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Abstract—Software testing is essential for any software de-
velopment process, representing an extremely expensive activity.
Despite its importance recent studies showed that developers
rarely test their application and most programming sessions
end without any test execution. Indeed, new methods and tools
able to better allocating the developers effort are needed to
increment the system reliability and to reduce the testing costs.
In this work we focus on three activities able to optimize testing
activities, specifically, bug prediction, test case prioritization, and
energy leaks detection. Indeed, despite the effort devoted in
the last decades by the research community led to interesting
results, we highlight some aspects that might be improved and
propose empirical investigations and novel approaches. Finally,
we provide a set of open issues that should be addressed by the
research community in the future.

Index Terms—Testing; Bug Prediction; Test Case Prioritiza-
tion; Energy Efficiency

I. CONTEXT

Software testing is widely recognized as an essential part
of any software development process, representing, however,
an extremely expensive activity [2]. Despite its importance,
recent studies [3] showed that developers rarely test their ap-
plication and most programming sessions end without any test
execution. Thus, the available resources should be allocated
effectively upon the portions of the source code that are more
likely to contain bugs.

In this context, bug prediction [4] is a powerful technique
that allow to predict which software components more likely
contain bugs and need to be tested more extensively. In the
last decade, several techniques were developed. They can be
roughly classified into two families, based on the information
they exploit to discriminate between “buggy” and “not buggy”
code components. The first set of techniques exploits product
metrics (i.e., metrics capturing intrinsic characteristics of the
code components, like their size and complexity) [5], while the
second one focuses on process metrics (i.e., metrics capturing
specific aspects of the development process, like the frequency
of changes performed to code components) [5]. While some
studies highlighted the superiority of these latter with respect
to the product metric based techniques [5] there is a general
consensus on the fact that no technique is the best in all
contexts [5]. For this reason, the research community is
investigating under which circumstances and during which
coding activities developers tend to introduce more bugs [6].

Bug prediction models rely on machine learning classifiers
and their choice strongly influences the accuracy of predictions

[7]. Panichella et al. [8] and Bowes et al. [9] demonstrated
that the predictions of different classifiers are highly comple-
mentary despite similar prediction accuracy. Based on such
findings, an emerging trend is the definition of prediction
models which are able to combine multiple classifiers (a.k.a.,
ensemble techniques) and their application to bug prediction
[8], [10]. Such models can be trained using a sufficient amount
of labeled data coming from (i) the previous history of the
same project where the model is applied to (a.k.a., within-
project strategy) or (ii) other similar projects (a.k.a., cross-
project strategy). Previous studies showed how within-project
bug prediction models have higher capabilities than cross-
project ones since they rely on data that better represents
the characteristics of the source code elements of the project
where the model have to be applied [11]. As a drawback,
a within-project training strategy cannot often be adopted in
practice since new projects might not have enough data to
setup a bug prediction model [12]. As a consequence, the
research community has started investigating ways to make
cross-project bug prediction models more effective to allow a
wider adoption of bug prediction models [13].

Another effective way to reduce the testing effort is applying
regression testing optimization techniques [14], [15]. One of
the known approaches, test case prioritization [16], aims at ex-
ecuting the available test cases in a specific order that increases
the likelihood of revealing regression faults earlier. Thus, it
is possible to reveal test cases that are unlucky to find faults,
spending additional efforts in the maintenance of those that are
more promising. Since fault detection capability is unknown
before test execution, most of the proposed techniques use
coverage criteria [14] as surrogates, with the idea that test
cases with higher code coverage will have higher probability
to reveal faults. Once a coverage criterion is chosen, search
algorithms can be applied to find the ordering that maximize
the selected criterion.

Finally, testing is not only related to the functional proper-
ties of a software system, but also on its non-functional ones.
Among these, energy efficiency is becoming a major issue
in modern software engineering, as applications performing
their activities need to preserve battery life. The problem is
even more evident in the context of mobile applications, where
billions of customers rely on smartphones every day for social
and emergency connectivity. Although the problem is mainly
concerned with hardware efficiency, Hindle et al. [17] showed
how even software may be the cause of energy leaks. Despite
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this, developers have limited knowledge of energy efficiency
and the causes behind energy consumption [18]. Therefore,
testing energy efficiency is particularly expensive and focusing
on the software components that are more likely to consume
energy would be reasonable. In the context of Android mobile
applications, a set of new peculiar bad programming practices
has been defined by Reimann et al. [19]. These Android-
specific smells may threat several non-functional attributes of
mobile applications, such as security, data integrity, and source
code quality [19]. Moreover, as highlighted by Hetch et al.
[20], they could also lead to performance issues.

II. RESEARCH STATEMENT

Even though the effort devoted by the research community
to focus and prioritizing the testing effort through the conduc-
tion of empirical studies and the definition of new approaches
led to interesting results, in the context of our research we
highlight some aspects that might be improved, summarized
as follow:

Bug Prediction: although previous studies showed the
potential of human-related factors in bug prediction, this
information is not captured in state-of-the-art models.
Indeed, the models based on process metrics exploit predic-
tors based on (i) the number of developers working on a
code component [21]; (ii) the analysis of change-proneness
[22]; (iii) the entropy of changes [23], and (iv) the micro-
interactions of developers [24]. Thus, despite the previously
discussed finding, none of these models considers to what
extent developers performing changes are focused or these
changes are scattered.

Bug Prediction: traditional ensemble approaches miss the
predictions of a large part of bugs that are correctly iden-
tified by a single classifier. Therefore, “ensemble decision-
making strategies need to be enhanced to account for the
success of individual classifiers in finding specific sets of
bugs” [9]. Moreover, previous empirical studies on the use of
ensemble techniques for bug prediction [25] have some critical
limitations that could have impacted on the performances of
classifiers thus possibly threatening the conclusions provided
so far. These issue were related to (i) data quality, (ii) data
preprocessing, (iii) data analysis, and (iv) limited size. Further-
more, these studies exposed an unclear relationship between
local learning and ensemble classifiers and did not compare
the performance achieved by cross-project models with respect
to within-project ones.

Test Case Prioritization: we observed that the AUC metric
used in the related literature represents a simplified version
of the well-known hypervolume [26]. This metric is already
used in many-objective optimization and we argue that it
could be used to condense not only a single cumulative code
coverage criteria (as done by previous AUC metrics used in
literature) but also multiple testing criteria, such as the test
case execution cost or further coverage criteria (e.g., branch
and past-fault coverage). This scalar value could be used as
fitness function in a search-based algorithm.

Energy Efficiency Testing: little knowledge is available in
literature on the potential impact on energy consumption
of the Android-specific code smells defined by Reimann et
al. [19]. These smells are detectable through static analysis,
hence they could be used to efficiently detect energy leaks.
Unfortunately, while the impact of these smells on energy
consumption has been theoretically supposed by Reimann et
al. [19], there exists only a few empirical evidence on it. For
this reason, we aim at conducting a large empirical study
to analyze the impact of the Android-specific smells on the
energy consumption of mobile apps.

Based on these observations, our research have the goal to
address the following high-level research questions:

• RQ1: To what extent developer’s scattering metrics are
able to improve a bug prediction model based on state-
of-the-art metrics?

• RQ2: To what extent a technique able to select a classifier
based on the characteristics of the class is able to out-
perform state-of-the-art classifiers?

• RQ3: What are the cost-effectiveness, the efficiency, and
scalability of a genetic algorithm based on the hypervol-
ume, compared to state-of-the-art test case prioritization
techniques?

• RQ4: To what extent Android-specific code smells can be
used to focus energy testing of mobile apps?

The final goal is to provide developers new approaches and
tools, able to (i) focus their effort on bug-prone components,
(ii) prioritize test cases to find faults earlier, and (iii) quickly
detect energy flaws in mobile apps.

III. RESEARCH RESULTS

The research conducted so far achieved the results reported
in the following:

Bug Prediction: A Developer Centered Bug Prediction
Model. To answer RQ1, we define two metrics [27], [28],
namely the developer’s structural and semantic scattering. The
first assesses how “structurally far” in the software project the
code components modified by a developer in a given time
period are. The second measure is instead meant to capture
how much spread in terms of implemented responsibilities
the code components modified by a developer in a given
time period are. The conjecture behind the proposed metrics
is that high levels of these metrics make developers more
error-prone. To verify this conjecture, we build two predictors
exploiting the proposed metrics and we use them in a bug
prediction model. Firstly, we conduct a case study on 26
software systems and compare our model with respect to four
models based on state-of-the-art metrics. Secondly, we devise
and discuss the results of an hybrid bug prediction model,
based on the best combination of predictors exploited by the
five prediction models experimented. We find that the model
based on the developer’s scattering metrics performs better
than the baseline approaches, demonstrating their superiority
in correctly predicting buggy classes. By combining the eleven
predictors exploited by the five prediction models subject of



our study we obtain a boost of prediction accuracy up to
+5% with respect to the best performing model and +9% with
respect to the best combination of baseline predictors. Also,
the top five “hybrid” prediction models include at least one
of the predictors proposed in the work and the best model
includes both.

Bug Prediction: Dynamic Selection of Classifiers in Bug
Prediction. To answer RQ2, we propose a novel adaptive
prediction model, coined as ASCI (Adaptive Selection of
ClassIfiers in bug prediction) [29], which dynamically recom-
mends the classifier able to better predict the bug-proneness of
a class, based on the structural characteristics of the class. To
build and evaluate our approach, we provide a differentiated
replication study in which not only we corroborate previous
empirical research on the performances of ensemble classifiers
for cross-project bug prediction, but also extend previous
knowledge by assessing the extent to which local bug pre-
diction [30] can benefit of the usage of ensemble techniques.
The study has been conducted on a PROMISE dataset [31], [32]
composed of 21 software systems, where we apply a number
of corrections suggested by Shepperd et al. [33] to make it
suitable for our purpose. We take into account several different
ensemble techniques, belonging to six categories, measuring
their performances using the two metrics recommended by
previous work, i.e., AUC-ROC and Matthew’s Correlation
Coefficient (MCC) [34], [35]. We find that, in the context of
within-project bug prediction, the use of an ensemble classifier
does not guarantee better prediction performances with respect
to the best stand-alone classifier (e.g., NAIVE BAYES). We
confirm that the models based on VALIDATION AND VOTING
are able to achieve slightly better results, but the obtained
improvement is not statistically significant with respect to
other ensemble techniques, such as RANDOM FOREST and
ASCI. None of the cross-project models experimented is
able to exceed 25% of MCC (on average), meaning that the
problem of identifying buggy classes using external sources of
information is still far from being solved. Furthermore, the use
of ensemble techniques does not provide evident benefits with
respect to stand-alone classifiers. Indeed, the models based
on NAIVE BAYES or using it as weak learner are able to
achieve the best performances. ASCI, instead, does not work
properly in a cross-project context. Moreover, we find that
local learning is often not able to improve the performances
of bug prediction models. The only exception is represented
by ASCI, which has better performances with respect to those
achieved by global models. The statistical analysis, however,
highlight how local and global models are mostly equivalent.

Test Case Prioritization: Hypervolume Genetic Algorithm
for Test Case Prioritization. To answer RQ3, we propose
HGA (HYPERVOLUME-BASED GENETIC ALGORITHM) [36]
and provide an extensive evaluation of Hypervolume-based
and state-of-the-art approaches for solving the problem when
dealing with up to five testing criteria. In particular, we
carry out a case study to assess the cost-effectiveness, the
efficiency, and the selective pressure capabilities of the various

approaches. We compare HGA with respect to five state-
of-the-art techniques: (i) a cost cognizant additional greedy
algorithm [16], [37], (ii) GA, a single objective genetic algo-
rithm based on an AUC metric [15], (iii) NSGA-II, a multi-
objective search-based algorithm [38], (iv) GDE3 [39], and
(v) MOEA/D-DE [40]. Our results suggest that the solution
(test ordering) produced by HGA is more cost-effective than
the solution generated by Additional Greedy, GA, and
the Pareto optimal solution achieved by NSGA-II. In terms
of efficiency, HGA is much faster than GA, NSGA-II, and
Additional Greedy, and its efficiency does not decrease
as the size of the software program or the test suite increase.
Moreover, HGA is not only more or equally effective than the
state-of-the-art many-objective algorithms but it is also up to
3 times more efficient.

Energy Efficiency Testing: On the Impact of Code Smells
on the Energy Consumption of Mobile Applications. To
answer RQ4, we propose two novel tools and a large empir-
ical study. ADOCTOR [41], a novel code smell detector that
identifies 15 Android-specific code smells. The tool exploits
the Abstract Syntax Tree of the source code and navigates it
by applying detection rules based on the exact definitions of
the smells provided by Reimann et al. [19]. We experiment
ADOCTOR against the source code of 18 Android apps and
compare the set of candidate code smells given by the tool with
a manually-built oracle. At the same time, we develop PETRA
[42], [43], a novel tool for extracting the energy profile of mo-
bile applications specific for Android OS. We evaluate PETRA
on 54 mobile applications belonging to a publicly available
dataset. We compare the energy measurements provided by
PETrA against the actual energy consumption computed using
the Monsoon hardware toolkit1 for the same apps and using
the same hardware/software setting. Finally, we provide a
deeper investigation to determine (i) to what extent code smells
affecting source code methods of mobile applications influence
energy efficiency and (ii) whether refactoring operations ap-
plied to remove them directly improve the energy efficiency of
refactored methods. In particular, our investigation focuses on
nine method-level code smells specifically defined for mobile
applications by Reimann et al. [19] in the context of 60
Android apps. To the best of our knowledge, this is up to
date the largest study aimed at practically investigating the
actual impact of such code smells on energy consumption
and quantifying the extent to which refactoring code smells is
beneficial for improving energy efficiency. Our coarse-grained
preliminary shows that the presence of code smells can result
in a strong increment of the energy consumption. Moreover,
we find that methods affected by more smells consume more
than methods not affected by design flaws. Our analysis re-
veals that there exist four energy-smells, i.e., Leaking Thread,
Member Ignoring Method, Slow Loop, and Internal Setter,
which significantly impact the energy consumption of methods
in a mobile app. Refactoring code smells has a key role in

1http://www.msoon.com/LabEquipment/PowerMonitor/



improving the energy efficiency of source code methods and
should be applied by mobile developers.

Besides the contributions described above, we provide two
further common contributions:

Large-scale Empirical Studies. All the studies conducted in
our research have been conducted on large sets of software
systems to ensure the generalizability of the findings.

Publicly Available Tools and Replication Packages. Tools,
scripts, and datasets, needed to perform the analyses, are
publicly available as tools or online replication packages2,3.

IV. CHALLENGES AND OPEN ISSUES

Despite the effort devoted by the research community and
the advances discussed in this work, reducing the testing effort
still present a number of open issues and challenges that should
be addressed in the future.

Challenge #1: Bug Prediction in the Wild. Bug prediction
should be spread in industrial contexts. To reach this goal, new
challenges arise:

Catch Hard Bugs. In the upcoming years more effort should be
devoted in performing user studies with developers aimed at
evaluating the real usefulness of the suggestions provided by
the different bug prediction models [44]. Researchers should
investigate the ability of bug prediction models in predicting
bugs that are hard to catch for humans.

Investigate the Cause behind Scattering. The role of developer-
related factors in the bug prediction field is still a partially
explored area. A deeper investigation of the factors causing
scattering to developers, and negatively impacting their ability
of dealing with code change tasks is needed. Hence, user
studies should be performed to analyze the bad practices that
lead to introduction of bugs. New metrics able to capture these
behaviors should be introduced.

Towards Agile and Continuous Integration. Despite just-in-
time bug prediction models allow to produce fine-grained
recommendations to developers, there are still many challenges
[45], [46] to be addressed with the aim of bringing more
effective and stable models applicable during continuous inte-
gration.

Bug Prediction for Resource Scheduling. Developers’ scat-
tering metrics have shown to be effective in predicting the
bugginess of code components. Based on this observation, a
next step would be to propose efficient scheduling able to
minimize the developers’ scattering thus reducing the number
of bugs.

Challenge #2: Unified Algorithm for Regression Testing
Optimization Problems. Test Case Prioritization is only one
of the optimization problem related to regression testing. In
the last decade for these problems different algorithms were
proposed. The use of HGA [36] as unified algorithm for
regression testing optimization problems, such as Test Suite

2https://figshare.com/authors/Dario Di Nucci/3088926
3http://www.sesa.unisa.it/landfill

Minimization and Test Case Selection, poses new challenges
in terms of cost-effectiveness, efficiency, and scalability. More-
over, considering our previous results, we can assert that
not all the testing criteria are equally important. Thus, more
investigation on their fault discovering capabilities is needed.

Challenge #3: Design and development of new tools for
improving energy efficiency. The poor knowledge of de-
velopers regarding energy consumption issues is one of the
main obstacles that prevent the diffusion of energy optimized
mobile applications [18]. For this reason, a new generation
of code quality-checkers and refactoring tools is needed. In
this context, the automatic refactoring of energy greedy code
components and the automatic generation of test cases able to
discover energy leaks are part of our future agenda.

V. LESSONS LEARNT

In my opinion a Ph.D is not only another step in the
educational ladder but a path composed of the people that
you meet, the bad days after failures, the pros and cons of
academic world, and last but not the least the research goals
that you achieve.

Lesson #1: “Research is Fun!” There is nothing better than
solving a cutting edge problem applying new methodologies
and prototypes. I think that the choice of a research topic is
a very difficult step. If you do not find that your research is
interesting and fun, nobody will.

Lesson #2: Cope with Failures. Failure is part of research
life. Rejections are part of the research life and are needed
for improving. Thus the only way for achieving great results
is cope with failures. Most of the papers that are part of my
dissertation were rejected at least one time (e.g., 6 rejections
for 15 submission).

Lesson #3: Interact with People. Researchers are people and
most of them are willing to share their knowledge. Talk with
them, try to create collaborations, learn from their mistakes.

Lesson #4: Enjoy this World. Looking to the timeline of
history, you could think that you are in the wrong period for
doing research (e.g., Alan Turing’s H-index is only 39). I think
that in the human history there has never been a period in
which it is so easy to travel and meet new people that are in
love with your research interests.
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