
Proefschrift ingediend met het oog op het behalen van een
doctoraatsdiploma
Dissertation submitted in fulfilment of the requirement for the
degree of Doctor of Philosophy in Sciences

STATICALLY CHECKING
INTER-PROPERTY CONSTRAINTS
and its Applications in Web APIs

Nathalie Oostvogels

Promotor: Prof. Dr. Wolfgang De Meuter
Copromotor: Prof. Dr. Joeri De Koster

Faculty of Science and Bio-Engineering Sciences

Statically Checking
Inter-property Constraints

and its Applications in Web APIs

Nathalie Oostvogels

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

April 2019

Jury:
Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel (promotor)

Prof. Dr. Joeri De Koster, Vrije Universiteit Brussel (copromotor)
Prof. Dr. Ann Nowé, Vrije Universiteit Brussel (chair)

Prof. Dr. Dominique Devriese, Vrije Universiteit Brussel (secretary)
Prof. Dr. Ann Dooms, Vrije Universiteit Brussel
Prof. Dr. Tobias Wrigstad, Uppsala University

Dr. Manuel Serrano, INRIA

Printed by:
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 978 94 930 7921 2
NUR 989

Acknowledgements:
The work in this dissertation has been funded by a PhD Fellowship of the Re-
search Foundation - Flanders (FWO) and the SBO project Tearless by the Agency
for Innovation and Entrepreneurship (VLAIO).

Copyright:
All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

c© 2019 Nathalie Oostvogels

Abstract

Software applications do not stand on their own: their code often uses libraries to
incorporate functionality to facilitate the development process (such as abstrac-
tions and helper functions) or to integrate functionality from third parties. Li-
braries offer their functionality via an Application Programming Interface (API),
which is a contract between the library and the user. It defines which methods
are provided, and imposes constraints on the data or fields that are exchanged.

Constraints dictate the presence of fields, the type of fields, and the allowed
values for fields. Constraints imposed on a singular field are clearly indicated
in the documentation and well-supported in tooling and specification languages.
Next to singular constraints, API documentation often describes relations between
fields. For example, some fields may only be provided together, or the value of a
field may impose constraints on other parts of the data. In this dissertation, we
demonstrate the prevalence of such constraints in web APIs.

We show that there is no structural support for these inter-property con-
straints: they cannot be expressed by contemporary API specification languages
such as OpenAPI. This lack of support extends to programming languages, whose
type system can only express and validate single-property constraints, but not
inter-property constraints. This dissertation presents a statically-typed program-
ming language that fills this gap.

Our programming language, TIPC, features a natural extension to inter-
face definitions which allows enforcing presence constraints between properties.
TIPC ensures that objects with inter-property constraints satisfy these constraints
throughout the program. Furthermore, it enables programmers to refine interface
types using its flow-sensitive type system. We present a formal specification of
the syntax, operational semantics and type system of TIPC, along with soundness
proofs. As a proof of concept, we use TIPC as a model to extend the TypeScript
compiler with support for inter-property constraints.

Finally, we extend the OpenAPI specification language with support for fully
generalised inter-property constraints. This language serves as a proving ground
for inter-property constraint aware tooling. Concretely, a first artefact presents an
intercepting middleware that verifies constraints on both the caller side and the
library side. A second artefact shows how interfaces enabled with inter-property
constraints can be generated from an API specification. Both artefacts enable the
automatic verification of inter-property constraints in applications, respectively
at runtime and at compile-time.

iii

Samenvatting
Softwareprogramma’s staan niet op zichzelf: ze integreren vaak functionaliteit
van bestaande codebibliotheken. De functionaliteit die zulke bibliotheken aan-
bieden, kan het ontwikkelingsproces bevorderen of functionaliteit van derde par-
tijen beschikbaar stellen. Deze functionaliteit wordt beschikbaar gesteld via een
API (een programmeerinterface), die een contract vormt tussen de codebibliotheek
en de gebruiker. Dit contract beschrijft welke methodes aangeboden worden en
welke vereisten er worden gelegd op de data of velden die worden uitgewisseld.

Vereisten leggen restricties op de aanwezigheid van velden, op hun type en
hun toegestane waardes. Vereisten op een enkel veld zijn goed aangeduid in
de documentatie en zijn goed ondersteund door programmeerhulpmiddelen en
specificatietalen. Naast vereisten op een enkel veld, legt de documentatie van
API’s ook nog eisen op tussen velden. Sommige velden mogen bijvoorbeeld enkel
samen voorkomen, of de waarde van een veld kan de vereisten op een ander veld
bëınvloeden. In deze verhandeling tonen wij het voorkomen van zulke vereisten
in de documentatie van web API’s.

We tonen dat er geen structurele ondersteuning bestaat voor inter-veld vereis-
ten: ze kunnen niet worden uitgedrukt in hedendaagse specificatietalen zoals
OpenAPI. Ook programmeertalen bieden geen ondersteuning: hun typesystemen
kunnen enkel vereisten over een enkel veld uitdrukken. Deze verhandeling presen-
teert een statisch getypeerde programmeertaal die deze kloof dicht.

Onze programmeertaal, TIPC, heeft een natuurlijke uitbreiding van interface
definities die ervoor zorgt dat aanwezigheidsvereisten tussen velden kunnen wor-
den opgelegd. TIPC garandeert dat objecten met inter-veld vereisten tijdens
het hele programma aan deze eisen voldoen. Bovendien zorgt TIPC ervoor dat
programmeurs de interface types specifieker kunnen maken doordat het typesys-
teem rekening houdt met if-testen in het programmaverloop. We presenteren een
formele specificatie van de syntaxis, operationele semantiek en het typesysteem
van TIPC, samen met een bewijs van correctheid. We integreren het TIPC model
in de TypeScript compiler, waardoor we een uitbreiding op TypeScript verkrijgen
die inter-veld vereisten kan garanderen.

Tenslotte breiden we de OpenAPI specificatietaal uit met ondersteuning voor
algemene inter-veld vereisten. Deze taal dient als een basis om hulpprogramma’s
met inter-veld constraints te testen. Een eerste artifact presenteert een middleware
die nagaat of aan de vereisten wordt voldaan, zowel aan de kant van de gebruiker
als de kant van de codebibliotheek. Een tweede artifact toont hoe interfaces
met inter-veld vereisten gegenereerd kunnen worden uit API specificaties. Beide
artifacten zorgen ervoor dat er automatisch wordt nagegaan of inter-veld vereisten
worden voldaan, zowel tijdens het uitvoeren als vooraf.

v

Acknowledgments
First of all, I would like to thank the two people who promote this work: Wolf
and Joeri. Wolf, I want to sincerely thank you for giving me the opportunity to
pursue a PhD. You let me take my time to figure out what the topic of this PhD
was going to be, which shaped this PhD to what it is today. I would like to thank
the members of the jury, Dominique Devriese, Ann Dooms, Ann Nowé, Manuel
Serrano, and Tobias Wrigstad, for the interesting discussions, which resulted in
new insights that definitely improved this dissertation. Next to the promotors and
jury members, I would like to thank the extra proofreaders of my text: Quentin
and Dries.

I would like to thank the unique bunch of people whom I may call my col-
leagues. There are a few (ex-)colleagues (going on friends) I want to thank in
particular. For the most part of this PhD, I have had the privilege of working
together with one of my bestest friends. Simon: it has been an honour to have
you by my side to teach a few hundred 18-year olds the ins and outs of algorithms
and data structures. A big thanks to het olijke (office-sharing) duo: Thierry and
Janwillem. You guys were always up for PhD-related discussions which shaped
and structured my thoughts and worries about inter-property constraints, as well
as the (equally as important) non-PhD-related discussions. Jesse, thank you for
your brutally honest view on things. Laure, your absence at SOFT (and the
emptiness of your bowl of candy) is not going unnoticed. Lara, thanks for the
talks about the little things in life, the sad things, the happy things, and the big
things.

One of Wolf’s selling points of a PhD is that it comes along with the chance of
exploring the world, and he was certainly right. A big thanks (again) to my travel
buddies throughout the years: chasing Oregon’s waterfalls with Thierry & Laure,
finally going on “Romereis” with Laure & Janwillem (I can recommend them as
tour guides!), and lunching at the foot of a Canadian glacier with Janwillem.

Many friends and family have supported me during the past few years. I want
to truly thank you all for all the diversions in the form of board gaming nights,
food and/or Sunday afternoon teas. It is impossible (and too dangerous) to list
everyone, but special shoutout to the OG: Killian, Koen, and Murielle!

Before this acknowledgment section ends and the actual dissertation starts,
I want to thank the most important people in my life. In het dankwoord van
mijn masterthesis heb ik mijn oma bedankt voor haar oneindige voorraad aan
chocotoffs. Ik ben blij dat dat na al die jaren nog niet veranderd is: nog eens
bedankt oma!

Mama & papa: zonder jullie onvoorwaardelijke steun bij de start van zowel
mijn hogeschoolopleiding, mijn schakeljaar, en mijn doctoraat had ik hier nooit

vii

gestaan. Ik ben jullie hiervoor oneindig dankbaar. Mama, jouw doorzettingsver-
mogen en leergierigheid zijn altijd een voorbeeld voor mij geweest. Bedankt om
samen met mij de Visual Basic cursus van het middelbaar al te maken, omdat
ik niet kon wachten tot wanneer de school daar mee begon. Dat heeft – zonder
twijfel – de fundering gelegd voor dit doctoraat, een luttele 14 jaar later.

I am forever grateful for the privilege of having the best sister in the entire
world. Sofie: you are the definition of a BFF, or to say it with a Pinterest quote:
there is no better friend than a sister, and there is no better sister than you.

Dries: being with someone who is writing a paper or a PhD is not the easiest
(as I know all too well ;-)). Thank you for your limitless patience and uncondi-
tional support. Life is best with you by my side.

viii

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1
1.1 Research Context . 1
1.2 Problem Statement . 2
1.3 Thesis . 3
1.4 Approach . 4
1.5 Contributions . 5
1.6 Roadmap . 7
1.7 Supporting Publications and Technical Contributions 8

2 Inter-property Constraints 11
2.1 Categories of Inter-property Constraints 12

2.1.1 Exclusivity Constraints . 12
2.1.2 Dependency Constraints . 14
2.1.3 Double Implication Constraints 16
2.1.4 NAND Constraints . 18

2.2 Combined Constraints . 18
2.3 Empirical Study of Inter-property Constraints in Web APIs 21

2.3.1 A Primer on Web APIs . 22
2.3.2 Results of the Empirical Study 23

2.4 Violations of Inter-property Constraints 24
2.5 Conclusion . 26

3 Requirements for Inter-property Constraints in Programming
Languages 31
3.1 Interface Definition . 33

ix

3.2 Creating Interface Instances from Object Literals 37
3.3 Accessing Object Properties . 38
3.4 Assigning Instances of Interfaces to Others 41
3.5 Updating Object Properties . 42

3.5.1 Updating Multiple Properties Simultaneously 45
3.6 Interface Inheritance . 46
3.7 Conclusion . 48

4 Statically Checking Inter-property Constraints 51
4.1 Object Literals Have To Satisfy Constraints 52
4.2 Constraints Dictate Property Presence 55
4.3 Explicit Property Presence Tests 57
4.4 Interface-Interface Compatibility 59

4.4.1 Target Constraints Follow From Source Constraints 60
4.4.2 Structural Differences: Premises 61
4.4.3 Structural Differences: Consequent 62

4.5 Interface-Object Compatibility . 63
4.6 Updated Objects Have To Satisfy Constraints 65
4.7 Conclusion . 67

5 TypeScript’s Idiosyncrasies 69
5.1 Optional Types . 70
5.2 Unsoundness . 71
5.3 Block Scoping . 73
5.4 Interfaces . 74
5.5 Null-checking Mode . 76
5.6 Occurrence Typing . 76
5.7 Type Declaration Files . 78
5.8 Conclusion . 78

6 TIPC: Formalisation 79
6.1 SafeFTS: a Formalisation of TypeScript 79
6.2 Syntax . 81

6.2.1 Expressions . 81
6.2.2 Statements . 83
6.2.3 Types . 83

6.3 Typing Rules . 87
6.3.1 Property Lookup . 88
6.3.2 Assignment Compatibility 90
6.3.3 Creating Interface Instances 95

x

6.3.4 Updating Multiple Properties 95
6.3.5 Statement Typing . 97

6.4 Operational Semantics . 100
6.4.1 Evaluating Expressions . 102
6.4.2 Evaluating Statement Sequences 106

6.5 Soundness . 108
6.5.1 Judgments . 110
6.5.2 Key Properties . 113
6.5.3 Preservation . 117
6.5.4 Progress . 118

6.6 Conclusion . 119

7 TypeScriptIPC: Implementation of TIPC 127
7.1 Architecture and Design . 128
7.2 Differences between Formalisation and Implementation 130

7.2.1 Interface Definition . 130
7.2.2 Object Creation . 131
7.2.3 Assignment . 132
7.2.4 If statements . 133

7.3 Extending the TypeScript Compiler with Inter-property Constraints134
7.3.1 Types . 134
7.3.2 Scanner Extensions . 136
7.3.3 Parser Extensions . 136
7.3.4 Checker Extensions . 137
7.3.5 Emitter Extension . 148

7.4 Conclusion . 148

8 Related Work 159
8.1 Dependent Types . 159
8.2 Refinement Types . 161

8.2.1 Refinement Types For Dynamic and Object-Oriented Pro-
gramming Languages . 162

8.3 Type Systems for TypeScript . 167
8.4 Type Systems for JavaScript . 169
8.5 Occurrence Typing . 170
8.6 Conclusion . 171

xi

9 Inter-property Constraints in Practice 173
9.1 Web API Specification Languages 174
9.2 Inter-property Constraints in Specification Languages 175

9.2.1 oneOf (OpenAPI specification, JSON Schema) 175
9.2.2 discriminator (OpenAPI specification) 176
9.2.3 if-then-else (JSON Schema) 177
9.2.4 dependencies (JSON Schema) 177
9.2.5 Conclusion . 179

9.3 OAS-IP: A Novel Constraint-Centric Specification Language . . . 180
9.3.1 Constraint Definitions . 181
9.3.2 Constraints . 182
9.3.3 Comparison with Other Web API Specification Languages . 182

9.4 Inter-property Constraints in Specification Language Tools 183
9.4.1 VerifyRequest library . 184
9.4.2 Client SDK Code Generator 185

9.5 Conclusion . 187

10 Conclusion 193
10.1 Summary . 193
10.2 Restating the Contributions . 194
10.3 Future Work . 196

10.3.1 Value-dependency Constraints 196
10.3.2 Imperative Multi-update . 198
10.3.3 Gradual Typing For Inter-property Constraints 200
10.3.4 Portability to Other Programming Languages 201

10.4 Concluding Remarks . 206

A Object Literal Restriction 211

B Type Preservation 221
B.1 Type Preservation of Expressions 221
B.2 Type Preservation of Statements 233

C Specification of the Twitter API 239

xii

Ik heb het nog nooit gedaan,
dus ik denk dat ik het wel kan.

– Pipi Langkous

Chapter 1

Introduction

Libraries form the building blocks for software applications: they promote reusabil-
ity and abstraction by encapsulating code, as well as provide functionality from
third parties. The communication between a software application and a library
happens through an Application Programming Interface (API), which offers the
functionality of a library through a set of methods. API documentation describes
the functionality of each API method, together with a list of expected fields and a
description of what the fields should look like. Often, the documentation describes
the desired form of the fields as a set of requirements.

Satisfying the requirements before calling the API is essential for the API call
to be valid. Manually verifying every constraint of every API call in a software
application is a time-consuming and tedious job. Luckily, there are several ways
to automate the verification of these constraints. For example, requirements can
be translated to types in a statically typed programming language: this way, the
type system automatically verifies the requirements at compile-time.

1.1 Research Context

Early type systems only describe the basic type of the values that could be stored
in a variable. These type systems prevent standard type errors such as the multi-
plication of booleans or text. They also verify that function calls have the correct
amount of arguments and that the arguments have the correct type. Type systems
designed for object-oriented languages have object types which define the set of
properties an object should have, together with their type [Abadi and Cardelli,
1996; Pierce, 2002].

Throughout the years, more complex types have been introduced, such as
union types and intersection types [Pottinger, 1980]. For example, union types

1

[1] Introduction

enable the developer to indicate that a variable may be a string or a number.
Linear types [Girard, 1987] can be used to guarantee that there is only one refer-
ence to a variable at any time in the program. Dependent types [De Bruijn, 1970;
Howard, 1980; Martin-Löf and Sambin, 1984] introduce types that may depend on
values. This enables verification of advanced constraints such as: an index must
be in the bounds of an array.

Using these more expressive types, developers can express more sophisticated
programs while retaining the compile-time guarantee that their code satisfies the
envisioned invariants. However, the power of a type system is a balancing act
between expressivity of the type system and the expressivity of the programming
language. This is an example of choosing the right tools for the job. For example,
a programming language for proving theorems wants the type system to be as
powerful as possible, while type systems retrofitted onto a dynamically typed
programming language mainly want guarantees that existing programs are still
supported by the programming language.

1.2 Problem Statement

Some statically typed programming languages give developers the possibility to
make a distinction between required or optional object properties. This adds
expressivity to the definition of these objects and definitions, but also introduces
new kinds of errors that occur when undefined properties are accessed, or required
properties are removed. Some statically typed object-oriented languages, such as
TypeScript, already ensure the type-safe usage of optional properties.

On top of the distinction between required and optional properties or pa-
rameters, the documentation of those objects and functions often contain extra
information on which combination of properties or parameters are considered a
valid combination. For example, a search function might require that at least one
of the filter criteria is specified. Similarly, an object might only be considered
valid if a group of properties are all present or all absent: in the Twitter API,
a tweet can optionally contain a location, which is indicated with a latitude and
longitude property. These two properties may only be provided together. As these
constraints describe restrictions between parameters or properties, we define these
as inter-property constraints.

Inter-property constraints are prevalent in documentation of web APIs, but
also occur in the standard libraries of both dynamically and statically typed lan-
guages. However, statically typed programming languages commonly used to de-
velop applications —even those retrofitted for dynamic programming languages—
are unable to express such a dependency. Properties can only be marked as op-

2

[1.3] Thesis

tional, which does not suffice to express constraints on the presence of properties
that depend on the presence of other properties. Advanced type systems such as
dependent types are able to express inter-property constraints. However, depen-
dent types also put nontrivial requirements on the functions of the programming
language, which have to be total.

The lack of support for inter-property constraints in commonly-used program-
ming languages leads to type systems that are unable to catch unsatisfied inter-
property constraints. Instead, errors are delegated to the runtime. We illustrate
this with three examples of Tweet objects. The first object is valid: providing
the location of a tweet is optional. The second object is also valid as it has
both location properties. However, the third object is invalid due to the miss-
ing longitude property. There currently exists no commonly-used programming
language in which we can enforce this constraint.

1 var valid1 : Tweet = {text: "Hello , world!"};
2 var valid2 : Tweet = {text: "Hello ,", latitude : 50, longitude : 4};
3 var invalid : Tweet = {text: "world!", latitude : 50};

As a consequence, programs can contain invalid function calls and objects, and
usage of fields which are actually absent.

To guarantee that constraints over multiple fields are satisfied, the program-
ming language must be extended with language constructs for inter-property con-
straints. Caution is required, as the type system of that programming language
must have the logic necessary to guarantee the correct usage of data on which
inter-property constraints are imposed. Moreover, the addition of inter-property
constraints should have a minimal impact on the expressivity of the programming
language such that existing programs are not affected. This lowers the barrier of
entry for defining and using inter-property constraints.

1.3 Thesis

Existing statically typed programming languages allow programmers to express
constraints over the presence of properties or parameters. However, it is not
possible to express a dependency logic between parameters. A type system
that also verifies such inter-property constraints will provide more type safety for
developers.

This dissertation supports this thesis by identifying the existence of inter-
property constraints in the documentation of existing APIs, showing the practical
need for support for inter-property constraints. This dissertation presents a tech-
nique for incorporating support for inter-property constraints in the type system

3

[1] Introduction

of an existing programming language. Moreover, this dissertation integrates inter-
property constraints in a machine-readable specification language and shows how
development tools can use this integration to make the web development cycle
more robust.

1.4 Approach

We have defined inter-property constraints as constraints between multiple prop-
erties of an object. In order to have an accurate view of real-world inter-property
constraints, we first study the documentation of several APIs1 and make an in-
ventory of common patterns and structures in how the constraints are combined.

Given this knowledge on commonly occurring kinds of inter-property con-
straints, we continue by presenting a type system that supports “presence con-
straints” over multiple properties of an object. The type system supports any
inter-property constraint that can be expressed using propositional logic. It uses
several concepts from propositional logic to guarantee type safety. The addition
of constraints to interfaces has consequences on several facets of the type system.

• Definition of objects. When defining an object type, developers can define
constraints on the combinations of properties that are allowed. Object prop-
erties can be required to be present or absent, and constraints between the
presence of properties are expressed using operators from propositional logic.
For example, the constraint present(latitude) <-> present(longitude)
means that these two location fields must either be present or absent to-
gether. When object types can inherit from other object types, constraints
from the entire inheritance chain are taken into account.

• Creation of objects. From a syntactical and semantical point of view,
there is no difference between creating an object of a state-of-the-art object
type, or an object type with support for inter-property constraints. However,
the type system has to perform extra checks: objects can only be of an object
type when its constraints are satisfied. The type system uses the concept of
a valuation and logical entailment from propositional logic to perform these
checks.

• Accessing a property of an object. Similar to the creation of objects,
there is no syntactic or semantic difference on how object properties are ac-
cessed. On the other hand, guaranteeing the safe access of object properties
gets more complex. The type system needs to verify whether the property

1Google Maps, Twitter, YouTube, Flickr, Facebook, Amazon

4

[1.5] Contributions

is present or absent. This is inferred by the type system using logical en-
tailment. The type system only assigns the intended type to a property
when that property is certain to be present. The type system indicates that
a property is known to be absent by assigning it an absent type (such as
undefined in TypeScript and null in Java). However, the type system
cannot assign any type for properties of which it is uncertain on whether
they are present. Therefore, the type system uses flow sensitivity to gain
extra information about the presence or absence of properties.

• Updating a property of an object. Updating properties of advanced
object types also gets more complex, as updating a property may invalidate
constraints imposed on other properties. As a consequence, some properties
can only be updated safely together. For example, removing the latitude
property may only happen in conjunction with removing the longitude
property. To solve this, we introduce a new language construct that enables
the updating of multiple properties simultaneously, such that an object is
never in an invalid state between consecutive assignment statements.

In the design of this type system, we strive to create a type system that
is first and foremost usable in web application development and applicable to
existing programs and APIs. To this end, we will incorporate inter-property
constraints into an existing programming language for the web, without restricting
the expressivity of the language. Moreover, the extra type annotations required for
inter-property constraints need to be kept at a minimum and as simple as possible.
This enables the uptake of inter-property constraints in existing programs.

A side track of this dissertation consists of incorporating the concept of inter-
property constraints into other parts of the web development cycle. For example,
by translating the textual documentation of a web API to a machine-readable
version, several tools (such as code generators) can be generated from the docu-
mentation. These tools facilitate the development of web applications.

1.5 Contributions

This dissertation presents a statically typed programming language with support
for inter-property constraints. The two main contributions of this dissertation are
the following.

Our first contribution is the identification and classification of inter-
property constraints in documentation of the largest internet companies: Face-
book, Twitter, YouTube, Google Maps, Amazon, and Flickr. We present a survey

5

[1] Introduction

of real-world documentation that identifies several instances of inter-property con-
straints, by investigating 688 web API entry points. Moreover, we introduce a
classification of commonly found kinds of inter-property constraints.

The second contribution of this dissertation is a new statically typed pro-
gramming language with support for inter-property constraints, called
TIPC. This programming language lays the foundation for a programming paradigm
that supports inter-property constraints as a distinct entity. As a proof of concept,
inter-property presence constraints will be incorporated in an existing program-
ming language. More specifically, in TIPC developers are able to express object
types in which the presence or absence of properties may depend on each other.
Dependencies between properties are defined using propositional logic. The type
system of TIPC uses concepts such as valuations and logical entailment from
propositional logic to ensure its correctness. The introduction of a new way to
define object types has an impact on how objects are created and how its proper-
ties are accessed and updated. We provide proofs of correctness that prove the
type system is sound with respect to enforcing complex dependency logic defined
by the programmer when an object is created, modified, or accessed.

Next to these main contributions, this dissertation also explores the incorporation
of inter-property constraints in web development. In this context, this dissertation
also has three contributions.

Although inter-property constraints occur commonly in the documentation
of web APIs, machine-readable languages for web API documentation currently
have no support for expressing inter-property constraints. Our third contribution
defines a machine-readable specification language that supports constraints
over multiple parameters. The extra language constructs allow the tools that
accompany those languages to support inter-property constraints as well.

This dissertation presents two adaptations of existing specification tools that
also serve as a validation. The first tool serves as a validation of the extended
specification language. Given a number of web API specifications, it gener-
ates all the constraints on the data of a given API method and verifies whether
a given object satisfies these constraints. As a proof of concept, the preproces-
sor is accompanied by a tool which verifies —at runtime— that requests in web
applications satisfy the constraints imposed on them by the specifications. The
second tool serves as a validation of the type system. Given a web API
specification, this tool generates a stub for the server side implementation of the
API. As the implementation is written in TIPC, inter-property constraints are
verified at compile-time when using the server stub as a start for the server-side
implementation or as mock-up of the server for client-side development.

6

[1.6] Roadmap

1.6 Roadmap

This dissertation is structured as follows.

Chapter 2: Inter-property Constraints presents a study of the occurrence
of constraints between properties in the documentation of APIs. Examples of
inter-property constraints are classified into four categories, depending on how
the constraints between properties are combined. Finally, we expand on how
APIs react to unsatisfied inter-property constraints.

Chapter 3: Requirements for Inter-property Constraints in Program-
ming Languages describes how inter-property constraints can be incorporated
in the interface declaration syntax. Code examples are shown by means of a new
programming language (TIPC), but are applicable to other languages as well.
To this end, this chapter compiles a set of requirements that form a blueprint
for incorporating inter-property constraints in a statically typed programming
language.

Chapter 4: Statically Checking Inter-property Constraints informally
presents how the TIPC type system satisfies the requirements of Chapter 3. TIPC
uses concepts from propositional logic to ensure that new objects satisfy inter-
property constraints and that (property) updates do not invalidate inter-property
constraints.

Chapter 5: TypeScript’s Idiosyncrasies gives information on the idiosyn-
crasies of TypeScript, the programming language which forms the basis for TIPC.
This chapter discusses features that are characteristic to TypeScript and features
that are relevant with regards to inter-property constraints.

Chapter 6: TIPC: Formalisation presents the formalisations of TIPC. It
defines the syntax, operational semantics and typing rules and presents a proof of
soundness.

Chapter 7: TypeScriptIPC: Implementation of TIPC describes the im-
plementation of TIPC, called TypeScriptIPC. First, this chapters gives an overview
of TypeScript compiler, which forms the basis for TypeScriptIPC. Next, the dif-
ferences between TIPC and TypeScriptIPC are discussed. Finally, this chapter
gives an overview of the changes made to every phase of the TypeScript compiler
in order to incorporate inter-property constraints.

7

[1] Introduction

Chapter 8: Related Work situates the work presented in this dissertation in
the research on type systems. We discuss how TIPC compares to advanced type
systems, as well as existing work on type systems for TypeScript and JavaScript,
and occurrence typing.

Chapter 9: Inter-property Constraints in Practice gives an overview of
machine-readable API specification languages and discusses their lack of support
for inter-property constraints. Next, this chapter introduces a new specification
language with support for constraints between properties. Finally, we introduce
two tools that verify inter-property constraints, both at runtime and at compile
time (using TIPC).

Chapter 10: Conclusion presents our conclusions and discusses avenues for
future work.

1.7 Supporting Publications and Technical Contribu-
tions

There are two publications that support this dissertation directly:

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Inter-
parameter Constraints in Contemporary Web APIs. In Proceedings of the
International Conference on Web Engineering, ICWE 2017, pages 323–335.
Springer International Publishing, 2017. ISBN 978-3-319-60131-1

This paper discusses inter-property constraints. It conducts an empirical study
that shows that these constraints are common in popular web APIs. Examples of
inter-property constraints are categorised into three groups: exclusive constraints,
dependent constraints and group constraints. After showing that existing specifi-
cation languages are not able to express inter-property constraints, the paper in-
troduces a new constraint-centric API specification language that addresses these
shortcomings.

8

[1.7] Supporting Publications and Technical Contributions

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Static
Typing of Complex Presence Constraints in Interfaces. In Proceedings of
the 32nd European Conference on Object-Oriented Programming, ECOOP
2018, pages 14:1–14:27. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018b. ISBN 978-3-95977-079-8. doi: 10.4230/LIPIcs.ECOOP.2018.14

This paper introduces a new programming language with object types that
support constraints over multiple properties. The programming language is a
variant of TypeScript with a novel type system that enables programmers to ex-
press complex presence constraints on properties. This paper shows how complex
constraints on the presence of interface properties can be statically enforced. We
prove that it is sound with respect to enforcing the complex dependency logic
used by the programmer when an object is created, modified or accessed.

The following artifact publication supports this dissertation:

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Static
Typing of Complex Presence Constraints in Interfaces (Artifact). Dagstuhl
Artifacts Series, 4(3):3:1–3:2, 2018a. ISSN 2509-8195. doi: 10.4230/DARTS.
4.3.3

We have implemented the type system presented in this dissertation as an
extension to TypeScript. This implementation is evaluated as part of the ECOOP
artifact evaluation on consistency, completeness, reusability and the quality of the
documentation. The implementation can also be found at https://github.com/
noostvog/typescriptipc. We will describe the implementation in more detail
in Chapter 7.

Early versions of this dissertation were presented at the following venues:

• Verification of Communication in Web Applications: paper presented at
Tools for JavaScript Analysis 2016;

• Typing Third Party Web Service Usage: poster presented at European Con-
ference on Object-Oriented Programming 2016;

• Dynamic Verification of Inter-parameter Constraints in Web Applications:
paper presented at International Workshop on Dynamic Analysis 2017;

• Dynamic Verification of Inter-parameter Constraints in Web Applications:
poster presented at Systems, Programming, Languages and Applications:
Software for Humanity 2017.

9

https://github.com/noostvog/typescriptipc
https://github.com/noostvog/typescriptipc

Chapter 2

Inter-property Constraints

In application development, libraries are often used to encapsulate functionality,
promote reusability or provide functionality to other parties. To communicate
with a library, developers use the functions that are provided by its Application
Programming Interface (API). Sometimes such an API is accessible as a service
over the network, as is the case with web APIs. The API defines the contract
between a library and its caller: it imposes requirements on inputs and gives
guarantees on outputs.

For example, a standard API that provides functionality for mathematical
operators will only accept a call to the plus operator when the provided parameters
are all numbers. When dividing numbers, the API requires that the denominator
is not zero. For accessing an index in an array, the API requires that the index is
not negative.

The examples so far impose constraints on the value of the input provided for
an API call. However, APIs can also impose constraints on the presence of inputs:
sometimes, only a part of the properties is required, while the rest is optional.
E.g., an API for string manipulation expects three inputs for a call to substring:
the string, the start index and the end index. The third input typically is an
optional one: when it is not provided, substring takes the end of the string as
default.

As the capabilities offered by an API grow, so do the constraints on the input.
This has led to constraints between the inputs of an API function. These inter-
property constraints are common for web APIs, where the presence of one property
can determine the structure of other properties in the object of which it is a
member, or where the presence of a property even excludes other properties. For
example, a search function may need at least one criterion to return results.

In this chapter, we survey API documentation from several (web) APIs for

11

[2] Inter-property Constraints

inter-property constraints. The combination of constraints on several properties
can be categorised based on operators found in propositional logic. Section 2.1
elaborates on the four logical operators that are commonly used to describe inter-
property constraints. To express complex inter-property constraints on properties
found in API documentation, several inter-property constraints are combined.
We give several examples of combined constraints in Section 2.2. In Section 2.3,
we show that inter-property constraints are commonly found in web APIs and
Section 2.4 gives an overview on how web APIs deal with unsatisfied inter-property
constraints.

Most of this chapter is published in Oostvogels et al. [2017]. However, this
chapter elaborates even further on inter-property constraints: it includes more
examples (from web APIs, but also from other APIs and languages) of the cate-
gories in the paper (exclusivity, dependency and double implication constraints),
as well as a new category of inter-property constraints (Section 2.1.4).

2.1 Categories of Inter-property Constraints

In this section, we list several examples of constraints between properties, cate-
gorised by the logical operator used to combine the constraints.

Inter-property constraints are often not formally listed as a constraint in the
documentation. Instead, they are informally described. In order to identify inter-
property constraints in the documentation of web APIs, we have searched for
words that might indicate a constraint between properties. For exclusivity con-
straints, we searched for mentions of either, exactly, subsumed and one of. De-
pendency constraints can be recognised in API documentation by mentions of
additional and providing. Double implication constraints are often indicated with
corresponding and providing.

2.1.1 Exclusivity Constraints

We call an inter-property constraint an exclusivity constraint if exactly one of a set
of properties is required. E.g., a user can be identified in two ways in the Twitter
API: either by his/her screen name (the Twitter handle) or by his/her user ID.
As a consequence, every method (or entry point) in the Twitter API that needs to
identify a user, will have both a screen name property and a user id property.
Table 2.1 shows the entry point for sending a direct message in the Twitter APIi

Next to the message itself (the text property), the receiver of the private message
also needs to be identified. Although both properties are indicated as optional,

Footnotes with roman numbers can be found at the end of this chapter (page 26).

12

[2.1] Categories of Inter-property Constraints

there has to be an exclusivity constraint imposed on these two properties in order
to indicate that exactly one of those properties has to be present.

Table 2.1: Excerpt from Twitter API documentation

Property name Optional? Description
user id optional The ID of the user who should receive the

direct message.
screen name optional The screen name of the user who should re-

ceive the direct message.
text required The text of your direct message.

Note: One of user id or screen name are required.

As a second example, Facebook users can publish three kinds of status updates
on their wall: a message, a link or a place. The entry point for publishing a status
update on a user feed contains the properties message, link and place among
othersii. Facebook does not indicate whether the properties are required or op-
tional, but in the description they indicate that there is an exclusivity constraints
on those tree properties: “either link, place or message must be supplied” ;

A third example comes from Stripe, an online payment processor: they provide
an API to web developers to integrate payments in their websites. One of their
most important entry points is create chargeiii, which is used to charge the
credit or debit card of customers. The specification for that entry point lists 14
properties: the payer of the transaction can be indicated with either source (the
data of a credit or debit card) or using the ID of an already registered customer
(“either source or customer is required”).

We show a final example in the YouTube API, which provides functionality to
search or retrieve information from its videos, channels, playlists, etc. The entry
point to retrieve information about YouTube playlistsiv contains three ways to
identify the playlist that needs to be retrieved: channelId to retrieve all playlists
from a channel, id to retrieve a specific playlist by their unique ID or to retrieve
their own playlists (mine). The API documentation states to “specify exactly one
of the following parameters”).

Outside of the documentation of web APIs, exclusivity constraints are also
used when there are several ways to identify something. For example, network
interfaces can be identified in two ways in the Windows Desktop API: by either
providing the InterfaceLuid or the InterfaceIndexv. The API documentation
defines this as follows: “If the InterfaceLuid is specified, then this member is used
to determine the interface. If no value was set for the InterfaceLuid member, then
the InterfaceIndex member is next used to determine the interface.”

13

[2] Inter-property Constraints

2.1.2 Dependency Constraints

The second category of inter-property constraints are dependency constraints,
where constraints on a property depend on a characteristic of another property
(which we call the base properties). In other words, when a constraint is satisfied,
this implies that another constraint should also be satisfied. This dependency can
be on either the presence of a parameter or its value. There are four sub-categories
of dependency constraints.

• Present-Present (PP) dependency constraint: the presence of a property
depends on the presence of the base property;

• Present-Value (PV) dependency constraint: the presence of a property de-
pends on the value of the base property;

• Value-Present (VP) dependency constraint: the accepted set of values for a
property depends on the presence of the base property;

• Value-Value (VV) dependency constraint: the accepted set of values for a
property depends on the value of the base property.

We elaborate on the four kinds of dependency constraints in the rest of this
section.

2.1.2.1 Present-Present Dependency Constraints

Table 2.2 shows an example of a PP-dependency constraint in the Facebook API.
It shows an excerpt of the entry point in the Facebook Graph API to post a
status updatevi. When the status update is a link, the API provides extra prop-
erties that can be used to give extra information to accompany that link: a name,
caption and description or picture. These four properties may only be in-
cluded when link (the base property) itself is also present. Thus, we say that the
link property is the base property for these four other properties in a dependency
constraint.

There are two ways to identify a list in the Twitter APIvii: A developer can
either provide the ID of the list, or provide a slug (a URL-friendly version of
the list name). In the case where the list is identified using a slug, the properties
owner id and owner screen name must also be provided. Moreover, those two
properties are only taken into account if the slug property is present as well. Note
that this is actually a combination of two inter-property constraints: Section 2.2
elaborates on this.

14

[2.1] Categories of Inter-property Constraints

Table 2.2: Dependent constraints in the Facebook API

Property name Optional? Description
link optional The URL of a link to attach to the post.

Additional fields associated with link are
shown below.

picture optional Determines the preview image associated
with the link.

name optional Overwrites the title of the link preview.
caption optional Overwrites the caption under the title in the

link preview.
description optional Overwrites the description in the link pre-

view

2.1.2.2 Present-Value and Value-Present Dependency Constraints

A second and third category of dependency constraints are present-value depen-
dency constraints (PV-dependency constraint) and value-present dependency con-
straints) (VP-dependency constraints) on properties. In this category, the pres-
ence of absence of a property depends on the value of another property, or the
other way around. In other words, the value of a property imposes a presence
constraint on another property, or the presence of a property imposes a constraint
on the allowed values of another property. PV-constraints can always be trans-
lated to VP-constraints and the other way around, as P -> V is equal to
¬V -> ¬P.

An example of a PV-dependency constraint can be found in the Google Maps
API, which among others provides functionality to render directionsviii. To cus-
tomise the rendered directions, Google provides several options. The property
infoWindow can be used to customise the way information is rendered when a
position marker is clicked. However, the property infoWindow is ignored when
suppressInfoWindows is true. Conversely: the presence of infoWindow depends
on the value of suppressInfoWindows.

The YouTube API contains another example of a PV-dependency constraint.
When managing the moderator status of commentix, comments of a specific author
can be automatically banned using the banAuthor property. This parameter is
only valid if the moderationStatus property (which indicates the status of the
comment itself) is also set to “rejected”.

Searching for an item using the Amazon Product Advertising APIx relies heav-

15

[2] Inter-property Constraints

ily on present-value dependency constraints: not all properties are relevant to
certain kinds of searches. The searchIndex property is the main property: it
indicates the product category for the search. Several other properties only make
sense for certain values of searchIndex: the property power (which is a kind
of book search) can only be used when the searchIndex is set to “books”. The
properties condition, minimumPrice and maximumPrice can only be used when
the searchIndex is different from “all” and “blended”.

When the result of a search has to be sorted by distance, the Google Maps
APIxi also imposes an PV-dependency constraint: when the property rankBy is
set to “distance”, the location property is required. Moreover, this also requires
the absence of two other properties: radius and bounds.

Next to web APIs, PV-dependency and VP-dependency constraints are also
found in other libraries and APIs. In the Chart.js library, a JavaScript library to
draw charts, the property lineTension will be ignored if the steppedLine value
is set to anything other than falsexii.

2.1.2.3 Value-Value Dependency Constraints

The third category of dependency constraints is when the set of allowed values
for a property depends on the value of another property.

In the previous section, we have shown that the Amazon API for product
advertisement contains several PV-dependency constraints. The API also contains
a VV-dependency constraint: when searching for an item, the property condition
cannot be set to “new” when the availability property is set to “available”.

Another example of a VV-dependency constraint is when there are two prop-
erties to indicate a time frame: startDate and endDate. The allowed values for
startDate depend on the value of endDate: it would not make sense to have a
start date after the end date.

Similarly, a banking application API might prevent transferring money from
and to the same account.

2.1.3 Double Implication Constraints

We classify inter-property constraints as double implication constraints when a
set of properties should always occur (or be omitted) together. This
corresponds to a double implication, or equivalence, between two constraints.

Table 2.3 shows a double implication constraint found in the Twitter API:
when creating a new tweetxiii, the user’s current location can (optionally) be
provided via the lat and long properties. However, it is an error to pass along

16

[2.1] Categories of Inter-property Constraints

Table 2.3: A double implication constraint in the Twitter API

Property name Optional? Description
lat optional The latitude of the location this Tweet refers

to. This parameter will be ignored unless it
is inside the range −90.0 to +90.0 (North is
positive) inclusive. It will also be ignored if
there isn’t a corresponding long parameter.

long optional The longitude of the location this Tweet
refers to. The valid ranges for longitude is
−180.0 to +180.0 (East is positive) inclu-
sive. This parameter will be ignored if out-
side that range, if it is not a number, or if
there is not a corresponding lat parameter.

only lat or only long: either both properties are included to specify the location
or both properties are omitted.

In Section 2.3.2, we show that double implication constraints are found in
many APIs. In Flickrxiv, for example, the coordinates of a person in a picture
can be provided using the properties person x, person y, person width and
person height. There is a double implication constraint on these properties: it
is optional to give the coordinates of a person, but if you do, all four properties
need to be provided.

In the Google Maps API, areas can be identified using a radius and a location.
These properties are dependent on each other, because the area can only be de-
fined when both properties are known.

Double implication constraints are not only imposed on locations: the YouTube
API imposes a double implication constraint on two properties that can only
be used when the API user is a content owner. For example, when creating a
playlistxv, the property onBehalfOfContentOwnerChannel must be present when
there is a value for the onBehalfOfContentOwner property, and the other way
around.

The Amazon Product Advertisement API has several double implication con-
straints for an item search. The Availability and Condition properties are
both optional filters when searching for an item, but both properties should only
be used together. Another double implication constraint is imposed when the
RelatedItems property is used. In that case, the RelationshipType also has to
be provided to indicate how the items have to be related. When modifying the

17

[2] Inter-property Constraints

shopping cart using the Amazon API, the quantity of an item in the shopping
cart can be modified using the properties CartItemId and Quantity. These two
properties can only be used in conjunction with each other.

2.1.4 NAND Constraints

Although most examples of inter-property constraints in this chapter are from
web API documentation, inter-property constraints also occur in other contexts.
In the Python standard library, the function os.utimexvi sets both the access and
modification time of a file. The documentation describes that the function takes
two optional parameters to set the time: times and ns. Moreover, it states that
“It is an error to specify tuples for both times and ns ”.

2.2 Combined Constraints

The previous section showed how constraints between properties can be cate-
gorised using logical connectives, more specifically: XOR, (double) implications
and NAND. However, sometimes several logical connectives between properties
need to be combined to express the constraints that are found in documentation.
Defining a combination of constraints that correctly represent the requirements
expressed in the documentation is not trivial. In this section, we provide several
examples of constraints on the presence of properties that cannot be expressed
using a single logical connective.

The following quote from the documentation of the Twitter API explains how
to refer to a user list on Twitter.

“You can identify a list by its slug instead of its list id. If you
decide to do so, note that you will also have to specify the list owner
using the owner id or owner screen name parameters.”

This sentence denotes a dependency constraint between slug (an URL-friendly
version of the list name) and two fields (owner screen name and owner id), which
have an exclusivity constraint imposed on them in turn. There is also an exclusiv-
ity constraint between these three fields (the slug and its owner) and the list id
field. Figure 2.1 shows a visualisation of this constraint.

Using logical connectives, we would like to write this down as follows:{
list id XOR slug
slug <-> (owner screen name XOR owner id)

18

[2.2] Combined Constraints

Figure 2.1: Visualisation of a combined constraint

Using present, the propositions in this logical formula denote the presence (or
absence) of a property in a request. Analogous, ¬present(x)) requires that
the property x is not part of the request properties. For example: the constraint
present(user id) XOR present(screen name) can only be satisfied when either
the ID or the name is provided as part of the request properties.

The constraint listed above is an almost literal translation from the documen-
tation to a logical formula: either the ID or the slug must be used to identify
the list (left-hand side of the AND), and in the case of a slug, either an ID or a
screen name must be used to identify the receiver. Moreover, these two properties
should only be present when slug is present as well.

However, this is subtly wrong: the constraint is also valid if every field except
slug is present. This is not the desired outcome as the owner of the slug needs
to be identified as well. In the case that all fields are present except for slug, the
logical formula showed earlier is resolved as follows:

1 (true XOR false) AND (false <-> (true XOR true))
2 true AND (false <-> false)
3 true AND true
4 true

Listing 2.1: Valuation of logical formula with all fields present except slug

It is possible to come up with alternative formulations, but the reader needs
to construct a truth table in order to convince him or herself.

Nested logical formulas often give unexpected results and should be used with
care. Instead, this constraint may be written down as a set of smaller, non-nested
constraints. This set of constraints is not as concise, but it is correct.

slug XOR list id
slug -> (owner screen name XOR owner id)
owner screen name -> slug
owner id -> slug

19

[2] Inter-property Constraints

Recalling the example where every field except for slug is present, this logical
formula is resolved as follows. This logical formula evaluates to false when all
fields except slug are present, as desired.

1 (false XOR true) AND (false -> (true XOR true)) AND
2 (true -> false) AND (true -> false)
3 true AND (false -> false) AND false AND false
4 true AND true AND false AND false
5 false

Listing 2.2: Valuation of the correct logical formula, with all fields present except
slug

During the course of experimenting with inter-property constraints (and ac-
companying examples), we found it beneficial to decompose nested constraints
into conjunctions of simpler constraints. By separating constraints that do not
strictly need to be combined, they often reflect the desired outcome better.

Section 2.1.3 listed an example of a double implication constraint in the Google
Maps API: to indicate an area, radius and location have to be used together :
present(radius) <-> present(location). However, some entry points in the
Google Maps API allow a location to be identified using bounds instead. Further-
more, when bounds is used to identify an area, the two properties radius and
location will be ignored. In those cases, it is incorrect to use a double impli-
cation constraint between radius and location, when it becomes a part of an
exclusivity constraint.

bounds XOR (radius <-> location)

This constraint will also be valid when none of the three area properties are
provided:

1 false XOR (false <-> false)
2 false XOR true
3 true

The correct logical expression for this constraint uses the AND connective
between radius and bounds:

bounds XOR (radius AND location)

This constraint resolves as follows when all three properties are absent:
1 false XOR (false AND false)
2 false XOR false
3 false

20

[2.3] Empirical Study of Inter-property Constraints in Web APIs

Section 2.1.1 contains an example of an exclusivity constraint in the Facebook
API: exactly one of message, link and place should be provided for a status
update. In Section 2.1.2, we have seen that the Facebook API puts a dependency
constraint on several properties that provide details for the link property. These
two kinds of constraints can be safely expressed by simply combining them. Note
that it is incorrect to translate the exclusivity constraint between the three kinds
of status updates as message XOR link XOR place as this is also valid when all
three arguments are true. The second part of the first formula ensures that the
case with three present status properties is not accepted. An alternative to the
notation in the listing below is to explicitly state the three allowed combinations
of the status updates.

(((message XOR link) XOR place) XOR (message AND link AND place))
picture -> link
name -> link
caption -> link
description -> link

This section shows that translating the inter-property constraints found in
documentation to logical formulas needs to be done carefully. There already
exist tools that aid in verifying whether the logical formula correctly defines the
desired constraint, such as a truth table generator1, which generates a truth table
for some logical formula. This facilitates reasoning about which combinations
of properties are accepted or rejected by the logical formula. In light of inter-
property constraints, these tools could be extended such that it generates a set of
interfaces where each interface contains a valid combination of present and absent
properties. We also envision a tool that generates inter-property constraints, given
a list of properties and a set of accepted combinations of these properties.

2.3 Empirical Study of Inter-property Constraints in
Web APIs

Many of the examples in the previous sections of this chapter contain excerpts
taken from web API documentation. In this section, we first briefly explain how
an application typically communicates with a web API. Next, we perform a small
empirical study on the presence of inter-property constraints in web APIs. Sec-
tion 2.3.2 shows the results.

1For example http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/

21

http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/

[2] Inter-property Constraints

Figure 2.2: Diagram of an interaction between a web API and an application

2.3.1 A Primer on Web APIs

In order to integrate the functionality of a web service (such as Facebook, Twit-
ter,. . .) in an application, the application needs to communicate with the web
API exposed by the web service. Figure 2.2 shows a diagram of this process. We
explain the aspects of the diagram in the following paragraphs.

The phone on the right-hand side of Figure 2.2 depicts the mobile Facebook
application, but the application may be any desktop application, web application,
or mobile application. In recent years, technologies such as Adobe PhoneGap,
Electron and React Native have enabled developers to program all platforms in the
JavaScript programming language. This language natively supports interaction
with web services.

The left-hand side of Figure 2.2 depicts the Facebook web service alongside
its API. The API provides functionality via a set of entry points. Every entry
point has a location (a URL), requirements for the input properties and produces
a result with a given shape. Typically, this information can be found in the web
API documentation.

Finally, the communication between the application and the web service can
be done by sending an HTTP request. This request identifies the user, the desired
entry point and contains the input data. If all goes well, the web service accepts
the data, performs the required operation and produces a result. Otherwise, an
error message is produced.

22

[2.3] Empirical Study of Inter-property Constraints in Web APIs

2.3.2 Results of the Empirical Study

To investigate how frequently inter-property constraints occur in web APIs “in
the wild”, we manually analysed the documentation of web APIs. For this study,
we selected the six most popular APIs of ProgrammableWeb2. This number is
based on the usage of these APIs in mashups3. Other catalogs and metrics exist,
such as API Harmony4 and Mashape’s PublicAPIs5. API Harmony lists the 5
most popular web APIs based on their usage in GitHub projects. PublicAPIs
does not mention which metrics they use for sorting APIs by popularity.

The six most popular APIs of ProgrammableWeb (in July 2018) correspond
to popular web applications and social media:

1. Google Maps JavaScript API (version 3): an API for viewing details
on maps and rendering directions;

2. Twitter REST API (version 1.1): an API of a social network website to
publish and search tweets, as well sending private messages;

3. YouTube API (version 3): an API for viewing, uploading and sharing
videos, as well as interactive features such as commenting;

4. Flickr (no versioning available, data is from 2016-06-01): an API for an
image hosting website, with functionality to upload photos and add extra
information;

5. Facebook Graph API (version 2.8): an API of a social network website
for publishing status updates on user feeds, as well as uploading and sharing
content;

6. Amazon Product Advertisement API (version 2013-08-01): an API for
looking up items on the Amazon web store, as well as managing shopping
carts.

Table 2.4 on page 27 summarises our results. For every web API, the table
lists the number of entry points that contain an exclusivity, dependency or double
implication constraint. Note that the actual amount of inter-property constraints
may be higher, because one entry point may contain several instances of a kind
of inter-property constraints. For example, the Amazon Product Advertisement

2http://www.programmableweb.com/apis/directory
3Mashups are web applications that combine functionality of different web APIs.
4https://apiharmony-open.mybluemix.net/
5https://market.mashape.com/explore

23

http://www.programmableweb.com/apis/directory
https://apiharmony-open.mybluemix.net/
https://market.mashape.com/explore

[2] Inter-property Constraints

API has 6 instances of value-present dependency constraints in the entry point
for searching items. Some entry points in Twitter also contain several exclusivity
constraints, for example when multiple users need to be identified.

Table 2.4 shows that the documentation of all six most popular web APIs
contain exclusivity constraints, as well as double implication constraints. Except
for Flickr, all APIs also have dependency constraints in their documentation. We
summarise the rest of the results of our empirical study per type of inter-property
constraint category:

• Exclusivity constraints are the most common kind of inter-property con-
straint in web API documentation, with a total of 77 occurrences. Es-
pecially Twitter uses exclusivity constraints extensively: one out of three
entry points of the Twitter API contain one or more occurrences of exclu-
sivity constraints. In the YouTube API, one out of five entry points have
an exclusivity constraint imposed on their properties.

• Every API has dependency constraints in their API documentation,
apart from Flickr. Occurrences of dependency constraints are subdivided
into the three categories: present-present, value-present or present-value
and value-value dependency constraints. Dependency constraints between
the presence of two properties are the most common kind of dependency con-
straint, while only the Amazon API has instances of dependency constraints
between the value of properties.

• Double implication constraints occur in all the APIs we investigated,
but they are less often found in web API documentation compared to ex-
clusivity and dependency constraints.

To conclude, inter-property constraints are commonly found in the documen-
tation of web APIs. We have found multiple instances of exclusivity constraints,
dependency constraints and double implication constraints in the documentation
of the six popular web APIs. Exclusivity constraints were most commonly found.

2.4 Violations of Inter-property Constraints

So far, this chapter discussed the concepts behind inter-property constraints and
how to identify them. In this section we discuss a different aspect, namely the
recovery strategies employed by the largest API providers: how do they react to
unsatisfied inter-property constraints.

The empirical study in the previous section shows that inter-property con-
straints are common in web APIs. Satisfying the constraints set by the API

24

[2.4] Violations of Inter-property Constraints

providers is essential for a request to succeed. Developers have to rely on the
API provider to respond with a meaningful error message in case of a malformed
request, or they are forced to manually verify each request in the application. The
problem with the former is that this means that bugs can only be identified after
deployment of the application. Additionally, this approach requires full coverage
of every API request by the application’s test suite. Furthermore, every API
provider responds differently — and not always with an error message — to re-
quests that do not satisfy its constraints. In this section, we classify the responses
to unsatisfied inter-property constraints in three categories:

1. The API provider returns an error message: in the best-case the
API provider returns a meaningful error message whenever inter-property
constraints are not satisfied. Unfortunately, this is not always the case. For
example, when the exclusivity constraint from the YouTube API is not met
by supplying more than one filter for a playlist, the following error message
is returned: “Incompatible parameters specified in the request”. Twitter
returns a more detailed error message when a dependency constraint is not
satisfied: “You must specify either a list ID or a slug and owner”. For
unsatisfied double implication constraints, Flickr returns as error message:
“Some co-ordinate parameters were blank”.

2. The API provider makes a silent choice: API providers can opt to
tolerate certain malformed requests in order to be compatible with a wider
variety of clients. For example, Twitter does not complain when both the
screen name and user ID are passed along when sending a direct message.
However, when the screen name and the user ID belong to different users,
Twitter chooses the screen name and silently ignores the user ID instead of
raising an error. The same applies for double implication constraints present
in the Twitter API: if not all double implication properties are present, all in-
complete double implications are ignored. Similarly, Facebook just silently
ignores all the dependency properties when the base property is not pro-
vided. These kinds of errors are very difficult to debug, because the devel-
oper does not receive any feedback about the incorrect requests. Moreover,
these kinds of responses are closely linked to the particular implementation
of the API, which can be changed without warning or API version update.
This can cause code that previously ran as expected to suddenly break with-
out further explanation.

3. The API documentation is incorrect: in the case of Facebook, where
their API documentation mentions the exclusivity constraint “either link,

25

[2] Inter-property Constraints

place or message must be supplied” for publishing a status update, supplying
all properties does result in a sensible status update, where all provided
values are combined.

2.5 Conclusion

In this chapter, we have surveyed the documentation of (web) APIs and libraries
and identified the existence of inter-property constraints: constraints between a
set of properties. A constraint on one property is combined with other constraints
using the traditional operators from propositional logic. We have given several
examples of exclusivity constraints (XOR), dependency constraints (implication),
double implication constraints and NAND constraints. Correctly expressing con-
straints in documentation sometimes requires a combination of several logical
connectives.

Next to the multiple examples of inter-property constraints, this chapter shows
a small study that indicates that inter-property constraints are present in modern
web APIs. Furthermore, the way web APIs respond to requests that do not
satisfy constraints is not always well-defined. The service will either respond
with an (often vague) error message or silently ignore part of the request. These
diverse ways of responding to invalid requests stem from a divergence between the
documentation of an API and its implementation.

Ideally, there would be support for inter-property constraints in all aspects of
developing applications that use these libraries and (web) APIs. In the following
chapters, we introduce a new statically typed programming language with sup-
port for inter-property constraints. By incorporating inter-property constraints
into interface definitions, developers can rely on the type system to ensure that the
inter-property constraints are satisfied whenever they call a function. In Chap-
ter 9, we introduce a new machine-readable specification language for web APIs
that also supports inter-property constraints. In combination with the program-
ming language used to implement the client, the tools that accompany the API
specification language (such as code generators) can translate constraints from
the specification into interface definitions. This ensures continuity in the entire
web application development process.

26

[2.5] Conclusion

Ta
bl

e
2.

4:
In

te
r-

pr
op

er
ty

co
ns

tr
ai

nt
s

in
w

eb
A

PI
s

X
O

R
D

ep
en

de
nc

y
D

ou
bl

e
Im

pl
ic

at
io

n
#

en
tr

y
P

P
V

P
/P

V
V

V
po

in
ts

G
oo

gl
e

M
ap

s
Ja

va
Sc

ri
pt

A
P

I
10

1
2

0
3

11
7

T
w

it
te

r
R

E
ST

A
P

I
31

14
0

0
6

97
Y

ou
T

ub
e

D
at

a
A

P
I

11
2

2
0

5
50

F
lic

kr
A

P
I

12
0

0
0

1
20

6
Fa

ce
bo

ok
G

ra
ph

A
P

I
11

4
0

0
1

20
9

A
m

az
on

P
ro

du
ct

A
dv

er
ti

se
m

en
t

A
P

I
2

1
2

1
2

9

27

Notes

i. https://dev.twitter.com/rest/reference/post/direct_messages/new,
Twitter deprecated this entry point in August 2018;

ii. https://developers.facebook.com/docs/graph-api/reference/v2.8/user/feed,
Facebook Graph API version 2.8;

iii. https://stripe.com/docs/api/node#create_charge,
Stripe API version 2015-02-18;

iv. https://developers.google.com/youtube/v3/docs/playlists/list,
YouTube Data API version 3, 2017-11-16;

v. https://docs.microsoft.com/en-us/windows/desktop/api/netioapi/nf-netioapi
-getipinterfaceentry,
Microsoft Desktop API version 2018-05-12;

vi. https://developers.facebook.com/docs/graph-api/reference/v2.8/user/feed,
Facebook Graph API version 2.8;

vii. https://dev.twitter.com/rest/reference/post/lists/members/create,
Twitter API version January 2019;

viii. https://developers.google.com/maps/documentation/javascript/reference
#DirectionsRenderer,
Google Maps Platform API, version 3.35, 2018-12-19;

ix. https://developers.google.com/youtube/v3/docs/comments/setModerationStatus,
YouTube Data API version 3, 2017-11-16;

x. http://docs.aws.amazon.com/AWSECommerceService/latest/DG/ItemSearch.html,
Amazon Web Services Product Advertising API, version 2013-08-01;

xi. https://developers.google.com/places/web-service/search,
Google Maps Places API, version 2018-11-02;

xii. https://www.chartjs.org/docs/latest/charts/line.html#stepped-line,
chart.js API version 2;

xiii. https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post
-statuses-update,
Twitter API version January 2019;

29

https://dev.twitter.com/rest/reference/post/direct_messages/new
https://developers.facebook.com/docs/graph-api/reference/v2.8/user/feed
https://stripe.com/docs/api/node#create_charge
https://developers.google.com/youtube/v3/docs/playlists/list
https://developers.facebook.com/docs/graph-api/reference/v2.8/user/feed
https://dev.twitter.com/rest/reference/post/lists/members/create
https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/youtube/v3/docs/comments/setModerationStatus
http://docs.aws.amazon.com/AWSECommerceService/latest/DG/ItemSearch.html
https://developers.google.com/places/web-service/search
https://www.chartjs.org/docs/latest/charts/line.html##stepped-line
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post

[2] Inter-property Constraints

xiv. https://www.flickr.com/services/api/flickr.photos.people.add.html,
Flickr API version January 2019;

xv. https://developers.google.com/youtube/v3/docs/playlists/insert,
YouTube Data API version 3, 2017-11-16;

xvi. https://docs.python.org/3/library/os.html#os.utime,
Python standard library version 3.7.2.

30

https://www.flickr.com/services/api/flickr.photos.people.add.html
https://developers.google.com/youtube/v3/docs/playlists/insert
https://docs.python.org/3/library/os.html#os.utime

Chapter 3

Requirements for
Inter-property Constraints in
Programming Languages

The previous chapter introduced the concept of inter-property constraints, i.e.
constraints between multiple properties. They are common in the documentation
of (web) APIs as part of the prerequisites of API methods. As applications contain
many calls to many different APIs, manually verifying these prerequisites becomes
an error-prone task. Relying on error messages that result from incorrect API calls
is not always possible either: Section 2.4 showed that API calls with unsatisfied
inter-property constraints silently fail or return only a vague error message.

In order to help developers, we would like to automatically verify as many
constraints as possible, as early as possible. There are several approaches to
enable the automatic verification of inter-property constraints: static type systems
and manifest contracts enable compile-time verification, while runtime assertion
checkers and latent contracts enable runtime verification.

We base our approach on static type systems — and more specifically the type
system of TypeScript, a statically typed variant of JavaScript— for four reasons.
First, compile-time approaches meet the “as early as possible”-criterium. Second,
TypeScript has enjoyed massive adoption for web- and server-side applications as
a replacement for JavaScript. In 2018, GitHub marked TypeScript as its third
fastest growing language [GitHub]. Third, the fields listed in the documentation of
web APIs are often converted to data structure types, which embody a majority
of the field constraints. Finally, as this chapter will show, incorporating inter-
property constraints in a programming language will require new programming
idioms.

31

[3] Requirements for Inter-property Constraints

1 interface PrivateMessage {
2 text : string ;
3 user_id ? : number ;
4 screen_name ?: string ;
5 }

Listing 3.1: TypeScript interface for the specification in Table 2.1

TypeScript’s static type system already enables developers to automatically
verify constraints from the documentation, by translating them to types for vari-
ables. The type system checks at compile time that constraints of types are
satisfied for the variables. For object types in particular, these languages provide
guarantees about structure: which properties have to be or may be present, and
what their type is. By translating constraints on properties in the documenta-
tion of (web) APIs to object types, the type system will guarantee that these
constraints will be satisfied before the application is executed. Unfortunately,
state-of-the-art interfaces are limited to express constraints on only one property
at the time. As a result, it is impossible to express inter-property constraints:
constraints between a set of properties.

For example, in TypeScript (and also in other languages) it is impossible to
express that exactly one of user id and screen name is required. As shown
in Listing 3.1, the properties user id and screen name can only be denoted as
optional properties, using question marks.

This means that the type system also accepts objects containing none or both
of the user properties! Similarly, the double implication constraint with latitude
and longitude properties for the location of a Tweet cannot be expressed: one can
mark both properties as optional, but the type system will not reject the program
when only one property is provided.

In this chapter, we introduce a statically typed programming language with
support for object types with inter-property constraints on their properties. More
specifically, this chapter shows how inter-property constraints can be incorporated
into TypeScript1, yielding the programming language TIPC. While the examples
in this chapter are all written in TIPC, the concepts can be generalised to other
programming languages as well: this chapter compiles a list of requirements that
need to be fulfilled in order to so.

There is an impact on how objects are created and updated, as well as how
properties are accessed and updated. For every part of the object life-cycle, this
chapter explains which guarantees we expect to get from the type system. The

1We refer readers that are not familiar with TypeScript to Chapter 5.

32

[3.1] Interface Definition

overall goal is that the type system makes optimal use of the information provided
by the program about the structure of objects. We aim to have a minimal impact
on the existing expressivity of the TypeScript programming language, as well as
minimal changes to its syntax. This way, existing programs can be easily extended
with inter-property constraints.

The text in this chapter is published in Oostvogels et al. [2018b] (Section 1
and 2). Chapter 8 elaborates on type system research that enables the expression
of inter-property constraints. It shows that they have a big impact on language
expressivity or the simplicity of the type annotations in order to ensure type
soundness for objects with inter-property constraints.

3.1 Interface Definition

Introducing inter-property constraints into common object-oriented programming
languages has an impact on the way interfaces are declared. Syntax-wise, this is
the most significant difference from TypeScript and other OO-languages. Inter-
faces in TIPC consist of two parts:

• Property list: The first part of the interface declaration contains the list
of properties, together with the type for each property. Contrary to how
interfaces are defined in regular OO-languages, this part does not impose
any restrictions on the presence of these properties. As a consequence, all
properties are optional by default rather than required by default.

• Constraint list: the second part of the interface declaration contains the
constraints on properties. Objects are valid implementations of interfaces if
all its constraints are satisfied. The kind of constraints that are supported
by TIPC are limited to presence constraints.

Presence constraints in the interface definition are not limited to constraints
on a single property. Indeed, separating presence constraints from the prop-
erty list allows developers to express constraints over multiple properties as
well: constraints on the presence of a property can be combined with logical
connectives.

This allows us to express the presence constraints imposed on the interface
PrivateMessage correctly. In Listing 3.1 we could only indicate that the user
properties user id and screen name as optional. Listing 3.2 shows an example
of an interface declaration in TIPC, revisiting the Twitter specification for sending
private messages.

33

[3] Requirements for Inter-property Constraints

1 interface PrivateMessage {
2 text : string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text);
7 present (user_id) xor present (screen_name);
8 }

Listing 3.2: Twitter private messaging API properties expressed as interface with
constraints

c ∈ Constraints ::= present(n) | (c) | c ∧ c | c ∨ c | ¬c | c→ c | c↔ c | c xor c

Figure 3.1: Syntax for expressing constraints

Lines 2–4 list the three properties for PrivateMessage. Lines 6 and 7 denote
the constraints on the presence of those three properties. The PrivateMessage
interface lists two presence constraints: line 6 requires the presence of the text
property and line 7 is the inter-property constraint between screen name and
user id.

The exact syntax for defining constraints in interfaces is defined in Figure 3.1.
A required property p is indicated with present(p), an absent property with
¬present(p). The presence and absence of properties can be combined using
the following logical connectives: conjunctions, disjunctions, implications, double
implications and exclusive disjunctions. The syntax is very close to propositional
logic, which is concise, well-understood, and lends itself to exploring the space
of possible object by means of truth tables. It allows developers to describe all
presence constraints that were listed in Chapter 2, but also to create other kinds
of constraints. Constraints may only refer to properties defined in the interface
or any of its superinterfaces.

As opposed to TypeScript and many other languages — where properties are
required by default but can be made optional with a ? annotation — properties
in TIPC are optional by default. This is a consequence of moving all constraints
on the presence of properties to the second part of the interface definition. Note
that the constraint definition language does not list optional properties as an
explicit constraint operation, as this can be expressed by the following constraint:
present(n)∨¬present(n). This constraint is a tautology, and can thus be omitted

34

[3.1] Interface Definition

Figure 3.2: Visualisation of a combined constraint

from the constraints of an interface definition.
Although the syntax for defining constraints is fairly straightforward, writing

correct constraints remains the responsibility of the developer. Section 2.2 showed
that caution is advised when constructing inter-property constraints: especially
combined constraints need to be composed carefully. Developers can always check
whether the intended constraints correspond to the constraint definition, using
truth table generators.

At the very least, the developers need to ensure that the set of constraints
is satisfiable: there should be at least one combination of present and absent
properties that satisfies the constraints.

Listing 3.3 shows another example of inter-property constraints. It describes
an interface Tweet with four properties: the text for the tweet, a picture and
lat and long to indicate the location. The text is a required property, which
is indicated with the constraint on line 7. The picture and location properties
are optional. The inter-property constraints on this interface are visualised in
Figure 3.2. The properties lat and long are dependent on the picture property:
if the picture itself is not provided, the location has to be omitted as well. In
other words: the presence of the location properties implies that the picture must
be present as well. These constraints are defined on lines 8 and 9. Moreover, the
latitude and longitude properties are present or absent together, which is indicated
by the constraint on line 10.

Before we explore the repercussions of the new interface definition, we briefly
discuss why existing language features do not suffice:

Defining interfaces with inter-property constraints using union types
This section shows a new kind of interface definition to enable the definition
of inter-property constraints. An alternative to this approach is to use existing
interface definitions and combine them using a union type. With this approach,
each interface definition encodes one valid combination of present and absent

35

[3] Requirements for Inter-property Constraints

1 interface Tweet {
2 text : string ;
3 picture : string ;
4 lat : number ;
5 long : number ;
6 } constraining {
7 present (text);
8 present (lat) → present (picture);
9 present (long) → present (picture);

10 present (lat) ↔ present (long);
11 }

Listing 3.3: Interface with dependency and double implication inter-property con-
straints

properties. For example, the presence constraints for a Twitter private message
can be translated to a union of two interfaces: one with the properties text and
user id, and one with the properties text and screen name.

At first sight, this looks like a feasible alternative to the interface definitions
proposed in this section. However, this approach is only achievable for interfaces
with a small number of constraints. As the number of constraints grow, the
complexity increases as well. For example, adding a member to a list in Twitter
imposes two inter-property constraints: the exclusivity constraint on the user ID
and screen name (to identify the member) and the complex constraint to identify
the list (as explained in Section 2.2). Combining these constraints results in
6 valid combinations of present and absent properties! Therefore, this approach
would result in a set of interfaces in which developers themselves need to distil the
constraints between properties. By defining constraints explicitly in the interface
definition, it is clear which presence constraints are imposed on the properties.

Function definitions with inter-property constraints In this chapter, inter-
property constraints are incorporated in interface definitions. Similarly, inter-
property constraints can also be imposed on the arguments of function definitions.
The requirements in this chapter – which discuss the creation and assignability
of objects as well as the accessing and updating rules of their properties – can
be applied to functions and their arguments as well. Note that function over-
loading suffers from the same disadvantages as the ones discussed in the previous
paragraph.

Moreover, function overloading suffers from an additional problem, as over-
loading relies on the dispatching of types. For example, an exclusivity constraint

36

[3.2] Creating Interface Instances from Object Literals

on two numbers would result into two functions where each function has one
argument with type number. In this case, it is impossible to rely on function
overloading.

3.2 Creating Interface Instances from Object Literals

When an object literal is assigned to an expression of an interface type, TIPC
ensures that the object literal satisfies the interface constraints.

Listing 3.4 shows how three objects are created and assigned to three variables
of type PrivateMessage. Note that, even though the interface contains inter-
property constraints, the object creation does not change for the programmer on
a syntactical level. To type check this code snippet properly, the type system has
to verify that the interface constraints are satisfied for that object. In the example,
the first object (msg1) satisfies all constraints: text is present, and the exclusivity
constraint is satisfied as well: only user id is passed along as identification for
the user. However, the type system will generate errors for msg2 and msg3, as
they both violate the exclusivity constraint.

1 let msg1: PrivateMessage = {text: "Hello", user_id : 42}; // correct
2
3 let msg2: PrivateMessage = {text: "Hello"};
4 // error: the constraint (user_id xor screen_name) is not satisfied
5
6 let msg3: PrivateMessage = {text: "Hello",
7 user_id : 42,
8 screen_name : "Alice"};
9 // error: the constraint (user_id xor screen_name) is not satisfied

Listing 3.4: Creating objects with inter-property constraints

Requirement 1. Instantiating Interfaces with Object Literals

The type system allows the instantiation of an interface with an object
literal only when that object literal satisfies the interface constraints.

It is straightforward to statically verify which properties are present and ab-
sent when there is a fresh object literal on the right-hand side of the assignment.
However, it becomes more difficult to verify when the right-hand side of the as-
signment contains an object literal that is created earlier in the program (i.e. not
fresh). Some object-oriented programming languages (such as TypeScript) employ

37

[3] Requirements for Inter-property Constraints

width subtyping2, which allows objects to contain more properties than listed in
their type. Because of width subtyping, the type of the object on the right-hand
side of the assignment might not exactly match with the actual properties of the
object at runtime.

The following listing shows an example. First, an object literal with all three
private message properties is assigned to a variable whose type is an object lit-
eral type containing only text and user id. In object-oriented languages with
width subtyping (such as TIPC), this is a valid assignment. As a consequence of
supporting width subtyping, TIPC rejects the second assignment. On first sight,
an object of type {text: string, user id: number} satisfies the constraints of
PrivateMessage, but at runtime this instance of PrivateMessage would contain
all three properties.

1 let obj: {text: string , user_id : number }
2 = {text: "Hello", user_id : 42, screen_name : "Alice"};
3 // allowed by type systems with width subtyping
4
5 let msg4: PrivateMessage = obj;
6 // rejected by the type system even tough the type
7 // of ‘obj ’ only contains one of the user properties

Listing 3.5: Width subtyping complicates verifying inter-property constraints

In order to remain compatible with existing applications written in TypeScript,
TIPC has to support width subtyping. However, in the light of inter-property
constraints, TIPC also needs to ensure that the runtime value of any object with
inter-property constraints imposed om them will never contain more properties
than allowed by the constraints.

3.3 Accessing Object Properties

When inter-property constraints are involved, accessing object properties requires
extra caution. When a type system allows a property access, a developer can
assign new values to this property, given that their types are compatible. There-
fore, it is crucial that the type system assigns a type to the property access that
corresponds to the actual value of the property.

Required properties (i.e. a property p in an interface with a present(p) con-
straint) are guaranteed to be present in the object. When they receive a new value
of the same type, none of the constraints will be affected. Absent properties (i.e.
a property in an interface with a ¬present(p) constraint) are guaranteed to be

2A detailed explanation of width subtyping can be found in Section 5.4.

38

[3.3] Accessing Object Properties

absent in the object. In TypeScript and TIPC, a property p is treated as absent
when it is not a part of the object or when its runtime value is equal to undefined.
Thus, an absent property may only receive undefined as a new value.

In some cases, it is impossible to infer whether a property is present or ab-
sent. For example, when the only constraint of an interface is present(a) ->
present(b), there is no guarantee that a or b will be present or absent. In this
case, it is impossible to assign an exact type that will correspond to the value of
that property. Therefore, TIPC rejects accesses to those kinds of properties in
order to preserve type safety.

Requirement 2. Property Access

The type system assigns a type to a property access expression that cor-
rectly reflects the value of that property. When it is impossible to predict
the exact type of the property, the type system rejects the property access.

Listing 3.6 shows a couple of examples of accessing properties of a
PrivateMessage object. The property text in the PrivateMessage interface is a
required property and thus it is certain this property is always present in objects of
type PrivateMessage. Thus, TIPC allows the access of text (line 2) and assigns
the corresponding type. By contrast, TIPC rejects accessing the user properties of
a PrivateMessage object. The exclusivity constraint guarantees that exactly one
of user id and screen name will be present, but it is not known which property
actually is present.

1 function getInfoPM (msg: PrivateMessage) {
2 msg.text; // :: string
3 msg. user_id ; // error: user_id not guaranteed to be present
4 msg. screen_name ; // error: screen_name not guaranteed to be present
5 // ...
6 }

Listing 3.6: Accessing properties

When the presence or absence of a property cannot be inferred from the pres-
ence constraints, the developers cannot access or update that property. However,
a common pattern in dynamic languages such as JavaScript and languages with
optional properties such as TypeScript is to perform tests that verify whether a
property is present or absent.

39

[3] Requirements for Inter-property Constraints

1 function getUser (msg: PrivateMessage) {
2 if (msg. user_id !== undefined) {
3 msg. user_id ; // :: number (present due to if statement)
4 msg. screen_name ; // :: undefined (not present due to xor constr .)
5 } else {
6 msg. user_id ; // :: undefined (not present due to if stmnt .)
7 msg. screen_name ; // :: string (present due to xor constraint)
8 }
9 // ...

10 }

Listing 3.7: Accessing properties

Requirement 3. Presence Test

The type system extracts run-time type information from if statements
and takes it into account when verifying property accesses.

When an if statement tests the presence of a property, this property can be
safely accessed inside the consequent of that if statement. Moreover, the inverse
(property absence) has to be taken into account in the else statement of that
if statement. On top of that, the extra knowledge from the if statement may
trigger extra knowledge on the presence of other properties. The type system of
TIPC infers these implicit presence or absence of properties and takes them into
account when properties are accessed.

For example, the function getUser in Listing 3.7 first performs a test to check
whether user id is present. Inside the true branch, access to the user ID (line 3) is
allowed by TIPC. In the false branch, the user id is absent, which is indicated by
the TIPC by assigning undefined to msg.user id. Additionally, because there
is an exclusivity inter-property constraint between user id and screen name,
the screen name property is guaranteed to be absent in the true branch, even
though the programmer did not explicitly test for it. Therefore, TIPC assigns
undefined to msg.screen name, instead of disallowing that property access. The
inverse holds in the false branch: given the absence of user id, screen name will
certainly be present and is thus typed as string.

Testing the presence of one property may indirectly give information on the
presence of other properties. Listing 3.8 shows a function getLocation, which
retrieves the longitude and latitude of a picture. Inside the function, there is one
if statement that verifies the presence of long. TIPC allows the access of long
(line 3), which follows directly from the if statement. On top of that, TIPC also

40

[3.4] Assigning Instances of Interfaces to Others

1 function getLocation (picture : Picture) {
2 if (picture .long !== undefined) {
3 picture .long; // :: number (present due to if statement)
4 picture .lat; // :: number (present due to group constr .)
5 picture . picture ; // :: string (present due to dependency constr .)
6 }
7 // ...
8 }

Listing 3.8: Accessing properties

accepts accessing the properties lat and picture, which are both guaranteed to
be present if long is present.

3.4 Assigning Instances of Interfaces to Others

Earlier in this chapter, we showed how objects are assigned to variables of certain
interface types. Next to objects, variables of interface types can also be assigned
to other variables of interface types. There are two strategies an object-oriented
language can chose from for verifying assignments: based on the name of the object
type (nominal typing) or based on the structure of the object type (structural
typing). The most interesting strategy is structural typing. When interfaces are
structurally typed, this means that two interfaces variables can be assigned to
each other as long as they are structurally compatible3.

In TIPC, interfaces have complex constraints which express the presence of
properties. These constraints have to be taken into account when comparing the
structure of two interfaces. On the constraints level, the type system only allows
objects with stricter presence constraints to be assigned to variables with less
strict presence constraints.

Requirement 4. Assigning Instances of Interfaces to Variables of
Interface Types

The type system ensures that no constraints are violated when an interface
instance is assigned to a variable of an interface type.

For example, Listing 3.9 contains an alternate version of the PrivateMessage

3 A more detailed explanation on structural and nominal typing in TypeScript can be found
in Section 5.4.

41

[3] Requirements for Inter-property Constraints

1 interface PrivateMessageId {
2 text : string ;
3 user_id : number ;
4 } constraining {
5 present (text);
6 present (user_id);
7 }

Listing 3.9: Stricter version of the PrivateMessage interface

interface: PrivateMessageId is similar to PrivateMessage but requires the prop-
erty user id to identify the receiver of the private message. TIPC allows an
assignment of a PrivateMessageId object to variables of type PrivateMessage,
because every PrivateMessageId object will also be a valid PrivateMessage
object. However, TIPC rejects assignments in the other way: not every valid
PrivateMessage object will use the user id to identify the receiver.

Interface instances can also be assigned to anonymous object types. Given the
advanced rules on the presence of interface properties, this must also happen with
extra caution.

Requirement 5. Assigning Interface Instances to a Variable of an
Object Literal Type

The type system ensures that all properties listed in the type of the object
literal are present in the interface instance.

Listing 3.10 shows two assignments from interface instances to variables of ob-
ject literal types (line 3 and 5). On line 3, a PrivateMessage interface instance
is assigned to a variable of type {text: string}. TIPC accepts this assignment,
as text is a required property in PrivateMessage and thus certainly present.
On the other hand, TIPC rejects the assignment on line 5: the object type at
the left-hand side of the assignment expects a text and a user id, but it is not
guaranteed that the user id will be present in a PrivateMessage object.

3.5 Updating Object Properties

As with every object-oriented type system, the assignment of a new value to a
property of an object should only be allowed when the value is of the “correct”

42

[3.5] Updating Object Properties

1 let pm: PrivateMessage = ...;
2
3 let o1: {text: string } = pm; // correct
4
5 let o2: {text: string , user_id : number } = pm;
6 // error: unknown whether user_id is present in pm

Listing 3.10: Assigning interface instances to variables of object literal types

type. Inter-property constraints add an extra complication: assigning to a prop-
erty might invalidate an inter-property constraint.

Requirement 6. Property Update Requirement

The type system ensures that an updated property does not affect the
constraints (partly) imposed on that property.

In general, a type system accepts an assignment expression when the type of
the right-hand side is assignable to the type of the left-hand side. In the face of
inter-property constraints, there are three cases to consider:

Updating a present or absent property. Given the property accessing rules
of Section 3.4, assignment remains fairly straight-forward, even with the exis-
tence of inter-property constraints. As TIPC assigns its intended type to required
properties, these can safely receive another value of its intended type without
invalidating a constraint: the constraint was certainly present beforehand and
remains present after the assignment. However, caution is required when defin-
ing the assignment compatibility relationship between two types: it is crucial for
inter-property constraints that present properties cannot become absent during
an assignment! Therefore, TIPC ensures that the value undefined cannot be as-
signed to types other than type undefined, as this would allow present properties
to go absent. This is known as the strict null-checks mode in TypeScript, which is
explained in more detail in Section 5.5. In the same vein, TIPC allows the value
undefined only to be assigned to type undefined to ensure that absent proper-
ties do not become present. Given the strict null-checks rules, absent properties
can only be updated with the undefined value which ensures they stay absent.

Listing 3.11 illustrates these rules with several examples. Line 2 updates the
required property msg.text, which is thus guaranteed to be present: according
to the property accessing rules, TIPC assigns the type string to this property

43

[3] Requirements for Inter-property Constraints

1 function setMsg (msg: PrivateMessage , text:string , user_id : number) {
2 msg.text = text; // ok
3 msg.text = undefined ; // error: assigning undefined to
4 // present property
5 msg. user_id = user_id ; // error: property with unknown
6 // presence status
7
8 if (msg. user_id !== undefined) {
9 msg. user_id = user_id ; // ok

10 msg. screen_name = undefined ; // ok
11 }
12 // ...
13 }

Listing 3.11: Updating properties

access. Therefore, we can safely assign a new string to this property. As already
explained, TIPC rejects assignments of undefined to types other than undefined,
such as on line 3. The update of the user id property on line 5 will also fail:
TIPC disallows the property access, as explained in the previous section.

The if statement on line 8 verifies the presence of msg.user id. As a conse-
quence, the ID is known to be present inside the true branch, and can be safely
updated with a new number (line 9). Moreover, the screen name will certainly be
absent inside the true branch: the type system may only allow the assignment of
undefined to msg.screen name (line 10).

Adding an absent property or removing a present property Removing
a present property or adding a previously absent property needs to be done with
care in TIPC. Only truly optional properties that are not part of any constraint,
can safely change their presence status. However, when a property is part of an
inter-property constraint, changing the presence status of a property could affect
other properties. This is discussed in the following paragraph.

Updating a property that is part of an inter-property constraints Up-
dating an inter-property constraint often requires the modification of several prop-
erties at once, as the object could be in a type-incorrect state in-between several
assignments. Let us consider the case in Listing 3.12 where a programmer wants
to switch from identifying the receiver by user ID to screen name. This code snip-
pet first verifies whether the receiver is identified using its ID. If that is the case,
the code snippet first removes the user ID (by assigning the value undefined,
making it an absent property) and adds a screen name instead. TIPC rejects

44

[3.5] Updating Object Properties

1 let msg: PrivateMessage = {text: "Hello", user_id : 42};
2 if (msg. user_id !== undefined) {
3 msg. user_id = undefined ;
4 msg. screen_name = "Alice";
5 }

Listing 3.12: Changing an inter-property constraint is not possible with separate
assignments

this program: both assignments break the rules imposed by the strict-null check-
ing mode. This behaviour is desirable: in-between lines 3 and 4, the exclusivity
inter-property constraint on msg is violated: it contains neither a user ID nor a
screen name. The next section elaborates on simultaneous updating of properties
to solve this problem.

3.5.1 Updating Multiple Properties Simultaneously

Updating a property part of an inter-property constraint requires a language con-
struct that updates multiple properties simultaneously. This ensures that the
object is never in an invalid intermediate state between consecutive assignment
statements. To enable this, TIPC has a function assign(i, o) that returns a
copy of object i, in which the properties from the object o are added or updated.
assign resembles the Object.assign function in JavaScript, but does not modify
its input object: instead of modifying its first arguments, it returns a new object.

Listing 3.13 shows two examples of a multi-update, using assign. Line 3-
4 shows an assign call that switches from user ID to screen name to identify
the receiver of a private message. While programmers can update any subset of
the properties of an object, not all combinations are correct. The second call to
assign (line 6-7) shows an example of an invalid multi-update: only the user ID
is updated (becoming absent). This kind of multi-update is rejected by TIPC, as
it would invalidate the exclusivity constraint of PrivateMessage.

1 let msg: PrivateMessage = {text: "Hello", user_id : 42};
2
3 let msg2: PrivateMessage = // correct
4 assign (msg , { user_id : undefined , screen_name : "Alice"});
5
6 let msg3: PrivateMessage =
7 assign (msg , { user_id : undefined }); // incorrect

Listing 3.13: Using multi-assign to switch from user ID to screen name

45

[3] Requirements for Inter-property Constraints

(a) PrivateMessage

picture

lat long

-> ->

<->

text

(b) Tweet

Figure 3.3: Visualisation of constraints

Requirement 7. Simultaneous Update of Properties

The type system provides a means to safely update properties that are part
of an inter-property constraint. A multi-update call is only accepted by the
type system when all relevant properties are part of the update.

Intuitively, if an inter-property constraint exists between two or more proper-
ties, they have to all appear together in the call to assign. The properties of an
object can thus be divided into one or more “clusters” that need to be updated
together.

When constraints are visualised such as in Figure 3.3, clusters are easy to spot:
all properties that are linked together with one or more constraint form a cluster.

For example, there are two clusters in the PrivateMessage interface (visu-
alised in Figure 3.3a): the text property can be updated by itself, and the two
properties of the exclusivity constraint also form a cluster. The Tweet interface in
Listing 3.3 (constraints are visualised in Figure 3.3b) also has two clusters: there
is a trivial cluster for text, and a separate cluster for the long, lat and picture
properties.

3.6 Interface Inheritance

As other programming languages, TIPC also supports interface inheritance. When
an interface extends another interface, all properties and all constraints of the su-
perinterface are inherited. As a consequence, the constraints of the interface I
and all its superinterfaces need to be satisfied for an object to be valid instance
of I.

46

[3.6] Interface Inheritance

Requirement 8. Interface Inheritance

Interface definitions with inter-property constraints must be interoperable
with interface inheritance.

Let us consider the example where we want a stricter version of the inter-
face PrivateMessage in which only the screen name is allowed. Instead of
creating a new interface, we can extend the existing interface with extra con-
straints. Listing 3.14 shows an interface in which all properties and constraints
of PrivateMessage are inherited, with an additional present(screen name) con-
straint. An object of type PrivateMessageStrict needs to satisfy the constraints
of PrivateMessageStrict as well as the constraints of PrivateMessage. As the
xor constraint from PrivateMessage is still applicable, this interface implicitly
forbids the presence of a user id property.

1 interface PrivateMessageStrict extends PrivateMessage {
2 // reuse properties from PrivateMessage
3 } constraining {
4 present (screen_name);
5 }

Listing 3.14: Extending PrivateMessage to require the screen name property

Listing 3.15 shows a code snippet that uses the PrivateMessageStrict inter-
face. On lines 2 and 3 in Listing 3.15, the user properties of a PrivateMessage-
Strict object are accessed. Because of the constraint listed in the interface defini-
tion of PrivateMessageStrict, the type system allows the access of screen name
(line 2). Moreover, the type system also allows the access of user id (line 3): by
combining the present(screen name) constraint (from PrivateMessageStrict)
with the exclusivity constraint on both user properties (from the superinterface
PrivateMessage), it is certain that user id will be absent. To reflect this, the
type system assigns the undefined type to msg.user id.

1 function getInfoPMS (msg: PrivateMessageStrict) {
2 msg. screen_name ; // :: string
3 msg. user_id ; // :: undefined
4 // ...
5 }

Listing 3.15: Accessing properties of a PrivateMessageStrict instance

With the inheritance of interfaces, developers again have to ensure that the
set of constraints of all interfaces and superinterfaces is satisfiable. In the case of
PrivateMessageStrict there is exactly one combination of present and absent

47

[3] Requirements for Inter-property Constraints

properties that satisfy all constraints: text and screen name are present, and
user id is absent.

3.7 Conclusion

In this chapter we described how the typing rules for language expressions need
to be adapted in order to take inter-property constraints into account. We as-
sumed a simple interface definition that separates presence constraints from type
information. Constraints between different properties can be combined using the
traditional logical connectives from propositional logic. We investigated how this
extended interface type affected object creation, property access, object assign-
ment, and property update. This has resulted in the following requirements for
programming languages that want to support inter-property constraints. The re-
quirements form the basis of the typing rules of TIPC.

Requirement 1. Instantiating Interfaces with Object Literals

The type system allows the instantiation of an interface with an object
literal only when that object literal satisfies the interface constraints.

Requirement 2. Property Access

The type system assigns a type to a property access expression that cor-
rectly reflects the value of that property. When it is impossible to predict
the exact type of the property, the type system rejects the property access.

Requirement 3. Presence Test

The type system extracts run-time type information from if statements
and takes it into account when verifying property accesses.

Requirement 4. Assigning Instances of Interfaces to Variables of
Interface Types

The type system ensures that no constraints are violated when an interface
instance is assigned to a variable of an interface type.

48

[3.7] Conclusion

Requirement 5. Assigning Interface Instances to a Variable of an
Object Literal Type

The type system ensures that all properties listed in the type of the object
literal are present in the interface instance.

Requirement 6. Property Update Requirement

The type system ensures that an updated property does not affect the
constraints (partly) imposed on that property.

Requirement 7. Simultaneous Update of Properties

The type system provides a means to safely update properties that are part
of an inter-property constraint. A multi-update call is only accepted by the
type system when all relevant properties are part of the update.

In the next chapter we will elaborate on how the type system of TIPC meets
these requirements. As the presence constraints on properties are linked using
connectives from propositional logic, the type system will also use concepts from
propositional logic to verify the type correctness of expressions.

49

Chapter 4

Statically Checking
Inter-property Constraints

As shown in Chapter 2, inter-property constraints are commonly found in the
documentation of web APIs. Moreover, bugs that stem from unsatisfied inter-
property constraints are hard to catch. In the previous chapter, we have outlined
how constraints between properties can be incorporated into TypeScript, giving
rise to TIPC: a novel imperative object-oriented programming language. This
language design translated into a set of requirements that specify how Type-
Script’s interface definitions are modified, and how interface instances need to be
type checked. Together, these requirements statically ensure that inter-property
constraints remain satisfied throughout the program.

In this chapter, we explain how the type system of TIPC fulfils the require-
ments listed in Chapter 3. Because the constraint language expresses constraints
with logical connectives, the type system uses several concepts from propositional
logic to guarantee correctness.1

The contents of this chapter are published in Oostvogels et al. [2018b].

1The constraint-centric interfaces introduced in this chapter should not be confused with
constraint-based programming [Rossi et al., 2006]. Constraint-based programming is a discipline
that finds solutions for a number of variables given constraints over these variables. By contrast,
TIPC uses constraints and flow information to determine the most specific presence information
for properties of objects.

51

[4] Statically Checking Inter-property Constraints

4.1 Object Literals Have To Satisfy Constraints

In the previous chapter, we have seen that interfaces can be initialised with object
literals or with interface instances. For the former, we have stated the following
requirement:

Requirement 1. Instantiating Interfaces with Object Literals

The type system allows the instantiation of an interface with an object
literal only when that object literal satisfies the interface constraints.

In this section, we discuss how TIPC meets this requirement when an interface
is instantiated with an object literal. Using terminology from propositional logic,
the type system uses the concept of a valuation to meet this requirement. A valu-
ation in propositional logic is a mapping from proposition letters to truth values.
For every valuation v there exists a unique function extension v̂ which takes an
entire proposition formula and returns true or false [Gallier, 2015]. In the context
of inter-property constraints, proposition letters correspond to interface property
names, and proposition formulas correspond to a logical conjunction of interface
constraints. The type system requires that the properties in an object literal form
a valuation that satisfies the presence constraints of the interface.

Solution for Requirement 1: Valuation

Given an object literal, the valuation v assigns true to a property n of the
interface if and only if that property is present and not undefined in the
literal. The domain of the valuation is the set of properties of the interface
and its superinterfaces. All properties that are absent from the object literal
or have the value undefined are false. To test whether an object literal
satisfies the constraints, this valuation is applied to the function v̂ formed
by the interface constraints.

For example, the type system uses valuations for verifying that the following
assignment is type safe:

1 let msg: PrivateMessage = {text: "Hello", user_id : 42};

The corresponding valuation will map the properties text and user id from
the right-hand side object literal onto true. There is only one property that
is part of the property list of PrivateMessage but not part of the object lit-
eral: screen name. This property is thus set to false.

v = {text 7→ true, user id 7→ true, screen name 7→ false}

52

[4.1] Object Literals Have To Satisfy Constraints

Given this valuation, the type system can use the valuation function v̂ to ver-
ify whether this valuation satisfies the constraints of PrivateMessage, by ap-
plying this function to a propositional formula which is a conjunction of the
PrivateMessage constraints:

v̂(text ∧ (user id XOR screen name)) = true ∧ (true XOR false) = true

In the following example, an object literal with all three properties is assigned
to a variable of the PrivateMessage interface:

1 let msg: PrivateMessage = {text: "Hello",
2 user_id : 42,
3 screen_name : "Alice"};

This results in a valuation in which all three properties are mapped onto true:

v = {text 7→ true, user id 7→ true, screen name 7→ true}

When this valuation is applied to the PrivateMessage constraints, this results in
false:

v̂(text ∧ (user id XOR screen name)) = true ∧ (true XOR true) = false

If the valuation function fails, the type system rejects the assignment. In that
case, the resulting error message can indicate which constraint was not satisfied.
A more human-readable error message could clarify the constraint for developers
who did not write the interface definitions themselves. For example, an error
message for the failing assignment could look as follows:

1 ERROR: The assignment of an object with type {text: string ,
2 user_id : number , screen_name : string } to a variable with type
3 PrivateMessage failed : the constraint " user_id XOR screen_name "
4 was not satisfied .
5 Please provide exactly one of: user_id and screen_name .

When the type system constructs the valuation for an initialisation check, it
needs to have an exact representation of which properties are present and which
are not. As we explain in Section 5.4, TypeScript supports width subtyping.
As a consequence, the type system cannot guarantee that an object literal type
contains only the properties listed in that type.

53

[4] Statically Checking Inter-property Constraints

This leads to the following restriction:

Restriction: Object Literals

When an interface instance is initialised with an object literal, the right-
hand side of that assignment needs to be a fresh object literal instead of
any expression of an object literal type.

By only allowing fresh object literals (instead of also allowing object literals
created earlier in the program), the type system has an exact view of the properties
that are present and can thus guarantee that the interface constraints are satisfied.
An alternative to this restriction could be to disallow width subtyping altogether.
In that case, any variable of an object literal type could be used to initialise an
interface instance. Both approaches have advantages and disadvantages. We have
chosen for the object literal restriction, to minimise the impact of interfaces with
inter-property constraints in existing TypeScript programs.

Appendix A shows the details of a small study on web APIs. This study
indicates that the object literal restriction is not a severe restriction. The study
explored a list of GitHub projects that use an SDK to send requests to the Twitter
and YouTube API. In 163 of the 180 studied API calls, the data was provided as
an object literal. In 14 out of the 17 cases where the data argument was not an
object literal, the object was defined directly above the API call.

In the future, we plan to draw inspiration from other research to weaken this
restriction. For example, Heidegger and Thiemann [2010] propose a recency type
system to support the initialisation phase of object literals. Their type system
allows the type to change during the construction of the object. Afterwards, the
type system assigns a summary type to the object literal. Incorporating a form of
recency types into TIPC would enable us to allow recently created object literals
to be assigned to interfaces variables. However, further research is needed to
investigate the full impact of recency types (more specifically its flow-sensitivity,
heap types and strong updates) in the TIPC type system.

There are two ways the initialise an interface with an object literal: via assign-
ment or casting. To limit the complexity in the formalisations of TIPC, interface
instances can only be created using type casts. This does not limit the expressivity
of TIPC: object literals can still be assigned to interface variables as long as they
are first casted to the interface. The following code snippet shows an example:

1 let msg: PrivateMessage = <PrivateMessage >{ text: "Hello",
2 user_id : 42};

Note that the examples in this dissertation omit this type cast for brevity.

54

[4.2] Constraints Dictate Property Presence

4.2 Constraints Dictate Property Presence

As with other type systems, interface declarations contain a list of properties with
their types. However, accessing a property of an interface may only be allowed
when that property is present or absent. This information can be found in con-
straints of the interface.

Requirement 2. Property Access

The type system assigns a type to a property access expression that cor-
rectly reflects the value of that property. When it is impossible to predict
the exact type of the property, the type system rejects the property access.

Of course, with complex inter-property constraints, these constraints may not
be directly present in the constraint set. For example, the following interface
definition is a variant of the PrivateMessage interface with an extra constraint
indicating the absence of screen name. In this case, user id will always be
present in an object with this type, but the interface does not have an explicit
constraint indicating the presence of user id.

1 interface PrivateMessageExplId {
2 text : string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text);
7 present (user_id) xor present (screen_name);
8 ¬present (screen_name);
9 }

To know whether a property is present or absent given a set of constraints,
the type system uses the concept of logical entailment from propositional logic.
A logical entailment (denoted �`) verifies whether a constraint logically follows
from a set of constraints.

Accessing a property of an interface instance may only be allowed when that
property is certain to be present or absent. In other words, when accessing a
property, the presence (or absence) of a property has to follow from the interface
constraints.

55

[4] Statically Checking Inter-property Constraints

Solution for Requirement 2: Logical Entailment

• The type system assigns the intended type to a property, if that
property is certainly present, i.e.:
interface constraints �` present(property)

• The type system assigns undefined to that property, if that property
is certainly absent, i.e.:
interface constraints �` ¬present(property)

• The type system rejects the property access, if it is not certain
whether the property is present or absent.

Calculating logical entailments can be efficiently automated using deductive
systems such as the Gentzen system [Gallier, 2015].

Returning to the PrivateMessage example, the type system verifies the fol-
lowing logical entailment for accessing the text property. The constraints of
PrivateMessage are on the left of the logical entailment, and the constraint in-
dicating the presence of text is on the right. This logical entailment is obviously
true, as the presence of text is also part of the interface constraints.{

present(text)
present(user id) xor present(screen name)

}
�` present(text)

Similarly, the absence of a property can also follow from a set of constraints.
In that case, the type system can assign the undefined type to that property
to indicate its absence. This is not very useful in a normal interface with inter-
property constraints: when a property always has to be absent, it can also be
omitted from the property list. However, proving the absence of a property will
prove to be useful when taking runtime type information into account (Section 4.3)
and when comparing interface structures (Section 4.4).

In the case where neither the presence nor absence of a property can be derived
from the constraints, the type system should conservatively reject the access of
that property. This also follows from the logical entailment. For example, the type
checker rejects the function getInfoPM of Listing 3.6, because neither the presence
nor the absence of user id is a logical consequence of the interface constraints:

{
present(text)
present(user id) xor present(screen name)

}
2` present(user id)

56

[4.3] Explicit Property Presence Tests

{
present(text)
present(user id) xor present(screen name)

}
2` ¬present(user id)

In this case, the type system throws an error message which should indicate
that the property access failed. A possible solution is to encourage the developer
to first verify the presence of the property via an if test. This could look as follows:

1 ERROR: the property access of user_id failed : neither the
2 presence nor the absence can be guaranteed by the PrivateMessage
3 interface constraints .
4 Consider verifying the presence of user_id via an if test before
5 accessing it.

Note on Union Types: At first, one might think that assigning the union type
number | undefined to user id is a better solution than rejecting the property
access, as user id is either number (when present) or undefined (when absent).
However, this would lead to type-unsafe programs, as the assignment of any num-
ber or undefined to user id would be accepted by the type system. This could
change the presence status of user id without guaranteeing that inter-property
constraint on both user properties remains satisfied, and should thus be disallowed
by the type system.

Note on Gradual Types: TIPC rejects accessing properties that are not cer-
tainly present or absent. Another approach can be found in the research on
gradual type systems, which insert run-time checks between typed and untyped
code. Instead of rejecting accessing a property that is not certainly present or
absent, a gradual type system inserts a run-time check before the property access
to ensure type safety. This is discussed in detail in Section 10.3. TIPC follows the
TypeScript philosophy of leaving no type trace in the compiled JavaScript code,
and thus requires that developers write these run-time presence checks themselves.

4.3 Explicit Property Presence Tests

It is common in dynamic languages to perform tests to verify the presence of
properties at runtime, before accessing a property. However, even in a statically
typed programming language, these runtime property presence tests can provide
the type system with more information about the object being tested.

57

[4] Statically Checking Inter-property Constraints

Requirement 3. Presence Test

The type system extracts run-time type information from if statements
and takes it into account when verifying property accesses.

When an if statement verifies the presence of a property, then it is certain
that in one branch the property is present, while it is guaranteed to be absent in
the other. Moreover, the extra knowledge on the presence of one property can
also add certainty on the presence or absence of other properties. This idea is also
known as occurrence typing [Tobin-Hochstadt and Felleisen, 2008, 2010].

Solution for Requirement 3: Extra Constraints on the Premises
of the Logical Entailment

Inside the true and false branch of an if statement, the premises on the
left-hand side of a logical entailment are extended with the information
from the if statement whenever a property of the object being tested is
accessed.

In Listing 3.7 (page 40) there is an if statement that verifies the presence of
user id in a PrivateMessage object. For every property access of that object
inside the true branch of that if statement, the type system has to add the extra
information on the presence of the user ID (present(user id)) to the premises of
the logical entailment. With the extra constraint on the left-hand side, the logical
entailment will now succeed to prove the presence of user id. This way, the type
system can safely assign the intended type (number) to user id, and thus allow
the access of user id inside the true branch.

present(text)
present(user id) xor present(screen name)
present(user id)

 �` present(user id)

Similarly, the absence of the user ID in the false branch is added to the premises
of logical entailments for property accesses of that PrivateMessage instance.

58

[4.4] Interface-Interface Compatibility

Given this extended set of constraints in the premise of the logical entail-
ment, the type system can now also assign the type undefined to accesses of
screen name in the true branch: the absence of screen name follows from com-
bining the extra constraint with the exclusivity constraint of PrivateMessage.

present(text)
present(user id) xor present(screen name)
present(user id)

 �` ¬present(screen name)

Likewise, the presence of screen name will follow from the premises in the
false branch.

In Listing 3.8 (page 41), the presence check on longitude of a Picture in-
stance guarantees that the longitude is present, but also suffices to safely ac-
cess latitude (by combining the constraint present(long) ↔ present(lat) with
present(long)) and the picture itself (combining constraints present(long) →
present(picture) and present(long)).

4.4 Interface-Interface Compatibility

When an expression of a certain interface type is assigned to a variable of another
interface type, the type system has to ensure that the assignment is type safe.
Next to assignment compatibility for literal types, programming languages with
regular interfaces only need to verify whether all required properties of the left-
hand side of the assignment are certainly present in the right-hand side interface.
In TIPC, on the other hand, there can be very complex constraints on the pres-
ence of properties, and between the presence of properties.

Requirement 4. Assigning Instances of Interfaces to Variables of
Interface Types

The type system ensures that no constraints are violated when an interface
instance is assigned to a variable of an interface type.

Normally, an instance of interface Source is considered assignable to a variable
of another interface type Target if Source contains at least every property and
method in Target. However, with the addition of constraints we must also take
care that there cannot exist a valid instance of Source that violates the con-
straints in Target.

59

[4] Statically Checking Inter-property Constraints

Solution for Requirement 4: Logical Entailment

To verify the assignment compatibility of interfaces on the level of con-
straints, TIPC uses logical entailment checking. More specifically, the con-
straints of the target of the assignment need to follow from the constraints
of the source.

However, this does not suffice. The type system also needs to take the
structural differences between the property lists of the two interfaces into
account. This is achieved by adding extra absence constraints to both sides
of the logical entailment, based on the differences between the properties
of both interfaces.{

source constraints
structural differences

}
�`

{
target constraints
structural differences

}

Section 4.4.1 shows an example of the assignment compatibility between two
interfaces with identical property lists. The second and third section explain the
need for taking the differences in property lists into account in the left-hand side
(premises, Section 4.4.2) and right-hand side (consequent, Section 4.4.3) of the
logical entailment.

4.4.1 Target Constraints Follow From Source Constraints

To guarantee that all constraints of Target are satisfied, every constraint from
Target must be a logical entailment of the constraints in Source. When the
property lists of the source and target interfaces are identical in an assignment,
no extra constraints need to be generated.

The following code snippet shows an example: an instance of the interface
PrivateMessage is assigned to a variable of type PrivateMessageAll. This in-
terface is defined in Listing 4.1 and has three properties, which are all required:
text, user id and screen name.

1 let msg1: PrivateMessage = { text: "Hello", user_id : 42 };
2 let msg2: PrivateMessageAll = msg1;

The assignment on line 2 results in the following logical entailment, which
is invalid: the presence of user id as well as the presence of screen name do
not follow from PrivateMessage constraints, which require either the presence of
user id or screen name.

60

[4.4] Interface-Interface Compatibility

1 interface PrivateMessageAll {
2 text : string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text);
7 present (user_id);
8 present (screen_name);
9 }

Listing 4.1: Variant of the PrivateMessage interface

{
present(text)
present(user id) xor present(screen name)

}
2`

present(text) ∧
present(user id) ∧
present(screen name)

As the logical entailment fails, the type system will reject the assignment.
The following code snippets shows an example of what the corresponding error
message could look like.

1 ERROR: the assignment of a PrivateMessageAll expression to a
2 PrivateMessage expression is invalid .
3 The presence of user_id and the presence of screen_name do
4 not follow from the PrivateMessage interface constraints .

4.4.2 Structural Differences: Premises

When an interface instance is assigned to an expression with an interface type,
the constraints of the target interface have to follow from the constraints of the
source interface. When the Target interface has properties that are not part of
the property list in Source, these properties are certainly absent in the Source.
It is useful to add this knowledge to the premises of the logical entailment, as it
allows more conclusions to be deduced from the premises.

The previous chapter showed an example of when this is useful. It intro-
duced a variant of the PrivateMessage interface called PrivateMessageStrict
(defined in Listing 3.9), in which only the user id may be used to identify the
receiver. Assigning a variable of the stricter interface type PrivateMessage-
Strict to a variable of type PrivateMessage, gives rise to the following logical
entailment. The premises contain the constraints of the source of the assignment
(PrivateMessage) and the consequent of the logical entailment contains the con-
straints of the target (PrivateMessage).

61

[4] Statically Checking Inter-property Constraints

Next to the constraints of PrivateMessage, the premises of the logical en-
tailment contain an extra constraint. This constraint denotes the absence of the
screen name in the PrivateMessageStrict interface. Without the third con-
straint, the logical entailment would not be valid.

present(text)
present(user id)
¬present(screen name)

 �`
present(text) ∧

present(user id) xor present(screen name)

4.4.3 Structural Differences: Consequent

In Section 4.1, we have discussed the need for restricting the initialisation of
interfaces to object literals. This restriction is necessary to prevent the existence
of hidden properties in objects. The same kind of restriction is necessary when
interface instances are assigned to each other: the type system has to ensure that
—at runtime— there are no properties in the object that are not a part of the
property list of the target interface.

To ensure that there are no hidden properties, the consequent of the logical
entailment for an assignment needs to be extended. For every property that is
listed in the source interface but that is not part of the target interface, the absence
of that property should follow from the source constraints.

Note that this kind of restriction is more generous than requiring the property
lists to be identical. Especially with objects inside of if statements that verify
the presence of properties, it is likely that an interface lists a property that inside
the if statement is known to be absent.

Restriction: Interfaces Do Not Allow Width Subtyping

As a consequence of this compatibility strategy, TIPC does not support
width subtyping for its interfaces. Evidently, width subtyping is irreconcil-
able with a type system that requires the absence of properties. Therefore,
the type system has to (counter-intuitively) require that the source inter-
face only contains properties other than those in the target interface when
those properties are guaranteed to be absent.

The following code snippets shows an example of the need for disallowing
interface width subtyping. It contains three interfaces: the previously defined
interface PrivateMessage, a new interface PrivateMessageId (see Listing 3.9 on
page 42, a variant of the private message interface where the receiver has to be
identified using the user ID) and the interface PrivateMessageAll (see Listing 4.1

62

[4.5] Interface-Object Compatibility

on page 61, a variant where the receiver is identified with both the user ID and
the screen name).

1 let msg1: PrivateMessageAll = { text: "Hello", user_id : 42,
2 screen_name : "Alice"};
3 let msg2: PrivateMessageId = msg1;
4 let msg3: PrivateMessage = msg2;

The first line contains the initialisation of a PrivateMessageAll object. Next,
it is assigned to a variable of type PrivateMessage. On the last line of the
code snippet, the PrivateMessageId instance is assigned to a variable of the
PrivateMessage interface type. In order to guarantee type safety in TIPC, this
code snippets needs to be rejected: the object msg3 has type PrivateMessage,
but contains both user id and screen name, violating its constraints. The type
system of TIPC prevents this scenario by disallowing width subtyping on inter-
faces: this way, the type system considers the second assignment (line 3) invalid,
ensuring the inter-property constraints remain satisfied.

The following logical entailment is performed by the type system when veri-
fying the second assignment (line 3). The third constraints in the consequent of
the logical entailment is generated because of the structural differences between
PrivateMessageAll and PrivateMessageId, and is the cause for the invalid log-
ical entailment, and thus the cause for rejection of that assignment by the type
system.

present(text)
present(user id)
present(screen name)

 2`

present(text) ∧
present(user id) ∧
¬present(screen name)

As this logical entailment fails due to generated constraints (unbeknownst to
developers), it is important that the corresponding error message clearly indicates
why the assignment fails. An example of such an error message could be:

1 ERROR: The assignment of a PrivateMessageAll expression to a
2 PrivateMessageId expression is invalid .
3 Because screen_name is not part of the PrivateMessageId
4 interface , its absence needs to follow from the
5 PrivateMessageAll constraints .

4.5 Interface-Object Compatibility

The previous chapter listed the following requirement for the type system for as-
signing an expression of an interface type to a variable of a regular object type.

63

[4] Statically Checking Inter-property Constraints

Requirement 5. Assigning Interface Instances to a Variable of an
Object Literal Type

The type system ensures that all properties listed in the type of the object
literal are present in the interface instance.

In TIPC, all properties in an object literal type are required properties. As a
consequence, the properties of the object literal type all have to be present in the
interface type as well.

Solution for Requirement 5: Logical Entailment

For every property p in the object literal type (target), the following logical
entailment needs to be true:

{interface (source) constraints} �` present(p)

In the example in Listing 3.10 of Chapter 3 (page 43), an expression of interface
type PrivateMessage is assigned to a variable of the object literal type {text:
string, user id: number}. This assignment is rejected by the type system, as
the corresponding logical entailment is not valid:

{
present(text);
present(user id) xor present(screen name);

}
2`

present(text) ∧
present(user id)

The corresponding error message has to clearly explain why this assignment
failed:

1 The assignment of a PrivateMessage expression to an expression
2 with type {text: string , user_id : number } is invalid .
3 The interface constraints of PrivateMessage have to guarantee
4 the presence of the properties text and user_id .

Note that for object literal types, width subtyping is still allowed in TIPC.
For example, the type system will accept an assignment where an instance of
PrivateMessage is assigned to a variable of the object literal type {text: string},
as the corresponding logical entailment is valid.

{
present(text);
present(user id) xor present(screen name);

}
�` present(text)

64

[4.6] Updated Objects Have To Satisfy Constraints

4.6 Updated Objects Have To Satisfy Constraints

As TIPC is a programming language with complex presence constraints on in-
terface properties, the type system has to take constraints into account when
updating properties:

Requirement 6. Property Update Requirement

The type system ensures that an updated property does not affect the
constraints (partly) imposed on that property.

Given the property accessing rules imposed by the type system, updating a single
property of an object is quite straightforward.

Solution for Requirement 6: Assignment Compatibility

The updating of one property does not need any constructs of propositional
logic. The type of the right-hand side expression of the assignment simply
needs to be assignable to the type of the left-hand side. As already ex-
plained in Section 3.5, the strict null-checks are crucial to ensure present
properties do not become absent (and the other way around).

In the previous chapter, we have also introduced a new language construct in
TIPC: assign, which allows updating multiple properties at once. It expects two
objects as parameters and returns a copy of the first parameter in which proper-
ties of the second argument are updated or added. This is especially useful in the
context of inter-property constraints, where switching between one valid combina-
tion of properties to another using single-property updates results in intermediate
invalid objects.

Requirement 7. Simultaneous Update of Properties

The type system provides a means to safely update properties that are part
of an inter-property constraint. A multi-update call is only accepted by the
type system when all relevant properties are part of the update.

To verify that all constraints are still satisfied after a simultaneous update
of multiple properties, the type system again uses valuations. Valuations were
already used to verify the initialisation of an object (Section 4.1). However, the

65

[4] Statically Checking Inter-property Constraints

1 interface PrivateMessage1 {
2 text : string ;
3 r_user_id : number ;
4 r_screen_name : string ;
5 s_user_id : number
6 s_screen_name : string ;
7 } constraining {
8 present (text);
9 present (r_user_id) xor present (r_screen_name);

10 present (s_user_id) xor present (s_screen_name);
11 }

Listing 4.2: Variant of the PrivateMessage interface with sender and receiver

use of valuations for assign calls is slightly different:

Solution for Requirement 7: Valuations

The multi-update in TIPC only affects a subset of the properties of an
object. Therefore, the second argument of assign must only serve as a
valid valuation of a subset of properties and constraints of the interface.

This subset is the smallest possible subset of properties and closed constraints
that contains all properties that are part of the update and all constraints in-
volving those properties. This transitive closure can be calculated as follows:
start with a subinterface which contains only the properties being updated. Next,
repeatedly add all constraints which contain any of the properties in the subinter-
face, and any properties mentioned by these constraints, until no more properties
or constraints can be added.

Evidently, the types of properties in the object literal must conform to those
defined in the interface (with the exception of undefined properties). Note that an
update is only valid when all properties of the relevant subset (henceforth called
cluster) are updated.

Consider the variant of the PrivateMessage interface defined in Listing 4.2
which indicates both the sender (with either s user id or s screen name) and the
receiver (either r user id or r screen name) of a private message. This interface
contains three constraints: text is a required property, and there is an exclusivity
constraint for both the sender and receiver properties.

66

[4.7] Conclusion

Logically, these properties form separate clusters that do not affect each other:

1. text can be updated separately;

2. s user id and s screen name have to be updated together;

3. r user id and r screen name have to be updated together.

The following code snippet creates private message with a sender and a receiver.
Afterwards, the receiver of the private message is updated using assign on line
3. The second invocation of assign is an invalid one: only a part of the cluster
is being updated.

1 let msg1: PrivateMessage1 = { text: "Hello",
2 r_user_id : 42, s_user_id : 43};
3 let msg2 = assign (msg , { r_user_id : undefined ,
4 r_screen_name : "Alice"}); //OK
5 let msg3 = assign (msg , { r_screen_name : "Alice"}); // ERROR

The first assign call in this code snippet only updates the receiver of the
private message. Therefore, the constraints for the sender side do not have to be
taken into account. The assign operation type checks if the object literal (the
second argument of assign is a valid valuation of the constraint on line 9. This
is the case, as undefined is interpreted as an absent property.

The second assign call is rejected by the type system: it only updates the
screen name property of the private message receiver, which is only a part of the
cluster. As the clusters are not explicitly listed in the interface definition, it is
important that the error message clearly indicates why this call is invalid:

1 ERROR: The call to assign is invalid .
2 The second argument of the call contains the property
3 r_screen_name .
4 In that case , the following properties also have to be
5 present in the object literal : r_user_id .

4.7 Conclusion

In this chapter, we have explained how the type system of TIPC ensures type
safety in programs where interfaces have complex presence constraints on their
properties. The type system uses several concepts from propositional logic to
ensure that the objects are created and updated in a type-safe way, i.e. while the
constraints remain satisfied. Valuations are used to verify when an interface is
initialised with an object literal, as well as when multiple properties of an interface

67

[4] Statically Checking Inter-property Constraints

instance are updates simultaneously. Logical entailment is used in various ways
to verify safe property accesses and the assignment of interfaces to others.

In the next chapter, we introduce TypeScript, the programming language
which forms the basis of TIPC, and we discuss several features typical to Type-
Script. Afterwards, we present the formalisations of TIPC. The solutions that
were presented in this chapter are incorporated into the typing rules of TIPC’s
type system. Together with the operational semantics, Chapter 6 will prove that
the type system is sound, even in the presence of inter-property constraints.

68

Chapter 5

TypeScript’s Idiosyncrasies

The previous two chapters introduced TIPC, a statically typed programming lan-
guage which supports constraints between properties of an object. As we have
seen in Chapter 2, these kinds of constraints are commonly found in the documen-
tation of (web) APIs. Incorporating support for inter-property constraints in the
type system of TIPC alleviates the need for developers to check these constraints
manually. Instead, the constraints are verified at compile-time.

TIPC is an extension of an existing programming language, to wit TypeScript.
Before we introduce the formalisation of TIPC in Chapter 6, this chapter first
presents the idiosyncratic features of TypeScript that are important with regards
to inter-property constraints.

TypeScript is a superset of JavaScript that adds optional typing, classes and in-
terfaces. JavaScript is a very dynamic programming language, originally intended
as a small scripting language for adding interactivity to web pages. JavaScript is
a very lenient programming language: for example, properties may be added to
or removed from objects at any time, and the plus operator accepts nearly any
combination of operands. As the size of JavaScript programs grows, the advan-
tages of the dynamic features of JavaScript start to diminish. Large JavaScript
programs are harder to develop and maintain as bugs are more difficult to find,
especially because type errors only occur at runtime.

TypeScript has a type system to statically catch type errors, which results
in safer programs. To achieve this, TypeScript extends JavaScript with type
annotations, classes and inheritance. The compiler can also inform IDEs with
type information for documentation. One of the main strengths of TypeScript
are its type definitions: regular JavaScript libraries can be used in TypeScript
programs by using type definitions that provide type information about JavaScript

69

[5] TypeScript’s Idiosyncrasies

libraries. Moreover, transforming existing JavaScript programs to TypeScript
programs has a minimal impact: TypeScript compiles to regular JavaScript code
(as does TIPC).

In the following sections, we explain the key features of TypeScript.

5.1 Optional Types

Types in TypeScript are entirely optional: the developer has no obligation to
provide type annotations for its variables, parameters, functions, etc. If possible,
TypeScript infers the type of a variable. For example, TypeScript infers that in
the assignment let user id = 42; the user id is a number.

However, sometimes the type of a variable is unknown and cannot be inferred.
In that case, TypeScript assigns the top type any to that variable. As the type
system cannot infer any information from any, a variable of type any is equivalent
to an untyped variable.

Contextual typing The type system of TypeScript uses contextual typing [Bier-
man et al., 2014] to improve type inference by using type information from the
inverse direction. Informally, the context of a function definition informs the type
checker on the type of the function arguments. Without contextual typing, these
function arguments would receive type any.

The following code snippets shows an example. The function getLength on
line 1 has type any -> any: TypeScript is unable to infer any information about
the untyped parameter x. However, as soon as getLength is assigned to the
variable f of type string -> any, the type system imposes the contextual type
string on the untyped argument x. In turn, the expression x.length receives
type number instead of any. This process is known as contextual typing.

1 function getLength (x) { return x. length ; } //;any -> any
2
3 let f: string -> any;
4 f = function getLength (x) { return x. length ; }; //; string -> number

Contextual typing is especially convenient for callback arguments. The follow-
ing code snippet shows an example. The function waitForResult takes a callback
argument and provides the type for that callback function. When waitForResult
is called, its callback argument is contextually typed with the type from the vari-
able declaration. The type system will reject the call to waitForResult because
its contextual typing will infer that x will actually be a string.

70

[5.2] Unsoundness

1 let waitForResult : (cb: (x: string) => number) => void;
2 // ...
3 waitForResult ((x) => (x * x)); // error

Optional Typing versus Gradual typing TypeScript is optionally typed,
which should not be confused with gradual type systems [Siek and Taha, 2006,
2007]. Both kinds of type systems have in common that they type check code
that is partly typed and partly untyped. The difference between both kinds of
type systems is in its soundness. Gradual type systems ensure soundness between
the typed and untyped parts of the code by inserting run-time checks between
the typed and untyped parts of the code. Optional type systems, on the other
hand, do not insert type checks between the typed and untyped code. Contrary
to gradual type systems, optional type systems will compile the code regardless
of type errors.

Next to the optional type system, TypeScript also has extra unsound language
features. These will be discussed in the next section.

5.2 Unsoundness

Typically, statically typed programming languages are sound, which guarantees
that every program that is accepted by the type checker, will not result in type
errors at runtime. TypeScript, on the other hand, takes a different approach.
Contrary to most statically typed programming languages, TypeScript is deliber-
ately unsound. Next to its optional type system, in which the untyped parts may
be type unsafe, TypeScript also has type unsafe features in the typed parts of the
program in order to support features that are found in typical JavaScript pro-
grams. In the rest of this section, we elaborate on the unsound language features
in TypeScript.

Indexing Accessing a field of an object using the dot notation (for example
obj.foo = "bar") in JavaScript is syntactic sugar for indexing with the bracket
notation (i.e. obj["foo"] = "bar"). When the index is a string literal, the type
system of TypeScript is able to look up the type of that property. In the case
when the string representing the index is not known at compile time, or when the
string literal points to an unknown member, the type system cannot guarantee
that the field access will be safe. However, in order to support as many JavaScript

71

[5] TypeScript’s Idiosyncrasies

programs as possible, TypeScript does not disallow these kinds of field accesses.
Instead, it assigns the top type any to the field access expression.

On the other hand, TypeScript provides extra type safety regarding indices
when the object has a type. Using keyof, an index type query, developers can
retrieve a union type of all key strings of a certain object type. For example, keyof
PrivateMessage (without advanced constraints) results in the type "text" |
"user id" | "screen name". TypeScript uses its string literal types: the only
valid value for a string literal type is the string literal itself. The result of a keyof
can later be used in the program to ensure that a valid index is used to access a
property.

Downcasting The casting of a variable to a type can be divided into two cate-
gories: upcasting and downcasting. Upcasting happens when a variable is casted
to a more general type (than the type of that variable). An upcast is always sound,
as one moves up in the inheritance hierarchy. Downcasting, on the other hand, is
when a type is casted to a more specific type. This cast can possibly be unsound
as it is not guaranteed that the target type of the cast is of that type. Most of the
object-oriented languages that allow downcasting (such as Java) ensure sound-
ness by verifying whether the downcast is safe at runtime using runtime type
information. TypeScript also allows downcasting, but does not generate runtime
type tests to verify whether the cast is safe at runtime. However, TypeScript does
take information from explicit runtime type tests (provided by the developer) into
account while type checking the program. We elaborate on this in Section 5.6.

Covariance Type checking function parameters in TypeScript is bivariant, which
is a combination of covariance and contra-variance. This means that the type of
a function parameter should be assignable to the type of provided argument, or
the other way around. While contra-variance is sound, covariance is not: List-
ing 5.1 shows an example. As TypeScript allows covariance in function parameter
types, this program is accepted by the type checker (because Dog is assignable
to Animal). The assignment inside the function f is also accepted by the type
checker: animals is an array of animals, which thus may contain cats. But this
results in an unsound program where the array of dogs contains a cat.

1 function f (animals : Animal []) {
2 animals [0] = new Cat ();
3 }
4 let dogs: Dog [] = ...;
5 f(dogs);

Listing 5.1: Bivariance in TypeScript

72

[5.3] Block Scoping

1 function foo () {
2
3 x = 5;
4 if (true) {
5 var x;
6 }
7 return x;
8 }

Listing 5.2: Function scoping in
JavaScript

1 function foo () {
2 var x;
3 x = 5;
4 if (true) {
5
6 }
7 return x;
8 }

Listing 5.3: Function scoping
(rewritten)

In the common case where the function argument is not mutated inside the func-
tion, the covariance does not pose a risk for unsoundness. Disallowing covariance
would impose a huge restriction on which JavaScript programs are supported by
TypeScript.1

5.3 Block Scoping

Variable declarations in JavaScript are different from most programming lan-
guages. For example, the code snippet in Listing 5.2 defines a valid JavaScript
function. The function foo first assigns a number to the variable x. Only after-
wards, the variable x is defined, in an if statement. At runtime, a call to foo
will return the number 5. The type system of TypeScript supports this scoping
behaviour.

In JavaScript, variables can be referred to before they are assigned. Even
more, all variable declarations inside a function are hoisted to the beginning of the
function declaration (which is called function scoping). The example in Listing 5.2
is treated as if it was written like Listing 5.3, where the variable definition inside
the if statement is hoisted to the beginning of the body of foo.

Function scoping is quite permissive: every variable declared inside a function
can be used throughout the entire function body. The leniency of function scoping
can lead to bugs that are hard to catch. A more restrictive way of scoping is block
scoping, where variables are only visible in the block in which they are declared.
Most statically typed programming languages have block scoping, while scripting
languages sometimes have more permissive variable declarations.

TypeScript supports both function scoping (with var) and block scoping (with

1However, developers can disallow the bivariance of function type parameters using the
strictFunctionTypes flag.

73

[5] TypeScript’s Idiosyncrasies

let and const). The latter two kinds of variable declarations are translated to
var declarations when compiled to JavaScript. Note that block-scoped variable
declarations in TypeScript cannot be used before they are declared and cannot
be redeclared in the same block.

5.4 Interfaces

Interfaces in TypeScript are used to describe the structure of an object: they
contain fields (methods or properties) which can be required or optional (indicated
using a question mark). TypeScript also supports inheritance, such that interfaces
can inherit fields from other interfaces.

Excess properties Interfaces define which required and optional fields an ob-
ject may describe. However, it is not certain that an object of an interface type
only contains the fields defined in the interface. TypeScript only verifies that there
are no excess properties when an object literal is assigned to a variable of a certain
interface type. In all other cases (when the right-hand side of an assignment does
not contain an object literal), TypeScript employs width subtyping: the object on
the right-hand side has to contain at least all properties defined in the type of the
left-hand side. This is shown in Listing 5.4. While line 5 (the assignment of an
object literal to XY) results in a typing error, this is not the case when another
variable is assigned to XY (line 7).

1 interface XY {
2 x: number
3 y: number
4 }
5 let xy1: XY = { x: 5, y: 6, z: 7 }; // ERROR
6 let xyz: { x: number , y: number , z: number } = { x: 5, y: 6, z: 7 };
7 let xy2: XY = xyz; //OK

Listing 5.4: Excess properties

Structural type system Type systems can be divided into nominal type sys-
tems and structural type systems, which differ in when types are considered equal.
In nominal type systems, the equality of types is based on the name declarations
of those types. As the name already suggests, structural type systems base the
equality of types on the structure of a type.

TypeScript is structurally typed. This means that the equality of interfaces
in TypeScript is based on their structure: interfaces are equal when they have
the same properties and when the types of those properties are equal as well.

74

[5.4] Interfaces

Listing 5.5 shows an example of two interfaces X and Y. In a structural type
system, both interfaces are considered equal, as they both have one property (a)
with the same type. Thus, assigning an X object to a variable of type Y will
be accepted by the type system of TypeScript. In nominally-typed programming
languages such as Java and C#, X and Y would not be equal because they originate
from two different definitions.

1 interface X {
2 a: number
3 }
4 interface Y {
5 a: number
6 }
7 let x: X = {a: 5};
8 let y: Y = x; //OK in TypeScript

Listing 5.5: Structurally-typed interfaces in TypeScript

As interfaces simply map names onto an object type, and interface names are
not taken into account when comparing types, the type system of TypeScript can
translate interface types to object literal types without losing information. The
object literal equivalent for the two interfaces in Listing 5.5 is {a: number}.

Callable objects In JavaScript, it is common to store additional data on func-
tion objects. In order to model this, TypeScript supports the definition of function
types in interfaces. To define one, the interface may only contain one bare prop-
erty, which is an anonymous function. Listing 5.6 shows an example: the interface
contains one property which is an anonymous function that takes a number and
returns a number. On line 4, a new variable of type Double is declared with as
value an anonymous function. This variable can then be used as a procedure,
such as on line 5.

1 interface Double {
2 (n: number): number ;
3 }
4 let double : Double = (n: number) => { return n };
5 double (5);

Listing 5.6: Callable object

Classes TypeScript also supports classes, which are an alternative to interfaces
to describe the type of objects. In order to support existing (undefined) inter-
property constraints in web applications, inter-property constraints are incorpo-
rated in TIPC as an extension of interfaces instead of classes such that they can

75

[5] TypeScript’s Idiosyncrasies

be used to type object literals. We will revisit classes in combination with inter-
property constraints in the future work section of this dissertation (Section 10.3).

5.5 Null-checking Mode

When a variable or object property that does not exist gets accessed, JavaScript
returns the value undefined. The value undefined can be assigned to a variable
of any type. The same applies to the value null, which is used to indicate the
empty object. However, this behaviour can be undesirable when developers want
to ensure that a variable definitely contains a value (other than undefined or
null).

To change this behaviour, TypeScript provides the strictNullChecks mode.
When this flag is enabled, this means that the underlying assignment rules of
TypeScript change. More specifically, it is not allowed to assign null and undefined
to variables of any other type. However, developers can explicitly allow the as-
signment of null and undefined by assigning a union type: for example:
let x: string | undefined = undefined.

The type system of TypeScript assigns a union type to optional properties and
parameters, which combines the type originally assigned to the property/param-
eter combined with the undefined type. The union type is sufficient to express
the optionality: an optional type is either present (of the original type) or absent
(undefined).

The strict null-checking mode is essential when dealing with inter-property
constraints, which requires that the type system is able to ensure the presence or
absence of properties.

5.6 Occurrence Typing

In dynamically typed programming languages, developers cannot rely on a type
system to know more about the type of a variable. Instead, they have to rely
on conditional tests on a variable when they want to have guarantees about its
structure.

When a type system is retrofitted on a dynamically typed programming lan-
guage, it can take this runtime type information into account when determining
the type of a variable. Listing 5.7 shows a function definition that takes one argu-
ment x of type string | undefined. Inside the function definition, there is an
if statement that serves as a type guard to check whether x is defined. Because
of the type guard, TypeScript can safely assign the type string to x, instead of
the union type. Similarly, x will certainly be undefined in the false branch.

76

[5.6] Occurrence Typing

1 interface PMId {
2 text: string ;
3 user_id : number ;
4 }
5 interface PMName {
6 text: string ;
7 screen_name : string ;
8 }
9

10 function isId(pm: any): pm is PMId {
11 return pm. user_id !== undefined ;
12 }
13
14 function foo(pm: PMId | PMName) {
15 pm. user_id ; // ERROR
16 if (isId(pm)) {
17 pm. user_id ; //OK
18 }
19 }

Listing 5.8: Type guards with type predicate functions

1 function foo(x: string | undefined) {
2 if(x !== undefined) {
3 x = "foo"; // :: string
4 } else {
5 x = undefined ; // :: undefined
6 }
7 }

Listing 5.7: Occurrence typing

It is also possible in TypeScript to define type guards for non-primitive types as
well. Listing 5.8 shows an example. There are two default TypeScript interfaces,
which define variants of the PrivateMessage interface: one identifies the user with
an ID, the other with a name. The function isId is a type predicate: it verifies
whether the property user id is present. With the is keyword, a developer can
indicate that a parameter is of a certain type whenever the predicate returns true.
The function foo shows an example: it receives one parameter which is either a
PMId or a PMName. Only inside the if statement, which calls the type predicate
isId, the type system will allow accessing the user id property.

Chapter 3 has already shown how occurrence typing can also be beneficial
while programming with inter-property constraints. However, it is not possible
to simply reuse TypeScript’s occurrence typing for inter-property constraints in

77

[5] TypeScript’s Idiosyncrasies

TIPC. While TypeScript is able to narrow basic types, we have seen in Chapter 4
that the type system needs to perform extra operations to narrow the type of
interfaces with inter-property constraints.

5.7 Type Declaration Files

Providing a typed variant of JavaScript is especially useful in large JavaScript
projects such as web applications. These web applications often use a variety
of JavaScript libraries. Instead of only allowing TypeScript libraries for web ap-
plications written in the TypeScript programming language, TypeScript has a
mechanism that allows TypeScript files to include JavaScript libraries, to wit
typed declaration files.

A type declaration file defines a set of interfaces for all methods and variables
in the API of a JavaScript library. A web application written in TypeScript has
to include these type declaration files for every JavaScript library they use, using
the triple-slash notation:

1 /// <reference path=’ typed_definitions / library .d.ts’ />

As a community effort, there already exist typings for about 5000 JavaScript
libraries2. Together with the optional typing, this facilitates the transition from
JavaScript projects to TypeScript projects.

5.8 Conclusion

Because TypeScript is designed to support JavaScript programs, it has charac-
teristics that are not typically found in statically typed programming languages.
In this chapter, we have covered the idiosyncratic features of TypeScript, as well
as features that are key for inter-property constraints. In the next chapter, we
present the formalisations of TIPC, a variant of TypeScript with interfaces with
inter-property constraints. For clarity, the atypical features that are unrelated to
inter-property constraints are omitted from the formalisations. As TypeScript is
unsound, the formalisations are part of a subset of TypeScript that only contains
sound features.

2https://github.com/DefinitelyTyped/DefinitelyTyped

78

Chapter 6

TIPC: Formalisation

This dissertation started with the introduction of inter-property constraints: con-
straints between properties. We showed how inter-property constraints can be
checked at compile-time by incorporating them into interface definitions. Inter-
faces with constraints between properties require a different way of type checking
object creations, property accesses and property updates. Moreover, assignments
to interface instances have to ensure that constraints remain satisfied. In Chap-
ter 4, we informally showed how a type system can guarantee type safety in the
light of inter-property constraints. Even though the examples were all written
in TIPC, the requirements and solutions presented in Chapters 3 and 4 are ap-
plicable to any statically typed object-oriented programming language. In this
chapter, we present the formalisations of this programming language.

In Section 6.1, we discuss the formalism upon which TIPC is based and dis-
cuss which changes are made to that basis before adding support for inter-property
constraints. Next, we discuss the syntax (Section 6.2), typing rules (Section 6.3)
and semantics (Section 6.4) of TIPC, including the extensions needed for incor-
porating inter-property constraints. Finally, we prove the soundness of TIPC in
Section 6.5.

The formalisation presented in this chapter is an extended version of the for-
malisation presented in Oostvogels et al. [2018b] (Sections 4, 5 and 6). This
chapter includes a full set of rules for evaluating and typing sequences, which did
not fit in the page limit of said paper, as well as more detailed proofs of soundness.

6.1 SafeFTS: a Formalisation of TypeScript

The formalisations presented in this chapter are based upon those presented
by Bierman et al. [2014]. They present a formalisation of TypeScript (version

79

[6] TIPC: Formalisation

0.9.5), including all the features that are so characteristic to JavaScript. The
formalisation is presented in two stages: the first stage is a safe calculus (called
safeFTS) which contains the core features of TypeScript. This calculus describes a
subset of TypeScript including features such as structural typing, contextual types
and function scoping. In the second stage, the formalisation covers the fact that
TypeScript is purposefully unsound by extending safeFTS to a production-ready
calculus. This calculus (prodFTS) includes unsound features such as downcasting,
covariance and indexing.

TIPC reuses most of safeFTS’s features, but there are some differences between
safeFTS and TIPC:

Null-checking mode SafeFTS allows assigning undefined to variables of any
type; however, this thwarts TIPC’s ability to guarantee the presence or absence
of properties. Therefore, TIPC diverges from safeFTS and disallows such assign-
ments. This coincides with the strict null checking mode which was added in
TypeScript 2.0.

Contextual typing In JavaScript (and TypeScript), it is common to work with
callbacks and event handlers. The types of these functions are influenced by the
context in which they are used. To support this usage, safeFTS supports contex-
tual typing which augments the regular type inference with context information.
As contextual typing is orthogonal to addition of inter-property constraints to
interfaces, the formalisations that deal with contextual typing are omitted for
clarity. Adding contextual typing to TIPC would not be different from the con-
textual typing rules in safeFTS.

Block scoping Section 5.3 introduced the atypical scope mechanism in JavaScript:
variable declarations are function scoped instead of block scoped. To accurately
represent this, safeFTS uses bespoke typing rules. TypeScript introduced alterna-
tive variable declarations which are block scoped, using let. Scoping mechanisms
are orthogonal to object creation and interfaces. TIPC only supports block-scoped
variable declarations: safeFTS’s function scoping is omitted, but can be trivially
added to TIPC.

In Sections 6.2 to 6.4, we indicate the additions to the formalisation of safeFTS
with a grey background .

80

[6.2] Syntax

6.2 Syntax

In this section, we present the syntax of TIPC. TIPC is a variant of TypeScript
with support for interfaces with inter-property constraints.

Figure 6.1 presents the syntax of expressions and statements in TIPC. The
meta variables e and f range over expressions, x ranges over identifiers, l ranges
over literals, a ranges over property assignments, n ranges over property names,
and s and t range over statements. In addition to the standard TypeScript syntax,
TIPC only adds the language construct assign.

Next, Figure 6.2 on page 84 presents the types in TIPC. The meta variables
R, S and T range over types, P ranges over primitive types, O ranges over object
types, I ranges over interface types, L over literal types, and M and N range over
type members. Except for the interface types, types in TIPC are equal to those
in safeFTS.

6.2.1 Expressions

TIPC features basic language expressions such as identifiers x, literals l, assign-
ment and binary operators. Literals can be numbers n, strings s, the boolean
constants true and false, the empty object null, or undefined which is re-
turned when accessing a property that is not present in an object.

Objects are defined using object literals, which map property names (n) to the
result of expressions. Accessing a property of an object happens using the dot no-
tation. In TypeScript, property accesses can also happen with the square bracket
notation (see Section 5.2), This notation can be used to address properties which
are not valid identifiers. It also enables computed property accesses, where the
property is determined at runtime. The square bracket notation is not supported
by TIPC, as type safety cannot always be guaranteed.

Multiple properties of an object can be updated at once using assign, intro-
duced in Section 3.5. This language construct is a functional version of JavaScript’s
Object.assign. assign returns a new object, instead of updating it: the result-
ing object contains all property of the first argument and where properties from
the second argument are either updated (when already present in the first argu-
ment) or added (otherwise).

Using the assignment operator =, expressions can be assigned to variables or
object properties. Two expressions can be combined using several binary operators
(such as <, +, ===), which are abstracted in the operator ⊗.

Function expressions are similar to those in JavaScript, but with type anno-
tations for the parameters and the return type. TIPC requires without loss of

81

[6] TIPC: Formalisation

l ∈ Literals ::= n (Number)
s (String)
true (Boolean value)
false (Boolean value)
null (Empty object)
Undefined (Undefined property)

e, f ∈ Expressions ::= x (Identifier)
l (Literal)
{a} (Object literal)
e.n (Property access)
assign(e, {a}) (Assign operator)
x = f (Variable assignment)
e.n = f (Property assignment)
e ⊗ f (Binary operator)
function (x : S) : T {s} (Function expression)
e(f) (Function call)
<T>e (Type assertion)

a ∈ Property assignments ::= n : e (Property assignment)
s, t ∈ Statements ::= e; (Expression statement)

if (e) {s} else {t} (If statement)
return; (Return statement)
return e; (Return value statement)
let x:T = e (Variable declaration)

Figure 6.1: Syntax of TIPC

generality that the body of a function contains a return statement per execution
path.

Expressions can be cast to a type using angular brackets. Contrary to Type-
Script, the type system of TIPC will only allow casts when the cast is known to
be type safe. This is discussed in Section 6.3, page 91.

Several of the expressions use the sequencing notation (the line over a meta
variable, such as f). The empty sequence is denoted with • and concatenation is
denoted using a comma. A sequence of expressions is written as e and is short for
e1, . . . en, with n the length of the sequence. A sequence of property assignments
{n : e} is an abbreviation for {n1 : e1, . . . , nn : en}. Similarly, (x : T) is a sequence
of function arguments (x1 : T1, . . . , xn : Tn). Sequences of property names and

82

[6.2] Syntax

function parameter names should contain no duplicates.

6.2.2 Statements

The lower part of Figure 6.1 contains the statement syntax of TIPC. A statement
can be an expression, an if statement, a return statement, or a variable dec-
laration. A return statement can contain an optional return value. TIPC only
features variable declarations where the type and the value for the variable are
both provided. A sequence of statements s is short for s1, . . . , sn.

6.2.3 Types

Figure 6.2 shows the types of TIPC. There are three kinds of types: the top type
any, primitive types (P) and object types (O).

TIPC contains six primitive types: number, string, boolean, void (used
whenever a return statement does not contain a value), Null (with a capital,
to indicate the type of the literal null) and Undefined (also with a capital to
indicate the difference with the corresponding literal).

An object type is represented by either a literal type or an interface type. An
object literal type maps property names onto types. The declaration of interface
types is covered further below.

Note that functions do not have a separate type in TIPC. Instead, they are
represented as a callable object (as explained in Section 5.4) that contains one
anonymous field (a function) with its type of the form (x : S):T. For example,
the type of a function that expects two parameters a and b of type number and
returns a number is written as follows:

{(a : number, b : number) : number}

A sequence of types is denoted as T, and the sequence of properties, parameters
and call signatures is analogous to their corresponding value sequences.

Interfaces

Interfaces play a key role in incorporating inter-property constraints in TIPC.
To include complex presence constraints in interfaces, the interface declaration
in TIPC is different from other languages. Figure 6.3 shows the declarations in
TIPC.

TIPC interfaces first list the property (field or method) names, together with
their types as usual. By default, all properties are optional. Constraints on the
presence of a property are specified in the constraining section, using the syntax

83

[6] TIPC: Formalisation

R, S, T ∈ Types ::= any
P
O

P ∈ Primitive types ::= number
string
boolean
void
Null
Undefined

O ∈ Object types ::= I (Interface type)
L (Object literal type)

L ∈ Object literal types ::= {M}
M, N ∈ Type members ::= n:T (Property)

(x : S):T (Call signature)

Figure 6.2: Types of TIPC

D ∈ Declarations ::=

interface I {n : T} constraining {c}
interface I extends I {n : T} constraining {c}

(I non-empty)

Figure 6.3: Declarations in TIPC

84

[6.2] Syntax

Property lookup (1)
Σi(I) = interface I {n : T} constraining {c}

properties(I) = {n : T}

Property lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

properties(I) = {n : T} ∪ properties(I)

Constraint lookup (1)
Σi(I) = interface I {n : T} constraining {c}

constraints(I) = {c}

Constraint lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

constraints(I) = {c} ∪ constraints(I)

Figure 6.4: Definition of properties and constraints

presented in Section 3.1. Constraints between the presence of properties can be
listed in this section as well. Interfaces can inherit properties and constraints from
other interfaces.

To retrieve the properties and constraints from a given interface, we define two
auxiliary functions properties and constraints in Figure 6.4. properties returns
all properties of the interface, and its superinterfaces. Retrieving properties of
interfaces in TIPC is unaffected by the (inter-property) constraints. Analogous
to the inheritance of properties, constraints from the superinterfaces are simply
accumulated by the constraints function.

Before the analysis starts, all interface declarations are gathered and stored
in a mapping Σi

1 of interface names I to their respective declaration D. As in
safeFTS, a program is a pair (Σi, s) containing an interface table and a sequence
of statements. TIPC requires every interface to satisfy a set of sanity conditions:

1. For every I ∈ dom(Σi), Σi(I) = interface I {n : T} constraining {c} or
Σi(I) = interface I extends I {n : T} constraining {c};

1The interface mapping Σi is not to be confused with the heap type Σ, introduced in Sec-
tion 6.5.

85

[6] TIPC: Formalisation

2. for every interface name I appearing anywhere in Σi and s, it is the case
that I ∈ dom(Σi);

3. there are no cycles in the dependency graph induced by the extends clauses
of the interface declarations defined in Σi;

4. interfaces may not override properties that are already defined in a super-
interface;

5. for every interface name I in dom(Σi), there exists at least one valuation
that satisfies the constraints constraints(I). The valuation assigns truth
values to proposition symbols, where the proposition symbols map onto
property names and the truth values indicate the presence or absence of
those properties;

6. for every interface name I in dom(Σi), none of the properties of I is allowed
to be of type any, void or Undefined.

The first three sanity conditions are identical to those of safeFTS. The first
sanity condition requires that every interface in the interface table corresponds
to a valid interface declaration. The second sanity condition ensures that every
interface in the TIPC program has a corresponding interface declaration in the
interface table. The third sanity check prevents infinite interface definitions when
an interface that extends itself (directly or indirectly). The fourth sanity check
prevents shadowing a property.

While the first four sanity conditions are fairly standard for state-of-the-art
interfaces, the latter two sanity conditions are specifically for interfaces with inter-
property constraints. The fifth condition prevents the declaration of interfaces
with inherent contradictions: it requires that the constraints of an interface are
satisfiable. This ensures that there is at least one object with a combination
of present and absent properties that is a valid instance of that interface. The
sixth condition disallows types any, void and Undefined for all properties of
an interface. This prevents the assignment of undefined to an object property
(as the value undefined can only be assigned to variables of these three types),
which — at runtime — is equal to an absent property. This way, we avoid that
the presence constraints in the interface are circumvented: a property may only
become absent when the constraints indicate this is safe.

By default, Σi contains four predefined interfaces: Object, String, Number
and Boolean. The latter three form the interface equivalent of the corresponding
primitive type.

86

[6.3] Typing Rules

6.3 Typing Rules

In this section we present the type system of TIPC. Each section contains the
relevant typing rules. At the end of this chapter, Figures 6.9 to 6.11 (pages 120
to 122) list all typing rules for the expressions and statements.

The typing judgement is written as follows: Γ ` e : T, where given an environ-
ment Γ the expression e is of type T. An environment Γ maps variables to types
(x : T) and is extended as follows: Γ, x : T. For sequences, we write Γ ` e : T as
shorthand for Γ ` e1 : T1, . . . ,Γ ` en : Tn, with n the length of the sequence.

The rules that do not (directly) deal with interfaces are explained in the fol-
lowing paragraphs. They are identical to those in safeFTS.

I-Id The type of a variable x is looked up in the environment.

I-Id Γ, x:T ` x:T

I-Number, I-String, I-Bool, I-Null and I-Undefined These typing rules
cover the typing of literals in TIPC. To indicate the difference between the literal
and its type, the type of the literals null and undefined start with a capital:
Null and Undefined.

I-Number Γ ` n : number
I-String Γ ` s : string

I-Bool Γ ` true, false : boolean
I-Null Γ ` null : Null

I-Undefined Γ ` undefined : Undefined

I-ObLit The type of an object literal is a mapping of all property names n onto
the type of their expressions e.

I-ObLit Γ ` e : T
Γ ` {n : e} : {n : T}

I-Op A binary function call only receives a certain type when the parameters
have the expected type. Here, ⊗ is a stand-in for commonly used binary operators
on literals, such as +, * and -. We assume a table of (S0 ⊗ S1) = T exists.

I-Op
Γ ` e : S0 Γ ` f : S1 S0 ⊗ S1 = T

Γ ` e⊗ f:T

87

[6] TIPC: Formalisation

lookup(S, n) =

lookup(Number, n) if S = number (1)
lookup(Boolean, n) if S = boolean (2)
lookup(String, n) if S = string (3)
T if S = {M0, n:T, M1} (4)
lookup(Object, n) if S = {M} and n /∈ {M} (5)
T if S = I and n : T ∈ properties(I) (6)

and constraints(I) �` present(n)
Undefined if S = I and n : T ∈ properties(I) (7)

and constraints(I) �` ¬present(n)

Figure 6.5: Definition of lookup

6.3.1 Property Lookup

The rule I-Prop covers the typing rule for looking up a property of an object
in TIPC. Just as in safeFTS, it first retrieves the type of the object of which a
property is looked up. Next, the type of the object serves as a parameter of a call
to lookup, together with the name of the property being looked up.

I-Prop

Γ ` e : S
lookup(S, n) = T

Γ ` e.n:T

The lookup function is defined in Figure 6.5, and results in the type of property
n in the object type S. The behaviour of lookup depends on the kind of object
type that was provided as first argument. The following three paragraphs cover
the different cases. The first two cases do not deal with interface definitions and
are thus identical to those in safeFTS.

S is a primitive type The first three cases cover the lookup of a property type
when the object type is a primitive type. In that case, TIPC will not raise an
error (in order to model the behaviour in JavaScript and TypeScript). Instead,
the property is looked up in the interface type that is associated with the primitive
type.

S is an object literal type Cases 4 and 5 cover lookup when the object type
is an object literal type. When the property is found in the object literal type

88

[6.3] Typing Rules

(case 4), lookup returns the type for that property according to the object literal
type. When the property is not found in the object literal type (case 5), the
lookup function searches the property in the supertype of all object types: Object.
This interface contains functionality that is common for all objects, such as the
functions assign, getOwnPropertyNames and values.

S is an interface type Cases 6 and 7 in the definition of lookup show how a
property is looked up in a TIPC interface. First, the property is looked up in the
properties of the interface, including properties of superinterfaces. However, only
looking up the property — as we did for properties of object literal types — does
not suffice. Next to being part of the property list, lookup also has to take the
interface constraints on the presence of its properties into account. Only when
the property is guaranteed to be present (such as text in PrivateMessage), it is
safe for lookup to return the intended type for that property. In the case that the
property is certainly absent, the lookup function can indicate this by returning the
Undefined type. As we already explained in Chapter 4, the presence and absence
of properties is verified using a logical entailment.

Note that lookup is a partial function: it is not defined for all possible argu-
ments. More specifically, looking up the type of a property in a type is undefined
when the first argument of a call to lookup is any, void, Null, Undefined or a
call signature. Furthermore, the lookup function is also undefined when looking
up a property of an interface type for which neither the presence nor the absence
can be guaranteed (such as for user id and screen name in PrivateMessage).

A note on the unknown type. The lookup function is very restrictive regard-
ing property accesses of interfaces: the function is undefined when the presence
or absence of a property cannot be guaranteed. TypeScript 3.0 introduced the
unknown type, a type-safe alternative to the any type. This means that anything
is assignable to a variable of type unknown, but a variable of type unknown can
only be assigned to other variables of type unknown or any. Only when a devel-
oper performs the necessary type tests, the type of an unknown variable can be
narrowed down to a more specific type.

On first sight, lookup could assign the unknown type to properties that are
not certainly present or absent. This way, the type system would enforce those
properties can only be accessed after their presence or absence is confirmed using
an if statement. However, the unknown type is not as restrictive as necessary,
as unknown instances can still be assigned to each other. This would result in
an unsound type system. For the PrivateMessage example, this means that the

89

[6] TIPC: Formalisation

type system would accept the following assignment: both property accesses would
receive the unknown type and could – following the assignment compatibility rules
for unknown – be safely assigned to each other. However, this would result in a
PrivateMessage object that contains both a user ID and a screen name.

1 function foo(pm: PrivateMessage) {
2 pm. user_id = pm. screen_name ;
3 }

6.3.2 Assignment Compatibility

A key part of the type system is verifying whether an expression may be assigned
to a variable or object property. For a type system, this boils down to verifying
whether the type of that expression is assignable to the type of the variable or
object property. There are several situations for which the type system needs
to perform such an assignment compatibility check: an assignment, a function
definition, a function call and a cast expression.

The assignment compatibility relation is defined in Figure 6.10 and is written
down as S 5 T. This means that any valid value for S will also be a valid value
for T. S 5 T is an abbreviation for S1 5 T, . . . , Sn 5 T and we write S 5 T as
shorthand for S1 5 T1, . . . , Sn 5 Tn.

In this section, we first discuss the typing rules for the four expressions that
use the assignment compatibility. Afterwards, we discuss the details of the as-
signment compatibility rules themselves. Although the four rules discussed below
look similar to those in safeFTS, their behaviour will be different because of the
assignment compatibility rules in TIPC.

I-Assign This rule covers the assignment of an expression to variables and ob-
ject properties, which are the only two allowed expressions on the left-hand side
of an assignment (as defined in Section 6.2). In TIPC, an expression f may only
be assigned to an expression e if: 1) both expressions are type safe, and 2) the
source expression (f) has a type that is assignable to (5) the type of the target
expression e. While the type system assigns the type of f to the assignment
expression, the type of e remains unaltered. Note that the syntax of TIPC only
allows identifiers and object properties as left-hand side expressions.

I-Assign

Γ ` e : S Γ ` f:T
T 5 S

Γ ` e = f:T

90

[6.3] Typing Rules

I-Func For a function definition, the type system type-checks the function body
s under an environment that is extended with the type declarations for the pa-
rameters x. The environment is also extended with the this variable, which gets
type any: it is impossible to correctly model the type of this at compile time, as
the value of this depends on the calling context. When the return types of all
branches of the function body R are all assignable to the declared return type T,
the function definition receives as type a callable object type. This type models
an object that contains one anonymous property with as type the call signature
as expressed in the function definition.

I-Func
Γ, this : any, x : S ` s : R R 5 T

Γ ` function(x : S) : T {s} : {(x : S) : T}

I-Call For a function call, the type system requires the function to have a
callable object type. Moreover, it also verifies that the types of the parameters of
the function call are assignable to the declared types in the function type.

I-Call

Γ ` e : {(x : S) : R}
Γ ` f : T T 5 S

Γ ` e(f) : R

I-Assert As TIPC only allows safe casts, casting an expression e to a type T is
only allowed when the type of the expression is assignable to T.

I-Assert

Γ ` e : S
S 5 T

Γ ` <T>e : T

The following paragraphs discuss the assignment compatibility rules (defined in
Figure 6.10) in detail. They are based on the assignment compatibility rules of
safeFTS, but differ in several ways. First, the assignability of the types Null
and Undefined in TIPC is defined according to the strict null checking rules of
TypeScript. Second, the assignment compatibility rules of TIPC cover the com-
patibility of interface types with others. We use the following notation to indicate
the well-formedness of a type: T ` �.

91

[6] TIPC: Formalisation

A-Trans Assignment compatibility is transitive: when a type R is assignable to
a type S and S is assignable to another type T, then R is assignable to T.

A-Trans
R 5 S S 5 T

R 5 T

A-Refl Assignment compatibility is also reflexive: a well-formed type is assignable
to itself.

A-Refl S ` �
S 5 S

A-AnyR Any type can be assigned to any, as long as that type is well-formed.

A-AnyR S ` �
S 5 any

A-Undefined In order to be able to reason about present and absent properties,
TIPC employs the strict null-checking mode. As a consequence, the values null
and undefined can only be assigned to variables of types Null resp. Undefined,
and any. This is already covered by the reflexivity rule and the assignment com-
patibility rule for any. The only exception is that the value undefined may also
be assigned to variables of type void. This is covered in the rule A-Undefined.

A-Undefined
Undefined 5 void

A-Prim When a primitive type is assigned to another type, the assignment
compatibility rules use a helper function I. This function takes a primitive type
and returns the equivalent interface type. For example, I(boolean) returns an
object which contains the methods toString and valueOf. A primitive type is
assignable to another type when its interface type is assignable to that type.

A-Prim
I(P) 5 T

P 5 T

92

[6.3] Typing Rules

A-Object The rule A-Object covers the assignment compatibility of object lit-
eral types. An object literal type can be assigned to another object literal type
when all the properties of the target object are also present in the source object.
As TIPC supports width subtyping, it is possible that the source object contains
more properties than the target object. The common properties of both object
literal types have to be pairwise assignable.

A-Object
{M0, M1} ` � M1 5 M2

{M0, M1} 5 {M2}

A-Prop The assignment compatibility of object properties is invariant: when
the property names are identical, their types have to be identical too.

A-Prop T ` �
n : T 5 n : T

A-CS and A-CS-Void The assignment compatibility rules for call signatures
are divided into two rules, depending on the type of the return value of the target.
When the return value of the target function signature is void, there is no need
for an assignment compatibility check on the return values. Of course, the source
return type needs to be well-formed. This is covered in A-CS-Void. Otherwise, the
assignment of the function return types is covariant: the return type of the source
needs to be assignable to the return type of the target. This is covered in A-CS. In
both cases, the function argument types are contravariant: the parameter types
of the target need to be assignable to the parameter types of the source.

A-CS

T 5 S R1 6= void
R0 5 R1

(x : S) : R0 5 (y : T) : R1
A-CS-Void

T 5 S R ` �
(x : S) : R 5 (y : T) : void

A-Interface The rule A-Interface covers the assignment of interfaces to each
other. These rules are more involved than assigning object literal types to each
other, as the inter-property constraints on the presence of properties need to be
taken into account as well. In general, common properties should have the same
type, and interfaces must be at least as strict as the target interface to be consid-
ered assignment-compatible. Translating this using concepts from propositional
logic, the rule is that an interface is assignable to another interface when the con-
straints of the target interface logically follow (or entail) from the constraints of
the source interface.

93

[6] TIPC: Formalisation

Recall that Section 4.4 already showed that the structural differences between
both property lists needs to be taken into account as well. For every property
that is part of the source property list but absent in the target property list, a
constraint indicating its absence is added to the conclusion of the logical entail-
ment (c0). By adding these constraints, the type system prevents width subtyping
for interfaces. The other way around, properties that are part of the target in-
terface but not part of the source interface result in extra absence constraints
in the premise of the logical entailment (c1). As Section 4.4.2 showed, generat-
ing extra absence constraints by comparing the property lists leads to more valid
assignment compatibilities.

∧
c is used to denote c1 ∧ · · · ∧ cn.

A-Interface

∀n : S ∈ properties(I0) : (n : T ∈ properties(I1) =⇒ S = T)
c0 = {¬present(n) | n : T ∈ properties(I0) \ properties(I1)}
c1 = {¬present(n) | n : T ∈ properties(I1) \ properties(I0)}

constraints(I0) ∪ c1 �`
∧

constraints(I1) ∧
∧
c0

I0 5 I1

A-IntObj An interface type is only assignable to an object literal type when the
interfaces property list is assignable to the object literal, and when the interface
constraints guarantee the presence of all common properties.

A-IntObj
properties(I) 5 {n : T} constraints(I) �` present(n)

I 5 {n : T}

Due to width subtyping, the type of an object does not guarantee that only those
properties are present at runtime (as can be seen in A-Object). This conflicts with
interfaces which may require properties to be absent: the assignment of an object
to an interface could possibly invalidate the interface constraints at runtime. As
already discussed in Chapter 4, TIPC only allows the casting of a literal object
to an interface. As a consequence, there is no assignment compatibility rule for
assigning an object to an interface. This is covered by the rule I-AssertInf, which
is covered in the next section.

Readers familiar with the work of safeFTS [Bierman et al., 2014] (the basis for
the formalisation of TIPC) might notice that — contrary to safeFTS — the assign-
ment compatibility relationship in TIPC is not coinductive. In safeFTS, interfaces
are replaced by corresponding object literals. When an interface (indirectly) refer-
ences itself in its field declarations, this can lead to an infinite type expansion. To

94

[6.3] Typing Rules

deal with this, safeFTS defines assignment compatibility as a coinductive relation,
which guarantees termination. In TIPC, on the other hand, interfaces cannot be
replaced by object literals, as interfaces may also contain constraints. Thus, as-
signment compatibility for interface fields with interface types in TIPC must be
checked against the interface definition instead of using a coinductive relation.

6.3.3 Creating Interface Instances

The rule I-AssertInf covers the case where an object literal is cast to an interface.
The type system only accepts type-safe casts, i.e. tests for which the properties of
the object have the correct type and the presence and absence of properties form
a valid valuation2 of the interface constraints.

I-AssertInf

Γ ` {n : e} : {M} {Mp} = {n : T | n : T ∈ {M} ∧ T 6= Undefined}
{Mp} ⊆ properties(I) cp = {present(n) | n : T ∈ {Mp}}

{Mnp} = properties(I) \ {Mp} cnp = {¬present(n) | n : T ∈ {Mnp}}
v = cp ∪ cnp v̂(constraints(I))

Γ ` <I>{n : e} : I

To generate the valuation function, the rule has to create presence constraints
for properties that are present in the object literal, and create absence constraints
for the properties that are a part of the interface property list but not part of the
object literal type. Note that a property is considered absent when it is not in
the object literal, or when its type is Undefined.

6.3.4 Updating Multiple Properties

This section covers the typing rules for updating multiple properties simultane-
ously, using the functional assign function. assign expects two arguments: the
first argument is the object that needs to be updated and the second argument is
an object that contains the new values for (some of) the properties. The type sys-
tem has two rules for assign, depending on whether the type of its first argument
is an object literal type (I-UpdateObj) or an interface type (I-UpdateInf).

I-UpdateObj When the type of the first argument of assign is an object literal
type, I-UpdateObj simply combines the properties of the second argument with
the first. The combination of two types is achieved using A, which takes two object
literal types and returns a new object literal type. This type initially contains the

2We refer to Section 4.1 for the definition of a valuation.

95

[6] TIPC: Formalisation

properties of the left-hand side object literal type. For every property of the right-
hand side object literal type, the type of the property is either updated (when
the property is already present in the left-hand side object literal type) or added
(when the property was not present in the left-hand side object literal type).

I-UpdateObj
Γ ` e : {M} Γ ` {n : e} : {N}

Γ ` assign(e, {n : e}) : {M} A {N}

I-UpdateInf On the surface, I-UpdateInf is similar to I-UpdateObj: it com-
bines the properties of the source interface instance e with new properties and
produces an object of the same interface type I. However, care must be taken to
verify that this does not invalidate I’s constraints: the type system has to check
that all constraints imposed on the object remain satisfied after the update. As
the second argument does not necessarily contain every property of the interface,
it does not suffice to check whether the new properties satisfy all the constraints.

I-UpdateInf

Γ ` e : I I′ = slice(I, n, constraints(I)) Γ ` <I′>{n : e} : I′

n ∈ dom(properties(I)) n = dom(properties(I′))
Γ ` assign(e, {n : e}) : I

To solve this, I-UpdateInf uses the slice function (defined below) to generate a
sub-interface of I that contains a superset of the properties in n and a closed set
of constraints on these properties. Given this generated interface, rule I-AssertInf
is reused to verify whether the updated properties satisfy the applicable subset of
constraints. An assign call fails if the second argument is not a correct valuation
for the generated interface, if any of the updated properties are not declared in
the interface I, or if not all properties of the generated interface are part of the
second argument of assign.

To preserve soundness, assign does not actually modify its first argument;
instead it returns a fresh object. Allowing assign to mutate the object would
impose severe usage restrictions (such as in Flow [Chaudhuri et al., 2017] and
RSC [Vekris et al., 2016]), or requires tracking aliases (such as in DJS [Chugh
et al., 2012a]). This will be extensively discussed in Chapters 8 and 10.

slice returns the transitive closure of all properties and constraints of the given
interface which are affected by the properties being updated. Formally, slice is
defined as follows:

96

[6.3] Typing Rules

Definition slice expects three parameters: the interface which needs to be
“sliced”, a set of properties, and a set of constraints. The function uses an aux-
iliary function fv which takes a constraint and returns all referenced properties.
We omit its trivial definition.

slice(I, p, c) =
{

interface I′ {p} constraining {c} if (p, c) ≡ (p′, c′)
slice(I, p′, c′) otherwise

where c′ = c ∪ {c | c ∈ constraints(I) ∧ fv(c) ∩ p 6= ∅}
p′ = p ∪ {fv(c)|c ∈ c′}

slice first computes two sets: the set of constraints in which at least one of the
properties (second argument of slice) occur, and the set of properties that occur
in the new set of constraints. Given these two sets, there are two options:

• Either the properties and constraints are identical to the second and third
argument of slice: in this case slice has resulted in a fixed point. slice
returns a new subinterface of I containing the fixed point properties and
constraints;

• When there is no fixed point, slice recursively calls itself with the new set
of properties and constraints. This process is guaranteed to terminate as
there is only a finite amount of properties and constraints in I from which
slice can choose, and the set of properties constraints cannot shrink.

Note that in the case of dependency constraints, the definition of slice is some-
times more restrictive than necessary. More specifically, the presence or absence
of the consequent B of the logical implication A -> B is irrelevant when the an-
tecedent A is false. For example, properties of a dependency constraint such
as present(description) -> present(picture) are part of one cluster, which
means that both properties always have to be updated together. However, when
description is set to undefined, the dependency constraint will be satisfied re-
gardless of the presence or absence of picture. In the future, we plan on adding
support for this improvement to the type system of TIPC.

6.3.5 Statement Typing

Finally, Figure 6.11 shows the typing rules for sequences, which are of the form
Γ ` s : R, where given an environment Γ the sequence of statements s has a set of
return types R. A sequence of return types R is short for R1, . . . , Rn These return
types are collected from all return statements in the sequence. When analysing
a function definition, this is used by the type system to verify whether the types
of all return statements are assignable to the declared return type.

97

[6] TIPC: Formalisation

Most of the sequence typing rules in TIPC are very similar to those in safeFTS.
In TIPC, information from if statements is taken into account for property access
checks, which is covered by an extra if statement sequence rule.

I-EmpSeq The type of an empty sequence is also denoted by •.

I-EmpSeq Γ ` • : •

I-ReturnVal The type of a sequence of statements is the set of types that are
returned in these statements. In I-ReturnVal, the type system returns the type
of a sequence of statements of which the first expression is a return statement.
The type of the expression that is returned is added to the type of the rest of the
statements s. Although these statements are unreachable because of the return
statement, they are still type checked.

I-ReturnVal Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

I-Return The rule I-Return types a sequence of statements that starts with an
empty return statement. In that case, the type void is added to the type of the
rest of the statements.

I-Return Γ ` s : R
Γ ` return; s : void, R

I-ExpSt This rule covers the case where the first statement in the sequence is an
expression. Although the type system requires that the expression is well-typed,
the type is not taken into account for the type of the entire sequence.

I-ExpSt Γ ` e : S Γ ` s : R
Γ ` e; s : R

I-IfGeneral The type system considers two cases where type checking an if
statement. When the condition verifies the presence of a property of an object
with an interface type, the type system has to take special actions. This is covered
in I-IfPresenceInterface. I-IfGeneral covers if statements on other expressions.
This rule type checks the condition, the statements in the true branch and the

98

[6.3] Typing Rules

statements in the false branch. The resulting type is the set of the type of the
true branch, false branch and the rest of the sequence.

I-IfGeneral

Γ ` e : boolean Γ ` t1 : T1
Γ ` t2 : T2 Γ ` s : R

Γ ` if (e) {t1} else {t2}; s : T1, T2, R

I-IfPresenceInterface As already seen in Chapter 3 and Chapter 4, special
action is required when a condition of an if statement contains a property pres-
ence test for a property of an object with an interface type. Analogous to the
latent predicates in occurrence typing [Tobin-Hochstadt and Felleisen, 2010], the
type system uses the presence tests inside conditions of if statements to refine
interface types in the branches. Although Figure 6.11 only defines rules for a
single pattern of conditional expressions, the typing rule can be generalised to in-
equalities and combined logical expressions, like in Tobin-Hochstadt and Felleisen
[2010].

I-IfPresenceInterface

Γ ` x : I n : S ∈ properties(I) Γ ` s : R
I− = addConstraint(I,¬present(n)) Γ] x : I− ` t1 : T1
I+ = addConstraint(I, present(n)) Γ] x : I+ ` t2 : T2

Γ ` if (x.n ≡ undefined) {t1} else {t2}; s : T1, T2, R

The typing rule first verifies whether the object has an interface type and that
the accessed property is part of the property list of that interface. If that is the
case, two variations of the original interface are created. One interface is extended
with a constraint that indicates the absence of the tested property, the other
interface is extended with a constraint indicating the presence. The expressions
in the true (resp. false branch) are type checked against the environment in which
the original interface is replaced with the first (resp. second) interface variant.

Generating the interface variants is done using the function addConstraint,
which adds the constraints to the interface and performs a satisfiability check to
verify that there are no inconsistent constraints in the extended constraint set.
Its definition is trivial and omitted. In the case of inconsistencies (ie. when the
formula present(n) ∧ ¬present(n) can be proven for any n), addConstraint will
return the bottom type Undefined, preventing access to an invalid object.

Note that the type assignment for x is overwritten in both branches using],
leaving type assignments for other variables as-is.

99

[6] TIPC: Formalisation

I-ITVarDec This rule type checks a sequence of expressions with an initiali-
sation of a variable at the front. It uses the assignable compatibility check to
verify whether the type of the right-hand side of the assignment is assignable to
the declared type of the variable. The function noDup is used to avoid declar-
ing a variable again. The remainder of the expressions in the sequence are type
checked against an extended environment: using the] operator, the environment
is extended with the new variable.

I-ITVarDec
Γ ` e : T T 5 S noDup(Γ, x : S) Γ] x : S ` s : R

Γ ` let x : S = e; s : R

6.4 Operational Semantics

TypeScript is a superset of JavaScript that adds static typing. However, after
compilation, TypeScript emits JavaScript code in which all types are erased, which
means that the semantics of TypeScript (and safeFTS and TIPC) are the same
as those of JavaScript. However, we provide the operational semantics of TIPC,
which will be used in Section 6.5 to prove its soundness. The evaluation rules
of TIPC are almost identical to those of safeFTS, but TIPC extends the heap
and evaluation rules with tags for interface objects and defines the evaluation of
assign calls. Evaluation of an expression e requires a heap H and a scope chain
L. We define these now.

Figure 6.6 shows the definition of a heap. A heap H is a partial function
from locations (l) to heap objects (o) . A heap object is either a closure or an
object map. A closure represents a function, and is a pair containing a lambda
expression (where a function function(x : S) : T {s} is represented by λx.{s})
and a scope chain L.3 An object map represents an object literal, and is a partial
function from variables (x) to values (v). A variable is either a program variable
x, a property name n, or the internal properties @this or @interface. A value
is a location l or a literal l. A result r is a value or a reference, and a reference
is a pair containing a location and a variable.

An empty heap is indicated by emp, a heap cell by l 7→ o, a heap lookup
by H(l, x), a heap update by H[l 7→ o] and the union of two disjoint heaps is
indicated by H1 ∗ H2. H[(l, x) 7→ v] updates or extends an object map l with
the value v assigned to the variable x. H(l, x)↓ is true iff H(l, x) is defined. We
define a helper function γ(H, r) that returns r if r is a value, otherwise (i.e. r is
a reference (l, x)) it returns H(l, x) if defined and undefined otherwise. null is
a distinguished location, and is not in the domain of the heap.

3The scope chain L is not to be confused with the object literal type L.

100

[6.4] Operational Semantics

H ∈ Heaps ::= emp (Empty Heap)
l ⇀ o (Heap)

o ∈ Heap Objects ::= 〈λx.{s},L〉 (Closure)
x ⇀ v (Object Map)

x ∈ Variables ::= x (Program Variable)
n (Property Name)
@this (Internal Property)
@interface (Internal Property)

v ∈ Values ::= l (Location)
l (Literal)

r ∈ Results ::= v (Result Value)
(l, x) (Reference)

L ∈ Scope Chains ::= lg (Global JavaScript Object)
l : L (Scope Chain)

Figure 6.6: Heap in TIPC

The evaluation rules use a scope chain to model the treatment of variables in
JavaScript: JavaScript resolves variables dynamically against a scope object. A
scope chain is a list of locations of the scope objects, and l : L is a concatenation
of a location l to a scope chain L. Crucially, scope objects also reside on the heap.
This simplifies our proofs. For each function call, a new scope object is created
and prepended to the beginning of the scope chain. After evaluating the function
call, that scope object is removed from the scope chain.

The initial configuration used to evaluate TIPC programs consists of a scope
chain containing only the global JavaScript object lg. This object resides on
the initial heap and contains locations of JavaScript prototype objects (Number,
String, etc) and functions (such as parseInt) which themselves reside on the
heap.

The variable lookup function σ is defined as follows. It expects three argu-
ments: a heap, a scope chain and a variable. When the variable x is defined in
the location l of the heap H, σ returns that location. Otherwise, the function σ
is recursively called with the next location in the scope chain.

σ(H, l : L, x) =
{
l if H(l, x)↓
σ(H,L, x) otherwise

101

[6] TIPC: Formalisation

6.4.1 Evaluating Expressions

The evaluation of an expression e is written as follows: 〈H1, L, e〉 ⇓ 〈H2, r〉, with
H1 as initial heap and L as scope chain, evaluating to heap H2 with result r. As
we often need to evaluate expressions to values instead of references, we define
〈H1, L, e〉 ⇓v 〈H2, v〉 as the combination 〈H1, L, e〉 ⇓ 〈H2, r〉 and γ(H2, r) = v.

The following paragraphs discuss the semantics for evaluating expressions in
TIPC. Figure 6.12 lists all evaluation rules at the end of this chapter. The eval-
uation rules of TIPC are almost identical to those in safeFTS, but ignore block
scoping (as discussed in Section 6.1).

E-Id This rule evaluates a variable expression. After looking up the location of
the variable in the scope chain (using σ), this rule returns a reference (a combi-
nation of a location and the variable itself).

E-Id
σ(H,L, x) = l

〈H,L, x〉 ⇓ 〈H, (l, x)〉

E-Lit Evaluating a literal does not depend on the heap or scope chain: it simply
results in that literal.

E-Lit
〈H,L, l〉 ⇓ 〈H, l〉

E-this When encountering a this keyword, the evaluation rule E-this first looks
up the scope object of the internal keyword @this. E-this then dereferences @this.

E-this

σ(H,L,@this) = l1
H(l1,@this) = l

〈H,L, this〉 ⇓ 〈H, l〉

E-Op For the evaluation of a binary operator call, first the two parameters are
evaluated. Both parameters have to evaluate to literals, which are then combined
using the binary operator.

E-Op

〈H0, L, e1〉 ⇓v 〈H1, l1〉
〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊗ e2〉 ⇓ 〈H2, l1 ⊗ l2〉

102

[6.4] Operational Semantics

E-Oblit Evaluating an object literal expression first requires a new location in
the heap. E-Oblit uses an auxiliary function new to create a new object map that
contains one internal property @this that points to itself. Next, every property
is evaluated and its resulting value is added to the freshly created object map.
Finally, E-Oblit returns the location of the object map.

E-ObLit

H1 = H0 ∗ [l 7→ new(l)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, {n1 : e1, . . . , nm : em}〉 ⇓ 〈H, l〉

new(l) = (@this 7→ l)

E-Assign The rule E-Assign evaluates both sides of the assignment. The left-
hand side has to evaluate to a reference, while the right-hand side is evaluated
to a value. Next, the heap is extended or updated accordingly. The result of the
evaluation is the value of the right-hand side.

E-Assign
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) 7→ v], v〉

E-Update In E-Update, we evaluate a call to assign, which is used to update
or add multiple properties. Recall that assign is a functional update: its first
argument does not get modified. Therefore, E-Update first duplicates the first
argument of assign, using the auxiliary function clone. The internal property
@this of the clone refers to the clone instead of the original object. Next, every
property of the second argument is evaluated to its value. The cloned object then
replaces or adds every evaluated property to the cloned object. Finally, E-Update
returns the location of the cloned object.

E-Update

〈H0, L, e〉 ⇓v 〈H ′0, l〉 H1 = H ′0 ∗ [lr 7→ clone(H ′0(l), lr)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(lr, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(lr, nm) 7→ vm]
〈H0, L, assign(e, {n1 : e1, . . . , nm : em})〉 ⇓ 〈H, lr〉

103

[6] TIPC: Formalisation

The definition of clone is as follows. The] operator takes the union of two
object maps, preferring fields from the right operand where the domains of the
two inputs overlap.

clone(o, lr) = o] (@this 7→ lr)

E-Prop Evaluating a property access is less complicated than its type checking
counterpart: as types (and thus inter-property constraints) are omitted from the
evaluation rules, E-Prop verifies that the object does not dereference null. It
returns a pair containing the location of the object and the accessed property. Note
that this evaluation rule also covers property accesses of undefined properties: in
this case, γ will return undefined.

E-Prop
〈H0, L, e〉 ⇓v 〈H1, l〉 l 6= null
〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉

E-Prop’ The rule E-Prop’ covers the accessing of properties of literals. As
literals do not have properties themselves, E-Prop’ uses the auxiliary function box
to construct an object that corresponds to the literal. E-Prop’ then returns the
location of the boxed literal, together with the property that is being accessed.

E-Prop’
〈H0, L, e〉 ⇓v 〈H1, l〉 H2 = H1 ∗ [lboxed 7→ box(l, lboxed)]

〈H0, L, e.n〉 ⇓ 〈H2, (lboxed, n)〉

We assume that for every kind of literal (string, number, boolean,. . .) there
exists a corresponding prototype object oproto that contains its prototype func-
tions (i.e. toString and valueOf). Furthermore, we assume that each prototype
function expects a literal value in this.value. We now define the box function
as follows. box constructs an object that contains both the prototype functions
alongside the literal value in this.value.

box(l, lboxed) = clone(oproto, lboxed)] (value 7→ l)

E-Call and E-CallUndef Evaluating a function or method call first requires
the evaluation of the callee. The location of the callee must contain a lambda
expression. Next, the auxiliary function This is used to retrieve the location of
the internal variable @this. Its definition is as follows. If the scope object of the
reference has an @this property, the scope object itself is returned. Otherwise,
This returns the global scope object.

104

[6.4] Operational Semantics

E-Call

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H1(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return v; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, v〉

E-CallUndef

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, undefined〉

This(H , (l, x)) = l if H (l, @this)↓
This(H , v) = lg otherwise

In JavaScript, the evaluation of o.m(...) is done in two phases: first o.m is
evaluated, and this function is subsequently applied with o bound to @this, and
the arguments bound to their values. To model this, E-Call inspects the object
from which the function was selected, and if it contains @this, the object is bound
to @this for the duration of the function call.

Next, all arguments of the call are evaluated to a value4. Using the auxiliary
function act (defined below), the heap is extended with a new location that points
to a new scope object. This scope object contains the arguments of the function,
mapped onto their values. The scope object also contains a @this variable that
points to the result of the call to This.

act(l, x, v, l ′) = l 7→ ({x 7→ v, @this 7→ l ′})

Finally, the body of the lambda expression is evaluated against a scope chain
that is extended with the new scope chain object. This must result in either a
value return statement or an empty return statement. In the former case, the
function or method call is evaluated to that value. In the latter case, the call
evaluates to undefined.

Note that we do not create bindings for all local variables in the body of
the lambda expression up front: they are added to the local scope as they are
declared and initialised. This correctly emulates the concept of block-scoped
variable declarations (using let) in TIPC.

4Recall that a value can either be a literal l or a location l. The latter ensures pass-by-
reference in case of object parameters.

105

[6] TIPC: Formalisation

E-Func The evaluation rule for function definitions first creates the correspond-
ing lambda expression. Next, the heap is extended with a new location that points
to that lambda expression. Finally, E-Func returns the new location.

E-Func
H1 = H0 ∗ [l 7→ 〈λx.{s},L〉]

〈H0, L, function(x : S) : T {s}〉 ⇓ 〈H1, l〉

E-TypeAssert The evaluation rule for a type cast discards the cast itself and
just evaluates the expression. This is safe thanks to the checks performed by the
type system. Note that the casting of object literals to interface types have to
evaluated differently. This is covered in the following evaluation rule.

E-TypeAssert
〈H0, L, e〉 ⇓ 〈H1, r1〉
〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

E-TypeAssertInf This rule evaluates the cast of an object literal to an in-
terface type. Similar to E-TypeAssert, this rule first evaluates the object literal
expression. Then, the internal property @interface is added to the evaluated
object literal. This internal property indicates that the expression is of interface
type I. In the next section, this property is used for linking the run-time inter-
face in a location to the declared type in the program; this serves to simplify the
soundness proofs.

E-TypeAssertInf

〈H0, L, {n : e}〉 ⇓v 〈H1, l〉
H = H1[(l, @interface) 7→ I]
〈H0, L, <I>{n : e}〉 ⇓ 〈H, l〉

6.4.2 Evaluating Statement Sequences

The evaluation relation for statement sequences is written as 〈H1, L, s1〉 ⇓ 〈H2, s〉,
where s is a statement result (i.e. either a return without value return;, a return
with value return v; or no return ;). The latter can occur at the top level of the
program, or when evaluating the consequent and alternative of an if statement.

The following paragraphs show the evaluation rules for sequences5. Figure 6.13
lists all sequence evaluation rules at the end of this chapter.

5The evaluation rules for sequences are omitted in the definition of safeFTS [Bierman et al.,
2014], but we defined no rules specific to TIPC interface definitions.

106

[6.4] Operational Semantics

E-EmptySeq Evaluating the empty sequence results in the terminal semicolon.

E-EmptySeq
〈H,L, •〉 ⇓ 〈H, ;〉

E-Return The evaluation rule for a sequence that starts with an empty return
statement discards the statements after the return.

E-Return
〈H,L, return; s〉 ⇓ 〈H, return;〉

E-ReturnVal The rule E-ReturnVal evaluates a sequence that starts with a
value return statement. It evaluates the expression to a value, and discards the
remaining statements after the return.

E-ReturnVal
〈H,L, e〉 ⇓v 〈H1, v〉

〈H,L, return e; s〉 ⇓ 〈H1, return v;〉

E-ExpSt Rule E-ExpSt evaluates the sequence of statements that starts with an
expression that does not contain a return statement. In this case, this expression
is evaluated, but its result is not taken into account for the result of this evaluation
rule. Instead, this rule evaluates to the statement result of the evaluation of the
rest of the sequence.

E-ExpSt

〈H,L, e〉 ⇓ 〈H1, r〉
〈H1, L, s〉 ⇓ 〈H2, s〉
〈H,L, e; s〉 ⇓ 〈H2, s〉

E-IfTrue and E-IfFalse There are two rules that cover the evaluation of if
statements: rule E-IfTrue covers the case that the condition evaluates to true,
E-IfFalse covers the case that the condition evaluates to false. After evaluating
the condition, E-IfTrue evaluates the true branch while E-IfFalse evaluates the
false branch. Note that, because of block scoping in TIPC, the branches of if
statements introduce a new scope, so variables declared there are not visible out-
side. The result of that evaluation is concatenated with the rest of the statements
(s; s). That concatenation is evaluated against the original scope chain. This
short-circuits evaluation in case the branch contained a return statement.

107

[6] TIPC: Formalisation

Contrary to the typing rules for if statements, there is no separate evaluation
rules for if statements that verify the presence of properties, as they require no
different evaluation strategy.

E-IfTrue

〈H,L, e〉 ⇓v 〈H1, true〉
H2 = H1 ∗ [l 7→ ()]
〈H2, l : L, t1〉 ⇓ 〈H3, s〉
〈H3, L, s;s〉 ⇓ 〈H4, sr〉

〈H,L, if (e) {t1} else {t2}; s〉 ⇓ 〈H4, sr〉

E-IfFalse

〈H,L, e〉 ⇓v 〈H1, false〉
H2 = H1 ∗ [l 7→ ()]
〈H2, l : L, t2〉 ⇓ 〈H3, s〉
〈H3, L, s;s〉 ⇓ 〈H4, sr〉

〈H,L, if (e) {t1} else {t2}; s〉 ⇓ 〈H4, sr〉

E-ITVarDec This rule first evaluates a sequence that starts with a variable
declaration. First, the rule evaluates the value for the expression. Next, the scope
chain is extended with a new scope object in which the new variable is mapped
onto the evaluated expression. The rest of the sequence is evaluated against the
extended scope chain.

E-ITVarDec

〈H,L, e〉 ⇓v 〈H1, v〉
H2 = H1 ∗ [l 7→ ({x 7→ v})]
〈H2, l : L, s〉 ⇓ 〈H3, s〉

〈H,L, let x : S = e; s〉 ⇓ 〈H3, s〉

6.5 Soundness

So far, this chapter described the formalisation of the TIPC programming lan-
guage. The novelty of the type system in TIPC lies in its guarantee that all
constraints imposed on objects are guaranteed to be satisfied throughout the ex-
ecution of the program, including those over multiple properties.

In this section, we prove the soundness of the type system of TIPC. The
key element of this proof is the type safe usage of objects with inter-property
constraints.

The key element to prove for the preservation of TIPC is that the evaluation
rules and typing rules of TIPC ensure that objects on the heap tagged with an

108

[6.5] Soundness

interface property satisfy the interface constraints. This property is captured in
Lemma 1:

Lemma 1 (Correctness of interface types at runtime). For heap locations tagged
as interface types, i.e. those where Σ(l) = I and Σ |= H , the following is required:

1. Every interface instance is tagged as such:
H (l, @interface) = I′ ∧ I′ 5 I;

2. All properties are correctly typed:
∀n ∈ fields(l) : n:T ∈ properties(I′) ∧ Σ |= 〈H , (l, n)〉 : T;

3. The constraints are satisfied by a valuation over the presence or
absence of properties: v = cp ∪ cnp and v̂(constraints(I′))

where cp = {present(n) | n ∈ fields(l)}
where cnp = {¬present(n) |n ∈ properties(I′)

∧ (¬H (l, n)↓∨ H (l, n) = undefined)}
where fields(l) = {n | H (l, n) ↓ ∧H (l, n) 6= undefined}.

The theorems for subject reduction and the corresponding judgments are based
on those of safeFTS. The structure for our proof is in the style of Abadi and
Cardelli [1996] and Bierman et al. [2003]. We introduce some new judgments
in Section 6.5.1 and we provide the proof for the key property (Lemma 1. Sec-
tion 6.5.3 contains the full proofs for the preservation of types in expressions and
statements (Section 6.5.3):

Theorem 1 (Type Preservation for Expressions). If Σ |= 〈H , L, e〉 : T and
〈H , L, e〉 ⇓ 〈H ′, r〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, r〉 : T′ and T′ 5 T.

Theorem 2 (Type Preservation for Statements). If Σ |= 〈H , L, s〉 : T and
〈H , L, s〉 ⇓ 〈H ′, s〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, s〉 : T′ and T′ 5 ∪(T).

Because the operational semantics presented in Section 6.4 is written down in
big-step notation, we cannot prove progress [Pierce, 2002, page 505]. The common
alternative is to provide explicit stuck states [Abadi and Cardelli, 1996] and prove
that these cannot be entered. We follow this reasoning and inspect each evaluation
rule for potential stuck states. For each stuck state, we show how the type system
prevents those (Section 6.5.4).

109

[6] TIPC: Formalisation

6.5.1 Judgments

Before introducing the proofs, we first introduce a relationship between types and
the operational semantics. We define a heap type Σ as a partial function from heap
locations to types (either function types, object literal types, or interface types).
A heap type is a subset of another heap type (Σ ⊆ Σ ′) when dom Σ ⊆ dom Σ ′
and ∀l ∈ dom Σ : Σ(l) = Σ ′(l).

We also define several judgments.

Definition 1 (Well-formed Heap). A heap is well-formed when:

• for all closures in the codomain of the heap: the scope chain of the closure
must be compatible with the heap: H ,L |= �;

• for all object maps in the codomain of the heap: every location l in the
codomain of the object map has to be in the domain of the heap (l ∈ dom H).

It is written down as H |= �.

Definition 2 (Heap–Scope Chain Compatibility). A judgment that a heap H
and scope chain L are compatible is written as H ,L |= �. This judgment requires
that all scope objects l in the scope chain L exist on the heap:

HSC
H |= � ∀l ∈ L : l ∈ dom H ∧H (l) is an object map

H ,L |= �

Definition 3 (Heap–Heap Type Compatibility). We use a judgment Σ |= H
to denote that the heap H is compatible with the heap type Σ . Intuitively, a
heap type is compatible with a heap when every value in the heap has the type
predicted by the heap typing. This compatibility also requires that the constraints
of interface types are satisfied.

HHC
dom Σ = dom H H |= � ∀l ∈ dom Σ : Σ ,H |= l ok

Σ |= H

The third part of the HHC judgment (Σ ,H |= l ok) actually verifies the
compatibility between the heap and the heap type, and is defined in Figure 6.7.
A location in the heap points to a closure or an object map. For a closure, the
compatibility verifies that the parameter list of the closure (in the heap) and the
type (in the heap type) match. Moreover, the closure body must have a return
type that is assignable to the defined return type (Figure 6.7, Closure). This is
verified using context, which is defined later in this section (Definition 4).

110

[6.5] Soundness

Closure

Σ(l) = {(x : T) : S} H (l) = 〈λx.{s}, L〉
context(Σ ,L), this : any, x : T ` s : S′ S′ 5 S

Σ ,H |= l ok

Object Map (Literal)

Σ(l) = {n : T} H (l) = one of
{
{n 7→ v}
{@this 7→ l ′, n 7→ v}

Σ ,H |= v : T ok
Σ ,H |= l ok

Object Map (Intf.)

Σ(l) = I H (l) = {@this 7→ l, @interface 7→ I′, n 7→ v}
I′ 5 I properties(I′) = {n : T}

Σ ,H |= v : T ok
{Mp} = {n : T | n : T ∈ {n : T} ∧H (l, n) ↓}

{Mp} ⊆ properties(I′)
{Mnp} = properties(I′) \ {Mp}

cp = {present(n) | n : T ∈ {Mp}}
cnp = {¬present(n) | n : T ∈ {Mnp}}

v = cp ∪ cnp v̂(constraints(I′))
Σ ,H |= l ok

Figure 6.7: Definition of Σ ,H |= l ok for heap objects

When a location points to an object map, the object map can either represent
an object literal type or an interface type. This distinction is made by the presence
or absence of the internal property @interface. For object literals, the rule
verifies that the type of each property is compatible with its value (Figure 6.7,
Object Map (Literal)). Finally, for interfaces the values of the properties
have to have a valid typing given the heap and heap typing. Next, the rule verifies
whether the properties in the interface instance satisfy the interface constraints
(Figure 6.7, Object Map (Interface)).

Figure 6.8 defines heap-heap type compatibility for values (which is either a
literal or a location), given a type. Verifying a literal is straightforward reusing the
typing judgment, and verifying the location reuses the heap compatibility defined
in Figure 6.7.

Note that we do not elaborate further on circular references, i.e. when the
object map of one location refers to another location that in turn refers to the
first location. As in Bierman et al. [2014], circular references can be covered by

111

[6] TIPC: Formalisation

Literal
` l : T′ T′ 5 T
Σ ,H |= l : T ok

Location
Σ ,H |= l ok Σ(l) = T′ T′ 5 T

Σ ,H |= l : T ok

Figure 6.8: Definition of Σ ,H |= v : T ok for values

coinductive proof techniques.

Definition 4 (Context). The function context(Σ , L) builds a typing judgment de-
scribing the variables in the scope chain L, using the types in Σ . The] operator
ensures that only the inner-most type for a variable is used: if a variable is present
on both sides, the right-side instance is returned. Because E-TypeAssertInf at-
taches an @interface label to all interface variables in the heap, Σ predicts
interface types as well as function types and object literal types.

context(Σ, []) = {}
context(Σ, l : L) = context(Σ, L)] {Θ(x : T) | x : T ∈ Σ(l)}

The function Θ transforms the internal property @this to a program variable
this. This is necessary to correctly construct an equivalent to the original typing
environment.

Θ(x : T) =
{

this : T if x = @this
x : T if x 6= @this

Next, we define several judgments that combine the previous definitions:

Σ |= H H ,L |= � context(Σ , L) ` e : T
Σ |= 〈H , L, e〉 : T

We define an analogous judgment for statements:

Σ |= H H ,L |= � context(Σ , L) ` s : T
Σ |= 〈H , L, s〉 : T

Finally, we add a judgment on the result of the evaluation of expressions:
Σ |= 〈H , r〉 : T. A result r is either a reference (a combination of a location l and
a variable x), or a value (which is either a literal l or a location l). The following
three judgments cover these three cases. The type of a location is looked up in the

112

[6.5] Soundness

heap typing (Σ), while the type of a literal is known using a type judgment. For
a type of a reference, the location forms the environment for the type judgment
of the variable.

Σ |= H Σ(l) = T
Σ |= 〈H , l〉 : T

Σ |= H ` l : T
Σ |= 〈H , l〉 : T

Σ |= H Σ(l) ` x : T
Σ |= 〈H , (l, x)〉 : T

Correspondingly, we also introduce judgments for statement results. The
empty sequence produces an empty set of types (•), a default return has type
void and the statement form return e; has the type of e.

Σ |= H
Σ |= 〈H , ;〉 : •

Σ |= H
Σ |= 〈H , return;〉 : void

Σ |= H Σ |= 〈H , v〉 : T
Σ |= 〈H , return v;〉 : T

6.5.2 Key Properties

In this section, we summarise the parts of the preservation proofs that cover
inter-property constraints. In Section 6.5.1, we have extended the definition of
heap–heap type compatibility to take interfaces into account as well (Figure 6.7).
Lemma 1 shows how the evaluation and typing rules ensure that object on the heap
tagged with an interface property satisfy the interface constraints. Corollary 1
gives an informal overview of how the type system accurately predicts the presence
or absence of interface instance properties at runtime.

Lemma 1 (Correctness of interface types at runtime). For heap locations tagged
as interface types, i.e. those where Σ(l) = I and Σ |= H , the following is required:

1. Every interface instance is tagged as such:
H (l, @interface) = I′ ∧ I′ 5 I;

2. All properties are correctly typed:
∀n ∈ fields(l) : n:T ∈ properties(I′) ∧ Σ |= 〈H , (l, n)〉 : T;

3. The constraints are satisfied by a valuation over the presence or
absence of properties: v = cp ∪ cnp and v̂(constraints(I′))

where cp = {present(n) | n ∈ fields(l)}
where cnp = {¬present(n) |n ∈ properties(I′)

∧ (¬H (l, n)↓∨ H (l, n) = undefined)}
where fields(l) = {n | H (l, n) ↓ ∧H (l, n) 6= undefined}.

113

[6] TIPC: Formalisation

Proof. By induction on the evaluation rules for expressions and statements. Most
rules do not directly modify the heap, so we only focus on the rules that potentially
invalidate this condition.

Note that this lemma is not only unaffected by explicit property presence tests,
the lemma guarantees this because of requirement 3. Assuming that an object
of interface type I is well-formed before the presence test, then the strengthened
interface type I′ in the taken branch represents the state of the runtime object
more accurately.
E-TypeAssertInf This evaluation rule is responsible for instantiating interface
types on the heap, given an object literal. Requirement 1 follows from the evalu-
ation rule. Requirements 2 and 3 follow directly from the type system.
E-Assign There are three sub-cases: e1 can either resolve to a variable reference,
an object property, or an interface property:

• In case of a variable reference to an interface I, the three properties follow
directly from assignment compatibility between I and the interface type I’
assigned to e2.

• In case of a property belonging to an object: the three requirements cannot
be invalidated.

• In case of an interface property: it depends on whether this expression is
trying to add a new property or update a present property. The type system
assigns type Undefined to properties which are guaranteed to be absent, and
rejects programs that access properties whose presence is unknown.

For property update, the syntax prevents accesses to the @interface prop-
erty (preserving requirement 1). Requirements 2 and 3 are guaranteed by
assignment compatibility.

E-Update This rule first clones the source object (for which all properties are
already satisfied) before assigning the new fields. Requirement 1 follows from the
evaluation rule: the @interface tag is cloned along with other fields. We now
consider the generated interface I′ in I-UpdateInf. slice ensures that the interface
contains the smallest possible subset of constraints and properties such that all
constraints in I either do not mention any properties from I′ or are part of the
constraints in I′. For the fields in I′, requirements 2 and 3 are guaranteed by the
I-UpdateInf rule. For fields not in I′, requirements 2 and 3 continue to hold, as
they cannot be affected by the assign operation by definition.
E-ObLit This rule creates a new object on the heap. This cannot invalidate
existing interface instances on the heap.

114

[6.5] Soundness

E-Prop’, E-Func These rules create a heap location for respectively properties
of literal objects and a closure, but neither alter existing interface instances on
the heap.
E-Call, E-CallUndef The heap modifications made by these two rules are lim-
ited to evaluation of sub-expressions or the allocation of a new scope object to
hold the new function’s local variables. In the latter case, we rely on the fact that
extension cannot affect existing interface instances on the heap.
E-ReturnVal, E-ExpSt The heap modifications made by these statement eval-
uation rules are limited to evaluating sub-expressions and sub-statements, hence
they cannot affect existing interface instances on the heap.
E-IfTrue, E-IfFalse The modifications to the heap made by these rules are
evaluating sub-expressions and sub-statements. These rules also extend the heap
with a new empty object map, which does not affect existing objects on the heap.
E-ITVarDec Next to the heap modifications that stem from evaluating a sub-
expression and sub-statements, this rule extends the heap with a new object map
in which the declared variable points to the evaluated sub-expression. Thus, this
evaluation rule does not affect existing interface instances. Moreover, the typing
rule for variable declarations (I-ITVarDec) prohibits the creation of variables of an
interface type from object literals. Therefore, E-ITVarDec does not introduce new
interface instances on the heap. It is possible to assign an interface instance to a
variable of an interface type. However, the assignment compatibility rules ensure
that the source interface (to which the @interface tag points) is assignable to the
target interface. This suffices to ensure all three requirements of this lemma.

Corollary 1 (Constraint–presence correlation). The type system of TIPC guar-
antees that if the constraints of an interface contain a constraint present(n), it
is certain that the property n is present at runtime in objects with that inter-
face type. Similarly: if there is a constraint ¬present(n) , it is certain that the
property n will not be present.

There are three cases to consider:

Case 1: Construction Interfaces can only be constructed in three ways, which all
ensure that the correlation holds:

Case 1a: I-AssertInf. When an object literal is cast to an interface, the
interface constraints are verified against the properties in the object
literal. The correlation is thus informed by the exact properties of the
runtime object (E-TypeAssertInf) and enforced by the type system.

115

[6] TIPC: Formalisation

Case 1b: I-Assign. When an instance of interface I0 is assigned to a vari-
able of type interface I1, the type system requires that the constraints
are satisfied via the assignment compatibility rule A-Interface. The
correlation holds for the source object (of type I0) and the compatibil-
ity rule asserts that the properties of I1 must be respectively present
or absent. Therefore, the correlation must hold after the cast as well.
At runtime, nothing changes.

Case 1c: I-Assert. Analogous to Case 1b: assignment compatibility dic-
tates the presence and absence of properties in the source object. Noth-
ing changes at runtime.

Case 2: Property assignment The assignment of new values to object properties
either happens on a per-property basis (Case 2a), or multiple properties at
once using assign (Case 2b).

Case 2a: I-Assign. When a new value is assigned to a property n of an
interface, two typing rules are relevant: I-Prop (including the lookup
function) and I-Assign. At runtime, the E-Assign rule simply over-
writes the object property, so it is up to the type system to enforce the
correlation. We assume the correlation holds before the assignment, so
the constraints of the interface must state one of the following:
present(n): the lookup function of I-Prop returns the type of n and

I-Assign then allows the assignment of another value (following the
typing rules). As this will only update the value of a property that
is already present, this does not change the presence of n in the
object, thus the correlation holds.

¬present(n): the lookup function of I-Prop returns type Undefined.
The assignment compatibility required by I-Assign will fail as no
type is assignable to Undefined, except for undefined, in which
case the property will remain absent. Again, the correlation holds.

Neither: the lookup function of I-Prop is not defined in this case, so
the program does not typecheck. Without this safety guard in
place, the correlation would not hold.

Case 2b: I-Update. The assign function updates multiple properties of
an object. Again, we assume that the correlation holds before the as-
signment. The assign function returns a new object, of the same type
as the first argument, in which the properties of the second argument
are updated. Properties can become absent or present (by resp. assign-
ing undefined or a value different from undefined), or simply change

116

[6.5] Soundness

value. The assignment is only accepted by the type checker if the sec-
ond argument of assign is assignable to the generated interface which
covers its properties. Therefore, a change in presence for those proper-
ties is only allowed if the input interface did not already require their
presence or absence. At runtime, rule E-Update first clones the object
and then the properties are overwritten by those of the second argu-
ment. The correlation holds for both the generated interface (because
of assignment compatibility and isolation) and the rest of the object.

Case 3: After a presence test In case of an if statement that tests the pres-
ence of an interface property, the newly gained information is added to
the constraints of the type in both branches (function addConstraint in I-
IfPresenceInterface). Here the property follows from the program flow: if
the field presence test succeeds the type system can only conclude that the
present constraint applies, and vice versa when the presence test fails. Out-
side of the if statement, the present constraint is discarded again. Even
though the runtime value does not change, this is again an example of the
properties of the runtime value informing the type system and thus the
correlation.

6.5.3 Preservation

We recall the theorem for the preservation of types while evaluating expressions
and statements:

Theorem 1 (Type Preservation for Expressions). If Σ |= 〈H , L, e〉 : T and
〈H , L, e〉 ⇓ 〈H ′, r〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, r〉 : T′ and T′ 5 T.

Theorem 2 (Type Preservation for Statements). If Σ |= 〈H , L, s〉 : T and
〈H , L, s〉 ⇓ 〈H ′, s〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, s〉 : T′ and T′ 5 ∪(T).

For the preservation of a sequence of statements, the type of the evaluated
expression has to be assignable to the union type of a sequence of types (written
∪(T)). As union types are not part of TIPC, the assignment compatibility rule
needs to be extended:

A-Union
∀ T′ ∈ R : T 5 T′

T 5 ∪(R)

The proofs for the preservation of types while evaluating expressions and state-
ments can be found in Appendix B.1 resp. Appendix B.2. Preservation is proved
by a case analysis on evaluation rules.

117

[6] TIPC: Formalisation

6.5.4 Progress

Section 6.4 presented the big-step operational semantics of TIPC. Because of the
big-step notation, it is impossible to prove progress for TIPC: proving progress
for TIPC would be equal to proving that every well-typed term evaluates to a
value. However, this is not feasible: as TIPC supports general recursion, this
would require us to prove that every program will terminate.

Instead, this section lists the possible “stuck” states in TIPC where one or more
evaluation rules syntactically match the expression to be evaluated but none of
the rules’ preconditions apply. For each of these states, we show that the type
system prevents these situations from occurring.

Looking up an unknown identifier (E-Id) E-Id will fail when a non-existent
identifier is looked up in the environment. In a well-typed program, I-Id will
prevent this.

Looking up this outside of method (E-this) E-this fails when @this is not
defined in any object of the scope chain. Again, I-Id will prevent this.

Wrong operands or operator (E-Op) E-Op fails when one of the operands
does not evaluate to a literal or when there is no operator for the combination
of literals. However, this is prevented by I-Op, which will only succeed when the
combination of the two literals and the binary operator is accepted by the type
system.

The left-hand side of an assignment is not a reference (E-Assign) This
is prevented by the syntax of TIPC, which requires that the left-hand side of an
assignment is either a variable or a property. E-Id and E-Prop both evaluate
to a reference. Moreover, I-Id guarantees that the variable is known and I-Prop
guarantees that the property is part of the object.

First argument of assign call is not an object (E-Update) More specif-
ically, the evaluation rule for e requires that e does not evaluate to a literal but
to a location, and the evaluation rules for properties requires that the location
points to an object. This is guaranteed by I-UpdateObj and I-UpdateInf.

Object of property access evaluates to null (E-Prop) This is prevented
by lookup in I-Prop which will not succeed, as null does not have any properties.

118

[6.6] Conclusion

Callee does not evaluate to a function location, number of arguments
does not match declared number and function body does not evaluate
to a return statement (E-Call and E-CallUndef) The first two stuck states
are prevented by I-Call. The third stuck state is prevented by the syntax of TIPC,
which requires that every execution path in a function body contains at least one
return statement.

The if condition does not evaluate to true or false (E-IfTrue and E-If-
False) This is guaranteed by I-IfGeneral and I-IfPresenceInterface.

6.6 Conclusion

In this chapter, we have introduced the formalisation of TIPC, a variant of the
object-oriented programming language TypeScript that adds interfaces with inter-
property constraints. More specifically, incorporating inter-property constraints
into a regular programming language had an impact on every aspect of the for-
malisation:

Syntax On a syntactical level, changes were kept to a minimum. Interfaces are
defined in an unconventional way where the constraints on the presence are moved
to a separate section. This allows the definition of presence constraints between
properties. A second addition is the functional object update called assign which
enables the safe update of properties that are part of inter-property constraints.

Typing rules The type system of TIPC has to guarantee that inter-property
constraints are satisfied at initialisation time and remain satisfied throughout the
program. The biggest impact of inter-property constraints is on the functionality
that checks property accesses, verifying whether assignments are type-safe and
type checking the simultaneous update of properties.

Operational semantics As inter-property constraints are an extension of the
TIPC’s types, the impact on the operational semantics of TIPC was minimal.
The only evaluation rule that was impacted was the evaluation of a type cast of
an object literal. This rule adds an interface tag in the runtime object.

Finally, we proved that the formalisations are sound, including that objects with
inter-property constraints imposed on them will never contain an invalid combi-
nation of constraints at runtime.

The next chapter presents the implementation of TIPC.

119

[6] TIPC: Formalisation

I-Id Γ, x:T ` x:T
I-Number Γ ` n : number

I-String Γ ` s : string

I-Bool Γ ` true, false : boolean
I-Null Γ ` null : Null

I-Undefined Γ ` undefined : Undefined
I-ObLit Γ ` e : T

Γ ` {n : e} : {n : T}

I-Op
Γ ` e : S0 Γ ` f : S1 S0 ⊗ S1 = T

Γ ` e⊗ f:T
I-Prop

Γ ` e : S
lookup(S, n) = T

Γ ` e.n:T

I-Assign

Γ ` e : S Γ ` f:T
T 5 S

Γ ` e = f:T

I-Func
Γ, this : any, x : S ` s : R R 5 T

Γ ` function(x : S) : T {s} : {(x : S) : T}

I-Call

Γ ` e : {(x : S) : R}
Γ ` f : T T 5 S

Γ ` e(f) : R
I-Assert

Γ ` e : S
S 5 T

Γ ` <T>e : T

I-AssertInf

Γ ` {n : e} : {M} {Mp} = {n : T | n : T ∈ {M} ∧ T 6= Undefined}
{Mp} ⊆ properties(I) cp = {present(n) | n : T ∈ {Mp}}

{Mnp} = properties(I) \ {Mp} cnp = {¬present(n) | n : T ∈ {Mnp}}
v = cp ∪ cnp v̂(constraints(I))

Γ ` <I>{n : e} : I

I-UpdateObj
Γ ` e : {M} Γ ` {n : e} : {N}

Γ ` assign(e, {n : e}) : {M} A {N}

I-UpdateInf

Γ ` e : I I′ = slice(I, n, constraints(I)) Γ ` <I′>{n : e} : I′

n ∈ dom(properties(I)) n = dom(properties(I′))
Γ ` assign(e, {n : e}) : I

Figure 6.9: Typing rules of TIPC

120

[6.6] Conclusion

A-Trans
R 5 S S 5 T

R 5 T
A-Refl S ` �

S 5 S
A-AnyR S ` �

S 5 any

A-Undefined
Undefined 5 void

A-Prim
I(P) 5 T

P 5 T

A-Object
{M0, M1} ` � M1 5 M2

{M0, M1} 5 {M2}
A-Prop T ` �

n : T 5 n : T

A-CS

T 5 S R1 6= void
R0 5 R1

(x : S) : R0 5 (y : T) : R1
A-CS-Void

T 5 S R ` �
(x : S) : R 5 (y : T) : void

A-Interface

∀n : S ∈ properties(I0) : (n : T ∈ properties(I1) =⇒ S = T)
c0 = {¬present(n) | n : T ∈ properties(I0) \ properties(I1)}
c1 = {¬present(n) | n : T ∈ properties(I1) \ properties(I0)}

constraints(I0) ∪ c1 �`
∧

constraints(I1) ∧
∧
c0

I0 5 I1

A-IntObj
properties(I) 5 {n : T} constraints(I) �` present(n)

I 5 {n : T}

Figure 6.10: Assignment compatibility for types in TIPC

121

[6] TIPC: Formalisation

I-EmpSeq Γ ` • : • I-ReturnVal Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

I-Return Γ ` s : R
Γ ` return; s : void, R

I-ExpSt Γ ` e : S Γ ` s : R
Γ ` e; s : R

I-IfGeneral

Γ ` e : boolean Γ ` t1 : T1
Γ ` t2 : T2 Γ ` s : R

Γ ` if (e) {t1} else {t2}; s : T1, T2, R

I-IfPresenceInterface

Γ ` x : I n : S ∈ properties(I) Γ ` s : R
I− = addConstraint(I,¬present(n)) Γ] x : I− ` t1 : T1
I+ = addConstraint(I, present(n)) Γ] x : I+ ` t2 : T2

Γ ` if (x.n ≡ undefined) {t1} else {t2}; s : T1, T2, R

I-ITVarDec
Γ ` e : T T 5 S noDup(Γ, x : S) Γ] x : S ` s : R

Γ ` let x : S = e; s : R

Figure 6.11: Sequence typing rules in TIPC

122

[6.6] Conclusion

E-Id
σ(H,L, x) = l

〈H,L, x〉 ⇓ 〈H, (l, x)〉
E-Lit

〈H,L, l〉 ⇓ 〈H, l〉

E-this

σ(H,L,@this) = l1
H(l1,@this) = l

〈H,L, this〉 ⇓ 〈H, l〉
E-Op

〈H0, L, e1〉 ⇓v 〈H1, l1〉
〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊗ e2〉 ⇓ 〈H2, l1 ⊗ l2〉

E-ObLit

H1 = H0 ∗ [l 7→ new(l)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, {n1 : e1, . . . , nm : em}〉 ⇓ 〈H, l〉

E-Assign
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) 7→ v], v〉

E-Update

〈H0, L, e〉 ⇓v 〈H ′0, l〉 H1 = H ′0 ∗ [lr 7→ clone(H ′0(l), lr)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(lr, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(lr, nm) 7→ vm]
〈H0, L, assign(e, {n1 : e1, . . . , nm : em})〉 ⇓ 〈H, lr〉

E-Prop
〈H0, L, e〉 ⇓v 〈H1, l〉 l 6= null
〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉

E-Prop’
〈H0, L, e〉 ⇓v 〈H1, l〉 H2 = H1 ∗ [lboxed 7→ box(l, lboxed)]

〈H0, L, e.n〉 ⇓ 〈H2, (lboxed, n)〉

E-Call

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H1(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return v; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, v〉

E-CallUndef

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, undefined〉

Figure 6.12: Operational semantics of TIPC
123

[6] TIPC: Formalisation

E-Func
H1 = H0 ∗ [l 7→ 〈λx.{s},L〉]

〈H0, L, function(x : S) : T {s}〉 ⇓ 〈H1, l〉

E-TypeAssert
〈H0, L, e〉 ⇓ 〈H1, r1〉
〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

E-TypeAssertInf

〈H0, L, {n : e}〉 ⇓v 〈H1, l〉
H = H1[(l, @interface) 7→ I]
〈H0, L, <I>{n : e}〉 ⇓ 〈H, l〉

Figure 6.12: Operational semantics of TIPC (continued)

124

[6.6] Conclusion

E-EmptySeq
〈H,L, •〉 ⇓ 〈H, ;〉

E-Return
〈H,L, return; s〉 ⇓ 〈H, return;〉

E-ReturnVal
〈H,L, e〉 ⇓v 〈H1, v〉

〈H,L, return e; s〉 ⇓ 〈H1, return v;〉

E-ExpSt

〈H,L, e〉 ⇓ 〈H1, r〉
〈H1, L, s〉 ⇓ 〈H2, s〉
〈H,L, e; s〉 ⇓ 〈H2, s〉

E-IfTrue

〈H,L, e〉 ⇓v 〈H1, true〉
H2 = H1 ∗ [l 7→ ()]
〈H2, l : L, t1〉 ⇓ 〈H3, s〉
〈H3, L, s;s〉 ⇓ 〈H4, sr〉

〈H,L, if (e) {t1} else {t2}; s〉 ⇓ 〈H4, sr〉

E-IfFalse

〈H,L, e〉 ⇓v 〈H1, false〉
H2 = H1 ∗ [l 7→ ()]
〈H2, l : L, t2〉 ⇓ 〈H3, s〉
〈H3, L, s;s〉 ⇓ 〈H4, sr〉

〈H,L, if (e) {t1} else {t2}; s〉 ⇓ 〈H4, sr〉

E-ITVarDec

〈H,L, e〉 ⇓v 〈H1, v〉
H2 = H1 ∗ [l 7→ ({x 7→ v})]
〈H2, l : L, s〉 ⇓ 〈H3, s〉

〈H,L, let x : S = e; s〉 ⇓ 〈H3, s〉

Figure 6.13: Operational semantics of sequences in TIPC

125

Chapter 7

TypeScriptIPC:
Implementation of TIPC

In the previous chapter, we presented the formalisation of TIPC, a programming
language with support for constraints between interfaces properties. This chap-
ter presents a prototypical implementation of TIPC, called TypeScriptIPC. In
TIPC, existing TypeScript interface definitions are replaced by advanced inter-
face definitions with support for inter-property constraints. However, in order
to enable the step-by-step integration of inter-property constraints into exist-
ing TypeScript applications, our implementation of TIPC supports both regular
interfaces and interfaces with inter-property constraints. While TIPC contains
a subset of TypeScript, TypeScriptIPC is an extension of the complete Type-
Script programming language. The implementation of TypeScriptIPC is available
at https://github.com/noostvog/typescriptipc1 and is also published as an
evaluated artefact [Oostvogels et al., 2018a].

We start this chapter by briefly describing the architecture and design of the
TypeScript compiler in Section 7.1. Next, Section 7.2 covers the differences be-
tween the formalisation (TIPC) and the implementation (TypeScriptIPC), which
can be attributed to technical limitations and to the co-existence of regular inter-
face definitions and interface definitions with inter-property constraints. Finally,
Section 7.3 presents the details of the implementation. In the implementation, we
extend three applications and combine them:

• the TypeScript compiler2;
1To avoid confusion with regards to terminology, occurrences of predicate are replaced with

constraint in the function and variable names in this chapter.
2https://github.com/Microsoft/TypeScript

127

https://github.com/noostvog/typescriptipc
https://github.com/Microsoft/TypeScript

[7] TypeScriptIPC: Implementation of TIPC

• a library that provides a DPLL (Davis-Putman-Logemann-Loveland) satis-
fiability solver3;

• a library that provides a propositional sequent calculus prover4.

In Chapter 9, the implementation will be used in our discussion of API spec-
ification languages, where we present a tool that generates the server stub in
TypeScriptIPC from a web API specification.

7.1 Architecture and Design

In this section, we explain the architecture of the TypeScript compiler. A compiler
typically translates source code to an executable program. TypeScript’s compiler
differs from standard compilers in that it does not create an executable program.
Instead, it translates the source code to its equivalent in JavaScript (without type
annotations). These kinds of compilers are also called transpilers.

At a high level, the TypeScript compiler is structured as follows. In the first
phase, the scanner reads the characters in the input source code and produces
a sequence of tokens. The parser then generates an abstract syntax tree (AST)
from the tokens. Next, the type checker verifies the type safety of the AST,
and generates diagnostic error messages when this is not the case. Regardless
of whether or not the program is type safe, the TypeScript compilation process
always results in a JavaScript file. Each phase of the compiler resides in a separate
source file.

The TypeScript compiler is written in TypeScript itself. Several parts of
the TypeScript compiler were extended or adapted in order to incorporate the
addition of inter-property constraints to interfaces. Below, we list all the parts
of the compiler that required a change, and briefly explain what changed. In
Section 7.3, we elaborate on these changes.

types.ts (Section 7.3.1) As the compiler of TypeScript is written in Type-
Script itself, it uses types to facilitate the development and improve the correct-
ness of its implementation. This file contains all type declarations that are used
throughout the implementation of the compiler. Every type representation used
in the TypeScript compiler has a property kind with an enum SyntaxKind value
to identify the kind of type. This enum contains the type for, among others,
keywords, tokens, expressions, statements, declarations and TypeScript types.

3https://github.com/tammet/logictools
4https://www.nayuki.io/page/propositional-sequent-calculus-prover

128

https://github.com/tammet/logictools
https://www.nayuki.io/page/propositional-sequent-calculus-prover

[7.1] Architecture and Design

Figure 7.1: Diagram of the TypeScript compiler

scanner.ts (Section 7.3.2) The TypeScript scanner transforms the source
code into a stream of tokens. All keywords and tokens are replaced by their
equivalent in the SyntaxKind enum.

parser.ts (Section 7.3.3) The parser uses the token stream from the scanner
to generate an abstract syntax tree of Nodes, which form the basis of, among
others, expressions, statements, declarations, literals and comments.

checker.ts (Section 7.3.4) The type checker performs the second semantic
pass (the first semantic pass is performed by the binder, see below) of the source
file in TypeScript. It uses the AST from the parser and the symbols from the
binder to verify the type safety of the AST.

emitter.ts (Section 7.3.5) The emitter is the last step of the compiler process.
Compiling a TypeScript program results in a JavaScript program. Next to omit-
ting all type annotations, the emitter also transforms some TypeScript language
constructs that are not supported by regular JavaScript, such as let declarations.

Figure 7.1 shows a diagram of the main parts of TypeScript compiler. There
are also a few helper files that we have extended. These extensions are trivial and
will not be discussed in this chapter.

diagnosticMessages.json During the scanning, parsing, binding and type check-
ing, errors can occur. All possible error messages are collected in this file, which
is used to generate a constant object called Diagnostics in which every property
represents one error message or warning.

binder.ts The binder performs the first semantic pass over the code. The
binder creates the symbol table and populates it with symbols. Symbols are used
to connect linguistic entities that refer to the same declaration. This helps the

129

[7] TypeScriptIPC: Implementation of TIPC

type checker to reason about named declarations such as interfaces, functions and
modules. The binder also records the flow and antecedents, which are used by the
type system to perform flow-sensitive type analysis.

factory.ts and visitor.ts The TypeScript compiler uses the factory design
pattern and visitor design pattern by Gamma et al. [1995].

7.2 Differences between Formalisation and Implemen-
tation

Before we explain the details of how the formalisation of Chapter 6 maps onto
the implementation, we first clarify some differences between the two. Chapter 6
presented the formalisations of a safe subset of TypeScript. On the other hand,
TypeScriptIPC is implemented on top of TypeScript, which includes features such
as unsoundness, optional object properties and a more advanced flow-sensitive
type analysis. In this section, we elaborate on the changes that were necessary in
order to incorporate inter-property constraints in TypeScript.

Version The formalisations in Chapter 6 were based on version 0.9.5 of Type-
Script. TIPC is built on top of TypeScript version 2.1.6. Most of the features
added since version 0.9.5 are orthogonal to our extension of TypeScript with
inter-property constraints, except for the strict null-checking mode. This mode
was introduced in version 2.0, but already incorporated in our formalisations of
Chapter 6.

7.2.1 Interface Definition

In TIPC, state-of-the-art interfaces are replaced with interfaces that support inter-
property constraints. In order to stay consistent with existing TypeScript pro-
grams, we did not supplant the existing interface definition of TypeScript with
the interface definitions from the paper. Instead, there are now two ways to de-
fine interfaces in TypeScriptIPC. Apart from the original TypeScript interfaces
(in which properties can only be required or optional), interfaces can now also
contain an extra section in which presence constraints can be expressed.

Listing 7.1 shows the interface definition of the PrivateMessage example in
TypeScriptIPC. At the top, all properties are defined as optional. The second
section contains all constraints: text is a required property, while there is an

130

[7.2] Differences between Formalisation and Implementation

1 interface PrivateMessage {
2 text? : string ;
3 userid ? : number ;
4 screenname ?: string ;
5 } constrains {
6 present (text);
7 or(and(present (userid), not(present (screenname))),
8 and(not(present (userid)), present (screenname)));
9 }

Listing 7.1: Definition of a TIPC interface in TypeScriptIPC

exclusivity constraint imposed on the ID and the name. The exclusivity constraint
is rewritten using only and, or and not. In TypeScriptIPC, constraints are written
in prefix notation instead of infix notation, and uses not instead of ¬.

Interface definitions are treated as IPC-interfaces (interfaces with inter-property
constraints) if the interface contains at least one constraint. To avoid contradic-
tions between the property list and the constraints, properties of IPC-interfaces
have to be indicated as optional using a question mark in the interface property
list and interface properties may not have the type undefined.

In TypeScript, reserved keywords may not be longer than eleven characters.
Therefore, we have replaced the keyword for indicating the second part of the
interface definition (constraining) by constrains.

7.2.2 Object Creation

In Section 4.1, we have explained that there are two kinds of initialising interface
instances: via variable declaration or via type casting. As TIPC supports width
subtyping, assignments such as

1 let pm: {text: string , user_id : number , screen_name : string }
2 = {text: "Hello!", user_id : 42, screen_name : "Alice"};

are accepted by TIPC’s type system. Therefore, TIPC limits the ways that inter-
face instances can be created: the right-hand side of an assignment or cast must
be an object literal.

While TIPC only allows the initialisation via a type cast, TypeScriptIPC sup-
ports both type casts and variable declarations. TypeScriptIPC is based on a more
recent version of TypeScript (2.1.6 instead of 0.9.5) and disallows extra proper-
ties in an assignment of an object literal to an object literal type. However, it
is still possible to have hidden properties when a variable of an interface type is
assigned to a variable of an object type (literal or interface). Therefore, it is still

131

[7] TypeScriptIPC: Implementation of TIPC

necessary for TypeScriptIPC to restrict the assignment to IPC-interfaces to fresh
object literals.

Moreover, caution is required: as TypeScriptIPC is an extension of TypeScript,
it supports both upcasts and downcasts. As a consequence, unsound casts will be
accepted by TypeScriptIPC’s type system (as opposed to TIPC). For details, we
refer to Section 5.2.

7.2.3 Assignment

Two kinds of interface definitions TypeScriptIPC supports both regular in-
terfaces and IPC-interfaces. To remain type safe, assignments from or to interface
instances will fail when only one of the interfaces has inter-property constraints.

Updating multiple properties at once The functional simultaneous update
of properties in TIPC (assign) is written as objupdate in TypeScriptIPC. Cur-
rently, objupdate only accepts instances of IPC-interfaces. Regular objects can
simply use the Object.assign method from JavaScript.

Optional object properties In TIPC, all properties of an object literal type
are required. TypeScript, on the other hand, allows object literal properties to be
optional as well. To incorporate optional properties in TypeScriptIPC, the type
system of TypeScriptIPC has to be extended. More specifically, TypeScriptIPC
has to guarantee type safety when an IPC-interface is assigned to an expression
of an object literal type. The relevant assignment compatibility rule (A-IntObj,
see Figure 6.10) now has to verify whether or not the optional properties are also
a part of the interface property list. Additional constraint checks are unnecessary
as an optional presence constraint is always true.

Formally, the type system is extended with the rule A-IntObj’ shown in Fig-
ure 7.2. The difference between the original A-IntObj and A-IntObj’ is indicated
with a grey background. Object literal types now contain required properties (M)
and optional properties (M?). For an interface to be assignable to an object literal
type, there are two requirements. First, the properties of the interface must be
assignable to the properties of the object literal type (both the required and the
optional properties). This ensures that the types of the corresponding properties
are compatible. Second, all required properties of the object literal type have to
be certainly present in the interface instance.

132

[7.2] Differences between Formalisation and Implementation

A-IntObj’

properties(I) 5 {M, M?} {n : T} = {M}
constraints(I) �` present(n)

I 5 {M, M?}

Figure 7.2: Assignment compatibility for object literal types with optional prop-
erties in TypeScriptIPC

1 function getUser (pm: PrivateMessage): string | number {
2 if(pm. userid) {
3 return pm. userid ;
4 }
5 return pm. screenname ;
6 }

Listing 7.2: Reusing TypeScript’s control-flow mechanism

7.2.4 If statements

TIPC uses if statements to find out more information about the presence or
absence of object properties. That extra information is taken into account inside
these if statements when property accesses and updates are type checked.

As we have already explained in Section 5.6, TypeScript already uses flow-
sensitive type analysis to infer information about the types of variables. TypeScriptIPC
reuses this analysis to take inter-property constraints into account. This way,
TypeScriptIPC has a more advanced flow-sensitive analysis than TIPC that takes
control flow constructs such as return and break into account.

The program shown in Listing 7.2 is accepted by TypeScriptIPC’s type checker:
the return statement on line 3 is taken into account. Therefore, it is certain that
the private message will not contain a user ID when leaving the if statement,
and thus it is also certain that the screen name will be present.

TypeScriptIPC reuses TypeScript’s flow-sensitive analysis. As a consequence,
TypeScriptIPC has to take a different approach from TIPC on how to take the
information from if statements into account. In TIPC, extra constraints ex-
tracted from the if statement are added to a new interface type, which is a
copy of the original interface adding the new constraint (I+ and I- in rule I-
IfPresenceInterface of Figure 6.11). These extended types are used in the true
and false branch. In TypeScriptIPC, the exact type of an identifier with an IPC-
interface type is recalculated given the history of the identifier.

133

[7] TypeScriptIPC: Implementation of TIPC

File name Lines changed Total lines of code
binder.ts 26 3395
checker.ts 1143 22918
diagnosticMessages.json 104 3354
emitter.ts 26 2808
factory.ts 29 3447
parser.ts 275 7759
scanner.ts 6 1917
types.ts 61 3954
visitor.ts 8 1417

Table 7.1: Lines changed per component of the compiler

7.3 Extending the TypeScript Compiler with Inter-
property Constraints

In this section, we explain the changes made to the TypeScript compiler that were
required in order to incorporate interfaces inter-property constraints. Section 7.3.1
shows which additions and changes were necessary to the type definitions, while
Sections 7.3.2 to 7.3.5 explain the changes in every phase of the compiler. To give
an idea of the scope of these changes, Table 7.1 shows the amount of lines that
were changed per component of the compiler.

7.3.1 Types

The types.ts file contains the interface definitions and enum types that are used
throughout the compiler.

The main type used in the TypeScript compiler is the enum SyntaxKind, which
is used to identify the kind of an AST node. Nodes include keywords, expressions,
statements and declarations. In TypeScriptIPC, we have extended the SyntaxKind
enum with new keywords and expression kinds. Listing 7.3 shows the additions.

To reflect the additions to the syntax of TypeScriptIPC, we have added two new
keywords: ConstrainsKeyword (used to indicate the second part of an interface
definition) and ObjectUpdateKeyword (used to update multiple properties of an
object with inter-property constraints simultaneously).

We also extended SyntaxKind with three new expression kinds (see List-
ing 7.3): one expression kind for objupdate and two new expression kinds for
the constraints of an interface definition.

All new expression kinds have a corresponding expression type, which are

134

[7.3] Extending the TypeScript Compiler

1 export const enum SyntaxKind {
2 ...
3 ConstrainsKeyword ,
4 ObjectUpdateKeyword ,
5
6 ObjectUpdateExpression ,
7 ConstraintLogicalExpression ,
8 ConstraintPresentExpression ,
9 ...

10 }

Listing 7.3: Extension of SyntaxKind

1 export interface ObjectUpdateExpression extends UnaryExpression {
2 kind : SyntaxKind . ObjectUpdateExpression ;
3 arguments : NodeArray <Expression >;
4 }

Listing 7.4: Definition of ObjectUpdateExpression

shown in Listings 7.4 and 7.5. The interface ObjectUpdateExpression is used
to define the type of an objupdate expression. Next to the kind of the interface,
this interface only indicates the list of arguments for a call to objupdate.

The TypeScript compiler is also extended with two constraint expression types.
Next to the property kind, both interfaces have an expression property and
an arguments property. For logical constraints, expression can be any logical
connective, while for the present constraint this may only be present (this is
verified in the type checker).

Finally, we have extended the type for interface declarations with inter-property
constraints (Listing 7.6). To start, we extended the InterfaceDeclaration in-
terface with a new property constraints: this is an array which contains ex-
pressions of type ConstraintExpression. Next, the ResolvedType interface had
to be extended as well. This interface is the type of a resolved interface (among
other types): next to the members and constraints declared in the interface def-
initions, resolved interfaces also contain members and constraints inherited from
other interface definitions. ResolvedType is extended with two new properties:
origConstraints which contains the constraints from the interface definition and
constraints which also contains constraints from superinterfaces.

135

[7] TypeScriptIPC: Implementation of TIPC

1 export type ConstraintExpression = ConstraintPresentExpression |
2 ConstraintLogicalExpression ;
3
4 export interface ConstraintLogicalExpression extends Node {
5 kind : SyntaxKind . ConstraintLogicalExpression ;
6 expression : Identifier ;
7 arguments : NodeArray < ConstraintExpression >;
8 }
9

10 export interface ConstraintPresentExpression extends Node {
11 kind : SyntaxKind . ConstraintPresentExpression ;
12 expression : Identifier ;
13 arguments : NodeArray <Identifier >;
14 }

Listing 7.5: Definition of ConstraintExpressions

7.3.2 Scanner Extensions

Changes to the scanner of the TypeScript compiler are minimal: we have added
two keywords and mapped them onto their respective SyntaxKind (see List-
ing 7.7).

7.3.3 Parser Extensions

To support inter-property constraints in interface definitions, we have adapted
the parser of the TypeScript compiler. When parsing interface declarations (List-
ing 7.8), we now also (optionally) parse inter-property constraints.

Listing 7.9 shows the definition of parseInterfaceConstraints. This func-
tion starts with parsing the ConstrainsKeyword. Note that this is optional: when
there is none, the function returns an empty array. In the case that there is a
constrains block, the parse function parses the statements between the curly
braces (lines 4–6) and transforms them into an array of constraints (lines 7–8).
checkValidConstraints expects an array of statements, checks whether they
form valid constraints and returns an array of ConstraintExpressions. This
array is returned as the result of parseInterfaceConstraints.

In short, checkValidConstraint receives an array of statements and verifies
that every statement is a constraint expression. Recall that constraint expres-

136

[7.3] Extending the TypeScript Compiler

1 export interface InterfaceDeclaration extends DeclarationStatement {
2 kind : SyntaxKind . InterfaceDeclaration ;
3 name : Identifier ;
4 typeParameters ? : NodeArray < TypeParameterDeclaration >;
5 heritageClauses ?: NodeArray < HeritageClause >;
6 members : NodeArray < TypeElement >;
7 constraints : ConstraintExpression [];
8 }
9

10 export interface ResolvedType
11 extends ObjectType , UnionOrIntersectionType {
12 members : SymbolTable ;
13 properties : Symbol [];
14 callSignatures : Signature [];
15 constructSignatures : Signature [];
16 stringIndexInfo ? : IndexInfo ;
17 numberIndexInfo ? : IndexInfo ;
18 origconstraints : ConstraintExpression [];

19 constraints : ConstraintExpression [];
20 }

Listing 7.6: Extension of the interface definition types

sions in TypeScriptIPC are in prefix notation: presence constraints are of the
form present(x) and logical expressions are of the form and(...,...). The
TypeScript parser will parse all these constraints as call expressions, as they are
syntactically equivalent to function calls. The function checkValidConstraints
transforms these call expressions to constraint expressions. It starts with verifying
that the statement is a CallExpression. The function name of the call expres-
sion must be either present or a logical connective. In the case of a present
call, every argument has to be an Identifier. In the case of a logical connective,
every argument has to be a valid constraint expression.

Finally, the parser is also extended for parsing objupdate expressions. For
this, we reuse the existing parseSimpleUnaryExpression function.

7.3.4 Checker Extensions

This section gives an overview of the changes that were required to incorporate
IPC-interfaces into TypeScript. The adaptations to the TypeScript type system
are scattered throughout the more than 20,000 lines of code in checker.ts. This

137

[7] TypeScriptIPC: Implementation of TIPC

1 const textToToken = createMap ({
2 ...
3 " constrains ": SyntaxKind . ConstrainsKeyword ,
4 " objupdate " : SyntaxKind . ObjectUpdateKeyword ,
5 ...
6 });

Listing 7.7: Extension of the scanner

1 function parseInterfaceDeclaration
2 (fullStart : number ,
3 decorators : NodeArray <Decorator >,
4 modifiers : NodeArray <Modifier >): InterfaceDeclaration {
5 const node = <InterfaceDeclaration >
6 createNode (SyntaxKind . InterfaceDeclaration , fullStart);
7 ...
8 parseExpected (SyntaxKind . InterfaceKeyword);
9 node.name = parseIdentifier ();

10 ...
11 node. members = parseObjectTypeMembers ();
12 node. constraints = parseInterfaceConstraints ();
13 return addJSDocComment (finishNode (node));
14 }

Listing 7.8: Extension of parsing interface declarations

section only highlights the parts of the type checker that were changed.

7.3.4.1 Interface Definition

The function checkInterfaceDeclaration performs semantic checks on inter-
face declarations. This includes, among others, verifying whether the name of
the interface is not a reserved name, that inherited properties are assignment-
compatible, and that there are no duplicate properties.

When an interface definition has (inter-property) presence constraints, the
function checkInterfaceDeclaration has to verify more properties (listed be-
low). This is all covered by checkInterfaceWithConstraintDeclarations, de-
fined in Listing 7.10. This function verifies that:

• the declared constraints are valid (line 4). More specifically, the function
checkInterfaceConstraintDeclaration checks whether the constraint is
a logical constraint declaration (with a valid logical connective) or a present
constraint declaration. For logical constraint declarations, it checks whether

138

[7.3] Extending the TypeScript Compiler

1 function parseInterfaceConstraints (): NodeArray < ConstraintExpression >{
2 if (parseOptional (SyntaxKind . ConstrainsKeyword)) {
3 parseExpected (SyntaxKind . OpenBraceToken);
4 const constraints : NodeArray <Statement > =
5 parseList (ParsingContext . BlockStatements ,
6 parseStatement);
7 const parsedconstraints : NodeArray < ConstraintExpression > =
8 checkValidConstraints (constraints);
9 parseExpected (SyntaxKind . CloseBraceToken);

10 if (! parsedconstraints) {
11 return createMissingList < ConstraintExpression >();
12 }
13 return parsedconstraints ;
14 } else {
15 return createMissingList < ConstraintExpression >();
16 }
17 }

Listing 7.9: Definition of parseInterfaceConstraints

they receive the correct number of arguments. For presence constraints, the
function checks that all arguments are properties defined in the interface
or its superinterfaces. We omit the straightforward implementation of the
function checkInterfaceConstraintDeclaration.
Note that we use the constraints of the resolved interface type: this ensures
that constraints inherited from other interfaces are also checked. The Type-
Script compiler resolves object types such that properties inherited from
superinterfaces are all merged into one object type. We have extended the
function resolveObjectTypeMembers such that the constraints of an inter-
face inheritance chain are also collected in the resolved object type;

• IPC-interfaces are used in the strict null-checks mode of TypeScript (line 6–
8). strictNullChecks is a constant in the type checker;

• there are no properties of type undefined (line 12–14).

• all properties are declared as optional (lines 16–18);

• the set of constraints is satisfiable (lines 21–24). To check this we reused an
existing library for satisfiability checking, by Tanel Tammet. This library is
an implementation of the DPLL (Davis-Putnam-Logemann-Loveland) solver
for the satisfiability of propositional logic formula.

139

[7] TypeScriptIPC: Implementation of TIPC

1 function checkInterfaceWithConstraintDeclarations (type: InterfaceType){
2 if (resolved . constraints && resolved . constraints . length > 0) {
3 const resolved = resolveStructuredTypeMembers (type);
4 resolved . constraints .map(checkInterfaceConstraintDeclaration);
5
6 if (! strictNullChecks) {
7 error(node , Diagnostics . IPCInterface_StrictNullChecks);
8 }
9

10 for (const member of node. members) {
11 const type = getTypeOfSymbol (member . symbol);
12 if (type === undefinedType) {
13 error(node , Diagnostics . TypeNotUndefined , node. symbol .name);
14 }
15
16 if (!(member . symbol .flags & SymbolFlags . Optional)) {
17 error(node , Diagnostics . MustBeOptional , node. symbol .name);
18 }
19 }
20
21 if (! Proplog .solve(translatePreds (resolved . constraints , "-"),
22 "none")) {
23 error(node , Diagnostics . Satisfiable , node. symbol .name);
24 }
25 }
26 }

Listing 7.10: Definition of checkInterfaceWithConstraintDeclarations

140

[7.3] Extending the TypeScript Compiler

7.3.4.2 Property Access

When a property of an IPC-interface is accessed, the type checker has to consult
the constraints of the interface in order to assign a type to the property access or
reject it (as defined in I-Prop (Figure 6.9) and the lookup function (Figure 6.5)).

Listing 7.11 on page 150 shows the implementation of the function
checkPropertyAccessExpressionOrQualifiedName. Lines 8–37 are new and
cover property accesses on instances of IPC-interfaces; other parts of the func-
tion are omitted.

On line 15 and 16, we use the Propositional Sequent Calculus Prover by Project
Nayuki to try to prove the presence and absence of the property being accessed.
This can result in three situations:

• neither the presence nor the absence can be proven (lines 17–20): the func-
tion raises an error message and returns unknownType5;

• the presence of a property can be proven (lines 21–31): the function should
return the declared type in the property list of the interface. At first sight,
it looks like propType is exactly this. However, because all properties in the
interface definitions have to be declared as optional, TypeScript automat-
ically produces a union type that adds undefined. Therefore, we have to
remove the undefined type from the property union type.

Caution is required, though: the TypeScript compiler maintains one object
to represent a specific type. This means that common types such as string
| undefined are reused in other places as well. Thus, removing undefined
from propType would remove undefined out of the type for every variable
of type string | undefined! Therefore, the function first clones propType
and its property types using Object.assign (lines 22 and 23). Next, it
filters out the undefined type (line 24). Finally, propType receives the
filtered union type (line 25). The function getUnionType transforms an
array of types to a union type, or one type if the array only contains one
element.

• the absence of a property can be proven (lines 32-34): the function overwrites
the defined type of the property in the interface definition with undefined.

5 unknownType is not to be confused with the unknown type introduced in TypeScript 3.0.
TypeScriptIPC is based on TypeScript 2.1.6 and does not yet support the unknown type.

141

[7] TypeScriptIPC: Implementation of TIPC

7.3.4.3 Assignment Compatibility

The function objectTypeRelatedTo checks whether two object types (object lit-
eral types, object types and interface types) are related by structure (see Sec-
tion 6.3.2). To verify this, the function compares the properties, signatures and
index types of both object types. TypeScriptIPC extends this function such that
the presence constraints of the interfaces are also taken into account. This cor-
responds to the logic of I-AssertInf (defined in Figure 6.9, an adapted version
where object literals can also be assigned to interface variables using variable
declarations), A-Interface and A-IntObj (defined in Figure 6.10).

The definition of objectTypeRelatedTo spans more than 400 lines of code.
Therefore, we limit our discussion of the extensions made by TypeScriptIPC.

Before comparing properties, signatures and index types, TypeScriptIPC’s
objectTypeRelatedTo first verifies whether the constraints are related, using the
function constraintsRelatedTo. In the case that one of the object types has con-
straints, this function replaces the comparison of properties (propertiesRelatedTo).
constraintsRelatedTo inspects the types of both objects and calls the corre-
sponding helper function (either the function constraintsRelatedToObjIntf,
constraintsRelatedToIntfIntf or constraintsRelatedToIntfObj). When there
are no constraints involved, the function returns Maybe to indicate that proper-
ties still need to be compared. In the following two cases, constraintsRelatedTo
raises an error:

• when an object literal type is assigned to an interface type with constraints,
but the object literal type is not a fresh literal;

• when an interface with constraints is assigned to an interface without con-
straints, or the other way around.

In the rest of this section, we discuss the three helper functions.

constraintsRelatedToObjIntf When an object literal is assigned to an inter-
face with inter-property constraints, the object literal has to be a valuation of
the interface constraints. Listing 7.12 shows the implementation of the function
constraintsRelatedToObjIntf. For every constraint, isConstraintSatisfied
verifies whether the object literal satisfies the constraint. The implementation of
this valuation function is straightforward and omitted.

constraintsRelatedToIntfIntf Listing 7.13 on page 152 shows the implemen-
tation of the function that covers the assignment compatibility check for an inter-
face with constraints to another interface with constraints. This rule is a trans-

142

[7.3] Extending the TypeScript Compiler

lation from A-Interface (Figure 6.10). This function starts with translating the
constraints of the source and target interface from a JavaScript object to a string
(such that it can later on be used in a library for logical entailment) (lines 7
and 8).

Before proving the logical entailment, the function first has to take the dif-
ferences between both property lists into account. On lines 14–18, all properties
from the target interface which are not present in the source interface are added
as absent properties to the set of source constraints. Similarly, all properties from
the source interfaces which are not present in the target interface are added as
absent properties to the set of target constraints (lines 20–24).

On line 26, this function verifies whether or not the constraints from the target
follow from the constraints of the source. To achieve this, we use the Propositional
Sequent Calculus Prover again.

constraintsRelatedToIntfObj Listing 7.14 on page 153 shows the implemen-
tation of the function that covers the assignment compatibility check for an in-
terface with constraints to an object type. This rule is a translation from the rule
presented earlier in this chapter: A-IntObj’ (Figure 7.2). For each property in the
target object, this function checks the following:

• lines 9–20 cover the case that the target property is optional. In this case,
the property has to be in the property list of the source interface;

• lines 21–43 cover the case of a required target property. In this case, it does
not suffice to only check whether the property is part of the source interface.
Instead, we have to prove that the properties of type undefined are absent
in the interface (lines 23–32) and all the other properties are present (lines
33–41). Note that A-IntObj and A-IntObj’ do not handle the case of object
properties of type undefined.

7.3.4.4 Objupdate

The function checkObjectUpdate checks a call to objupdate and is an imple-
mentation of the rule I-UpdateInf (Figure 6.9).

Listing 7.15 on page page 154 shows the implementation of the function
checkObjectUpdate. Lines 8–12 and 15–18 verify that the first argument is
an IPC-interface and lines 18–20 verify whether the second argument is an ob-
ject literal. Next, the function clones the target type (line 28, the definition
of cloneTarget is omitted) and slices the target type such that only the rel-
evant properties and constraints remain (line 29). Lines 32–34 verify that the

143

[7] TypeScriptIPC: Implementation of TIPC

property names of the second arguments are identical to the property names
of the sliced target type (the definition of sameProps is omitted). Finally, we
reuse the existing function checkTypeAssignableTo which will call the function
constraintsRelatedToObjIntf to verify whether the object literal satisfies the
constraints of the sliced target (line 35).

Listing 7.16 on page 155 shows the implementation of slice. It calculates the
transitive closure of all properties and constraints of the given interface, starting
with the set of properties in the second argument of objupdate (sourcePart).
The relevant constraints are stored in collectedConstraints (line 4) and the
relevant properties are stored in collectedProperties (line 5). On line 6 and
7, the constraints that mention one of the properties of sourcePart are added
to collectedProperties. Next, the properties of the collected constraints so far
are collected and added to the set of properties (line 11). Again, new constraints
that mention any of the new properties are added to collectedProperties as
well as returned as result (line 21). This loop continues as long as there are new
constraints (lines 8–22). Finally, properties and constraints that are not part of
the transitive closure are removed from the (cloned) target type (line 23 and 24).

The two functions getPropertiesFromConstraint, addConstraintsWith-
TheseProperties are helper functions for slice and removeUnusedProperties
and removeUnusedConstraints help with the construction of the sliced inter-
face. Their implementation is straightforward and omitted.

7.3.4.5 Extra Info from If Statements

Earlier in this chapter, we have already explained how the implementation of
flow-sensitive type analysis differs from the formalisation presented in the rule
I-IfPresenceInterface (Figure 6.11). While the formalisation adds extra constraints
to the interface type inside the true and else branch, TypeScriptIPC reuses the
flow-sensitive type analysis that is already built-in in the TypeScript compiler.
More specifically, while type checking an identifier, TypeScriptIPC verifies whether
the property access is found inside an if statement that has extra information
about its object. To implement this, the type checker functions for identifiers and
if statements needs to be adapted.

Listing 7.17 on page 156 shows the changes to the implementation of the
function checkIdentifier. If the identifier being checked in the function has
an IPC-interface type (checks on lines 9–13), the type checker of TypeScriptIPC
loops through the antecedents in the history of the identifier (lines 16-36). If the
identifier is found inside an if statement which verifies the presence of a property
(lines 19–21) of which the identifier is a property as well (lines 22–29), then the
presence (lines 30–31) or absence (lines 32-33) is added to the set of constraints.

144

[7.3] Extending the TypeScript Compiler

Given the (possibly) extended set of constraints, the type checker uses the DPLL-
solver again to verify the satisfiability of the extended set of constraints (lines
38-41). Finally, the extended set of constraints is assigned to the constraints
property of the resolved type (line 42). This way, the extra constraints are taken
into account in the rest of the type checking process.

Listing 7.18 on page 157 shows the changes to the implementation of the
function checkIfStatement. Code with a grey background is new. Lines 3–17
check whether the if statement is verifying the presence of a property of IPC-
interface instance. If this is the case, TypeScriptIPC skips type checking the if
statement (line 26) We explain why this is necessary using the code snippet in
Listing 7.19.

In this function, the presence of user id is verified before updating it in the
true branch. If the type system checks the if statement (pm.user id), this
results in a type error because neither the presence nor the absence of user id
can be proved at this point. Therefore, type checking is skipped in this case, but
TypeScriptIPC does verify whether the property access inside the if statement is
a property of the interface (lines 18–24).

1 function foo(pm: PrivateMessage) {
2 if(pm. user_id) {
3 pm. user_id = 43;
4 }
5 }

Listing 7.19: No type check for condition of if statement

Finally, constraints are reset after type checking the true (lines 32–34) and
else branch (lines 36–38).

7.3.4.6 Diagnostic Messages

In each of the extensions made to the type checker of the TypeScript compiler, er-
ror messages are provided for type-unsafe code. These messages not only indicate
to the user where the type error occurs, but also why it is not type safe. A clear
error message enables the developer to quickly diagnose —and fix— the problem.
In this section, we elaborate on the error messages of the compiler with regards to
inter-property constraints. When there is a type error, the TypeScript compiler
generates multiple error messages, from a general error message to a more detailed
explanation of what is wrong.

In the following paragraphs, we discuss the most important error messages
due to the incorrect use of inter-property constraints.

145

[7] TypeScriptIPC: Implementation of TIPC

Unsatisfiable interface definitions For interface declarations, the type checker
of TypeScriptIPC verifies whether the constraints of an interface have at least
one valid configuration of present and absent properties. The following code
snippet shows an example: the interface PrivateMessageWrong extends the in-
terface PrivateMessage with two constraints that require the presence of both
user properties. This conflicts with the exclusivity constraint in PrivateMessage.
TypeScriptIPC throws an error message indicating that the set of constraints is
not satisfiable.

1 interface PrivateMessageWrong extends PrivateMessage {
2
3 } constrains {
4 present (userid);
5 present (screenname);
6 }
7 /* error TS95024 : Constraints of interface ’PrivateMessageWrong ’
8 have to be satisfiable */

As explained, TypeScriptIPC is flow-sensitive: extra information from if state-
ments on the presence or absence of properties is taken into account. This can
result in an if statement where the refined interface type has unsatisfiable con-
straints. For example, the following code snippet shows two consecutive if state-
ments that verify the presence of both user id and screen name in an instance
of the PrivateMessage interface. In the true branch of the second if statement,
the exclusivity constraint on screen name and user id conflict with the newly
added knowledge: the presence of both screen name and user id. In this case,
TypeScriptIPC throws an error indicating that the constraints of the refined in-
terface are not satisfiable.

1 function foo(pm: PrivateMessage) {
2 if (pm. userid) {
3 if (pm. screenname) {
4 pm. screenname ;
5 }
6 }
7 }
8 /* error TS95025 : Constraints in if statement are unsatisfiable
9 because of extra knowledge from the if test */

Invalid Assignment from Object Literals to Interface Instances When
an object literal does not satisfy the interface constraints, the error message con-

146

[7.3] Extending the TypeScript Compiler

sists out of two parts: the first error message (lines 2 and 3) contains the general
error message which indicates that there is an error in the assignment. The sec-
ond error message (lines 4 and 5) contains the detailed information, listing exactly
which constraint caused the valuation to fail.

1 let msg: PrivateMessage = {text: "Hello"};
2 /* error TS2322 : Type ’{ text: string ; }’ is not assignable to
3 type ’PrivateMessage ’.
4 Constraint present (userid) XOR present (screenname) was not
5 satisfied in type { text: string ; } /*

Invalid Property Accesses Accessing a property that is part of an inter-
property constraint object fails when that property is not guaranteed to be present
or absent. In that case, TypeScriptIPC generates an error message that indicates
that the required guarantees do not follow from the interface constraints. More-
over, the error message provides a hint to how the developer can resolve this
error.

1 function getUserId (msg: PrivateMessage): number {
2 return msg. userid ; // ERROR
3 /* error TS95009 : Cannot access userid from the object because
4 its interface does not guarantee the presence of userid .
5 Use a non - undefined type guard.*/
6 }

Objupdate When multiple properties are updated simultaneously using the
built-in function objupdate in TypeScriptIPC, it is important that all relevant
properties are updated together. When this is not the case, this results in the
following two error messages. The following code snippet shows an example where
the call to objupdate only updates the user id of a PrivateMessage instance.
The first error message (lines 2–4) indicate that not all properties of which user id
is a part, are provided. The second error message shows a more detailed error
message, indicating that an object literal which only contains user id cannot
satisfy the exclusivity constraint of PrivateMessage.

1 let msg2: PrivateMessage = objupdate (msg1 , { userid : undefined });
2 /* error TS95021 : All properties from the constraints in which the
3 properties of the second argument of objupdate are mentioned ,
4 must be a part of the second argument
5 error TS2322 : Type ’{ userid : undefined ; }’ is not assignable
6 to type ’PrivateMessage ’.
7 Constraint present (userid) XOR present (screenname) was not
8 satisfied in type { userid : undefined ; } */

147

[7] TypeScriptIPC: Implementation of TIPC

Interface-interface compatibility Because of the structural typing in Type-
Script, there are several reasons why the assignment of one interface instance
to another can fail. In the current implementation of TypeScriptIPC, the error
message only indicates that the assignment failed due to the incompatible inter-
face constraints. In the future, we plan on adding more detailed error messages,
depending on whether the error occurs due to the lack of width subtyping, the
differences in the property lists are incompatible interface constraints.

1 let msg1: PrivateMessageAll = {text: "Hello",
2 userid : 42,
3 screenname : "Alice"};
4 let msg2: PrivateMessageId = msg1;
5 /* error TS2322 : Type ’PrivateMessageAll ’ is not assignable
6 to type ’PrivateMessageId ’.
7 Invalid assignment of type PrivateMessageAll
8 to type PrivateMessageId .
9 Check if constraints are correct */

7.3.5 Emitter Extension

Syntax-wise, TypeScriptIPC extends TypeScript in two ways: an extended inter-
face definition and a new language construct for updating multiple properties of
an IPC-interface instance. The new interface definition does not impact the emit-
ter of TypeScript: TypeScript already removes all types from the source code,
including interface definitions. This is regardless of the constrains extension.

However, the emitter needs to support the other extension to the TypeScript
syntax: objupdate. Listing 7.20 on page 158 shows the extension. Recall that
this function returns a copy of its first argument, in which the properties of
the second argument are added or updated. We cannot translate objupdate
to Object.assign, as this function updates its first argument. Instead, we
use the spread operator from JavaScript, which is the functional equivalent of
Object.assign. Listing 7.21 on page 158 shows an example.

7.4 Conclusion

In this chapter, we presented TypeScriptIPC, the implementation of the TIPC for-
malisations presented in the previous chapters. While the formalisations presented
inter-property constraints in a subset of TypeScript, TypeScriptIPC incorporated
interfaces with inter-property constraints into the full TypeScript programming

148

[7.4] Conclusion

language. This chapter started with a brief overview of the architecture and de-
sign of the TypeScript compiler. Next, the chapter listed the differences between
the formalisation and the implementation. Finally, we highlighted the changes be-
tween the compilers of TypeScript and TypeScriptIPC. As mentioned earlier, the
complete implementation of the TypeScriptIPC compiler can be found on GitHub6.

In the next chapter of this dissertation, we discuss work related to TIPC.

6https://github.com/noostvog/TypeScriptIPC

149

https://github.com/noostvog/TypeScriptIPC

[7] TypeScriptIPC: Implementation of TIPC

1 function checkPropertyAccessExpressionOrQualifiedName
2 (node: PropertyAccessExpression | QualifiedName ,
3 left: Expression | QualifiedName ,
4 right: Identifier) {
5 ...
6 let propType = getTypeOfSymbol (prop);
7 ...
8 if (node.kind == SyntaxKind . PropertyAccessExpression) {
9 if (getObjectFlags (apparentType) & ObjectFlags . Interface) {

10 const resolvedT =
11 resolveStructuredTypeMembers (<ObjectType > apparentType);
12 const constraints = resolvedT . constraints ;
13 if (constraints . length > 0) {
14 const constraintStr = translateConstraints (constraints);
15 const provePresent =prove(constraintStr +">"+node.name.text);
16 const proveAbsent =prove(constraintStr +" >!"+node.name.text);
17 if (! provePresent && ! proveAbsent){
18 error(node , Diagnostics . CannotAccessProperty);
19 return unknownType ;
20 } else if (provePresent) {
21 if (propType .flags & TypeFlags .Union) {
22 if(contains ((< UnionType > propType). types , undefinedType)){
23 let propTypeClone : UnionType =
24 <UnionType > Object . assign ({}, propType);
25 propTypeClone .types =
26 Object . assign ([], (<UnionType > propType). types);
27 let filtered = propTypeClone .types. filter
28 (t => t !== undefinedType);
29 propType = getUnionType (filtered);
30 }
31 }
32 } else if (proveAbsent) {
33 propType = undefinedType ;
34 }
35 }
36 }
37 }
38 ...
39 }

Listing 7.11: Definition of checkPropertyAccessExpressionOrQualifiedName

150

[7.4] Conclusion

1 function constraintsRelatedToObjIntf
2 (source : Type ,
3 constraints : ConstraintExpression [],
4 mainLevel : boolean ,
5 reportErrors : boolean): Ternary {
6 for (const constraint of constraints) {
7 if (! isConstraintSatisfied (source , constraint , reportErrors)) {
8 if (mainLevel && reportErrors) {
9 reportError (Diagnostics . NotSatisfied ,

10 constraintToString (constraint),
11 typeToString (source));
12 }
13 return Ternary .False;
14 }
15 }
16 return Ternary .True;
17 }

Listing 7.12: Definition of constraintsRelatedToObjIntf

151

[7] TypeScriptIPC: Implementation of TIPC

1 function constraintsRelatedToIntfIntf
2 (source : Type ,
3 constraintsS : ConstraintExpression [],
4 target : Type ,
5 constraintsT : ConstraintExpression [],
6 reportErrors : boolean): Ternary {
7 let constraintSourceStr = translateConstraints (constraintsS);
8 let constraintTargetStr = translateConstraints (constraintsT);
9 const sourceprops = getPropertiesOfType (source);

10 const targetprops = getPropertiesOfType (target);
11 const sourcepropNames = sourceprops .map ((x: Symbol) => x.name);
12 const targetpropNames = targetprops .map ((x: Symbol) => x.name);
13
14 for (const prop of targetprops) {
15 if (sourcepropNames . indexOf (prop.name) == -1) {
16 constraintSourceStr += " & !" + prop.name;
17 }
18 }
19
20 for (const prop of sourceprops) {
21 if (targetpropNames . indexOf (prop.name) == -1) {
22 constraintTargetStr += " & !" + prop.name;
23 }
24 }
25
26 if (! prove(constraintSourceStr + " > " + constraintTargetStr)) {
27 if (reportErrors) {
28 reportError (Diagnostics . InvalidAssignment ,
29 typeToString (source),
30 typeToString (target));
31 }
32 return Ternary .False;
33 }
34 return Ternary .True;
35 }

Listing 7.13: Definition of constraintsRelatedToIntfIntf

152

[7.4] Conclusion

1 function constraintsRelatedToIntfObj
2 (source : Type ,
3 constraintssource : ConstraintExpression [],
4 target : Type ,
5 reportErrors : boolean): Ternary {
6 const sourceprops = getPropertiesOfType (source);
7 const targetprops = getPropertiesOfType (target);
8 for (const prop of targetprops) {
9 if (prop.flags & SymbolFlags . Optional) {

10 const names = sourceprops .map(x => x.name);
11 if (names. indexOf (prop.name) == -1) {
12 if (reportErrors) {
13 reportError (Diagnostics . UnknownProperty ,
14 prop.name ,
15 typeToString (target),
16 typeToString (source));
17 }
18 return Ternary .False;
19 }
20 } else {
21 const propType = getTypeOfSymbol (prop);
22 const constraintStr = translateConstraints (constraintssource);
23 if (propType === undefinedType){
24 if (! prove (constraintStr + " > !" + prop.name)) {
25 if (reportErrors) {
26 reportError (Diagnostics . PropertyNotAbsent ,
27 prop.name ,
28 typeToString (source));
29 }
30 return Ternary .False;
31 }
32 } else {
33 if (! prove (constraintStr + " > " + prop.name)) {
34 if (reportErrors) {
35 reportError (Diagnostics . MissingProperty ,
36 prop.name ,
37 typeToString (source));
38 }
39 return Ternary .False;
40 }
41 }
42 }
43 }
44 return Ternary .True;
45 }

Listing 7.14: Definition of constraintsRelatedToIntfObj

153

[7] TypeScriptIPC: Implementation of TIPC

1 function checkObjectUpdate
2 (node: ObjectUpdateExpression ,
3 contextualMapper ?: TypeMapper): Type {
4 ...
5
6 let target = checkExpression (args [0]);
7 const sourcepart = checkExpression (args [1]);
8 if (!(target .flags & TypeFlags . Object
9 && getObjectFlags (target) & ObjectFlags . Interface)) {

10 error(node. arguments [0], Diagnostics . FirstArgInterface);
11 return unknownType ;
12 }
13 const resolvedT = resolveStructuredTypeMembers (<ObjectType > target);
14 const constraints = resolvedT . constraints ;
15 if (constraints === undefined || constraints . length == 0) {
16 error(node. arguments [0], Diagnostics . SecondArgObjectLiteral);
17 return unknownType ;
18 }
19
20 if (!(getObjectFlags (sourcepart) & ObjectFlags . ObjectLiteral
21 && sourcepart .flags & TypeFlags . FreshLiteral)) {
22 return unknownType ;
23 }
24
25 const resolvedS =
26 resolveStructuredTypeMembers (<ObjectType > sourcepart);
27
28 let slicedTarget = cloneTarget (resolvedT);
29 slice(slicedTarget , <FreshObjectLiteralType > sourcepart);
30 const resolvedST =
31 resolveStructuredTypeMembers (<ObjectType > slicedTarget);
32 if (! sameProps (resolvedS .properties , resolvedST . properties)) {
33 error(node , Diagnostics . SlicePropsError);
34 }
35 checkTypeAssignableTo (sourcepart , slicedTarget , node);
36 return target ;
37 }

Listing 7.15: Definition of checkObjectUpdate

154

[7.4] Conclusion

1 function slice(target : ResolvedType ,
2 sourcePart : FreshObjectLiteralType): ResolvedType {
3 let constraints = target . constraints ;
4 let collectedConstraints = createNodeArray < ConstraintExpression >();
5 let collectedProperties = Object . assign ([], sourcePart . properties);
6 let result =
7 addConstraintsWithTheseProperties (collectedProperties);
8 while (result . length !== 0) {
9 let moreProperties : Symbol [] = [];

10 for(const constraint of result) {
11 let props = getPropertiesFromConstraint (constraint);
12 for (const prop of props) {
13 const symbol = createSymbol (SymbolFlags .Property ,prop.text);
14 if (collectedProperties .map(x => x.name). indexOf (prop.text)
15 == -1) {
16 collectedProperties .push(symbol);
17 moreProperties .push(symbol);
18 }
19 }
20 }
21 result = addConstraintsWithTheseProperties (moreProperties);
22 }
23 target = removeUnusedProperties (target , collectedProperties);
24 target = removeUnusedConstraints (target , collectedConstraints);
25 return target ;
26 }

Listing 7.16: Definition of slice

155

[7] TypeScriptIPC: Implementation of TIPC

1 function checkIdentifier (node: Identifier): Type {
2 const symbol = getResolvedSymbol (node);
3 if (symbol === unknownSymbol) {
4 return unknownType ;
5 }
6 ...
7 const flowType = getFlowTypeOfReference (node , ...);
8 ...
9 if (getObjectFlags (flowType) & ObjectFlags . Interface) {

10 const resolvedT =
11 resolveStructuredTypeMembers (<ObjectType > flowType);
12 let constraints = Object . assign ([], resolvedT . origConstraints);
13 if (constraints . length > 0) {
14 if (node. flowNode) {
15 let ant: any = node. flowNode ;
16 while (ant) {
17 if (ant.flags & FlowFlags . Condition) {
18 const propacc = ant. expression ;
19 if(propacc .kind === SyntaxKind . PropertyAccessExpression){
20 if((< PropertyAccessExpression > propacc). expression .kind
21 === SyntaxKind . Identifier) {
22 if ((< Identifier >(< PropertyAccessExpression > propacc).
23 expression). text === node.text) {
24 const s1 = getResolvedSymbol (<Identifier >
25 (< PropertyAccessExpression > propacc). expression);
26 const s2 = getResolvedSymbol (node);
27 if (s1 === s2) {
28 const presentC = createPresentConstraint (
29 (< PropertyAccessExpression > propacc). name);
30 if (ant.flags & FlowFlags . TrueCondition) {
31 constraints .push(presentC);
32 } else if(ant.flags& FlowFlags . FalseCondition){
33 constraints .push(createNotConstraint (presentC));
34 } } } } } }
35 ant = ant. antecedent ;
36 }
37 }
38 if (! Proplog .solve(
39 translateConstraints (constraints , "-"), "none")) {
40 error(node , Diagnostics . NotSatisfiableInIf);
41 }
42 resolvedT . constraints = constraints ;
43 }
44 }
45 return assignmentKind
46 ? getBaseTypeOfLiteralType (flowType)
47 : flowType ;
48 }

Listing 7.17: Definition of checkIdentifier

156

[7.4] Conclusion

1 function checkIfStatement (node: IfStatement) {
2 checkGrammarStatementInAmbientContext (node);
3 let specialCosntraintIf = false;

4 if (node. expression .kind

5 === SyntaxKind . PropertyAccessExpression){

6 const paeExpression : PropertyAccessExpression =

7 <PropertyAccessExpression >(node. expression);

8 const paeExpressionType =

9 checkExpression (paeExpression . expression);

10
11 if (getObjectFlags (paeExpressionType)

12 & ObjectFlags . Interface) {

13 let objectType = resolveStructuredTypeMembers (

14 <ObjectType > paeExpressionType);

15 specialConstraintIf = objectType . constraints !== undefined

16 && objectType . constraints . length > 0;

17 }

18 if (specialConstraintIf) {

19 const accessedProperty = paeExpression .name.text;

20 const prop = getPropertyOfType (paeExpressionType ,

21 accessedProperty);

22 if (! prop) {

23 error(paeExpression , PropertyDoesNotExist);

24 } } }

25 if (! specialConstraintIf) {
26 checkExpression (node. expression);
27 }
28 checkSourceElement (node. thenStatement);
29 if (node. thenStatement .kind === SyntaxKind . EmptyStatement) {
30 error(node. thenStatement , Diagnostics . EmptyBody);
31 }
32 if (specialConstraintIf) {

33 objectType . constraints = objectType . origConstraints ;

34 }
35 checkSourceElement (node. elseStatement);
36 if (specialConstraintIf) {

37 objectType . constraints = objectType . origConstraints ;

38 }
39 }

Listing 7.18: Definition of checkIfStatement

157

[7] TypeScriptIPC: Implementation of TIPC

1 function emitObjectUpdateExpression (node: ObjectUpdateExpression) {
2 write("{ ...");
3 emitExpression (node. arguments [0]);
4 write(", ...");
5 emitExpression (node. arguments [1]);
6 write("}");
7 }

Listing 7.20: Definition of emitObjectUpdateExpression

1 // The following TypeScriptIPC code
2 let pm : PrivateMessage = {text: "Hello!", user_id : 42};
3 let pm2: PrivateMessage =
4 objupdate (pm , { user_id : undefined , screen_name : "Alice"};
5 // is emitted as:
6 var pm = {text: "Hello!", user_id : 42};
7 var pm2 = {...pm , ...{ user_id : undefined , screen_name : "Alice"}};
8 // which results in the following value for pm and pm2:
9 {text: "Hello!", user_id : 42} //pm (unchanged)

10 {text: "Hello!", user_id : undefined , screen_name : "Alice"} // pm2

Listing 7.21: Example of emitting an objupdate call

158

Chapter 8

Related Work

Until now, this dissertation has introduced a new programming language called
TIPC. This programming language distinguishes itself from existing program-
ming languages with its unconventional interface definitions. Instead of limiting
constraints on the presence of properties to a per-property basis, TIPC allows
the combination of presence constraints on different properties. Constraints are
combined using operators from propositional logic, and the type system of TIPC
uses concepts from propositional logic to statically guarantee that the constraints
uphold.

In this chapter, we situate this work in past and ongoing research. More
specifically, we discuss several other research domains in type systems that are
related to our work.

8.1 Dependent Types

In the field of research on type systems, new research efforts push boundaries by
making static types as expressive as possible from a decidability point of view.
Dependent type systems are the most expressive kind of type systems: a type in a
dependently typed programming language may depend on values. However, this
expressivity comes with a price: decidability. After discussing dependent types
in more detail, the next section will discuss refinement types. Refinement types
are a light-weight variant of dependent types, which trade a bit of expressivity for
decidability.

159

[8] Related Work

In a dependently typed programming language, types are parametrised over
values [Martin-Löf, 1975]. Examples of dependent types are:

• let x: {v:number | 0 < v} to indicate that a variable may only contain
numbers greater than zero;

• let x: array[n] to indicate that an array must have exactly n elements;

• function append(arr1: array[X], arr2: array[Y]): array[X+Y] {
... } to define a function that appends two arrays of a certain length. The
return type is the accumulation of both lengths;

These examples are all small in size, but dependent types can be used to
impose very complex constraints. For example, the work of Bove and Dybjer
[2009] shows how dependent types can be used to define the type of a sorted list
(where the type ensures the list is sorted) and a binary search tree (where the
type ensures that the binary search tree condition is satisfied). Work by Ek et al.
[2009] explains how red–black trees (balanced binary trees) can be implemented
in the dependently typed programming language Agda.

Both Howard [1980] and De Bruijn [1970] extended the simply typed lambda
calculus with support for dependent types. Howard extended work by Curry
[1934], who defined the correspondence between propositional logic and types:
to prove a mathematical proposition, its corresponding type must be inhabited
(there must exist a value with that type). Later, Howard [1980]1 extended this
correspondence with predicate types. As propositions are types, predicates be-
come dependent types, where the type depends on something. For example, the
type array[X] depends on the value of X. In 1975, Martin-Löf [1975] incorporated
the Curry-Howard correspondence into type theory, called intuitionistic type the-
ory. Independently, De Bruijn [1970] created the mathematical language AUTO-
MATH, which employs a dependent type system.

There exist several languages that implement intuitionistic type theory. Some
of these languages focus on theorem proving, resulting in proof assistants such
as Coq [Barras et al., 1997] and NuPRL [Constable et al., 1985]. Other lan-
guages focus more on the programming aspect, resulting in dependently typed
programming languages such as Agda [Norell, 2007], Cayenne [Augustsson, 1998],
Epigram [McBride, 2005], Idris [Brady, 2011] and F* [Swamy et al., 2011].

As types in dependently-typed programming languages are very expressive,
there is a wide range of errors than can be caught at compile time. However, this
comes at the cost of decidability. Some languages, such as Cayenne, preserve the

1The original manuscript was written in 1969.

160

[8.2] Refinement Types

full expressivity of their programming language but remain undecidable. Other
languages choose to apply restrictions on either the expressiveness of the type or
the language.

As dependently-typed programming languages are very expressive, they are
capable of expressing constraints between properties of an object. However, in-
corporating the full power of dependent typing in existing programming languages
is an active topic of research [Eisenberg, 2016; Kent and Tobin-Hochstadt, 2015].
Almost all dependently-typed programming languages are functional and have se-
vere restrictions, such as total functions and complex proof annotations. On the
other hand, TIPC does not need the full expressive power of dependent typing.
By extending the type system only with support for inter-property constraints,
we are able to incorporate the extensions in an imperative programming language
without requiring complex proof annotations.

8.2 Refinement Types

The power of dependently typed programming languages comes with a price: in
order for the type system to prove type safety, functions have to be total and
developers need to provide complex proof annotations. Refinement types [Owre
et al., 1998; Xi and Pfenning, 1998] try to find a balance between the power of
the type system and the annotation effort that is needed from the developer in
a dependently typed programming language. More specifically, the types in a
refinement type system are limited to decidable predicate logic.

For example, Freeman and Pfenning [1991] limit refinements on types to re-
finements on the structure of algebraic datatypes. Liquid types by Rondon et al.
[2008] (short for Logical Qualified Data types) allow all refinements that are ex-
pressible in predicates of decidable logic. Restricting the expressiveness of refine-
ment on types enables the use of an SMT (Satisfiability Modulo Theories) solver
to automatically deduce the satisfiability of a first-order logic formula. An SMT
solver is a generalisation of a SAT solver: the latter works only on boolean expres-
sions while the former works on predicates from a higher-level theory. By using
an SMT solver, the programming language removes the proof annotation burden
from the programmer.

Refinement types can be used to refine types to specific subsets like “all even
numbers” or “strings of length N”, but other research tracks focus on using re-
finement types for specific purposes. For example, Xi and Pfenning [1998] use
refinement types to eliminate dynamic array bound checking. Kawaguchi et al.
[2009] use refinement types to verify complex data structure invariants, such as
the red–black invariant of red–black trees and the binary search invariant in a tree.

161

[8] Related Work

Bengtson et al. [2011] verify authentication properties of cryptographic protocols
with a refinement type system.

The approach of refinement types is very general: any type can be refined
using predicates, as long as its satisfiability is deducible with SMT solvers. In
this respect, TIPC differs from refinement type languages: only interface types
can be refined in TIPC and only on the presence of the properties. By limiting
the expressiveness of refinements in TIPC, we aim to minimise the impact of the
advanced type system to the developer. It also facilitates maintaining static de-
cidability: as refinements in TIPC are only imposed on the presence of properties,
logical entailment and SAT solvers suffice to type check TIPC programs.

Several research efforts have a different approach regarding the tractability
of refinement type languages. Hybrid type checking by Flanagan et al. [2006]
combines a refinement type system with dynamic contract checking. Whenever
the static type system cannot ensure type safety, hybrid type checking inserts
dynamic checks. In F*, Swamy et al. [2016] allow developers to switch to manually
providing proofs whenever the required proofs exceed the capability of the SMT
solvers. Finally, Lehmann and Tanter [2017] introduce the concept of gradual
typing into refinement type languages. Because of the limited expressiveness,
TIPC does not have the decidability issues present in refinement type languages.
Incorporating gradual types into TIPC is an interesting research avenue that falls
out of scope of this dissertation. Chapter 10 contains a detailed discussion of
gradually typed inter-property constraints.

Besides research on new languages and new applications for refinement types,
a separate research track focuses on the practical implementation of refinement
types in existing programming languages. Xi and Pfenning [1999] incorporates
refinement types in the ML programming language. Another research effort in-
cludes refinement types in a functional dynamic programming language [Chugh
et al., 2012b]. Vazou et al. [2014] propose a type system for refinement types in
Haskell, Kent et al. [2016] incorporate refinement types in Racket and Vekris et al.
[2016] integrates refinement types in TypeScript.

In the rest of this section, we will discuss refinement types to the applications
that are close to our work in detail: research efforts that incorporate refinement
types into imperative dynamic programming languages and object-oriented pro-
gramming languages.

8.2.1 Refinement Types For Dynamic and Object-Oriented Pro-
gramming Languages

Hoop Flanagan et al. [2006] introduce Hoop, a hybrid object-oriented program-

162

[8.2] Refinement Types

ming language with refinement types and object invariants. Hoop aims to provide
a type system that allows for very expressive object interfaces. As they allow
any boolean predicate as a refinement of a type, it is possible to define presence
constraints between object properties. However, Hoop requires refinements and
object invariants to be pure, which means that refinement cannot be imposed on
mutable object properties. The refinement language on objects in TIPC is less
expressive, and caters to constraints often found in API documentation. However,
this allows for mutable object properties in TIPC, on which refinements may be
expressed. As Hoop is a hybrid language, refinements that cannot be checked stat-
ically are translated into dynamic checks. TIPC limits the refinement on object
interfaces, eliminating the need for dynamic checks.

X10 Nystrom et al. [2008] introduce the statically typed object-oriented pro-
gramming language designed for concurrent and distributed systems, called X10.
This programming language supports constrained types, which is a form of depen-
dent types. Similar to TIPC, constraints can be imposed on the state of objects.
However, the main difference between constraints in X10 and TIPC is the ex-
pressivity of the constraints: constraints in X10 can be any boolean predicate
expression on the value of fields. This comes at the price of immutability: con-
straints in X10 can only reference immutable fields. While constraints in TIPC
only impose restrictions on the presence and absence of properties, it is possible
to impose constraints on mutable properties of an object.

RSC Vekris et al. [2016] introduce RSC, a lightweight refinement system for
TypeScript. Refinements in RSC stem from an SMT-decidable logic, and can be
imposed on any type, including classes and class fields. As a result, constraints
between class fields can be written down in RSC. However, RSC imposes the same
restrictions as we have already seen in HOOP and X10: RSC guarantees soundness
by restricting refinements to only concern the values of immutable fields. Again,
this differs from TIPC where refinement may only concern the presence or absence
of properties, but can be imposed on mutable fields.

After presenting the formalisations of RSC, Vekris et al. elaborate on more
features of TypeScript could be incorporated in RSC. They show how information
from if statements can be incorporated in the refinements of types. The same
idea is incorporated in the formalisations of TIPC. They also elaborate on their
immutability restriction for refinements. By introducing a new kind of mutability
called Unique, the type system would have to guarantee that there is only one
reference to a certain object. This way, the type system would be able to safely
allow mutations on fields that are part of a refinement type. A similar approach

163

[8] Related Work

could alleviate restrictions on the simultaneous update of properties part of an
inter-property constraint. We elaborate on this in Section 10.3.

DJS Finally, we elaborate on Dependent JavaScript (DJS), by Chugh et al.
[2012a]. DJS is a statically typed variant of a subset of JavaScript, which includes
refinement types and strong updates. As with other refinement type systems,
refinements in DJS are based on an SMT-decidable logic. DJS also supports
strong updates, which allow an assignment to change the type of a reference. This
is only possible with a form of Alias Types (by Smith et al. [2000]), which ensure
that there is only one reference to a location in the heap. Using the combination of
refinement types and strong updates, it is possible in DJS to express inter-property
constraints using refinements in DJS, even on mutable properties. A disadvantage
that stems from this expressiveness is the required annotations throughout the
program to accommodate the alias typing system in DJS.

Listing 8.1 shows how inter-property constraints can be expressed in DJS. It
shows a function definition for exactlyOne, which receives one argument, an ob-
ject. This object should either contain either a user id property or a screen name
property. The comment block between the function parameter list and the func-
tion body contains the function type. The function definition is first parametrised
with two location variables LL1 and LL2 and one heap variable Heap. It states that
this function takes one argument called obj with the type indicating the location
of the object on the heap. This heap object has a single prototype object (in loca-
tion LL2). The prototype object of obj contains a dictionary. This dictionary is
refined with a double implication (iff) indicating that if the prototype object (on
location LL2 in the heap) contains user id, it may not contain a screen name,
and the other way around. At the end, we indicate that the prototype object of
obj lives at the location LL2 (> LL2). As this function has an empty function
body, the function returns the top type and nothing changes in the heap.

1 var exactlyOne = function (obj) /*: [;LL1 ,LL2;Heap]
2 (obj:Ref(LL1))
3 / Heap +
4 (LL1 |-> _:{ Dict|
5 (iff
6 (objhas v " user_id " Heap LL2)
7 (not (objhas v " screen_name " Heap LL2)))} > LL2)
8 -> Top / same */
9 {

10 };

Listing 8.1: Inter-property constraints in DJS

164

[8.2] Refinement Types

As can be seen in Listing 8.1, writing down the type of an object with inter-
property constraints is not trivial. In order to express the type, developers need
to have knowledge of the way objects are represented in a heap. Moreover, the
required details on the heap representation in the type of a function are cumber-
some to write down. In the paper, the authors of DJS acknowledge this significant
annotation overhead. TIPC, on the other hand, aims to be a lightweight extension
of TypeScript and requires programmers to only have knowledge about interfaces
and basic propositional logic. TIPC achieves this by having a less expressive con-
straint language than DJS. However, constraints in TIPC suffice to express almost
all of the constraint found in web APIs and web API documentation.

Important to note is that the alias types in DJS have an impact on all the
aspects of the programming language. Although Listing 8.1 only shows the def-
inition of a function with inter-property constraints, the entire program needs
to be extended with annotations with regards to the heap. This is in contrast
with TIPC, in which we aim to have a minimal impact on the syntax of Type-
Script. This promotes the integration of inter-property constraints in existing
TypeScript programs. In the future, we plan on extending TIPC with support
for an imperative simultaneous update of properties while keeping these goals in
mind, by incorporating a limited version of alias types. We elaborate on this in
Section 10.3.

A note on contract programming Contracts are a way to impose precondi-
tions and postconditions on functions [Findler and Felleisen, 2002]. Research on
contract systems can be divided into two categories: latent contracts and manifest
contracts. In a latent contract system, only dynamic checks are generated. Man-
ifest contracts systems also generate dynamic checks, but they incorporate the
guarantees given by these dynamic checks into the static analysis as well. Mani-
fest contract systems are very closely related to work by Greenberg et al. [2010],
Ou et al. [2004] and the research on hybrid refinement type checking mentioned
earlier in this section, where the parts that cannot be proven with an SMT-solver
are checked dynamically. We do not elaborate on latent contract systems, as they
do not involve any static analysis.

Conclusion To conclude, we discussed two refinement type systems for object-
oriented programming languages (Hoop and X10), one refinement type system for
TypeScript (RSC) and one refinement type system for JavaScript (DJS). Although
all of these refinement type systems are intrinsically able to express inter-property
constraints, there are also many differences between these languages and TIPC.
We group the different languages by their approach:

165

[8] Related Work

• The programming languages Hoop, X10 and RSC impose the same restric-
tion on refinements: they only support inter-property constraints in the
initialisation phase: updating properties that are part of inter-property con-
straints is impossible. By limiting refinements to the presence and absence of
properties, TIPC is able to allow refinements without sacrificing mutability
for single-property updates.

• The fourth programming language we discussed was DJS, which has a re-
finement type system rich enough to express inter-property constraints and
allow mutability. This is achieved by its form of alias tracking, which en-
sures that there is always only one reference to an object. We have shown
an example in which inter-property constraints are expressed in DJS, but
which also shows the disadvantage of DJS: its complex type annotation lan-
guage, which needs to be provided throughout the entire program. This is
in sharp contrast to TIPC, where a simple constraint logic is incorporated
into interface definitions.

• A final difference between these refinement type systems and TIPC is how
the type system verifies valid subtypings. Just like TIPC, regular refine-
ment type systems also use logical entailments or logical implications to
verify a subtyping or assignment compatibility relationship. As the focus
of refinements in TIPC is on the presence and absence of properties, TIPC
adds additional inferred logical propositions on present or absent properties
to both sides of the entailment. This way, more subtyping and assignment
compatibility relationships will be accepted by the type checker, improving
the usability of refined types for programmers.

Table 8.1 gives an overview of the trade-offs made in refinement type systems
and the type system of TIPC. The table evaluates the type systems on three
aspects, where TypeScript forms the baseline:

• the power of the type system: evaluated according to the power of the logic
that can be expressed in type definitions;

• the expressivity of the programming language, compared to the expressivity
of TypeScript;

• the type annotation overhead: we consider type annotations an overhead
when they do not directly deal with the definition of documentation con-
straints.

166

[8.3] Type Systems for TypeScript

Power
Type System

Language
Expressivity

Annotation
Overhead

Hoop ++ – – =
X10 ++ – – =
RSC ++ – – =
DJS ++ = – –
TIPC + – =
TypeScript = = =

Table 8.1: Comparison between refinement type systems, TIPC and TypeScript

Refinement type systems enable the definition of types which can be expressed
in decidable predicate logic. In Hoop, X10 and RSC there is no annotation over-
head, but they prohibit mutability on objects on which refinements are imposed.
DJS, on the other hand, does not limit the expressivity of the programming lan-
guage which comes at the price of annotations with regards to the heap through-
out the program. Types in TIPC are tailored to the expression of inter-property
constraints and are thus less powerful than refinement types. This is an improve-
ment over the type system of TypeScript without requiring extra annotations or
disallowing mutable objects.

8.3 Type Systems for TypeScript

Chapter 5 already introduced the TypeScript programming language, which is
an optionally typed superset of JavaScript. Because of the lack of support for
inter-property constraints in TypeScript, this dissertation introduces a variant of
TypeScript, called TIPC.

In recent years, several research efforts have proposed a static type system
for (a subset of) JavaScript. The different type systems for JavaScript focus on
different key features of JavaScript or cover a different subset of the programming
language. In this section, we give an overview of these type systems.

In recent years, several formalisations for TypeScript have been proposed:

FTS As already mentioned earlier in previous chapters of this dissertation,
TIPC is an extension of earlier work by Bierman et al. [2014]. In this paper,
the sound and unsound features of TypeScript are formalised into two calculi:
safeFTS and prodFTS. The first calculus focuses on supporting the sound subset
of TypeScript, including features such as contextual typing and the lack of block

167

[8] Related Work

scoping in JavaScript. The second calculus, prodFTS is an extension of safeFTS
which includes unsound features of TypeScript, such as unchecked downcasts and
unchecked indexing. FTS stays true to the optional typing of TypeScript: they
ensure a full erasure of the type annotations in the compiled JavaScript code.

Safe TypeScript Rastogi et al. [2015] introduce a safe compilation mode for
TypeScript, for which soundness is guaranteed. Safe TypeScript is a variant of
TypeScript that has a gradual type system, instead of the default optional type
system in TypeScript. This is achieved by generating runtime type checks in
dynamically typed code (which uses type any), or where the boundary between
dynamically typed code and statically typed code is crossed. The type system
of Safe TypeScript employs runtime type information from the generated checks
and existing checks. Although Safe TypeScript generates runtime checks, Rastogi
et al. ensure that the runtime type information from the generated runtime checks
does not break the underlying JavaScript semantics.

StrongScript Richards et al. [2015] also introduce a gradually typed variant of
TypeScript, called StrongScript. In StrongScript, there are three kind of types:
dynamic types (any), optional types and concrete types. Optional types employ
the same behaviour as the types in regular TypeScript. Concrete types add a
new kind of type to TypeScript that has stronger guarantees than optional types:
StrongScript guarantees that at runtime, these types only contain values of those
types. Optional types, on the other hand, cannot uphold this guarantee because
of the unsound features in TypeScript, such as unchecked casts.

Summary We have discussed three programming languages related to Type-
Script: FTS, Safe TypeScript and StrongScript. FTS served as the starting point
of the programming language in this dissertation. It aims to be a true repre-
sentation of the syntax, semantics and type system of TypeScript, including its
optional types and full erasure of type after compilation. TIPC is based on the
sound subset of FTS. Safe TypeScript and StrongScript focus on improving the
combination between sound and unsound parts of TypeScript. In order to in-
crease the static guarantees, Safe TypeScript as well as StrongScript incorporate
a gradual typing system into TypeScript. All of these approaches are orthogonal
to the goal of this dissertation: we do not focus on the optional or gradual type
system of TypeScript. Instead, we extend the type system of TypeScript with a
more expressive kind of interface definition.

168

[8.4] Type Systems for JavaScript

8.4 Type Systems for JavaScript

The challenge of TypeScript (the basis for TIPC) was to retrofit a statically typed
language onto an until then dynamically typed language. Dynamically typed
languages are very permissive, and JavaScript is a prime example of that. When
designing a static type system for JavaScript, there must be a careful consideration
of which dynamic features of JavaScript need to be supported.

There already exist many research efforts in static analysis and type systems
for JavaScript, such as Gardner et al. [2012]; Guha et al. [2011]; Jang and Choe
[2009]; Jensen et al. [2009]; Lerner et al. [2013]; Politz et al. [2012, 2014]. We limit
our discussion to research in the type system domain that focuses on the dynamic
nature of objects in JavaScript:

JST
0 Early work in type systems for JavaScript was done by Anderson et al.

[2005], who introduce a type inferencer for JavaScript. The focus of their stati-
cally typed version of JavaScript, called JST

0 , is on the dynamic features on objects
in JavaScript: the dynamic addition of fields to objects and the dynamic reassign-
ment of fields and methods in an object. This is achieved by having two kinds of
object members: definite object members and potential object members. Poten-
tial objects members become definite when they have a value assigned to them.
This allows the type system to only allow the access of properties to those that
already have received a value.

The work of Anderson et al. is extended by Zhao [2010]. They reuse the
potential and definite object members to support implicit object extensions, i.e.
when a function call has dynamic object extensions as a side effect. Moreover,
they support strong updates (where the type of an object member may change
throughout the program), but only for recently created objects.

Core JavaScript Around the same time as Anderson et al., Thiemann [2005]
presented a type system for JavaScript that also focuses on the dynamic features of
JavaScript. More specifically, Thiemann present a statically typed programming
language called Core JavaScript, which prevents accessing undefined properties
and identifies silent type conversions. To achieve this, Core JavaScript uses sin-
gleton types and first-class record types.

RAC Heidegger and Thiemann [2010] introduce recency types for JavaScript. In
this work, the authors propose a static type system for JavaScript that supports
the common initialisation phase of objects in JavaScript, where an empty object is
extended with properties shortly after its creation. Their recency-aware calculus

169

[8] Related Work

(RAC) supports these dynamic additions of properties in the initialisation phase
through a flow-sensitive type system and strong updates for objects. After the
initialisation phase, the type system falls back to flow-insensitive typings.

SJS Choi et al. [2015] introduce SJS, a programming language with a type in-
ferencer for a significant subset of JavaScript. In order to achieve efficient compil-
ing, they introduce a type system that statically guarantees a fixed object layout.
Choi et al. statically ensures that JavaScript objects with prototype inheritance
are used in a type-safe manner: fields present in the object or in its prototype
chain can be accessed, fields present in the object can be modified.

Chandra et al. [2016] propose an extension of SJS, in which they introduce
a type inferencer for SJS. Additionally, they have support for abstract objects,
first-class methods and recursive objects. Using rows in object types, Chandra
et al. have a more fine-grained way to track properties in the object and prototype
chain. Their abstract types ensure that the type system limits unsafe property
accesses.

Flow Chaudhuri et al. [2017] introduce Flow, a static type checker for JavaScript.
Flow inferences types and refines types using a flow-sensitive analysis, even for
mutable variables. In order to ensure type safety, type refinements are invalidated
after an assignment (which are tracked with effects) and type refinement of object
properties are invalidated conservatively (Flow is not heap sensitive).

Conclusion there are already many research efforts that focus providing a type
system for objects in JavaScript. In this dissertation, we do not describe a type
system to verify existing JavaScript object features. Instead, we improve the
expressivity of a type system for TypeScript by introducing a new kind of interface
definition. This also requires advanced rules for property accesses and updates by
the type system to guarantee type soundness.

8.5 Occurrence Typing

In TIPC, interface types with inter-property constraints can be narrowed: when
an if statement verifies the presence or absence of a property, this information is
taken into account in the true and else branch. This new information narrows (or
strengthens) the type: given the extra information, TIPC can construct a more
detailed type representing the object. As a consequence, different occurrences of
the same identifier may have different types throughout the program. This idea

170

[8.6] Conclusion

is also known as occurrence typing. In this section we describe the origin and
evolution of occurrence typing.

The concept of occurrence typing was first introduced by Tobin-Hochstadt and
Felleisen [2008], and later on refined [Tobin-Hochstadt and Felleisen, 2010]. In the
first paper, Tobin-Hochstadt and Felleisen extended the type system of Typed
Scheme with occurrence typing. The second paper highlights some weaknesses in
this approach and presents a more powerful version that explicitly supports logical
combinators in conditionals and increases expressivity by supporting structure
selectors.

Occurrence typing also appears in other research, such as λS : a scripting
programming language with a flow typing system by Guha et al. [2011]. It fo-
cuses on characteristics typical in scripting languages, such as imperative fea-
tures. Kashyap et al. [2013] introduce a static analysis for JavaScript with type
refinements. They especially focus on implicit assumptions made for JavaScript
operations, such as undefined and null checks and primitive or object checks.

Modern type systems for programming languages with dynamic type checks
support occurrence typing from the beginning. As we have already covered in
Section 5.6, TypeScript narrows types inside conditional branches, as well as a
form of flow analysis with respect to return statements. Hack [Facebook Inc, b],
is a dialect of PHP with a gradual type system which also takes information from
conditionals into account when type checking the branches. Flow [Facebook Inc,
a], a static type checker for JavaScript, also supports type refinements [Chaud-
huri et al., 2017]. Bonnaire-Sergeant et al. [2016] introduce Typed Clojure which
adds optional types to Clojure. They adapt occurrence types to fit the features
characteristic to Clojure.

Several of the refinement type languages we have seen earlier in this chapter
narrow refinement types according to conditional branches: Freeman and Pfenning
[1991], Rondon et al. [2008], Chugh et al. [2012b], Chugh et al. [2012a] and Vekris
et al. [2016] among others.

8.6 Conclusion

In this chapter, we briefly summarised other research that aims to provide complex
types to impose advanced constraints on expressions.

Dependent type systems are the most expressive form of type systems, where
types may be predicated on values. However, this expressivity comes with the
price of decidability, requiring the programmers to provide proofs themselves. A
lightweight form of dependent types, called refinement types, strive to find a bal-
ance between expressive types and decidability. Benefitting from the tremendous

171

[8] Related Work

progress made in the field of SMT solvers, refinement types are limited to logic
that is SMT-decidable. Incorporating refinement types into imperative object-
oriented programming languages either requires limitations on the expressivity of
the language, or complex type definitions.

TIPC can be classified as a lightweight refinement type system, as it only
imposes constraints on the presence of expressions. It presents a low barrier
to entry for developers that want to augment existing (imperative) programs to
support inter-property constraints, without sacrificing expressivity of the language
or simplicity in the type definition.

TIPC is a variant of TypeScript, which adds optional types to JavaScript.
Throughout the years, several type systems for JavaScript were proposed, each
focusing on a subset of JavaScript with characteristic JavaScript features. The
focus of these proposals is statically supporting existing JavaScript features, while
the type system of TIPC adds a new feature that is applicable to all object-oriented
programming languages. More recently, several formalisations for TypeScript and
improvements thereupon have been proposed. The formalisations of TIPC are
based upon work by Bierman et al. [2014], while TIPC is orthogonal to other
work on TypeScript that focuses on the gap between type safe and type unsafe
code. Finally, we highlighted existing work on occurrence typing. TIPC uses
occurrence typing to support property accesses and updates guarded by presence
tests.

172

Chapter 9

Inter-property Constraints in
Practice

This dissertation has introduced the concept of inter-property constraints. In
Section 2.3.2, we have showed the relevance of inter-property constraints with
an empirical study in the documentation of web APIs. Subsequently, we have
incorporated inter-property constraints into TypeScript, a statically typed pro-
gramming language often used for developing web applications.

Recall that the original motivation for inter-property constraints stemmed
from the documentation of APIs, and web APIs in particular. These APIs are
either specified in textual documentation or using a machine-readable specification
language, from which human-readable documentation can be generated, but also
automated tests for APIs and code. Incorporating inter-property constraints into
machine-readable web API specification languages has a great impact on several
facets of the development of web applications. Ed-douibi et al. [2018] confirm
that the lack of support for inter-property constraints in specification languages
causes inter-property constraints to remain unchecked in automated tests. In
this chapter, we investigate how the concept of inter-property constraints can be
incorporated in machine-readable specification languages and their tools.

We start with an overview of existing specification languages (Section 9.1) and
what constructs they provide to express inter-property constraints (Section 9.2)
Section 9.3 presents a new specification language with special constructs to ex-
press common kinds of inter-property constraints. Finally, this chapter elaborates
on how incorporating inter-property constraints into specification languages also
benefits the accompanying tools. This first three sections of this chapter are an
extension of Oostvogels et al. [2017] (sections 3 and 4): this chapter also covers
relevant features that have been introduced in API specification languages since
the publication of the paper.

173

[9] Inter-property Constraints in Practice

9.1 Web API Specification Languages

Web API specification languages are machine-readable languages used to formalise
the specifications of web APIs. Machine-readable specification languages for web
APIs have been around since 2000, with the introduction of WSDL (Web Services
Description Language, Christensen et al. [2001]). Since then, many new languages
have emerged, such as WADL (Web Application Description Language, Hadley
[2006]), OpenAPI specification (formerly known as Swagger), API Blueprint and
RAML (RESTful API Modeling Language). Many of the API specification lan-
guages use prevalent markup languages such as XML, JSON , MSON (Markdown
Syntax for Object Notation) and YAML as their syntax.

A specification file contains a machine-readable version of the web API docu-
mentation. The details vary per specification language, but the overall structure
information encoded in a specification file is roughly the same. In general, a speci-
fication file contains a part with metadata about the web API (such as versioning,
licensing and hosting information) and a list of entry points together with their
details. For every entry point, a specification file contains a description and a list
of operations. Each operation is characterised by an HTTP verb (GET,POST,
...) and sometimes specific headers sent by a client (Accept). Per operation, the
specification contains a list of parameters and a definition of its response.

For every parameter, a specification file details its name, a description and
a set of imposed constraints. Examples of constraints that can be imposed on
parameters are:

• type;

• required or optional;

• minimum length and maximum length;

• minimum value and maximum value;

• uniqueness of items in array.

All the constraints listed above are constraints about one single parameter.
However, some specification languages do have language constructs that allows
the specification of constraints between parameters as well. In the next section,
we will discuss these in detail.

174

[9.2] Inter-property Constraints in Specification Languages

9.2 Inter-property Constraints in Specification Lan-
guages

In this section, we will discuss language constructs of API specification languages
that allow the expression of constraints between parameters (or properties). We
have investigated nine web API specification languages: WSDL, WADL, Ope-
nAPI, MSON, RAML, JSON Schema, WifL [Danielsen and Jeffrey, 2013], Web
IDL [Bae et al., 2014] and hRESTS [Kopecký et al., 2008]. The first five languages
are API specification languages that are commonly used by API providers, while
the latter three specification languages are academic research artefacts. We also
include JSON Schema in our discussion — even though it only validates one object
at a time — because it supports some inter-property constraints.1

Our investigation shows that only two out of these specification languages —
namely JSON Schema and OpenAPI — supports inter-property constraints at all.
The rest of this section will discuss the language constructs found in OpenAPI or
JSON Schema that support inter-property constraints.

9.2.1 oneOf (OpenAPI specification, JSON Schema)

The first language construct we will discuss is oneOf, which is part of the OpenAPI
specification as well as JSON Schema. This language construct receives an array
of JSON schemas (a collection of requirements) and requires that exactly one of
those schemas is valid for the given object. The following code snippet shows an
example of oneOf: in order to satisfy this JSON schema, a JavaScript instance
must be an object with a property user that either has type string or number.

1 { oneOf: [
2 { type: " object ",
3 properties : {user: {type: " string "}}},
4 { type: " object ",
5 properties : {user: {type: " number "}}}]}

Listing 9.1: Example of oneOf for exclusivity constraints

At first, the oneOf construct appears suitable for exclusivity constraints (de-
fined in Section 2.1.1), but we show that this is not the case with a counterexample
in Listing 9.2. This example attempts to encode the exclusivity constraint found
in the Twitter documentation on private messages, where an object may only
contain either a screen name or a user id. For objects that contain one of the

1JSON Hyper-Schema is an extension of JSON Schema for describing APIs. However, it does
not add additional expressiveness for describing web APIs.

175

[9] Inter-property Constraints in Practice

1 { oneOf: [
2 { type: " object ",
3 required : [" screen_name "],
4 properties : {" screen_name ": {"type": " string "}}},
5 { type : " object ",
6 required : [" user_id "],
7 properties : {" user_id ": {"type": " number "}}}]
8 }

Listing 9.2: Attempt at using oneOf for exclusivity constraints

properties, such as {user id: 42} and {screen name: "Alice"}, this JSON
schema works as expected.

However, an object literal with both properties such as {screen name:42,
user id:42} would be accepted as well: the screen name property is not a string,
therefore the first schema is not considered valid, and therefore the oneOf con-
straint passes! This is not a good fit for the exclusivity constraints found in web
APIs: we want to ensure that exactly one of the properties is present.

9.2.2 discriminator (OpenAPI specification)

The next language construct we will discuss is the discriminator, provided by
the OpenAPI specification. Using a discriminator, developers can change the
requirement for a JavaScript instance, given a certain value. The discriminator
construct can be used to express present-value dependency constraints (defined in
Section 2.1.2.2), where the presence of a property depends on the value of another
property.

A discriminator expects two properties: propertyName to indicate which
property will contain the value and mapping which is an array that contains a
mapping of strings onto JSON schemas. Depending on the propertyName, JSON
Schema will pick the correct schema from mapping and validate the JavaScript
object against that schema.

Listing 9.3 shows a translation of a value-present dependency constraint to
OpenAPI with a discriminator. In the Google Maps API, the infoWindow
property is only taken into account when the property suppressInfoWindow is set
to true when rendering directions. To express this, the OpenAPI specification has
to contain two schemas. The first schema defines the base components of the API
entry point (we have limited the property list to three of the properties). Using
the discriminator, we indicate that an extra schema has to be used whenever
the value of infoWindow is true. This extra schema Extra contains an allOf

176

[9.2] Inter-property Constraints in Specification Languages

construct to combine the properties of the original schema with a new schema
that only contains the infoWindow property.

Translating present-value dependency constraints to an OpenAPI specification
using discriminator constructs is very unwieldy. Although this example only
contains one dependency constraint, it is already very verbose. In combination
with other (inter-property) constraints, it can become very difficult to quickly see
which constraints are imposed.

9.2.3 if-then-else (JSON Schema)

The previous section showed how the discriminator in OpenAPI enables the
definition of present-value constraints. In JSON Schema, present-value constraints
may be expressed using another construct: if-then-else. Listing 9.4 (page 191)
shows an example of the infoWindow example from the Google Maps API:

It contains two schema definitions: one without the infoWindow property and
one with infoWindow. The first definition also has the additionalProperties
property to indicate that the list of properties is exhaustive: otherwise, the
infoWindow property could be added without errors. We elaborate on the prop-
erty additionalProperties in Section 9.2.5.

The if-then-else construct is the second part of the definition and the con-
dition verifies the value of suppressInfoWindow. In the case that the property
suppressInfoWindow is set to true, the object needs to satisfy the definition
DirectionsRenderer, otherwise it needs to adhere to the definition Directions-
RendererExtra.

Because of additionalProperties it is impossible to reuse the definition
DirectionsRenderer for the DirectionsRendererExtra definition. This causes
a lot of duplication in the specification, which leads to more verbose specifications
and complicates maintainability.

9.2.4 dependencies (JSON Schema)

The fourth language construct that enables defining some of the inter-property
constraints is found only in JSON Schema. Using dependencies, developers
may declare that one property must be present if another property is present.
This maps directly onto present-present dependency constraints (defined in Sec-
tion 2.1.2.1). Furthermore, double implication constraints can also be defined
using the dependencies language construct twice.

Listing 9.5 shows an encoding in JSON Schema of the present-present depen-
dency constraint specified in Table 2.2. This constraint, found in the Facebook
API specification, states that extra information about a link may only be provided

177

[9] Inter-property Constraints in Practice

1 {
2 " components ": {
3 " schemas ": {
4 " DirectionsRenderer ": {
5 "type": " object ",
6 " properties ": {
7 " directions ": {
8 "type": " string "
9 },

10 " draggable ": {
11 "type": " boolean "
12 },
13 " suppressInfoWindow ": {
14 "type": " boolean "
15 }
16 },
17 " discriminator ": {

18 " propertyName ": " suppressInfoWindow ",

19 " mapping ": {

20 "false": "Extra"

21 }

22 }
23 },
24 "Extra": {
25 "allOf": [
26 {
27 "$ref": "#/ components / schemas / DirectionsRenderer "
28 },
29 {
30 "type": " object ",
31 " properties ": {
32 " infoWindow ": {
33 "type": " string "
34 }
35 }
36 }
37]
38 }
39 }
40 }
41 }

Listing 9.3: Use of the discriminator to define an inter-property constraint

178

[9.2] Inter-property Constraints in Specification Languages

if the link itself is present. We can use dependencies to specify that the extra
information properties depend on the base property link.

1 {type: ’object ’, properties : {link: {type: ’string ’},
2 picture : {type: ’string ’},
3 name: {type: ’string ’},
4 caption : {type: ’string ’},
5 description : {type: ’string ’}},
6 dependencies : { picture : [’link ’],
7 name: [’link ’],
8 caption : [’link ’],
9 description : [’link ’]}}

Listing 9.5: JSON Schema encoding for dependency constraints

Double implication constraints can be encoded in a similar manner. The
snippet below shows an encoding in JSON Schema of the double implication
constraint specified in Table 2.3. This constraint was found in the Twitter API.
The location of a tweet may be specified using the properties long and lat, but
both properties must be present or absent together. This can be encoded using
dependencies as a mutual dependency between both properties.

1 {type: ’object ’, properties : {long: {type: ’number ’},
2 lat: {type: ’number ’}},
3 dependencies : {long: [’lat ’],
4 lat: [’long ’]}}

Listing 9.6: JSON Schema encoding for double implication constraints

For humans writing or reading the specification, it can be difficult to see which
dependency maps to which logical constraint. Likewise, it is difficult to combine
multiple constraints on parameters in JSON Schema. Readability and maintain-
ability could be improved by separating constraints from the structure of the
object, eg. by having language constructs for defining custom constraints.

9.2.5 Conclusion

The previous four sections covered the language constructs found in existing API
specification languages that support inter-property constraints. Although three of
those language constructs are part of JSON Schema, we argue that JSON Schema
is not a good candidate for a specification language for web APIs with inter-
property constraints. First, the discussed language constructs are not a perfect fit
for the categories of inter-property constraints that we have found in Chapter 2.
Second, because the language constructs do not map directly onto a kind of inter-
property constraints, the error messages do not give a clear indication of which

179

[9] Inter-property Constraints in Practice

constraints were not satisfied. Third, the kinds of inter-property constraints that
can be expressed using the discussed language constructs are limited and other
kinds of logical operators to express inter-property constraints are not supported
either. Finally, JSON Schema is a very permissive language: fields that were
not described in the schema are allowed by default. This is undesired behaviour
while validating web APIs: the list of parameters should be exhaustive and extra
parameters should be rejected. To ensure that unmentioned fields are rejected,
the field additionalProperties must be added and set to false in every JSON
Schema object, or every absent field must be added with a false schema.

Because of the minimal support for inter-property constraints in existing API
specification languages, we argue that there is a need for a specification language
that enables the specification of all kinds inter-property constraints (next to single-
property constraints). Moreover, this language needs to be future-proof such that
new kinds of inter-property constraints can be easily supported in the language as
well. In the next section, we present a specification language that embeds support
for inter-property constraints in its core.

9.3 OAS-IP: A Novel Constraint-Centric Specifica-
tion Language

In this section we introduce OAS-IP, a new specification language for web APIs,
focused on defining and imposing constraints on properties of entry points. By
defining constraints using propositional logic, writers of API specifications can
factor out patterns in constraints and impose constraints on single or multiple
properties. This enables the discovery and implementation of novel inter-property
constraints.

OAS-IP is an extension of the OpenAPI specification language, which aims
to be a vendor-neutral specification language for web services, and is supported
by many companies such as Google and Microsoft. OAS-IP offers two extensions
to the specification language, both described below. The first extension enables
developers to define predicates for common constraints, and the second introduces
a new way to impose constraints on query and payload properties. Constraints
on path and header parameters are not supported, as they were not found during
our survey performed in Chapter 2.

As the goal of TIPC is to verify inter-property constraints at compile-time,
TIPC only supports presence constraints. As there is no compile-time restriction
for specification languages, the constraint language of OAS-IP is a superset of the
constraint language in TIPC.

180

[9.3] OAS-IP: A Novel Constraint-Centric Specification Language

v ∈ Values ::= Number, String, Boolean or Parameter
f ∈ Fields ::= s | f.s | f.[]
t ∈ Types ::= string | number | boolean | object | t[] | null

c ∈ Constraint ::= o | lc | s(v1, ..., vn)
o ∈ Operations ::= present(f) | type(f)=t | length(f)⊕ v | value(f)⊕ v

lc ∈ Logical connectives ::= and(c, c) | or(c, c) | not(c) | implic(c, c) | iff(c, c)
⊕ ∈ Math operators ::= =, 6=, <, >, ≤, ≥

cd ∈ Constraint definitions ::= s(s1, ..., sn) = c

Figure 9.1: Syntax definition for constraints

9.3.1 Constraint Definitions

OAS-IP aims to be a constraint-centric specification language, by providing a
uniform way to express constraints on fields. The goal of designing a new specifi-
cation language is to be able to give developers the freedom to define and impose
any kind of constraint on fields and subsequently check their code with respect
to these constraints. To enable this, OAS-IP provides a constraint language to
developers which allow them to define custom constraints.

Figure 9.1 shows the syntax of the constraint language in OAS-IP: a constraint
is a logical formula that consists of operations over properties, joined together
with logical connectives. This constraint language is a superset of the constraint
language proposed in Chapter 4: next to constraints on the presence of fields,
OAS-IP also supports constraints on properties of fields. Incorporating more kinds
of constraints into the programming language TIPC (formalised in Chapter 6) is
discussed in Chapter 10.

Properties target regular (s) and nested fields (f.s), as well as “array” fields (f.[])
— constraints which apply to every element of the targeted array. A constraint is
either an operation, a logical combination of operators or a constraint definition.
Operations test properties on fields, such as whether a field is present, its type,
and restrictions on its value or its length. As usual, precedence can be controlled
by parentheses.

Given these constraint building blocks, we can express the different kinds of
inter-property constraints identified in Chapter 2. Listing 9.7 shows the defi-
nition of these constraints, using logical connectives to combine operations on
fields. Expressing the exclusivity constraint requires that either present(f1) or
present(f2) is true. Dependent fields are expressed using an implication. Fi-
nally, double implication constraints are expressed with a double implication: f1

181

[9] Inter-property Constraints in Practice

must be present when f2 is present, and vice versa.
To promote reusability, constraint definitions enable the abstraction of com-

mon constraint patterns. These patterns are defined at the top level of an OAS-
IP specification, under the key x-constraints-definitions2. This key can be
defined on the global level of an OpenAPI specification file, and the defined con-
straints can be used throughout the web API specification.

Listing 9.8 shows the definition of several single-property constraints that are
commonly found in web API specification languages.

1 x-constraint - definitions :
2 - minimum (f, v) := value(f) >= v
3 - minimumLength (f,v) := length (f) >= v
4 - required (f) := present (f)
5 - string ?(f) := type(f) = string
6 - number ?(f) := type(f) = number

Listing 9.8: Sample constraint definitions in the YAML syntax

9.3.2 Constraints

The second extension made to OpenAPI specification is the addition of the prop-
erty x-constraints. This key is used to impose constraints on parameters using
the constraint syntax or custom definitions. This extension offers an additional
way to define constraints; OAS-IP still takes the regular OpenAPI specification
constraints into account as well.

Listing 9.9 (page 192) shows the machine-readable specification for the Private-
Message example of the Twitter API. In OpenAPI, and thus in OAS-IP, entry
points are grouped under the paths key, with the different HTTP methods they
support nested under the entry point. Lines 5–7 list the properties for the POST
method of this entry point, including single-property constraints to impose a type
on the parameters. The constraints on the parameter for this entry point are
listed in the x-constraints section, indicating that text is a required field and
that exactly one of screen name and user ID must be supplied.

9.3.3 Comparison with Other Web API Specification Languages

So far, this section introduced OAS-IP, a specification language for web APIs
with constructs for defining constraints by means of predicates over fields. While
existing specification languages have a predefined limited set of constraints, con-
straints in OAS-IP can be defined using any logical combination of the provided

2Custom fields in the OpenAPI specification are prefixed with x-.

182

[9.4] Inter-property Constraints in Specification Language Tools

operations. Moreover, complicated predicate combinations are abstracted to a
custom constraint definition. This is an advantage over existing specification lan-
guages, where lack of abstractions gives rise to readability and maintainability
issues. For example: defining a present-value dependency constraint in OpenAPI
or JSON Schema requires to make a custom kind of schema that inherits from
the original schema.

To gauge the expressiveness of OAS-IP for modelling existing web APIs, we
examined the constraint keywords of OpenAPI and JSON Schema and attempted
to replicate them with constraint definitions in OAS-IP. Apart from the type and
whether the field is required, the majority of keywords define constraints on either
numeric values of fields or the size of arrays or objects, and thus supported with
the existing operations in OAS-IP: using length and value. Most of the other con-
straints can be supported by adding new operations such as regex expressions (for
pattern), mathematical operations (for multipleOf) and a new language con-
struct for verifying the uniqueness of items in array (for uniqueItems). OAS-IP
currently does not support the JSON Schema items and additionalItems con-
straints which provide a different schema for each item of an array.

A final difference is the handling of unspecified fields. The patternProperties
keyword allows constraining properties whose name matches a regular expression,
while the additionalProperties keyword either validates or forbids unknown
properties. As we mentioned before, OAS-IP defaults to rejecting requests with
unknown fields. This is a conscious choice to give optimal guarantees about cor-
rect requests. If desired, both can be supported with the addition of patterned
fields: for example, the pattern string?(metadata./ˆx-/) would require that
unspecified fields of the metadata object starting with x- must be strings.

9.4 Inter-property Constraints in Specification Lan-
guage Tools

The main functionality that comes along with machine-readable specification lan-
guages is the generation of human-readable documentation. However, the exis-
tence of a machine-readable specification also enables the generation of a variety
of other tools. These tools can provide a wide range of functionality:

• creating and editing specifications in a disciplined way;

• testing of APIs by generating mock-ups from the specification;

• facilitate server-side development by generating server stubs: a skeleton of
code can be generated from the given machine-readable specification, gen-

183

[9] Inter-property Constraints in Practice

erating all the necessary code for entry points, and verifying that incoming
data effectively satisfies the constraints imposed by the specification;

• facilitate client-side development by generating client SDKs: libraries that
provide a regular function for each entry point and take care of sending the
HTTP request details behind the scenes.

The introduction of inter-property constraints affects every aspect of the tool-
ing suite. First, when creating and editing API specifications, API developers
could get the opportunity to create and impose a wide variety of constraints
on fields, including inter-property constraints. Second, inter-property constraints
could to be taken into account when testing APIs. Third, the generators of server-
side stubs and client-side SDKs could support inter-property constraints as well.
This would result in a more complete coverage of all the constraints that are im-
posed by the APIs, in contrast to the subset of constraints that could be defined
by existing specification languages.

As an example of how tools for constraint-centric specification languages can
incorporate support for inter-property constraints, we have developed two pro-
totype tools for OAS-IP: a runtime verification tool and a compile-time code
generation tool. In the remainder of this section, we will elaborate on these tools.

9.4.1 VerifyRequest library

In this section we introduce VerifyRequest, a library that accompanies the web
API specification language OAS-IP introduced in Section 9.3. This library verifies
whether the constraints imposed on the data of a request are satisfied at runtime,
and can be deployed on both sides of the client–server divide. This library is
written in regular TypeScript and is independent of TIPC: VerifyRequest does
not verify inter-property constraints at compile-time.

Recall that we have discussed the various ways that existing web services
handle and report errors in inter-property constraints in Chapter 2. A first kind
of behaviour is to silently ignore the violation, meaning that results can vary as the
server code is changed. A second behaviour is to produce textual error messages,
which may be hard to decipher. In both cases it can be very hard to determine
why a given request does not yield the desired result.

To aid developers on both sides of the client–server divide, we have developed
VerifyRequest, a library which dynamically verifies that requests made in web
applications are correctly formed. If all constraints are satisfied, the request is
executed and a result is returned. Otherwise, VerifyRequest returns an error
message indicating which constraints were not satisfied. This improves on both

184

[9.4] Inter-property Constraints in Specification Language Tools

kinds of error behaviours by rejecting invalid requests and producing an informa-
tive error message.

Client side On the client side, we have developed a wrapper for the popular
Node.js request library for making API requests. Whenever the program at-
tempts to make a request, VerifyRequest looks up the constraints for the data
of that entry point in its specifications using the URL and HTTP method, and
verifies whether they are satisfied.

The following code snippets shows an example of a small program that uses
VerifyRequest. First, developers need to import the VerifyRequest library.
This library replaces the import of request. VerifyRequest only adds one func-
tion to the interface of the original library: addDefinition. This function allows
the registration of API specifications, such that VerifyRequest can later on verify
whether requests are compliant with their specifications. Lines 5-10 in Listing 9.10
shows the sending of a POST request, which is identical to a POST request with
the request library. However, the VerifyRequest library first verifies whether
constraints are satisfied, before executing the request. In the case of Listing 9.10,
VerifyRequest will show a warning indicating that the exclusivity constraint on
the user properties is not satisfied.

Server side VerifyRequest can also be deployed as middleware on the server
side; there it primarily serves as a way of validating requests before they are acted
upon. However, VerifyRequest also offers the benefit of providing uniform behav-
ior in the face of erroneous requests. Violations of inter-property constraints are
thus detected and reported according to the (externally accessible) specification,
instead of leaving this to web service developers.

The implementation of VerifyRequest can be found on GitHub3. Both client
and server side can easily be adapted to other AJAX-like libraries (jQuery) and
HTTP servers (Koa) respectively. While our prototype happens to be written in
JavaScript, the principle can be applied to other languages, both on the client
and server side.

9.4.2 Client SDK Code Generator

The second tool for OAS-IP is SDKCodeGen: a code generation tool that forms
the basis for a client SDK (Software Development Kit). The result of SDKCode-
Gen is a module that contains a function for each entry point in the specification,
written in the TIPC programming language. Constraints written in OAS-IP are

3https://github.com/noostvog/Verify-Request

185

https://github.com/noostvog/Verify-Request

[9] Inter-property Constraints in Practice

translated to TIPC: this way, constraints are automatically verified by the type
system. The generated module can also serve as a starting point for a client SDK,
in which authentication and request functionality can be inserted.

The main functionality of SDKCodeGen is the translation of the constraints
listed in an OAS-IP specification to a TIPC interface. SDKCodeGen only
takes constraints into account that can be expressed in TIPC. In other words,
constraints on the type of fields and the presence of fields are translated to TIPC,
but constraints that depend on the value or length of a field are not taken into
account.

As an example, Listing 9.12 on page 190 shows the code that is generated
by SDKCodeGen for a subset of the specification of the Twitter API. As input,
SDKCodeGen receives the OAS-IP specification in Appendix C. A snippet of this
specification can be found in Listing 9.11 on page 189: this snippet describes the
entry point for creating a private message in Twitter. It lists the three parameters
for the entry point: text, user id and screen name. The user id must be a
number, while the other two need to be strings. text is indicated as a required
field. Using the extensions present in OAS-IP, we are able to express the inter-
property constraint as well: x-constraints contains the exclusivity constraint
between the user ID and the screen name, using a custom constraint (whose
definition can be found in the full API specification).

The complete API specification contains two additional entry points:

• updating a status: this entry point contains a lot of fields, most of which are
optional, except for the status field which is required and long and lat,
on which a double implication constraint is imposed.

• add a member to a list which receives 6 fields: list id and slug on
which an exclusivity constraint is imposed, as well as between screen name
and user id and between owner screen name and owner id. Additionally,
there is a dependency constraint between the two owner fields and slug.

Given the input in Appendix C, SDKCodeGen will generate the output listed
in Listing 9.12 on page 190. This output is a TIPC module that contains a
function for all the HTTP methods defined for each entry point in the OAS-IP
specification. All constraints on the presence of properties and between properties
are translated to a TIPC interface. Next, this interface is imposed on the argument
of the accompanying function. This ensures that the TIPC developer of the client
side constructs the object correctly.

The implementation of the SDKCodeGen tool can be found at GitHub4.
4https://github.com/noostvog/SDKMockupGenerator

186

https://github.com/noostvog/SDKMockupGenerator

[9.5] Conclusion

9.5 Conclusion

We started this chapter by introducing machine-readable API specification lan-
guages and explained their advantages in web development. After having given an
overview of the most popular machine-readable specification languages, we showed
that current machine-readable API specification languages fall short regarding ex-
pressing inter-property constraints. There are two specification languages that are
able to express some of the different kinds of inter-property constraints we have
introduced in Chapter 2: the OpenAPI specification and JSON Schema. Each
have three language constructs (two of which are shared among both specification
languages) that are able to express one (sub)kind of an inter-property constraint.
However, the language constructs are not a direct mapping onto an inter-property
constraint which causes the specifications to be very verbose. This leads to un-
manageable specifications and unclear error messages.

As a solution to those problems, we introduced a new specification language
called OAS-IP. The goal of OAS-IP is to be constraint-centric such that many
kinds of constraints can be expressed with its constraint language, including con-
straints over multiple fields. The constraint language of OAS-IP is more expres-
sive than TIPC’s constraint language, because there is no limitation for require-
ments to be verifiable at compile time. Moreover, we showed that the constraint
language of OAS-IP is as expressive as existing specification languages regard-
ing single-property constraints: almost all of the constraints that exist in JSON
Schema and OpenAPI specification can be expressed with the constraint language
of OAS-IP, and others can be added with minimal additions to the language.

Finally, this chapter showed how OAS-IP can impact the development of web
applications:

• As a first example, we have developed a prototype implementation called
VerifyRequest, which verifies whether the data of a request satis-
fies the constraints imposed on the data in the specification. On the
client-side, this is implemented as a wrapper around an existing request
library. This enables developers to automatically check whether or not re-
quests satisfy the given constraints with minimal changes to the code. On
the server-side, this library can be used to verify the data before processing
the request.

• The second example is a tool that generates a server stub written in TIPC,
given a specification written in OAS-IP. This tool translates the con-
straints imposed by the specification to interfaces in TIPC and
generates a function for each entry point. SDKCodeGen is a great example

187

[9] Inter-property Constraints in Practice

of how the incorporation of inter-property constraints in both specification
languages and programming languages can enable the improvement of the
web application development cycle. On the client-side, this tool can serve
as a simulation of the server-side code. The interfaces guarantee that the
data will satisfy the constraints that will be imposed by the actual server
implementation. On the server-side, this tool can serve as a starting point
for the implementation of the server. The interfaces with inter-property
constraints ensure the correct usage of incoming data.

188

[9.5] Conclusion

1 "/ direct_messages /new": {
2 "post": {
3 " description ": "sends a new direct message to specified user",
4 " security ": [
5 {
6 "oauth": [
7 "basic"
8]
9 }

10],
11 " parameters ": [
12 {
13 "name": " user_id ",
14 "in": "query",
15 " description ": " description ",
16 "type": " number ",
17 " required ": false
18 },
19 {
20 "name": " screen_name ",
21 "in": "query",
22 " description ": " screen name of user receiving message ",
23 "type": " string ",
24 " required ": false
25 },
26 {
27 "name": "text",
28 "in": "query",
29 " description ": "text of your direct message ",
30 "type": " string ",
31 " required ": true
32 }
33],
34 "x- constraints ": [
35 "xor(user_id , screen_name)"
36],
37 " responses ": {
38 "200": {
39 " description ": "OK",
40 " schema ": {
41 "$ref": "#/ definitions / Messages "
42 }
43 }
44 }
45 }
46 }

Listing 9.11: Snippet of the Twitter specification in OAS-IP

189

[9] Inter-property Constraints in Practice

1 export module Twitter {
2 export interface PostDirectmessagesnew {
3 user_id ?: number ;
4 screen_name ?: string ;
5 text ?: string ;
6 } constrains {
7 present (text);
8 or(and(present (user_id), not(present (screen_name))) ,
9 and(not(present (user_id)), present (screen_name)));

10 }
11 export function postDirectmessagesnew (body: PostDirectmessagesnew){
12 // your implementation here
13 }
14 export interface PostStatusesupdate {
15 status ?: string ;
16 in_reply_to_status_id ?: number ;
17 possibly_sensitive ?: string ;
18 lat ?: string ;
19 long ?: string ;
20 place_id ?: number ;
21 display_coordinates ?: string ;
22 trim_user ?: string ;
23 media_ids ?: string ;
24 } constrains {
25 present (status);
26 and(implic (present (lat), present (long)),
27 implic (present (long), present (lat)));
28 }
29 export function postStatusesupdate (body: PostStatusesupdate){
30 // your implementation here
31 }
32 export interface PostListmemberscreate {
33 list_id ?: number ;
34 slug ?: string ;
35 screen_name ?: string ;
36 user_id ?: number ;
37 owner_screen_name ?: string ;
38 owner_id ?: number ;
39 } constrains {
40 or(and(present (slug), not(present (list_id))) ,
41 and(not(present (slug)), present (list_id)));
42 or(and(present (user_id), not(present (screen_name))) ,
43 and(not(present (user_id)), present (screen_name)));
44 implic (present (slug),
45 or(and(present (owner_screen_name), not(present (owner_id))) ,
46 and(not(present (owner_screen_name)), present (owner_id))));
47 implic (present (owner_screen_name), present (slug));
48 implic (present (owner_id), present (slug));
49 }
50 export function postListmemberscreate (body: PostListmemberscreate){
51 // your implementation here
52 }
53 }

Listing 9.12: Output of SDKCodeGen for the Twitter specification

190

[9.5] Conclusion

1 {
2 " definitions ": {
3 " DirectionsRenderer ": {
4 "type": " object ",
5 " properties ": {
6 " directions ": { "type": " string " },
7 " draggable " : { "type": " boolean " },
8 " suppressInfoWindow ": { "type": " boolean " }
9 },

10 " additionalProperties ": false
11 },
12 " DirectionsRendererExtra ": {
13 "type": " object ",
14 " properties ": {
15 " directions ": { "type": " string " },
16 " draggable " : { "type": " boolean " },
17 " suppressInfoWindow ": { "type": " boolean " },
18 " infoWindow ": { "type": " string " }
19 }
20 }
21 },
22 "if":{
23 " properties ":{
24 " suppressInfoWindow ":{"const": true}
25 }
26 },
27 "then":{
28 "$ref": "#/ definitions / DirectionsRenderer "
29 },
30 "else":{
31 "$ref": "#/ definitions / DirectionsRendererExtra "
32 }
33 }

Listing 9.4: Example of the if-then-else construct in JSON Schema

1 x-constraint - definitions :
2 - xor(f1 , f2) := or(and(present (f1), not(present (f2))),
3 and(present (f2), not(present (f1))))
4 - pp - dependent (f1 , f2) := implic (present (f1), present (f2))
5 - pv - dependent (f1 , f2 , v) := implic (present (f1), value(f2) = v)
6 - vv - dependent (f1 , f2 , v1 , v2)
7 := implic (value(f1) = v1 , value(f2) = v2)
8 - doubleimplic (f1 , f2) := iff(present (f1), present (f2))
9 - nand(f1 , f2) := not(and(f1 , f2))

Listing 9.7: Sample constraint definitions in the YAML syntax

191

[9] Inter-property Constraints in Practice

1 paths:
2 / direct_messages /show:
3 post:
4 parameters :
5 - { name: screen_name , in: query , type: string }
6 - { name: user_id , in: query , type: string }
7 - { name: text , in: query , type: string }
8 x- constraints :
9 - present (text)

10 - xor(screen_name , user_id)

Listing 9.9: Expressing constraints for an API operation in OAS-IP

1 let request = require (’./ APIVerifyTool /verify -and - request .js’);
2
3 request . addDefinition (twitterDefinition);
4
5 request .post ({ url: "api. twitter .com /1.1/ direct_messages /new.json",
6 /* oauth information */
7 form: { user_id : 42,
8 screen_name : "Alice"
9 text: "Hello"}},

10 function (e,r,user){ console .log(user)});

Listing 9.10: Example use of VerifyRequest library

192

Chapter 10

Conclusion

This dissertation introduced the concept of inter-property constraints, i.e. con-
straints between properties. We identified their presence in real-world web APIs
and incorporated support for inter-property constraints into several aspects of the
development cycle for clients and servers of web APIs. In this final chapter, we
summarise this dissertation. We provide an overview of the contributions and
discuss avenues for future research.

10.1 Summary

We started this dissertation with the identification of inter-property constraints.
Chapter 2 performed a study of the documentation of libraries and categorised
examples based on how the constraints between the properties are combined. This
resulted in four categories that are commonly found in real-world APIs, based
on the logical operator used to combine the constraints: exclusivity constraints,
dependency constraints, double implication constraints and NAND constraints.

Next, we explored how integrating inter-property constraints into a main-
stream statically typed programming language affects the creation of objects and
the accessing and updating of object properties (Chapter 3). This resulted in
seven requirements that form a blueprint for incorporating inter-property con-
straints into any statically typed programming language. In Chapter 4, we tack-
led these requirements in a variant of TypeScript called TIPC. The changes to
the syntax were minimal: the interface definitions had to be extended to support
inter-property constraints and the assign construct was added to enable the safe
update of properties part of an inter-property constraint. Satisfying the require-
ments entailed including concepts from propositional logic into the type system.
For every requirement, we discussed the impact of this change on the expressivity

193

[10] Conclusion

of the programming language.
After a brief detour to explain the idiosyncrasies of TypeScript’s type system

(Chapter 5), we incorporated the ideas of Chapter 4 into an existing formalisa-
tion of TypeScript. More specifically, we presented the syntax, typing rules, and
operational semantics of TIPC (Chapter 6). In the type system, typing rules and
assignment compatibility rules had to be changed to guarantee type safe property
accesses, assignments, type casts and assign calls. The operational semantics was
extended with support for assign and tags to indicate interface instances. These
tags enabled proving the soundness of TIPC where, in the light of inter-property
constraints, we proved that interface instances will —at runtime— always contain
a combination of properties that satisfies the interface constraints.

We incorporated the extensions proposed in TIPC in the official implementa-
tion of TypeScript, resulting in TypeScriptIPC (Chapter 7). In order to remain
backward-compatible with existing TypeScript applications, TypeScriptIPC con-
tains both regular interfaces and interfaces with inter-property constraints.

In Chapter 9, we returned to documentation for web APIs (the inspiration for
inter-property constraints) and we found that current API specification languages
lack support for inter-property constraints. We introduced OAS-IP, an extension
of OpenAPI with support for inter-property constraints. We introduced two de-
velopment tools that accompany OAS-IP: VerifyRequest and SDKCodeGen. The
first tool generates verifies request data at runtime, given an OAS-IP specifi-
cation file. The second tool translates constraints in an OAS-IP file to TIPC
interface definitions, which enables the compile-time verification of inter-property
constraints.

10.2 Restating the Contributions

Identification and Classification of Inter-property Constraints Our first
contribution is the study of inter-property constraints in real-world API docu-
mentation. We showed that inter-property constraints are common in six popular
web APIs: Google Maps, Twitter, YouTube, Flickr, Facebook and Amazon. We
categorised the instances of inter-property constraints: exclusivity constraints,
dependency constraints, double implication constraints and NAND constraints.

Statically typed programming language with support for inter-prop-
erty constraints We identified seven requirements that object-oriented pro-
gramming languages need to take into account when incorporating inter-property
constraints, and proposed a solution for every requirement. We aimed for a type
system that can be integrated in any object-oriented programming language for

194

[10.2] Restating the Contributions

web development. Therefore, we incorporated these ideas in TypeScript, which
resulted in the programming languages TIPC (formalisation) and TypeScriptIPC
(implementation). Moreover, the changes made to TypeScript’s type system do
not increase the annotation overhead and have only a small impact on the expres-
sivity of the language:

• Annotation Overhead: In TIPC, interface definitions can be extended
with syntax to express inter-property constraints. These annotations are
not overhead, but enable programmers to better formulate their intentions.

• Required Code Changes: To guarantee soundness, we had to restrict
property accesses in TIPC: only properties that are certainly present or
absent can be accessed. Other properties require an explicit presence test
before they can be accessed. For property accesses, there are four cases to
consider when converting existing TypeScript programs to TIPC:

– The TypeScript code already performed if tests before accessing a
property. In this case, TIPC uses the information from the if tests to
allow the property access. Thus, no code changes are required.

– The TypeScript code did not perform a test before accessing the prop-
erty. In this case, this might be a bug in the code: although the
requirement could not be listed explicitly in the TypeScript code, the
requirement still needs to be checked before the property in question
can be used. TIPC flags this bug: the code changes (i.e. if statements)
required by TIPC actually ensure that the program is bug free.

– In some cases, the type system of TIPC is not powerful enough and
requires more tests than strictly necessary. For example, information
from if statements is disregarded when the object is passed to a func-
tion which expects the original interface type. These code changes qual-
ify as an undesired burden for the developer, but increasing the power
of the type system to prevent this —for example, by using alias types
or by allowing the developer to explicitly specialise interface types—
would create a significant annotation overhead.

– Updating properties that are part of an inter-property constraint must
be done simultaneously to preserve type safety. Transforming subse-
quent single-property assignments to a simultaneous assignment is a
required code change in order for TIPC to accept the code. We argue
that this code change is minimal and can often be automated.

195

[10] Conclusion

Machine-readable Specification Language We showed that existing machine-
readable specification languages for web APIs have limited support for inter-
property constraints. We have extended the OpenAPI specification language
with support for every kind of inter-property constraint, resulting in OAS-IP.
This specification language has an extensive constraint language that allows the
definition of reusable inter-property constraints on the presence, type, and value
of properties. Moreover, we showed the expressivity of OAS-IP is on par with
existing specification languages regarding single-property constraints.

We presented two tools that accompany the OAS-IP specification language:
VerifyRequest and SDKCodeGen. The VerifyRequest tool tests that data sat-
isfies the constraints imposed in the specification language, including the custom
(inter-property) constraints. VerifyRequest shows that including inter-property
constraints in specification languages makes the accompanying tools more effec-
tive. The SDKCodeGen tool translates the data and their constraints in an OAS-IP
specification file to interface definitions, which enables the compile-time verifica-
tion of constraints by TIPC. Together, SDKCodeGen and TIPC improve the capa-
bilities of specification language tools and web development in general.

10.3 Future Work

In this section, we discuss possible avenues for future research.

10.3.1 Value-dependency Constraints

In Chapter 2, we identified four kinds of inter-property constraints: exclusivity
constraints, dependency constraints, double implication constraints and NAND
constraints. While almost all these constraints between properties impose re-
strictions on the presence of properties, we also found examples of dependency
constraints that impose restrictions on values of properties. In a PV-dependency
constraint, the allowed values for a property depend on the presence of another
property, or the other way around where the presence of a property depends on
the value for another property. In a VV-dependency constraint, the allowed values
for a property depend on the value of another property.

Inter-property constraints in TIPC are limited to constraints on the presence
of a property. The API specification language of Chapter 9 already supports
a superset of the TIPC constraint language, in which constraints on values can
be expressed. In the future, we plan on adding support for value-dependency
constraints to TIPC.

196

[10.3] Future Work

Syntactically, we plan on adding the value keyword to inspect values of prop-
erties. Listing 10.1 shows an example. This interface is a translation of the
ModerationStatus entry point of the YouTube API. It contains three properties:
id, moderationStatus and banAuthor. As line 8 shows, the banAuthor property
may only be present if the moderationStatus is set to rejected.

1 interface ModerationStatus {
2 id: string ;
3 moderationStatus : string ;
4 banAuthor : boolean ;
5 } constraining {
6 present (id);
7 present (moderationStatus);
8 present (banAuthor) → (value(moderationStatus) == " rejected ");
9 }

Listing 10.1: TIPC interface with value-dependency constraints

To incorporate value-dependency constraints in the type system of TIPC, we
will look at singleton types as a starting point. Singleton types allow the developer
to specify exactly what value the expression must have. TypeScript already sup-
ports singleton types in the form of number literal types and string literal types.
Listing 10.2 shows an example of literal types in TypeScript. Only the exact
literal can be assigned to a literal type (lines 1–2, 4–5), but literal types remain
assignable to their general type (lines 3 and 6).

1 let status1 : " rejection " = " rejection "; //OK
2 let status2 : " rejection " = " heldForReview "; // ERROR
3 let status3 : string = status1 ; //OK
4 let x: 42 = 42; //OK
5 let y: 42 = 24; // ERROR
6 let z: number = x; //OK

Listing 10.2: Singleton types in TypeScript

Singleton types enable the type system to know the value of an expression at
compile time. This way, the type system is able to verify constraints that impose
restrictions on values, at initialisation time. The rules for accessing a property
remain unchanged, as a value-constraint does not affect the presence or absence
of a property.

The type system of TIPC uses logical entailment to verify the assignment
compatibility of expressions. In a language with value-dependency constraints,
constraints are expressed in a form of predicate logic instead of in propositional
logic. While the current type system uses logical entailment for propositional logic,
the logical entailment of the new type system will have to take values of properties

197

[10] Conclusion

into account as well. As a consequence, the boolean satisfiability solvers (used to
check whether a set of constraints is satisfiable) and propositional sequent calculus
provers (to verify a logical entailment) will have to be replaced by their counterpart
in predicate logic (SMT solvers and predicate sequent calculus provers).

Updating a property create new challenges in a type system with value-
dependency constraints. In TIPC as it was presented in Chapter 6, a property
may be updated (with any value with the same type as in the interface definition)
if the property is certainly present. However, in the light of value-dependency
constraints, this does not suffice to guarantee type safety: updating a property
might invalidate a value-dependency constraint.

Listing 10.3 shows an example. On line 1–3, the object literal satisfies all con-
straints of the ModerationStatus interface. On line 4, the moderationStatus
property is updated with a new value. In a type system without value-dependency
constraints, this property would be considered type safe, as moderationStatus
is guaranteed to be present. In a type system with value-dependency constraints,
this update is type unsafe: the update on line 4 will invalidate the third inter-
property constraint in the ModerationStatus interface and thus needs to be re-
jected by the type system.

1 let status : ModerationStatus = {id: 12,
2 moderationStatus : " rejection ",
3 banAuthor : true };
4 status . moderationStatus = " heldForReview ";

Listing 10.3: Unsafe property update

To conclude, a type system with value-dependency constraints needs to impose
even more restrictions regarding single-property updates: if the property is part
of a value-dependency constraint, it may not be updated. Future research has to
show whether there are ways to weaken this restriction.

10.3.2 Imperative Multi-update

TIPC is an imperative object-oriented programming language. Properties of ob-
jects on which inter-property constraints are imposed can be updated, as long as
its presence or absence is certain. In Chapter 3, we have shown the need for a lan-
guage construct that updates multiple properties simultaneously. To meet these
needs, we introduced the language construct assign in TIPC. To keep TIPC
sound when combining assign with if statements, we chose to make assign
functional (by returning a new object instead of modifying its first argument).

Listing 10.4 demonstrates this problem. The code snippet starts with two vari-
able declarations: the first one creates an instance of the interface PrivateMessage,

198

[10.3] Future Work

while the second variable declaration points to the first one. Next, the presence
of user id is verified in an if statement. As we have seen in Chapters 4 and 6,
the type system will add an extra constraint (indicating the presence of user id)
to the pm object. The true branch of the conditional first simultaneously updates
the second variable (pm2), switching from user id to screen name. Next, the
user id property of pm is updated with a new ID. Because of the extra constraint
in pm, the type system will accept this assignment. However, because pm and pm2
point to the same object, this will lead to a PrivateMessage object that contains
both a user ID and a screen name!

1 let pm: PrivateMessage = {text: "Hello!", user_id : 42};
2 let pm2: PrivateMessage = pm;
3
4 if (pm. user_id !== undefined) {
5 assign (pm2 , { user_id : undefined , screen_name : "Alice"});
6 pm. user_id = 43;
7 }

Listing 10.4: Aliasing problems with an imperative version of a simultaneous
update

The root of the problem is situations where there are multiple references to
the same object: it is only safe to update an object if there is only one reference to
it. To safely lift the functional restriction on assign, there must be a guarantee
that there is only one reference to the object.

In Chapter 8, we have already discussed the work of Chugh et al. [2012a],
in which they present a refinement type system for JavaScript with imperative
updates. DJS achieves type safety by using flow-sensitive heap types, a form of
Alias Types which guarantees that there are is only one cell in the heap that refers
to a particular object. Chapter 8 contains an example of the type annotations in
DJS and shows that there is a heavy annotation load because of the heap types.

In TIPC, we strive to keep the type annotation burden as low as possible: pro-
grammers only have to change the interface definition. Moreover, the complexity
of type annotations in TIPC is very low, as it only requires basic knowledge of
logical connectives. A middle ground between the immutability restriction in
TIPC and the heavy annotation load on DJS might be the work on uniqueness
types [Boyland et al., 2001; Gordon et al., 2012; Militão et al., 2014]. An ex-
pression of a unique type is guaranteed to have only one reference to it. Existing
work on uniqueness types could form the starting point for integrating mutable
simultaneous updates into TIPC.

199

[10] Conclusion

10.3.3 Gradual Typing For Inter-property Constraints

A key feature of TypeScript, the base language for TIPC, is the optionality of
its type system (as already explained in Section 5.1). When developers do not
assign a type to a variable, this variable receives the top type any. However, the
transition from typed code to untyped code in TypeScript is unchecked. In other
words, the types in TypeScript have no effect on its compiled output (a JavaScript
program): all type annotations are stripped from the TypeScript program while
compiling to JavaScript.

This is in contrast to a programming language with a gradual type system,
which inserts run-time checks between typed code and untyped code in the pro-
gram. These checks ensure that transitions between typed and untyped code are
type safe: only untyped code can lead to program crashes. There already exists
work towards gradual typing for TypeScript, most notably the work by Richards
et al. [2015] and Rastogi et al. [2015]. As already explained in Chapter 8, they en-
sure type safety between typed and untyped parts of TypeScript code by inserting
run-time checks.

In this section, we do not want to elaborate on gradual types on the level of
types. Instead, we want to investigate how we can introduce finer-grained gradual
types for inter-property constraints into TIPC. Listings 10.5 to 10.7 show an
example of how inter-property constraints can benefit from fine-grained gradual
types. The code snippet in Listing 10.5 shows a function with as parameter a
PrivateMessage object. Inside this function, there is a (type unsafe) update of
the user id property.

1 function getInfo (pm: PrivateMessage) {
2 pm. user_id = 43;
3 }

Listing 10.5: TIPC program

In TypeScript, this program is compiled to JavaScript, despite the unsafe
property access. As a consequence, this property update might still result in a
PrivateMessage object that contains both properties at runtime.

1 function getInfo (pm) {
2 pm. user_id = 43;
3 }

Listing 10.6: Compiled TIPC program with to JavaScript

On the other hand, a programming language with fine-grained gradual types
would be able to insert the necessary checks to prevent this property access at
runtime. Listing 10.7 shows what the compiled version of Listing 10.5 could look

200

[10.3] Future Work

like with a fine-grained gradual type system. On line 2, there is a runtime check
(assert) that verifies the presence of user id. If user id is not present, the
function is aborted before the invalid property update is executed.

1 function getInfo (pm) {
2 assert (pm. user_id !== undefined);
3 pm. user_id = 43;
4 }

Listing 10.7: Gradual type system for TIPC

Gradual types on the level of type refinement is already explored in work by
Lehmann and Tanter [2017]. In the future, we would like to explore how a version
of their gradual refinement types can be incorporated in TIPC to lift some of the
restrictions (on for example the property accesses) by delegating the generation
of if statements to the gradual type system.

10.3.4 Portability to Other Programming Languages

In this dissertation, we incorporated inter-property constraints into TIPC, an
imperative object-oriented programming language with structural types. In this
section, we elaborate on how inter-property constraints can be incorporated in a
type system with a nominal types and classes, such as TypeScript, Java, Ruby
and Smalltalk.

10.3.4.1 Nominal Type System

As we have already explained in Section 5.4, TIPC has a structural type system.
In a structural type system, different types are compared based on their structure.
The structural type system has a significant impact on how objects with inter-
property constraints are compared in TIPC. The type system has to verify whether
the presence constraints of one object also satisfy the constraints of the other
object. This is in contrast to a nominal type system, where types are compared
based on their name.

Recall two interfaces we have previously introduced earlier: PrivateMessage
(defined in Listing 3.2) and PrivateMessageId (defined in Listing 3.9). Both have
a required text property, but differ in their user properties. PrivateMessage has
an exclusivity constraint between two user properties user id and screen name,
while users in PrivateMessageId can only be identified by the (required) property
user id. Listing 10.8 shows a function with one parameter of interface type
PrivateMessageId. In the body of the function, this parameter is assigned to a
variable of type PrivateMessage. A structural type system such as the one of

201

[10] Conclusion

TIPC accepts this code snippet, as every valid PrivateMessageId object will also
be a valid PrivateMessage object. A nominal type system, on the other hand,
will reject this code snippet, as PrivateMessage and PrivateMessageId are two
different interfaces.

1 function foo(pm: PrivateMessageId) {
2 let pmi: PrivateMessage = pm;
3 // ...
4 }

Listing 10.8: Assignment in structural and nominal type systems

10.3.4.2 Classes

In TypeScript (and in other object-oriented programming languages), developers
have the choice to define the type of an object with an interface type or a class
type. In TIPC, inter-property constraints are incorporated into interface types
instead of class types. This choice was intentional: TypeScript interfaces form a
lightweight way to assign types to object literals. This is in contrast to classes,
which have to be constructed using the class constructors. In this section, we
elaborate on how inter-property constraints can be incorporated into classes.

Listing 10.9 on page 208 shows a proposal for classes with support for inter-
property constraints. The class definition is written in TypeScript, but easily
translatable to other programming languages with classes. We have chosen to
incorporate this extension into classes using annotations on properties and method
definitions. In this snippet, we have translated the PrivateMessage interface to
a class.

Properties When declaring the properties of a class, developers need to provide
the constraints on the presence or absence of those properties. Our proposal uses
annotations to register single-property constraints and inter-property constraints.
These annotations replace all presence constraints that could be imposed on the
properties in the original programming language.

The PrivateMessage class has three properties (text, screen name and
user id) and two inter-property constraints on those properties: text is a re-
quired property and there is an exclusivity constraint between the properties
user id and screen name.

To guarantee that the presence constraints are not bypassed, it is crucial that
the properties are all declared as private properties. This moves the responsibility
of keeping the constraints satisfied to the constructors and the methods that
modify properties.

202

[10.3] Future Work

Constructors One way of defining constructors for classes with inter-property
constraints is to define a constructor for every valid combination of properties.
In the case of PrivateMessage, this would result into two constructors: one
with text and user id and one with text and screen name. However, in some
cases this approach is not feasible. For example, if both user properties would
be strings, this would result in two constructors that expect two strings which
cannot be expressed using constructor overloading.

We propose to list all properties of the class as arguments of the constructor.
On top of that, the constructor is annotated with presence constraints indicat-
ing the valid combinations of the arguments (where absent arguments have the
undefined (or similar) value). Given the annotations, we are certain that all pres-
ence constraints are satisfied when all properties of the class are updated with the
corresponding argument.

A downside of this approach is the repetition of the presence constraints (as
they are already specified for the properties of the class), which can be solved
by having list-all-constraints annotation. Note that, as a consequence of defining
presence constraints in the annotations, all arguments of the constructor are op-
tional by default. As a consequence, a constructor receives many arguments of
which a part will be set to undefined. In the case of many properties of which
only a few have to be present, this leads to cluttered constructor calls.

Lines 8 and 9 show the annotations for the constructor definition on lines 10
to 14. The annotations impose constraints on the parameters of the constructor:
text must be provided as an argument for the constructor, as well as exactly
one of the user arguments. The other user argument must have an undefined
value. Given the guarantees from the annotations on the constructor arguments,
it is safe to update all properties of the class with their corresponding constructor
argument.

Note that it does not suffice to only list the presence constraints on the ar-
guments of a constructor. More specifically, there are two issues that have not
been addressed yet. First, as not all properties are instantiated simultaneously,
the object is in an invalid state up until the end of the constructor. Second, there
is no guarantee that the object being built in the constructor satisfies all presence
constraints. Even when the constraints on the constructor match the constraints
at the beginning of the class, it is still possible that not all arguments are (cor-
rectly) assigned to the properties of the class. This can also lead to an invalid
states.

To solve this, we plan on drawing inspiration from work that solves similar
challenges, such as delayed types by Fahndrich and Xia [2007] and recency types
by Heidegger and Thiemann [2010].

203

[10] Conclusion

Setters For every method that modifies properties of the class, it is of key
importance to guarantee that the (inter-property) constraints defined on lines 2
and 3 remain satisfied. The key insight is that setters must be defined per cluster,
instead of per property. We have already seen the concept of clusters when we
introduced TIPC’s assign (Section 3.5), where each cluster corresponds to a
transitive closure of properties and constraints.

For the PrivateMessage class, there are two clusters: text is a singleton
cluster and user id and screen name also form a cluster. This setters of the
class PrivateMessage correspond to these two clusters: text can be updated
using setText, and the user id or screen name can be updated using setUser.
Just as with constructors, method arguments are optional by default: setText
is annotated with a constraint indicating that text is required. The method
setUser is responsible to safely update both user properties. To reflect this,
setUser lists two arguments (an ID and a name) together with an annotation
to indicate that exactly one of the arguments should receive a meaningful value.
Given this constraint, it is safe to update both properties in the body of setText:
one of them is guaranteed to be undefined.

Note that methods that modify data will have the same challenges regarding
temporarily invalidating constraints.

Getters As we have said in the beginning of this section, the properties of
the class have to private. As a consequence, these properties cannot be updated
without setters. Therefore, it is type safe to allow an accessor for each property: a
getter does not give a developer the power the change that property. For properties
that are certainly present (such as text), the return type can be the defined type
for that property. Properties for which neither presence nor absence can be proven,
the return type can be a union type of the defined property type and undefined.
Contrary to TIPC, this is safe in the context of classes because of the private
restriction on properties.

Note that there is no need for constraint annotations as getters do not have
arguments.

Listing 10.9 showed an example of classes with inter-property constraints in Type-
Script. Most of the characteristics of TypeScript classes can be translated to other
class-based programming languages in a straightforward way. One of the aspects
that requires caution is the notion of optionality in the different programming lan-
guages. Having the guarantee that a property of a certain type does not contain
an undefined or null value, is essential to preserve type safety. For example,
types in C# are not nullable by default and may only contain null when the type

204

[10.3] Future Work

is explicitly labelled as nullable. In Java, on the other hand, it is allowed to
assign null to any object. To restrict this, Java could be extended with@NonNull
annotations or restrictive types (such as work by Fähndrich and Leino [2003];
Papi et al. [2008]).

In the rest of this section, we briefly discuss the impact of classes with inter-
property constraints in several facets of object-oriented programming.

Initialisation Interface instances in TypeScript can be initialised by assigning
any object. To ensure type safety, TIPC has to impose a restriction on those
assignments: only object literal types may be assigned to interfaces. This way,
the type system has an exact view of which properties are present and absent
in the object. A class, on the other hand, can only be initialised by calling its
constructor. As this automatically gives an exact view on present and absent
parameters, the need for an object literal restriction is nullified.

Nominal Typing In the previous section, we elaborated on the effects of a
nominal type system on the interfaces in TIPC. As classes are always used in
combination with a nominal type system, the same effects apply: an instance can
only be assigned to a variable when both expressions have the same class type, or
when the source class is a subtype of the target class.

In TIPC, the type system uses information from if statements to be able to
permit more property accesses and updates. To achieve this, interface types are
narrowed by adding extra constraints to their constraint set. Because TIPC is
structurally typed, narrowed interface instances can be used wherever the orig-
inal interface is expected. Further research is necessary to investigate how this
approach can be translated to a nominal type setting.

Design patterns When incorporating inter-property constraints into the class
definitions of an object-oriented programming language, it is worthwhile to take a
look at how inter-property constraints affect the software design patterns by the
Gang of Four [Gamma et al., 1995].

One of the patterns is the builder pattern: a design pattern that can be used
when the initialisation logic of a class is complex. This is especially useful in the
light of inter-property constraints, where the initialisation of a class requires all
presence constraints to be satisfied. In short, the builder pattern separates the
construction of an object from its representation by delegating the initialisation
logic to a separate builder class. The builder class has several methods to configure
the object, and a build method that actually constructs the object.

205

[10] Conclusion

Listing 10.10 shows an example of how the builder pattern can be used by de-
velopers. The object privateMessageBuilder is an instance of the builder class
for the extended PrivateMessage class in which both sender and receiver must be
identified, either by the user ID or the screen name. It contains several configu-
ration methods to set the values of message (setText), the sender (setSenderId
or setSenderName) and the receiver (setReceiverId and setReceiverName).

1 let pm1: PrivateMessage = privateMessageBuilder . setText ("text")
2 . setSenderId (42)
3 . setReceiverName ("Bob")
4 .build (); //OK
5
6 let pm2: PrivateMessage = privateMessageBuilder . setText ("text")
7 . setSenderId (42)
8 . setSenderName ("Bob")
9 .build (); // ERROR

Listing 10.10: Constructing a PrivateMessage object with a builder class

We envision that at the end of the construction (i.e. when the build method
is called), the builder object (statically) verifies whether all constraints of the
original object are satisfied. In Listing 10.10, the first build chain results in a
valid PrivateMessage object, as all presence constraints are satisfied. In the
second build chain (in the assignment of pm2), the exclusivity constraints on both
the sender and the receiver are violated, and this assignment should be rejected
by the type system. To achieve this, inspiration might be drawn from the work
on delayed types and recency types [Fahndrich and Xia, 2007; Heidegger and
Thiemann, 2010].

10.4 Concluding Remarks

Throughout the history of computer science, libraries enable reusability of code
and the incorporation of third-party functionality. They provide their function-
ality via an Application Programming Interface (API), which forms the contract
between the user and the library. In order for an API call to succeed, the con-
straints imposed by the library need to be satisfied. These constraints include
restrictions on the values, types and presence of properties. Most of these con-
straints are clearly listed in the documentation of APIs, supported by specification
languages and well-studied in the domain of type systems.

In this dissertation, we focus on an —until now— unexplored kind of con-
straint: constraints between properties. From a survey of the documentation
of APIs, we determined that these constraints are all combined using operators

206

[10.4] Concluding Remarks

from propositional logic. The most common kinds of constraints are exclusiv-
ity constraints (XOR), dependency constraints (implication), double implication
constraints and NAND constraints.

To enable the compile-time verification of inter-property constraints, we ex-
tended the interface definitions in TypeScript, resulting in TIPC. This involved
significant changes to the type system, in order to ensure that objects at runtime
always satisfy their interface constraints. However, the impact on the expressivity
of the programming language remains minimal.

To enable the runtime verification of inter-property constraints, we have ex-
tended the machine-readable OpenAPI specification language, resulting in OAS-IP.
This enables the definition of inter-property constraints outside of statically typed
programming languages. Dynamically typed programming languages can use tools
generated from a specification file to automatically verify data against the speci-
fication.

This dissertation aims to be a stepping stone for mainstream programming
languages to support constraints between properties. We hope to open up research
avenues to integrate full-flexed inter-property constraints into the type system
without affecting the expressivity of the programming language. In addition,
we intend for OAS-IP to serve as a starting point to integrate inter-property
constraints in specification languages. Together, this results in development tools
that are better tailored to the needs found in the web development domain.

207

[10] Conclusion

1 class PrivateMessage {
2 @C(present (text))
3 @C(present (user_id) XOR present (screen_name))
4 private text: string ;
5 private user_id : number ;
6 private screen_name : string
7
8 @C(present (msg))
9 @C(present (id) XOR present (name))

10 constructor (txt: string , id: number , name: string) {
11 this.text = txt;
12 this. user_id = id;
13 this. screen_name = name;
14 }
15
16 @C(present (txt))
17 setText (txt: string) {
18 this.text = txt;
19 }
20
21 @C(present (id) XOR present (name))
22 setUser (id: number , name: string) {
23 this. user_id = id;
24 this. screen_name = name;
25 }
26
27 getText (): string {
28 return this.text;
29 }
30
31 getUserId (): number | undefined {
32 return this. user_id ;
33 }
34
35 getScreenName (): string | undefined {
36 return this. screen_name ;
37 }
38 }
39
40 let pm1 = new PrivateMessage ("Hello!", 42, undefined); //OK
41 let pm2 = new PrivateMessage ("Hello!", undefined , "Alice"); //OK
42 let pm3 = new PrivateMessage ("Hello!", undefined , undefined);// ERROR
43 let pm4 = new PrivateMessage ("Hello!", 42, "Alice"); // ERROR

Listing 10.9: A design for TypeScript classes with inter-property constraints

208

Appendices

209

Appendix A

Object Literal Restriction

This appendix shows a small study for the object literal restriction in TIPC (ex-
plained in Section 4.1). This study was performed in May 2017. It consists out
of code snippets from the first 128 search results on the code repository website
https://github.com/ for the keyword ‘twitter-node-client’ and the first 112
search results for the keyword ‘gapi.client.youtube’. The former is an SDK
(Software Development Kit) for Twitter, and the latter is the YouTube SDK. In
every project, we looked for every usage of those SDKs and checked whether the
data for a request call was an object literal. In case it was not an object lit-
eral, we checked whether the object was defined right above the request call or
not.

211

https://github.com/

Github projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

Code snippet Argument = object literal

https://github.com/agraff/twitter-midi twitter.getTweet({	id:	'1111111111'},	error,	success); yes

https://github.com/arjovanramshorst/chatbot const	data	=	twitter.getSearch({	
								'q':	'#delft',	
								'count':	100	
				}

yes

https://github.com/artem-d/appdirect_twitter_test 	twitter_client.getUserTimeline({	
						screen_name:	req.query.twitterAccount,	
						count:	req.query.tweetCount	
				}

yes

https://github.com/boynux/dahoam16/ twitter.getSearch({'q':	'#dahoam16',	'count':	100,	'since_id':	state.max_id,	result_type:	
'recent'},	error,	success);

yes

https://github.com/bradturner3/twittertr var	tweet	=	{				status:	status			}	
		//	Posting	the	tweet	
		twitter.postTweet(tweet,	console.log,	console.log)

no, right above

https://github.com/dancinturtle/SecondPizza var	data	=	twitter.getUser({	screen_name:	username},	function(error,	response,	body){ yes

https://github.com/Flyette/API-Twitter tweets	=	twitter.getMentionsTimeline({	count:	'10'},	error,	success); yes

https://github.com/gfjalar/nyuadhack-bot var	tweet	=	{	
				status:	status	
		}	
		//	Posting	the	tweet	
		twitter.postTweet(tweet,	console.log,	console.log)

no, right above

https://github.com/krissrex/ISFiT-2017-projector tRest.getSearch({'q':`${TAGS.join('	OR	')}	OR	${	USER_NAMES.map((it)	=>	'from:'	+	it).join('	
OR	')	}	since:2017-02-9	until:2017-02-20`,	'count':	5,	'result_type':'recent'},	

yes

https://github.com/lsortiz/test-repository-2 twitter.getMentionsTimeline({	count:	'1'},	error,	success); yes

https://github.com/majetisiri/Twitter-Client 	twitter.getUserTimeline({	screen_name:screenName},	error,	success); yes

https://github.com/marvinrenaud/liri-node-app twitter.getUserTimeline({	
								screen_name:	'MrMarcReno',	
								count:	'10'	
				}

yes

https://github.com/mrjones91/Monthly-Challenge var	thingiething	=	twitter.getUser({screen_name:	data.screen_name},	boundError,	boundSuccess); yes

https://github.com/ralphbs/Loop params	=	{screen_name:	news_source,	count:	'50',	exclude_replies:	'true'};	
								twitter.getUserTimeline(params,	error,	function(timeline){	
								timeline	=	JSON.parse(timeline);	
								var	number_of_users	=	0;	
								timeline.forEach(function(entry){	
												number_of_users++;	
								})

no, right above

https://github.com/robbiemu/CMST301-project2 twitter.getTweet({id},	reject,	resolve) yes, but special kind of
object literal({id} results in
{id: value-of-id}

https://github.com/sschand/ThirdHome var	data	=	twitter.getUser({	screen_name:	username},	function(error,	response,	body){	
								res.status(404).send({	
												"error"	:	"User	Not	Found"	
								});	
				},	function(data){	
								res.send({	
												result	:	{	
																"userData"	:	data	
												}	
								});	
				});

yes

https://github.com/tigranbs/oneday twitter.getSearch({	
																				q:	'since:'	+	date.toMysqlFormat()	
																				,	geocode:	city.latitude	+	","	+	city.longitude	+	",15000mi"	
																				,	count:	100	
																				,	result_type:	"recent"	
																}

yes

https://github.com/volokasse/GrowthHackingTwitter twitter.getUser({'screen_name':	'Volokasse'} yes

https://github.com/yingqiaogit/tweetanalysis twitterHdl.getUser({screen_name:	username} yes

var	query	=	{	
				'q':	'#nyuadhack	-filter:retweets	-filter:replies'	+	lastFilter,	
				'result_type':	'recent',	
				'count':	100	
		}	
		//	Searching	for	tweets	matching	the	query	
		twitter.getSearch(query,	console.log,	successCallback)

no, right above

var	data	=	twitter.getSearch({'q':'#'+hashname,	'count':	10},	function(error,	response,	body){	
								res.status(404).send({	
												"error"	:	error	
								});

yes

var	data	=	twitter.getSearch({'q':'#'+hashname,	'count':	5}, yes

var	query	=	{	
				'q':	'#nyuadhack	-filter:retweets	-filter:replies'	+	lastFilter,	
				'result_type':	'recent',	
				'count':	100	
		}	
		//	Searching	for	tweets	matching	the	query	
		twitter.getSearch(query,	console.log,	successCallback)

no, right above

twitter.getSearch({'q':'#tocados','count':	4},	error,	success_busqueda); yes

https://github.com/ACECentre/SpeechBubble/ twitter.getUserTimeline(
						{	screen_name:	'acecentre',	count:	limit	},

yes

https://github.com/Jakehp/tweethorizon 								twitterClient.getUserTimeline({	screen_name:	handle,	count:	'1000'},	error,	success);	 yes

								twitterClient.getUserTimeline({	screen_name:	handle,	count:	'1'},	error,	success);	 yes

https://github.com/dday34/twitter-report/ 				twitter.getSearch({'q':topic,'count':	10},	error,	handleTweetsResponse(success));	 yes

https://github.com/cbadal/site1/ twitter.getUserTimeline({	screen_name:	'designmami',	count:	'30'} yes

Github projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�1

https://github.com/AravindVenkataraman/Twitter-Integration-
Project

twitter.getUserTimeline({	
												screen_name:	param.screen_name,	
												since:	param.since,	
												until:	param.until,	
												count:	param.count	
								}

yes

https://github.com/thiagoxvo/fisl-twitter-app 		twitter.getSearch({'q':	hashtag,'count':	100} yes

https://github.com/fslone/search 						twitter.getSearch({"q":req.params.query,	"count":	10,	"result_type":"popular"}, yes

https://github.com/BrandonLittell/JadenSmith 	twitter.getUserTimeline({	screen_name:	_id,	count:	20,	max_id:	
tweetsCache.get(_id).lastTweet,	
								exclude_replies:	true,	include_rts:	false}

yes

twitter.getUserTimeline({	screen_name:	_id,	count:	20,		
								exclude_replies:	true,	include_rts:	false}

yes

https://github.com/lansingcodes/lubot twitter-client.post-tweet	do	
				status:	text

yes

https://github.com/mattiasewers/material-todo twitter.getUser('/users/show.json',{	'screen_name':	username} yes

twitter.getUserTimeline('/statuses/user_timeline.json',{	'screen_name':	username,	count:	'10'} yes

https://github.com/elaineo/personalityTest twitter.getUserTimeline({	screen_name:	name,	include_rts:	'false',	count:	'2000'} yes

https://github.com/chrisxwan/ipsify var	options	=	{	
	 	 screen_name:	twitterHandle,	
	 	 count:	40	*	numParagraphs,	
	 	 exclude_replies:	true,	
	 	 include_rts:	false	
	 }	
	 twitter.getUserTimeline(options,	function	(data)

no, right above

https://github.com/fraxedas/habana 	twitter.getUserTimeline({	screen_name:	'',	count:	'10'} yes

twitter.postTweet({	status:	post} yes

https://github.com/lernerd/my-nodejs-code twitter.getSearch({'q':cfg.query,	'lang':'en',	'count':	100,	'result_type':'recent'},	
twitter_error,	twitter_success);}

yes

https://github.com/Vheissu/aurelia-fortune twitter.getSearch({'q':'#wisdom	OR	#advice	OR	#quote	-RT	-retweet	-@	-heaven	-god	-http	-
bible:	-https:',	'result_type':	'recent',	'lang':'en',	'count':	100},	error,	success);

yes

https://github.com/sarvesh123/04082015 			twitter.postTweet({	status:	tweet},	error,	success); yes

https://github.com/troyef/AADemo var	options	=	{	
				q:	keyword,	
				count:	100,				include_entities:	false,	
		};	
		twitter.getSearch(options,	error,	function(results){	
				callback.call(undefined,	JSON.parse(results));	
		});

no, right above

https://github.com/anapaulagomes/tweetcast twitter.getSearch({'q':'#DevFestSudeste','count':	10},	error,	success); yes

https://github.com/peterhudec/twitter-geo-search twitter.getSearch({	
								q:	req.query.q,	
								count:	100,	
								result_type:	'recent',	
								geocode:	req.query.geocode	
				}

yes

https://github.com/wanadev/wanashare twitter.postMedia({media_data:	media.get().toString("base64")}, yes

twitter.postTweet({	
																																status:	message,	
																																media_ids:	[media_id]	
																												},

yes

https://github.com/rja-xx/Govie 	twitter.getUser({screen_name:	user.username},	function	(err)	{	
																												res.status(500).json({message:	"Server	error!",	errors:	[err]});	
																												return	res;	
																								}	

yes

https://github.com/jbbskinny/JBEngine twitter.getSearch({'q':	searchString,	'count':	10},	error,	success); yes

https://github.com/thinkocapo/twitterquery twitter.getUserTimeline({screen_name:	handle		,	count:	numTweets	}, yes

https://github.com/rohitsakala/SMAI_Project twitter.getSearch({'q':'Lebron	James','count':	10},	error,	success); yes

https://github.com/nagahar/school_search 	twitter.getSearch({'q':	q.msg,	'count':	10,	'lang':	'ja'} yes

https://github.com/jovinbm/Ulan182 twitter.getUser({	
																												user_id:	options.profile.id	
																								}

yes

https://github.com/tedpennings/site-lambdas const	timelineOpts	=	{	
		screen_name:	'thesleepyvegan',	
		count:	50,	
		exclude_replies:	true,	
		include_rts:	false,	
		trim_user:	true	
}	
twitter.getUserTimeline(timelineOpts,

yes

https://github.com/yconoclast/twitterfinder twitter.getUserTimeline(
																{	
																				screen_name:	req.body.username,	
																				count:	'200',	
																				contributor_details:	false,	
																				trim_user:	true,	
																				include_rts:	true	
																}

yes

https://github.com/sarahbethfederman/Technical-Interview-
Data

twitter.getCustomApiCall('/statuses/retweets.json',{	id:	'638769329903960064',	count:	100	},	
onError,	onSuccess);

yes

https://github.com/Aditya-Shibrady/TADAPP twitter.getUserTimeline({	screen_name:	'aditya_shibrady',	count:	'2'},	error,	success); yes

https://github.com/samundrak/periscope-livestream-mobile-
to-web

twitter.getHomeTimeline({	count:	'1'},	error,	success); yes

https://github.com/MarkusSN/hackathon-netlight 		twitter.getSearch({	q:	decodeURIComponent(req.params.query),	count:	100,	lang:	'en'	},	
success,	success.bind(res));

yes

https://github.com/asthinasthi/twitter_trends twitter.getSearch({'q':'#anirudh',	'count':10} yes

twitter.getCustomApiCall('/trends/place.json',	{id:	woeid} yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�2

twitter.getCustomApiCall('/trends/available.json',{} yes

twitter.getCustomApiCall('/search/tweets.json',{'q':topic,	'woeid':woeid} yes

https://github.com/guardian/metagu const	tweet	=	{	
												status:	`@${recipient}	${message}`,	
												in_reply_to_status_id:	replyTweetId	
								};	
								twitter.postTweet(
												tweet,	
												error	=>	{	observer.onError(error);	observer.onCompleted();	},	
												resp		=>	{	observer.onNext(resp);			observer.onCompleted();	}	
);

no, right above

https://github.com/danielsomekh/capstone twitter.getSearch({'q':	searchQuery,'count':	6,	'filter':'images',	'lang':	'en',	
'result_type':	'recent'},

yes

https://github.com/jonbstrong/upload-twitter-list twitter.listAddMembers({	
				owner_screen_name:"YOUR_HANDLE",	
				slug:"LIST_NAME_HERE",	
				screen_name:"HANDLE1,HANDLE2,HANDLE3"	
}

yes

https://github.com/jcadruvi/TwitterApp twitter.getUserTimeline(
												{screen_name:	'joshcadruvi',	count:	'200',	trim_user:	true},

yes

https://github.com/ulfmagnetics/one_word_weather_api 	var	twitterOpts	=	{screen_name:	options.screenName,	count:	'1'};	
						twitter.getUserTimeline(twitterOpts,

yes

https://github.com/tyholby/CS201 twitter.getUserTimeline({	screen_name:	req.query.user,	count:	'10'}, yes

https://github.com/Flyette/integration-reseaux-sociaux twitter.getMentionsTimeline({	count:	'1'},	error,	success); yes

https://github.com/Flavien94/Exos twitterClient.getSearch({	
				'q':	'#marseille',	
				'count':	20,	
				'geocode':	'43,5,200mi',	
		}

yes

https://github.com/bingoooo/simplonMIP-test twitter.getMentionsTimeline({	count:	'1'},	error,	success); yes

https://github.com/stijnvanhulle/ControlYourHome twitter.getHomeTimeline({	count:	'10'},	function	(err,	response,	body)	{	
								res.json({success:false,error:err});	
				}

yes

https://github.com/pbooth01/Twitter-User-Finder 		twitter.getSearch({'q':'#haiku','count':	10} yes

twitter.getCustomApiCall('/users/search.json',{q:searchString,	include_entities:	'false'} yes

twitter.getCustomApiCall(('/statuses/user_timeline.json'),{screen_name:	searchString,	count:	
'50'}

yes

	twitter.getUser({	screen_name:	searchString} yes

https://github.com/schen384/cs3750-twitter-test twitter.getHomeTimeline({	count:	'10'},	error,	getFeed)	 yes

https://github.com/shahgurpreet/WebDevSpring2016 twitter.getCustomApiCall('/search/tweets.json?
max_id='+token+'&q='+tag+'&include_entities=true&count=33&filter=images',{},	error,	success);

yes

https://github.com/MeeralQureshi/UofTHacks2016 var	tweet	=	twitter.getTweet({	id:	'690978123861626880'},	error,	success); yes

https://github.com/KennyMack/authentication witter.getHomeTimeline({	count:	'10',	page:	1}, yes

https://github.com/Karine-Jamet/ex-leaftlet 		twitter.getSearch({	
				'q':	'',	
				'geocode':	coord,	
				'count':	10	
		}

yes

https://github.com/chiquelo/tweetfetcher twitter.getSearch({	
												'q':	possibleSearches[l],	
												'result_type':	'popular',	
												'lang':	'en'	
								},

yes

https://github.com/jdormit/eighthnotegames-site twitter.getUserTimeline({screen_name:	user,	count:	tweet_count,	exclude_replies:	true}, yes

https://github.com/kvonhorn/tripper 				var	searchRequest	=	gapi.client.youtube.search.list({	
					part:	'snippet',	q:	searchTerm,	maxResults:	Session.get("resultsPerPage")	
				});

yes

https://github.com/falr95/pulsion gapi.client.youtube.search.list({part:"snippet",	q:"gMdJzUVHRwU	|	D0BsgJxw208"}) yes

https://github.com/dpiatek/youtube-playlister 						var	params	=	{},	request;	

						if	(!gapiLoaded	||	!query)	return;	
params.q	=	query;	
						params.part	=	'snippet';	
						params.type	=	'video';	
						request	=	gapi.client.youtube.search.list(params);	

no, right above

https://github.com/zarkhaari/ngyoutube gapi.client.youtube.search.list({	
												q:	'dogs',	
												part:	'snippet'	
										});

yes

https://github.com/EdS0ng/Ionic-YoutubeMusicPlayer gapi.client.youtube.playlists.list({	
						part:	'snippet,	contentDetails',	
						mine:	true,	
						maxResults:20	
				})	

yes

gapi.client.youtube.playlistItems.list({	
						part:	'snippet',	
						playlistId:id,	
						maxResults:50	
				})

yes

gapi.client.youtube.videos.list({	
						part:'snippet,	contentDetails',	
						regionCode:'US',	
						chart:'mostPopular',	
						maxResults:10	
				})

yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�3

gapi.client.youtube.videos.list({	
						part:'snippet,	contentDetails',	
						regionCode:	'US',	
						maxResults:	10,	
						chart:	'mostPopular',	
						pageToken:	results.nextPageToken	
				});

yes

gapi.client.youtube.playlistItems.list({	
						part:'snippet',	
						playlistId:	id,	
						maxResults:20	
				})

yes

gapi.client.youtube.playlistItems.list({	
						playlistId:query,	
						part:'snippet',	
						maxResults:	20,	
						pageToken:	results.nextPageToken	
				});

yes

gapi.client.youtube.search.list({	
						q:query,	
						part:'snippet',	
						type:	'video',	
						maxResults:	20	
				});

yes

gapi.client.youtube.search.list({	
						q:query,	
						part:'snippet',	
						type:	'video',	
						maxResults:	20,	
						pageToken:	results.nextPageToken	
				});

yes

gapi.client.youtube.playlistItems.list({	
						part:'snippet',	
						playlistId:	id,	
						maxResults:	50	
				})

yes

gapi.client.youtube.activities.list({	
						part:'snippet,	contentDetails',	
						maxResults:	10,	
						home:true	
				});

yes

gapi.client.youtube.playlistItems.list({	
						part:'snippet',	
						playlistId:	id,	
						maxResults:	50	
				})

yes

gapi.client.youtube.channels.list({	
												part:'contentDetails,	snippet',	
												mine:true	
										});

yes

gapi.client.youtube.playlistItems.insert({	
						part:"snippet",	
						resource:{	
								"snippet":{	
										"playlistId":	playlistId,	
										"resourceId":	{	
												"kind":"youtube#video",	
												"videoId":	videoId	
										}	
								}	
						}	
				})

yes

gapi.client.youtube.videos.list({	
						part:'contentDetails',	
						id:	videoId	
				});

yes

gapi.client.youtube.search.list({	
						relatedToVideoId:	videoId,	
						part:'snippet',	
						type:	'video',	
						maxResults:	50	
				});

yes

gapi.client.youtube.videos.rate({	
						id:link,	
						rating:str	
				});

yes

https://github.com/julioz2/film-finder var	video	=	gapi.client.youtube.search.list({	
	 	 	 	 part:	"snippet",	
	 	 	 	 type:	"video",	
	 	 	 	 q:	query,	
	 	 	 	 maxResults:	1	
	 	 	 });

yes

https://github.com/ICodeMyOwnLife gapi.client.youtube.search.list({	q:	'pokemon',	part:	'snippet'	}); yes

https://github.com/conchan/favsmr gapi.client.youtube.search.list({	
				q:	helperTags	+	currentCategory,	
				order:	order,	
				type:	"video",	
				part:	"snippet",	
				maxResults:	"10"	
		});

yes

https://github.com/wjm9696/rebuilt_youtube gapi.client.youtube.search.list({	
						q:	q,	
						part:	'snippet',	
						type:	'video',	
						maxResults:	20	
				});

yes

https://github.com/kevinkorte/discover gapi.client.youtube.videos.list({	
																id:	id,	
																part:	'snippet'	
												});

yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�4

https://github.com/mnivelles/UMovie-Project--Client--team04 var	request	=	gapi.client.youtube.search.list({	
												q:	q,	
												part:	'snippet',	
												fs:'0'	
								});

yes

https://github.com/lidorl/dy-youtuber gapi.client.youtube.search.list({	
								q:	params,	
								part:	'snippet',	
								maxResults:	50,	
								type:	'video'	
						});

yes

https://github.com/ICodeMyOwnLife/YoutubeAPI gapi.client.youtube.search.list({	
				q:	q,	
				part:	'snippet'	
		});	

yes

https://github.com/Mr21/youtube-playlists-manager gapi.client.youtube.search.list,	
	 	 	 {	
	 	 	 	 type:	'channel',	
	 	 	 	 part:	'snippet',	
	 	 	 	 q:	name	
	 	 	 },

yes

	 	 queryParams	=	{	
	 	 	 	 part:	'snippet,status,contentDetails',	
	 	 	 	 maxResults:	50	
	 	 	 };	
	 	 if	(channelId)	
	 	 	 queryParams.channelId	=	channelId;	
	 	 else	
	 	 	 queryParams.mine	=	true;	
	 gapi.client.youtube.playlists.list,	
	 	 	 queryParams,

no

body	=	{	
	 	 	 	 	 	 part:	'snippet',	
	 	 	 	 	 	 resource:	{	
	 	 	 	 	 	 	 id:	pl.id,	
	 	 	 	 	 	 	 snippet:	{	
	 	 	 	 	 	 	 	 title:	this.newName	?	this.newName	:	
this.name	
	 	 	 	 	 	 	 }	
	 	 	 	 	 	 }	
	 	 	 	 	 };	
if	(this.newPrivacy)	{	
	 	 	 	 	 body.part	+=	',status';	
	 	 	 	 	 body.resource.status	=	{	
	 	 	 	 	 	 privacyStatus:	this.newPrivacy	
	 	 	 	 	 };	
	 	 	 	 }	
gapi.client.youtube.playlists.update,	
	 	 	 	 	 	 body,

no

body	=	{},	
	 	 	 	 	 	 	 type	=	this.status	===	'del'	
	 	 	 	 	 	 	 	 ?	'delete'	
	 	 	 	 	 	 	 	 :	this.status	===	'add'	
	 	 	 	 	 	 	 	 	 ?	'insert'	
	 	 	 	 	 	 	 	 	 :	'update';	
	 	 	 	 	 	 if	(type	!==	'delete')	{	
	 	 	 	 	 	 	 body.part	=	'snippet';	
	 	 	 	 	 	 	 body.snippet	=	{	
	 	 	 	 	 	 	 	 playlistId:	pl.id,	
	 	 	 	 	 	 	 	 position:	this.posB	-	1,	
	 	 	 	 	 	 	 	 resourceId:	{	
	 	 	 	 	 	 	 	 	 kind:	this.video.kind,	
	 	 	 	 	 	 	 	 videoId:	this.video.videoId	
	 	 	 	 	 	 	 	 },	
	 	 	 	 	 	 	 };	
	 	 	 	 	 	 }	
	 	 	 	 	 	 if	(type	!==	'insert')	
	 	 	 	 	 	 	 body.id	=	this.video.id;	
	 	 	 	 	 	 body	=	[
	 	 	 	 	 	 gapi.client.youtube.playlistItems[type],	
	 	 	 	 	 	 	 body,

no

gapi.client.youtube.playlistItems.list,	
	 	 	 	 {	
	 	 	 	 	 playlistId:	id,	
	 	 	 	 	 part:	'snippet',	
	 	 	 	 	 maxResults:	50	
	 	 	 	 },

yes

https://github.com/GLO3102H15/team04 gapi.client.youtube.search.list({	
												q:	q,	
												part:	'snippet',	
												fs:'0'	
								});

yes

https://github.com/madeinfree/musictron gapi.client.request({	
										method:	'GET',	
										path:	'/youtube/v3/search',	
										params:	{	
												part:	'snippet',	
												maxResults:	50,	
												type:	'video',	
												order:	'date',	
												videoDuration:	'short',	
												q:	params.q	
										}

yes

gapi.client.request({	
										method:	'GET',	
										path:	'youtube/v3/videos',	
										params:	{	
												part:	'contentDetails',	
												id:	params.videoId	
										}	
								})

yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�5

https://github.com/AndersFly666/andersfly666.github.io $http.get('https://www.googleapis.com/youtube/v3/search',{	
	 	 	 		params:	{	
	 	 	 				key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 				type:	'video',	
	 	 	 				maxResults	:	'48',	
	 	 	 				orderBy:	'viewsCount',	
	 	 	 				part:	'snippet',	
	 	 	 				videoEmbeddable:	true,					
	 	 	 				q:	$scope.query	
	 	 	 		}	
	 	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/videos',	{	
	 	 params:	{	
	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 part:	'snippet',	
	 	 	 chart:	'mostPopular',	
	 	 	 maxResults:	'42'	
	 	 }	
	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/videos',	{	
	 	 	 params:	{	
	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 part:	'snippet,	statistics',	
	 	 	 chart:	'mostPopular',	
	 	 	 maxResults:	'12',	
	 	 	 pageToken:	$scope.data.nextPageToken	
	 	 	 }	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/search',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'snippet',	
	 	 	 	 maxResults:	'12',	
	 	 	 	 type:	'video',	
	 	 	 	 orderBy:	'viewsCount',	
	 	 	 	 videoEmbeddable:	true,	
	 	 	 	 relatedToVideoId:	$scope.video.videoId	
	 	 	 }	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/videos',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'statistics',	
	 	 	 	 id:	$scope.video.videoId,	
	 	 	 	 fields:	'items/statistics'	
	 	 	 }	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/channels',	{	
	 	 params:	{	
	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 part:	'snippet,	contentDetails',	
	 	 	 mine:	true,		
	 	 	 access_token:	youtubeService.getToken(),	
	 	 }	
	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/playlistItems',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'snippet,	contentDetails',	
	 	 	 	 playlistId:	$scope.history,	
	 	 	 	 maxResults:	30,	 	 	 	 	
	 	 	 	 access_token:	youtubeService.getToken()	

	 	 	 }	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/playlistItems',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'snippet,	contentDetails',	
	 	 	 	 playlistId:	$scope.favorites,	
	 	 	 	 maxResults:	21	
}	 	 	 	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/subscriptions',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'snippet,	contentDetails',	
	 	 	 	 mine:	true,	
	 	 	 	 order:	'unread',	
	 	 	 	 maxResults:	21,	
	 	 	 	 access_token:	youtubeService.getToken()	
	 	 	 }	
	 	 })

yes

	 	 $http.get('https://www.googleapis.com/youtube/v3/playlistItems',	{	
	 	 	 params:	{	
	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 part:	'snippet,	contentDetails',	
	 	 	 playlistId:	$scope.favorites,	
	 	 	 maxResults:	3,	
	 	 	 pageToken:	$scope.favData.nextPageToken	
	 	 	 }	
	 	 })

yes

$http.get('https://www.googleapis.com/youtube/v3/subscriptions',	{	
	 	 	 params:	{	
	 	 	 	 key:	'AIzaSyC15w1zx5-BlDbO_DSBrv7DDrizxSTtwn8',	
	 	 	 	 part:	'snippet,	contentDetails',	
	 	 	 	 mine:	true,	
	 	 	 	 order:	'unread',	
	 	 	 	 maxResults:	3,	
	 	 	 	 access_token:	youtubeService.getToken(),	
	 	 	 	 pageToken:	$scope.subData.nextPageToken	
	 	 	 }	
	 	 })

yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�6

https://github.com/vkolova/tuber this.gapi.client.request({	
				path:	'/youtube/v3/channels',	
				params:	{	
						part:	'snippet',	
						mine:	true	
				},

yes

this.gapi.client.request({	
				path:	'/youtube/v3/videos',	
				params:	{	
						part:	'status,player',	
						id:	this.videoId	
				},

yes

gapi.client.youtube.channels.list({	
	 	 mine:	true,	part:	'id,	contentDetails,	statistics,	snippet,	brandingSettings'});

yes

var	requestOptions	=	{	
	 	 playlistId:	playlistId,	
	 	 part:	'snippet,	contentDetails',	
	 	 maxResults:	10	
	 };	
gapi.client.youtube.playlistItems.list(requestOptions);

no, right above

	 var	requestOptions	=	{	
	 	 channelId:	channelId,	
	 	 mine:	true,	
	 	 part:	'snippet,	contentDetails,	status,	contentDetails',	
	 	 maxResults:	10	
	 };	
	 var	request	=	gapi.client.youtube.playlists.list(requestOptions);

no, right above

https://github.com/loikg/banana gapi.client.youtube.search.list({	
																q:	query,	
																part:	'snippet'	
												})

yes

https://github.com/JuanDaniel1995/web_kids gapi.client.youtube.playlistItems.insert({	
								part:	'snippet',	
								resource:	{	
										snippet:	{	
												playlistId:	playlist_id,	
												resourceId:	details	
										}	
								}	
						});

yes

gapi.client.youtube.playlists.insert({	
								part:	'snippet,status',	
								resource:	{	
												snippet:	{	
																title:	title,	
																description:	'A	private	playlist	created	with	the	YouTube	API'	
												},	
												status:	{	
																privacyStatus:	'private'	
												}	
								}	
				});

yes

gapi.client.youtube.playlists.insert({	
								part:	'snippet,status',	
								resource:	{	
												snippet:	{	
																title:	title,	
																description:	'A	private	playlist	created	with	the	YouTube	API'	
												},	
												status:	{	
																privacyStatus:	'private'	
												}	
								}	
				});

yes

https://github.com/WesAspinall/youtube-playlist gapi.client.youtube.playlistItems.list({	
																part:	'snippet',	
																playlistId:	plistId,	
																maxResults:	8	
												});

yes

https://github.com/fachhoch/testproject567678
gapi.client.youtube.search.list({	
	 	 	 	 				q:	searchText,	
	 	 	 	 				part:	'snippet',	
	 	 	 	 				maxResults:'50'	
	 	 	 	 		});

yes

gapi.client.youtube.search.list({	
				q:	q,	
				part:	'snippet'	
		});

yes

https://github.com/tom76kimo/video-wall gapi.client.youtube.activities.list({	
								home:	true,	
								part:	'snippet',	
								maxResults:	10	
						});

yes

gapi.client.youtube.channels.list({	
								part:	'contentDetails',	
								id:	channelId,	
								maxResults:	20	
						});

yes

gapi.client.youtube.playlistItems.list({	
								part:	'snippet',	
								playlistId:	playlistId,	
								maxResults:	10	
						});

yes

https://github.com/anilarya/wittyParrot gapi.client.youtube.search.list({	
																part:	'snippet',	
																channelId:	'UCqhNRDQE_fqBDBwsvmT8cTg',	
																order:	'date',	
																type:	'video'	
												})	

yes

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�7

https://github.com/rejishyni/rgbano gapi.client.youtube.search.list({	
	 	 	 				q:	searchtext,	
	 	 	 				part:	'snippet',	
	 	 	 				type:'video',	
	 	 	 				 order:	sortVal,	
	 	 	 				 maxResults:	10,	
	 	 	 				location:	loc,	
	 	 	 				locationRadius:	locRad	
	 	 	 });

yes

gapi.client.youtube.videos.list({	
	 	 							id:	videoId,	
	 	 							part:	'snippet,statistics'	
	 	 				});	

yes

gapi.client.youtube.videos.list({	
	 	 							id:	videoId,	
	 	 							part:	'snippet,statistics'	
	 	 				});	

yes

https://github.com/WestBrian/Tubify gapi.client.youtube.search.list({	
												q:	query,	
												part:	'snippet',	
												type:	'video',	
												maxResults:	'15'	
								});

yes

gapi.client.youtube.search.list({	
												q:	query,	
												part:	'snippet',	
												type:	'video',	
												maxResults:	'15'	
								});

yes

https://github.com/prafmathur/TwilioMusicPlayer gapi.client.youtube.search.list({	
				q:	query,	
				part:	'snippet'	
		});

yes

https://github.com/Millsky/godj $scope.client.search.list({	
	 	 	 q:	$scope.searchParams,	
	 	 	 part:	'snippet'	
	 	 });

yes

https://github.com/webinos-apps/webinos-appChallenge gapi.client.youtube.search.list({q:	searchTerm,part:	'snippet'	}); yes

https://github.com/hackfoldr/hackfoldr 	request	=	gapi.client.youtube.videos.list({'id':	it.id,	'part':'snippet'} yes

https://github.com/codeNovels/Devops-Dashboard gapi.client.youtube.playlistItems.list({	
																part:	'snippet',	
																playlistId:	'UUpEYMEafq3FsKCQXNliFY9A'	
																maxResults:	10	
												});

yes

https://github.com/piclemx/GLO3102-team2 gapi.client.youtube.search.list(
																part:	'snippet',	
																maxResults:	1,	
																q:	query	
												});

yes

https://github.com/mikedcm/MostlyJs gapi.client.youtube.search.list({	
	 part:"snippet",	
	 fields:"pageInfo(totalResults),items(id(videoId),snippet(title,description))",	
	 chart:"mostPopular",	
	 regionCode:"GB",	
	 type:"video",	
	 q:encodeURIComponent(“Jaguar”),	
	 order:"viewCount",	
	 publishedAfter:"2015-01-01T00:00:00Z"	
});

yes

gapi.client.youtube.search.list({	
	 part:"snippet",	
	 type:"video",	
	 q:encodeURIComponent("nice"),	
	 order:"viewCount",	
	 publishedAfter:"2015-01-01T00:00:00Z"	
});

yes

https://github.com/ICodeMyOwnLife/typings gapi.client.youtube.search.list({	q:	'pokemon',	part:	'snippet'	});	 yes

https://github.com/cinoyter/cherry 	gapi.client.youtube.videos.list({	
	 	 	 	 part:	"snippet",	
	 	 	 	 id:	id	
	 	 	 });

yes

https://github.com/chriscasper/Kittentopia gapi.client.youtube.search.list({	
										part:	'snippet',	
										q:	'kittens',	
										maxResults:	8,	
										safeSearch:	'strict',	
										pageToken:	pageToken	
								});

yes

https://github.com/KoenVanDerHoeven/Maximinute gapi.client.youtube.search.list({	
				q:	q,	
				part:	'snippet'	
		});

yes

https://github.com/JTGeek/thinkfultube gapi.client.youtube.search.list({	
						q:	q,	
						part:	'snippet',	
						type:	'video',	
				});

yes

https://github.com/jcapps/youtube-channel-angular2 var	subscribeParams	=	{	
								'part':	'id,	snippet',	
								'snippet':	{	
												'resourceId':	{	
																'kind':	'youtube#channel',	
																'channelId':	CHANNEL_ID	
												}	
								}	
				};	
gapi.client.youtube.subscriptions.insert(subscribeParams);

no, right above

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�8

https://github.com/laalex/youtube2mp3 gapi.client.youtube.search.list({	
								q:	keywords,	
								part:	'snippet'	
				});

yes

https://github.com/monojack/ewtube-ng gapi.client.youtube.subscriptions	
										.list({	mine:	true,	part:	'snippet,contentDetails',	maxResults:	count	})

yes

https://github.com/iuriifavi/favirocks _gapi.client.request({	
						'path':	'https://content.googlapis.com/youtube/v3/channels?
part=snippet%2CcontentDetails',	
						'params':	['channelId=UCGh4Gh0FxKMP1-rDnUTUtZQ']	
				})

yes

https://github.com/nosmit01/samples gapi.client.youtube.search.list({	//	search	videos	
																q:	search.keyword,	
																part:	'snippet',	
																location:	lat	+	','	+	long,	
																locationRadius:	'100mi',	
																type:	'video',	
																maxResults:	50,	
																pageToken:	nextPage	
												});

yes

gapi.client.youtube.videos.list({	//	get	video	details	
																id:	id,	
																part:	'snippet,	player,	statistics'	
												});

yes

gapi.client.youtube.commentThreads.list({	//	get	comments	
																videoId:	id,	
																part:	'snippet'	
												});

yes

gapi.client.youtube.search.list({	//	search	videos	
																q:	search.keyword,	
																part:	'snippet',	
																location:	lat	+	','	+	long,	
																locationRadius:	'100mi',	
																type:	'video',	
																maxResults:	50,	
																pageToken:	nextPage	
												});

yes

gapi.client.youtube.videos.list({	//	get	video	details	
																id:	id,	
																part:	'snippet,	player,	statistics'	
												});

yes

gapi.client.youtube.commentThreads.list({	//	get	comments	
																videoId:	id,	
																part:	'snippet'	
												});

yes

https://github.com/langostinko/torrent-parser gapi.client.youtube.search.list({	
												q:	"<?=html_entity_decode($title)?>	<?=$desc['Year']?>	трейлер",	
												part:	'id',	
												type:	'video',	
												publishedAfter:	"<?=date(DateTime::RFC3339,	$movie['Release']	-	3600*24*365)?>"	
										});

yes

https://github.com/treant-prime/yt-crawler requestParameters	=	{	
						part:	'snippet',	
						chanelId:	'UCuQZ-VMez8stUmNvNDfpV7A',	
						maxResults:	50,	
						mine:	true	
				};	
				request	=	gapi.client.youtube.playlists.list(requestParameters);

no, right above

requestParameters	=	{	
						part:	'snippet',	
						playlistId:	id,	
						maxResults:	50	
				};	
				request	=	gapi.client.youtube.playlistItems.list(requestParameters);

no, right above

Code snippet Argument = object literalGithub projects that use a Twitter SDK called “twitter-node-
client” and the Youtube SDK

�9

Appendix B

Type Preservation

B.1 Type Preservation of Expressions

Theorem 1 (Type Preservation for Expressions). If Σ |= 〈H , L, e〉 : T and
〈H , L, e〉 ⇓ 〈H ′, r〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, r〉 : T′ and T′ 5 T.

Proof. By case analysis on the evaluation rules. We start from the givens and
deconstruct it into parts, notably we reconstruct the typing environment from
the context, which is a combination of the heap type and the scope chain. The
combination of typing environment and typing rule for the given expression yields
a number of typing derivations on the components of said rule. We apply the
induction hypothesis to these components and focus on the remaining proof obli-
gations.

Case E-Id
Assume: Σ |= 〈H ,L, x〉 : T (1)
Prove: Σ |= 〈H , (l, x)〉 : T (2)
From (1):

(3)
Σ |= H

(4)
H ,L |= �

(5)
x : T ` x : T

Γ′, x : T ` x : T
Γ ` x : T

Σ |= 〈H ,L, x〉 : T

with Γ = context(Σ ,L)

To prove (2):

221

[B] Type Preservation

where σ(H ,L, x) = l (6)

(3)
Σ |= H

(5)
x : T ` x : T (7)
Σ(l) ` x : T

Σ |= 〈H , (l, x)〉 : T

We need to show that (5) follows from (7). The construction of context guar-
antees that for every variable the binding of the most inner scoped is used, which
coincides with they way σ looks up variables in the scope chain. Therefore, (7)
follows from (6).

Note that (4) is of key importance to the correct working of σ, as it guarantees
that the scope chain is well-formed: every element is an object map in the heap.
This is elided in further proofs.

Case E-Lit
Assume: Σ |= 〈H ,L, l〉 : T (8)
Prove: Σ |= 〈H , l〉 : T (9)
From (8):

(10)
Σ |= H H ,L |= �

(11)
` l : T

context(Σ ,L) ` l : T
Σ |= 〈H ,L, l〉 : T

To prove (9) :

(10)
Σ |= H (11)` l : T

Σ |= 〈H , l〉 : T

Case E-This
Assume: Σ |= 〈H ,L, this〉 : T (12)
Prove: Σ |= 〈H , l〉 : T (13)
From (12):

(14)
Σ |= H H ,L |= �

Γ, this : T ` this : T
context(Σ ,L) ` this : T

Σ |= 〈H ,L, this〉 : T

with σ(H ,L, x) = l (15)
To prove (13) :

222

[B.1] Type Preservation of Expressions

(14)
Σ |= H

(16)
Σ(l) = T

Σ |= 〈H , l〉 : T

(16) follows from (15) because of the correspondance between σ and Σ (see
proof of preservation for E-Id).

Case E-Op
Assume: Σ |= 〈H ,L, e1 ⊗ e2〉 : T (17)
Prove: Σ ′ |= 〈H ′, l1 ⊗ l2〉 : T (18)

Σ ⊆ Σ ′ (19)
From (17):

Σ |= H H ,L |= �

(20)
Γ ` e1 : S0

(21)
Γ ` e1 : S0

(22)
S0 ⊗ S1 = T

Γ ` e1 ⊗ e2 : T
Σ |= 〈H ,L, e1 ⊗ e2〉 : T

with Γ = context(Σ ,L)
To prove (18):

where 〈H0, L, e1〉 ⇓v 〈H1, l1〉 (23)
and 〈H1, L, e2〉 ⇓v 〈H2, l2〉 (24)

IH on (23) and (24)
Σ ′ |= H ′

IH on (23)
` l1 : S0

IH on (24)
` l2 : S1

(22)S0 ⊗ S1 = T
` l1 ⊗ l2 : T

Σ ′ |= 〈H ′, l1 ⊗ l2〉 : T

(19) follows from the induction hypothesis on (23) and (24).

Case E-ObLit
Assume: Σ |= 〈H,L, {n1 : e1, . . . , nm : em}〉 : {n : T} (25)
Prove: Σ ′ |= 〈H ′, l〉 : {n : T} (26)

Σ ⊆ Σ ′ (27)

From (25):

Σ |= H H ,L |= �

(28)
context(Σ ,L) ` e : T

context(Σ ,L) ` {n1 : e1, . . . , nm : em} : {n : T}
Σ |= 〈H ,L, {n1 : e1, . . . , nm : em}〉 : {n : T}

223

[B] Type Preservation

To prove (26) :
where H ′ = H [l 7→ new(l)]

〈H1, L, e〉 ⇓v 〈H ′m, v〉 (29)

(30)
Σ ′ |= H ′

(31)
Σ ′(l) = {n : T}

Σ ′ |= 〈H ′, l〉 : {n : T}

From E-ObLit, we observe the following about changes to the heap and the
heap type. The evaluation rule E-ObLit extends the heap with a new location.
This location is fresh and contains an @this property, which points to itself. Thus,
this is a well-formed extension of the heap. Moreover, the property @this is
not taken into account by Σ . For the evaluation of properties, the induction
hypothesis on (29) guarantees that H was extended (or remained identical) and
that Σ remained compatible. This proves (27) and (30).

To prove (31), we observe the following about the new object stored at l.
First, its type is the type of its properties, for which preservation is proved by the
induction hypothesis on (29). Second, the internal property @this is not taken
into account by Σ .

Case E-Assign
Assume: Σ |= 〈H,L, e1 = e2〉 : T (32)
Prove: Σ ′ |= 〈H ′, v〉 : T′ (33)

Σ ⊆ Σ ′ (34)
T′ 5 T (35)

From (32):

Σ |= H H ,L |= �

(36)
Γ ` e1 : S

(37)
Γ ` e2 : T

(38)
T 5 S

Γ ` e1 = e2 : T
Σ |= 〈H ,L, e1 = e2〉 : T

with Γ = context(Σ ,L)
To prove (33):

where 〈H ,L, e1〉 ⇓ 〈H1, (l, x)〉 (39)
〈H1,L, e2〉 ⇓v 〈H2, v〉 (40)

(41)
Σ ′ |= H ′

(42)
` l : T′ or Σ ′(l ′) = T′

Σ ′ |= 〈H ′, v〉 : T′

224

[B.1] Type Preservation of Expressions

From the induction hypothesis on (39), we know that (l, x) is of type S’ which
is assignable to S. In TIPC, the left-hand side of an assignment is either a variable
or a property access. Note that the preservation proof for identifiers and property
accesses prove a stronger preservation where the types remain identical. Thus,
we know that even after evaluation the type of (l, x) remains S. The induction
hypothesis on (40) gives us that v is of type T′′ which is assignable to T. Moreover,
the induction hypothesis on (39) and (40) also ensures heap–heap type compati-
bility up until H2. Finally, E-Assign points the reference (l, x) to v. It does not
extend the heap, thus proving (34). From the induction hypothesis, we know that
its type (T′′) is assignable to T and from (38) we know that T is assignable to S,
the type of the reference. This proves (41).

To prove (42), there are two cases. In case that v is a literal, the type obtained
from the induction hypothesis on (40) is invariant with respect to the heap H2
and thus H ′, which proves (35) and (42) for literals. In case that v is a location,
Σ2 (compatible with H2 from (40)) will not be affected by the heap update in
E-Assign (as this does not extend the heap). Therefore, the induction hypothesis
on (39) and (40) suffice to prove (35) and (42).

Note on inter-property constraints The definition of assignment compati-
bility ensures that when Σ(l) = I, the updated object in the heap still satisfies the
constraints of I. This is explained in detail in Corollary 1 (cases 1b (assignment of
an interface instance to an interface variable) and 2a (assignment to an interface
property)) and Lemma 1 (case E-Assign).

Case E-Update
Assume: Σ |= 〈H,L, assign(e, {n1 : e1, . . . , nm : em})〉 : T (43)
Prove: Σ ′ |= 〈H ′, l〉 : T′ (44)

Σ ⊆ Σ ′ (45)
T′ 5 T (46)

As can be seen in the typing rules I-UpdateObj and I-UpdateInf, the type of
the first argument of assign has either an object literal type or an interface type.
We first cover the case where the first argument has an object literal type.

From (43):

(47)
Σ |= H H ,L |= �

(48)
Γ ` e : {M}

(49)
Γ ` {n : e} : {N}

(50)
T = {M} A {N}

Γ ` assign(e, {n1 : e1, . . . , nm : em}) : T
Σ |= 〈H ,L, assign(e, {n1 : e1, . . . , nm : em})〉 : T

225

[B] Type Preservation

with Γ = context(Σ ,L)
To prove (44):

where 〈H0, L, e〉 ⇓v 〈H ′0, l〉 (51)
H1 = H ′0 ∗ [lr 7→ clone(H ′0(l), lr)]
and every ei is evaluated and updated in lr (52)

(53)
Σ ′ |= H ′

(54)
Σ ′(lr) = T′

Σ ′ |= 〈H ′, lr〉 : T′

To prove (45) and (53), we start from (47). Rule E-Update extends the heap
with a new object that is a clone of an existing location l on the heap. Corre-
spondingly, Σ is extended with an extra location of which the type is identical
to the type of l. Changes caused to the heap by evaluating the object literal e
and the properties ni remain consistent with a corresponding heap store, given
the induction hypothesis on (52). For every change of H ′i by adding or updating
each ni, the corresponding Σ is also updated accordingly. This leaves us with a
Σ ′ that remains compatible with the final heap H ′.

From (53), it follows that the type of lr in H ′ is found in Σ ′. This proves (54).
Moreover, T is the set of properties of {M} and {N}. To prove (46), there are three
cases to cover. Properties that only reside in {M} are covered by the induction
hypothesis on (51). Similarly, properties that only reside in {N} are covered by
the induction hypothesis on (52). For properties that are common between {M}
and {N}, the heap contains the value of the second argument. The corresponding
Σ ′ matches the exact behaviour performed by the A operator.

Next, we cover the case where the first argument has an interface type. From
(43):

(55)
Σ |= H H ,L |= �

(56)
Γ ` assign(e, {n1 : e1, . . . , nm : em}) : I

Σ |= 〈H ,L, assign(e, {n1 : e1, . . . , nm : em})〉 : I

(57)
Γ ` e : I

(58)
I′ = slice(...)

(59)
Γ ` <I′>{n : e} : I′ (60)

(56)

(61)
n ∈ dom(properties(I))

(62)
n = dom(properties(I′))

(60)

226

[B.1] Type Preservation of Expressions

with Γ = context(Σ ,L)
To prove (44):

where 〈H0, L, e〉 ⇓v 〈H ′0, l〉
H1 = H ′0 ∗ [lr 7→ clone(H ′0(l), lr)]
and every ei is evaluated and updated in lr

(63)
Σ ′ |= H ′

(64)
Σ ′(lr) = T′

Σ ′ |= 〈H ′, lr〉 : T′

At first, the prove for (63) looks very similar to the prove for (53): the same
changes to the heap are performed. However, caution is required because the
location l has an interface I in Σ . As a consequence, the cloned object that
resides at lr also has type I in Σ ′ (this already proves (64), as T′ = I). Therefore,
to prove (63), we need to prove that the updated object at lr still satisfies the
constraints of I. This is covered by (58) to (62), and is explained in detail in
Corollary 1 (case 2b) and Lemma 1 (case E-Update).
Case E-Prop

Assume: Σ |= 〈H,L, e.n〉 : T (65)
Prove: Σ ′ |= 〈H ′, (l, n)〉 : T′ (66)

Σ ⊆ Σ ′ (67)

From (65):

(68)
Σ |= H H ,L |= �

(69)
Γ ` e : S

(70)
lookup(S, n) = T

Γ ` e.n : T
Σ |= 〈H ,L, e.n〉 : T

with Γ = context(Σ ,L)
To prove (66):

where 〈H,L, e〉 ⇓v 〈H ′, l〉 (71)
l 6= null

IH on (69)
Σ ′ |= H ′

(72)
Σ ′(l) ` n : T

Σ ′ |= 〈H ′, (l, n)〉 : T

The induction hypothesis on (71) gives us (67).
(70) ensures that the property n is present in S. The induction hypothesis on

(71) gives us that the location l will have a type S′ 5 S in Σ ′. The assignment

227

[B] Type Preservation

compatibility ensures us that S′ contains at least all properties of S. Thus, n will
be a property of Σ ′(l). Moreover, the assginability compatiblity rule is invariant
for properties, ensuring that property n will be of type T in S′. This suffices to
prove (72).

Note on inter-property constraints The lookup function ensures that the
property is certainly present or absent in an object of an interface. In combination
with I-Assign, this ensures that the presence of properties cannot change in an
assignment.
Case E-Prop’

Assume: Σ |= 〈H,L, e.n〉 : T (73)
Prove: Σ ′ |= 〈H ′, (l, n)〉 : T′ (74)

Σ ⊆ Σ ′ (75)
T′ 5 T (76)

From (73):

Σ |= H H ,L |= �

(77)
Γ ` e : S

(78)
lookup(S, n) = T

Γ ` e.n : T
Σ |= 〈H ,L, e.n〉 : T

with Γ = context(Σ ,L)
To prove (74):

where 〈H,L, e〉 ⇓v 〈H1, l〉 (79)
H2 = H1 ∗ [lboxed 7→ box(l, lboxed)]

(80)
Σ ′ |= H ′

(81)
Σ ′(lboxed) ` n : T′

Σ ′ |= 〈H ′, (lboxed, n)〉 : T′

To prove (80) it suffices to combine the induction hypothesis on (79) with the
knowledge that box is a built-in function that constructs a new object and returns
its location.

Recall that box produces a new object mapping which (at a minimum) contains
all methods and properties n for which (78) succeeds, with the correct type. From
this immediately follows (81).
Case E-Call

Assume: Σ |= 〈H,L, e(e1, . . . , en)〉 : T (82)

228

[B.1] Type Preservation of Expressions

Prove: Σ ′′ |= 〈H ′′, v〉 : T′ (83)
Σ ⊆ Σ ′′ (84)
T′ 5 T (85)

From (82):

Σ |= H H ,L |= �
(86)

(87)
context(Σ ,L) ` e : T

(88)
T 5 S

context(Σ ,L) ` e(e1, . . . , en) : T
Σ |= 〈H ,L, e(e1, . . . , en)〉 : T

(89)
context(Σ ,L), this : any, x : S ` s : R

(90)
R 5 T

context(Σ ,L) ` function(x : S) : T {s} : {(x : S) : T}
canonical forms context(Σ ,L) ` e : {(x : S) : T} (91)

(86)

with Γ = context(Σ ,L)
To prove (83):

where 〈H0, L0, e〉 ⇓ 〈H1, r〉 (92)
γ(H1, r) = l1
H1(l1) = 〈λx.{s}, L1〉
This(H1, r) = l2
〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉 (93)
H ′ = Hn+1 ∗ act(l, x, v, l2) (94)
〈H ′, l : L1, s〉 ⇓ 〈H ′′, return v; 〉

(95)
Σ ′ |= H ′′

(96)
Σ(l) = T′ or ` l : T′

Σ ′ |= 〈H ′′, v〉 : T′

To prove (95), we look at the changes to the heap. The change from H to
H1 ((92)) is covered by the induction hypothesis. The transformations from H1
to Hn+1 ((93)) are also covered by the induction hypothesis.For the adaptions
from Hn+1 to H ′, we take a look at the definition of act. From act, we get a
new location l which maps the parameters onto their values and binds @this:
l 7→ ({x 7→ v, @this 7→ l2}). If we add location l to the scope chain L, we get the
following:

context(Σ , l : L) ` this : any, x : S, context(Σ ,L) (97)

229

[B] Type Preservation

This matches with the environment in (89) against which the body of the
function is evaluated.

Finally, we use preservation of statements for the body of the function. The
heap type corresponding to H ′ stems from the heap type resulted from (93), and
is extended with this and x. This proves (95). From the induction hypothesis
on (93) and as can be seen in (94), Σ ′ is a superset of Σ . Thus, we can safely use
the preservation of statements as follows:

Σ ′ |= 〈H ′, l : L, s〉 : T and 〈H ′, l : L, s〉 ⇓ 〈H ′′, return v; 〉

then ∃Σ ′′, T′ such that Σ ′ ⊆ Σ ′′,Σ ′′ |= 〈H ′′, return v; 〉 : T′ and T′ 5 T

Note that the type of return v; is identical to the type of v, according to
I-ReturnVal. (84), (85) and (96) follow from the preservation for statements.

Case E-CallUndef
Same as the previous case, with alternate ending for the return.

Case E-Func
Assume: Σ |= 〈H,L, function(x : S) : T′ {s}〉 : T (98)
Prove: Σ ′ |= 〈H ′, l〉 : T′ (99)

Σ ⊆ Σ ′ (100)
T′ 5 T (101)

From (98):

(102)
Σ |= H H ,L |= � Γ ` function(x : S) : T {s} : {(x : S) : T}

Σ |= 〈H ,L, function(x : S) : T {s}〉 : {(x : S) : T}

with Γ = context(Σ ,L)
To prove (99):

where H ′ = H ∗ [l 7→ 〈λx.{s},L〉] (103)

(104)
Σ ′ |= H ′

(105)
Σ ′(l) = T′

Σ ′ |= 〈H ′, l〉 : T′

The heap type Σ ′ that corresponds to the heap H ′ is extended with a new
location that maps onto the type of of the function. Thus, this proves (104) and
(105).

230

[B.1] Type Preservation of Expressions

Case E-TypeAssert
Assume: Σ |= 〈H,L, <T>e〉 : T (106)
Prove: Σ ′ |= 〈H ′, r〉 : T′ (107)

Σ ⊆ Σ ′ (108)
T′ 5 T (109)

From (106):

(110)
Σ |= H H ,L |= �

(111)
Γ ` e : S

(112)
S 5 T

Γ ` <T>e : T
Σ |= 〈H ,L, <T>e〉 : T

with Γ = context(Σ ,L)
To prove (107):

where 〈H,L, e〉 ⇓ 〈H ′, r〉 (113)

(114)
Σ ′ |= H ′

(115)
Σ(l) = T or ` l : T or Σ(l) ` x : T

Σ ′ |= 〈H ′, r〉 : T′

(110) and the induction hypothesis on (113) prove (108) and (114).
From (111), (112) and the induction hypothesis, we get that r is of type

S′ 5 S 5 T. This proves (109) and (115).

Note on inter-property constraints TIPC only allows upcasts, where an
expression is cast to a more general type. This is also explained in Corollary 1
(case 1c).

Case E-TypeAssertInf
Assume: Σ |= 〈H,L, <I>{n : e}〉 : I (116)
Prove: Σ ′ |= 〈H ′, l〉 : I (117)

Σ ⊆ Σ ′ (118)

From (116):

(119)
Σ |= H H ,L |= � (120)

Σ |= 〈H ,L, <I>{n : e}〉 : I

231

[B] Type Preservation

(121)
Γ ` {n : e} : {M} . . . v = cp ∪ cnp

(122)
v̂(constraints(I))

Γ ` <I>{n : e} : I
(120)

with Γ = context(Σ ,L)
To prove (117):

where 〈H,L, {n : e}〉 ⇓ 〈H1, l〉 (123)
H ′ = H1[(l, @interface) 7→ I]] (124)

(125)
Σ ′ |= H ′

(126)
Σ ′(l) = I

Σ ′ |= 〈H ′, l〉 : I

Changes made to the heap in (123) are covered by the induction hypothesis.
Next, in (124) the location of the evaluated object literal is extended with an
interface tag that points to the interface to which the interface is casted. Thus,
Σ ′ returns the interface to which the tag points. This proves (126). Moreover,
(122) ensures that the interface constraints are satisfied for the object literal:
Σ ′,H ′ |= l ok =⇒ (125).

This was also explained in Corollary 1 (case 1a) and Lemma 1 (case E-
TypeAssertInf).

232

[B.2] Type Preservation of Statements

B.2 Type Preservation of Statements

Theorem 2 (Type Preservation for Statements). If Σ |= 〈H , L, s〉 : T and
〈H , L, s〉 ⇓ 〈H ′, s〉 then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, s〉 : T′ and T′ 5 ∪(T).

Proof. By case analysis on the evaluation rules for statements. Our strategy is
analogous to the proof for preservation of expressions.

Case E-EmptySeq
Assume: Σ |= 〈H,L, •〉 : • (127)
Prove: Σ |= 〈H, ;〉 : • (128)
From (127):

(129)
Σ |= H H ,L |= � context(Σ ,L) ` • : •

Σ |= 〈H ,L, •〉 : •

To prove (128):

(129)
Σ |= H

Σ |= 〈H, ;〉 : •

This evaluation rule does not change the heap.

Case E-Return
Assume: Σ |= 〈H,L, return; s〉 : void, R (130)
Prove: Σ |= 〈H, return;〉 : void (131)

void 5 void ∪ (R) (132)
From (130):

(133)
Σ |= H H ,L |= �

Γ ` s : R
Γ ` return; s : void, R

Σ |= 〈H ,L, return; s〉 : void, R

with Γ = context(Σ ,L)
To prove (131):

(133)
Σ |= H

Σ |= 〈H, return;〉 : void

(132) follows from the definition of assignment compatibility for union types.

233

[B] Type Preservation

Case E-ReturnVal
Assume: Σ |= 〈H,L, return e; s〉 : T, R (134)
Prove: Σ ′ |= 〈H ′, return v;〉 : T′ (135)

Σ ⊆ Σ ′ (136)
T′ 5 T ∪ R (137)

From (134):

(138)
Σ |= H H ,L |= �

Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

Σ |= 〈H ,L, return e; s〉 : T, R

with Γ = context(Σ ,L)
To prove (135):
where 〈H,L, e〉 ⇓v 〈H ′, v〉 (139)

IH on (139)
Σ ′ |= H ′

IH on (139)
Σ ′ |= 〈H , v〉 : T′

Σ ′ |= 〈H ′, return v;〉 : T′

From preservation on expressions for (139), we get (136) and that the type for
v in H ′ is T′ 5 T. Thus, T′ 5 T ∪ R succeeds, proving (137).

Case E-ExpSt
Assume: Σ |= 〈H,L, e; s〉 : T (140)
Prove: Σ ′ |= 〈H ′, s〉 : T′ (141)

Σ ⊆ Σ ′ (142)
T′ 5 ∪(T) (143)

From (140):

(144)
Σ |= H H ,L |= �

Γ ` e : S Γ ` s : T
Γ ` e; s : T (145)

Σ |= 〈H ,L, e; s〉 : T

with Γ = context(Σ ,L)
To prove (141):

where 〈H,L, e〉 ⇓ 〈H1, r〉 (146)
〈H1, L, s〉 ⇓ 〈H ′, s〉 (147)

IH on (146) and (147)
if s = ; : T′ = •, if s = return; : T′ = void, else Σ ′ |= 〈H ′, s〉 : T′

(148)

234

[B.2] Type Preservation of Statements

IH on (146) and (147)
Σ ′ |= H ′ (148)

Σ ′ |= 〈H ′, s〉 : T′

The induction hypothesis on (146) and (147) suffices to prove (142). From
(145) and the induction hypothesis on (147) follows that T′ 5 ∪(T), proving (143).
Case E-IfTrue

Assume: Σ |= 〈H,L, if (e) {t1} else {t2}; s〉 : T1, T2, R (149)
Prove: Σ ′ |= 〈H ′, s〉 : T′ (150)

Σ ⊆ Σ ′ (151)
T′ 5 ∪(T1, T2, R) (152)

The type of an if statement depends on its condition: presence tests on
interface properties are treated differently. First, we cover the general case (rule
I-IfGeneral in Figure 6.11).

From (149):

(153)
Σ |= H H ,L |= �

Γ ` e : S Γ ` t1 : T1 Γ ` t2 : T2 Γ ` s : R
Γ ` if (e) {t1} else {t2}; s : T1, T2, R

Σ |= 〈H ,L, if (e) {t1} else {t2}; s〉 : T1, T2, R

with Γ = context(Σ ,L)
To prove (150):

where 〈H,L, e〉 ⇓ 〈H1, true〉 (154)
H2 = H1 ∗ [l 7→ ()] (155)
〈H2, l : L, t1〉 ⇓ 〈H3, s〉 (156)
〈H3, L, s;s〉 ⇓ 〈H ′, sr〉 (157)

(158)
if sr = ; : T′ = •, if sr = return; : T′ = void, else Σ ′ |= 〈H ′, sr〉 : T′

(160)

(159)
Σ ′ |= H ′ (160)

Σ ′ |= 〈H ′, sr〉 : T′

The preservation of expressions is applicable to(154) and the changes to the
heap made by (156) are covered by the induction hypothesis. Note that (155)
adds a new empty scope object, but this does not affect evaluation (as can be
seen in the definition of σ, looking up identifiers in the heap loop through all
scope objects in the scope chain). For (157), there are two cases. In the case that

235

[B] Type Preservation

s is a return statement, s is not taken into account, which results in H ′ = H3
and sr = s. Thus, the type of sr is the type of s: T′1 (induction hypothesis on
(156)). This proves (151), (152) (T′1 5 ∪(T1) 5 ∪(T1, T2, R)), (159) and (158).

In the other case, s is the empty statement. As a consequence, (157) equals
evaluating only s (〈H3, L, s〉 ⇓ 〈H ′, sr〉)), as evaluating an empty statement has
no impact on the heap. We use the induction hypothesis to prove (151),(152)
(R′ 5 ∪(R) 5 ∪(T1, T2, R)), (159) and (158).

Now, we cover the case where the if statement tests the presence of an inter-
face instance (I-IfPresenceInterface in Figure 6.11).

From (149):

(161)
Σ |= H H ,L |= � (162)

Σ |= 〈H ,L, if (x.n ≡ undefined) {t1} else {t2}; s〉 : T

Γ ` e : S Γ ` s : R . . .

(163)
Γ] x : I− ` t1 : T1

(164)
Γ] x : I+ ` t2 : T2

(162)

with Γ = context(Σ ,L)
To prove (150):

where 〈H,L, e〉 ⇓ 〈H1, true〉 (165)
H2 = H1 ∗ [l 7→ ()] (166)
〈H2, l : L, t1〉 ⇓ 〈H3, s〉 (167)
〈H3, L, s;s〉 ⇓ 〈H ′, sr〉 (168)

(169)
Σ ′ |= H ′

(170)
if s = ; : T′ = •, if s = return; : T′ = void, else Σ ′ |= 〈H ′, s〉 : T′

Σ ′ |= 〈H ′, s〉 : T′

The reasoning about e and s; s are the same as for I-IfGeneral. This proof dif-
fers for t1 and t2. (163) gives us that t1 is of type T1 in an extended environment,
not Γ. This extension entails an update of the interface tested in the conditional
of the if statement. When type checking the true branch, the interface contains
an extra constraint to indicate the presence of the tested property.

The key insight here concerns Σ2 (where Σ2 |= H2). Σ2(lo) results in I, with lo
as location for the interface instance being tested. However, the extra knowledge
on the presence of properties can be added to Σ2(lo) (resulting in Σ ′2) with the

236

[B.2] Type Preservation of Statements

guarantee that Σ ′2 |= H2. Given the extended heap type Σ ′2, we can use the
induction hypothesis on (167) where the type of s is T′1 5 T1 5 ∪(T1, T2, R). This
is also explained in Corollary 1 (case 3).

Given this knowledge, we can use the same reasoning as for I-IfGeneral to
prove (151),(152), (169) and (170).
Case E-IfFalse
Similar to E-IfTrue.
Case E-ITVarDec

Assume: Σ |= 〈H,L, let x : S = e; s〉 : T (171)
Prove: Σ ′ |= 〈H ′, s〉 : T′ (172)

Σ ⊆ Σ ′ (173)
T′ 5 ∪(T) (174)

From (171):

Γ ` e : T
(175)

T 5 S noDup(Γ, x : S)
(176)

T] x : S ` s : T
Γ ` let x : S = e; s : R

(177)
Σ |= H H ,L |= � (178)
Σ |= 〈H ,L, let x : S = e; s〉 : R

with Γ = context(Σ ,L)
To prove (172):

where 〈H,L, e〉 ⇓v 〈H1, v〉 (179)
H2 = H1 ∗ [l 7→ ({x 7→ v})] (180)
〈H2, l : L, s〉 ⇓ 〈H3, s〉 (181)

(182)
Σ ′ |= H ′

(183)
if sr = ; : T′ = •, if sr = return; : T′ = void, else Σ ′ |= 〈H ′, sr〉 : T′

Σ ′ |= 〈H ′, s〉 : T′

The type preservation of expressions covers the heap change in (179). In
(180), the heap is extended with an object map that maps the variable onto its
evaluated value. The corresponding heap store Σ2 (Σ2 |= H2) corresponds with
the environment in (176). In combination with the induction hypothesis on (181),
this gives us: T′ 5 ∪(T). This suffices to prove (173), (174), (182) and (183).

237

[B] Type Preservation

Note on inter-property constraints The assignment compatibility rule in
I-ITVarDec ensures that the left-hand side of the variable declaration does not
have an interface type. Therefore, E-ITVarDec does not have logic for adding
@interface tags to certain objects.

238

Appendix C

Specification of the Twitter
API

The following listing contains a snippet of the Twitter API, written in the speci-
fication language OAS-IP, introduced in Section 9.3.

1 {
2 " swagger ": "2.0",
3 "info": {
4 " version ": "1.1",
5 " title ": " Twitter REST API"
6 },
7 "host": "api. twitter .com",
8 " basePath ": "/1.1",
9 " schemes ": [

10 "http",
11 " https "
12],
13 " consumes ": [
14 " application /json"
15],
16 " produces ": [
17 " application /json"
18],
19 " securityDefinitions ": {
20 " oauth ": {
21 "type": " oauth2 ",
22 "flow": " implicit ",
23 " authorizationUrl ": " https :// twitter .com/ oauth / authorize /? client_id =CLIENT -ID",
24 " scopes ": {
25 " basic ": "to read any and all data related to twitter \n"
26 }
27 }
28 },
29 " security ": [
30 {
31 " oauth ": [
32 " basic "
33]
34 }
35],
36 "x- constraint - definitions ": [
37 " minimum (f, v) := value (f) >= v",
38 " exclusiveMinimum (f, v) := value (f) > v",
39 " maximum (f, v) := value (f) <= v",
40 " exclusiveMaximum (f, v) := value (f) < v",
41 " minLength (f, v) := string - length (f) > v",
42 " maxLength (f, v) := string - length (f) < v",

239

[C] Specification of the Twitter API

43 " minItems (f, v) := array - length (f) < v",
44 " maxItems (f, v) := array - length (f) > v",
45 "enum(f, v_1 , v_2) := value (f) == v_1 OR value (f) == v_2",
46 " required (f) := present (f)",
47 " string ?(f) := type(f) == String ",
48 " number ?(f) := type(f) == Number ",
49 " boolean ?(f) := type(f) == Boolean ",
50 "xor(f1 , f2) := (present (f1) AND NOT(present (f2))) OR
51 (NOT(present (f1)) AND present (f2))",
52 " dependent (f, f_1) := present (f_1) -> present (f)",
53 " group (f1 , f2) := (present (f1) -> present (f2)) AND
54 (present (f2) -> present (f1))",
55 "and(f1 , f2) := present (f1) AND present (f2)"
56],
57 " paths ": {
58 "/ direct_messages /new": {
59 "post": {
60 " description ": " Sends a new direct message to specified user",
61 " security ": [
62 {
63 " oauth ": [
64 " basic "
65]
66 }
67],
68 " parameters ": [
69 {
70 "name": " user_id ",
71 "in": " query ",
72 " description ": "User ID of user receiving message ",
73 "type": " number ",
74 " required ": false
75 },
76 {
77 "name": " screen_name ",
78 "in": " query ",
79 " description ": " Screen name of user receiving message ",
80 "type": " string ",
81 " required ": false
82 },
83 {
84 "name": "text",
85 "in": " query ",
86 " description ": "Text of your direct message ",
87 "type": " string ",
88 " required ": true
89 }
90],
91 "x- constraints ": ["xor(user_id , screen_name)"
92],
93 " responses ": {
94 "200": {
95 " description ": "OK",
96 " schema ": {
97 "$ref": "#/ definitions / Messages "
98 }
99 }

100 }
101 }
102 },
103
104 "/ statuses / update ": {
105 "post": {
106 " description ": " Updates the authenticating user ’s status ",
107 " security ": [
108 {
109 " oauth ": [
110 " basic "
111]
112 }
113],
114 " parameters ": [
115 {
116 "name": " status ",
117 "in": " query ",
118 " description ": "The text of your status update ",

240

119 " required ": true ,
120 "type": " string "
121 },
122 {
123 "name": " in_reply_to_status_id ",
124 "in": " query ",
125 " description ": "The ID of an existing status ",
126 " required ": false ,
127 "type": " number "
128 },
129 { "name": " possibly_sensitive ",
130 "in": " query ",
131 " description ": "If you upload media that might be considered sensitive ",
132 "type": " string ",
133 " required ": false ,
134 " default ": " false "
135 },
136 {
137 "name": "lat",
138 "in": " query ",
139 " description ": "The latitude of the location ",
140 " required ": false ,
141 "type": " string "
142 },
143 {
144 "name": "long",
145 "in": " query ",
146 " description ": "The longitude of the location ",
147 " required ": false ,
148 "type": " string "
149 },
150 {
151 "name": " place_id ",
152 "in": " query ",
153 " description ": "A place in the world ",
154 " required ": false ,
155 "type": " number "
156 },
157 {
158 "name": " display_coordinates ",
159 "in": " query ",
160 " description ": " Whether or not to put a pin on the exact coordinates a tweet ",
161 " required ": false ,
162 "type": " string "
163 },
164 {
165 "name": " trim_user ",
166 "in": " query ",
167 " description ": "Set to either true , t or 1",
168 " required ": false ,
169 "type": " string "
170 },
171 {
172 "name": " media_ids ",
173 "in": " query ",
174 " description ": "A list of media ids to associate with the tweet ",
175 " required ": false ,
176 "type": " string "
177 }
178],
179 "x- constraints ": [" group (lat ,long)"],
180 " responses ": {
181 "200": {
182 " description ": " Success ",
183 " schema ": {
184 "$ref": "#/ definitions / Tweets "
185 }
186 },
187 "403": {
188 " description ": " Error "
189 }
190 }
191 }
192 },
193 "/list/ members / create ": {
194 "post": {

241

[C] Specification of the Twitter API

195 " description ": "Adds a new member to a list of the authenticated user",
196 " security ": [
197 {
198 " oauth ": [
199 " basic "
200]
201 }
202],
203 " parameters ": [
204 {
205 "name": " list_id ",
206 "in": " query ",
207 " description ": "The numerical id of the list",
208 " required ": false ,
209 "type": " number "
210 },
211 {
212 "name": "slug",
213 "in": " query ",
214 " description ": "You can identify a list being requested by a slug",
215 " required ": false ,
216 "type": " string "
217 },
218 {
219 "name": " screen_name ",
220 "in": " query ",
221 " description ": "The screen name of the user to add to the list",
222 " required ": false ,
223 "type": " string "
224 },
225 {
226 "name": " user_id ",
227 "in": " query ",
228 " description ": "The user ID of the user to add to the list",
229 "type": " number ",
230 " required ": false
231 },
232 {
233 "name": " owner_screen_name ",
234 "in": " query ",
235 " description ": "The screen name of the owner ",
236 " required ": false ,
237 "type": " string "
238 },
239 {
240 "name": " owner_id ",
241 "in": " query ",
242 " description ": "The user ID of the owner ",
243 " required ": false ,
244 "type": " number "
245 }
246],
247 "x- constraints ": [
248 "xor(slug , list_id)",
249 "xor(user_id , screen_name)",
250 " present (slug) -> xor(owner_screen_name , owner_id)",
251 " dependent (slug , owner_screen_name)",
252 " dependent (slug , owner_id)"
253],
254 " responses ": {
255 "200": {
256 " description ": " Success "
257 }
258 }
259 }
260 }
261 },
262 " definitions ": {
263 // omitted
264 }
265 }

Listing C.1: Snippet of specification for the Twitter API

242

Bibliography

Martin Abadi and Luca Cardelli. A theory of objects. Springer-Verlag New York,
1996. ISBN 978-1-4612-6445-3. doi: 10.1007/978-1-4419-8598-9.

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards Type
Inference for JavaScript. In Proceedings of the 19th European Conference on
Object-Oriented Programming, ECOOP 2005, pages 428–452. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-31725-8.

Lennart Augustsson. Cayenne: a language with dependent types. In Proceed-
ings of the Third ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’98, pages 239–250. ACM, 1998. ISBN 1-58113-024-4. doi:
10.1145/289423.289451.

SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEWAPI:
Web API Misuse Detector for Web Applications. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2014, pages 507–517. ACM, 2014. ISBN 978-1-4503-3056-5. doi:
10.1145/2635868.2635916.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar
Munoz, Chetan Murthy, et al. The Coq proof assistant reference manual: Ver-
sion 6.1. PhD thesis, Inria, 1997.

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Sergio Maffeis. Refinement Types for Secure Implementations. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 33(2):8:1–8:45,
January 2011. ISSN 0164-0925. doi: 10.1145/1890028.1890031.

Gavin Bierman, MJ Parkinson, and AM Pitts. MJ: An imperative core calculus
for Java and Java with effects. Technical report, University of Cambridge,
Computer Laboratory, 2003.

243

[C] Bibliography

Gavin Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding TypeScript.
In Proceedings of the 28th European Conference on Object-Oriented Program-
ming, ECOOP 2014, pages 257–281. Springer Berlin Heidelberg, 2014. ISBN
978-3-662-44202-9.

Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical
Optional Types for Clojure. In Proceedings of the 25th European Symposium
on Programming Languages and Systems, ESOP 2016, pages 68–94. Springer
Berlin Heidelberg, 2016. ISBN 978-3-662-49498-1.

Ana Bove and Peter Dybjer. Dependent Types at Work. In Language Engineer-
ing and Rigorous Software Development: International LerNet ALFA Summer
School 2008, Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tuto-
rial Lectures, pages 57–99. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
03153-3. doi: 10.1007/978-3-642-03153-3 2.

John Boyland, James Noble, and William Retert. Capabilities for Sharing. In
Proceedings of the 15th European Conference on Object-Oriented Programming,
ECOOP 2001, pages 2–27. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-
45337-6.

Edwin C. Brady. IDRIS: Systems Programming Meets Full Dependent Types.
In Proceedings of the 5th ACM Workshop on Programming Languages Meets
Program Verification, PLPV ’11, pages 43–54. ACM, 2011. ISBN 978-1-4503-
0487-0. doi: 10.1145/1929529.1929536.

Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu
Sridharan, Frank Tip, and Youngil Choi. Type Inference for Static Compila-
tion of JavaScript. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2016, pages 410–429. ACM, 2016. ISBN 978-1-4503-4444-9.
doi: 10.1145/2983990.2984017.

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel
Levi. Fast and Precise Type Checking for JavaScript. Proceedings of the ACM
Programming Languages, 1(OOPSLA):48:1–48:30, October 2017. ISSN 2475-
1421. doi: 10.1145/3133872.

Wontae Choi, Satish Chandra, George Necula, and Koushik Sen. SJS: A Type
System for JavaScript with Fixed Object Layout. In Proceedings of the 22nd
International Static Analysis Symposium, SAS 2015, pages 181–198. Springer
Berlin Heidelberg, 2015. ISBN 978-3-662-48288-9.

244

Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, et al.
Web Services Description Language (WSDL) 1.1, 2001.

Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for JavaScript.
In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’12, pages 587–606.
ACM, 2012a. ISBN 978-1-4503-1561-6. doi: 10.1145/2384616.2384659.

Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested Refinements: A Logic
for Duck Typing. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, pages 231–
244. ACM, 2012b. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.2103686.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T Sasaki, and S. F. Smith. Implementing Mathematics with The Nuprl Proof
Development System. Prentice-Hall, 1985.

Haskell B Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20(11):584–590, 1934.

Peter J Danielsen and Alan Jeffrey. Validation and Interactivity of Web API
Documentation. In Proceedings of the 2013 IEEE 20th International Conference
on Web Services, ICWS 2013, pages 523–530. IEEE Computer Society, 2013.
ISBN 978-0-7695-5025-1. doi: 10.1109/ICWS.2013.76.

Nicolaas Govert De Bruijn. The mathematical language AUTOMATH, its usage,
and some of its extensions. In Symposium on automatic demonstration, pages
29–61. Springer, 1970. ISBN 978-3-540-36262-3.

Hamza Ed-douibi, Javier Luis Canovas Izquierdo, and Jordi Cabot. Automatic
Generation of Test Cases for REST APIs: A Specification-Based Approach. In
2018 IEEE 22nd International Enterprise Distributed Object Computing Con-
ference, EDOC 2018, pages 181–190. IEEE, 2018. ISBN 978-1-5386-4139-2. doi:
10.1109/EDOC.2018.00031.

Richard A. Eisenberg. Dependent Types in Haskell: Theory and Practice. PhD
thesis, University of Pennsylvania, 2016. URL http://arxiv.org/abs/1610.
07978.

Linus Ek, Ola Holmström, and Stevan Andjelkovic. Formalizing Arne Andersson
trees and Left-leaning Red-Black trees in Agda. Technical report, Chalmers
University of Technology, 2009. Bachelor thesis.

245

http://arxiv.org/abs/1610.07978
http://arxiv.org/abs/1610.07978

[C] Bibliography

Facebook Inc. Flow, a. URL https://flow.org. Accessed: 2018-11-16.

Facebook Inc. Hack, b. URL https://hacklang.org. Accessed: 2018-11-16.

Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-null
Types in an Object-oriented Language. In Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and
Applications, OOPSLA ’03, pages 302–312. ACM, 2003. ISBN 1-58113-712-5.
doi: 10.1145/949305.949332.

Manuel Fahndrich and Songtao Xia. Establishing Object Invariants with Delayed
Types. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, OOPSLA ’07, pages
337–350. ACM, 2007. ISBN 978-1-59593-786-5. doi: 10.1145/1297027.1297052.

Robert Bruce Findler and Matthias Felleisen. Contracts for Higher-order Func-
tions. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02, pages 48–59. ACM, 2002. ISBN 1-
58113-487-8. doi: 10.1145/581478.581484.

Cormac Flanagan, Stephen N Freund, and Aaron Tomb. Hybrid types, invari-
ants, and refinements for imperative objects. Presented at the FOOL/WOOD
workshop, 2006.

Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, PLDI ’91, pages 268–277. ACM, 1991. ISBN 0-89791-428-7.
doi: 10.1145/113445.113468.

Jean H Gallier. Logic for computer science: foundations of automatic theorem
proving. Courier Dover Publications, 2015.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns. Elements of reusable object-oriented software. Addison-Wesley, 1995.
ISBN 0-201-63361-2.

Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. Towards a Pro-
gram Logic for JavaScript. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12,
pages 31–44. ACM, 2012. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.
2103663.

Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

246

https://flow.org
https://hacklang.org

GitHub. Octoverse 2018: Fastest Growing Languages.
https://octoverse.github.com/projects#languages. Accessed: 2019-04-06.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and
Joe Duffy. Uniqueness and Reference Immutability for Safe Parallelism. In
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’12, pages 21–40. ACM,
2012. ISBN 978-1-4503-1561-6. doi: 10.1145/2384616.2384619.

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts Made
Manifest. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’10, pages 353–364.
ACM, 2010. ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706341.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control
and State using Flow Analysis. In Proceedings of the European Symposium on
Programming, ESOP 2011, pages 256–275. Springer, 2011. ISBN 978-3-642-
19718-5.

Marc J Hadley. Web Application Description Language (WADL). 2006.

Phillip Heidegger and Peter Thiemann. Recency Types for Analyzing Script-
ing Languages. In Proceedings of the European Conference on Object-Oriented
Programming, ECOOP 2010, pages 200–224. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-14107-2.

William A Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

Dongseok Jang and Kwang-Moo Choe. Points-to Analysis for JavaScript. In
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09,
pages 1930–1937. ACM, 2009. ISBN 978-1-60558-166-8. doi: 10.1145/1529282.
1529711.

Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for
JavaScript. In Proceedings of the International Static Analysis Symposium,
SAS 2009, pages 238–255. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
03237-0.

Vineeth Kashyap, John Sarracino, John Wagner, Ben Wiedermann, and Ben
Hardekopf. Type Refinement for Static Analysis of JavaScript. In Proceedings
of the 9th Symposium on Dynamic Languages, DLS ’13, pages 17–26. ACM,
2013. ISBN 978-1-4503-2433-5. doi: 10.1145/2508168.2508175.

247

[C] Bibliography

Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. Type-based Data Struc-
ture Verification. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages 304–315.
ACM, 2009. ISBN 978-1-60558-392-1. doi: 10.1145/1542476.1542510.

Andrew Kent and Sam Tobin-Hochstadt. Adding Practical Depen-
dent Types to Typed Racket. STOP 2015 Scripts to Programs,
2015. URL https://2015.ecoop.org/event/stop2015-adding-practical-
dependent-types-to-typed-racket.

Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. Occurrence Typing
Modulo Theories. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages 296–309.
ACM, 2016. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908091.

Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. hRESTS: An HTML
Microformat for Describing RESTful Web Services. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology - Volume 01, WI-IAT ’08, pages 619–625. IEEE Computer
Society, 2008. ISBN 978-0-7695-3496-1. doi: 10.1109/WIIAT.2008.379.

Nico Lehmann and Éric Tanter. Gradual Refinement Types. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 775–788. ACM, 2017. ISBN 978-1-4503-4660-3. doi: 10.
1145/3009837.3009856.

Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi.
TeJaS: Retrofitting Type Systems for JavaScript. In Proceedings of the 9th
Symposium on Dynamic Languages, DLS ’13, pages 1–16. ACM, 2013. ISBN
978-1-4503-2433-5. doi: 10.1145/2508168.2508170.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies in
Logic and the Foundations of Mathematics, volume 80, pages 73–118. Elsevier,
1975.

Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bib-
liopolis Napoli, 1984.

Conor McBride. Epigram: Practical Programming with Dependent Types. In
Advanced Functional Programming, AFP 2004, pages 130–170. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-31872-9.

248

https://2015.ecoop.org/event/stop2015-adding-practical-dependent-types-to-typed-racket
https://2015.ecoop.org/event/stop2015-adding-practical-dependent-types-to-typed-racket

Filipe Militão, Jonathan Aldrich, and Lúıs Caires. Rely-Guarantee Protocols. In
Proceedings of the 28th European Conference on Object-Oriented Programming,
ECOOP 2014, pages 334–359. Springer Berlin Heidelberg, 2014. ISBN 978-3-
662-44202-9.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grothoff. Con-
strained Types for Object-oriented Languages. In Proceedings of the 23rd ACM
SIGPLAN Conference on Object-oriented Programming Systems Languages and
Applications, OOPSLA ’08, pages 457–474. ACM, 2008. ISBN 978-1-60558-215-
3. doi: 10.1145/1449764.1449800.

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Inter-parameter
Constraints in Contemporary Web APIs. In Proceedings of the International
Conference on Web Engineering, ICWE 2017, pages 323–335. Springer Interna-
tional Publishing, 2017. ISBN 978-3-319-60131-1.

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Static Typing
of Complex Presence Constraints in Interfaces (Artifact). Dagstuhl Artifacts
Series, 4(3):3:1–3:2, 2018a. ISSN 2509-8195. doi: 10.4230/DARTS.4.3.3.

Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter. Static Typing
of Complex Presence Constraints in Interfaces. In Proceedings of the 32nd
European Conference on Object-Oriented Programming, ECOOP 2018, pages
14:1–14:27. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018b. ISBN
978-3-95977-079-8. doi: 10.4230/LIPIcs.ECOOP.2018.14.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic
typing with dependent types. In Exploring New Frontiers of Theoretical Infor-
matics, pages 437–450. Springer US, 2004. ISBN 978-1-4020-8141-5.

S. Owre, J. Rushby, and N. Shankar. Subtypes for Specifications: Predicate
Subtyping in PVS. IEEE Transactions on Software Engineering, 24:709–720,
September 1998. ISSN 0098-5589. doi: 10.1109/32.713327.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and
Michael D. Ernst. Practical Pluggable Types for Java. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, pages
201–212. ACM, 2008. ISBN 978-1-60558-050-0. doi: 10.1145/1390630.1390656.

Benjamin C Pierce. Types and Programming Languages. MIT Press, 2002.

249

[C] Bibliography

Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Semantics and types
for objects with first-class member names. In Proceedings of the 19th Inter-
national Workshop on Foundations of Object-Oriented Languages, FOOL 2012,
page 37, 2012.

Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Typed-based Verifi-
cation of Web Sandboxes. Journal of Computer Security, 22(4):511–565, 2014.

Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To
HB Curry: essays on combinatory logic, lambda calculus and formalism, pages
561–577, 1980.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis
Vekris. Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’15, pages 167–180. ACM, 2015. ISBN 978-1-4503-
3300-9. doi: 10.1145/2676726.2676971.

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete Types for
TypeScript. In Proceedings of the 29th European Conference on Object-Oriented
Programming, ECOOP 2015, pages 76–100, 2015. doi: 10.4230/LIPIcs.ECOOP.
2015.76.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, pages 159–169. ACM, 2008. ISBN 978-1-59593-
860-2. doi: 10.1145/1375581.1375602.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

Jeremy Siek and Walid Taha. Gradual typing for functional languages. In Report
on the Scheme and Functional Programming Workshop, volume 6, pages 81–92,
2006.

Jeremy Siek and Walid Taha. Gradual Typing for Objects. In Proceedings of the
European Conference on Object-Oriented Programming, ECOOP 2007, pages
2–27. Springer, 2007. ISBN 978-3-540-73589-2.

Frederick Smith, David Walker, and Greg Morrisett. Alias Types. In Proceed-
ings of the European Symposium on Programming, ESOP 2000, pages 366–381.
Springer Berlin Heidelberg, 2000. ISBN 978-3-540-46425-9.

250

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhar-
gavan, and Jean Yang. Secure Distributed Programming with Value-dependent
Types. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 266–278. ACM, 2011. ISBN 978-1-
4503-0865-6. doi: 10.1145/2034773.2034811.

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. Dependent Types and Multi-monadic Effects in F*. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, pages 256–270. ACM, 2016. ISBN 978-1-4503-
3549-2. doi: 10.1145/2837614.2837655.

Peter Thiemann. Towards a Type System for Analyzing JavaScript Programs. In
Proceedings of the European Symposium on Programming, ESOP 2005, pages
408–422. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-31987-0.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation
of Typed Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, pages 395–
406. ACM, 2008. ISBN 978-1-59593-689-9. doi: 10.1145/1328438.1328486.

Sam Tobin-Hochstadt and Matthias Felleisen. Logical Types for Untyped Lan-
guages. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, pages 117–128. ACM, 2010. ISBN 978-
1-60558-794-3. doi: 10.1145/1863543.1863561.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. Refinement Types for Haskell. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 269–
282. ACM, 2014. ISBN 978-1-4503-2873-9. doi: 10.1145/2628136.2628161.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement Types for
TypeScript. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’16, pages 310–325. ACM,
2016. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908110.

Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking Through
Dependent Types. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pages 249–257.
ACM, 1998. ISBN 0-89791-987-4. doi: 10.1145/277650.277732.

251

[C] Bibliography

Hongwei Xi and Frank Pfenning. Dependent Types in Practical Programming.
In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’99, pages 214–227. ACM, 1999. ISBN 1-
58113-095-3. doi: 10.1145/292540.292560.

Tian Zhao. Type inference for scripting languages with implicit extension. In
Proceedings of the International Workshop on Foundations of Object-Oriented
Languages, FOOL 2010, 2010.

252

	Abstract
	Acknowledgements
	Introduction
	Research Context
	Problem Statement
	Thesis
	Approach
	Contributions
	Roadmap
	Supporting Publications and Technical Contributions

	Inter-property Constraints
	Categories of Inter-property Constraints
	Exclusivity Constraints
	Dependency Constraints
	Double Implication Constraints
	NAND Constraints

	Combined Constraints
	Empirical Study of Inter-property Constraints in Web APIs
	A Primer on Web APIs
	Results of the Empirical Study

	Violations of Inter-property Constraints
	Conclusion

	Requirements for Inter-property Constraints in Programming Languages
	Interface Definition
	Creating Interface Instances from Object Literals
	Accessing Object Properties
	Assigning Instances of Interfaces to Others
	Updating Object Properties
	Updating Multiple Properties Simultaneously

	Interface Inheritance
	Conclusion

	Statically Checking Inter-property Constraints
	Object Literals Have To Satisfy Constraints
	Constraints Dictate Property Presence
	Explicit Property Presence Tests
	Interface-Interface Compatibility
	Target Constraints Follow From Source Constraints
	Structural Differences: Premises
	Structural Differences: Consequent

	Interface-Object Compatibility
	Updated Objects Have To Satisfy Constraints
	Conclusion

	TypeScript's Idiosyncrasies
	Optional Types
	Unsoundness
	Block Scoping
	Interfaces
	Null-checking Mode
	Occurrence Typing
	Type Declaration Files
	Conclusion

	TIPC: Formalisation
	SafeFTS: a Formalisation of TypeScript
	Syntax
	Expressions
	Statements
	Types

	Typing Rules
	Property Lookup
	Assignment Compatibility
	Creating Interface Instances
	Updating Multiple Properties
	Statement Typing

	Operational Semantics
	Evaluating Expressions
	Evaluating Statement Sequences

	Soundness
	Judgments
	Key Properties
	Preservation
	Progress

	Conclusion

	TypeScriptIPC: Implementation of TIPC
	Architecture and Design
	Differences between Formalisation and Implementation
	Interface Definition
	Object Creation
	Assignment
	If statements

	Extending the TypeScript Compiler with Inter-property Constraints
	Types
	Scanner Extensions
	Parser Extensions
	Checker Extensions
	Emitter Extension

	Conclusion

	Related Work
	Dependent Types
	Refinement Types
	Refinement Types For Dynamic and Object-Oriented Programming Languages

	Type Systems for TypeScript
	Type Systems for JavaScript
	Occurrence Typing
	Conclusion

	Inter-property Constraints in Practice
	Web API Specification Languages
	Inter-property Constraints in Specification Languages
	oneOf (OpenAPI specification, JSON Schema)
	discriminator (OpenAPI specification)
	if-then-else (JSON Schema)
	dependencies (JSON Schema)
	Conclusion

	OAS-IP: A Novel Constraint-Centric Specification Language
	Constraint Definitions
	Constraints
	Comparison with Other Web API Specification Languages

	Inter-property Constraints in Specification Language Tools
	VerifyRequest library
	Client SDK Code Generator

	Conclusion

	Conclusion
	Summary
	Restating the Contributions
	Future Work
	Value-dependency Constraints
	Imperative Multi-update
	Gradual Typing For Inter-property Constraints
	Portability to Other Programming Languages

	Concluding Remarks

	Object Literal Restriction
	Type Preservation
	Type Preservation of Expressions
	Type Preservation of Statements

	Specification of the Twitter API

