rgb_to_hsv_int 30 0.00 0.80 0.00 0.00 (L)
GIMP gimp_rgb_to_hwb 10 0.00 0.50 0.00 0.00 (L)
GIMP gradient_calc_square_factor 10 0.50 0.93 0.00 0.00 (L)
GIMP gradient_calc_radial_factor 8 0.50 0.93 0.00 0.03 (L)
GIMP gradient_calc_linear_factor 12 0.09 0.99 0.00 0.00 (L)
GIMP gradient_calc_bilinear_factor 8 0.12 0.97 0.00 0.00 (L)
GIMP gradient_calc_spiral_factor 10 0.30 0.89 0.00 0.00 (L)
GIMP gradient_calc_conical_sym_factor 14 0.21 0.89 0.00 0.00 (L)
GIMP gradient_calc_conical_asym_factor 12 0.25 0.87 0.00 0.00 (L)

Total Average 0.26 0.79

to a maximum of 100% for the function (e.g., gimp_cmyk_to_rgb).
Indeed, in each of the aforementioned cases, the effect size is large.

Qualitatively looking at the results, we can see that Austin
stops at 0% of coverage for the subjects having only pointers as
arguments (e.g., gimp_hsl_to_rgb). Furthermore, even in case of
functions with only primitive values as parameters, Ocelot is
able to reach a higher coverage than Austin. For example, on
gradient_calc_radial_factor Austin constantly achieves 50%
of coverage, while Ocelot hits ≈ 93% on average with a 0.13 stan-
dard deviation.

Even if we do not impose any time limit constraints as search
budget, it is still worth to discuss this dimension when it comes to
compare the two tools. In particular, during our experiment we no-
ticed that, given the same maximum amount of iterations, Ocelot
is way faster than Austin. Just to give an idea, the evolutionary
search for the function sglib_int_array_quick_sort takes ≈ 6
seconds for Ocelot, while it takes ≈ 4 minutes for Austin.

5 CONCLUSION AND FUTUREWORK

In this paper we presented Ocelot, a search-based tool for au-
tomatically generating test-data for C programs. We released the
executable of Ocelot, describing the configuration parameters that
can be set, to allow both researchers and practitioners to use the
tool. Our preliminary study shows that Ocelot is able to achieve
higher coverage than Austin. Moreover, Ocelot presents some
additional advantages over Austin: i) it is easier to use: on the one
hand Austin requires manual code-changes to instantiate pointers
or to specify input preconditions; on the other hand Ocelot auto-
matically handles those cases; ii) it is written in Java, a more com-
mon programming language compared to OCaml, and it is actively
maintained; iii) it offers a CLion plugin to help the practitioners to

configure the tool; iv) it supports different search algorithms, gen-
eration and minimization strategies that can be combined together;
v) it is more effective and efficient.

Future work will be aimed at improving Ocelot in several as-
pects. We plan to implement a different representation for the test
input, to support recursive data structures. We also plan to imple-
ment a new instrumentation process with of aim of reducing the
time needed for the instrumentation of multiple target functions:
this step should improve the scalability of the tool. Finally, we plan
to release the code of tool as open source in the near future.
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