
Constraining the Eventual in Eventual Consistency
Jim Bauwens, Florian Myter, Elisa Gonzalez Boix

Vrije Universiteit Brussel
jim.bauwens,florian.myter,egonzale@vub.be

ABSTRACT
CRDTs are highly available replicated data structures which offer
strong eventual consistency in the face of concurrent operations
[3]. By their definition, CRDTs eventually converge to a consis-
tent state given enough time. However, this is not strict enough
for some distributed applications. Current state-of-the-art CRDT
implementations fail to provide programmers with the means to
specify these constraints. As a result, programmers need to write
application-level code which ignores stale or timed-out operations.
In this paper, we introduce a leasing model which allows program-
mers to declaratively specify timing constraints for CRDTs. In short,
programmers are able to attach leases to operations on a CRDT
instance. When such a lease expires the underlying implementation
ensures that the operation is eventually canceled for all replicas.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Consistency; Con-
straints;

KEYWORDS
eventual consistency, CRDTs, leasing

ACM Reference Format:
Jim Bauwens, Florian Myter, Elisa Gonzalez Boix. 2018. Constraining the
Eventual in Eventual Consistency. In PaPoC’18: 5th Workshop on Principles
and Practice of Consistency for Distributed Data , April 23–26, 2018, Porto,
Portugal.ACM, NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3194261.
3194263

1 INTRODUCTION
CRDTs are data structures which are replicated across a distributed
application, and can be concurrently updated without requiring
consensus or distributed transactions. To this end, CRDTs constrain
the type of operations which can be applied to them to be commuta-
tive, associative and idempotent. By definition [3] CRDTs guarantee
strong eventual consistency. Assuming no new updates happen to
a set of replicas, they will eventually converge to the same state
without conflicts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5655-8/18/04. . . $15.00
https://doi.org/10.1145/3194261.3194263

In theory, it may take an infinite amount of time for replicas to
converge. But this may not be suitable for many distributed applica-
tions which require operations to be executed within certain dead-
lines. Applications might choose to disregard certain operations
on a CRDT if they fail to converge at all replicas within a certain
time frame. However, using state-of-the-art CRDT implementations,
programmers are unable to specify such application-specific time
constraints.

Manually keeping track of timing constraints on CRDTs is a
tedious task, as they are a cross cutting concern over the entire
application. The programmer needs to keep track of all operations
on each replica in order to cancel operationswhich exceed their time
constraint. Moreover, canceling operations requires application-
specific protocols.

In this paper, we propose to incorporate a leasing model into
the CRDT abstraction, resulting in leased CRDTs. The key idea is to
enable programmers to declaratively specify timing constraints on
operations as leases. If all replicas fail to observe a leased operation
within the specified time frame we say that the operation fails.
Subsequently the operation is revoked for all replicas.

2 MOTIVATING EXAMPLE
In this section, we motivate the need for leased CRDTs by means
of an illustrative example application. Consider a mobile auction
application where a user can browse a list of items and add items
deemed interesting to a wish list. The wish list is implemented as a
CRDT and is synchronized with an online platform. Items are sold
at specific times to the highest bidder and are removed from the
item list afterwards.

Since a mobile device may not have permanent access to the
Internet, operations pending on the wish list CRDT might not yet
be synchronized with the online platform. This means that some
auctioned items related to the operations might already be sold
before all replicas have converged. In this case the operations are
no longer interesting and reverting them is an acceptable step.

By adding a lease on the operations (based on the auction time)
this reverting can be done automatically. Reverting the addition
of an item to the list is done by issuing a remove operation of the
specified item. We say thus that remove is the anti-operation of add.

3 LEASING AND CRDTS
Before describing leased CRDTs, we introduce the necessary back-
ground information and terminology on leasing and CRDTs.

Leasing has been used in distributed systems to limit access on
resources for a specific duration of time [2]. In particular, a resource
owner (also know as the lease owner) grants a resource user (the
lease grantor) usage of the resource under a contract that specifies
the lease term and conditions under which the lease is valid.

https://doi.org/10.1145/3194261.3194263
https://doi.org/10.1145/3194261.3194263
https://doi.org/10.1145/3194261.3194263

PaPoC’18, April 23–26, 2018, Porto, Portugal Jim Bauwens, Florian Myter, Elisa Gonzalez Boix

CRDTs offer a set operations that can be applied where it is
mathematically proven that concurrent updates on different replicas
of the CRDT will not result in conflicts.

Typically, these operations can be either used to query the CRDT
or to update it. Update operations are performed in two phases.
First, an at source part is executed only on the replica that is the
source of the operation. The purpose of this phase is to prepare the
actual updating of the CRDT. Second, a downstream part is executed
on all replicas, based on information computed by the at source
part [3]. For example, the at source part of the add operation of an
OR-Set CRDT computes a unique identifier, which is then used in
the actual modification on all replicas during the downstream phase.
Note that some CRDTs do not need an at source part, e.g. a simple
counter CRDT.

4 A LEASING MODEL FOR CRDTS
In this paper, we propose a leasing model for CRDTs that allows de-
velopers to apply timing constraints to the set of operations offered
by a CRDT. In our approach, leasing is applied to the downstream
phase, given that this is where the actual replication happens. More
concretely, for every replica there is one lease per downstream
phase. We say that a lease expires if its downstream phase is unable
to complete before the specified time deadline. This means a lease
expires if at least one replica does not observe the downstream
phase on time.

Since a lease may expire while some replicas already observed
the downstream phase, countermeasures need to be put in place
so that all replicas remain consistent. In our work, we propose to
associate an anti-operation for each operation defined on a CRDT.

An anti-operation is the inverse of an associated operation, i.e.
applying it equates to rolling back the original operation. For ex-
ample, in the case of a counter CRDT, the anti-operation of an
increment is a decrement.

Anti-operations are often part of the set of operations on CRDTs.
For example, counters and sets have for most versions pairs of
operations that match our definition of anti-operations to a certain
degree. In particular, the add/remove operations of a set and the
increment/decrement operations of a counter can be considered
anti-operations from one another.

Note, however, that a pairing operation is in most cases not
exactly the correct anti-operation. For example, with an OR-Set
it would be incorrect to use remove(x) after an add(x) as anti-
operation. This is because the add operation actually adds a tuple
to the dataset, containing x and a uniquely generated ID. Removing
x would remove all tuples in the dataset that have x as first item.
The correct anti-operation for add(x) would be to remove only the
tuple that has x along with the correct ID.

In conclusion, leasing enables developers to specify deadlines
with regards to the time it takes for CRDTs to become strongly
eventually consistent. However, in order to ensure this, it is crucial
that developers specify correct anti-operations.

4.1 Leased CRDTs in Action
This section describes two small applications that use counter
CRDTs with timing constraints on the increment operation. The

first version uses a leased CRDT while the second manually man-
ages the deadlines. Both versions are written in LuAT1, a Lua library
we implemented for distributed programming which incorporates
the concepts of Ambient-oriented Programming [1].

Listing 1 shows how to use the leased CRDT framework built in
LuAT. LeasedCounterCRDT takes a string representing a nominal
type used for other nodes in the network to discover this CRDT,
and a callback function applied when the CRDT is updated. It then
creates a counter CRDT instance which can be discovered in the
network bymeans of the shared_counter string. Line 4 shows how
operations are leased in a CRDT: they are basically augmented with
a parameter to specify the lease time. If the increment operation
fails to be replicated within the specified time, the CRDT framework
automatically perfoms a rollback.

1 local counter = LeasedCounterCRDT("shared_counter", function (value)
2 print('Counter updated ', value)
3 end)
4 counter:increment (10, seconds (3))

Listing 1: Using a leased counter CRDT

Listing 2 uses a manual approach to add timing constraints to
a simple counter CRDT as the one offered by traditional CRDT
frameworks. Such a CRDT is created on line 12 by means of the
CounterCRDT construct, which takes as arguments a string and
callback function such as LeasedCounterCRDT. However, without
leased CRDTs, programmers need to take care of two kinds of book-
keeping code. First, code for registering deadlines and periodically
checking if they have elapsed needs to be written (lines 1 to 11). Sec-
ond, programmers also need to manually link the CRDT increment
operation with a deadline and encode compensating actions if the
deadline has passed before convergence (lines 19 - 28). Moreover,
the timing constraints are only checked at the source of the opera-
tion while in the leased CRDT version the deadlines are validated
consistently over all replicas by the framework. Note also that this
boilerplate code may need to be written over and over for each
type of CRDT required in an application as the code responsible
for rolling back is application-specific.

1 local TIMEOUT = 3
2 local deadlines = {}
3 framework.addInterval (100, function ()
4 local time = system.getTime ()
5 for future , deadline in pairs(deadlines) do
6 if time > deadline then
7 future:ruin()
8 deadlines[future] = nil
9 end
10 end
11 end)
12 local counter = CounterCRDT("shared_counter", function (value)
13 print('Counter updated ', value)
14 end)
15 function increment_counter(n)
16 local deadline = system.getTime () + TIMEOUT
17 local future = counter:increment(n)
18 future
19 :whenBecomes(function ()
20 local time = system.getTime ()
21 if time > deadline then
22 counter:decrement(n)
23 end
24 end)
25 :whenRuined(function ()
26 counter:decrement(n)
27 end)
28 deadlines[future] = deadline
29 end
30 increment_counter (10)

Listing 2: Using a manual approach for time constraint
management

1https://git.infogroep.be/jibauwen/LuAT/

Constraining the Eventual in Eventual Consistency PaPoC’18, April 23–26, 2018, Porto, Portugal

5 CONCLUSION
CRDTs are data structures which allow for concurrent operations
on replicated data in distributed systems. Moreover, they guarantee
that eventually all replicas end up in the same state. However, this
convergence might take an infinite amount of time. We showed by
example that some applications may require this convergence time
to be constrained. However, implementing these constraints using
state-of-the-art CRDT implementations is cumbersome. In this pa-
per, we propose leased CRDTs as a novel programming construct
which enables programmers to declaratively specify convergence
timing constraints.

REFERENCES
[1] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter.

2007. AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad hoc
Networks. In Chilean Society of Computer Science, 2007. SCCC ’07. XXVI Interna-
tional Conference of the. 3–12. https://doi.org/10.1109/SCCC.2007.12

[2] C. Gray and D. Cheriton. 1989. Leases: An Efficient Fault-tolerant Mechanism
for Distributed File Cache Consistency. SIGOPS Oper. Syst. Rev. 23, 5 (Nov. 1989),
202–210. https://doi.org/10.1145/74851.74870

[3] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. 2011. A comprehensive study
of Convergent and Commutative Replicated Data Types. Technical Report 7506.

https://doi.org/10.1109/SCCC.2007.12
https://doi.org/10.1145/74851.74870

	Abstract
	1 Introduction
	2 Motivating Example
	3 Leasing and CRDTs
	4 A Leasing Model for CRDTs
	4.1 Leased CRDTs in Action

	5 Conclusion
	References

