
Orchestrating Dynamic Analyses of Distributed
Processes for Full-Stack JavaScript Programs

Laurent Christophe
Software Languages Lab, Vrije Universiteit Brussel

Brussel, Belgium
lachrist@vub.ac.be

Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel

Brussel, Belgium
cderoove@vub.ac.be

Elisa Gonzalez Boix
Software Languages Lab, Vrije Universiteit Brussel

Brussel, Belgium
egonzale@vub.ac.be

Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel

Brussel, Belgium
wdmeuter@vub.ac.be

Abstract
Dynamic analyses are commonly implemented by in-
strumenting the program under analysis. Examples of
such analyses for JavaScript range from checkers of user-
defined invariants to concolic testers. For a full-stack
JavaScript program, these analyses need to reason about
the state of the client-side and server-side processes it
is comprised of. Lifting a dynamic analysis so that it
supports full-stack programs can be challenging. It in-
volves distributed communication to maintain the anal-
ysis state across all processes, which has to be deadlock-
free. In this paper, we advocate maintaining distributed
analysis state in a centralized analysis process instead
—which is communicated with from the processes under
analysis. The approach is supported by a dynamic anal-
ysis platform that provides abstractions for this com-
munication. We evaluate the approach through a case
study. We use the platform to build a distributed origin
analysis, capable of tracking the expressions from which
values originate from across process boundaries, and de-
ploy it on collaborative drawing application. The results
show that our approach greatly simplifies the lifting pro-
cess at the cost of a computational overhead. We deem
this overhead acceptable for analyses intended for use
at development time.
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1 Introduction
JavaScript has become the de facto distributed program-
ming language for the web. Its nodeJS platform has
given rise to so-called “full-stack” JavaScript programs.
The client and server processes of these programs are
implemented entirely in JavaScript, and communicate
through the standardized XMLHttpRequest and Web-
Socket APIs for requesting and bidirectional messag-
ing respectively. Development tools for understanding
(e.g., [1]), maintaining (e.g., [7, 12, 16]), testing (e.g., [5,
10]), and validating (e.g., [8, 15]) JavaScript are follow-
ing suite. We refer the reader to Andreasen et al. [2]
for a comprehensive survey. As JavaScript is notorious
for being difficult to analyze statically, most of these
tools are founded on dynamic analysis instead. Accord-
ingly, several frameworks (e.g., [9, 19, 22]) have been
proposed to facilitate building dynamic analysis tools
for single-process JavaScript programs. Unfortunately,
these frameworks offer no dedicated support for building
analyses that target distributed JavaScript programs.

To analyze a distributed program, one can either ana-
lyze each process separately and merge the per-process
analysis results post-mortem, or orchestrate processes
under analysis to maintain the distributed state of the
analysis. Live orchestration is the only viable option for
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analyses that need to intervene in the execution of the
distributed program under analysis but it is technically
challenging. For instance, when invariants such as “a
user cannot be logged in via more than one client” need
to be enforced across the clients of a stateless (REST-
ful) server. This would require instrumenting each client
process so that the state of the invariant is checked with
the other clients upon every request to the server. A
technical challenge for the analysis developer to over-
come is that the client process should not resume its
execution before its request has been green-lighted, but
should remain responsive to incoming communication
from other clients that need to check the invariant. It
is error-prone and a duplication of effort to task every
analysis developer with ensuring that this orchestration
is deadlock-free.

In this paper, we propose an approach —supported by
a dynamic analysis platform with a distinct architecture—
that facilitates building dynamic analyses for distributed
JavaScript applications. An analysis implemented ac-
cording to this approach features a centralized analy-
sis process that is shared data from each process under
analysis. The analysis developer intervenes in the execu-
tion of these processes through remote references, which
are abstractions for interacting with objects located in
remote processes.

The contributions of this paper are three-fold:

• We propose an approach to building dynamic anal-
yses that facilitates supporting the analysis of dis-
tributed programs. The approach advocates main-
taining distributed analysis state in a centralized
analysis process which is communicated with from
the processes under analysis. We motivate this ar-
chitecture through a running example of an anal-
ysis that checks a distributed invariant.

• We support this approach by a dynamic analysis
platform called aran-remote that provides ab-
stractions for the distributed communication that
is required to maintain the analysis state. These
abstractions comprise remote procedure calls and
remote references. To reduce the accidental com-
plexity that comes with their use, they can be
made synchronous via a domain-specific commu-
nication protocol and therefore isomorphic to reg-
ular procedure calls and regular references respec-
tively. The platform is available as open source
software1 and can be deployed on ECMAScript2015-
compliant engines, including mainstream browsers
and nodeJS.

1https://github.com/lachrist/aran-remote

• We evaluate our approach by following it to imple-
ment a dynamic analysis that tracks the expres-
sions values originate from across distributed pro-
cess boundaries, and by comparing this implemen-
tation with one on top of aran, a state-of-the-art
instrumentation platform for single-process JavaScript
programs.

The remainder of this paper is organized as follows.
Section 2 uses a motivating example to illustrate the
complexity of manually orchestrating dynamic analysis
processes to maintain distributed analysis state. Sec-
tion 3 sketches an overview of our approach and the
API of the supporting platform architecture that ob-
viates this burden. Section 4 discusses its implementa-
tion for JavaScript on top of the aran instrumentation
platform. Section 5 evaluates our approach by means
of a representative distributed dynamic analysis imple-
mented according to it. Section 6 surveys related work,
while Section 7 concludes the paper.

2 Motivating Example
We start our exposition with a motivating example that
illustrates the difficulties of lifting a dynamic analysis
for single-process programs to distributed ones.

2.1 Invariant Checking of a Single-Process
nodeJS Application

Files being written to concurrently are often the cause of
bugs in file-manipulating programs. For instance, a log
of HTTP requests might become corrupted when two
server processes don’t concatenate their information to
it atomically. Imagine a nodeJS application, app.js, for
which the developers implemented a mechanism to pre-
vent files from being opened concurrently. To test their
mechanism, the developers built a dynamic analysis on
top of aran-local2, a tiny wrapper around aran3

which is a state-of-the-art instrumentation platform for
single-process JavaScript programs [9]. The analysis in-
serts run-time checks into the application that detect
violations of the invariant “a file should never be opened
twice”.

2https://github.com/lachrist/aran-local
3https://github.com/lachrist/aran

https://github.com/lachrist/aran-remote
https://github.com/lachrist/aran-local
https://github.com/lachrist/aran
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1 // aran-local-node --analysis=analysis.js -- app.js
2 const fs = require("fs");
3 const acorn = require("acorn");
4 module.exports = (options, callback) => {
5 const fdpaths = () => fs.readdirSync("/proc/self/fd")
6 .map((fd) => fs.readlinkSync("/proc/self/fd/"+fd));
7 const invoke = (obj, key, args) => {
8 if (obj === fs && key === "open")
9 if (fdpath().includes(args[0]))
10 throw new Error("File already opened");
11 return obj[key](...args);
12 };
13 callback(null, {parse:acorn.parse, advice:{invoke}});
14 };

Listing 1. Analysis for single-process app.js

Listing 1 depicts the implementation of the analysis.
Like other aran-local analyses, it is implemented by
asynchronously returning a parse function and an advice
object (line 13). The parse function indicates which files
of the application should be instrumented. When this
function returns a falsy value, aran-local will leave
the file untouched. Otherwise, the function should re-
turn an ECMAScript Tree4. The advice object exposes
user-defined functions called traps which will be called
at run time from the instrumented code. For instance,
the method invocation o[k](x1, x2) could be transformed
by aran into the expression ADVICE.invoke(o, k, [x1, x2],

123). The last argument passed to the trap function is al-
ways an integer that uniquely identifies the correspond-
ing ESTree node in the original file.

For this analysis, the developers wanted to analyze
their entire application, so they parsed each of its files
using the npm module acorn (lines 3 and 13). Know-
ing that their application always manipulates files by
first invoking fs.open5, they only had to define a trap
for method invocations. The trap tests whether the in-
vocation would lead to a file being opened twice. An
exception is thrown when this is the case. Otherwise,
the invocation is executed.

2.2 Naive Invariant Checking of a Distributed
nodeJS Application

To improve its performance, the developers of our hy-
pothetical application decided to distribute it across
two nodeJS processes: app1.js and app2.js. The appli-
cation’s invariant “a file should never be opened twice”
should now be respected across all of the application’s
processes. To lift their analysis to distribution, the de-
velopers have little choice but to deploy an aran-local
analysis on each of the processes of the application un-
der analysis —in the remainder of this paper, we will
refer to these processes as target processes— and to per-
form inter-process communication. They decide to carry
4https://github.com/estree/estree
5https://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback

out this communication using HTTP requests and Web-
Socket messaging. These technologies require a standard
client-server model. Listing 2, the client, is an analysis
instance which is deployed for each of the target pro-
cesses. Listing 3, the server, handles both HTTP re-
quests and WebSocket connections originating from the
analysis instances.

1 // aran-local-node --host=localhost:8000
2 // --analysis=client-analysis.js
3 // -- app1.js
4 const fs = require("fs");
5 const acorn = require("acorn");
6 const XMLHttpRequest = require("xmlhttprequest").XMLHttpRequest;
7 const WebSocket = require("ws");
8 module.exports = ({argm:{host}}, callback) => {
9 const fdpaths = () => fs.readdirSync("/proc/self/fd")
10 .map((fd) => fs.readlinkSync("/proc/self/fd/"+fd));
11 const websocket = new WebSocket("ws://"+host);
12 websocket.onmessage = () => { websocket.send(fdpaths()) };
13 const invoke = (obj, key, args) => {
14 if (obj === fs && key === "open") {
15 const request = new XMLHttpRequest();
16 request.open("GET", "http://"+host+"/"+args[0], false);
17 request.send();
18 if (request.status === 403)
19 throw new Error("File already opened");
20 }
21 return obj[key](...args);
22 };
23 websocket.onopen = () => {
24 callback(null, {parse:acorn.parse, advice:{invoke}});
25 };
26 };

Listing 2. Client-side analysis for distributed app.js

Aside from its use of the npm modules xmlhttpre-
quest and ws, Listing 2 is similar to Listing 1. Line 11
uses ws to establish a WebSocket connection over which
the server will push requests for information about the
files that are currently open by the client process. Lines
15, 16, and 17 use xmlhttprequest to perform a syn-
chronous HTTP request to the server for its approval of
the opening of the file. Note that this HTTP request has
to be performed synchronously as its result is required
to decide whether to continue with the invocation or to
throw an error.

https://github.com/estree/estree
https://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback
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1 // node server-analysis.js 8000
2 const wss = new require("ws").Server({
3 noServer: true,
4 clientTracking: true
5 });
6 const server = require("http").createServer();
7 server.on("request", (request, response) => {
8 let counter = wss.clients.length;
9 const onresponse = (fdpaths) => {
10 if (fdpaths.includes(request.url))
11 response.writeHead(403);
12 if (!--counter)
13 response.end();
14 };
15 for (client of wss.clients) {
16 client.send("push-request");
17 client.once("message", handler);
18 }
19 });
20 server.on("upgrade", wss.handleUpgrade.bind(wss));
21 server.listen(process.argv[2]);

Listing 3. Server-side analysis for distributed app.js

Listing 3 depicts the server-side of our analysis; an
HTTP server that can handle WebSocket connections.
Incoming HTTP requests indicate that one of the ap-
plication’s processes is about to open a file. To decide
whether such an operation is allowed, the server broad-
casts a push request on line 16 to all of the application’s
processes for information about their currently-opened
files, including the one from which the HTTP request
originated. If the requested file has already been opened
by any of the application’s processes, the response’s sta-
tus will be set to 403.

Unfortunately, the communication between Listing 2
and Listing 3 is prone to a deadlock. In an event-driven
language such as JavaScript, synchronous communica-
tion is typically implemented in a blocking manner by
preventing the virtual machine to process any new event
in the event queue. This behavior is important to satisfy
the run-to-completion6 requirement, which states that
an event must be completely processed before process-
ing the next one. So while the client analysis is waiting
for the server’s response, the websocket’s onmessage event
handler cannot be triggered which precludes the server
from ever responding. The developers could rewrite their
client analysis so that it first performs the verification
with its own locally opened file. This would free the
server from performing loopback push requests to client
analyses. However, this modification would not entirely
prevent deadlocks, as two client analyses could perform
synchronous request past each-other and remain blocked
forever.

Our motivating example serves to illustrate two chal-
lenges in building dynamic analyses for distributed Java-
Script applications: (i) It is difficult for analysis devel-
opers and error-prone to maintain distributed analysis
6https://developer.mozilla.org/en/docs/Web/JavaScript/EventLoop

state. Indeed, to reason about the state of the exam-
ple application, its per-process analysis instances need
to communicate and synchronize with each other. As
distributed programming is notoriously hard, this alone
already motivates the need for dedicated support for
lifting an analysis from single-process programs to pro-
grams consisting of distributed processes. (ii) Existing
JavaScript instrumentation platforms can be used to build
analyses for distributed programs, but it often involves
a combination of synchronous and asynchronous dis-
tributed communication. Asynchronous communication
has become the norm for JavaScript. However, as anal-
yses often have to take decisions about and intervene
in the execution of JavaScript code, using synchronous
communication in their implementation is unavoidable.
The potential for deadlocks only exacerbates the need
for support in lifting analyses to distributed programs.

3 Overview
We now provide an overview of the design decisions
taken for our platform architecture, and illustrate how
these help overcome the challenges illustrated through
the motivation example.

3.1 Design Decisions
Source code instrumentation We want our plat-
form architecture to support deployment on mainstream
configurations of distributed JavaScript programs. In
general, dynamic analyses can be implemented by modi-
fying either the JavaScript runtime or by instrumenting
the target program. Relying on a modified runtime fa-
cilitates overcoming restrictions imposed by the target
language, but it renders the analysis dependent on a
specific runtime rather than the language specification.
There are several of such runtimes for JavaScript, and
they all are fast-evolving. For sustainability reasons, we
therefore opt for our analysis platform to rely exclusively
on source code instrumentation instead.

Online (vs post-mortem) analysis We want our
platform architecture to be sufficiently flexible to sup-
port both the post-mortem and the online strategies for
performing dynamic analysis. The post-mortem strat-
egy involves two phases: the target program is first in-
strumented and executed to produce a trace, from which
the conclusions of the analysis are computed in a subse-
quent step. The online strategy, in contrast, advocates
using a single phase in which the analysis’ conclusions
are computed while the instrumented program under
analysis is executed. Platforms that only support post-
mortem analyses cannot be used to build an online anal-
ysis. However, platforms that support online analyses
can still be used to build a post-mortem one by simply
having the analysis log operations to a trace at run time.

https://developer.mozilla.org/en/docs/Web/JavaScript/EventLoop


Orchestrating Dynamic Analysis of Distributed Processes for … GPCE ’18, November 5–6, 2018, Boston, MA, USA

Local Advice

Instrumented App1

Local Advice

Instrumented App2

Server

Remote Advice

Peer-to-peer
Base Communication

Local Advice

Instrumented App2
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Figure 1. Two distribution models: distributed local advices (left) and centralized remote advice (right).

As both strategies have their merits, we want to leave
the choice to analysis developers and opt for an online
framework.

Non-distributed analysis code Our platform should
obviate the accidental complexity that comes with main-
taining distributed analysis state. Figure 1 (left) illus-
trates the communication required to maintain this state
for the motivating example of Section 2. This required
the analysis developers to implement analysis-specific
distributed communication code. This burden could be
alleviated if the analysis code were executed on a sin-
gle process. Figure 1 (right) depicts a straightforward
way of realizing this vision: developer-provided code is
evaluated in a single, centralized process that receives
information from the distributed processes of the appli-
cation under analysis. The distributed communication
code is generated by the platform itself.

Remote references We want our platform to facili-
tate lifting analyses built on top of existing online dy-
namic analysis platforms from single-process to distributed
JavaScript programs. Those platforms not only provide
APIs for interacting with objects from the target pro-
gram itself, but also for instantiating and injecting new
objects in its execution. For instance, to intercept the
creation of a closure and substitute a wrapper for it
which will perform analysis-specific computations be-
fore delegating to the wrapped original. To support such
functionality for distributed processes, the platform should
provide a means for the centralized analysis process to
refer to and interact with objects located in any of the
target’s processes, as well as inject references to its own
objects into the target processes. We opt to provide re-
mote references as an abstraction to this end.

We summarize our design decisions as follow. Our
platform architecture relies exclusively on source code
instrumentation to maximize its applicability. It offers
an online API which is more flexible than a post-mortem
API. It obviates the need for analysis developers of hav-
ing to write distributed code. And finally, it uses re-
mote references for mimicking the API of existing online

instrumentation platforms for single-process JavaScript
programs.

3.2 Revisiting the Motivating Example
We now introduce the API of the resulting platform by
revisiting our motivating example. We opt to mimic the
API of the previously-introduced aran-local platform.
Analysis developers therefore implement their analysis
as a module with a parse function and an advice object
as before. The platform supports both synchronous and
asynchronous implementation styles.

Listing 4 depicts the result of lifting Listing 1 to dis-
tributed programs using our asynchronous API (left)
and using our synchronous API (right). We discuss the
asynchronous version first.

Asynchronous API The asynchronous version of a
distributed analysis module should export an asynchro-
nous function (i.e., a function that returns a promise)
that will be called by the platform with a remote object
(line 6). This object can be seen as a distribution-ready
version of JavaScript’s global Reflect object which imple-
ments the meta-object-protocol. In contrast to Reflect,
remote’s methods properly handle remote references and
return promises. The promise returned by the exported
function should resolve to another asynchronous func-
tion (line 17). For every process of the distributed pro-
gram under analysis, this function will be called once
with a remote reference to their respective global ob-
jects. As in aran-local, the final value returned by
the analysis file should be a parse function and an ad-
vice (line 22). The parse function remains synchronous
but the advice should contain only asynchronous func-
tions.
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1 // aran-remote --port=8080 --async-analysis=async-analysis.js
2 // aran-remote-node --host=8080 -- app1.js
3 // aran-remote-node --host=8080 -- app2.js
4 const acorn = require("acorn");
5 const includes = (x) => (xs) => xs.includes(x);
6 module.exports = async ({remote}) => {
7 const fss = [];
8 const fdpaths = async (fs) => await Promise.all(
9 (await remote.invoke(fs, "readdirSync", ["/proc/self/fd"]))
10 .map((fd)=>remote.invoke(fs,"readFileSync",["/proc/self/fd/"+fd])));
11 async function invoke (obj, key, args) {
12 if (obj === this._fs && key === "open")
13 if ((await fss.map(fdpaths)).some(includes(args[0])))
14 throw new Error("File already opened");
15 return await remote.invoke(obj, key, args);
16 }
17 return async ({global}) => {
18 const process = await remote.get(global, "process");
19 const mainModule = await remote.get(process, "mainModule");
20 const fs = await remote.invoke(mainModule, "require", ["fs"]);
21 fss.push(fs);
22 return {parse:acorn.parse, advice:{_fs:fs,invoke}};
23 };
24 };

// aran-remote --port=8080 --sync-analysis=sync-analysis.js
// aran-remote-node --host=8080 -- app1.js
// aran-remote-node --host=8080 -- app2.js
const acorn = require("acorn");
const includes = (x) => (xs) => xs.includes(x);
module.exports = ({}) => {

const fss = [];
const fdpaths = (fs) =>
fs.readdirSync("/proc/self/fd")
.map((fd) => fs.readlinkSync("/proc/self/fd/"+fd));

function invoke (obj, key, args) {
if (obj === this._fs && key === "open")
if (fss.map(fdpaths).some(includes(args[0])))

throw new Error("File already opened");
return obj[key](...args);

}
return ({global}) => {
const process = global.process;
const mainModule = process.mainModule;
const fs = mainModule.require("fs");
fss.push(fs);
return {parse:acorn.parse, advice:{_fs:fs,invoke}};

};
};

Listing 4. Analysis addressing the motivating example; asynchronous style (left) and synchronous style (right).

1 app1 >> trap-invoke(app1#1, "open", ["f.txt","a",app1#2])
2 app1 << invoke(app1#1, "readdirSync", ["/proc/self/fd"])
3 app1 >> success(["0", "1", "2"])
4 app1 << invoke(app#1, "readlinkSync", ["/proc/self/fd/0"])
5 app1 << invoke(app#1, "readlinkSync", ["/proc/self/fd/1"])
6 app1 << invoke(app#1, "readlinkSync", ["/proc/self/fd/2"])
7 app1 >> success("tty-pipe#0")
8 app1 >> success("tty-pipe#1")
9 app1 >> success("tty-pipe#2")
10 app2 << invoke(app2#1, "readdirSync", ["/proc/self/fd"])
11 app2 >> success(["0", "1", "2", "3"])
...
15 app2 << invoke(app2#1, "readlinkSync", ["/proc/self/fd/3"])
...
19 app2 >> success("f.txt")
20 app1 << failure("File already opened")

Listing 5. Possible communication performed by List-
ing 4 (left).

The main challenge of lifting Listing 1 to distributed
programs is that there is no longer a unique fs mod-
ule for the entire program under analysis. Indeed, each
process under analysis has its own fs object. This ac-
counts for the main differences between Listing 1 and
Listing 4. First, the fs variable is replaced by an array
fss (line 7) which will contain remote references to the fs

object of each process under analysis. Second, the func-
tion fdpaths must receive a remote reference to indicate
which fs module to use (line 8). Third, the platform’s
calls to the function returned on line 17 create a new
advice for every process under analysis. The _fs prop-
erties of these advices are set to the fs object of their
respective process.

Listing 5 depicts a sample of the communication that
our approach performs as it executes Listing 4 (left).
The communication is viewed from the analysis perspec-
tive and a single color is assigned to each request/response

pair. The communication is triggered when app1 evalu-
ates the instrumented version of fs.open("f.txt", a, cb).
On line 1, a synchronous request is sent from app1 to
the analysis process for performing a method invoca-
tion. The analysis process detects that this invocation
will open a new file and calls fdpaths on every fs ob-
ject present in the program under analysis. As the first
fs object belongs to app1, the analysis process performs
an asynchronous request back to app1 for performing
fs.readdirSync("proc/self/fd") at line 2. Next, on line
3, app1 responds to this last request with the success
value ["0", "1", "2"]; its file descriptors. Note that even
though the original request in black was synchronous,
app1 is still responsive and handle this loopback request.
We discuss in Section 4 our protocol for synchronous
yet responsive remote procedure calls. On lines 4–5–6,
the analysis pipelines requests for reading each app1’s
file descriptor. On lines 7–8–9, app1 responds to each
of the pipelined request. The same operations are per-
formed for app2 where a conflict is detected at its last
file handle. The analysis process then responds the ini-
tial request with a failure message at line 20. app1 will
convert this failure message into a synchronous error,
thus precluding fs.open("f.txt", a, cb) from ever being
executed.

Synchronous API Our asynchronous API already
shields the analysis developer from many of the intri-
cate details of the distributed communication to the
centralized analysis process. Our synchronous API com-
pletes the abstraction. It differs in that the function to
be exported from the analysis module, its returned func-
tion, and the advice’s methods are no longer asynchro-
nous functions. Also, the remote references for objects
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1 const b = document.createElement("button");
2 document.body.appendChild(b);
3 let counter = 0;
4 b.onclick = () => {
5
6
7
8
9 counter = counter + 1;
10 alert(counter);
11
12 };

const b = document.createElement("button");
document.body.appendChild(b);
let counter = 0;
b.onclick = () => {
const REQ = new XMLHttpRequest();
REQ.open("POST", "/aran/binary", false);
REQ.send("['+',"+counter+",1]");
REQ.onload = () => {

counter = parseInt(REQ.responseText);
alert(counter);

};
};

const b = document.createElement("button");
document.body.appendChild(b);
let counter = 0;
b.onclick = () => {
const REQ = new XMLHttpRequest();
REQ.open("POST", "/aran/binary", true);
REQ.send("['+',"+counter+",1]");

counter = parseInt(REQ.responseText);
alert(counter);

};

REQ
click

*1* *2* *3*
click click click

REQ
click

*1* REQ*1* *2* REQ ... *1* REQ ... *2* REQ ... *3*
click click click click

XMLHttpRequest
XMLHttpRequest

XMLHttpRequest XMLHttpRequest XMLHttpRequest XMLHttpRequest

Listing 6. Asynchronous (center) and synchronous (right) communication to the analysis process in a program that
adds a counter button to the DOM (left).

located on the processes under analysis can be manip-
ulated synchronously and do not require the remote ob-
ject. In that, they are isomorphic to regular JavaScript
references. Listing 4 (right) depicts our synchronous dis-
tributed analysis for the motivating example. It is a di-
rect line-by-line translation of the corresponding asyn-
chronous version on the left. The two distributed anal-
yses behave the same, except that the synchronous one
does not pipeline readlinkSync requests and does not use
the shorthand invoke but rather the standard MOP op-
erations get and apply.

We conclude this section by comparing the merits
of the two APIs. The synchronous version of the dis-
tributed analysis is not polluted by asynchronous noise
and it looks more akin to the analysis for single-process
programs we started from. However, the synchronous
API hides the distribution so well that the analysis de-
veloper may forget that some values are remote refer-
ences and that performing MOP operations on them
is costly. Our asynchronous API provides more control
over the analysis performance at the cost of a slightly
more complex lifting. Regardless, both APIs shield the
analysis developer from distributed programming con-
cerns at the cost of a high communication load. For
instance, it took 10 request/response pairs for our anal-
ysis to figure out the file conflict. At production-time
this would not be acceptable, but our platform architec-
ture is meant for building development-time analyses
and tools.

4 Implementation
We present the open-source prototype designed accord-
ing to the proposed architecture, and the distributed
communication abstractions it leverages: remote refer-
ences, and a domain-specific protocol for performing
synchronous yet responsive remote procedure calls. We
motivate the use of synchronous communication in dy-
namic analyses for distributed JavaScript programs first.

4.1 Limitations of asynchronous
communication in distributed dynamic
analyses

JavaScript is an event-based synchronous language. It
means that events are processed one after the other and
that, during the processing of an event, expressions are
evaluated one after the other. Therefore, to avoid block-
ing the entire JavaScript application, IO operations are
performed concurrently via asynchronous-style builtin
functions. These functions return before the completion
of their underlying IO operation. To obtain the outcome
of the IO operation, a callback needs to be registered
which will be called with the outcome of the opera-
tion. Within browser runtimes, the only IO operations
that are not performed this way are synchronous XML-
HttpRequests which are discouraged on the main thread
because they make the UI unresponsive 7. Non-legacy
use of this synchronous API requires a compelling use
case which we provide in this section.

Consider the program in Listing 6 (left). The program
is intended to add a “counter” button to the Document
Object Model. An analysis to verify that the counter
is incrementing as expected can be built by intervening
with the binary operation on line 9. In our approach,
this requires the instrumented program to communicate

7https://blogs.msdn.microsoft.com/wer/2011/08/03/why-you-
should-use-xmlhttprequest-asynchronously/
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1 const connections = {};
2 export function onpush ({recipient, mail}) => {
3 if ("origin" in mail)
4 connections[recipient].ping();
5 if (connections[recipient].pending === null)
6 return connections[recipient].mailbox.unshift(mail);
7 connections[recipient].pending(mail);
8 connections[recipient].pending = null;
9 };
10 export function onpull (alias, callback) {
11 if (mailbox.length === 0)
12 return connections[alias].pending = callback;
13 callback(connections[alias].mailbox.pop());
14 };
15 export function onconnect (alias, push) {
16 connections[alias] = {push, mailbox:[], pending:null};
17 };

pendingemptyflow

(pull, Z/Z)(receive, Z/Z)(receive, */*X)

(pull, X/ε) (receive, Z/Z)(ε, Z/Z)

1 let stack = [], counter = 0;
2 export function onping () => {
3 if (counter > 0)
4 return counter--;
5 const {origin, token, data} = pull(alias);
6 push({recipient:origin, mail:{token,data:procedure(data)}});
7 };
8 export function rpcall (recipient, data) {
9 const index = stack.push(undefined) - 1;
10 push({recipient, mail:{origin:alias, token:index, data}});
11 while (stack[index] === undefined) {
12 const {origin, token, data} = pull(alias);
13 if (origin) {
14 counter++;
15 push({recipient:origin, mail:{token,data:procedure(data)}});
16 } else {
17 stack[token] = data;
18 }
19 }
20 return stack.pop();
21 };

busy

ready (done, Z/Z, */*)

(event, Z/Z, */*)

(ping, Z/Z, X/)

busy

wait

(ping, Z/Z, Z/Z) wait(pull, Z/Z, Z/Z)

(rpc, Z/Z, Z/Z)

(pull, X/X, */*)

(rpc, X/X, */*X)

(rpr, X/, */*)

(rpcall, */*X, */*)

Listing 7. Server-side (left) and client-side (right) of our synchronous responsive protocol.

with the centralized analysis process. Browser runtimes
for JavaScript only provide two communication APIs:
XMLHttpRequests which can be either synchronous or
asynchronous and WebSockets which are asynchronous
bidirectional communication channels. Listing 6 (center)
depicts an instrumented version of the program that
uses asynchronous XMLHttpRequests, but the remain-
der of the discussion is valid for WebSockets too. Lines
5–7 communicate the intention of performing the binary
operation to the analysis process, while lines 8–10 regis-
ter a callback for its value communicated back. Unfortu-
nately, this instrumentation is incorrect. If the user trig-
gers the button in quick succession, the increment might
be performed on stale counter values. This because one
asynchronous request might be answered after the next
has been made. The instrumentation therefore does not
preserve the program’s original behavior. We broke the
run-to-completion principle and this left the counter in
an inconsistent state.

Listing 6 (right) explores the synchronous alternative.
Here, the event handler blocks until a request is an-
swered. This instrumentation solves the inconsistency
of Listing 6 (center) but it is prone to deadlocks similar
to the ones presented in Section 2. Indeed, when the
target process is waiting for a response it becomes unre-
sponsive and cannot process potential loopback requests
from the analysis process.

4.2 Synchronous Responsive Remote
Procedure Calls

We now present our domain-specific protocol for per-
forming synchronous yet responsive remote procedure
calls in dynamic analyses for distributed JavaScript pro-
grams. Our protocol follows a classic client-server model
and relies on three communication channels: 1. A push
notification from the client to the server. This chan-
nel can be implemented using traditional communica-
tion technologies. 2. A ping notification from the server
to the client. If the client process is executed on the
browser, this can only be implemented via WebSockets.
3. A synchronous pull request from the client to the
server. If the client process is executed on the browser,
this can only be implemented via synchronous XML-
HttpRequests. If the client process is executed on nodejs,
we rely on synchronous functions from child_process
and fs to perform synchronous inter-process communi-
cation.

Listing 7-left describes the server-side of our proto-
col via an ECMAScript2015 module and a pushdown
automaton. The automaton models a single client con-
nection whose stack models the size of its mailbox. The
stack can contain only two kinds of elements: the ini-
tial symbol Z and a marker symbol X. Clients communi-
cate with each other through messages called mails. If
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a mail contains an origin property, it corresponds to a
remote procedure call; else, it corresponds to a remote
procedure return. In its initial state (middle state of
Listing 7-left), a client connection has an empty mail-
box. From that state, two transitions may happen: the
client may perform a pull request (line 12) or it may
receive a mail from another client (line 6). In the first
case, the connection enters a pending state (right state
of Listing 7-left); waiting for a mail to arrive which will
be used as a response body to the pull request (line 7). In
the second case, the mail received is added to the mail-
box and the connection enters a flow state (left state of
of Listing 7-left). Every subsequent mail received will be
added to the mailbox (line 6). Every pull request will re-
move the oldest mail from the mailbox (line 13). When
the mailbox becomes empty again, the connection re-
turns to its initial state. Note that a ping notification is
sent to the client whenever the connection receives an
rpc mail (line 4).

Listing 7-right describes the client-side of our proto-
col via an ECMAScript2015 module and a 2-stack PDA.
The automaton’s first stack (called stack in the code)
models the size of the client’s remote call stack. The au-
tomaton’s second stack (called counter in the code) mod-
els the number of remote procedure calls pulled from
the server without a ping. Both stacks have two kinds
of elements: the initial symbol Z and a marker symbol
X. From the initial ready state, three transitions may
happen based on the oldest event in the event queue.
(i) The event is not a server ping notification. An event
handler registered by the user will be called and the ex-
ported function rpcall may be called (line 8). In that
case, the client will pull mails from the server up until
it receive a matching response. (ii) The event is a ping
notification from the server but its corresponding rpc
mail was already pulled from the server (test at line 3).
This will cause a decrement of the number of rpc mails
pulled from the server without a ping (line 4). (iii) The
event is a ping notification from the server and its cor-
responding rpc mail has not yet been pulled from the
server (test at line 3). In that case, the mail is pulled
from the server and the user-defined procedure is called
(line 5-6). At that point we reunite with the first case.

We implemented this communication protocol in an
open-source npm module called melf8. Aside from a
few optimizations and convenience features, the imple-
mentation faithfully follows Listing 7.

8https://github.com/lachrist/melf

4.3 Remote References
Listing 4 showed that the centralized analysis process,
of dynamic analyses implemented according to our ap-
proach, receives remote references from objects located
in the target processes. But as motivated in Section 2,
analysis developers should also be able to inject remote
references to objects located in the analysis process into
target processes. Unlike remote references for objects
located in the target processes, these last remote refer-
ences must imperatively be isomorphic to regular refer-
ences because they can be passed to areas of the code
that the developer decided to leave un-instrumented.
These areas are oblivious to the analysis and will treat
analysis remote references as regular references.

First, for remote references to be isomorphic to regu-
lar references, they need to be based on a synchronous
communication protocol. To avoid deadlocks we use our
synchronous yet responsive communication protocol de-
scribed in the previous section. Second, they need to
look like regular objects and implement the JavaScript
MOP. This can only be achieved with proxies; a reflec-
tion API introduced in ECMAScript2015 [23]. A proxy
is defined by two objects: a target object for which the
proxy is a substitute and a handler object which imple-
ments the MOP for that particular proxy. The meth-
ods of a proxy’s handler are required to respect some
invariants with respect to the proxy’s target [24]. For
instance, if a property of the target is defined as non-
configurable and non-writable, invoking the handler’s
get method on that property should return the value of
the target’ property. Unfortunately, these invariants do
not translate well when the actual target is located on
a remote process.

To overcome this problem, we implemented the so-
lution sketched by the author of the proxy API in an
open-source npm module called virtual-proxy9. The
solution involves setting a new cache object as target
and lazily keeping it in sync with the values returned by
the handler’s methods. The particularities of our imple-
mentation are as follows. First, our implementation does
not call user-provided handlers when their result can be
deduced from inspecting the cache object. This helps
reduce the remote references’ communication. Second,
our implementation does not require the user-provided
handler to implement derived MOP operations such as
get, set and has. This simplifies the remainder of our
implementation of remote references, which is provided
as an open-source npm module called melf-share10.

9https://github.com/lachrist/virtual-proxy
10https://github.com/lachrist/melf-share

https://github.com/lachrist/melf
https://github.com/lachrist/virtual-proxy
https://github.com/lachrist/melf-share
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At client2@http://localhost:3000/main.js#33:4, context2d.lineTo was called with:

1 [
2 {
3 "value": 238,
4 "location": "client2@http://localhost:3000/main.js#91:39",
5 "origin": {
6 "binary": "*",
7 "left": {
8 "value": 0.23062015503875968,
9 "location": "client1@http://localhost:3000/main.js#46:10",
10 "origin": {
11 "binary": "/",
12 "left": {
13 "value": 238,
14 "location": "client1@http://localhost:3000/main.js#61:35",
15 "origin": "mouse.clientX"
16 },
17 "right": 1032
18 }
19 },
20 "right": 1032
21 }
22 },
23 ...
24 ]

Listing 8. Extract from the output of the distributed
origin analysis applied to the collaborative Whiteboard
example

5 Case Study: Distributed Origin
Analysis

We now evaluate how well aran-remote supports lift-
ing dynamic analyses that perform shadow execution.
Such analyses attach analysis-specific information to the
program’s actual values, for instance to perform infor-
mation flow analysis [14] or concolic testing [18]. One
implementation strategy is to wrap values of the pro-
gram under analysis in objects that contain the analysis-
specific information. This strategy may seem straight-
forward, except that no wrappers should escape to non-
instrumented code areas or built-in functions. Code obliv-
ious to the analysis will otherwise confuse these val-
ues for base program values, leading to incorrect anal-
ysis results or crashes. For instance, if x refers to the
wrapper {inner:"foo", taint:"high"} in the expression
console.log(x), foo should be printed and not the string
representation of the wrapper. Preventing wrappers from
escaping instrumented code areas becomes particularly
difficult when they are allowed to populate objects. The
aran-access [9] library provides a proxy-based wrap-
per abstraction as a solution.

We will use shadow execution and this library in the
implementation of a distributed origin analysis, capable
of tracking the expressions values originate from across
process boundaries. The analysis can be used as is as
the foundation for a program comprehension tool or it
can quite easily be adapted to produce the path con-
straints required for concolic testing tools. We consider
it representative for other analyses based on shadow
execution. The distributed program under analysis is

Target Process (client) Analysis process

value: 238

location: ...

origin: ...

wrapperx0: ...

y0: ...

x:

y: ...

color: ...

target

aran-access proxysocket.io.js
(non-instrumented)

main.js
(instrumented)

Proxy object

Synchronous remote reference (also proxy object)

Regular object

drawing event

Figure 2. Remotes references distribution in the White-
board example

a minimalistic (120 LoC) collaborative drawing editor
called Whiteboard 11. It is a demonstrator for the pop-
ular socket.io12 communication library. When a method
of an HTML canvas element13 is invoked, the analysis
prints the computation tree from which the arguments
originated.

We use aran-remote to build the distributed origin
analysis and deploy it on the Whiteboard application
configured with two collaborative users connected. This
results in three processes being analyzed: a nodeJS pro-
cess for the server of the application and two browser
processes for the connected clients. For replication pur-
poses, we made our experiment available in an open-
source repository14. Listing 8 depicts an extract of the
output produced by the analysis. The initial message
indicates that a line was drawn on the canvas of the sec-
ond client at line 33 of the main file. The JSON object
below the message represents the computation tree of
the first argument which corresponds to the abscissa of
the line’s destination point. It was the result of a suc-
cessive division and multiplication of the same number:
1032. Inspecting the code indicates that this number cor-
responds to the width of the canvas of the clients and
that these operations are required to support different

11https://github.com/socketio/socket.io/tree/master/examples/
whiteboard
12https://github.com/socketio/socket.io
13https://developer.mozilla.org/en-US/docs/Web/API/
CanvasRenderingContext2D
14https://github.com/lachrist/aran-remote-whiteboard

https://github.com/socketio/socket.io/tree/master/examples/whiteboard
https://github.com/socketio/socket.io/tree/master/examples/whiteboard
https://github.com/socketio/socket.io
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://github.com/lachrist/aran-remote-whiteboard
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Figure 3. Whiteboard app under analysis by our origin-
of-value tracker

canvas sizes. The division happened in the first client at
line 46 of the main file and the multiplication happened
in the second client at line 91 of the same file. The most
interesting part of this computation tree begins at line
12: it corresponds to accessing the clientX property of a
mouse event15. In short, our analysis was able to track
a value originating from a click event on the first client
all the way to its use in the drawing of a line on the
second client.

Figure 2 clarifies the use of remote references to the
wrappers provided by the aran-access library in the
analysis. When clientX is accessed from the mouse event,
a wrapper object is created inside the analysis process.
This wrapper is returned to the target process as a re-
mote reference. After drawing its own line, the client
assigns this value to an object which serializes the op-
eration for drawing a line. In the original program, this
object was passed directly to the socket.io library to
make the other client draw the same line. However, in
our analysis, socket.io is not instrumented and pass-
ing this object polluted by wrappers will result in in-
correct analysis results. Rather, this object should be
substituted by a cleaning-up proxy provided by aran-
access. This analysis demonstrates that our approach
is sufficiently generic and our implementation sufficiently
mature to cope with the complex, reflection-heavy JavaScript
library that aran-access is.

Note that the complexity of the situation described
above is well hidden from the user. Our analysis is re-
markably small with only 72 lines of code out of which
only 8 are linked to distribution. These lines maintain
a stack to preserve the origin of values as they are ex-
changed between processes through socket.io. By com-
parison, the same analysis written in aran-local re-
quires 131 lines out of which 51 are concerns with main-
taining distributed analysis state.

15https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent

It is hard to quantify the performance overhead of
our analysis on such an event-based program. We were
able to use the program under analysis interactively,
as shown in Figure 3, but the performance overhead
made some lines jagged. A high performance overhead
is to be expected for two reasons. First, whenever the
socket.io library accesses properties from a given re-
mote reference, our approach may cause up to three
sequential requests to be performed. Second, the aran-
access library wraps almost every single JavaScript
value. Remote references to these wrappers contribute
to the high communication load between the analysis
process and the target processes.

5.1 Discussion of Limitations
The main limitation of our approach to performing dy-
namic analysis of distributed programs, is the computa-
tional overhead incurred by the frequent communication
between analysis process and the target processes under
analysis. On larger programs, this overhead might ac-
cumulate and start causing timeout errors raised from
the application under analysis or even the JavaScript
runtime itself as these rely on event processing to be
reasonably short.

In future work, we plan to mitigate the computational
overhead incurred by the communication in general and
our implementations of the communication protocols in
particular. For instance, there is ample of room for op-
timization through a native C++ addon for the nodeJS
implementation of the synchronous communication. In
general, the communication load can be reduced signif-
icantly by letting analysis developers determine which
of the intercepted operations should be handled locally
and which should be forwarded to the remote analysis
process. Developers can already steer this through the
pointcut-like static API of the underlying instrumenta-
tion platform, but a dynamic API might enable them
to be more selective.

The second limitation we discuss is not inherent to the
architecture we propose for distributed dynamic analy-
ses, but to the distributed communication abstractions
provided by the supporting platform and their handling
of network disconnections. When an analysis process
or one of of the target processes disconnects, develop-
ers are expected to handle the failures stemming from
accessing their remote references. Automatic reconnec-
tions might help analysis developers recover from these
failures. However, they are not expected to be frequent
in the development setting for which the analyses are
intended.

https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
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6 Related Work
In this section, we survey the closest related work. We
refer the reader to [2] and [4] for a comprehensive review
of the literature on dynamic program analysis.

The most widespread platforms for building dynamic
analyses are probably binary instrumentation platforms
such as Valgrind [13] and Pin [11]. Binary instrumen-
tation is possible in JavaScript but it must rely on a
modified runtime as JavaScript is not a compiled lan-
guage. Such an approach gave rise to several symbolic
execution engines [10, 17]. For instance, Kudzu [17] is
specially geared toward supporting complex string con-
straints and relies on a modified browser to record the
bytecode operations performed during the execution of
the page. The trace is then replayed postmortem with
an adhoc symbolic execution engine. It would be inter-
esting to compare a general-purpose bytecode instru-
mentation framework for JavaScript to our approach,
but we are not aware of such framework.

Instead, several source code instrumentation plat-
forms such as aran [9] and Jalangi [19] have been
proposed to serve as infrastructure for building dynamic
analyses for JavaScript applications. These platforms
have been proven successful in building a wide variety
of dynamic analysis tools targeting single-process pro-
grams ranging from lightweight detection of bad code
practices [8] to heavyweight tools such as shadow exe-
cution [9] or multi-path concolic testing [20]. However,
they offer no dedicated support for analysis develop-
ers of adapting their analysis to distributed JavaScript
programs. Maintaining the expressive power of these
platforms while reducing the accidental complexity of
maintaining distributed analysis state is the main focus
of this paper.

NodeProf [22] is an effort to provide the same ex-
pressiveness as state-of-the-art JavaScript source code
instrumenters but achieve a lower performance over-
head by relying on a modified nodeJS engine. In our
approach, we made the explicit design decision to rely
on source code instrumentation for applicability reasons.
Moreover, NodeProf does not offer any dedicated sup-
port toward building dynamic analysis for distributed
systems.

In the literature, dynamic analyses for distributed
programs have predominantly taken the form of mon-
itors and tracers (e.g., [3, 6, 21, 25]). For instance,
Dapper [21] can trace the communication within large-
scale distributed programs by instrumenting some key
libraries. Dapper has been used by Google develop-
ers for program comprehension and for identifying per-
formance issues. Of particular interest is Sahand [1],
which aims at helping web developers understand full-
stack JavaScript programs. Unfortunately, the traces

generated by these analyses do not capture sufficient
information for precise post-mortem reasoning about
information flow [14] (i.e., taint analysis) nor for con-
colic testing [18]. To the best of our knowledge, our
platform architecture is the first capable of enabling
various heavyweight dynamic analyses with dedicated
support for distributed programs.

7 Conclusion
We presented a new approach to building dynamic
analyses for distributed JavaScript programs. The ap-
proach advocates maintaining distributed analysis state
in a centralized analysis process which is communicated
with from the processes under analysis. We support
this approach with an open-source dynamic analysis
platform that provides domain-specific communication
abstractions to this end. We evaluated the approach
through a case study in which we built a dynamic anal-
ysis that tracks the origin of values. The implementa-
tion is a mere 72 lines long, yet manages to track the
origin of values across process boundaries. Or approach
can support a wide variety of dynamic analyses for dis-
tributed programs, but comes at the cost of a computa-
tional overhead incurred by the communication between
analysis process and processes under analysis.
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