With the advent of JavaScript, at the turn of the century web applications were
developed using the traditional client-server model. These applications were
developed using distributed programming models in which programmers can
express that a particular part of their application’s state is local or remote within
the executing code. In contrast, modern so-called distributed rich internet
applications (DRIAs) distribute both their application logic and state across
multiple servers and clients. In these applications the distinction between local
and remote application state no longer holds. For example, a DRIA’s clients and
servers require parts of the distributed global state to be locally available.
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This lack of expressiveness on behalf of distributed programming models
unnecessarily burdens programmers. More precisely, programmers are forced to
tackle the distribution of both logic and state across multiple clients and servers
using distributed programming models that lack the necessary abstractions. For
example, this requires programmers to manually synchronise the parts of the
application’s state distributed across the clients.

In this dissertation we present Triumvirate, a DSL tailored towards the
development of DRIAs. Triumvirate provides data types specifically designed to
represent various kinds of distributed state. These data types differ in the way
they behave under concurrent updates and in their parameter passing semantics.
Moreover, Triumvirate provides abstractions that allow programmers to deploy
application logic across multiple servers and clients.
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Concretely, Triumvirate provides a multitude of data types that allow
programmers to implement distributed state with various consistency guarantees.
Triumvirate automatically enforces these guarantees using state-of-the-art
consistency mechanisms. Moreover, Triumvirate also allows for the
implementation of distributed reactive state.

To do so we develop a novel propagation algorithm for
decentralised reactive programs. We validate the different
facets of Triumvirate through various proofs, benchmarks
and real-life use cases.
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Abstract

With the advent of JavaScript, at the turn of the century web applications
were developed using the traditional client-server model. These applica-
tions were developed using distributed programming models in which pro-
grammers can express that a particular part of their application’s state
is local or remote within the executing code. In contrast, modern so-
called distributed rich internet applications (DRIAs) distribute both their
application logic and state across multiple servers and clients. In these
applications the distinction between local and remote application state no
longer holds. For example, a DRIA’s clients and servers require parts of
the distributed global state to be locally available.

This lack of expressiveness on behalf of distributed programming mod-
els unnecessarily burdens programmers. More precisely, programmers are
forced to tackle the distribution of both logic and state across multiple
clients and servers using distributed programming models that lack the
necessary abstractions. For example, this requires programmers to manu-
ally synchronise the parts of the application’s state distributed across the
clients.

In this dissertation we present Triumvirate, a DSL tailored towards
the development of DRIAs. Triumvirate provides data types specifically
designed to represent various kinds of distributed state. These data types
differ in the way they behave under concurrent updates and in their pa-
rameter passing semantics. Moreover, Triumvirate provides abstractions
that allow programmers to deploy application logic across multiple servers
and clients.

Concretely, Triumvirate provides a multitude of data types that al-
low programmers to implement distributed state with various consistency
guarantees. Triumvirate automatically enforces these guarantees using
state-of-the-art consistency mechanisms. Moreover, Triumvirate also al-



lows for the implementation of distributed reactive state. To do so we de-
velop a novel propagation algorithm for decentralised reactive programs.
We validate the different facets of Triumvirate through various proofs,
benchmarks and real-life use cases.



Samenvatting

Sinds de introductie van JavaScript rond de eeuwwisseling werden web-
toepassingen ontwikkeld volgens het traditionele client-servermodel. On-
twikkelaars gebruikten hiervoor zogenaamde ”gedistribueerde” program-
meermodellen, waarin voor elk deel van de programmatoestand bepaald
wordt of deze intern dan wel extern is ten opzichte van de uitvoerende
code. Moderne, zogenaamde gedistribueerde rijke internet toepassingen
(GRIT) distribueren echter zowel hun toestand als hun logica over meerdere
servers en clienten. In zulke toepassingen bestaat het onderscheid tussen
intern en extern niet langer. Een GRIT kan bv. vereisen dat sommige de-
len van de gedistribueerde globale toestand lokaal beschikbaar is op zowel
de server als de client.

Het gebrek aan expressiviteit van gedistribueerde programmeermod-
ellen maakt de jobs van programmeurs onnodig moeilijk. Programmeurs
worden gedwongen om de distributie van programmalogica en -toestand
te organiseren aan de hand van een programmeermodel dat de nodige ab-
stracties mist. Bijgevolg moeten programmeurs bijvoorbeeld handmatig
de toestand van verschillende clienten gelijkzetten.

In dit proefschrift presenteren we Triumvirate, een op maat gemaakte
domein-specifieke taal voor het ontwikkelen van GRIT. Triumvirate biedt
de gegevenstypen aan waarmee verschillende soorten gedistribueerde pro-
grammatoestand kunnen voorgesteld worden. Deze gegevenstypen onder-
scheiden zich van elkaar in de manier waarop ze omgaan met gelijkti-
jdige veranderingen, alsook in de semantiek die ze toeschrijven aan het
doorgeven van parameters. Bovendien biedt Triumvirate de nodige ab-
stracties om programmalogica te verdelen over meerdere servers en clien-
ten.

Concreet biedt Triumvirate een veelvoud aan gegevenstypen aan waar-
mee programmeurs gedistribueerde toestand kunnen implementeren met
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verschillende consistentiegaranties. Triumvirate handhaaft deze garanties
automatisch aan de hand van state-of-the-art consistentiemechanismen.
Bovendien biedt Triumvirate ook ondersteuning voor gedistribueerde re-
actieve toestand. Hiervoor ontwikkelen we een nieuw propagatiealgoritme.
We valideren de verschillende facetten van Triumvirate door middel van
verschillende bewijzen, experimenten en gebruikstoepassingen.
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derivable Reactive state in distributed rich internet applications. Deriv-
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[IDGL*17].
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Chapter 1

Introduction

Programming is the art, science and engineering of combining individual
computer instructions into executable computer programs. These instruc-
tions are given semantic meaning by a programming language that also
determines which combinations of instructions are valid (i.e. a grammar).
When these instructions allow for executable programs to run across mul-
tiple machines we speak of distributed programming and distributed pro-
gramming languages.

A common misconception about distributed programming is that it
boils down to local (i.e. non-distributed) programming enhanced with
communication instructions (e.g. send and receive). The reality of dis-
tributed programming and its differences with local programming is best
exemplified by the following quote by Waldo et. al. in [KWWW94]:

The hard problems in distributed computing are not the prob-
lems of how to get things on and off the wire. The hard prob-
lems in distributed computing concern dealing with partial
failure and the lack of a central resource manager. The hard
problems in distributed computing concern insuring adequate
performance and dealing with problems of concurrency. The
hard problems have to do with differences in memory access
paradigms between local and distributed entities.

Remote procedure call (RPC) [BN84] is one of the first programming
paradigms to incorporate distribution into its design. In this design a
program is able to invoke procedures defined by other programs residing
on physically distributed machines. In general this dissertation uses the
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CHAPTER 1. INTRODUCTION

generic term node to describe processes or programs that communicate
with each other over a network to form a distributed system.

In the RPC model programmers are unable to syntactically distinguish
between local (i.e. intra-node) or remote (i.e. inter-node) procedure calls.
By now, it is generally accepted that obfuscating distribution from the
programmer is bad programming language design [KWWW94]. Although
adaptations to the object-oriented programming model have been made
(CORBA [Grol2], Java RMI [Mic98], etc.) these have all inherited RPC’s
fallacies.

The RPC model is heavily critiqued for treating all data (i.e. proce-
dures, objects, etc.) as local. Another distributed programming model
from the same era, called tuple spaces [Gel85], modelled distribution in-
versely. In this model all data is treated as remote: programs read and
write data to and from a datastore which is conceptually shared across
the network!.

More recent distributed programming models and languages tend to
make the distinction between local and remote data explicit to the pro-
grammer. In contrast to older models, programmers are always aware
whether a piece of data is local or remote. These modern distributed
programming models are best exemplified by AmbientTalk [CGST14], an
object-oriented distributed programming language which heavily influ-
enced this dissertation. AmbientTalk makes it lexically and semantically
explicit to the programmer whether an object is local or remote within the
executing code. Method invocations or field accesses on local objects (i.e.
so-called isolated objects) happen synchronously through AmbientTalk’s
dot (.) operator, as is commonly the case in object-oriented languages.
Method invocations or field accesses on remote objects (i.e. so-called far
references) happen asynchronously through AmbientTalk’s arrow () op-
erator.

In this dissertation we argue that the binary data classification (i.e.
local or distributed) provided by distributed programming models fails to
meet the needs of modern distributed systems. More concretely, this dis-
sertation focuses on the most widely used distributed system: the world
wide web. Modern web applications comprise a large number of nodes
spread across clients and servers. Each node executes a part of the appli-

1The TOTAM [GSMD14] tuple space model forms an exception to this rule. We
discuss TOTAM in more detail in Section 3.1.2 of Chapter 3
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Figure 1.1: Early (A) versus modern (B) web applications.

cation’s logic and therefore requires local access to the relevant parts of
the application’s state (i.e. for the sake of efficiency, privacy, offline avail-
ability, fault tolerance, etc.). However, this local data inherently models
distributed (i.e. remote) state. As such, modern web applications blur
the lines between what constitutes local and remote state.

In this dissertation we present a distributed programming model which
tailors towards the distributed data needs of modern web applications.
We identify three fundamental categories of distributed data. Our model
specifies an API as well as parameter passing semantics for each data
category. We implement this model in an object-oriented domain-specific
language for web applications called Triumuvirate.

1.1 Distributed Rich Internet Applications

Figure 1.1 compares two eras of web applications. Figure 1.1 (A) shows
the architecture of early web applications. These applications mainly offer
static web pages or limited user interfaces (e.g. hyperlinks, forms, etc.).
In general a central server sequentially executes the application’s logic
(indicated by a gear icon in the figure) and maintains its state (indicated
by a database icon in the figure). The clients in this architecture allow
users to view the application’s current state in their browser.
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Rich internet applications (RIAs) extend these early web applications
with functionality such as client-side storage, partial page updates, multi-
media content, etc [FRSF10]. More precisely, in this dissertation we focus
on distributed rich internet applications (DRIAs) [TCPL11].

Early web applications barely classify as distributed systems, given
that the server exclusively manages the application’s logic and state.
This heavily contrasts with the architecture of DRIAs, shown in Fig-
ure 1.1 (B). Examples of DRIAs include Google’s office suite 2, Facebook 3,
webtops [SYS07], etc. DRIAs provide distribution on two levels:

Distributed Logic A DRIA’slogic is distributed amongst different servers
(a.k.a. horizontal distribution) as well as amongst servers and clients
(a.k.a. vertical distribution). Horizontal distribution typically allows
for servers to be spread across the globe in order to reduce latency
on the client side (i.e. geo-replication). Vertical distribution allows
clients to be responsible for parts of the application logic. In other
words, a client connecting to a server-side service not only receives
data to display but also computations to perform locally on said
data.

Servers and clients also provide internal distribution. On one hand,
servers are typically implemented as collections of autonomous (mi-
cro) services. On the other hand clients also provide support for
multiple services (i.e. web workers) to run in parallel.

Distributed State The application’s state is also distributed horizon-
tally and vertically. There are two reasons for this distribution.
First, each component in the network requires part of the applica-
tion’s state to execute its piece of the distributed logic. Second,
for the sake of functional requirements: offline availability, privacy,
performance, etc.

In other words, DRIA programmers not only tackle the complexities tied
to web applications but they also tackle those tied to distributed systems.
For example, the distributed state of DRIAs forces programmers to face
the trade-off made famous by the CAP theorem [Bre00, GL02].

“https://gsuite.google.com/ (last accessed: 05-12-2019)
*https://www.facebook.com/ (last accessed: 05-12-2019
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1.1. DISTRIBUTED RICH INTERNET APPLICATIONS

1.1.1 Distributed State and the CAP Theorem

In this dissertation, we follow the definition of the CAP theorem as given
by Seth Gilbert and Nancy Lynch [GL02]. Assume a distributed system
running atop a network of nodes that conceptually share a piece of read-
able and writeable memory. Given this system, we define consistency,
availability and partition tolerance as follows:

Definition 1: Consistency

A distributed system is consistent if after a value is written to the
shared memory, all subsequent reads return that value until it is
overwritten by another value. This property is also known as lin-
earizability [HW90].

Definition 2: Availability

A distributed system is available if nodes are guaranteed to receive
meaningful results for all operations performed on the shared mem-
ory (e.g. a request-timeout exception is not considered meaningful).
In other words, nodes are able to read from and write to the shared
memory at any point in time.

Definition 3: Partition Tolerance

A partition separates the network of nodes into disjoint sub-
networks. Communication across sub-networks is impossible for the
duration of the partition. A distributed system is partition tolerant
if it is able to maintain its consistency or availability properties in
the face of these partitions.

The CAP theorem states that it is impossible for any distributed sys-
tem to ensure that the operations on shared memory are consistent, avail-
able and partition tolerant. Distributed systems can only guarantee two
out of these three properties. Because any real-world distributed system
faces partitions at some point in time the programmer is left with the
choice between offering availability or consistency. While the CAP the-
orem proves that sharing data in a partition-tolerant distributed system
is either available or consistent this choice can be made for each shared
piece of data.
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1.1.2 Beyond Local and Remote Data

Reconsider Figure 1.1 (A). In such an architecture a binary model for
distributed data (i.e. data is either considered local or remote to a specific
node) suffices. From the server’s perspective all data is local: the server
is the sole component in the network to create, modify and delete data.
From the clients’ perspective all data is remote: clients render the state
residing on the server.

A data model that classifies data as either local or remote fails to ex-
press the complexities of DRIAs. Each node in the network requires parts
of the global, remote, application state to be locally available to execute
its logic. In other words, the lines between local and remote data are
blurred. Moreover, nodes can concurrently update the same piece of the
application’s state. Depending on the trade-off made with regard to the
CAP theorem these concurrent updates might have different semantics.
For example, a social media feed might prefer the availability over the
consistency of concurrent updates. Conversely, bank accounts probably
prefer the consistency of concurrent updates over their availability.

1.1.3 Problem Statement

The lack of a DRIA-oriented programming model forces DRIA developers
to tackle two accidental complexities:

Collocation of Distributed Logic and State Programmers need to de-
termine which node in the network is to execute which part of the
DRIA’s application logic. Moreover, programmers need to determine
which parts of the application’s state are required to execute said
logic. In other words, programmers need to distribute their DRIA’s
application logic and state across multiple servers and clients. More-
over, each client and server potentially runs a different part of the
application logic that requires a different part of the application’s
state. As such, programmers are forced to tackle the complexity
that arises from heterogeneity of logic across nodes in the
network.

Combination of Distributed State The various parts of a DRIA’s dis-
tributed state can have differing consistency requirements. In other
words, programmers must consider the trade-off imposed by the
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Figure 1.2: (A) Concurrent modifications on duplicates (B) Concurrent
modifications on replicas (C) Concurrent modifications on derivations.

CAP theorem for each part of the application’s state. Moreover,
programmers must ensure that consistency guarantees are not bro-
ken by combining different parts of the state (e.g. by combining
available with consistent state). As such, programmers are forced
to tackle the complexity that arises from heterogeneity of state
within a single node in the network.

1.2 Modelling Distributed State as Triumvirs

It no longer suffices to treat distributed state as either local or remote
to a certain node in the network. In this dissertation we propose three
categories that represent the different kinds of distributed state in DRIAs.
These states differ in the way they respond to concurrent updates. More
precisely, we introduce the following categories:

Duplicable Assume a DRIA running atop a network of two nodes N1 and
Ny, as shown in Figure 1.2(A). Furthermore, assume that both nodes
have copies of the DRIA’s state (i.e. dup and dup’ in figure). This
state is duplicable if two conditions are met. First, nodes actively

7
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update the state. In other words, the node’s control flow determines
the updates to the state. Second, nodes only update their local copy
of the duplicable state. Such copies (i.e. instances of duplicable
state) are called duplicates.

In our example dup and dup’ conceptually represent the same part of
a DRIA’s state. However, duplicates provide locally active updates.
In other words, updates made by Ny to dup (indicated by the arrow
in the figure) do not change N»’s dup’ and vice versa.

Replicable Figure 1.2(B) assumes that two nodes N; and Ny have two
copies (i.e. rep and rep’) of a DRIA’s state. This state is replicable
if two conditions are met. First, nodes actively update the state.
We previously explained this condition. Second, updates on a local
copy of replicable state impact all remote copies of the same state.
Such copies (i.e. instances of replicable state) are called replicas.

Replicable state and replicas support remotely active updates. For
example, updates made by Nj to rep also apply to No’s rep’” and vice
versa. In other words, rep and rep’ are subject to updates issued by
both Ny and Ns.

Derivable Assume the network supporting a DRIA consists of three
nodes, as shown in Figure 1.2(C). Each node has a copy of the
DRIA’s state (i.e. der, der’ and der”). This state is derivable if
its copies reactively update as a result of updates to duplicates or
replicas. Such copies (i.e. instances of derivable state) are called
derivations.

In contrast to duplicable or replicable state, nodes do not actively
update derivable state. For example, assume the value of der is
derived from a duplicate dup in node Ni. As soon as Nj actively
updates dup this triggers a chain of reactions that update der, der’
and der” in order. In other words, derivable state and derivations
support reactive updates.

This dissertation presents Triumvirate, a domain-specific language for
modern web applications. The core of Triumvirate are the aforementioned
three triumvirs (i.e. duplicable, replicable and derivable state), which al-
low programmers to easily manage complex and concurrent updates to
state shared across nodes in a DRIA. Triumvirate defines an API, param-
eter passing semantics and interaction rules for each triumvir.

8
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1.2.1 Triumvirate: Goals and Approach

Through the design and implementation of Triumvirate we aim to accom-
plish the following goals:

e We investigate which distributed programming model best fits DRIAs.
This model serves as the foundation of our research. It provides the
abstractions needed for programmers to reason about their DRIAs.
In other words, it allows programmers to elegantly distribute their
application’s logic and state. Moreover, the model serves as a Petri
dish for our research: it allows us to easily extend its semantics in
order for us to

e devise a number of programming language abstractions tailored to
distributed shared data. These abstractions enable programmers to
express concurrent changes to the distributed state of DRIAs. Each
abstraction defines parameter passing semantics and concurrent up-
date semantics. To underpin our chosen distributed programming
model and its state-oriented abstractions,

e we research how to coordinate the execution of the distributed logic
and the concurrent updates to the distributed state. This involves
research into the parameter passing semantics needed to distribute
both logic and state. Moreover, this also involves research into con-
flict resolution strategies in the face of concurrent distributed state
changes.

To achieve these goals we implement Triumvirate as a domain-specific
language (DSL). More precisely, Triumvirate is a DSL implemented in
JavaScript. We choose this approach over the library or middleware ap-
proach for the following reason. A (domain specific) programming lan-
guage enforces a mental straitjacket onto the programmer. For example,
it is impossible to reason about mutating state in a purely functional lan-
guage. This frees the programmer from having to deal with, for example,
race conditions in concurrent programs written in such a purely functional
language. In our case the straitjacket forces the programmer to reason
about their programs according to our distributed programming model.
As such, all their programs’ state must fit into the abstractions that we
provide. However, by using our abstractions programmers are guaranteed
a number of (data consistency) properties about their programs.

9
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We prefer the internal DSL approach over the external one. The
ecosystem of libraries, tools and runtimes for the web is vast and ever
changing. It is therefore paramount that code written in our DSL in-
teracts seamlessly with the myriad of available libraries and frameworks
and vice versa. Achieving this compatibility with existing JavaScript code
using an external DSL approach would require the addition of a foreign
function interface or a substantial symbiosis layer with JavaScript. How-
ever, the internal DSL approach does allow programmers to break through
Triumvirate’s straitjacket. Programmers are able to break through Tri-
umvirate’s abstractions by using standard JavaScript abstractions.

1.3 Research Context

The work presented in this dissertation is funded by Innoviris through its
Doctiris program®. In a nutshell, the goal of this program is to enhance
the cooperation between academia and industry. This dissertation and
the work that supports it are academic in nature. However, it is heavily
influenced by its industrial driver scenarios. We therefore situate this work
both in its industrial as well as academic context.

1.3.1 Industrial Context

Our project’s industrial partner is Emixis, a Brussels-based fleet man-
agement company. Emixis equips their clients’ fleet (e.g. trucks, cars,
construction equipment) with sensor beacons. These beacons regularly
upload a plethora of sensor readings (e.g. GPS coordinates, fuel levels,
speed, etc.) to Emixis’ servers. Through the Emixis platforms (e.g. Web,
Mobile, etc) their clients are able to acquire business knowledge about
their fleet (e.g. eco-driving statistics of employees, theft alerts, etc.).
Emixis’ products inherently classify as DRIAs: data is produced by
remote clients, collected and processed by a number of servers and finally
visualised on mobile devices or browsers. In other words, the applica-
tion’s logic and state are distributed amongst various services running
on multiple servers. Moreover, various parts of this distributed state have
specific requirements with regards to concurrent updates. The Emixis case
served as real-life motivation for the work presented in this dissertation.

“https://innoviris.brussels/applied-phd
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Overall the software stack supporting their applications is implemented in
languages and frameworks which lack built-in distribution abstractions.
More specifically, the various update semantics for the distributed state
are implemented in an ad-hoc fashion by Emixis developers through man-
ual serialisation, polling, buffering, etc.

For example, their server is mostly implemented as a monolithic Java
application. This server-side application’s logic is driven by HTTP re-
quests issued by clients. These clients are implemented using state-of-
the-art JavaScript libraries (e.g. React ®). However, these libraries focus
solely on the user interface part of the client and lack real distribution
functionality.

1.3.2 Academic Context

The work presented in this dissertation cross-cuts three fields of research.
Our research relies on and contributes to the state of the art in each of
these following fields:

Distributed programming Distributed programming languages provide
language abstractions dedicated to distribution. However, the field
of distributed programming in general also aims to support pro-
grammers of distributed systems through tools, custom language
runtimes, dedicated database technology, etc. In this dissertation
we focus exclusively on providing dedicated distributed program-
ming language abstractions. We discuss this choice in Section 1.2.1
of this chapter.

Data consistency models and algorithms Concurrently mutating dis-
tributed and shared state leads to data consistency issues. Two
components in the network might see different values for the same
state. These inconsistencies and how to resolve them have been ex-
tensively studied within the database community. This has led to
a wide range of consistency models: eventual consistency [SK09],
sequential consistency [DSB86], etc. Moreover, this has also led to a
wide variety of mechanisms that implement these consistency mod-
els (e.g. CRDTs [SPBZ11], the global sequence protocol [BLPF15],
etc.). In our research we seek to apply these models and their mech-
anisms to coordinate concurrent state changes in web applications.

https://reactjs.org/ (Last accessed: 9-12-2019)
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(Distributed) Reactive Programming Event-driven applications are
traditionally written using callbacks or the observer pattern. As
shown in [SAPM14] these techniques negatively impact code read-
ability and maintainability. Reactive programming is a program-
ming language paradigm which aims to avoid these drawbacks. In a
nutshell, it does so by representing time varying values as compos-
able first-class language constructs. This dissertation investigates
how reactive programming principles can be applied to distributed
applications. More precisely, we investigate how reactive propaga-
tion algorithms can be used to coordinate concurrent updates to
distributed state.

We discuss existing distributed programming models and their shortcom-
ings with regard to modern web applications in Chapter 3. Section 4.6
in Chapter 4 compares Triumvirate’s replicables to various data consis-
tency models and algorithms. Lastly, Section 5.10 in Chapter 5 com-
pares Triumvirate’s derivable state to distributed reactive programming
approaches.

1.4 Research Vision and Realisations

The main vision behind this dissertation is that the distributed state
of DRIAs can be classified as either duplicable, replicable or derivable.
Moreover, we envision that future distributed programming languages and
models should make this categorisation of their system’s distributed state
explicit. Triumvirate is an initial prototype that concretises this vision
and primarily serves to convince the reader of its novelty, elegance and
usefulness. However, this vision is too broad to realise in the span of
a single doctoral dissertation and too vague to adequately validate. We
therefore divide this dissertation’s vision into three concrete contributions
which have been realised and validated along the course of our research:

Actors for The Web We adapt the communicating event-loop model
of actors to the context of web development. This results in Spi-
ders.js, a DSL for distributed web programming which applies to
both server-side as well as client-side code (cf. Chapter 6). Spi-
ders.js is the first language to unify both distribution and paral-
lelism for both server-side as well as client-side JavaScript. Using
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Spiders.js programmers are able to elegantly distribute their web ap-
plication’s logic over multiple client and server-side actors with an
acceptable performance overhead. We provide a qualitative analysis
of Spiders.js’ expressive power compared to standard JavaScript ac-
tors. Moreover, we measure Spiders.js’ performance overhead over
standard JavaScript actors through a set of benchmark applications.

Distributed State Classification We develop a classification of dis-
tributed and shared data in DRIAs: state is either duplicable, repli-
cable or derivable. For each class of state we specify the distributed
parameter passing semantics, the consistency guarantees it provides
and how to handle concurrent and conflicting updates (cf. Chapter 4
and Chapter 5). We validate one of these classes (i.e. replicable)
by developing an interactive slide deck used in front of a real-world

audience during the Onward! 2018 conference®.

Decentralised Reactive Change Propagation Triumvirate relies on
state-of-the-art consistency mechanisms to handle concurrent changes
to duplicable and replicable state. With regards to derivable state we
present a novel mechanism inspired by distributed reactive program-
ming that allows for reactive updates in decentralised applications.
We showcase that this algorithm outperforms existing solutions and
prove its correctness (cf. Chapter 5).

1.5 Supporting Publications

A number of publications support the work presented in this disserta-
tion. We consider the following publications to be essential to the ideas
presented in this dissertation:

e Parallel and Distributed Web Programming with Actors
[MSDM18b)]
Programming with Actors
Florian Myter, Christophe Scholliers and Wolfgang De Meuter

This paper motivates the need for a distributed programming model

Ssee https://youtu.be/17cHhDDpJbg for a video of the presentation
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for web applications. It introduces Spiders.js: a JavaScript imple-
mentation of the communicating event-loops actor model. Spiders.js
allows web programmers to elegantly express both parallelism as well
as distribution. Spiders.js serves as the technological foundation on
which this dissertation is built.

e Distributed Reactive Programming for Reactive Distributed
Systems
[MSDM19]
The Art, Science, and Engineering of Programming 3, Volume 3, Is-
sue 8, Article 5
Florian Myter, Christophe Scholliers and Wolfgang De Meuter

Introduces a novel change propagation algorithm called QPROP.
The novelty of QPROP lies in the fact that it supports reactive
distributed systems (i.e. responsive, resilient, elastic and message
driven) while providing a number of essential guarantees (i.e. glitch
freedom, eventual consistency, etc.). QPROP guarantees the cor-
rectness of concurrent changes to derivable state.

e A CAPable Distributed Programming Model
[MSDM18a]
In Proceedings of the 2018 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software
Florian Myter, Christophe Scholliers and Wolfgang De Meuter

This paper argues the need for language-level abstractions to repre-
sent distributed and shared state. It introduces two object-oriented
abstractions (i.e. availables and consistents) which represent the
trade-off distributed programmers need to make with regard to the
CAP theorem. Moreover, it provides two naive implementations for
these abstractions and details how they integrate in the Spiders.js
model. Awailables and consistents serve as the basis for replicable
state.

Besides these main publications a number of smaller workshop publica-

tions [MSDM16, MCSDM16, VAVDKMDM17, VAiVMDKDM17, MSDM17,
BMG18] helped form the ideas presented in this dissertation.
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Distributed Rich Internet Applications

TypeScript
Objects Classes Web Sockets

Figure 1.3: Overview of the Triumvirate technology stack.

1.6 Dissertation Roadmap

Figure 1.3 provides an overview of this dissertation’s artefacts. More
specifically the figure shows the major concepts introduced by each tech-
nological layer. Starting from the bottom, Spiders.js relies on fundamental
concepts offered by TypeScript (e.g. objects, sockets, etc.). In turn, Spi-
ders.js offers an actor-based abstraction layer over standard TypeScript.
Triumvirate exposes a modified version of Spiders.js’ actors and introduces
the concepts of duplicable, replicable and derivable state. Finally, DRIAs
programmers implement their applications atop Triumvirate.

The colors used in Figure 1.3 indicate the chapter in which a particular
concept is discussed. More specifically, the remainder of this dissertation
is organised as follows:

Chapter 2: Developing Web Applications in Triumvirate intro-
duces our use case at Emixis and the running example for this disser-
tation. We discuss four requirements for distributed programming
model to support DRIAs. Finally, we give the reader an overview of
programming with Triumvirate by partially implementing the run-
ning example.

Chapter 3: State of the Art in Distributed Programming for
Web Applications gives an extensive overview of existing dis-
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tributed programming models. We use the requirements distilled
in Chapter 2 to compare these approaches with each other and Tri-
umvirate in the context of DRIAs.

Chapter 4: Replicating Remotely-Active State discusses replica-
ble state in detail. More specifically, we start by discussing the need
for two kinds of replicable state (i.e. strong replicable and eventual
replicable state) that represent two ends of the CAP spectrum. We
then discuss how these two kinds of replicable state are used to de-
velop DRIAs by partially implementing our running example. This
is followed by an overview of the rules that govern the interaction
between strong replicable and eventual replicable state. Finally, we
discuss the implementation of both kinds of replicable state using
state-of-the-art replication and consistency mechanisms.

discusses derivable state in de-
tail. We start by discussing the parallels between derivable state and
distributed reactive programming and motivate the need for a novel
distributed reactive runtime. We then show a practical example of
derivable state by partially implementing our running example. Fi-
nally, we provide a complete specification of the reactive propagation
algorithm used by Triumvirate to update derivable state.

Chapter 6: A Platform for Distributed Web-oriented Program-
ming Languages gives an overview of Spiders.js, the actor frame-
work atop which Triumvirate is implemented. We start by moti-
vating the need for an actor framework in the context of the web
generally and JavaScript specifically. We discuss the implementa-
tion of a collaborative code editor in Spiders.js and we provide an
exhaustive overview of Spiders.js’ base and meta-level constructs.

Chapter 7: Conclusion summarises the main vision behind Triumvi-
rate, provides an overview of the individual realisations behind this
dissertation and discusses avenues for future work.
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Chapter 2

Developing Web
Applications in Triumvirate

This dissertation presents three core contributions. First, a distributed
programming model for DRIAs. Second, a classification of distributed and
shared state based on their update semantics. Third, a novel algorithm
to support updates to a specific category of distributed state.

Each of these contributions stands on its own. We discuss each con-
tribution in detail in the following chapters. However, they are part of
our overarching vision for a distributed programming model for DRIAs
which takes shape as the Triumvirate DSL. We therefore start by giving
the reader an overview of the rationale behind Triumvirate as well as a
highlight of its most important features.

The problems which Triumvirate aims to solve are best explained us-
ing an example. To this end we introduce a running example employed
throughout this dissertation. The example directly stems from our coop-
eration with Emixis and is a simplification of the system they operate in
production.

2.1 Running Example

Imagine a technical service company. This company dispatches technicians
to on-site jobs to repair or maintain the company’s clients’ equipment (e.g.
generators, boilers, etc.). Through Emixis’ platform this technical service
company is able to track and manage both its technicians as well as the
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technicians’ equipment (e.g. the fleet of vans, specific instruments, etc.).
An online dashboard provides dispatchers with an overview of the state of
the technicians and the state of their equipment. This dashboard updates
as soon as either states (i.e. that of the technicians or that of the equip-
ment) change. For example, the dashboard shows a real-time overview of
each equipment’s location. Furthermore, the dashboard enables dispatch-
ers to view and update data sent by technicians in the field (e.g. planning,
pictures and descriptions from a particular job, etc.).

There are two main sources of data in the system. First, equipments
are tagged with beacons that periodically upload sensory input data (e.g.
positions, fuel levels for vehicles, etc.). Second, technicians are equipped
with mobile phones installed with the system’s mobile application. This
application provides two main functionalities. First, it allows the techni-
cians to view and edit their job schedule. Second, it allows the technicians
to view and edit information about specific jobs (e.g. job descriptions, pic-
tures, etc.).

2.1.1 Application Requirements

The fleet management applications provided by Emixis fulfil a multitude
of functional and non-functional requirements. In the case of our running
example it is paramount for its user (i.e. the technical service company)
that the application fulfils the following two non-functional requirements:

Reactivity A part of the dashboard functionality is to send alerts to
dispatchers upon occurrence of certain events. For example, an alert
is issued whenever a van leaves the company premises outside of
working hours. As such, our application’s server must respond to
requests as fast as possible. In other words, the application’s server-
side must be able to scale with the amount of members of the fleet
and technicians changing their state.

Offline availability The conditions in which the technicians work vary
(e.g. tunnels, etc.). This means that the application might lose con-
nection with the server for extended periods of time. Technicians
must be able to use the application even while being offline. More
precisely, a technician must always be able to edit the information
of the job he is currently working on, regardless of network con-
nectivity. However, the job schedule should only be available when
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Figure 2.1: Overview of the fleet management application.

the technician is online. This is to avoid the situation in which the
dispatcher and the technician have different views over the same
schedule.

2.1.2 Fleet Management as a Distributed Rich Internet
Application

Figure 2.1 gives an overview of the fleet management system. More pre-
cisely, the figure provides an architectural overview of the system’s imple-
mentation. Circles represent the different nodes atop which the applica-
tion runs. Nodes labelled with “service” reside on the application’s server.
The arrows in the figure represent the flow of data across these nodes.

The fleet management application adheres to the criteria for DRIAs
(see Chapter 1). More precisely, its logic and state are distributed amongst
the nodes in the network.

2.1.2.1 Distributed Logic

The application’s logic is distributed between the server which mostly con-
sumes data, and the clients which mostly produce data. There are three
kinds of clients in the application (indicated with the truck, technician and
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dispatcher icons in Figure 2.1). First, vehicles are equipped with beacons
that regularly upload sensory data to the server. These clients solely pro-
duce data, and their logic is therefore rather limited. Second, technicians
are equipped with smartphones. The mobile application running on these
phones contains a part of our system’s entire logic. More specifically, the
application contains logic to interact with all job-related functionality (i.e.
update job descriptions, view job schedule, etc.). A third and last kind
of client are the dispatchers, which have an overall view of the system’s
state through the dashboard. Moreover, dispatchers are able to modify
data related to the technicians’ jobs (e.g. job description, planning, etc.).
Both technicians and dispatchers therefore produce and consume data.

Besides being distributed amongst clients and server, our application’s
logic is also distributed amongst multiple server-side nodes. As discussed
in the requirements, our application’s server-side logic must scale with the
amount of clients and fleet members issuing requests. Microservices have
recently gained traction as an architecture which facilitates the develop-
ment of scalable web application servers [VGCT15]. Each microservice is
an autonomous unit of computation responsible for a particular piece of
the server’s functionality. To ensure scalability, our server distributes its
logic over multiple microservices (e.g. a service which converts the GPS
coordinates sent by fleet members into street addresses). Figure 2.1 gives
an overview of the most important microservices in our application. The
fleet service serves as an entry point for fleet members to upload their data
to the server. The service deserialises and persists the uploaded data. The
geo service converts a fleet member’s GPS coordinates into physical street
addresses. The driving service calculates eco-driving scores and generates
alerts based on a fleet member’s data and physical location. The job ser-
vice allows technicians to query and modify job-related data. Moreover,
the service also accepts modifications to job data from dispatchers. Lastly,
the dashboard service combines fleet member and technician data into a
coherent whole.

2.1.2.2 Distributed State

The fleet management application contains three kinds of distributed
state. The first kind, indicated by the simple arrow in Figure 2.1, repre-
sents the raw data uploaded by fleet members. Fleet members periodically
send this data as GPRS packets to the fieet service. Conceptually this
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means that fleet members periodically duplicate their state over to the
server. We say that the raw fleet data is duplicable and locally active
with regards to updates. Updating a duplicate of the raw fleet data only
affects the concerned duplicate. For example, modifications by the fleet
service do not affect the fleet member’s state.

A second kind of data, indicated by the double arrows in Figure 2.1,
concerns the internal (i.e. within the server-side of the application) rep-
resentation of the fleet data. Microservices distribute this data amongst
themselves by deriving streams from it. For example, the fleet services
derives two new output streams by serialising its input stream of fleet
data. These two output streams are then derived by the geo and driving
service into addresses and driving related data respectively. Finally, the
dashboard service derives a dashboard from the geo and driving streams.
We say that the internal fleet data is derivable and reactive with regards
to updates. Updates to the source fleet data affects all its derivations. As
soon as new data is uploaded by a fleet member all derivations made by
the microservices are recomputed.

The last kind of data, indicated by the lines ending with dots in Fig-
ure 2.1, represents all job related information. This data is replicated
amongst technicians, the job service and dispatchers. In other words, each
of the aforementioned services has a local copy of the data. This ensures
that the offline availability requirement of our application is fulfilled. As a
result nodes are able to concurrently update their local replica, which can
lead to conflicts (e.g. a technician and a dispatcher concurrently editing
a job description). A synchronisation mechanism must therefore ensure
that these conflicts are avoided or automatically resolved. We say that
the job data is replicable and remotely active with regards to updates.
Updates by one service to the job data results in an equal update for all
replicas. For example, if a technician updates the description of a job this
update also becomes visible for the dispatcher.

2.2 Requirements for a DRIA-oriented Program-
ming Model

As we discuss in the previous section, the fleet management application
exhibits the characteristics of a DRIA (i.e. its logic and state are dis-
tributed amongst nodes in the network). We argue that we currently lack
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the programming technology to elegantly implement all facets of this ap-

plication. We identify four requirements that are essential for a future
DRIA-oriented distributed programming model.

R1:

The model provides modular abstractions for distributed
logic

A DRIA’s logic is distributed amongst two axes. First, vertically
between client and server. Second, horizontally between different
autonomous nodes on the server and on the client. This requires
the programmer to divide the application’s logic into distributed
components and deploy these components across the various nodes
in the network.

Such abstractions are commonplace in most distributed program-
ming models (e.g. actors, tuple spaces, etc.). However, this is far
from trivial in the context of web applications where clients are
essentially implemented as scripts of standalone JavaScript code.
Hence, a DRIA-oriented programming model should aid the devel-
oper in this task by providing modular abstractions for distributed
logic.

These abstractions should enable the programmer to divide the ap-
plication’s logic into modular units of distributed logic. Moreover,
the abstractions are location agnostic: they allow for the develop-
ment of both server and client-side distributed logic. Finally, a set
of built-in communication primitives accompany the abstractions.
Using these primitives, programmers should be able to coordinate
the different pieces of logic executing concurrently.

This requirement has also been identified by related work [PLCSF07,
FCBC10], albeit in the context of model-driven engineering of RIAs.
In a nutshell, these approaches argue that RIA-aware conceptual
modelling must provide users the tools to express the placement of
distributed logical components.

Ro: The model guarantees data consistency properties specified

by the programmer

The state of a DRIA is, similarly to its logic, distributed horizon-
tally and vertically. As such, this state can concurrently be updated
by multiple nodes in the network. According to the CAP theorem
(see Section 1.1.1 in Chapter 1) each of these concurrent updates
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trades off consistency, availability and partition tolerance. This re-
quires the programmer to encode this trade-off per operation on a
shared piece of state in their DRIA. Moreover, some of these oper-
ations might conflict and make parts of the state inconsistent with
each other. This further requires the programmer to write conflict-
handling code.

Hence, a DRIA-oriented programming model should allow program-
mers to declaratively specify the CAP trade-off for operations on
shared state. Ensuring that this trade-off is respected throughout
the application’s lifetime should be the responsibility of the model’s
implementation. Moreover, the model’s implementation should also
strive to automatically resolve conflicting updates on shared state.

Enabling programmers to explitly deal with the CAP trade-off us-
ing language constructs (i.e. the basis for this requirement) is the
premise of a multitude of papers in the more general context of
distributed programming [GPS16, MVR15, CDMB16, ZN16, MS17,
Meil7].

R3: The model supports multiple parameter passing semantics
A DRIA moves parts of its state between various nodes throughout
its lifetime (e.g. a vehicle’s state flows through various microser-
vices in the fleet management example). Maintaining the state’s
consistency guarantees requires a significant amount of bookkeeping.
This forces the programmer to implement various data dissemination
strategies and to maintain the state’s bookkeeping. For example, in
our fleet management application vehicles and technicians dissemi-
nate their state across multiple microservices. The vehicles’ state is
disseminated as derivations while technicians’ state is disseminated
as replicas. Derivations require the necessary bookkeeping to react
to active state changes. Replicas require the necessary bookkeeping
to ensure that an update to one replica impacts all other replicas of
the same state.

Hence, a DRIA-oriented programming model should relieve the pro-
grammer from writing bookkeeping code manually. Rather, each
type of state should automatically be disseminated across nodes
with the appropriate bookkeeping code. In other words, a DRIA-
oriented programming model should support multiple parameter

23



CHAPTER 2. DEVELOPING WEB APPS IN TRIUMVIRATE

passing semantics (e.g. pass-by-replication, pass-by-derivation, etc).
More concretely, such a model should at least provide the semantics
needed to implement duplicable, replicable and derivable distributed

state.

A wide variety of parameter passing semantics (e.g. pass-by-copy-
restore [TG11], call-by-move [JLHBS8S|, etc.) have been introduced
over the years by various distributed programming languages. In

general, these semantics either serve as means for optimisation (e.g.
Emerald’s call-by-move [JLHB88]) or as an integral part of the lan-
guage design (e.g. AmbientTalk’s pass-by-far-reference [CGST14]).
With this requirement we argue the need for parameter passing se-

mantics tailored to the needs of distributed state in DRIAs.

R4: The model allows for extensible parameter passing and state

update semantics

In general, the implications of the CAP theorem on distributed
systems is still an active field of research [DPMDT'19, LPRIS,
SBP'18]. As such, new consistency models and conflict resolution

algorithms are regularly developed.

Hence, a DRIA-oriented programming model should allow program-

mers to extend or override its built-in parameter passing and state

update semantics. This allows programmers to easily implement

novel consistency models by overwriting specific parts of the under-

lying programming model.

This requirement is inspired by related work in the context of data-
base replication such as Gorda [CJPRT07]. In a nutshell, Gorda
is a reflective interface that allow developers to implement cus-

tom replication protocols atop existing database management sys-
tems (DBMS) by overwriting how transactions are processed by the
DBMS. With this requirement we argue the need for a similar ap-

proach in the context of DRIA-oriented programming models.

2.3 An Overview of Triumvirate

In this section we give a brief overview of Triumvirate, a DSL that fully
embraces the complexities associated with developing DRIAs. Using Tri-
umvirate, programmers express how their application’s logic should be
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distributed, how its state should be distributed and how specific parts of
the distributed state update.

Triumvirate’s distribution model has heavily been inspired by the
AmbientTalk [CGST14] language. Triumvirate represents pieces of dis-
tributed logic by means of communicating event-loop actors. In other
words, both the server as well as the client are implemented as collections
of actors. Actors coordinate their execution by means of asynchronous
messages.

Triumvirate is an object-oriented language that offers three classes:
Duplicable, Replicable and Derivable. Programmers implement the dis-
tributed state in their DRIAs by extending these classes, thereby inher-
iting from their built-in behaviours. Each class specifies how it behaves
upon mutation of one of its properties. Concretely these behaviours are
the following:

Duplicable The Duplicable class implements the most prevalent kind of
distributed state. That is, state that crosses actors by copy and
which provides locally-active updates. In other words, an actor’s
control flow determines when updates are applied to a duplicate
(i.e. an instance of the duplicable class). Moreover, actors are only
able to update their local copy of a duplicate. All native Triumvirate
data types (i.e. string, numbers, etc.) are duplicable state.

Replicable The Replicable class allows programmers to implement re-
motely-active state. As is the case for duplicates, it is an actor’s
control flow that determines when updates are applied to a replica
(i.e. an instance of the replicable class). However, when an actor
updates a replica this affects all other copies of said replica. Con-
cretely, replicas are sent across the network via pass-by-replication
semantics. This entails that a copy of the replica is made whenever
it crosses actor boundaries. Moreover, this copy keeps a reference to
the original replica. Updates to the original replica are also applied
to the copy and vice versa. Chapter 4 discusses the implications of
these updates with regard to the CAP theorem at length.

Derivable Reactive state is implemented by means of the Derivable class.
Reactive state differs from active state in that updates to reactive
state are not dictated by an actor’s control flow. Rather, reactive
state updates automatically as a result of active state changes. Con-
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cretely, programmers are unable to extend the derivable class or ex-
plicitly instantiate new derivable instances. Rather, programmers
create derivations (i.e. instances of the derivable class) by deriving
them from other objects (i.e. duplicates, replicas or derivations). To
do so programmers use derivation functions that take a number of
objects as input arguments and return a new derivation. As soon as a
source object’s state is modified the derivation function is re-applied
to compute the output derivation’s new state. The reason behind
this peculiar design decision is explained at length in Section 5.3 of
Chapter 5.

Derivations adhere to the following parameter passing semantics.
Assume a derivation d is sent from one actor to another (i.e. the
derivation is part of an asynchronous message). The sending actor
starts by creating a new derivation d’ from d and sends this new
derivation to the receiving actor. Meanwhile, Triumvirate creates a
dependency between d and d’ (i.e. all updates to d automatically
update d’). The combination of these dependencies form a directed
acyclic dependency graph that dictates the order in which deriva-
tions are to be updated. We call this parameter passing semantics
pass-by-derivation. Chapter 5 discusses the algorithm responsible
for this propagation of updates at length.

It is impossible for a language to provide built-in support for all nu-
ances of distributed update semantics. For example, there exists a myr-
iad of synchronisation mechanisms to ensure the consistency of two repli-
cas [LS76, SPBZ11, BLPF15, KKW19]. Although Triumvirate provides a
number of built-in update and parameter passing semantics it also allows
programmers to implement their own. A mirror-based meta-programming
layer, inspired by [MVCT™09], provides a number of overridable hooks
into the Triumvirate runtime.

2.3.1 Distributing Logic Using Actors

The following sections give a brief introduction to programming in Tri-
umvirate. We introduce Triumvirate by means of small examples that
highlight its most important features. We implement our running ex-
ample and discuss various aspects of Triumvirate in more detail in the
following chapters.
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Figure 2.2: Actors as communicating event loops [MTS05].

Triumvirate is the first language to apply the communicating event
loops (CEL) actors model [MTS05] to the context of web applications. In
Chapter 6 we provide an in-depth explanation of how Triumvirate actors
map onto low-level JavaScript constructs. We start by giving a brief ex-
planation of the CEL model in general before highlighting its application
in Triumvirate.

2.3.1.1 Communicating Event Loops

Figure 2.2 gives an overview of the CEL model. In this model, actors
contain a heap of objects, an event queue and an event loop. We say
that an actor owns an object if said object resides in the actor’s heap of
objects. These objects can hold references to other objects, as is the case
in traditional object-oriented paradigms.

There are two kinds of references in the CEL model: local references
and far references. Consider the example depicted by Figure 2.2. Actor 4
owns objects O1 and Os. O holds a local reference to Os, given that
both objects reside in the same heap. This entails that all method in-
vocations or field accesses by O1 on Oz happen in a standard sequential
fashion. The reference which O7 holds to Ogs is a far reference since O3 is
owned by Actorg. Method invocations or field accesses by O; on Og are
asynchronous. Behind the scene these invocations or accesses are trans-
lated into asynchronous messages sent to Actorp. Each such message is
enqueued in Actorpg’s event queue. Actorp’s event loop repeatedly selects
the first event from the queue and performs the invocation or field access
contained in the dequeued event.
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There are two kinds of objects in the CEL model: those that cross
actor boundaries using pass-by-copy semantics and those that cross actor
boundaries using pass-by-far-reference semantics. For example, O invokes
a method on O3 and provides Oy as argument to this invocation. Eventu-
ally Os’s method will be invoked with a far reference to O,. Conversely,
if O3’s method would be invoked with copyable arguments (e.g. numbers,
strings, etc.) then O3’s method would obtain local references to the copies
of these arguments.

2.3.1.2 Actors in Triumvirate

Listing 2.1 provides the definition of two Triumvirate actors that imple-
ment a simple producer-consumer application. In other words, a single
producing actor sends data to one or more consumer actors. Consumers
start by registering themselves at the producer. They do this in their init
method (line 5), which the Triumvirate runtime invokes when an actor is
spawned. Concretely, consumers invoke the register method on the pro-
ducer actor with a self reference as argument. For the sake of brevity we
assume that consumer actors have a far reference to the producer actor.
The register invocation results in an asynchronous message sent to the
producer actor and returns a promise. This promise resolves with the re-
turn value of producer’s register method (line 16). In turn, the producer
actor invokes the registering consumer’s consume method.

This simple example showcases the strength of using actors as a unit of
distribution for DRIAs. The code provided in Listing 2.1 remains exactly
the same regardless of the distribution axis along which it is deployed (i.e.
horizontal or vertical) or locality (i.e. client or server). In other words,
the actors can run as independent entities on a single machine (i.e. in the
browser or on the server), on multiple servers, on multiple clients or on
clients and servers without having to change the source code.

2.3.2 Distributing State Using Triumvirs

For each of the three classes of distributed data we provide a simple exam-
ple that highlights their semantics as well as their API. These examples
all build forth on the producer-consumer actor example.
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[

15

19

class Consumer extends Actor{
producer : FarRef<Producer>

init (){
this.producer.register (this).then(_-=>{
console.log(”Registered”)

})

}

consume (data){
/7. ..

}

}

class Producer extends Actor{

register (consumer : FarRef<Consumer>){
consumer . consume (”hello world”)

}

}

Listing 2.1: Defining Triumvirate actors.

class Message extends Duplicable{

timeStamp : number

text : string

constructor (text : string){
this.timeStamp = Date.now ()
this.text = text

}

}

Listing 2.2: Defining duplicable state.

2.3.2.1 Duplicates

All native Triumvirate data types (i.e. strings, numbers, booleans and ar-
rays thereof) are instance of the Duplicable class. However, programmers
are also able to define more complex duplicable data structures. Assume
that the producer actor generates messages to be consumed by the con-
sumer actors. Listing 2.2 defines such a Message data structure that
contains a field for a time stamp and a field for the actual text.

Listing 2.3 shows how the Producer and Consumer make use of Mes-
sage instances. We omit unchanged code compared to Listing 2.1 for the
sake of brevity. The producer creates a new instance of Message whenever
a consumer registers (line 10). Subsequently, this message is sent to the
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1| class Consumer extends Actor{

2| consume (msg : Message){

console.log (msg.timeStamp + 7 : 7 + msg.text)
4 msg.text = 77

)| 3

o|}

g| class Producer extends Actor{

9| register (consumer : FarRef<Consumer>){

10 let msg : Message = new Message(”hello world”)
11 consumer . consume (msg)

120}

3]}

Listing 2.3: Handling duplicable state.

1| class Counter extends Replicable{
2| value : Number

1| constructor ()

; this.value = 0
o 3

8| Q@Qmutating

9| inc(){

10 this.value += 1
|}

12| }

Listing 2.4: Defining replicable state.

consumer using pass-by-copy semantics. In other words, the consumer
receives a copy of the duplicate’s state and methods. State updates are
locally active: the assignment by the consumer actor on line 4 has no
impact on the message created by the producer on line 10.

2.3.2.2 Replicas

Assume a different scenario for our producer-consumer example. The
producer creates a numeric counter, which can be read and incremented
by the producer and all consumers. To represent such remotely-active
state, Triumvirate programmers extend the Replicable class.

Listing 2.4 contains the definition of the counter. The only noteworthy
part of this definition is the @mutating annotation on line 8. This anno-
tation informs the Triumvirate runtime that invocations of this method
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1| class Consumer extends Actor{
2| consume(cnt : Counter){
cnt.inc ()

3

| 3

|}

6

7| class Producer extends Actor{
s cnt : Counter

9

0| init ()

11 this.cnt = new Counter ()
120}

13| register (consumer : FarRef<Consumer>){

14 consumer . consume (this.cnt)
15 this.cnt.inc ()

16| }

17| }

Listing 2.5: Handling replicable state.

mutate the replica’s state. Subsequently, the Triumvirate runtime ensures
that this update is applied to all other replicas.

Consider Listing 2.5. The producer actor instantiates a new counter
(line 11) and sends this counter to all registering consumers (line 14). The
counter is sent to the consumers using pass-by-replica semantics. In other
words, a consumer receives a copy of the original object Moreover, this
copy maintains a reference to the original counter object. The producer
and all consumers are able to increment the counter concurrently (lines 15
and 3), Triumvirate ensures that eventually all counter replicas have the
same value.

2.3.2.3 Derivations

Assume yet a different version of our producer-consumer setup. This
time, the producer generates a stream of sensor readings that is read and
transformed by consumers. The consumers automatically transform all
new readings produced by the sensor. To represent such reactive state,
Triumvirate programmers use the Derivable class.

In contrast to the other classes of distributed state one does not ex-
plicitly extend or instantiate objects from the Derivable class. Instead,
a programmer creates a new derivation by applying a function to exist-
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1| class Consumer extends Actor{

2| consume (stream){

this.libs.derive ((streamValue)=>{
| return transform (streamValue)

5 },stream)

o }

7}

9| class Producer extends Actor{
10| stream : Derivable

12| init ()4

13 this.stream = this.libs.derive (_-=>{
14 return readSensor ()

15 },this.libs.seconds)

6]}

17| register (consumer : FarRef<Consumer>){
18 consumer . consume (this.stream)

9] }

20| }

Listing 2.6: Handling derivable state.

ing objects (i.e. duplicates, replicas or other derivations). We call these
functions derivation functions.

For example, the producer creates the stream of sensor values by deriv-
ing from the built-in seconds object (line 13). Each change to the seconds
object triggers a recomputation of the function provided to derive. In
other words, the producer actor creates a derivation which updates every
second by reading the latest sensor value (we assume the existence of a
readSensor function on line 14).

The sensor stream derivation is sent to registering consumers using
pass-by-derivation semantics. In other words, the consumer receives a
new stream that depends on the original stream sent by the producer.
Updates to the original stream automatically result in updates to this
new stream. We discuss the consistency requirements and order of these
updates in detail in Chapter 5.

Concretely, the consumer locally derives yet another stream on line 3
(we assume the existence of a transform function). Every second the
second object is changed by the Triumvirate runtime which in turn triggers
the producer to read the latest sensor value. Subsequently this triggers
all registered consumers to transform the latest sensor value producer by
the producer.
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2.3.3 Triumvirate and the Rich Internet

Triumvirate integrates aspects of different distributed programming mod-
els (e.g. communicating event-loop actors, replicated data structures, re-

active programming) into a coherent model for DRIAs. Concretely Tri-

umvirate meets the requirements for a DRIA-oriented programming model

as follows:

R1:

The model provides modular abstractions for distributed
logic

Triumvirate programmers use CEL actors to implement their DRIA’s
distributed logic. These actors are modular and composable in typ-
ical object-oriented fashion. In other words, actor definitions can be
extended and can implement interfaces.

Triumvirate actors are location agnostic: an actor definition can
both represent a client or server side piece of logic. As such, Tri-
umvirate supports vertical distribution of application logic. More-
over, given the inherent parallel and concurrent nature of actors
these also allow for horizontal distribution on client and server-side.

Actors communicate with each other by invoking each other’s meth-
ods and accessing each other’s fields. These accesses and invocations
are translated by the Triumvirate runtime to asynchronous message
sends.

Triumvirate is the first implementation of this actor model in the
context of web development. We discuss Triumvirate’s implementa-
tion of the CEL actor model for the web in Chapter 6.

Ry: The model guarantees data consistency properties specified

by the programmer

Triumvirate provides built-in support for locally-active, remotely-
active and reactive state. Each kind of state is represented by its
own class and exhibits a particular API. Moreover, programmers are
freed from manually ensuring the consistency guarantees associated
to each state or manually handling conflicting updates. Triumvi-
rate ensures the guarantees of each kind of state, even in the face
of concurrent and conflicting updates. We discuss the mechanisms
employed by Triumvirate to ensure these guarantees for replicas in
Chapter 4 and for derivations in Chapter 5.
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R3: The model supports multiple parameter passing semantics
Triumvirate provides three parameter passing semantics: pass-by-
copy, pass-by-replica and pass-by-derivation. These three semantics
suffice to implement the three major categories of distributed state
in DRIAs: duplicable, replicable and derivable state. This frees
the programmer from manually serialising and deserialising state.
Instead, state is sent between actors as arguments to method in-
vocations and Triumvirate automatically takes care of serialising
and deserialising the state. Moreover, Triumvirate ensures that the
bookkeeping information needed to ensure consistency guarantees
of duplicates, replicas or derivations is kept up-to-date as they are
sent across actors in the network. We discuss pass-by-replica and
pass-by-derivation semantics in detail in Chapter 4 and Chapter 5
respectively.

R4: The model allows for extensible parameter passing and state
update semantics
Duplicables, replicables and derivables cover the three major cate-
gories of distributed state. However, programmers are able to extend
and customise both the parameter passing semantics as well as the
update semantics to fit application specific requirements. To this
end, programmers override a number of hooks provided by Triumvi-
rate’s mirror-based meta programming layer (see Section 6.5).

Figure 2.3 provides an overview of Triumvirate’s technology stack and
how the different layers fulfil the aforementioned requirements. Con-
cretely, Spiders.js implements the actors and meta layer exposed by Tri-
umvirate to its programmers. As such, the Spiders.js layer of the Tri-
umvirate technology stack fulfils requirements R; and R4. Triumvirate
uses these actors and meta layer to fulfil requirements Ry and Rs.

2.4 Chapter Summary

This chapter introduces our running example: a fleet management system
inspired by Emixis’ production system. The system allows for dispatchers
to interact with technicians in the field as well as track company vehicles.
It exemplifies distributed rich internet applications, both its logic as well
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Distributed Rich Internet Applications

Actors Triumvirate Derivable R3
Meta layer Duplicable Replicable R2
Spiders.js R ]
Meta layer Actors Isolate Far Reference R4
TypeScript
Objects Classes Web Sockets

Figure 2.3: Overview of the Triumvirate technology stack and how it meets
the requirements for a DRIA-oriented programming model.

as its state are distributed amongst multiple clients and servers. Moreover,
different parts of the state require different update semantics.

We identify four key requirements which a distributed programming
model should meet to ease the development of DRIAs. First, the model
should provide a single abstraction to represent distributed logical compo-
nents and should provide built-in communication primitives to coordinate
these logical components. Second, the model should provide varying pa-
rameter passing semantics depending on the kind of data contained in
these messages (e.g. pass-by-copy, pass-by-replication, etc). Third, the
model should support various update semantics for distributed state (e.g.
locally-active, remotely-active and reactive updates). Fourth, the model
should allow the programmers to extend its built-in parameter passing
and update semantics.

Using the aforementioned requirements we discuss and compare major
distributed programming models and approaches. Although all models
meet some requirements, none of them are able to fully support the com-
plexity of DRIAs. This forces programmers to deal with complexity which
is non-essential to their application domain (e.g. synchronising access to
a piece of distributed state).
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We introduce Triumvirate, an object-oriented domain-specific distrib-
uted programming language tailored towards the development of DRIAs.
Triumvirate allows programmers to implement distributed logic using com-
municating event-loop actors. These actors allow for server-to-server,
client-to-client and server-to-client distribution. Triumvirate provides three
core classes to support distributed state: Duplicable, Replicable and Deriv-
able. Each of these classes provides its own parameter passing and update
semantics.
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Chapter 3

State of the Art in
Distributed Programming
for Web Applications

This chapter uses the requirements discussed in Section 2.2 of Chapter 2
to discuss and compare the state of the art in distributed programming
models. We indicate whether or not a specific model satisfies a particular
requirement using a system of icons. Table 3.1 provides an explanation of
these icons. It is important to note that the comparison in this chapter
provides a high-level overview of work related to this dissertation. The
following chapters provide more in-depth discussions of the related work
for specific fields within distributed programming.

This chapter is divided in two parts. The first part discusses language-
agnostic distributed programming models in general. The second part
discusses distributed programming languages specifically designed for the
web. More precisely, we focus on distributed programming languages that
are able to support the peculiarities of web application architectures:

Icon Explanation
X The model fails to meet the requirement

The model partially meets the requirement

The model meets the requirement

Table 3.1: Requirement classification icons and their explanations.
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e The amount of nodes in the network as well as their physical loca-
tions may change throughout the application’s lifetime. For exam-
ple, server nodes can dynamically be added to the network for the
sake of scalability.

e Nodes intermittently lose connectivity with the network. This is es-
pecially the case for clients running web applications on their mobile
devices.

e The address of nodes is not globally known across the network. In
other words, not all nodes in the network are able to communicate
with each other. For example, a single server node might delegate
clients’ requests to multiple other server nodes that are hidden to
the client.

e Code is dynamically deployable to nodes in the network. For exam-
ple, client nodes receive and evaluate their source code by connecting
to server nodes.

3.1 Distributed Programming Models

To the best of our knowledge no distributed programming model has thus
far specifically been designed for web applications. In this section we
therefore discuss distributed programming models in general and compare
them with regards to the requirements for DRIA-oriented programming
models.

3.1.1 Remote Procedure Calls and Method Invocations

There are three generations of the RPC model. The original remote pro-
cedure call (RPC) model [BN84] offered synchronous request-response in-
teractions between nodes in a network. In a nutshell, nodes interact with
one another by remotely calling each other’s procedures. Calling a remote
procedure blocked the execution of the caller’s program until the remote
procedure returned. The idea behind this design choice was to make local
and remote procedure application indistinguishable from each other. This
design choice has been heavily critiqued for its many flaws (e.g. lack of
fault-tolerance, latency and distribution hiding, etc.).
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The second generation of RPC is an adaptation to the object-oriented
paradigm. This generation of the model is called remote method invo-
cations (RMI) (e.g. Java RMI [Mic98], CORBA [Grol2]). For the most
parts these versions were direct adaptations of the original model. In other
words, nodes in the network now contain a heap of remotely accessible ob-
jects. The nodes’ stubs are no longer placeholders for remote procedures,
but expose these different objects. Nodes are able to invoke methods on
these remote objects, through the stubs, as if these were local. However,
RMI inherited the flaws for which RPC is critiqued [KWWW94].

A third generation employs the RPC model in the context of web de-
velopment. Initial attempts suffered from the same flaws as the original
model (e.g. XML-RPC [Win99], SOAP [BEK'00]). However, newer im-
plementations (e.g. Google’s gRPC [gRP06], Facebook’s Thrift [SAKO07])
solve a number of these issues (e.g. asynchronous calls, failure handling,
distribution hiding, etc.).

We argue that the RPC model fails to adequately deal with all the
complexities of DRIAs:

Ry : The model provides modular abstractions for distributed
logic
In the RPC model distributed logical components are implemented
as sets of remotely callable procedures. This abstraction allows for
both horizontal (i.e. multiple servers) and vertical (i.e. client/server)
distribution. Moreover, programmers coordinate these components
using a single built-in communication primitive: remote procedure
calls. However, these sets of remotely callable procedures lack mod-
ularity. The RPC model does not provide the mechanisms needed
to easily compose and deploy combinations of these sets.

Ry: The model guarantees data consistency properties specified
by the programmer
In general, the RPC model lacks distributed and shared state and
only provides locally-active update semantics. An argument to a
remote procedure invocation can be mutated, but this mutation
only affects that particular copy. An exception to this is the Dex-
ter [TG11] framework that allows programmers to implement custom
state update semantics
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R3: The model supports multiple parameter passing semantics

RPC/RMI implementations either only support pass-by-copy se-
mantics or pass-by-reference and pass-by-copy semantics (e.g. Dex-
ter [TG11]). To the best of our knowledge current RPC implemen-
tations lack the semantics to support the bookkeeping of reactive
state.

R4: The model allows for extensible parameter passing and state
update semantics
Most RPC implementations delegate serialisation and deserialisation
of arguments to so-called stubs. Given an open [KLL197] RPC im-
plementation, as is the case for Dexter [TG11], these stubs provide
programmers with a single hook to override how data is distributed
across the network. However, these stubs do not provide the abstrac-
tions to override how objects are mutated and updated. As such,
the RPC model does not allow programmers to implement custom
update semantics.

3.1.2 Tuple Spaces

In the tuple space model [Gel85], nodes in the network conceptually share
a data structure called the tuple space. This data structure contains tu-
ples, which are ordered groups of values. A tuple space supports three
operations: out inserts a tuple into the tuple space, in removes a tuple
from the tuple space and rd reads a tuple from the tuple space without
removing it. Moreover, programmers are often given the ability to in-
stall callbacks that are invoked as soon as a tuple of a specified pattern is
inserted in the tuple space.

In the original model, introduced by the coordination language Linda
[Gel85], the nodes in the network maintain the single shared tuple space.
Maintaining a central tuple space consistent is often impossible, for ex-
ample in scenarios where partial failures or disconnections of nodes oc-
cur often. As such, a number of approaches [MPRO01, MZ04, GSMD14]
allow nodes in the network to maintain their own tuple space. Conse-
quently, nodes synchronise their local tuple spaces after each in operation
in order to keep the conceptual global tuple space consistent. Other mod-
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els [MZ04, GSMD14] take the opposite approach: they replicate individual
tuples across the network.

The tuple space model meets the requirements for DRIA-oriented pro-

gramming models as follows:

R1:

The model provides modular abstractions for distributed
logic

Tuple spaces abstract application logic as sets of reactions to par-
ticular events. These reactions form an abstraction for program-
mers to specify the distributed logic of a specific node in the net-
work. Moreover, tuple spaces provide a set of communication prim-
itives (i.e. in, out and rd) to coordinate these distributed pieces
of logic. The tuple space model, or at least some of its implemen-
tations [MPRO1, GSMD14], therefore satisfies R of DRIA-oriented
programming models.

Ry: The model guarantees data consistency properties specified

R3:

by the programmer

Some tuple space implementations (e.g. TOTAM [GSMD14],
Linda [Gel85]) model tuples as immutable data structures. The
tuples in these implementations are therefore trivially consistent,
but programmers lack the ability to leverage the tuples’ consistency
and availability (i.e. as given by the CAP [Bre00] theorem). Other
models [DFWB9S] favour the availability of tuples by allowing all
nodes in the network to read and update tuples. However, updating
a tuple during a network partition is restricted to the node that
created the tuple.

Finally, some tuple space implementations allow programmers to
apply operations with varying degrees of consistency on the tuple
space [ADNL15]. This allows programmers to implement remotely-
active state. However, to the best of our knowledge no tuple space
implementation supports reactive state.

The model supports multiple parameter passing semantics

Tuple space implementation in which tuples are immutable data
structures typically only support pass-by-copy semantics. Other
tuple space implementations [DFWB98, ADNL15] support pass-by-
replica or even pass-by-far-reference semantics [GSMD14]. However,
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current tuple space models and implementations lack support for
pass-by-derivable parameter passing semantics.

R4: The model allows for extensible parameter passing and state
update semantics
Some implementations of the tuple space model (e.g. TOTAM
[GSMD14] and TOTA [MZ04]) allow programmers to override how
tuples are replicated across the network through so-called propaga-
tion protocols. These protocols provide programmers with a number
of hooks into the tuple’s replication process. However, these hooks
solely focus on the replication process of tuples. As such, program-
mers are only able to override parameter passing semantics and are
therefore unable to implement custom update semantics.

3.1.3 Actors

Actors are autonomous units of computation. In other words, actors exe-
cute independently of each other (e.g. each actor has a dedicated thread)
and do not share memory. Since the original actor model, introduced by
Hewitt et al. in 1973 [HBS73], a range of different actor models have
been proposed [DKVCDMI16]. In our discussion we focus on the com-
municating event-loops (CEL) [MTS05] actor model. This model and its
implementations most closely meet the requirements for a DRIA-oriented
programming model, given that it lies at the foundation of most JavaScript
engines.

We discuss the CEL model in Section 2.3.1.1 of Chapter 2. In a nut-
shell, CEL actors contain heaps of objects. Two objects residing in the
same heap hold local references to each other and can synchronously in-
voke each other’s methods. Two objects residing in different heaps hold
far references to each other and asynchronously invoke each other’s meth-
ods. Moreover, objects can be sent between actors as part of method
invocations. The CEL model discriminates between objects that cross the
actor boundaries by copy and those that cross the actor boundaries by far
reference.

R;: The model provides modular abstractions for distributed
logic
Actors inherently are modular abstractions for distributed logic.
Each actor specifies a piece of distributed logic and coordinates with
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other actors through asynchronous messages. As such, the actor
model fully meets R; of DRIA-oriented programming models.

Ry: The model guarantees data consistency properties specified
by the programmer X
The actor model only supports locally-active state updates. Even
in the CEL model, updates only affect the target object. This is
regardless of whether the invoker of the update has a local or far
reference to said object.

R3: The model supports multiple parameter passing semantics
X
The CEL variant of the actor model provides two built-in parameter
passing semantics: pass-by-copy and pass-by-far-reference. In other
word, programmers are able to express duplicable and some form of
replicable state. For example, replicable state which must be offline
available cannot be expressed with pass-by-far-reference semantics.
In other words, these two semantics do not suffice to express all
forms of replicable or duplicable state.

R4: The model allows for extensible parameter passing and state
update semantics X
A number of actor-based programming languages offer metapro-
gramming abstractions [MVCTT09, McA95, WY14, OIT92]. Some
of these abstractions fulfil R4 (e.g. AmbientTalk’s mirror-based re-
flection layer [MVCT109]). However, these abstractions are im-
plementation dependant and are not inherently part of the actor
model, which does not allow programmers to extend built-in param-
eter passing or state update semantics.

3.1.4 Replicated Data Types

The database community has extensively researched data replication and
data consistency. This research focuses primarily on novel consistency
models and algorithms to enforce certain levels of consistency in repli-
cated databases. In recent years data replication has also been researched
from within the programming language community. In contrast to the
database community, this research focuses on language abstractions for
data replication. In general the programming-language research on data
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replication tackles the following problems: First, how can programmers
specify that a piece of state should be replicated amongst two or more
nodes in a network? More specifically, how do programmers specify that
updates to this state should be remotely active (i.e. an update to one
replica triggers an update to all others)? Second, how do programmers
specify the data consistency guarantees required for this state? For exam-
ple, how does one specify that replicas are allowed to temporarily be in
different states? We shortly discuss the most prevalent approaches. Chap-
ter 4 discusses the state-of-the-art in abstractions for data replication in
more detail.

The programming language research on data replication follow two ap-
proaches. First, mostly theoretical approaches [SPBZ11, BLPF15] which
focus on researching new kinds of data consistency (e.g. strong eventual
consistency) and how these can be enforced for particular data types. A
well known example of this research are conflict-free replicated datatypes
(CRDTs) [SPBZ11]. It constraints the operations on an abstract data
type (ADT) to be commutative, associative and idempotent. If these
constraints are met, it guarantees that all replicas of this ADT remain
strongly eventually consistent in the face of concurrent updates.

A second approach focuses on integrating these data types and con-
sistency models into distributed programming languages. For example,
Lasp [MVRI15] is a programming language where all data types are CRDTs.
Lasp allows programmers to develop distributed systems as collections of
processes (i.e. Erlang actors). The state of these systems is represented as
CRDTs instances and compositions thereof, which are shared amongst the
processes. Composition of CRDTs instances happens through a functional
programming API (i.e. map, filter, fold).

In general, the models, frameworks and languages tailored towards
replicated data types meet the requirements for DRIA-oriented program-
ming models as follows:

Ri: The model provides modular abstractions for distributed
logic X
Data replication approaches allow programmers to implement dis-
tributed logic by means of abstract replicated data types. These
abstractions typically specify a data type’s consistency in the face
of various operations. However, we argue that data replication ap-
proaches lack modularity. With the exception of Lasp [MVR15] pro-
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grammers are unable to create new abstract replicated data types
by arbitrarily combining existing ones.

Ry: The model guarantees data consistency properties specified
by the programmer
Data replication approaches inherently provide a myriad of different
update semantics, depending on the required consistency guaran-
tees. However, these different semantics only support locally and
remotely-active updates. To the best of our knowledge these ap-
proaches do not provide solutions for reactive updates.

R3: The model supports multiple parameter passing semantics

Typically, data replication approaches either assume data to already
be replicated across the network (i.e. the actual replication is not
part of the model) or solely provide pass-by-replication semantics.
As such, these approaches only partially fulfil Rs for DRIA-oriented
programming models.

R4: The model allows for extensible parameter passing and state
update semantics X
A number of replicated data approaches [LLCT14, HBZ'16, SKJ15]
allow programmers to specify application-specific constraints on dis-
tributed state. For example, a constraint that specifies the maximum
value of a bounded counter. These approaches then determine the
optimal consistency level while upholding these constraints. How-
ever, these approaches do not allow programmers to override how
data type are updated or how data types are sent across the network.

3.1.5 Distributed Reactive Programming

The reactive programming paradigm [BCCT13] is specifically designed
for the development of event-driven applications. It revolves around three
core concepts. First, time-varying values (e.g. the user’s mouse position)
are first-class language constructs commonly called signals. Second, pro-
grammers are able to create new signals out of existing ones using signal
combinators (i.e. lifted functions). Third, the language runtime tracks the
dependencies between the various signals that form a graph. Changes to
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source signals propagate through the dependency graph, thereby updating
the application’s state.

Distributed reactive programming (DRP) [MSDM19, DSMM14, SW18|
applies the core principles of reactive programming in a distributed set-
ting. Signals (and therefore the dependency graph) can reside on physi-
cally distributed machines. Changes propagate through this dependency
graph through nodes sending messages to each other.

From a programmer’s perspective the distributed reactive program-
ming model remains largely unchanged compared to its non-distributed
counterpart. Programmers implement their application’s logic by apply-
ing lifted functions to signals, regardless of the signals’ whereabouts. The
underlying runtime ensures that the dependency graph updates as the
system receives new data (e.g. clients issuing requests). In Chapter 5
we discuss the state-of-the-art in reactive runtimes and propagation algo-
rithms in detail.

In general, distributed reactive approaches meet the requirements for
DRIA-oriented programming models as follows:

R1: The model provides modular abstractions for distributed
logic
DRP programmers declaratively specify how parts of their appli-
cations depend on each other by applying lifted functions to sig-
nals. These signals represent the application’s state while lifted
functions contain the application’s logic. The DRP runtime ensures
that changes to the system’s state (i.e. to signals) automatically
trigger the right parts of the application’s logic (i.e. be re-applying
lifted functions). Moreover, this propagation of change happens re-
gardless of a signal’s whereabouts. DRP therefore provides modular
abstractions for distributed logic.

Ro: The model guarantees data consistency properties specified
by the programmer X
Using DRP, programmers are trivially able to express reactive state.
Moreover, REScala programmers [MBS™18] are able to implement
remotely-active state. Two replicated signals are allowed to tem-
porarily diverge in state and are guaranteed to eventually be con-
sistent through REScala’s use of conflict-free replicated data types
(CRDTs) [SPBZ11]. As such, REScala supports a single flavour of
remotely-active state.
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R3: The model supports multiple parameter passing semantics

DRP supports derivable state through signals and provides pass-by-
derivation semantics. In other words, whenever a node sends a signal
to another node this implicitly creates an edge in the distributed
dependency graph. Whenever the sender’s signal changes with a new
value, this value is sent along the edge using pass-by-copy semantics
to update the receiver’s signal. REScala is an exception, as it allows
signals to be passed by replication amongst nodes in the network for
the sake of fault tolerance and offline availability.

R4: The model allows for extensible parameter passing and state
update semantics X
To the best of our knowledge, there exists no DRP solutions that
allows programmers to extend its built-in semantics. Although ap-
proaches to extend the semantics of non-distributed reactive pro-
gramming have been proposed [WS17], these are yet to be extended
to DRP.

3.2 Programming Languages for the Web

A number of programming languages have specifically been designed for
the web. These languages radically differ in their programming models
and in the nature of the abstractions they provide. We therefore dis-
cuss the most prominent of these languages separately. More specifically,
this section targets distributed programming languages that fulfil two re-
quirements. First, the language must allow programmers to implement
both the server and the client-side of their web application. Second, the
language provides built-in abstractions tailored towards distribution.

3.2.1 OPA

OPA [BKS13] is a tierless programming language specifically designed for
the web. Web architectures commonly comprise three tiers: a UI, appli-
cation logic and database tier. In traditional web programming each of
these tiers is implemented separately, possibly using different technologies
or languages. A tierless programming language allows programmers to
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implement each tier as if they were part of the same program. A tier
splitter determines which parts of the code will run in which tier.

The basic building blocks of OPA are functions that can be composed
into modules. Moreover, OPA provides a number of communication prim-
itives which allow client (i.e. the Ul tier) and server (i.e. the application
logic tier) functions to coordinate. Programmers can optionally annotate
these functions and modules to specify in which tier the specific function
should run. Otherwise, OPA comes with a built-in slicing mechanism
which determines where a function should run and how data should be
duplicated.

OPA meets our requirements for DRIA-oriented programming as fol-
lows:

Ri: The model provides modular abstractions for distributed
logic
OPA’s abstraction for pieces of distributed logic are functions that
can be remotely called. Moreover, OPA offers three communica-
tion primitives to coordinate the execution of database, server and
client functions: Session, Cell and Network. The first offers one-
way asynchronous communication, the second two-way synchronous
communication and the last serves as a broadcasting mechanism.

Ry: The model guarantees data consistency properties specified
by the programmer X
OPA only provides immutable data structures and therefore does
not provide any update semantics or data consistency guarantees.

R3: The model supports multiple parameter passing semantics
X
OPA provides two parameter passing semantics. Native OPA values
(i.e. integers, floats, strings and records) adhere to pass-by-copy
semantics. OPA implements a custom parameter passing semantic
for functions. A function can be sent from one node to another in
the network. The receiving node constructs a stub for the original
function. This stub ensures that all calls to the received function
are translated into remote procedure calls to the node owning the
original function.
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R4: The model allows for extensible parameter passing and state

update semantics X

OPA treats data from other languages and systems as external. Pro-
grammers are able to explicitly implement serialisers and deserialis-
ers for these external types. However, this mechanism is too crude to
implement custom parameter passing or update semantics for OPA
data types. The serialisers and deserialisers solely allow program-
mers to determine how data should be copied between nodes.

3.2.2 Hop.js

Hop.js [SP16] is the runtime for a language called HopScript that is a su-
perset of JavaScript. As is the case for OPA, HopScript is a tierless pro-
gramming language. Programmers implement both the server as well as

the client of their web application using HopScript. Moreover, HopScript

provides two tier-switching operators ~ and $ that allow programmers to

manually delimit client-side from server-side code. We discuss the rest of

HopScript’s particularities as we evaluate it against the requirements for

a DRIA-oriented programming model.

R1:

The model provides modular abstractions for distributed
logic

HopScript models distributed logic as services, which are compara-
ble to remote procedures. In its simplest form, HopScript servers
expose a number of services which can be called by clients. More-
over, clients are able to import these services and call them as if
they were local. As such, services allow for vertical distribution and
horizontal distribution on the server. Programmers coordinate the
parts of their web applications by using service applications.

Ry: The model guarantees data consistency properties specified

by the programmer

HopScript supports reactive and locally-active state. Programmers
declare certain objects or events — called sources — as time-varying
through the reactProxy method. All DOM elements which depend
on a source will automatically be updated as soon as said source
changes. However, this reactive state only serves to update a client’s
UI upon local state changes. In other words, changes to reactive
state do not propagate between different nodes in the network.
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R3: The model supports multiple parameter passing semantics
X
HopScript only supports pass-by-copy semantics, as it essentially
implements an improved version of JavaScript’s standard JSON se-
rialisation.

R4: The model allows for extensible parameter passing and state
update semantics X
Although HopScript partially supports EcmaScript 6, it does not
support its reflexive capabilities. To the best of our knowledge,
HopScript does not provide any means for the programmer to extend
its built-in semantics, particularly regarding parameter passing and
update semantics.

3.2.3 Links

Links [CLWYO06] is a tierless programming language for web applications.
It differs from other languages by compiling parts of its syntax to SQL
queries. This allows programmers to implement the database tier of their
applications in the same language as the client and server tier. Links
programmers implement their applications as a series of functions that
they annotate with either client or server. Client functions are callable
from the server and vice versa. In general, links meets the requirements
for DRIA-oriented programming models as follows:

Ri: The model provides modular abstractions for distributed
logic
Links models distributed logic as functions and provides communica-
tion primitives in the form of remote function calls. However, Links
programmers are unable to lexically determine whether a function
call happens locally or remotely. As such it suffers from the same
design flaws as the traditional RPC model [KWWW94].

Ro: The model guarantees data consistency properties specified
by the programmer X
Links only provides immutable data structures and therefore does
not provide any update semantics or data consistency guarantees.
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R3: The model supports multiple parameter passing semantics
X
When a remote function call occurs, all arguments are sent by-copy
to the remote location. As such, Links only supports pass-by-copy
semantics.

R4: The model allows for extensible parameter passing and state
update semantics X
To the best of our knowledge, Links does not provide any mechanism
to extend its built-in semantics.

3.2.4 Stip.js

Stip.js [PDRVCDM14] strives to bring the benefits of tierless programming
languages to JavaScript. It is essentially a tier-splitting tool that allows
JavaScript programmers to decide on which tier parts of their code are to
be deployed. Although Stip.js does not technically qualify as a distributed
programming language it does enhance JavaScript with a number of dis-
tributed functionalities. More concretely, Stip.js satisfies the requirements
for a DRIA-oriented programming language as follows:

Ry: The model provides modular abstractions for distributed
logic
Stip.js does not provide any new abstractions over regular JavaScript
with regards to application logic. We therefore restrict our discus-
sion to JavaScript’s support for modular distributed logic abstrac-
tions.

Node.js, the most popular server-side implementation of JavaScript
allows for rudimentary horizontal distribution using child processes.
Most client-side implementation also support horizontal distribu-
tion in the form of web workers. Both abstractions are actor-like
constructs which allow programmers to execute application logic in
parallel. However, these abstractions do not allow programmers to
distribute logic vertically. Moreover, the abstractions differ in their
APT and semantics.

Ry: The model guarantees data consistency properties specified
by the programmer
Stip.js provides annotations that allow programmers to specify the
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Ry | Ry | R3 | R4

RPC

Tuple Spaces

Actors X | X | X
Replicated Data Types X X
Distributed Reactive Programming X X
OPA X X X
Hop.js X | X
Links X | X | X
Stip.js X

Table 3.2: State of the art in distributed programming for web applications
compared to the requirements for a DRIA-oriented programming model.

consistency guarantees required for specific variables [PDMDR15].
After tier splitting Stip.js ensures that these guarantees are upheld
in the face of concurrent updates. However, Stip.js only supports
remotely-active state and does not provide annotations for reactive
state.

R3: The model supports multiple parameter passing semantics

Stip.js automatically determines when to use pass-by-replica or pass-
by-far-reference semantics (e.g. through the programmer’s annota-
tions). However, Stip.js does not support pass-by-derivation seman-
tics.

R4: The model allows for extensible parameter passing and state
update semantics X
To the best of our knowledge, Stip.js does not provide any mecha-
nism to extend its built-in semantics.

3.3 Overview of the State of the Art

Table 3.2 summarises how the state of the art in distributed program-
ming meets the requirements for a DRIA-oriented programming model.
Most approaches at least partially fulfil these requirements. However, no
approach is able to provide an elegant solution for all requirements.
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Triumvirate strives to integrate the best parts of the aforementioned
approaches into a coherent model. Concretely, Triumvirate represents dis-
tributed logic using CEL actors (see Chapter 6). These actors are able to
share three kinds of distributed state: duplicable, replicable and derivable
state. Replicable state is heavily influenced by data replication approaches
(see Chapter 4). Triumvirate offers multiple kinds of replicable state,
each with its own consistency guarantees. Derivable state is influenced
by distributed reactive programming and allows programmers to imple-
ment reactive state (see Chapter 5). Moreover, programmers are able to
extend the built-in update and parameter passing semantics of duplica-
ble, replicable and derivable state using Triumvirate’s metaprogramming
abstractions (see Section 6.5 of Chapter 6).

Triumvirate is greater than the sum of its parts. A large part of our
work is dedicated to defining how these parts interact with one another and
how to maintain their respective guarantees within a single programming
model. In the following chapters we show how Triumvirate integrates
actors, replicated data types and reactive programming into one coherent
DRIA-oriented programming model.
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Chapter 4

Replicating
Remotely-Active State

DRIAs distribute data across multiple servers and/or clients for the sake
of offline availability, performance, security, etc. These data conceptually
represents shared state and should therefore provide remotely-active up-
date semantics: If one client changes the shared state locally, this change
should become visible to all other clients as well. In our running exam-
ple (see Chapter 2) technicians are equipped with smartphones installed
with a fleet management application. On one hand this mobile applica-
tion allows technicians to access their job schedule and edit information
with regards to a particular job. On the other hand the application pro-
vides dispatchers with a general overview of all jobs and allows them to
reschedule particular jobs. The dispatcher and technician share two pieces
of distributed state: the list of jobs to be done and the job schedule. Dis-
tributing these different parts of the application’s state that have varying
consistency requirements heavily burdens the developer.

In general, distributing state forces the developer to think about Con-
sistency, Availability and Partition tolerance as captured by the CAP
theorem [Bre00, GL02]. This theorem states that it is impossible for a
distributed system to simultaneously guarantee all three. DRIAs must be
partition tolerant as clients disconnect frequently and network failures are
recurrent. Programmers are therefore left with a trade-off guaranteeing
either availability or consistency for different parts of their web applica-
tion. For example, a technician is always able to modify data regarding
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a particular job (i.e. job-specific functionality is available). However, this
entails that the dispatcher and the technician might have diverging infor-
mation regarding this job (i.e. job-specific functionality is not consistent).
This is due to the fact that the technician might modify the data while
being offline. Conversely, accessing or modifying the job schedule must
happen consistently (i.e. the dispatcher and a technician may never have
a diverging view over the job schedule). This entails that schedule-specific
functionality is not always available.

Most distributed programming languages and libraries implicitly make
this trade-off for the programmer. For example, using E’s [MTS05] even-
tual references one implements consistent and partition-tolerant (CP) sys-
tems. On the other side of the spectrum, Lasp [MVR15] exclusively re-
lies on conflict-free replicated data types (CRDTs) [SPBZ11] for distribu-
tion which makes it suitable to implement available and partition-tolerant
(AP) systems. Unfortunately, many applications cannot be categorized as
fully AP or CP. Programmers faced with such mixed A P-CP applications
cannot rely on the high-level abstractions offered by a single distributed
programming language. Instead they are forced to resort to low level
APIs or external libraries to guarantee either their system’s consistency
or availability.

This chapter presents Replicables, a class of distributed objects that
allows programmers to easily implement the AP and CP aspects of their
distributed systems. Replicables come in two flavours: eventual replicables
and strong replicables. Concrete instances of these replicables are called
eventual and strong replicas. On one hand eventual replicas allow the
programmer to implement the AP functionalities of their system. The
Triumvirate runtime ensures that availability of eventual replicas is guar-
anteed even in the face of partitions. Moreover, eventual replicas are kept
eventually consistent across actors. This unburdens the programmer from
manually synchronising diverging state of eventual replicas after a parti-
tion heals. On the other hand strong replicas allow the programmer to
implement the CP functionalities of their system. The Triumvirate run-
time guarantees that operations on strong replicas are consistent even in
the face of partitions. This comes at the price of these operations not
always being available.

Figure 4.1 highlights the concepts discussed in this chapter as well as
the requirements that replicables tackle. More precisely, in this chapter we
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4.1. STRONG VERSUS EVENTUAL REPLICATION: A
FUNCTIONAL CHOICE

Actors Triumvirate

Replicable

Figure 4.1: Concepts discussed in this chapter.

detail how replicables partially fulfil requirements Ry and Rg3 for DRIA-
oriented programming models. In other words, we describe how replicables
guarantee data consistency properties specified by the programmer and how
they provide support for multiple parameter passing semantics.

We start by giving an overview of how programmers use replicables
in their Triumvirate applications after which we discuss the performance
differences between strong and eventual replicas. Subsequently we dis-
cuss the implementation of an interactive presentation tool built using
replicables that has been used in a real-life situation. Finally we end this
chapter by detailing how eventual and strong replicas are implemented in
the Triumvirate runtime.

We largely base this chapter on our work presented in [MSDM18a].

4.1 Strong versus Eventual Replication: a Func-
tional Choice

Triumvirate developers implement the remotely-active parts of their ap-
plications’ state using replicables. Programmers choose between two con-
crete variants of replicables: eventual or strong. This decision is in part
driven by functional considerations, as eventual and strong replicables dif-
fer in the guarantees they provide and in the APIs they offer. We start by
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Figure 4.2: (A) Method invocation on an eventual replica. (B) Method
invocation on a strong replica.

giving a high-level overview of the programmatic differences between both
replicables. Subsequently we implement parts of our running example to
showcase their use and expressiveness.

4.1.1 Strong and Eventual Replicas

Eventual replicas implement the AP functionality in a distributed appli-
cation. Figure 4.2 (A) gives a conceptual overview of how they work. An
actor z has acquired an eventual replica (marked E!). Conceptually, a
single actor in the network (i.e. actor y) owns the master (marked E;)
eventual replica. An object in z synchronously invokes a method of E!. (1),
the method executes locally on E! and returns a value (2). Subsequently,
E/ sends its new local state to its master (3) which merges the state with
its own and returns the new global state (4). This mechanisms ensures
the eventual consistency of E!. and E,’s state, which we define as follows:

Definition 4: Eventual consistency

A master replica and its worker replicas are eventually consistent
if all of the replicas’ fields contain equal values when the system
reaches quiescence. A system of master and worker replicas reaches
quiescence when no more methods are invoked on replicas and when
all worker replicas have received the last returned global state from
the master replica.
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Eventual replicas guarantee three properties:

Guarantees of eventual replicas

Eventual replicas are available (see Definition 2). In other words,
reading the value of an eventual replica’s field or invoking one of its
method is guaranteed to always return a meaningful result.
Eventual replicas are eventually consistent (see Definition 4). In
other words, simultaneous reads and method invocations on two
replicas might temporarily return diverging results. However, these
reads and method invocations return equal results when the system
reaches quiescence.

Eventual replicas are partition tolerant (see Definition 3). The
replicas remain available under network partitions and their even-
tual consistency is guaranteed upon healing of said partitions.

Strong replicas implement the CP functionality in a distributed ap-
plication. Figure 4.2 (B) gives a conceptual overview of how they work.
An actor z has acquired a strong replica (marked S..). As is the case for
eventual replicas, a single actor in the network (i.e. actor y) owns the
master (marked S,) replica for all instances of a strong replicable. An
object in z asynchronously invokes one of S}’s methods (1) which returns
a promise (2). Subsequently, S| sends the invocation (i.e. the method’s
name and arguments) to its master (3) which locally performs the invoca-
tion and sends back the return value (4). Finally S/ resolves the promise
(5) returned in step 2 with the return value received from S, in step 4.

Guarantees of strong replicas

Strong replicas are consistent (see Definition 1). In other words,
simultaneous reads on two strong replicas either return equal results
or no result at all (e.g. because of network partitions).

Strong replicas are partition tolerant (see Definition 3). The con-
sistency of operations on strong replicas are guaranteed in the face
of partitions at the cost of availability (see Definition 2).

Eventual and strong replicas both ensure partition tolerance. The
major difference between both kinds of replicas are their consistency and
availability guarantees. The state of an eventual replica can always be
changed or read, Triumvirate ensures that eventually all state changes
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Figure 4.3: Eventual and strong replicas in the fleet management system.

propagate to other replicas. In contrast, the state of a strong replica
can only be changed or read if strong consistency amongst all replicas is
guaranteed.

4.1.2 Replicas in Practice

Figure 4.3 gives an overview of the parts of the fleet management sys-
tem that are relevant to this chapter. Concretely, the dispatchers and
technicians in our system share two replicas: the list of jobs and the job
schedule. The former is an eventual replica: technicians and dispatchers
are always able to create new jobs, update a job or consult the list of
jobs. As a result, the list of jobs might temporarily diverge across tech-
nicians and dispatchers (e.g. during network partitions). The latter is a
strong replica: a technician and dispatcher simultaneously consulting the
job schedule should always see the same schedule. As a result, reading
from or writing to the job schedule is not always possible (e.g. during
network partitions).

In the following sections we show how to implement this part of the
fleet management system using Triumvirate’s replicable state.

4.1.2.1 Available State as Eventual Replicas

Our running example requires the functionality related to the technicians’
jobs (e.g. updating a job’s decription) to be offline available. As such,
job-related functionality represents the AP part of our fleet management
system. We implement this part of our system using two eventual replicas:
one which maintains the state for individual jobs and one which maps
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class Job extends EventualReplicable{
id : number

3| description : string

1| pictures : Array<Buffer>

D

ORI

6| constructor (id:number, description:string){
7 this.id = id

8 this.description = description

9 this. pictures = []

| }

12| @Qmutating
13| addPicture(picture:Buffer){
14 this.pictures.push(picture)

15}

16

17| @mutating

18| updateDescription (newDescription:string){
19 this.description = newDescription

20 }

21| }

Listing 4.1: Defining Individual jobs.

technicians onto jobs. Listing 4.1 provides the definition of the former. Job
replicas represents the state associated to a single job: a text description
of the job and an array of associated pictures. Moreover, these replicas
provide two methods: one to add a picture and one to update the job
description.

Listing 4.2 provides the definition of the JobList replicas. These repli-
cas represent the collection of job-related states in the entire system. In
other words, they keeps track of all jobs still to be performed for clients.
Dispatchers add jobs to a list through the mutating addJob method. Tech-
nicians remove jobs (i.e. upon completion) using the remJob method.

The functionality provided by Job and JobList is available by design.
Technicians and dispatchers are always able to create new jobs or update
the information on a specific job, even in the face of network partitions.
However, this entails that the state of specific jobs or the job list might
diverge across technicians and dispatchers. Triumvirate ensures that pos-
sible divergence between these states are eventually resolved. In other
words, Triumvirate ensures the eventual consistency of jobs and the job
list. All job and job list replicas will eventually be in the same state, pro-
vided that technicians and dispatchers stop issuing updates. Triumvirate
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1| class JobList extends EventualReplicable{
2| jobs : Map<number, Job>

i| constructor (){
5 this.jobs = new Map()
6 }

8| @mutating
9| addJob(job:Job){
10 this.jobs.set (job.id,job)

11}

13| @Qmutating

14| remJob (jobId :number) {

15 this.jobs.delete (jobld)
6]}

17| }

Listing 4.2: Defining the collection of jobs.

programmers are therefore freed from manually maintaining eventually
consistent replicated state.

4.1.2.2 Consistent State as Strong Replicas

Our running example requires the job schedule to be consistent. A tech-
nician and a dispatcher should never be able to simultaneously see two
different versions of the technician’s schedule. As such, the job schedule
represents the C'P part of our running example. Hence, we implement this
part using a strong replica.

Listing 4.3 gives the definition of JobSchedule replicas. Schedules main-
tain a dictionary which maps technician names onto an ordered list of job
ids and provide two main methods. First, reschedule either adds a new
job to the schedule or moves an existing job in the schedule. In the latter
case reschedule relies on an auxiliary function removeJob. This method
will typically be invoked by dispatchers. Second, the neztJob method re-
turns the next scheduled job for a particular technician. This method will
typically be invoked by technicians.

The functionality provided by JobSchedule is consistent by design.
Both dispatchers and technicians are able to invoke reSchedule and nex-
tJob. However, Triumvirate will only perform these invocations if strong
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class JobSchedule extends StrongReplicable{
schedule : Map<string , Array<number>>

ORI

3

i| removeJob(toRemoveld : number) {

5 this.schedule.forEach((jobs:Array<number>, technician:string)=>{

6 if (jobs.contains (toRemoveld)){

7 schedule.set (technician ,jobs. filter (jobId => jobld !=
toRemoveld))

S

of
0| }

12| @mutating

13| reSchedule(jobld:number, technician:string, position:number){
14 removeJob (jobId)

15 this.schedule.get (technician).splice (position ,0,jobld)

16}

18| nextJob(technician:string){

19 this.schedule.get (technician) [0]
20| }

21| }

Listing 4.3: Defining the job schedule.

consistency is guaranteed. Triumvirate automatically buffers method in-
vocations on strong replicas if strong consistency cannot be guaranteed.

Triumvirate guarantees that a technician and a dispatcher are never
able to read a different schedule for the same job. Consequently, the
functionality provided by the job schedule is not always available (i.e.
one cannot invoke methods or reads the schedule’s state during network
partitions).

4.1.2.3 Replicating the Data and Reacting to Change

We represent technicians and dispatchers by means of Triumvirate actors.
Listing 4.4 provides the definition of the Dispatcher actor. This actor’s
task is twofold: to disseminate all job-related state and to create new jobs
or reschedule existing ones. The former task is accomplished in the actor’s
init method and uses Triumvirate’s built-in topic-based publish-subscribe
system. In a nutshell, the Triumvirate standard library (available to all
actors as this.libs) provides two methods. publish takes a topic and an
object and publishes said object on the network. subscribe takes a topic
and allows programmers to install callbacks that are invoked whenever
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-

class Dispatcher extends Actor{
schedule : JobSchedule
jobList : JobList

N}

51 init ()4

6 let topic = new this.libs.PubSubTag(”jobData”)

7 this.schedule = new JobSchedule ()

this.jobList = new JobList ()

9 this.libs.publish(topic ,[this.jobList ,this.schedule])
o}

1] }

00

Listing 4.4: Defining the dispatcher actor.

an object is published under the subscribed topic. In our example the
dispatcher publishes the JobList and JobSchedule replicas (line 9). The
creation of new jobs or the rescheduling of existing ones is done by access-
ing the dispatcher’s instance variables. We omit the user-interface code
responsible for this as it does not contribute to this discussion.

Listing 4.5 provides the definition of the Technician actor. The techni-
cian starts by subscribing to the data published by the dispatcher (line 10).
To subscribe, the actors provides a callback that is invoked with an even-
tual replica of the job list and a strong replica of the schedule. In other
words, requesting the next scheduled job (line 17) is an asynchronous op-
eration which resolves if strong consistency is guaranteed. In contrast,
getting this next job from the job list is a synchronous operation (line 18).
Programmers can install two kinds of callbacks on eventual replicas (such
as jobs in our example). onTentative callbacks are invoked whenever the
state of an eventual replica changes locally. In other words, the state of
the replica has changed as the result of a local invocation of a mutat-
ing method. onCommit callbacks are invoked whenever the state of an
eventual replica changes globally. In other words, the state of the replica
has changed as the result of an invocation of a mutating method by an-
other actor. As is the case for the dispatcher, we omit the technician’s Ul
code which interacts with the current job (i.e. changing the description
or adding pictures).
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class Technician extends Actor{
techName: string

3| schedule : JobSchedule

1| jobList : JobList

5/ current : Job

ORI

7| init (techName) {

8 this.techName = techName

9 let topic = new this.libs.PubSubTag(”schedule”)

10 this.libs.subscribe(topic).once (([schedule,jobList])=>{
11 this.schedule = schedule

12 this.jobList = jobList

13 13)

14|}

16| jobDone (){
17 schedule.nextJob.then(newJobld => {

18 this.current = this.jobList.get (newJobld)
19 this.current.onTentative (()=>{
20 //Update UI

})

ISR

this . current .onCommit ()=>{
//Update UI

1)
1)
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0N NN
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—

Listing 4.5: Defining the technician actor.

4.2 The Entente Between Eventual and Strong
Replicas

Triumvirate allows programmers to distribute remotely-active state with-
out having to manually guarantee availability or consistency of this state.
They do so using replicas, which come with a set of built-in guarantees
(e.g. availability and eventual consistency for eventual replicas). To en-
sure these guarantees Triumvirate curtails the interactions between all
three triumvirs (i.e. duplicates, replicas and derivations). In this section
we focus on the interaction between duplicates, eventual and strong repli-
cas. We discuss the interaction between replicas and derivations in the
following chapter.

65



CHAPTER 4. REPLICATING REMOTELY-ACTIVE STATE

4.2.1 Keep them Separated

The CAP theorem states that a piece of partition tolerant state cannot be
both available and consistent. As such, Triumvirate forces a clear divide
between strong and eventual replicas. More concretely, three laws govern
replicas.

Law 1: Preservation of Availability

Fields of an eventual replica cannot be assigned to a strong replica
nor can a method of an eventual replica be invoked with a strong
replica as argument.

Triumvirate enforces this law to guarantee the availability of eventual
replicas. Assume that Triumvirate would not enforce the law and an
eventual replica’s field contains a reference to a strong replica. Operations
on this strong replica are not available in the case of network partitions.
Consequently, methods of the eventual replica that use this strong replica
are not available under partitions. As such, this would break the eventual
replica’s availability guarantee (see Section 4.1.1).

Law 2: Preservation of Consistency

Fields of a strong replica cannot be assigned to an eventual replica
nor can a method of a strong replica be invoked with an eventual
replica as argument.

This law guarantees the consistency of strong replicas. Assume that
Triumvirate would not enforce the law and a strong replica’s field contains
a reference to an eventual replica. Operations on this eventual replica
might return diverging results across actors. Consequently, methods of
the strong replica using this eventual replica might yield different results
across the network. This would break the strong replica’s consistency
guarantee (see Section 4.1.1).

Triumvirate enforces both laws through run-time exceptions. Triumvi-
rate checks that every assignment to a replica’s field or each method invo-
cation on a replica adheres to both laws. For example, Triumvirate is able
to detect that an eventual replica is given as argument to a strong replica’s
method invocation. Triumvirate subsequently notifies the programmer of
this error by raising an exception.
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Law 3: Preservation of Serialisability

Methods of strong and eventual replicas are unable to lookup vari-
ables captured by their lexical scope.

This law guarantees the serialisability of strong and eventual replicas.
The actors that make up a DRIA send replicas between themselves as a
means to implement distributed shared state. As such, replicas are con-
tinuously serialised and deserialised. If a replica could lookup variables in
its lexical scope the entire transitive closure of this scope would need to be
serialised and deserialised as well. Triumvirate throws runtime exceptions
when methods of replicas try to lookup variables in their lexical scope.

Constructors of strong and eventual replicas form an exception to
Law 3. In other words, a replica is able to assign variables in its lexi-
cal scope to its fields during construction phase.

While this law might look very restricting at first sight it closely re-
sembles approaches such as Scala’s spores [MHO14]. In a nutshell, spores
allow programmers to create closures which can be safely distributed (e.g.
by enforcing that spores and the variables they capture are serialisable).
Both approaches rely on the programmer to specify which variables in
the replica’s or spore’s lexical scope are to be captured. However, the
spores approach is more substantial as it includes a type system which
can enforce safety properties at compile time.

4.2.2 From Consistency to Eventuality and Back

To allow a limited form of interaction, Triumvirate provides operators
which convert eventual replicas into strong replicas and the other way
around. On one hand freeze accepts an eventual replica as argument and
creates a new strong replica which represents a snapshot of the eventual
replica’s state at freeze time. On the other hand, thaw accepts a strong
replica as argument and returns a new eventual replica which represents
a snapshot of the strong replica’s state at thaw time. The replicas re-
turned by freeze and thaw invocations do not share their identity with the
argument replica. As such, there are no consistency guarantees between
the replica returned from a freeze or thaw invocation and the argument
replica.
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class OfflineDispatcher extends Dispatcher{
schedule : JobSchedule
jobList : JobList

S I N N

init (){

super.init ()

let offlineTopic = new this.libs.PubSubTag(” TechOffline”)
let thawTopic = new this.libs.PubSubTag(” ThawSchedule”)

9 this.libs.subscribe(topic).each ((techName)=>{

10 let thawSchedule = this.libs.thaw(this.schedule)

11 this.libs.publish (thawTopic ,[techName,thawSchedule])

12 }

130}

14] }

o

Listing 4.6: Extending the dispatcher actor for thawing.

1| class OfflineTechnician extends Technician{

2| init () {

3 super.init ()

4 let thawTopic = new this.libs.PubSubTag(” ThawSchedule”)

5 this.libs.subscribe (thawTopic) .each (([name, thawedSchedule]=>{
6 //continue using thawedSchedule

Y

!

10| goOffline (){

11 let offlineTopic = new this.libs.PubSubTag(” TechOffline”)
12 this.libs.publish (offlineTopic ,this.techName)

13}

4] }

Listing 4.7: Extending the technician actor for thawing.

Assume that certain technicians in our fleet management application
spend extended periods of time disconnected from the system. Moreover,
these technicians are to complete multiple jobs during this period of dis-
connection. To accommodate these technicians, dispatchers allow them
to access the schedule while being offline. In a nutshell, these technicians
request a thawed version of the schedule before going offline. Listing 4.6
and Listing 4.7 show how to extend the Dispatcher and Technician actors
to this end. Technicians signal that they go offline using the goOffiline
method (line 10 in Listing 4.7) that publishes an offline request under the
technician’s name. Dispatchers subscribe to these requests (line 9 in List-
ing 4.6) and respond by publishing thawed versions of the schedule. Once
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a technician receives such a thawed schedule (line 5 in Listing 4.6) he is
able to safely go offline for an extended period of time.

4.3 Managing Updates to Remotely-Active State

Triumvirate supports locally-active, remotely-active and reactive state up-
dates through duplicates, replicas and derivations respectively. Support-
ing these different kinds of updates requires Triumvirate to implement
various update strategies. For example, duplicates support locally-active
updates through traditional method application and field assignment (i.e.
as defined in most object-oriented languages). Replicas require different
strategies depending on whether the replica is strong or eventual. In
both cases Triumvirate relies on state-of-the-art algorithms to manage
remotely-active updates. Finally, reactive updates to derivable state re-
quires us to develop our own algorithm. We motivate this need and discuss
the design of this algorithm in the following chapter.

In this section we detail the strategies implemented in Triumvirate to
manage updates to strong and eventual replicas. More specifically, this
section explains how we adapt state-of-the-art algorithms to the Triumvi-
rate runtime. We discuss these implementations conceptually. For the
source-code implementation of both update protocols we refer the reader
to Triumvirate’s implementation®

4.3.1 Strong Replicas as Far References

Triumvirate implements strong replicas using far references [CGS*14]. In
other words, the actor that instantiates an object from a strong replicable
class is said to be the owner of the replica. This replica can be sent from
the owning actor to other actors in the application (e.g. as part of an
asynchronous message, as the return value of a remote method invocation,
etc.). Only the owning actor holds the actual replica, all other actors are
only able to acquire a far reference to it. Each method invocation or
field access on a far reference results in an asynchronous message sent to
the owning actor and returns a promise. The owning actor performs the
invocation or field access on the replica and resolves the promise with the

"https://gitlab.soft.vub.ac.be/fmyter/triumvirate
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Figure 4.4: (A) Intra-actor method invocation on a strong replica. (B)
inter-actor method invocation on a strong replica.

return value of the invocation or access. All messages are buffered by the
far reference in case it loses connection with the owning actor.

Practically, Triumvirate uses JavaScript proxies [ecm19] to implement
strong replicas. Proxies are wrappers around objects which allow one to
override parts of JavaScript’s built-in semantics. Programmers are able to
install traps, or callbacks, which implement specific operations on objects.
For example, the set trap allows programmers to override field assignment.
Upon instantiating a replica from a strong replicable class Triumvirate
returns such a proxy instead of the actual replica. This proxy essentially
implements the update protocol for strong replicas.

Figure 4.4 show how Triumvirate uses proxies to implement strong
replicas. More specifically, it depicts method invocations on strong repli-
cas?.

Figure 4.4(A) shows a method invocation on a strong replica from
within the owning actor (i.e. Actory). In other words, an object within
Actor 4 invokes a method m with arguments args on the proxy P wrap-
ping strong replica S, (1). P implements a trap which overrides method
invocation as follows. First, P returns a promise (2) which will eventually
resolve with the return value of the method invocation. Asychronously P

*We do not discuss the implementation of other operations (e.g. field accesses) as
these follow a pattern identical to the one of method invocations.
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then invokes m with arguments args on the replica S, (3). Finally (4), P
resolves the promise returned in (2) with the return value obtained in (3).

Figure 4.4(B) shows a method invocation on a strong replica from
an actor (i.e. Actorp) different than the owning actor (i.e. Actorc).
The protocol remains largely unchanged in comparison to Figure 4.4(A).
The major difference is that step (3) and (4) now involve asynchronous
messages. A proxy always has a reference to the single original replica
to which it delegates method invocations, field access, etc. If the proxy
resides within the same actor as the replica this reference is local, otherwise
it is a far reference. Once P returns the promise in (2) it asynchronously
invokes m using args on S, and waits for the return value to resolve the
promise (4).

Regardless of the number of actors invoking methods concurrently on
their proxies, only a single actor sequentially executes these invocations
on the strong replica. This mechanism guarantees sequential consistency:
the operations issued by an actor are executed according to the actor’s
program execution. Moreover, the result of all operations on a strong
replica is the same as if these operations were executed in some sequential
order.

This concludes our discussion of the implementation of strong replicas
using far references. In the following section we discuss the implementa-
tion of eventual replicas as global sequence data models.

4.3.2 Eventual Replicas as Global Sequence Data Models

Triumvirate relies on the global sequence protocol (GSP) [BLPF15] to
govern updates to eventual replicas. GSP is able to ensure the availability
of eventual replicas while maintaining a certain level of consistency (i.e.
eventual consistency). We start by giving a broad overview of GSP before
discussing its application to eventual replicas.

4.3.2.1 GSP in a Nutshell

We explain the global sequence protocol by means of a simple replicated
counter example. Two nodes in a network own copies of this replicated
counter and are both able to read and increment its value.

In a nutshell, GSP allows for concurrent and offline operations to be
performed on replicated pieces of data, called data models. Each data
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model defines an operation which can be applied over it (i.e. Update).
Updates over a data model are aggregated in a log of operations. Fur-
thermore, each data model is associated with a function which returns the
value of an instance of the model given the update log and an initial value
(i.e. Read). In our counter example the Read function returns the length
of the update log, which contains increment operations.

Nodes in the network all have an instance of the data model. Nodes can
perform updates on their local instances of this data model. GSP ensures
that all nodes eventually read the same value for their instance of the data
model. To do so it assumes that nodes communicate through a reliable
total order broadcast (RTOB) [DSU04] communication medium (i.e. all
messages are reliably received by all nodes in the same order). Triumvirate
ensures RTOB through a client-server (i.e. worker and master replicas)
architecture, where the server acts as a broadcaster.

Offline operations are supported by letting each instance of a data
model maintain two logs of updates: committed and tentative updates.
The former represents the last known global log of updates. The latter
contains a log of update operations which are yet to be broadcasted. For
instance, operations performed while the node lost connection with the
network. Applying Read to the committed and tentative logs returns the
current value for an instance of a data model.

Whenever a node performs an update on its instance of a data model
the update is added to the tentative log. Furthermore, the update is
broadcasted to all nodes. Upon receiving an update each node adds the
update to the committed log. If a node receives its own update it removes
said update from the tentative log. Figure 4.5 depicts how GSP ensures
eventual consistency for our counter example. At t=1, Node 1 and Node
2 are in a consistent state. Both have a single update operation (i.e.
an inc) in their committed log. Performing the Read operation with the
committed log, tentative log and the initial value 0 therefore returns 1
for both nodes. At t=2, Node 1 performs an update which is added to
Node 1’s tentative log. This update is broadcasted by Node 1 but not yet
received by Node 2. The nodes are therefore in a temporarily inconsistent
state because the Read function returns a different value for both nodes.
At t=8, Node 2 and Node 1 have received the broadcast. Both nodes add
the operation to their committed log and Node I removes the update from
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t=1 t=2
Node 1 Node 2 Node 1 Node 2
T C T C T C T C
inc inc inc || inc inc
Read(C-T,0) = 1| |Read(C-T,0) =1 Read(C-T,0) = Read(C-T,0) = 1

t=3
Node 1 Node 2
T C T C
inc inc
inc inc

Read(C-T,0) = 2| |Read(C-T,0) =

Figure 4.5: Example run of the GSP algorithm on the ”counter” exam-
ple.t=1, consistent starting state.t=2, Node 1 performs an increment.t=3,
consistent final state.

its tentative log. Applying the Read function returns a consistent value
(i.e. 2) for both nodes.

We refer the reader to [BLPF15] for an in-depth explanation of opti-
misations for the algorithm as well as how it deals with message loss and
disconnections. In the following section we detail how Triumvirate adapts
GSP to implement eventual replicas.

4.3.2.2 From GSP to Eventual Replica

The global sequence protocol does not directly map onto the object-
oriented programming paradigm (e.g. data models in GSP do not contain
multiple fields and methods). As such, Triumvirate implements its own
object-oriented variation in order to support updates to eventual repli-
cas. We base this implementation on prior work [MCSDM16] and existing
adaptations of GSP [CDMB16]. In this section we provide a conceptual
overview of this implementation.

We discuss our implementation using the Triumvirate version of the
counter example from the previous section. Listing 4.8 shows the imple-
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export class Counter extends EventualReplicable{
2| wvalue

i| constructor (){
5 super ()
6 this.value = 0

|y

9| @mutating

10| inc(){

11 this.value += 1
120}

13 }

Listing 4.8: An eventually consistent counter in Triumvirate.

mentation of an eventually consistent counter in Triumvirate. A single
mutating method (i.e. nc) changes the counter’s state that is read by
reading a counter’s value field.

Replicas and Proxies

As is the case for strong replicas, instantiating an eventual replicable class
returns a replica wrapped by a JavaScript proxy (see Figure 4.6). This
proxy serves as a bridge to our implementation of the global sequence
protocol. It delegates the reading of fields and the invocation of mutating
methods to GSP. In other words, the proxies wrapping eventual replicas
implement GSP.

The owning actor of a strong replica has both the replica and its proxy
while all other actors only acquire a copy of the proxy. This is not the case
for eventual replicas where all actors acquire both a copy of the replica
as well as a copy of the proxy. However, we distinguish between the
master replica (and proxy) and worker replicas (and proxies). A master
replica is created by instantiating an object from the FuventualReplicable
class (i.e. using the new operator). A worker replica is created whenever a
master replica crosses the actor boundaries. The master replica determines
the unique and total order in which operations on eventual replicas are
applied. Worker replicas therefore maintain a far reference to their master
replica.
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Figure 4.6: (A) System before dissemination of an eventual counter E..
(B) System after dissemination of an eventual counter E..

Coordinating Replicas

A master replica serves as a central point of coordination for all its
worker replicas. It is important to note that a Triumvirate appli-
cation can contain multiple master replicas spread across multiple
actors. As such, Triumvirate does not impose a single central point
of coordination for all eventual replicable state in DRIAs.

Figure 4.6 shows three actors. Assume that Actor, instantiated an
object from the Counter class and therefore owns a master replica E.
(which stands for eventually consistent counter) wrapped by a proxy P. In
Figure 4.6(A) Actor 4 sends an asynchronous message to both Actorp and
Actore. Assume that this message contains a reference to E.. As a result
Triumvirate creates a deep copy of E. and attaches it to the asynchronous
message. Law 3 ensures that this does not require Triumvirate to deeply
copy F.’s lexical scope.

In Figure 4.6(B) both actors have received the message. Upon receiv-
ing the message each actor deserialises the copy of E. and creates a new
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proxy wrapper (i.e. P’ and P”). Triumvirate ensures that the copies of
E. hold far references to its original master replica residing in Actorg4.

Replicas as Data Models

Technically, eventual replicas are regular JavaScript objects. However,
each replica maintains two versions for each of its fields: a tentative and
a committed version. As such, each field in a replica is its own GSP
data model. As is the case for vanilla GPS data models, the committed
version of a field represents the last known global value across all replicas.
Conversely, the tentative version of a field might diverge from the tentative
versions of the same fields for other replicas. Mutating methods are the
equivalent of update operations in GSP, although a single mutating method
can update multiple fields simultaneously.

For example, a counter replica maintains a tentative and committed
version of its value field. The inc method updates the tentative version
of this field. The committed version of the field is only changed when the
master replica confirms a new global operation to be applied.

Reading a Replica’s Field

Our object-oriented adaptation adheres to the so-called states and deltas
optimisation of GSP [BLPF15]. Data models, or fields in our case, do not
keep a log of tentative and committed operations. Rather, each field of
an eventual replica is a tuple containing the field’s tentative and commit-
ted versions. These versions are obtained by incrementally reducing the
operations sent by the master replica. In other words, operations are no
longer added to a log of operations (i.e. as was the case for vanilla GSP)
but are directly applied to a given initial state.

Reading a replica’s field always returns the field’s tentative version.
This ensures that a read always reflects the latest operations locally ap-
plied to the replica. For example, the proxies wrapping counter replicas
ensure that all accesses to the value field return its tentative version.

Invoking Mutating Methods

Assume that Actorp in Figure 4.6(B) invokes inc on its replica of the
counter. This invocation not only impacts the replica on which the method
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Figure 4.7: Invocation of a mutating method and subsequent events.

is invoked but it also impacts all other replicas. Figure 4.7 shows the
protocol that Triumvirate initiates upon invocation of a mutating method.
This protocol operates according to the following steps:

Step 1. An object within Actorpg invokes the inc method on proxy P’
wrapping the eventual counter E!.

Step 2. The wrapper invokes the method on E! using the tentative ver-
sion of its wvalue field and immediately returns the return value to
the object that invoked inc.

Step 3. Triumvirate encapsulates information about method invocations
in round objects. A round contains the name of the invoked method
as well as the invocation’s arguments. This round object is sent to
the master replica, which assigns it a time stamp.

Step 4. The master replica invokes the method specified by the round
using the arguments contained in the round. The master replica’s
goal is to dictate the order in which rounds are to be executed. As
such, the master replica always executes methods using the com-
mitted version of its fields. We say that the master commits the
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received round and subsequently sends the round for commitment
to all worker replicas.

Step 5. When a worker replica receives a round it first checks whether
the new round directly follows the last committed round (i.e. using
the time stamps contained by rounds). This allows worker replicas
to determine whether they missed a number of rounds (e.g. due to
network partitions, etc.). If rounds have been missed the worker
replica requests these from the master replica.

Step 6. Worker replicas commit the round sent by the master replica.
In other words, the method is invoked using the committed versions
of the replica’s fields. Subsequently the tentative versions of the
replica’s fields are set to the committed version. This leaves worker
replicas in a consistent state with the master replica.

This concludes the implementation of eventual and strong replicas in
Triumvirate. We refer the reader to Section 6.6.3 of Chapter 6 for two
additional implementation of replicas using CRDTs [SPBZ11] and the two-
phase commit protocol [LS76]. In the following section we discuss the
performance differences between strong and eventual replicas.

4.4 Strong versus Eventual Replication: a Per-
formance Choice

Programmers implement different parts of their distributed systems using
eventual or strong replicas based on functional requirements (e.g. offline
availability). However, these two kinds of replicable state also differ in
their performance characteristics. To showcase these characteristics we
perform micro-benchmarks using the online grocery list application pre-
sented in [MSDM18a] called Myosotis. The application allows members of
a household to collaboratively edit a grocery list. Moreover, while shop-
ping for the groceries the household members are able to mark certain
items as "bought” (e.g. upon putting the item in their cart).

Figure 4.8 shows a screenshot of the application. The navigation bar at
the top of the screen shows the grocery lists linked to the user’s account.
Moreover, it allows to create new grocery lists. The lower part of the
screen shows all the items contained within one of these grocery lists. The
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Figure 4.8: Screenshot of Myosotis.

quantity needed of each item can be incremented or decremented. More-
over, a user is able to mark an item as bought using the ”shopping cart”
button. Myosotis requires both available and consistent functionality:

Available Functionality Once a user logs in it receives a replica of all
the grocery lists created for its account. A user is always able to
create a new list, add an item to a list or change an item’s quantity
(i.e. increment or decrement it). Two users logged into the same
account might therefore temporarily witness different values for the
collection of lists, items in a list or the quantity of an item.

Consistent Functionality Marking an item as bought happens strongly
consistent. In other words, an item can only be marked as bought
once by a single user. Consequently, this functionality is only avail-
able to users which are connected to the Myosotis server.

Our micro-benchmarks compare two versions of the application. The
first version (i.e. MyosotisAP) implements all list functionality(i.e. creat-
ing lists, adding items to a list, etc.) using two eventual replicas (i.e. an
eventual replica that implements individual grocery items and an even-
tual replica that implements the list of grocery items). The only strong
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replica in MyosotisAP is responsible for marking items as bought. The
second version (i.e. MyosotisCP) solely uses strong replicas. In other
words, MyosotisCP clients are unable to use any functionality while being
offline. However, all changes to lists are always ensured to be strongly
consistent across all clients.

We compare both versions using two performance characteristics. As-
sume that an operation o changes the state of a given eventual or strong
replica . We define these characteristics as follows:

Time to Consistency (TC) is the time required for the state change
induced by o to be visible on all other replicas.

Time to Local Change (TLC) is the time required for the state change
induced by o to be visible on r itself (i.e. within the actor in which
o is applied).

The micro-benchmarks are conducted on an Ubuntu 14.04 server with
two dual core Intel Xeon 2637 processors (2 physical threads per core)
at 3.5 GHz with 265 GB of RAM using CAPtain.js® version 0.5.0. For
each version of Myosotis we simulate 50 clients concurrently performing
10 operations on the shared state. The Myosotis server and all simu-
lated clients are implemented as actors executing on the same physical
machine. As such, our benchmarks do not account for network latencies
across machines. Rather, our benchmarks are only affected by local net-
work latencies (i.e. given that actors communicate through websockets).
However, this does not impact our benchmarks given that these aim to
showcase the relative performance differences between eventual and strong
replicas.

Figure 4.9 shows the results of these benchmarks and highlights the
fundamental difference between eventual and strong replicas. In Myosoti-
sAP the TLC is roughly a factor 1000 faster than the TC. In comparison,
the TLC and TC for MyosotisCP are almost identical. There are two
reasons for this difference. First, eventual replicas are able to perform op-
erations immediately which results in low TLC. However, maintaining all
eventual replicas eventually consistent produces a significant performance
overhead: Each operation must be sent to the server which conceptually
replays the entire log of operations. Subsequently this log is sent to all

3CAPtain.js is Triumvirate’s predecessor and is available at https://github.com/
myter/CAPtain.
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Figure 4.9: Comparing MyosotisAP and MyosotisCP. Error bars indicate
the 95% confidence interval.

replicas which in turn replay all operations as well. Second, operations are
only performed by a strong replica if it can guarantee strong consistency.
In other words, such operations only require a single round trip message
to the server. At the end of this round trip the strong replica is deemed
consistent and the change has been applied locally.

4.5 A Live Experiment

The aim of this section is to showcase the practical usefulness of Triumvi-
rate’s replicas. To this end we developed an interactive online presenta-
tion. The source of inspiration behind this presentation are approaches
such as reveal.js that allow one to create slides and slide shows in HTML.
We extend this idea by implementing our presentation as a full-fledged
DRIA. More specifically, the presentation is made interactive by distribut-
ing logic and state between the server, the presenter and the audience.

“https://github.com/hakimel/reveal.js/
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Figure 4.10: Overview of the presentation app.

The presentation serves to informally demonstrate how replicas signif-
icantly ease the development of DRIAs. We demonstrated this by using
the presentation application at the Onward!2018 conference [MSDM18a]
to present the very concept of replicas®. This section first provides a more
in-depth explanation of our interactive presentation after which it high-
lights parts of the presentation’s implementation. We invite the reader to
browse through the video® of the actual Onward!2018 presentation.

4.5.1 Overview of the Application

Figure 4.10 provides a conceptual overview of the presentation set-up. We
distinguish three key parts in this set-up:

Presentation (1) The presentation is a distributed rich internet ap-
plication hosted by one of the Vrije Universiteit Brussel’s servers.
The presenter loads the application in his browser and projects the
browser’s window onto a screen in front of the audience.

5Do note that replicas were named consistents and availables at the time
Shttps://www.youtube.com/watch?v=17cHhDDpJbg
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Figure 4.11: (Left) The presenter using the presentation application.
(Right) The presenter opens the questions dialogue, shown on the left
side of the screen, to explain its functionality to the audience.

Presenter (2) The application offers smartphone-specific functionalities
for the presenter. In other words, the application offers an endpoint
to which the presenter can connect by using his smartphone. This
mobile application’s functionality is twofold:

Offline Mode In case the presenter detects that the network is
bad or unreliable he can go into offline mode. This allows
the presenter to move through the slides even without being
connected to the presentation’s server.

Pointing functionality By dragging on his smartphone’s screen
the presenter projects a red dot on the current slide (i.e. the
red dot is visible to all clients). Additionally the presenter is
also able to go to the next or previous slide by swiping right or
left respectively.

Audience (3) Members of the audience follow the presentation in their
browsers by navigating to the server’s public endpoint. A button
overlaid on the slides allows members of the audience to submit
questions. Moreover, members of the audience are able to upvote
interesting questions.

Figure 4.11 shows two pictures taken during the live experiment at the
Onward!2018 conference. The picture on the left shows the presenter using
the application. The picture on the right shows the presenter explaining
the application’s question-related functionality to the audience. The left
part of the screen shows the menu used by members of the audience to
ask or upvote questions. Figure 4.12 shows a screenshot of the questions
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Figure 4.12: Screenshot of the Onward!2018 presentation.

menu. The greyed-out part of the screenshot shows the current slide while
the left part contains the list of questions asked by the audience together
with the amount of votes for each question.

The presentation application, with its complex functionalities, qualifies
as a DRIA:

Distributed Logic We distinguish two distributed functionalities. First,
the presenter’s laptop and smartphone are both able to change the
current slide (i.e. move forwards or backwards in the slide deck).
Second, all clients (i.e. members of the audience and presenters) are
able to ask or upvote questions

Distributed State The application maintains two instances of distrib-
uted state, each with varying consistency requirements. First, the
slide deck keeps track of the current slide’s number (the actual
HTML representing the slides is sent to the client upon connecting).
This part of the application’s state must be kept strongly consistent
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to ensure that all clients always see the same current slide. As a
consequence the slide deck is not available, in case of partitions one
might not be able to view the current slide or increment the counter.
A second part of the application’s state is the list of questions and
their votes. This part of the application’s state can safely be kept
available. Members of the audience are always (i.e. even under par-
titions) able to ask or upvote a question. Consequently, the state of
the question list might temporarily diverge amongst members of the
audience.

4.5.2 Implementation in Triumvirate

Overall the entire presentation is implemented in 1003 lines of Triumvirate
code, excluding the HT'ML code required for the visual aspect of the
slides. The complexity of the presentation’s features (e.g. offline available
question list, smartphone as click&point device, etc.) and the relatively
small amount of code required to implement them showcases the strength
of replicas. In what follows we highlight the most important aspects of
the implementation. Parts of the code have been simplified or omitted
for the sake of readability. However, these simplifications and omissions
do not hide complexity on behalf of Triumvirate or the presentation’s
implementation. We refer the reader to the source code” for the complete
implementation of the presentation.

"https://github.com/myter/onward

85


https://github.com/myter/onward

CHAPTER 4. REPLICATING REMOTELY-ACTIVE STATE

4.5.2.1 Implementing Questions and Slides

1| class Question extends EventualReplicable{
2 text : string
3 votes : number
4 id : string

6 constructor (text){
super ()

8 this . text
9 this . votes
10 this . id

11 }

text

13 @mutating

14 incDecVote (delta){

15 this.votes += delta
16 }

17] }
18| class QuestionList extends EventualReplicable{
19 questions : Map<string , Question>

21 constructor () {

22 super ()

23 this.questions = new Map()

24 }

2

26 @mutating

27 newQuestion (question : Question){

28 this.questions.set (question.id, question)

2
29 }

Listing 4.9: The question-related state of the presentation.

The presentation’s distributed state is implemented using three replicas.
Two eventual replicas, given in Listing 4.9, implement the question-related
state of the presentation. One eventual replica implements (line 1) indi-
vidual questions. It keeps track of the actual question (i.e. the text)
and the amount of votes the question has. A mutating method (i.e. in-
cDecVote) change the question’s total votes. This methods can be invoked
even though the client is offline. Triumvirate ensures that eventually all
clients read the same value for a question’s votes field.

The second eventual replica (line 18) implements the list of questions.
Internally it maintains a map of question identifiers to question objects.
A single mutating method (i.e. newQuestion) mutates the state of the
question list. All members of the audience share a single instance of Ques-
tionList, which is kept eventually consistent by the Triumvirate runtime.

86



4.5. A LIVE EXPERIMENT

1| class SlideShow extends StrongReplicable{
2 currentSlide : number
listeners : Array<FarRef<Client>>
4 constructor () {
5 super ()
6 this.currentSlide = 0
7 this.listeners = []
S
9
10 incDecSlide (delta){
11 this.currentSlide 4= delta
12 this.listeners.forEach(listener = {
13 listener .slideChange ()
14 1))
15 }
16
17 onChange(listener : FarRef<Client>){
18 this.listeners.push(listener)
19 }
20| }

Listing 4.10: The slideshow-related state of the presentation.

The slideshow is implemented using a single strong replica, as shown in
Listing 4.10. The slideshow essentially serves as a strongly consistent
counter that indicates the current slide. A single method (i.e. incDec-
Slide) allows the presenter to update the slideshow’s state. Triumvirate
guarantees that all connected clients always read the same value for the
slideshow’s currentSlide field. Moreover, the onChange method accepts a
far reference [CGS114] (see Section 2.3.1.1) to a client and notifies this
client whenever the slideshow’s state changes.

4.5.2.2 Implementing the Presentation Server

The presentation server’s goal is twofold. First, the server allows clients
to connect and receive their code (i.e. actor definition), the application’s
state (i.e. three replicas) and the HTML needed to render the slides. Sec-
ond, the server implements the presenter-specific functionality (i.e. over-
laying a red "laser dot” on the slides and going in offline mode).

Listing 4.11 shows the implementation of the presentation server. The
server’s first role (i.e. registering connecting clients and sending them
their initial data) is implemented on line 11 and line 12. These two lines
create two endpoints (i.e. URLs) to which clients can connect to receive
their source code and the slides” HTML source-code.
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export class OnwardServer extends Application{

clients
slideShow
questionList

constructor () {
super ()
this.clients = []
this.slideShow = new SlideShow ()
this.questionList = new QuestionList ()
this.libs.serveApp(”presenter.html”,”presenter.js” ,8002)
this.libs .serveApp (”audience.html” ,”audience. js” ,8888)

}

registerPresenter (credentials){
if (isPresenter (credentials){
return generateToken ()
}
}

registerClient (clientRef : FarRef<Client >){
this.clients.push(clientRef)
return [this.slideShow ,this.questionList ]

}

goOffline (token){
if (verified (token)){
resolve (this.libs.thaw(this.slideShow as any))
}

}

goOnline (token ,availableSlides){
if (verified (token)){
this.slideShow = this.libs.freeze(availableSlides)
client .slideReset (this.slideShow)
}
}

moveDot (token ,x,y){
if (verified (token)){
this.clients.forEach((client : FarRef<Client >)=>{
client .dotPosition(x,y)

1)
}

Listing 4.11: Implementing the presentation server.
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Figure 4.13: Interaction between clients and the presentation server during
registration.

Figure 4.13 provides a diagrammatic overview of the interaction be-
tween the clients and server while registering. Audience members start
by invoking the registerClient method (see Figure 4.13(1) and line 21)
that returns the presentation’s state (i.e. a replica of the slideshow and
question list, see Figure 4.13(2)). Similarly, presenter devices invoke the
registerPresenter method (see Figure 4.13(1’) and line 15). This method
accepts a set of credentials and returns a security token in case these cre-
dentials are correct (see Figure 4.13(2”)). This token serves to ensure that
only presenter devices are able to invoke some of the server’s methods.

The presenter-specific functionality is implemented as follows:

Offline Mode The counter keeping track of the current slide dictates
which slide is currently shown by connected clients. This counter
is implemented as a strong replica and can therefore only be incre-
mented or read by clients connected to the server. However, as we
discuss in Section 4.5.1, the presenter has the ability to go into offline
mode by pressing on a dedicated button. This button invokes the
goOffline method (line 26) which returns a thawed version (i.e. an
eventual replica) of the slideshow. Conversely, the goOnline method
(line 32) accepts a thawed slideshow and freezes it.

Triumvirate’s built-in freeze method returns a new strong replica
of the provided eventual replica. goOnline therefore sends the new
slideshow, resulting from the invocation of freeze, to all clients. Both
methods first check whether the token passed as argument is valid
(i.e. whether the presenter is invoking the method and not a mali-
cious user).
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Pointing functionality The presenter can project a red dot on the cur-
rent slide by dragging his finger over his phone’s screen (see Sec-
tion 4.5.1). When the presenter’s smartphone detects this dragging
it invokes the server’s moveDot method (line 39). This method in-
structs all clients to draw the red dot at the given position.

4.5.2.3 Implementing the Presentation Clients

The presentation application’s clients mostly react to changes made to
the presentation’s state. Besides this, clients also implement a number
of methods invoked directly by the application server. Listing 4.12 shows
the implementation of these clients.

export class Client extends Application{

N =

super ()

let server = this.libs.buffRemote(serverAddress ,serverPort)
6 server.registerClient (this)

7 .then (([slides , questions])=>{

3 constructor () {
|

8 slides .onChange (this)

9 questions .onCommit (. => {

10 //Update UI

? b

12 questions.onTentative (. => {

13 //Update UI

14 })

15 newQuestionButton.onClick (questionText=>{
16 let question = new Question(questionText)
17 questions.newQuestion(question)

b

19 13)

20 }

21

22 slideChange (){

23 //Update UI by switching to this.slideShow.currentSlide
24 }

25

26 dotPosition (x,y){
27 //Move dot on current slide

28 }

30 slideReset (newSlides){
31 newSlides.onChange(this)

32 }
3:

Listing 4.12: Implementing the presentation server.
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Clients start by acquiring a far reference to the presentation’s server
(line 5) using the built-in buffRemote method. This method takes the
server’s address and port as argument and returns a far reference to the
specified server actor. Given this far reference clients register at the
server by invoking its registerClient method, which returns a replica of
the slideshow and question list (see Figure 4.13). Clients register two
callbacks (i.e. onTentative and onCommit) which are invoked whenever
the question list changes and which update the user interface. Moreover,
clients register themselves as listeners for changes to the slideshow using
its onChange method. In other words, as soon as the slideshow’s state
changes it invokes the client’s slideChange method (line 22). Clients are
also able to mutate the state of the question list. The callback on line 15 is
invoked whenever the user completes the dialogue to ask a new question.
It creates a new question and adds it to the question list. Triumvirate
ensures that this addition eventually triggers the onCommit callbacks for
all clients. Other methods of a client (i.e. dotPosition and slideReset)
are invoked directly by the server and have been discussed in the previous
section.

The presenter runs its own application actor which extends the Client
class. The presenter’s application class adds a number of user interface
event handlers that directly invoke methods implemented by the server
(e.g. the offline-mode button invokes the goOffline method on the server).
We omit the presenter’s code from this section as it does not significantly
contribute to the implementation of the presentation.
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4.5.3 Live Benchmarking

Besides the previously discussed functionality, our presentation at On-
ward!2018 also offers live benchmarking functionality. This functionality is
limited to a single slide and allows the presenter to run micro-benchmarks
on the audience’s devices. In a nutshell, the specific slide contains a but-
ton only visible to the presenter that, once pressed, deploys benchmarking
code on all connected devices. This benchmarking code then executes and
the results are displayed in real-time in the slide.

1| export class OnwardServer extends Application{

2 /).

startBenchmark (token) {

1 if (verified (token)){

5 let eventual = new EventualBench(this.clients.length)
6 let strong = new StrongBench(this.clients.length)

7 this.clients.forEach(client => {

8 return client.startBench(eventual ,strong)

o p

10 Promise. all ([eventual.onFinish () ,strong.onFinish()]) .then(
results)=>{

11 let result = aggregate(results)

12 this.clients.forEach(client => {

13 client .showResults(result)

14 })

15 }

16 }

17|}

18| }

20| export class Client extends Application{
20 // ...

22| startBench (eventualBench, strongBench){
23 while (! benchmarkFinished){

24 eventualBench . perform ()

25 strongBench . perform ()

26 }
27}
28] }

Listing 4.13: Extending the presentation server and client for live
benchmarking functionality.

Listing 4.13 extends the server and client’s code provided by Listing 4.11
and Listing 4.12. Concretely, the server defines a startBenchmark method
(line 3) that is invoked when the presenter presses a button during the live-
benchmark slide. This method creates a strong and eventual replica that
is sent to all clients. The clients perform a number of operations on these
replicas (line 22) after which the server aggregates the results. These
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export class EventualBench extends EventualReplicable{

performed

1
2| limit
3

1| finished

6| constructor (limit){

7 super ()

8 this.limit = limit
9 this.performed = 0
0|}

12| @Qmutating

13| perform (){

14 this.performed += 1

15 if (this.performed = limit){
16 this. finished ()

17 }

1]}

20| onFinish () {

return new Promise(resolve=>{
this. finished = resolve

}

}

ISR
TR W N =

}

export class StrongBench extends StrongReplicable{

}

NN NN

~

00

//same as BenchEventual definition

NN

Listing 4.14: Implementing the live-benchmarking replicas.

results are then sent to all clients to be displayed in the presentation’s
benchmark slide®.

Listing 4.14 contains the definitions of both live-benchmarking repli-
cas. The replicas provide one mutating operation perform (line 13) that
increments a counter. When this counter reaches a set limit the replica
resolves its onFlinish promise to notify listeners that it has finished bench-
marking.

4.5.4 Experimental Results

The presentation application serves as anecdotal evidence that replicas sig-
nificantly ease the development of DRIAs. With only 1003 lines of code

8The real implementation accumulates results incrementally and updates the results
in real-time on the slide. We simplify this for the sake of readability.
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(excluding the HTML source code that implements the slides’ graphical
content), a fully functional and robust DRIA was implemented. The pre-
sentation received general praise from the audience (£ 20 simultaneous
distributed users). Testimony to this is a mail received from an audience
member after the presentation:

First I must say that I am very impressed by the courage to
use your own system while presenting! Last time I saw that
was 1988 (or so) when a guy from [...] was giving a Keynote at
OOPSLA (1500 or so attendees) and failed miserably. I feared
the worst, but you did very well (Prof. Dr. Boris Magnusson,
personal communication, November 9, 2018).

The same audience member points out a number of minor bugs (e.g. on
some devices the red dot’s placement was shifted compared to the dot on
the projected screen). However, these bugs have to do with the implemen-
tation details of the presentation itself and not bugs within Triumvirate,
replicas or our model. Although this live experiment does not formally
prove the universality of our approach it does show that replicas allow one
to easily implement DRIAs.

4.6 Related Work

We divide the work related to Triumvirate’s replicables in two categories.
The first category of related work offers language abstractions dedicated
to distributed and shared state with various consistency guarantees. The
second category of related work focuses on replicated data stores on which
programmers can apply queries with various levels of consistency.

4.6.1 Consistency-oriented Languages and Language Ab-
stractions

Replicables are heavily inspired by Repligs [CDMB16]. A repliq is a first-
class replicated object which is kept eventually consistent across clients
through the global sequence protocol [BLPF15]. Repligs allow program-
mers to implement the AP aspects of distributed systems. We extend
the work presented in [CDMB16] with constructs to implement the CP
aspects of distributed systems. Moreover, we introduce constructs to con-
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vert the AP aspects of a distributed system into CP aspects and vice
versa.

Cloud Types [BFLW12] are a programming model in which program-
mers are able to declare certain data types to be "cloud data” In other
words, the programmer is able to declare that certain parts of the appli-
cation’s state are shared across the network. Cloud types come with a
number of built-in cloud data types (e.g. numbers). Moreover, program-
mers are able to declare custom cloud data types. However, programmers
need to provide merge functions for their custom data types in order to al-
low the cloud types runtime to handle conflicting updates. This contrasts
with our approach that allows programmers to write custom replicated
data types without requiring complicated merge functions.

Geo [BBBT17] is a geo-replicated actor system built atop the Or-
leans [BB16] programming language. The way Geo integrates various
levels of data consistency into its programming model closely resembles
Triumvirate. In a nutshell, Geo programmers are able to apply two kinds
of operations on an actor’s state: eventually consistent and linearisable
operations. Moreover, Geo allows programmers to implement their own
custom consistency protocols. Geo resides on the opposite side of the
design spectrum with regards to Triumvirate. It allows programmers to
implement both the AP and CP aspects of their application on a per-
operation level. In contrast, Triumvirate allows programmers to do this
on a per-data-type level.

Bayou [KKW19] is a replication protocol which mixes strongly and
weakly consistent operations. Its workings closely resemble that of GSP. In
a nutshell, replicas maintain a list of tentative and committed operations.
The committed list represents the globally consistent order of operations
performed by all replicas. Conversely, the tentative list might diverge
amongst replicas and represents locally performed operations. Bayou re-
sembles replicables in the sense that both aim to provide a single frame-
work to reason about strongly and weakly consistent data. The difference
between both approaches is the level of consistency granularity. Bayou
allows for individual operations to be either strongly or weakly consistent.
In contrast, a replicable either allows for only strong or weak method
invocations.

Correctables [GPS16] are a language construct which allows program-
mers to perform operations on replicated objects using different levels of
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consistency. Invoking an operation on a correctable will initially return a
weakly consistent result after which it will progressively be refined with
more consistent results (e.g. strongly consistent results). Additionally,
correctables allow programmers to explicitly specify the level of consis-
tency desired for a particular operation. Correctables differ from our ap-
proach with regards to the level of granularity on which programmers
specify the desired level of consistency. Using correctables, programmers
specify the desired level of consistency per operation. Both approaches
also differ from a programmer’s perspective. [GPS16] presents an API
consisting of three methods: invokeStrong, invoke Weak and invoke. These
methods allow the programmer to specify the desired level of consistency
given an operation to be performed on a replicated object. Moreover, the
correctables API allows programmers to implement their own consistency
guarantees. In contrast, Triumvirate provides a full-fledged distribution
model: it enables programmers to define the consistency levels for data
types as well as how instances of these data types should be replicated
amongst actors.

Conflict-free replicated data types (CRDTs) [SPBZ11] are a kind of
abstract data type that guarantees availability and strong eventual con-
sistency’. CRDTs are able to guarantee this by enforcing a number of
properties on the operations they support (i.e. commutativity, idempo-
tency and associativity). Consequently, CRDTs lack general applicability:
only a limited amount of data types can be implemented as CRDTs. Al-
though solutions have been proposed to alleviate this generality problem
(e.g. JSON CRDTs [KB17]), CRDTs inherently only allow to implement
the AP aspects of a distributed system.

Lasp [MVR15] is a distributed programming language whose sole data
abstractions are CRDTs [SPBZ11]. Lasp is therefore able to model the AP
aspects of a distributed system while guaranteeing strong eventual con-
sistency. However, Lasp lacks the programming constructs to implement
the CP aspects of a distributed system.

Dexter [TG11] is a Java framework which allows programmers to im-
plement various distributed parameter passing semantics. Two of these
semantics are of particular interest compared to the work presented in

%A variant of eventual consistency that guarantees strong convergence. In a nutshell,
strong convergence states that replicas that receive the same updates must be in an
equivalent state.

96



4.6. RELATED WORK

this dissertation. Pass by remote reference is essentially the same as Am-
bientTalk’s far references or E’s eventual references. In other words, using
pass by remote reference one is able to implement the CP aspects of a dis-
tributed system. Pass by copy-restore allows an object to be passed by
copy between a server and a client. Changes made to the copy by the
server are later restored on the client. To some extend this enables the
implementation of the AP aspects of a distributed system in Dexter. To
the best of our knowledge copy-restore does not provide any consistency
guarantees. In other words, conflicts arising from concurrent modifica-
tions are not resolved. In contrast, eventual replicas allow for concurrent
modifications while ensuring eventual consistency.

In the tuple space model [Gel85] processes conceptually access a glob-
ally shared memory comprised of data structures called tuples. Processes
can write, read and remove tuples from this global memory. In the tradi-
tional tuple space model as defined by [Gel85] a centralised server main-
tains the state shared by clients. This model therefore only allows to
implement the CP aspects of a distributed system. Other tuple space
models [MZ04, GSMD14] replicate tuples across clients, allowing them to
read or write tuples while being offline. However, these models do not
account for conflicting updates to the conceptually shared tuple space.

E [MTS05] and AmbientTalk [CGST14] both provide language con-
structs to implement the CP aspects of a distributed systems (i.e. even-
tual and far references respectively). Moreover, AmbientTalk provides
isolates which are a kind of object that adhere to pass-by-copy semantics.
Although isolates can therefore be used to implement the AP aspects of
a distributed system they provide no consistency guarantees whatsoever.
In other words, the states of two instances of the same isolate are never
synchronised (i.e. as is the case for duplicates in Triumvirate).

Bloom [ACHM11] is a distributed programming language in which pro-
grams are expressed as a set of set manipulations over discrete timesteps.
Moreover, these sets can be distributed amongst bloom programs run-
ning on a network. Simply put, Bloom offers built-in support for the set
CRDT. Moreover, Bloom" [CMA*12] extends Bloom with support for
user-defined CRDTs. As such, programmers can use Bloom and Bloom"
to implement the AP aspects of their distributed systems.
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4.6.2 Replicated Data Stores

A number of approaches have been proposed which allow programmers to
perform operations (e.g. queries) on replicated data stores with various
levels of consistency. As is the case for Triumvirate, these approaches
allow programmers to implement the AP and CP aspects of their web
applications. In contrast to replicated data stores, Triumvirate enables
programmers to implement the AP and CP aspects of their web applica-
tions by providing replicated data as first-class values in a general purpose
programming model.

Using Sieve [LLC%14] programmers specify application invariants to
help static and dynamic analyses to determine optimal consistency levels
for operations on the data store. Operations which can run under weak
consistency are translated to commutative shadow operations (i.e. opera-
tions on CRDTs). In Quelea [SKJ15] programmers write contracts which
specify the application-level consistency requirements of operations. The
Quelea runtime statically verifies these contracts while a theorem prover
maps these contracts to consistency properties which adhere to the con-
tract’s semantics. DCCT [ZN16] allows programmers to separate a data
store’s objects into regions. These regions are annotated with varying de-
grees of consistency which influences the semantics of the read and write
operations one can perform on objects within a region. IPA [HBZ'16|
programmers specify consistency policies by using an extensive annota-
tion system (e.g. one can dynamically specify consistency policies based
on the system’s latency). Furthermore, IPA’s type system allows it to en-
force a number of properties at compile time (e.g. weakly consistent values
never flow into strongly consistent operations). ConSysT [MS17] provides
consistency specifications at the type level (i.e. values are typed with the
desired consistency level). ConSysT’s type system guards the programmer
from erroneously combining values with different consistency levels (e.g.
low consistency values flowing into high consistency computations).

4.7 Limitations

Eventual and strong replicas have a number of limitations which are the re-
sults of the synchronisation mechanisms used by Triumvirate. The global
sequence protocol achieves eventual consistency by conceptually replay-
ing the global log of operations for each replica. In our implementation
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these operations amount to an eventual replica’s methods. Programmers
therefore need to be aware that side effects in methods can potentially be
replayed multiple times, at different locations in the network.

The implementation of strong replicas uses far references: all strong
replicas forward method invocations and field accesses to the original ob-
ject. As such, strong replicas in Triumvirate offer a replication factor of
1. This makes strong replicas brittle with regards to failures. If the actor
owning the original replica crashes, all other replicas will no longer be
available.

In Section 6.6.3 of Chapter 6 we showcase two different implemen-
tations of eventual and strong replicas by using Triumvirate’s meta-pro-
gramming layer. These implementations are based on CRDTs and the
two phase commit protocol [LS76] and mitigate the aforementioned limi-
tations, though each at their own cost.

4.8 Replicas and Requirements for a
DRIA-Oriented Programming Model

Replicas allow Triumvirate to partially fulfil requirements Ry and Rs for
DRIA-oriented programming models as follows:

Ry: The model guarantees data consistency properties specified
by the programmer
Triumvirate programmers use replicas to specify the consistency
guarantees required for their application’s state. More precisely,
programmers can specify that a particular part of the state should
be strongly or eventually consistent. Triumvirate ensures that these
consistency properties are guaranteed throughout the application’s
lifetime, even in the face of concurrent operations.

However, the consistency guarantees provided by replicas are limited
to remotely-active state. As such, replicas only partially fulfil Ry as
they do not support reactive state. In the following chapter we
discuss how derivations complete replicas and allow Triumvirate to
fulfil Ry completely.

R3: The model supports multiple parameter passing semantics
Replicas provide pass-by-replication parameter passing semantics.
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In other words, replicas automatically maintain bookkeeping infor-
mation as they are disseminated across the network. This bookkeep-
ing information is then used by Triumvirate to ensure the consistency
guarantees of the replicas.

As is the case for R, replicas only allow Triumvirate to partially
fulfil R3 as they do not support reactive state. In the following
chapter we discuss how derivations provide pass-by-derivation pa-
rameter passing semantics.

4.9 Chapter Summary

Part of the state in DRIAs requires remotely-active update semantics:
Different nodes in the network conceptually share a piece of state. When
a node updates the state of the DRIA, this update becomes visible to
all other nodes in the network. Triumvirate allows programmers to easily
implement this kind of state by extending the Replicable class. These data
structures provide built-in pass-by-replication parameter passing seman-
tics and remotely-active update semantics.

As stated by the CAP theorem [Bre00, GL02], a piece of partition-
tolerant distributed state cannot be both available and consistent. This
has traditionally forced programmers to manually implement this trade-
off in their web applications. To alleviate this burden from programmers
Triumvirate provides two kinds of replicas: eventual and strong replicas.
Instances of the former are available: actors are always able to read or
update their state. However, eventual replicas only guarantee eventual
consistency: the state of two replicas might temporarily diverge across
actors. Instances of the latter guarantee consistency: their states never
diverge across actors. However, an actor is not always able to read or
update a consistent replica’s state.

We discuss how Triumvirate’s approach compares to the state of the art
in programming language approaches to data replication and consistency.
Most of these approaches offer constructs or abstractions which resemble
either eventual or consistent replicas. However, Triumvirate is the first
distributed programming language offering high-level support for both
available and consistent remotely-active distributed state.
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Chapter 5

Deriving Reactive State

In the previous chapter we discussed replicable state: state that is shared
amongst actors and supports remotely-active updates. In this chapter we
discuss derivable state: state that updates automatically as other parts of
a system’s state change.

At a first glance, the reactive programming (RP) paradigm [BCC™13]
seems a perfect fit to implement derivable state. This paradigm is tai-
lored towards event-driven applications and allows programmers to ele-
gantly handle time-varying values in their applications. Moreover, the
paradigm has recently [DSMM14, MBS*18| been harnessed to imple-
ment distributed systems. However, the centralised nature of current dis-
tributed reactive programming runtimes renders them inapt to handle the
derivable state of DRIAs.

This chapter is divided in two main parts. In the first part we present
derivations (i.e. instances of derivable state) as a means for programmers
to implement reactive state in their DRIAs. Derivations provide an API
which is heavily inspired by existing reactive programming approaches.
However, existing reactive runtimes are ill-fit to support derivations in
Triumvirate. The main problem is that these runtimes rely on centralised
coordination to ensure that reactive updates happen in a correct order. In
the second part of this chapter, which is based on [MSDM19], we therefore
focus on Triumvirate’s novel decentralised reactive runtime.

Figure 5.1 highlights the concepts discussed in this chapter as well as
the requirements that derivations tackle. More precisely, in this chapter we
detail how derivations partially fulfil requirements Rs and R3 for DRIA-
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Actors Triumvirate Derivable

Figure 5.1: Concepts discussed in this chapter.

oriented programming models. In other words, we describe how deriva-
tions guarantee data consistency properties specified by the programmer
and how they provide support for multiple parameter passing semantics.

5.1 Derivable State and Reactive Programming

Reactive programming is epitomised by three core concepts. First, signals
represent time-varying values (e.g. the current mouse position). Sec-
ond, programmers combine these signals using lifted functions. Third,
the reactive language’s runtime constructs a dependency graph from these
combinations of signals. Moreover, the runtime ensures that changes to a
source signal propagate through the dependency graph, thereby updating
the application’s state.

The fleet management application introduced in Section 2.1 of Chap-
ter 2 is typically the kind of systems which one implements using reactive
programming. Figure 5.2(A) provides an overview of the part of our fleet
management application that is relevant to this chapter. Reactive pro-
gramming allows developers to implement the services’ internal logic. For
example, the fleet service is implemented as follows. The serialised ve-
hicle data is represented as a signal, each time this signal changes the
data is deserialised and persisted. We therefore use two lifted functions:
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Fleet Service
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Figure 5.2: (A) Overview of the fleet management application. (B) The

®

fleet service’s internal dependency graph.

one which deserialises the vehicle’s data and one which persists the de-
serialised data. Figure 5.2(B) depicts the dependency graph constructed
by the reactive runtime for the fleet service. The runtime’s propagation
algorithm traverses the dependency graph in a topological order as soon
as a source signal changes. The algorithm updates each signal using its
predecessors’ values during this traversal. For example, changes to the
vehicle data signal trigger the algorithm to update the deserialise signal
with the vehicle’s new data. Subsequently, it updates the persist signal
with the new deserialised data.

5.1.1 Distributed (un)Reactive Runtimes

Distributed reactive programming [CMVCDM10, MS14, RDP14] extends
the concepts of reactive programming to the realm of distributed systems.
In other words, programmers are able to apply lifted functions to signals
which reside on physically distributed machines. For example, using DRP
the geo service applies a lifted reverse geo coding function on the fleet
service’s deserialise signal. Whenever the deserialise signal changes (i.e.
as a result of a change in a vehicle’s data), the reverse geo coding function
is invoked automatically (we say that the geo service updates whenever
the deserialise signal changes).

As explained in the previous section each microservice contains a de-
pendency graph which represents its internal logic. However, using DRP
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the services themselves also form a distributed dependency graph. For ex-
ample, the arrows in Figure 5.2(A) show the distributed dependency graph
for our fleet management application. Whenever a vehicle’s data changes,
this updates the fleet service which propagates the deserialised data to the
geo and driving services. Subsequently, both services update before they
propagate their new values further downstream to the dashboard service.

As is the case for non-distributed dependency graphs, a propagation
algorithm performs a traversal in a topological order of the distributed
dependency graph to update all signals. To showcase the importance
of this traversal order, consider the following hypothetical scenario. A
vehicle sends its updated data to the fleet service, which subsequently
deserialises and persists this data. Assume that the geo and the dashboard
services update before the driving service. The dispatcher looking at the
rendered dashboard might witness a faulty speed limit violation because
the vehicle’s position in the dashboard was updated before its driving
statistics. This phenomenon is called a glitch [CK06]. A common strategy
employed by non-distributed reactive programming languages to avoid
glitches is to topologically sort the dependency graph before propagating
values through it [CK06, MGB*09].

Problem Statement

The aforementioned non-distributed glitch-freedom strategy does not triv-
ially scale towards distributed systems. A single central coordinator would
be required to explicitly sort the distributed dependency graph and to de-
termine when each node may update. As we detail in Section 2.1.1, the
fleet management application requires updates to propagate from the fieet
service to the dashboard service as fast as possible. A central coordinator
would introduce a single point of failure as well as a significant perfor-
mance bottleneck that would hamper the reactivity of the application.

Solution

Triumvirate’s derivations provide an API similar to that of distributed
reactive programming. They allow programmers to elegantly combine re-
active states distributed across the network. However, Triumvirate imple-
ments a novel reactive runtime which guarantees glitch freedom without
resorting to centralised coordination. As such, Triumvirate allows for the
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class Vehicle extends Actor{
init () {
3 let topic = new this.libs.PubSubTag(” Vehicle”)
4 let data = this.libs.derive (-=>{
5 return readBeacon ()
6 },this.libs.seconds)
7 this.libs.publish (topic ,data)

ORI

Listing 5.1: Defining the data uploaded by vehicles.

development of the vehicle-related functionality of our fleet management
system while also meeting its reactivity requirement. The following section
discusses the derivation API, after which we specify the reactive runtime.

5.2 Derivations in Practice

Figure 5.2(A) provides an overview of the reactive state in our fleet man-
agement application. More precisely, the figure shows how the fleet mem-
bers’ data flows through various microservices. In a nutshell, these services
provide the following functionality. The fleet service serves as an entry
point for fleet members to upload their data to the server. The service
deserialises and persists the uploaded data. The geo service converts a
fleet member’s GPS coordinates into physical street addresses. The driv-
ing service calculates eco-driving scores and generates alerts based on a
fleet member’s data and physical location. The job service allows techni-
cians to query and modify job-related data. Lastly, the dashboard service
combines fleet member and technician data into a coherent whole.

In the following sections we detail how one uses Triumvirate’s deriva-
tions to implement the flow of data within and across microservices.

5.2.1 Local Reactivity using Derivations

The vehicle-related functionality of our fleet management system is im-
plemented using derivable state. Vehicles continuously upload their most
recent information, after which a series of microservices transform this
data before the dispatcher sees it on his dashboard. Listing 5.1 defines
the actor which implements the vehicles. A vehicle’s task is twofold: read
the state of the hardware beacon at regular intervals and send said state

105



CHAPTER 5. DERIVING REACTIVE STATE

-

class Fleet extends Actor{

w N

init (){

| let vehicleTopic = new this.libs.PubSubTag(”vehicle”)

5 let fleetTopic = new this.libs.PubSubTag(” fleet”)

6 this.libs.subscribe(vehicleTopic).each((serialisedData)=>{

7 let deserialised = this.libs.derive(deserialise ,serialisedData)
8 this.libs.derive(persist ,deserialised)

9 this.libs.publish (fleetTopic ,deserialised)

10 13

11}

12| }

Listing 5.2: Defining the fleet service.

to the fleet service. To achieve the first task we use the derive function,
which is part of the standard actor library. Derive takes a function and
distributed input data (i.e. duplicates, replicas or derivations) as argu-
ment and outputs a new derivation. Every time the state of one of the
input data changes, the function is reevaluated to calculate the new state
of the output derivation.

Triumvirate’s standard library contains the seconds derivation, which
updates every second. On line 4 the vehicle actor derives serialisedData
from seconds using a function which reads the state of the hardware bea-
con. For the sake of simplicity we assume the existence of a readBeacon
method. Every second (i.e. when the state of the seconds derivation
changes) all derivations that depend on seconds are recomputed. In other
words, the vehicle actor reads the beacon information every second. In
turn this updates the serialisedData derivation and all derivations that
depend on it as well.

The vehicle’s second task, sending its state to the fleet service, is done
through Triumvirate’s publish-subscribe mechanism (line 7). Note that
the vehicle does not explicitly specify to which services its data must be
sent. This loosens the coupling between the distributed components in
our system.

5.2.2 Distributed Reactivity using Derivations

Triumvirate’s derive function can be applied over distributed state regard-
less of the state’s locality. In other words, an actor can apply the deriva-
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tion function to state received from another actor. The output derivation’s
state is recomputed as soon as the state of one of the inputs changes.

Consider the fleet service, defined by the actor in Listing 5.2. It sub-
scribes to the topic under which vehicles publish the serialised Data deriva-
tion (line 6). Whenever such a derivation is published, the fleet service
reacts as follows. First, it derives the deserialised version of the serialised
input data. Second, it persists this deserialised data. Third, it publishes
the deserialised data under its own topic.

Deserialising and persisting the data happens via two derivation func-
tions (i.e. deserialise and persist, of which we assume the existence).
These derivations depend (respectively directly and indirectly) on the se-
rialisedData derivation published by vehicles on line 7 in Listing 5.1. In
other words, every second the serialised data is updated by the vehicle
which in turn updates the fleet service’s deserialised derivation that is
automatically re-persisted upon updating. All these updates happen au-
tomatically and glitch free. This frees the programmer from manually
ensuring reactive updates across actors.

5.3 Deriving, Replicating and Imperatively Mu-
tating

In Chapter 4 we discuss how Triumvirate supports remotely-active state
using replicas. These replicas, together with derivations and duplicates,
form the distributed state of DRIAs. As such, derivations are bound to
interact with duplicates and replicas. In this section we discuss the law
that governs these interactions. We start the discussion with a number of
examples.

5.3.1 Combining Reactivity and Activity

Triumvirate supports two kinds of updates on distributed state: active
(i.e. local or remote) updates and reactive updates. Active updates are
control-flow driven while reactive updates are data driven. To exemplify
this difference, consider a traditional online spreadsheet application (e.g.
Google Sheets). As shown in Figure 5.3, the client side of this application
consists of two states: the document object model (DOM) tree (i.e. a tree
that contains html elements) (shown on the left) and the spreadsheet’s
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Figure 5.3: Active and reactive state in an online spreadsheet application.

cells (shown on the right). The DOM tree is imperatively (i.e. actively)
updated by the application as the user interacts with the application in-
terface (1). In contrast, cells of a spreadsheet update reactively as new
data becomes available. The application’s programmer must translate ac-
tive updates to the DOM into reactive updates to spreadsheet cells (2).
Conversely, reactive updates to the spreadsheet cells must be translated
into active updates to the DOM tree (3). Related work discusses the com-
bination of active and reactive state as well as translating updates from
one kind to another at length [VAVDKMDM17, ICK06]. In the following
sections we explain how Triumvirate deals with combinations of active
and reactive state.

5.3.2 Reactivity and Activity in Triumvirate

Figure 5.4 provides a general overview of the interactions between active
and reactive distributed state in Triumvirate. Duplicates and various
kinds of replicas implement the active state in Triumvirate applications.
As we discuss in Chapter 4, active updates to replicas involve various
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Figure 5.4: Overview of state interactions within Triumvirate.

state synchronisation mechanisms. Derivations implement the reactive
state in Triumvirate applications. It is important to note that each actor
in Triumvirate can contain both active and reactive state. In other words,
the state depicted in Figure 5.4 could be distributed amongst any number
of actors.

The derive function available in the standard library of all Triumvirate
actors allows programmers to translate control-flow-driven active updates
from duplicates or replicas to data-driven reactive updates on derivations
and vice versa. As an example of this translation consider the implemen-
tation of Triumvirate’s built-in seconds derivation given by Listing 5.3.

The listing comprises two parts. A first part implements the active
clock state using the Clock duplicable (line 1 to line 13). A clock provides
a single method tick that increments the clock value.

A second part concerns the implementation of Triumvirate actors (line
15 to line 31). We omit all code from this class which does not directly
relate to the seconds derivation. Actors maintain a single clock instance
(line 16). Actors increment the clock’s value every second by recursively
invoking the tickLoop method (line 25). The seconds derivation is created
on line 20 by deriving from the clock duplicate using the provided func-
tion. Changes to the clock’s state (i.e. as a result of an invocation of the
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1| class Clock extends Duplicable{
2| wvalue

i| constructor (){
5 super ()
6 this.value = 0

|y

9| @mutating

0] tick (){

11 this.value += 1
120}

3]}

15| class Actor{
16| clock : Clock

18] init (){

19 this.tickLoop ()

20 this.libs.seconds = this.libs.derive((c : Clock)=>{
21 return c.value

22 },this.clock)
23|}
2

25| tickLoop (){

26|  setTimeout (()=>{

27 this.clock. tick ()
28 this . tickLoop ()

29 },1000)

300}

31|}

Listing 5.3: Defining the seconds derivation.

mutating tick method) trigger re-evaluations of this function that updates
seconds’ state.

This example demonstrates how derivation functions translate active
updates into reactive update: an active clock tick triggers a reactive up-
date for seconds and all its derivations. Conversely, the body of the deriva-
tion function (i.e. line 21) has access to mutable state (i.e. the clock) and
is able to translate reactive updates to active updates if need be.

5.3.3 Derivation and Replication

In general, derive takes a derivation function as argument and any number
of distributed states (i.e. duplicates, replicas or derivations). Derive re-
turns a new derivation that updates, according to the provided derivation

110



5.4. DISTRIBUTED GLITCH FREEDOM

function, as soon as a mutating method is invoked on one of the input
arguments. We discern two types of derivations.

Source derivations solely have replicas or duplicates as input argu-
ments. For example, the derivation published by vehicles in our
fleet management system are source derivations.

Intermediate derivations solely have other derivations as input argu-
ments. For example, the derivation published by the fleet service is
an intermediate derivation.

A third type of derivation (i.e. one that combine derivations, replicas
and duplicates) is forbidden by Triumvirate in accordance to the following
law:

Law 4: Activity-Reactivity Isolation

The derive function either accepts only active state (i.e. duplicates
or replicas) as arguments or only reactive state (i.e. derivations) as
arguments.

The reason for this law is the following. Source derivations serve as a
bridge between active and reactive state: they translate active update to
reactive updates. Intermediate derivations allow programmers to declara-
tively construct data flows across actors. An intermediate derivation up-
dates if one of its predecessors in the graph has updated and if this update
does not cause a glitch in the application. Adding a replica or duplicate
dependency to an intermediate derivation goes against these update se-
mantics. Intermediate derivations would then become subject to changes
occurring outside of the reactive dependency graph. This goes against the
declarative nature of derivations and breaks Triumvirate’s glitch freedom
guarantees. Triumvirate ensures that programmers cannot create such
derivations by throwing run-time exceptions.

This concludes our overview of the programmatic aspects of deriva-
tions in Triumvirate. In the following section we discuss distributed glitch
freedom and how Triumvirate tackles it.
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Figure 5.5: A) A dependency graph susceptible to glitches. B) A depen-
dency graph not susceptible to glitches. C) A dependency graph suscep-
tible to concurrent glitches.

5.4 Distributed Glitch Freedom

Informally, a reactive application glitches if a node in the dependency
graph updates before its predecessors. For example, in our fleet man-
agement application (see Figure 5.2) this happens if the dashboard up-
dates using new data from the driving service and old data from the geo
service. Non-distributed reactive applications trivially guarantee the ab-
sence of such glitches. It suffices for the propagation algorithm to update
nodes according to the topology of the dependency graph. Similarly, in
a centralised distributed context a single coordinator can ensure that dis-
tributed nodes in the graph update in the correct order. Guaranteeing
glitch freedom in a decentralised distributed context, such as our fleet
management system, is significantly more complex.

Glitches in Distributed Reactive Systems

The key intuition behind glitches is that they can only occur for
certain topologies of dependency graphs. Consider Figure 5.5(A),
whenever A propagates a value both B and C need to update before
they propagate values to D. We say that D is susceptible to glitches
with regards to A.

Our fleet management system is a concrete example of such an update
ordering. In contrast, in Figure 5.5(B) no node is susceptible to glitches:
C can update as soon as it receives a new value from either A or B (which
are both trivially free from glitches). For example, if C receives a new
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propagation value from A it uses the previously received value from B to
update itself.

In order to detect glitches, assume A in Figure 5.5(A) possesses a log-
ical clock which it increments each time it propagates a value to its suc-
cessors. Moreover, A tags each value it propagates with the current clock
time. Up(valp, valc) denotes the updating of D using a value valp propa-
gated by B and a value valc propagated by C. D must adhere to the fol-
lowing constraint to avoid glitches, where Time,(v) denotes A’s clock time
tagged to value v : Up(wvalg,valc) <= Timea(valg) == Times(valc).
Furthermore, values can propagate concurrently through the distributed
dependency graph. Consider Figure 5.5(C), A and B might concurrently
propagate new values. Given network delays these values can be received
by C, D and E at arbitrarily different points in time. E’s constraint to
avoid glitches is therefore the following:

Ug(valc, valp) <= Timea(valc) == Timea(valp)A

Timepg(valg) == Timepg(valp)
To summarise, the concurrent and asynchronous nature of DRIAs can lead
to glitches that would not occur in non-distributed or centralised systems.

5.5 Glitch Freedom using Queued Propagation

The rest of this chapter discusses the propagation algorithm that Triumvi-
rate uses to guarantee glitch freedom. This algorithm, called queued prop-
agation (QPROP) [MSDM19], governs the updates of derivations across
Triumvirate actors. It ensures that each derivation updates glitch-freely
without resorting to centralised coordination.

QPROP serves as a general solution to the problem of distributed
glitch freedom. Although we apply it specifically to derivations in Tri-
umvirate, it can be used as a foundation for other distributed reactive ap-
proaches. We therefore make abstraction of derivations in the discussion
of QPROP presented below. Instead, we represent a distributed reactive
program by means of its dependency graph.

QPROP is divided into three phases. First, during the exploration
phase each node uses its neighbours to explore its position in the graph.
Second, the barrier phase ensures that the exploration phase has success-
fully finished before nodes start to propagate values. Third, the propaga-
tion phase does the actual propagation of values.
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QPROP assumes the following:

As is commonly the case in reactive programming, dependency graphs
are finite and acyclic [DSMM14, MGB*09, CC13]. Moreover, there
are no intentional topological changes to the graph after the explo-
ration phase. In other words, no new nodes or edges are added to
the dependency graph after the exploration phase.

The nodes in the dependency graph are aligned with the unit of
distribution (e.g. a microservice, a process running on a server, a
derivation etc.).

Propagation of values within a single node (i.e. through a non-
distributed dependency graph) is abstracted as an update function.
We assume that this update function provides glitch free propagation
of values within nodes.

Nodes communicate with one another through an asynchronous com-
munication medium which ensures exactly once, in-order delivery of
messages.

At the start of the application (i.e. before the exploration phase)
each node has references to its direct predecessors and successors in
the graph. References uniquely identify nodes (e.g. references are
IP addresses).

Before we start the presentation of QPROP, we introduce our notation.

5.5.1 Notation

We represent a node n as a 9-tuple:
n = (DP,DS,I,S, U, initVal, lastProp, self, clock).
Each element in the tuple contains the following information:

DP is the set of n’s direct predecessors.

DS is the set of n’s direct successors.

I is a dictionary of input sets which stores values propagated by n’s direct

predecessors (i.e. I’s keys are references to predecessors).
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S is a dictionary where the keys are references to source nodes and the
values are sets of references to direct predecessor which are included
in paths from the key source node to n.

U is n’s update function, its arity equals DP’s cardinality. Once called
with the values of n’s predecessors this function returns a single
value to be propagated downstream by n.

initVal is n’s initial value (i.e. the value before its first update).
lastProp is n’s last propagated value.

self is a reference to n.

clock is a logical clock which n uses to timestamp propagation values.

We describe QPROP in pseudocode notation. Each node in the dis-
tributed dependency graph runs the three phases of the algorithm in se-
quence (i.e. first the exploration phase, then the barrier phase and finally
the propagation phase). During these phases nodes communicate only
using asynchronous messages. We provide pseudocode notation of mes-
sage handlers to describe a node’s behaviour upon receiving a particular
message. We denote sending an asynchronous message m with arguments
(argy, ..., arg,) to a node n using: n < m(argy, ..., arg,). Moreover, using
await we specify that the execution of the pseudocode only continues once
n’s message handler returns (e.g. wvalue = await n < m(argy, ..., argy)).
To denote the elements within a dictionary we use the following notation:
[k, v] € D where [k, v] is a key-value pair and D is a dictionary. To read
the value bound to key k in dictionary D we write: D.k. To add a key-
value pair [k, v] to a dictionary D we write: D = D U {[k, v]}. Finally, we
use the equality symbol (i.e. =) to assign values to variables and use the
following symbol for equality: ==.
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5.5.2 Exploration Phase

ALGORITHM 1: Exploration

sourcesReceived = 0
foreach pred € DP do
| I=1U{[pred, {}]}
end
if |[DP| == 0 then /* I am a source node */
lastProp = (self, initVal, {[self], 0}, 0)
for succ € DS do
‘ succ < sources({self }, lastProp)
end

© W0 N U WN R

end

-
(=]

Handler sources(sources,initProp)

from = initProp.from
I.from = I.from U {initProp}
sourcesReceived += 1
foreach s € sources do
if [s,] ¢ S then

| S =su{ls (0}
end
S.s=S.sU{from}

© 0N A W N

end
if sourcesReceived == |DP| then
allSources = {s|[s, -] € S}
sourceClocks = {[s, 0]|s € allSources}
lastProp = (self, init Val, sourceClocks, 0)
for succ € DS do

‘ succ < sources(allSources, lastProp)
end

[ o T ~ S S SO S
O A W N KR O

end

=
<

Algorithm 1 provides the specification of a node’s behaviour during
the exploration phase. The algorithm is executed for each node at the
start of the reactive program. Only the node’s direct predecessors, direct
successors, initial value, self reference and logical clock are known at this
point (i.e. DP, DS, initVal, self and clock contain this information, all
other node elements are empty).

Informally the purpose of QPROP is twofold. First, each node com-
putes the paths from source nodes which lead to that node. Second, nodes
populate their I dictionaries with their predecessors’ initial values.

At the start of the exploration phase each node creates a new dic-
tionary per predecessor to store that predecessor’s input set (line 2 to
line 4). Moreover, source nodes send the sources message (line 5 to
line 9) which contains a singleton set with their self reference and their
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initial propagation value. We represent propagation values as 4-tuples
prop Val = (from, value, sClocks, fClock): from is a reference to the node
propagating the value, sClocks is a dictionary of clock times for all source
nodes which are direct or indirect predecessors of from and fClock is from’s
clock time.

The sources Handler defines how nodes handle the sources message.
As soon as a node receives a set of source references from each of its direct
predecessors it relays these references together with its initial propagation
value to all its direct successors (line 10 to line 16 in the sources Handler).
At the end of this process each node in the graph knows which source nodes
are able to reach it and through which direct predecessor. For example,
in Figure 5.5(C) E’s S dictionary contains [A, {C, D}] and [B,{C, D}|

5.5.3 Barrier Phase

ALGORITHM 2: Barrier

1 startsReceived = 0

Handler start()

2 if 1 startsReceived += 1
|DS| == 0 A sourcesReceived == | DP| 2 if startsReceived == |DS| then
then 3 foreach pred € DP do

3 foreach pred € DP do 4 | pred « start()

4 ‘ pred <+ start() 5 end

5 end 6 end

6 end

Glitches could occur if values were to propagate before all nodes were
able to construct their input queues. The barrier phase, see Algorithm 2,
allows source nodes to determine when it is safe to start propagating
values.

As soon as a sink node (i.e. a node without successors) is done explor-
ing (i.e. it has received a sources message from all its direct predecessors
(line 2)) it sends a start message to all its predecessors to indicate that
they can start producing values. Any non-sink node relays this message
upstream as soon as it has received a start message from all its direct
successors (line 2 in the start Handler). A source node starts propagat-
ing values once it receives a start message from all its direct successors.
At this point the source node knows by induction that all downstream
successors are done exploring.
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Handler change(vye,, = (from, value, sClocks, fClock))

1 I.from = I.from U {vpew}
2 allArgs = X ({{vnew}} U {i]i € I\ {I.from}})
matches = {args € allArgs|Vargqy,, argap, € args: [s,{dps,...,dp2}] € S —

3 argap, -sClocks.s == arggp, .sClocks.s}
4 if matches # () then
5 lastMatch = maz(matches)
6 clock +=1
7 lastProp = (self, U(lastMatch.values), lastMatch.sClocks, clock)
8 foreach succ € DS do
9 ‘ succ < change(lastProp)
10 end
11 foreach arg = (f, v, sc, fc) € lastMatch do
12 ‘ I.f = 1.f \ {vals € I.f|vals.fClock < fc}
13 end
14 end

5.5.4 Propagation Phase

Each key-value pair [s, preds] € S informs a node that it can only update
using values received from predecessors in pred if these values have equal
clock times for source node s. In other words, the following must hold:
U(argpredy s - TGpred,) <= Y[s,{pred;, ..., pred;}| € S :argpreq;.sClocks.s ==
aTgpred;-sClocks.s

The change Handler defines the heart of QPROP (i.e. how values prop-
agate through the distributed dependency graph in a glitch free way). It
starts as soon as a node n receives a new propagation value vy, = (from,
value, sClocks, fClock) which is immediately stored in n’s I set for from
(line 1). We assume that each input set in [ is totally ordered based on
its values’ fClocks. Subsequently, n computes a nested set of all possible
arguments to its update function (line 2). This partially ordered set is ob-
tained by taking the cross product (marked by the X operator on line 2)
of Ve With each of n’s predecessors’ I sets.

n filters this set of arguments to only contain glitch-free sets of argu-
ments (line 3). Furthermore, n takes the lexicographic maximum of these
sets of arguments (line 5). This set contains the last value propagated by
each predecessor which can be used to update n in a glitch free way. n
uses these values to invoke its update function after which it propagates its
updated value to all direct successors (line 7 to line 10). We assume that
lastMatch.values and lastMatch.sClocks respectively return a set contain-
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ing the value of each argument in lastMatch and the union of the sClocks
of each argument in lastMatch.

Finally, n removes all stale values from its input sets. We consider a
value to be stale if a newer value propagated by the same predecessor has
previously been used as argument to U. All values older than the ones in
lastMatch are stale and can therefore be removed (line 11).

5.6 QPROP by Example

This section serves as an example of QPROP’s workings. Consider an
application comprised of five microservices as shown in Figure 5.6. The
update functions of these microservices go as follows:

C adds the values it receives from A and B (i.e. C = A+ B).
D subtracts the values it receives from A and B (i.e. D = A — B).

E adds the values it receives from C and D
(ie. E=C+D=(A+B)+(A-B=2xA).

Figure 5.6 provides an overview of the application’s state as values prop-
agate through the microservices. We discuss QPROP’s behaviour at each
time step.

t=0 The barrier phase is completed. We assume that A, B, C, D and F
respectively have 5, 3, 8, 2 and 10 as initial values. Each node stores
its predecessors’ initial propagation values in its I set. For example,
both C and D store A’s initial value (i.e. (A4, 5,{[4, 0]}, 0)) in their
I A sets (see Section 5.5.2 for an overview of the data contained in
propagation values). Moreover, the figure also shows each node’s S
set. For example, E’s S set contains two entries: one which specifies
that C' and D propagate values originating from A and one which
specifies that C' and D propagate values originating from B. In other
words, E can only update using values from C and D if the following

holds:
U(valg, valp) <= valc.sClocks. A == valp.sClocks. AN

valg.sClocks. B == valp.sClocks.B

t=1 A updates to 7 and propagates a new value (A, 7,{[A4, 1]}, 1) to its
direct successors. At this point in time, only C receives this new
value and stores it in its 1. A set.

119



CHAPTER 5. DERIVING REACTIVE STATE

LA = {(A,5,{[A,0]},0)}
1.B = {(B,3{[B,01},0)}
S ={[A{A},[B{B}}

@ 1.C ={(C,8,{[A,0],[B,0]},0)}

@/ 1D ={(D,2,{[A,0,[B,01},0)}

S ={[A{C,D}1,[B,{C,D}]}
LA = {(A,5,{[A,0]},0)}

1.B = {(B,3{[B,0]},0)}
S ={IA{AlL[B,{B}]}

LA ={(A,7{IA1]},1)}
1.B = {(B,34[B,0]},0)}

@Qo‘,([AJ],[B,D]M)

1.C = {(C.8[A01,[B,01},0),
@ (C,10,{[A,11,[B,0]},1)}
®/ 1.D = {(D,2IA,01,[B,013,0}

LA = {(A,5{[A,01},0)}
1.B = {(B,3{[B,0]},0)}

LA = {(A,7{[A,1]},1)}

1.B = {(B,3,{[B,0]},0)}
1.C = {(C,8,{[A,01,[B,01},0),
(C,10,{[A,1],[B,01}, 1)}

©\® 1.D = {{D,2,{[A0,[B,0},0),
(D.51A,01[B, 11,1}
@@,m,{s,ﬂm

LA = {(A,5,{[A,0]},0)}
1.B = {(B,0,{[B,1]},1)}

t=6

LA ={(A7{IA1,1)}
1.B = {(B,3{[B,0]},0)}

e 1.C = {(C,8,{[A,01,[B,0]},0),

(C,10,{TA,11,1B,01},1)}
@ 1.D = {(D,2,{[A,0L,[B,0]},0),

(D,5,{[A,01,[B,11},1),
(D,74A,11,[8,1112)}

() ormnemna

LA = {(A,7{[A,1]},1)}

1.B = {(B.0,{[B,1111)}

LA = {(A,7,{A,11},1)}
1.B = {(B,0{[B,11},1)}

@\(cz{[A.ﬂ,[Bnn,m
© 'e-tcamamamo,
@/ (C10,{IA11B,0,1),

(C,7,{[A,1],[B,11},2)}
1.D ={(D,2,{[A,0],[B,0]},0),
(D,5,{[A,0],[B,11},1),

LA = {(A,7,{IA,11},1)} (D.74IALIB.11}.2)}

1.B = {(B,0{[B,1]},1)}

t=1

LA = {(A,5{[A,01},0),(A,7,{[A,11},1)}
(AT{ALY) 1B ={(B,3,{[B,0]},0)}

©\ 1.C = {(C,8[A,01[B,01,0)}
®/® 1.D = {(D.2,{[A.01,[B,01}0}

LA = {(A,5,{[A,0]},0)}
1.B = {(B,3,{[B,0]},0)}

LA = {(A,7{[A,1]},1)}
1.B = {(B,3,{[B,0]},0)}

o ©\ @ 1.C ={(C,8,{[A,0],[B,0]},0),

(C,10,{[A,11,[B,01}, 1)}

1.D = {(D,2{[A,0],[B,01},0)}
(B,O{[B,1111) 1A = {(A,5,{[A,01},0)}
1.B = {(B,3,{[B,0]},0),(B,0.{[B,11},1)}
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LA = {(A,7{[A,1]},1)}
1.B = {(B,3,{[B,0]},0)}

(A7{A, 8 ©\®
LA = {(A,5{[A,01},0),(A,7,{[A,11},1)}
1.B = {(B,0{[B,11},1)}

1.C = {(C,8,{[A,0],[B,01},0),
(C,10,{[A,1],[B,0]}, 1)}

1.D = {(D,2,{[A,0],[B,01},0),
(D,5,{[A,0],[B,1]},1)}

t=7

LA = {(A,7{A11,1)}
1.B = {(B,3{[B,0]},0),(B,0{[B,1]},1)}

1.C = {(C,8,{[A,0],[B,01},0),
(C,10,{[A,1],[B,0]}, 1)}

1.D = {(D,2,{[A,0],[B,01},0),
(D,5,{[A,0],[B,1]},1),
(B,7{[A,11,[B,11},2)}

LA = {(A,7,{A,11},1)}
1.B = {(B,0{[B,11},1)}

LA = {(A,7,{A,11},1)}
1.B = {(B,0{[B,11},1)}

@ 1.C ={(C,7.{[A,1],[B,1]},2)}

@/ 1.D ={(D,7,{[A,11,[B,1]},2)}

LA = {(A,7,{[A,11},1)}
1.B = {(B,0{[B,11},1)}

Figure 5.6: Propagation of change with QPROP.
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t=2

t=4

Given that C just received a new value it calculates the cross product
between {(A, 7,{[A, 1]}, 1)} and LB. This results in a single set of
arguments namely:

o {(A,7,{[4, 1]}, 1),(B,3,{[B, 0]}, 0)}

This set of arguments is trivially glitch free given that Als, preds] €
S : A € preds N B € preds (i.e. the values received from A and
B do not originate from a common source). C' invokes its update
lambda with 7 and 3 as arguments and propagates the resulting
value (i.e. (C,10,{[A, 1],[B, 0]}, 1)) to E which stores it in its I.C
set. C removes all values from its I. A set which have an fClock value
smaller than 1 and all values from its I.B set which have an fClock
value smaller than 0.

E calculates the cross product between {(C, 10,{[A4, 1],[B, 0]}, 1)}
and I.D. This results in a single set of possible arguments for E:
{(C,10,{]A, 1],[B, 0]}, 1),(D, 2,{[A, 0],[B, 0]}, 0)}. However, this
set is not glitch free given that both arguments do not have equal
clock values for A. E therefore refrains from invoking its update
function.

Meanwhile, B updates to 0 and propagates this new value (B, 0, {[B,
1]}, 1) to its direct successors. At this point in time, only D receives
this new value and stores it in its I.B set.

D calculates the cross product between {(B, 0,{[B, 1]}, 1)} and L. A.
This results in a single set of glitch-free arguments namely:

o {(4,5,{[4,01},0),(B,0,{[B, 1]}, 1)}

D invokes its update function with 5 and 0 as arguments and prop-
agates the resulting value (i.e. (D, 5,{[4,0],[B, 1]}, 1)) to E which
stores it in its I.D set. D removes all values from I.A which have an
fClock value smaller than 0 and all values from I.B which have an
fClock value smaller than 1.

E calculates the cross product between {(D,5,{[4,0],[B,1]},1)}
and I.C. This results in two sets of possible arguments for E:

o {(C,8,{[4,0],]B,0},0),(D,5,{[4, 0], [B, 1]}, 1)}
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t=6

o {(C,10,{[A,1],[B, 0]}, 1), (D, 5,{[4, 0, [B, 1]}, 1)}

This first set is not glitch free given that both arguments do not
have equal clock values for B. The second set is not glitch free either
given that both arguments do not have equal clock values for A nor
B. FE therefore refrains from invoking its update function.

Meanwhile, D receives the value propagated by A at time t=1 and
stores it in its I.A set.

D calculates the cross product between {(4, 7,{[A4, 1]}, 1)} and L.B.
This results in a single set of possible arguments:

{(4,7,{[4, 1]},1),(B,0,{[B, 1]}, 1)}. D invokes its update func-
tion with 7 and 0 as arguments and propagates the resulting value
(i.e. (D,7,{[A,1],]B, 1]}, 2)) to E which stores it in its I.D set. D
removes all values from its I.A and I.B sets which have an fClock
value smaller than 1.

t=7 F calculates the cross product between {(D, 7,{[A,1],[B, 1]}, 2)}

and I.C. This results in two sets of possible arguments for E:

o {(C,8,{[4,0],[B,01},0),(D,7,{[A, 1],[B, 1]}, 2)}
o {(C,10,{[A, 1],[B, 0]}, 1), (D, 7,{[A, 1], B, 1]}, 2)}

This first set is not glitch free given that both arguments do not
have equal clock values for A nor B. The second set is not glitch free
either given that both arguments do not have equal clock values for
B. FE therefore refrains from invoking its update function.

Meanwhile, C' receives the value propagated by B at time t=3 and
stores it in its I.B set.

C calculates the cross product between {(B, 0,{[B, 1]}, 1)} and . A.
This results in a single set of glitch-free arguments namely:
{(4,7,{[4, 1]},1),(B,0,{][B, 1]}, 1)}. C invokes its update func-
tion with 7 and 0 as arguments and propagates the resulting value
(i.e. (C,7,{[A,1],[B,1]},2)) to E which stores it in its I.C' set. C
removes all values from its I.A and I.B sets which have an fClock
value smaller than 1.

t=9 F calculates the cross product between {(C, 7,{[4, 1],[B, 1]},2)}

and I.D. This results in three possible sets of arguments:
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o {(C,7.{[A,1],[B, 1]}, 2), (D, 2,{[4, 0],[B, 0]}, 0)}
{(C, 7,414, 1], (B, 11}, 2), (D, 5,{[4, 0], [B, 1]}, 1) }

o {(C,7.{[A,1],[B, 11}, 2), (D, 7,{[A, 1], [B, 1]}, 2)}

The first set is not glitch free given that both arguments do not
have equal clock values for A nor B. The second set is not glitch free
either given that both arguments to do not have equal clock values
for A. However, the last set of arguments fulfils E’s glitch freedom
constraint. E therefore invokes its update function with 7 and 7
resulting in 14. Note that E therefore updates with twice the value
of A’s update at time t=1, as prescribed by our example. F removes
all values from its I.C and I.D sets which have fClock values smaller
than 2.

5.7 Supporting Dynamicity of the DAG

QPROP assumes that the dependency graph’s topology does not inten-
tionally change during a reactive application’s lifetime. This assumption
severely restricts the kind of application QPROP can support. For exam-
ple, this prohibits the dynamic addition of new microservices to a running
application.

To support such intentional topological changes we extend QPROP to
QPROP? (i.e. dynamic QPROP). We support four dynamic operations:
adding a node to and removing a node from the dependency graph and
adding a dependency to and removing a dependency from the graph.

5.7.1 Dynamic Graph Changes: An Intuition

Applying dependency changes to the graph’s topology requires all directly
or indirectly affected nodes to update their S and I dictionaries while
values are flowing through the graph. Figure 5.7(A) and (B) respectively
show the state of the dependency graph before and after the addition of
a new dependency between A and D. It is QPROPY’s task to extend E’s
S dictionary entry for A from [A,{C}] to [A,{C, D}|, to add A to D’s S
dictionary and to ensure that E now receives values originating from A
through D.

QPROPY must guarantee glitch freedom during the addition of de-
pendencies. Assume that source node A propagates value a; before the
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Figure 5.7: A) Dependency graph before dynamic addition of a depen-
dency between A and D. Source A propagates value a;. B) Dependency
graph after dynamic addition of a dependency between A and D. Source
A propagates value ag.

addition of the dependency (as shown in Figure 5.7(A)). Throughout this
example we omit the sClocks and fClock parts of propagation values for
the sake of brevity. We also assume that B does not change throughout
the example (e.g. C updates itself using a; and B’s initial value as ar-
guments). Due to network congestion, node E is yet to receive a; from
C.

A propagates value ap after the dependency between A and D is added

and all S dictionaries have been updated. a; finally arrives to F via C
and ag arrives to F via D. However, dynamically adding a dependency
changed E’s S dictionary. As a result, F can now only update if:
darge € 1.C,Jargp € 1.D : argc.sClocks.A == argp.sClocks. A.
D will never propagate a;, given that it was not a successor of A at
the time. This leaves E with two options. First, E continues behaving
according to the definition of QPROP. In this case E can only satisfy
the aforementioned condition using as values. E will never update using
C’s a; value and will remove it from its I sets instead (see the change
Handler). In other words, the dynamic addition of a dependency resulted
in the loss of a message.

A second option is for F to temporarily ignore values propagated by D.
As soon as F has updated itself with C’s a; and D’s last valid propagated
value (i.e. not D’s ap value) it can resume regular propagation using
values from C and D. F can safely use this value for D given that it was
propagated before the addition of the dependency between A and D. We
say that D is brittle for E. Concretely, the problem occurs when a node
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must extend an already existing entry in its S dictionary. In our example,
node F adds D to the [A, {C}] entry in S. To avoid the loss of messages
we choose for this latter option in QPROP4.

5.7.2 Adding Dependencies in QPROP¢

ALGORITHM 3: Dynamic de-
pendency addition

Handler newSucc(succ)

arguments: A new predecessor pred 1 DS = DS U {succ}
1 (predLastProp, sources) = 2 if |[DP| == 0 then
2 await pred < newSucc(self) 3 ‘ return (lastProp, {self})
3 DP = DP U {pred} 4 else
a if Asource € sources : [source,_] € S then 5 allSources = {sl|[s, ] € S}
5 ‘ I = I U{[pred, {predLastProp}|} 6 return (lastProp, allSources)
6 end 7 end
7 await self < addSources(pred, sources)

Handler addSources(from,sources)

foreach source € sources do

if [source,_] € S then
S.source = S.source U {from}
Br = By U {[from, {}]}

| S =S uU{[source, {from}]}
end
end
foreach succ € DS do
10 ‘ await succ < addSources(self, sources)

1
2
3
4
5 else
6
7
8
9

11 end

For each dynamic operation in QPROPY we provide an algorithm
which is run by the node initiating the operation (e.g. a node dynam-
ically adding a dependency to a new predecessor). Moreover, we define a
number of new message handlers which extend the set of message handlers
defined in Section 5.5.

A node n dynamically adding a dependency to a new predecessor pred
runs Algorithm 3, which performs three main tasks. First, n requests
the last propagated value from pred together with a set of all sources
able to reach pred (line 2). By requesting this information, pred adds
n to its list of successors (line 1 in the newSucc Handler). Second, if
n is not brittle for pred (i.e. there is no overlap between the sources
that can reach pred and those that can reach n) it creates an entry in
for pred (line 4). Third, n updates its own topological information (i.e.
the S dictionary) and that of its direct and downstream successors. To
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do so, n sends itself the addSources message (line 7) with pred and the
sources which can reach pred as arguments. The addSources Handler uses
these arguments to update the receiving node’s S dictionary (line 2 to
line 6). Moreover, the handler tracks which predecessors are brittle for
n in a dictionary B, which contains entries [brittlePred, vals] € B,, where
brittlePred is a brittle predecessor for n and wvals are values propagated by
said predecessor. This addSources message is recursively sent to n’s direct
and downstream successors (line 10).

n immediately continues with QPROPY’s pre-propagation phase once
the dependency addition operation has completed (i.e. n and all its down-
stream successors have updated their topological information). A bar-
rier phase is not required here, given that values are already propagating
through the system.

5.7.3 Pre-propagation

ALGORITHM 4: Pre-propagation

arguments: A new value vpew = (from, value, sClocks, fClock)

1 case —isBrittle(from) A —hasBrittleSibling(from) do

2 ‘ self + change(vnew) /* Proceed with QPROP’s propagation phase */

3 case —isBrittle(from) A hasBrittleSibling(from) do

4 I.from = I.from U {vnew}

5 if Vpred € DP : isBrittleSibling(pred, from) = By.pred # () then

6 self + change(vnew) /* Proceed with QPROP’s propagation phase */
7 foreach pred € DP : isBrittleSibling(pred, from) A synchronised(pred) do
8 MoveTol(pred)

9 end
10 end
11 case isBrittle(from) do
12 B,.from = By.from U {vnew }
13 if |By.from| == 1 then

14 if synchronised(from) then

15 MoveTol(from)

16 self + change(vpew) /* Proceed with QPROP’s propagation phase */
17 else

18 foreach pred € DP : isBrittleSibling(from, pred) do

19 foreach val € I.pred \ {I.pred.first()} do
20 ‘ /* Run Algorithm4 with val as input */
21 end
22 end
23 end
24 end
25 end
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QPROP? introduces a pre-propagation phase for all nodes. The
goal of this phase is to determine whether certain predecessors cease to be
brittle as the result of a node receiving a new propagation value. Consider
the example depicted in Figure 5.7(B). D ceases to be brittle for £ as soon
as F updates using C’s a; value as arguments. In other words, when the
value with the smallest clock time for A in B,.D is one clock time bigger
than the value with the smallest clock time for A in I.C' (we assume a;
and az to have clock times for A of 1 and 2 respectively). We say that
D is a brittle sibling of C' and that D has synchronised with C if the
aforementioned condition holds.

Algorithm 4 defines a node n’s behaviour when it receives a change
message from a predecessor from. It relies on a number of predicates
(i.e. isBrittle, hasBrittleSibling, isBrittleSibling and synchronised) and a
function (i.e. MoveTol). These predicates are defined separately in Algo-
rithm 5 below to enhance the readability of Algorithm 4. n executes Al-
gorithm 4 before the change Handler. The algorithm discriminates based
on the predecessor from propagating a value vye, to n:

1. from is not a brittle predecessor and it does not have any brittle
siblings (line 1). In this case n can safely continue with QPROP’s
propagation phase.

2. from is not a brittle predecessor but it has at least one brittle sibling
(line 3). In other words, n has another predecessor pred which is
brittle and which shares a common predecessor with from. The
algorithm first checks whether all brittle siblings of from have at least
propagated one value. Assume a brittle predecessor predp, i has not
yet propagated a value (i.e. By.predppitye is empty). It is impossible
for n to assess whether predy,. is already synchronised or whether
it is still brittle and n can therefore not update itself safely. If
all brittle siblings have at least propagated one value, n is able to
try and update itself with v,e,. Subsequently the algorithm checks
whether certain predecessors have ceased to be brittle as a result
of this possible update. If a predecessor has ceased to be brittle
(indicated by the synchronised predicate) the MoveTol function is
invoked which copies the predecessor’s propagation values from B,
to I and removes it from B,.
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3. from is a brittle predecessor (line 11). The algorithm starts by

checking whether vy, is the first message received from from (i.e.
| By.from| == 1). If this is the case it can be that from is already
synchronised (line 14) in which case the MoveTol function is invoked
and n is able to safely update. This would be the case in our ex-
ample if D would propagate a; due to A only propagating a; after
the dynamic dependency addition. If from is not synchronised but
Unew 18 the first message received from from (line 18) the algorithm
needs ensure that from’s non-brittle siblings have no unprocessed
values. Concretely, when B,..from is empty all values propagated
by its non-brittle siblings are stored in I without being processed
(line 4). Therefore, when n receives the first value from from the
algorithm needs to process these unused values.

ALGORITHM 5: Pre-propagation Predicates and MoveTol

© 0N A W N

e
N O bk W N KO

Predicate isBrittle(pred) = [pred,_] € B,
Predicate hasBrittleSibling(pred) = 3T[s, dps] € S, Ipredprittie € dps :

pred € dps A isBrittle(predyyisie)

Predicate isBrittleSibling(predyritie, pred) = isBrittle(predyrizie) A (s, dps] € S :

predprittie € dps A pred € dps

Predicate synchronised(predyiy.) = Vpred € DP,V[s, dps] € S :

isBritle(predyristic) A pred € dps A predyritne € dps ==
By.predprigiie-first().sClocks.s — I.pred.first().sClocks.s < 1

Function MoveTol (predy, ;i) :

if [predyristic, -] € I then
| I.predyrise = I.predyrissie U Br.predyrige

else
‘ I = I'U{[predyrittic, Br-predyrisie] }
end
BT = BT \ {[predb'rittlca ,]}
return

Algorithm 5 contains the predicates and the MoveTol function omitted

from Algorithm 4 for the sake of brevity. It is important to note that the
predicates are to be considered as macros (i.e. they expand when the node

runs Algorithm 4). In other words, the free variables in the predicates

(e.g. B, in isBrittle) are bound to the corresponding node elements upon

expansion.
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Figure 5.8: (A) Dependency graph before dynamic removal of a depen-
dency between A and D. Source A propagates value a;.(B) Dependency
graph after dynamic removal of a dependency between A and D. Source
A propagates value ag.

5.7.4 Removing Dependencies in QPROP4

Figure 5.8(A) and (B) respectively show the state of a dependency graph
before and after removing the dependency between A and D. As is the
case for the addition of a new dependency (see Section 5.7.1), QPROP%’s
task is to guarantee glitch freedom during the removal operation while
values are propagating through the dependency graph.

Assume A propagates a; before the dependency between A and D is
removed. Furthermore, assume F is able to update itself using these two
values (see Figure 5.8(A)). At this point E’s S dictionary contains two
entries: [A,{C, D}| and [B,{C, D}] In Figure 5.8(B) the dependency be-
tween A and D has been removed. This entails that the A entry in E’s
S dictionary now looks as follows: [A,{C}]. Assume A propagates ag to
C (given that D is no longer a successor of A). According to the change
Handler (see Section 5.5.4), F' now only needs to ensure that it uses argu-
ments for which the B clock times are equal. This would lead E to update
itself using a; from D and ap from C, which constitutes a glitch.

This problem arises whenever a node must modify an existing entry in
its S dictionary. In our example, E removes D from [A,{C, D}|. In other
words, all values stored by F in I.D have become stale given that D no
longer propagates values which originate from A. To avoid this issue, F
must therefore remove all values received from D in I.D.
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Handler rem-
ALGORITHM 6: Dynamic de- Sources(from,sources)
pendency removal 1 removed = {}
arguments: A predecessor to remove pred 2 foreach source € sources do

1 sources = await pred <— remSucc(self) 3 S.source = S.source \ {from}
2 [ =1\ {l.pred} 4 if S.source == () then
3 DP = DP\ {pred} 5 S = 8\ {[source, {}]}
4 await self < remSources(pred, sources) 6 removed = removed U {source}
5 if |[DP| == 0 then 7 else
6 foreach succ € DS do 8 ‘ I.from = {}
7 await 9 end

succ < addSource(self, self) 10 end

end 11 foreach succ € DS do
9 end 12 await succ
13 remSources(self, removed)
Handler addSource(from,source) 14 end
1 if [source, ] € S then
2 | S.source = S.source U {from} Handler remSucc(succ)
3 else 1 DS = DS\ {succ}
4 ‘ S = S U {[source, {from}]} 2 if |[DP| == 0 then
5 end 3 ‘ return {self}
6 foreach succ € DS do 4 else
7 await succ < addSource(self, source) 5 allSources = {s|[s, ] € S}
8 end 6 return allSources
7 end

A node n dynamically removing a dependency to a predecessor pred
runs Algorithm 6. In a first step, n informs pred that it is removing the
dependency by sending the remSucc message. Furthermore, n removes
pred’s input set from I and updates its direct predecessors DP. Upon
receiving the remSucc message (see the remSucc Handler) pred removes
n from its set of direct successors (i.e. DS) and returns a set with all
sources which are able to reach it. n uses this set as an argument to
the remSources message which it sends to itself. The remSources Handler
recursively updates the topological information held by n and all its direct
and downstream successors.

For our example depicted in Figure 5.8 D sends itself the remSources
message with A as arguments for both from and sources. As a result, D
removes A from the [A,{A}] entry in S (line 3). Given that S.4 is now
empty, D removes the entire entry from S (lines 5 and 6). In other words,
D no longer propagates values originating from A and notifies E of this
fact by recursively sending the remSources message to E using D and A
as arguments. Upon receiving the message, E removes D from [A,{C, D}|
in S. Given that F can still receive values originating from A through C
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it must empty D’s input set (line 8) in order to avoid the aforementioned
glitch.

Once all of n’s direct and downstream successors have finished updat-
ing, n needs to ensure that it didn’t become a source node by removing
the dependency with pred (i.e. pred was its only direct predecessor). If
n did become a source, it notifies its direct and downstream successors of
this fact by sending the addSource message. In a nutshell, the addSource
Handler updates a node’s S set based on the newly reachable source.

5.7.5 Adding and Removing Nodes in QPROP¢

ALGORITHM 7: Dynamic ALGORITHM 8: Dy-
node addition namic node removal

1 foreach pred € DP do 1 foreach pred € DP do

2 ‘ /*Proceed with Algorithm 3%/ 2 ‘ /*Proceed with Algorithm 6%/
3 end 3 end

4 foreach succ € DS do 4 foreach succ € DS do

5 ‘ /*succ proceeds with Algorithm 3%/ 5 ‘ /*succ proceeds with Algo. 6x/
6 end 6 end

Dynamically Adding a node n to a dependency graph is equivalent to let-
ting n sequentially run Algorithm 3 with each of its direct predecessors
as arguments. Moreover, each of n’s direct successors runs Algorithm 3
with n as argument. Similarly, removing a node dynamically from a de-
pendency graph follows the same pattern using Algorithm 6.

In summary, QPROPY relaxes one of the assumptions made by QPROP.
Namely, that the dependency graph does not intentionally change once the
system has passed the exploration phase. However, this relaxation comes
at the price of temporarily ignoring propagation values. This is a neces-
sary evil in order to guarantee glitch freedom in this dynamic context.

5.8 Evaluation of QPROP and QPROPY

Our evaluation of QPROP and QPROPY is twofold.

1. We compare the runtime performance of our approach to that
of SID-UP [DSMM14]: the state of the art in terms of centralised
reactive propagation algorithms.

2. We prove that QPROP and QPROPY guarantee glitch freedom,
eventual consistency, monotonicity and absence of progress.
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We start by discussing QPROP and QPROPY’s performance.

5.8.1 Performance

In order to compare our approach to SID-UP we systematically compare
the runtime performance of two distributed reactive systems implemented
in Spiders.js: one built atop QPROP or QPROPY and one built atop SID-
UP. The SID-UP algorithm as presented in [DSMM14] is implemented in
Scala, we therefore conduct all benchmarks using our own implementa-
tion ! of SID-UP in Spiders.js.

We first compare a QPROP and SID-UP implementation of our run-
ning example discussed at the start of this chapter. Subsequently we
compare a larger, synthetic, application built atop QPROP, QPROPY and
SID-UP. We compare the approaches using the following three metrics:

Load is the amount of requests per second the system receives. Each
request results in the propagation of a value through the distributed
dependency graph.

Latency is the average time it takes for a single value to propagate from
a given source node to a sink node.

Throughput is the amount of values which propagate from source node
to sink node for a given period of time.

Processing time is the time it takes for a request to propagate to a
sink node. The difference with latency is that we start measuring
processing time as soon as a request has been made. In contrast, we
measure latency only as soon as the request is first propagated by a
source node.

Memory usage we define the heap memory usage as the memory used
by a particular service in its allocated heap. Moreover, we define
the RSS (Resident Set Size) memory usage as the memory used by
a particular service in its allocated heap, stack and code segment.
Both heap memory usage and RSS memory usage are measured
through node.js’ process.memoryUsage()?.

"https://github. com/myter/ReactiveSpiders/tree/master/src/SID-UP
’https://nodejs.org/api/process.html#process_process_memoryusage
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It is important to note that due to QPROP and QPROPY’s eventually
consistent nature they might perform less updates than SID-UP for a same
load. In SID-UP each update of a source node is guaranteed to cause a
single update for all its successors. In QPROP and QPROPY concurrent
updates to multiple source nodes might only cause common successors
to update once. To ensure the fairness of our comparison we therefore
only consider a benchmark to have finished when the given system has
completely processed the given amount of load. For example, assume a
benchmark which simulates a load of 100 requests per second for a total
of 30 seconds. Moreover, the system used for the benchmark contains
a single sink node. For both SID-UP as well as QPROP and QPROP4
we consider the benchmark to have finished if the system’s sink node has
updated 3000 times. In Section 5.8.1.3 we measure the amount of these
concurrent interactions.

In general our benchmarks show that QPROP significantly outper-
forms SID-UP with regards to throughput, processing time and memory
usage. This is in spite of QPROP’s substantial computational complexity
which is O(MY) for QPROP’s core (i.e. line 2 in the change Handler)
where M is the worst-case amount of messages stored for N direct pre-
decessors. Although it slightly under performs with regards to latency,
QPROP is able to respond to client requests in a timely fashion regard-
less of load.

5.8.1.1 Use Case Comparison

The goal of our first benchmark is to compare both approaches in a real-
world setting. We therefore compare runtime performance for our running
example, which is a prototypical implementation of the production system
deployed by Emixis (see Section 2.1 of Chapter 2). We measure latency,
throughput, processing time and memory usage under varying loads ac-
tually measured by Emixis’ production version of the fleet management
application. In a nutshell the production system receives on average 45
requests per second during the weekend, 75 requests per second during
the evening and 300 requests per second during daytime. We conduct the
benchmarks using a setup similar to Emixis’, namely an Ubuntu 14.04
server with two dual core Intel Xeon 2637 processors (2 physical threads
per core) with 265 GB of RAM.
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Throughput

Figure 5.9 shows how both algorithms compare with regard to through-
put under varying load. QPROP clearly outperforms SID-UP. SID-UP
achieves its maximal throughput at 100 requests per second. If SID-UP
receives more than 100 requests per second all additional requests are
stored in a central buffer for delayed processing. In other words, SID-UP
is unable to efficiently handle the daytime load of our fleet management
application.

In order to measure QPROP’s maximum throughput for our use case
we vary the request load to 1400 requests per second. Figure 5.10 shows
the results for this experiment. QPROP is roughly able to handle 700
requests per second, after which throughput becomes negatively affected
by the increasing load.

Latency

Figure 5.11 shows how both algorithms compare with regard to latency
under varying load. QPROP performs worse with regard to latency. In
SID-UP a value can only propagate through the distributed dependency
graph when the previous value has completed its propagation. In other
words, all nodes in the distributed dependency graph are always ready to
accept new values. Latency is therefore unaffected by the load. In QPROP
this is not the case, values propagate through the graph concurrently.
Upon receiving a new value, a node could still be processing the previous
one which negatively impacts latency.

Processing

Figure 5.12 shows the request processing times for both approaches un-
der varying load. Although QPROP suffers from a latency overhead, one
clearly sees that SID-UP suffers from a much larger processing time over-
head. The reason for this overhead is that a request can only be handled by
SID-UP once the previous request has been handled. In contrast, QPROP
allows our fleet management application to handle requests in parallel.
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Processing Time under Varying Load

—e— QPROP
—e— SID-UP
10k
%
E
[
£ 1000
E
oo
{=4
@
2
4
o}
2 100
a
10
0 100 200 300

Load (requests/s)
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Memory Consumption

Figure 5.13 and Figure 5.14 show the results for the memory measure-
ments. SID-UP suffers from an overhead for both heap memory usage
as well as RSS memory usage. To understand this overhead, consider
Figure 5.15 and Figure 5.16 which detail the heap memory usage and
RSS memory usage per service for a load of 300 requests per second.
The services running QPROP consistently use less heap and RSS mem-
ory, although this could be attributed to implementation differences. The
major difference between both approaches comes from the fact that SID-
UP requires an additional admitter service to coordinate updates to the
application.

5.8.1.2 General Comparison

The fleet management application only consists of five microservices. To
further investigate the performance properties of QPROP, QPROPY and
SID-UP we compare the approaches using a larger example. Concretely,
we implement a system comprised of 60 microservices where each service
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Figure 5.17: Dependency graph of the larger microservice system.
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Latency under Varying Dynamic Topology Changes
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terval.

relays the requests it receives to other services. The application’s depen-
dency graph is exemplified in Figure 5.17.

We conduct the benchmarks on a cluster of 60 Raspberry Pi 3 de-
vices (Quad Core 1.2GHz Broadcom 64bit CPU and 1GB of RAM). Each
Raspberry Pi has a 100 Mbit network port and hosts a single microservice.
Figure 5.22 shows a picture of the cluster. All Raspberry Pi casings as
well as the cluster’s rack are hand-built using Lego bricks.

Throughput

Figure 5.18 compares the throughput of the QPROP and SID-UP im-
plementations of the microservice systems. As is the case for the fleet
management application, SID-UP is able to handle considerably less load
than QPROP. SID-UP’s maximum throughput is roughly 5 requests per
second, while QPROP reaches its throughput peak at 85 requests per sec-
ond. Although QPROP’s throughput decreases after this peak, it is still
roughly able to handle an order of magnitude more requests per second.

In order to compare QPROPY and SID-UP we measure the impact
of dynamic graph changes on their throughput. For a static load of 100
requests per second we vary the number of dynamic dependencies added

139



CHAPTER 5. DERIVING REACTIVE STATE

Figure 5.22: Picture of “pizilla”, the Raspberry Pi cluster.
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to the dependency graph. Figure 5.19 shows the results of these exper-
iments. Dynamic topology changes affect the throughput of both algo-
rithms: QPROP’s throughput roughly decreases with 20% when 20 oper-
ations are performed while SID-UP’s throughput decreases with roughly
10%.

Latency

Figure 5.20 shows the latency results comparing QPROP and SID-UP. As
is the case for the fleet management application, QPROP introduces an
overhead with regards to latency.

Figure 5.21 shows the latency results comparing QPROPY and SID-
UP under a load of 100 requests per second. Dynamic topology changes
only seem to impact QPROPY’s latency periodically. More precisely, in
QPROP? a topology change will render the part of the dependency graph
affected by the change unresponsive until the change completes. As a
result, our benchmarks show an increase in outliers while the average
latency remains roughly similar across the benchmarks. In contrast, SID-
UP’s latency is unaffected by load or dynamic topology changes. The
reason for this phenomenon is explained in Section 5.8.1.1. SID-UP’s
latency is unaffected by dynamic topology changes for essentially the same
reason. A change is only performed on the dependency graph whenever
the previous change has completed or the previous propagation value has
traversed the graph.

Processing

Figure 5.23 shows the average processing time per request. As is the case
for the fleet management application, SID-UP suffers from a significant
overhead as load increases. Figure 5.24 shows how processing times are
affected by dynamic topology changes, both algorithms are put under a
static load of 100 requests per second. The results show that topology
changes hardly affect processing times.

5.8.1.3 Concurrent Interactions

QPROP and QPROPY allow updates to source nodes to concurrently tra-
verse the dependency graph. As a result it can happen that a node de-
pending on two source nodes only updates once as a result of both source
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Processing Time under Varying Dynamic Topology Changes
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Figure 5.24: Request processing
Figure 5.23: Request processing time under varying dynamic topol-
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Figure 5.25: Concurrent interactions under varying loads. Error bars
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nodes updating. We call this phenomenon concurrent interactions. We
refer the reader to Section 5.6 for an example of such concurrent interac-
tions.

We measure the amount of concurrent interactions for the larger, syn-
thetic, microservice system. Regular benchmarks are stopped whenever
the sink nodes processed the given amount of load. For the concurrent
interactions benchmarks we stop the benchmark as soon as the source
nodes have produced the given amount of load. The difference between
the generated amount of load by the source nodes and processed amount
of load (i.e. updates) by the sink nodes allow us to measure the amount
of concurrent interactions.

Figure 5.25 shows the amount of concurrent interactions as load in-
creases. As the load increases the opportunities for multiple source nodes
to update concurrently and for nodes in the dependency graph to receive
partial updates increases. Hence, the amount of concurrent interactions
increase as well.

5.8.2 Proving Glitch Freedom and Other Properties

To prove QPROP’s correctness we start by proving that it guarantees
glitch freedom for the applications it supports before proving its other
properties. Informally, an application is glitched if it has only partially
been updated as the result of a change in one of the event sources (i.e. one
of the source nodes in the underlying dependency graph). Such a partial
update is the result of an incorrect traversal of the dependency graph by
the propagation algorithm. In other words, the algorithm has updated a
certain node before it updated all of its predecessors in the dependency
graph.

To aid us in proving® that QPROP is glitch free we introduce the following
definitions:

30ur proof technique was inspired by the one employed in [DSMM14]
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Definition 5: Dependency Graph

A dependency graph is a pair (N, F) where N is the set of nodes
and F is a set of pairs denoting directed edges between nodes in N.
This graph consists of three types of nodes:

e Source nodes :
{nso € N| An € N : (n,ns) € E}.

o Intermediate nodes :
{n; € N|3ns,ng € N:(ns,n;) € EN(n;,ng) € E}.

e Sink nodes :
{ns € N| An € N : (ng,n) € E}

Definition 6: Path

P(z,y) denotes the existence of a path in a dependency
graph (N, E) between nodes z and y. In other words
P(z,y) <= (z,y) € EV3ze N:P(z,z) A\ P(z,y).

Definition 7: Propagation Path

The set of reachable nodes starting from a source node ng,
is a partially ordered set: PP, = {ns,}U{n € N|P(ns,n)}.
The order of the nodes in this set is defined as follow:
Vng,ng € PP,,, :n; >ng < P(n;,nz). We say that PP, is
n.,s propagation path.

Definition 8: Precedence

We define that a node z directly precedes a node y in a depen-
dency graph (N, E) as follows: z >> y <= 3(z,y) € E. Similarly,
we define that a node z directly succeeds a node y in a dependency
graph (N, E) as follows: x <<y <= J(y,z) € E Note that both
relations are non-transitive.
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5.8.2.1 Exploration Correctness

QPROP’s exploration phase guarantees that a node n’s S, dictionary
contains entries which map each source node ng, able to reach n onto n’s
direct predecessors DP,, = {dp € N|dp >> n}. More precisely:

Theorem 1: Exploration Correctness

Vn € N,Vdp; € DP,, : AP(ngo, dp;) <= I[ns0,{..., dps,...}] € Sp

We prove this by contradiction: a node n is reachable by a source node
ng, through a direct predecessor dp;. However S, lacks an entry which
reflects this fact. Formally:

In € N,3dp; € DP,,, 3P (nso, dp;) : Alnso, {..., dpi,...}] € Sn.

This means that dp; did not include ng, as an argument to the sources
message (see Section 5.5.2). A node only sends the sources message if
it has received the sources message from all its direct predecessors (see
the sources Handler on line 10). Therefore, at least one of dp;’s direct
predecessors should have included ng, as an argument to its sources mes-
sage but failed to do so. Iteratively applying this reasoning would entail
that ng, did not include itself in the sources message to each of it direct
successors. As shown in Algorithm 1 on line 8 this cannot be the case.

5.8.2.2 Glitch Freedom
Definition 9: Glitch

Assume a node n with update lambda U, and a set of direct pre-
decessors DP,, = {dp € N|dp >> n}. If vy, denotes a value propa-
gated to n by dp; and Time,,, (vqp,) denotes a source node ng,’s
timestamp attached to wvgy, then U(vgp,, ... Vdp, DPM) produces a
glitch if:

3P (nso, dpi) A 3P (nso, dpj) A Timey,, (valay,) 7 Timen,,(valay,)

We refer the reader to Section 5.4 for an intuitive explanation of
glitches and glitch freedom.
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Theorem 2: Glitch Freedom

Vn € Nt Un(Vdp,, s Vdp pp,|) <

v[nSO) {dp’ta vy dpj}] E S’/L : Tl'menw(?)dpi) == Timenso(vdpj)

Assume a set of source nodes Ny, = {ns0,, ..., Ns0, } update and prop-

agate their new values to all their direct successors concurrently. For a
glitch to occur, at least one node n in PPy,, = Uj_; PPy, needs to up-
date itself with a set of values wvals such that: '
Inso € Nso, IVap,, Vap; € vals @ Timey,, vap, # Timen,, vap;. A node is only
able to invoke its update lambda if line 3 in the change Handler (see Sec-
tion 5.5.4) returns a set of glitch free arguments. We discern two cases.
First, n was unable to find such a set of glitch free arguments. In this
case n could not have invoked its update lambda and could therefore not
have caused a glitch which contradicts our assumption. Second, line 3
in the change Handler returned wvals as set of glitch free arguments. In
this case n can safely invoke its update lambda using vals as arguments
without causing a glitch which contradicts our assumption.

5.8.2.3 Monotonicity

Definition 10: Monotonic update

Assume a node n with update lambda U,, a set of direct predeces-
sors DP,, = {dp € N|dp >> n}. n invokes its update lambda using
the following set of arguments Args; = {vgp, , ..., Vap, pp, }- Moreover,
n’s clock value is ¢ before this update happens. Later, at clock time
t + n, n invokes its update lambda using the following set of ar-
guments : Args;i, = {vélpz""’%puapm}' We say that n updates
monotonically if and only if: Adp; € DPy,vap, € Argse, vy, €
Argsiin : Timen,, (Vap,) > Timen,, (vg,,)-

In other words, once n updates with a value vy, originating from a
source n,, it will never update with an older value originating from the
same source.

Theorem 3: Monotonicity

Nodes always update monotonically.
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We prove this by contradiction. Assume n updates twice: first using
Args; as set of arguments to U, and later using Args;1, as a set of ar-
guments to U,. We assume that n updated non-monotonically, in other
words the following holds:
3dp; € DPy,vap, € Argst, vy, € Argsiin : Timen,,(vap;) > Timen,, (v, )-
Given that vg,, and Ufipz- are the results of dp;’s updates this means that dp;
updated non-monotonically. Applying this reasoning iteratively results in
a direct successor of ng, updating non-monotonically. In other words, ng,
first propagated a value vy, and then a value v, for which the following
holds:

Timen,,(vp,,) > Timen,, (V)

Ns
clock times only monotonically increase (line 6 in the change handler).

,) However, this cannot happen given that
Consequently, this means that none of ng,’s direct or indirect successors

could have updated non-monotonically which contradicts our original as-
sumption.

5.8.2.4 Eventual Consistency

Theorem 4: DAG Construction

Any DAG can be constructed by recursively adding sink nodes (i.e.
nodes with an out degree of 0) starting from the empty DAG.

Every DAG has at least one topological ordering. Hence, one can
construct any DAG by recursively adding nodes in the order for which they
appear in the DAG’s topological ordering. By the definition of topological
ordering this entails that each node is added to the DAG before any of
its successors. In other words, in each recursive step a node is added with
out degree 0.

Definition 11: Graph Consistency

A distributed dependency graph is consistent if the following holds:
Vns, € N,n € PPy, : Timey,,, (lastProp(n)) = clock(ns,).We denote
the value of source node ng,’s clock with clock(ng,) and we denote
the last propagated value by n with lastProp(n).

In other words, all nodes n in a source node ng,’s propagation path
must have witnessed its last update.
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Theorem 5: Eventual Consistency

If all source nodes stop propagating new values, eventually the de-
pendency graph reaches consistency.

We prove this by structural induction over the dependency graph (i.e.
a DAG constructed by recursively adding sink nodes starting from the
empty DAG). The induction base considers a dependency graph contain-
ing a single node. This node is trivially consistent with itself. The induc-
tion hypothesis is that a given dependency graph n reaches consistency
when all of its source nodes stop propagating new values. The induction
step extends this graph n with a new sink node n,e,. We do this by
adding an arbitrary amount of edges from an arbitrary amount of nodes
in n to the new sink node. We prove by contradiction that this new graph
is eventually consistent. Assume that all source nodes have stopped prop-
agating updates and that our graph is inconsistent. Given our hypothesis
this can only mean that nye, causes the inconsistency. In other words:
Ingo € N : Npew € PPy, A Timey,, (lastProp(npey)) # clock(ns,). There are
two possible reasons for this:

First, n,e, was unable to update using its direct predecessors’ last
propagated value without causing a glitch. In other words, at least two of
these values have a different sClock timestamp for ng,. However, the in-
duction hypothesis ensures that ny,.,’s direct predecessors have witnessed
nso's last update. Therefore, it is impossible for at least two of nyeqy’s
direct predecessor to propagate values with a different sClock timestamp
for ng,.

Second, ny,e, was able to update itself using its direct predecessors’ last
propagated value, yet it still causes the graph’s inconsistency. Through
the change Handler (see Section 5.5.4) we know that ny,e,’s last propa-
gated value’s sClocks is a union of the sClocks of all values received from

Nnew’s direct predecessors. By definition this means that the following
holds:
Vdp € {dp € N|dp >> n} : Time,,, (lastProp(dp)) =
Timey,, (lastProp(npew))
Moreover, the induction hypothesis ensures that the following holds:
Vdp € {dp € N|dp >> n} : Timey,, (lastProp(dp)) = clock(nso).
Therefore, Timey,,, (lastProp(nnew)) = clock(nse) which contradicts our orig-
inal assumption.
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5.8.2.5 Progress

Informally, a distributed system makes progress if it performs useful com-
putations towards termination [HSHO5]. In our case we define this termi-
nation as follows:

Definition 12: Update Completion

Assume a source node mg, which updates and propagates a new
value vy, ,. The update which caused n,, to propagate v, is said
to complete if eventually:

Vn € PPy, : Timey, (lastProp(n)) = Timey,,, (vn,,)

In other words, we say that a distributed reactive system provides
progress if (concurrent) updates are guaranteed to finish in a finite amount
of time. QPROP and QPROPY are therefore unable to guarantee progress
given that both suffer from livelocks (we discuss this in Section 5.9). In a
nutshell, infinite concurrent updates to at least two source nodes can cause
livelocks for common successors to said source nodes. However, assuming
that concurrent updates stop, both algorithms are able to guarantee the
completion of at least the last update to each source node. This trivially
follows from the proof on eventual consistency (see Section 5.8.2.4).

5.8.2.6 Dynamic Graph Changes

Essentially, QPROPY provides two dynamic operations: adding and re-
moving a dependency between nodes. Adding and removing a node from
the dependency graph are sequences of dependency additions and re-
movals. We therefore prove the correctness of dependency addition and
removal.

Dynamic Dependency Addition

We refer the reader to Section 5.7 for a detailed explanation on the issue
which can arise upon dynamically adding a dependency between two nodes
in the dependency graph. Assume a node n; part of a source node’s
nso’s propagation path PP, . Moreover, assume ng, propagates values
Viefore = {V1, ..., un} to its successors. A dependency is dynamically added
from a node ng to n;, which therefore adds ng to PP,,,. After this, ns,
propagates values Vifer = {Un+1,..., Untn} to its successors However, ng
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will never receive values from Vjyeore given that these were propagated
before it joined ng,’s propagation path. QPROPY must therefore ensure
that all nodes in PP, update using values from Vjyefore before updating
using values from Ve

We prove this by contradiction. Assume a node ng in PP, , updates
using values from Vg, without first updating using values from Viefore.
Given that nodes propagate values in order, this can only mean that
dP(ng, ng) (i.e. all other nodes in PP, will first propagate values from
Viefore). According to Algorithm 3 ns must have received the addSources

Moreover, ng . must

message from at least one of its predecessors ng e

red *
be a direct successor of ny and must have addepd ng to its B, dictionary.
Line 11 in Algorithm 4 ensures that ng  , will only update itself using the
first value of Viper (i.€. vpyy1) if it previously updated itself with the last
value of Viefore (i.e. vy). Hence, ng can impossibly receive values from

Vafter before receiving values from Viefore.

Dynamic Dependency Removal

We refer the reader to Section 5.7.4 for a detailed explanation on the
issue which can arise upon dynamically removing a dependency between
two nodes in the dependency graph. Dynamically removing a dependency
between a node np and its predecessor n; changes ng’s S dictionary as
well as the S dictionaries of all its successors. QPROPY must therefore
ensure glitch freedom while nodes update their topological information.

A node n only updates its topological information as a result of re-
ceiving the remSources message (see the remSources Handler). We discern
two cases. First, n removes an entry for a source node ng, from S (line 5
in the remSources Handler). In this case, n only had a single predecessor
propagating values which originate from ng, and can therefore not pro-
duces glitches. Second, n removes a predecessor pred from an entry for
a source node mg, which still contains other predecessors preds. However,
in this case n removes all values for pred from I. All subsequent values n
will receive from pred will no longer originate from ng, and can therefore
not cause glitches.
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5.9 Limitations of QPROP

As we prove in the previous section, QPROP guarantees eventual con-
sistency. Assuming that source nodes stop propagating new values, all
nodes in the graph eventually update using their predecessors’ last values.
However, nodes in QPROP can become subject to livelocks.

For example, reconsider Figure 5.5(C). Node E’s glitch freedom con-
straint goes as follows:
Ug(valg, valp) <= Times(valg) == Timea(valp)A

Timep(valc) == Timeg(valp)

However, it is possible that E never receives a pair (valc, valp) for which
this holds. Assume that A and B update concurrently. Due to interleav-
ing of messages it can be that C' invokes its update function using the
new value for A and B’s old value as arguments. Furthermore, D invokes
its update function using the new value for B and the old value for A as
arguments. Upon receiving these values, F will not be able to meet its
glitch freedom constraint. Assume that A and B infinitely update con-
currently and this exact interleaving of messages continues. In this case
E is never able to update without causing glitches and is therefore stuck
in a livelock. However, F resolves this livelock as soon as A or B stop
updating. In general, nodes in QPROP can livelock for graph topologies
where two or more source nodes (e.g. A and B) all propagate values to a
single node in the graph (e.g. D) via two or more overlapping paths.

QPROP’s livelocks resemble the “duelling proposers” [Lam98] scenario
for Paxos (i.e. two nodes alternately increase proposal numbers). Future
work will focus on assessing whether randomisation [Lam98, O014] (e.g.
letting nodes await a random sleep timeout before handling a change mes-
sage) could alleviate the livelock issue in practice.

5.10 Related Work

Derivations are directly inspired from abstractions traditionally found in
reactive programming languages. As a concept derivations do not specif-
ically contribute to the state of the art in reactive programming. How-
ever, QPROP is the first decentralised propagation algorithm to guarantee
glitch freedom. This section discusses the most prominent approaches in
glitch prevention for reactive applications.
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In Elm [CC13] each node in the dependency graph runs under its own
thread of control. Moreover, each node has a number of queues which
hold values propagated by predecessors. However, Elm relies on a global
event dispatcher to provide new values to source nodes and is therefore
not suited to handle derivations in DRIAs.

A number of non-distributed reactive programming languages have
recently been researched (e.g. FrTime [CKO06] and Flapjax [MGB™09]).
These languages topologically sort the dependency graph underlying reac-
tive applications to guarantee glitch freedom. A similar approach is taken
by synchronous reactive programming languages, such as Esterel [BG92],
which rely on a scheduler to determine the order in which values prop-
agate through the dependency graph. This approach does not fit the
decentralised distributed systems we target.

Globally asynchronous locally synchronous(GALS) [BCLGO0] systems
provide a distributed approach to synchronous reactive programming.
GALS discriminate between two kinds of systems: ezochronous and en-
do/isochronous [LGTLLO03]. Endo/isochronous systems are defined by the
fact that the system only relies on the values of signals, never on the pres-
ence or absence of the value of a signal. Concretely, this constraints a
system to having a number of input signals for which one can infer at
what pace they produce values. Using this classification, QPROP ex-
plicitly targets exochronous systems where multiple source signals might
produce values at different and varying rates. To our knowledge current
GALS systems solely target endo/isochronous systems [GG10, PBCB06].
Although exochronous systems can be endochronised, this entails the ad-
dition of a centralised monitor or master clock to obtain the presence or
absence of a signal value [BCLGO00].

Quality-aware reactive programming (QUARP) [PB17] abstracts away
the notion of glitches to a more general notion of propagation quality. This
allows QUARP to implement decentralised glitch freedom as well as other
propagation criteria (e.g. geographical location of nodes). QUARP and
QPROP fundamentally differ in the glitch freedom guarantees they pro-
vide. In a nutshell, QUARP nodes only maintain the last propagated value
for each of their predecessors. This value is overwritten each time the node
receives a value from its associated predecessor. Nodes in QUARP can
therefore livelock for any graph topology able to cause glitches (see Fig-
ure 5.5(A)). In contrast, QPROP nodes can never livelock for the topology
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shown in Figure 5.5(A). Moreover, QUARP does not guard against the
issues which arise from dynamic topology changes (see Section 5.7).

The work presented in [SSR17] extends the synchronous reactive pro-
gramming language Céu [SRIT13] with support for GALS systems. How-
ever, as stated in [SSR17] it does not guarantee glitch freedom.

SID-UP [DSMM14] is a propagation algorithm specifically designed
towards the development of decentralised distributed systems. However,
SID-UP requires a central coordinator to support systems where source
nodes update concurrently. This feature of SID-UP makes it unfit to deal
with the reactive systems we envision.

Burckhardt et al. present a reactive caching algorithm in [BC18].
In a nutshell, this algorithm caches the return values of requests across
(micro)services in a distributed application. These caches are reactively
updated whenever updates to the system’s state render them invalid. The
novelty of this approach is that it leverages an intuitive pull-based API
with push-based update semantics. However, the approach does not guar-
antee glitch freedom.

ScalaLoci [WKS18] is a multitier distributed reactive programming
language. It allows programmers to explicitly specify the placement of
pieces of the application’s distributed state (i.e. on which nodes in the
network the data should be kept). Moreover, ScalaLoci provides two forms
of derivable data (i.e. signals and events) which can span across nodes in
the network. Scalaloci’s reactive abstractions therefore closely resemble
Triumvirate’s derivations. However, ScalaLoci does not guard applications
against glitches.

Spreadsheet applications such as Microsoft’s Excel essentially allow
one to write asynchronous reactive code. Each cell in the spreadsheet
can be seen as a signal which can depend on the values contained in
other cells. Moreover, given Excel’s multithreaded capabilities [Capl4]
these updates can happen concurrently. A generalisation of this model
to stream processing was introduced by [VTR™14]. However, glitches are
avoided in this model by analysing the dependencies between cells. Such
an analysis cannot be employed in a distributed context without resorting
to a centralised entity. Moreover, this analysis would need to be re-run
upon dynamic changes to the dependency graph incurring a substantial
overhead.
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AmbientTalk/R [CMVCDMI10] is a reactive extension to the Am-
bientTalk [CGST14] language. However, AmbientTalk/R only guards
against local glitches (i.e. only signals residing on the same physical device
are updated glitch freely).

5.11 Derivables and Requirements for a DRIA-
Oriented Programming Model

Derivations allow Triumvirate to fulfil requirements Ro and Rs for DRIA-
oriented programming models as follows:

Rs: The model guarantees data consistency properties specified
by the programmer
Triumvirate programmers use derivations to implement reactive state.
Our QPROP algorithm ensures that this reactive states updates
without causing glitches. Moreover, QPROP guarantees the even-
tual consistency of derivations.

R3: The model supports multiple parameter passing semantics
Derivations provide pass-by-derivation parameter passing semantics.
In other words, a distributed dependency graph is created as deriva-
tions are sent across the network. Updates to the sources of this
dependency graph automatically trigger updates for all derivations
in the graph.

Together with replicas and duplicates, derivations enable Triumvirate to
completely meet requirements Ry and R3 for DRIA-oriented programming
models.

5.12 Chapter Summary

Part of the state in DRIASs is distributed across the network by derivation.
These derivation provide reactive update semantics. Whenever a part of
the application’s state changes all its derivations automatically update as
well.

In Triumvirate programmers implement this kind of distributed state
using derivations. Derivations are heavily inspired by the reactive pro-
gramming paradigm. In a nutshell, programmers create derivations by

154



5.12. CHAPTER SUMMARY

applying a derivation function to a piece of distributed state (i.e. a dupli-
cates, replicas or other derivations). The return value of this derivation
function is a new derivation. Whenever one of the input arguments up-
dates the derivation is recomputed in order to update the state of the
output derivation. These semantics apply regardless of the input argu-
ments locality (i.e. the input arguments can reside on different actors).

The Triumvirate runtime ensures that updates propagate through the
dependency graph of derivations. More concretely a propagation algo-
rithm traverses this graph in topological order to perform these updates.
This ordering of updates is fundamental to the correctness of Triumvirate
applications using derivations. State of the art reactive propagation algo-
rithms are unable to guarantee this correctness property without resorting
to centralised coordination, which goes against the nature of Triumvirate
applications.

In this chapter we introduce a novel propagation algorithm QPROP,
and its dynamic extension QPROPY. This propagation algorithm is able
to guarantee glitch freedom in distributed reactive applications without
resorting to centralised coordination.
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Chapter 6

A Platform for Distributed
Web-oriented Programming
Languages

The previous chapters discuss Triumvirate in general and replicable and
derivable state in detail. Triumvirate is implemented as a DSL atop Type-
Script, a typed superset of JavaScript. More precisely, Triumvirate is
built atop a TypeScript library that we developed for distributed and
parallel web-programming called Spiders.js [MSDM16, MSDM18b|. Tri-
umvirate’s central idea, the classification of distributed state into three
categories, only fulfils requirements Ro and R3 for a DRIA-oriented pro-
gramming model: duplicates, replicas and derivations allow programmers
to express complex parameter passing and data update semantics for their
distributed state. Triumvirate relies on Spiders.js’ actor model and meta-
programming abstractions to fulfil the remaining two requirements (i.e.
Rl and R4).

In a nutshell, Spiders.js provides a unit of distributed logic (i.e. actors)
and allows programmers to extend its built-in parameter passing and up-
date semantics. Triumvirate can be thought of as an organisational layer
on top of Spiders.js. Figure 6.1 highlights the concepts discussed in this
chapter.
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Figure 6.1: Concepts discussed in this chapter.

6.1 The Lack of a Distributed Programming Model
for the Web

The actor model, and more specifically communicating event-loops (CEL,
see Section 2.3.1.1 of Chapter 2), inherently fits the web given that Java-
Script engines are essentially implemented as CEL actors [ecm19]. In
other words, a JavaScript engine maintains a heap of objects and a mes-
sage queue containing events. These events are sequentially removed from
the queue and drive the application logic. As such, web applications are
internally implemented as actor systems.

From a programmer’s perspective JavaScript provides two actor-like
constructs: web workers and child processes. The former are only avail-
able within browser environments (i.e. the client-side of web applications)
while the later is available for server-side applications (i.e. applications
written in Node.js, which is the most prominent server-side JavaScript im-
plementation). Unfortunately, these two constructs exhibit three major
shortcomings:

Location Transparency One of the strengths of the actor model is that
actors are location agnostic. The semantics of an actor (e.g. pa-
rameter passing semantics) do not depend on an actor’s location
(i.e. whether they reside on the same machine or not). Actors in
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JavaScript break this transparency property on two levels. First,
the API used by actors is different per tier (i.e. server or client
side). Client-side actors (i.e. web workers) employ HTML5 message
channels, while communication between server-side actors (i.e. child
processes) is traditionally implemented using web sockets. Second,
JavaScript actors lack the native constructs to communicate across
single machine boundaries. This burdens the programmer with the
task of providing communication between server and client-side ac-
tors.

Coarse-grained parameter passing semantics Programmers are un-
able to specify how values are sent from one actor to another. A
value is first copied before it is passed between actors. However, this
is only guaranteed for primitive data types (e.g. numerals, strings).
All other data types (i.e. functions, object methods) must be se-
rialised manually by the programmer which quickly leads to bugs.
For example, manual serialisation of objects forces the programmer
to take care of possible scoping issues (e.g. a method which refers
to variables defined in its lexical scope).

Client-side actors support additional parameter passing semantics
which transfers objects between actors. Transferring an object be-
tween actors can be compared to pass-by-reference semantics where
the sender loses its reference to the transferred object. However, this
feature is primarily used for performance reasons, as it only applies
to a limited number of objects (i.e. ArrayBuffer, MessagePort or
ImageBitmap).

Second class actor references An actor is able to spawn other actors.
We say that the spawning actor is the parent of its spawned children
actors. Message sends between actors are natively supported only
between such parent and child actors. A parent actor obtains a
reference to its children upon spawning them. This reference allows
the parent to send messages to its children and vice versa. However,
JavaScript disallows such references to be copied between actors (e.g.
as part of a message send).

This burdens the programmer with the task of implementing ar-
bitrary actor-to-actor communication. For client-side actors this
typically entails the use of HTML5 message channels (i.e. a tuple

159



CHAPTER 6. A PLATFORM FOR WEB-ORIENTED LANGUAGES

of ports), which creates a communication channel between two web
workers. In a nutshell, both actors must obtain a port of the same
message channel to be able to send messages. For server-side actors
one traditionally achieves communication between arbitrary actors
through the use of web sockets.

In this chapter we present our solution to the aforementioned short-
comings of actors in JavaScript: Spiders.js. Spiders.js is a framework
which solves the problems of built-in JavaScript actors as follows:

e Spiders.js exposes a uniform API and semantics regardless of the
tier (i.e. client or server) in which it is used. Moreover, Spiders.js’
underlying parameter passing system can handle both wvertical as
well as horizontal distribution. The former allows for traditional
client-to-server communication while the latter allows for server-to-
server and client-to-client communication.

e Programmers are freed from the burden of manually serialising ob-
jects. Objects are passed between two actors by reference
(e.g. a function object) or by copy (e.g. a numeral value).
In both cases the programmer is unaware of the underlying seriali-
sation.

e Actor references are first class values. This entails that all actors
are able to exchange references between and send messages to each
other.

6.2 A Collaborative Code Editor

To discuss Spiders.js’ constructs we make use of an example application
called CoCode': a collaborative code editor. In a nutshell, the application
is a browser-based code editor that offers syntax highlighting and that
synchronises the code amongst collaborators.

Figure 6.2 shows a screenshot of CoCode in use. CoCode offers two
functionalities. First, programmers enter their code in the text area at the
top of the screen. Code is highlighted and synchronised across clients by
pressing on the “commit” button. Second, programmers are able to send

"https://gitlab.soft.vub.ac.be/fmyter/cocode
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6.2. A COLLABORATIVE CODE EDITOR

Freddie v Send

Johnny : Hello all! [11-02-2019 14:02]
Freddie : Hey johnny [11-02-2019 14:02]
Send

Figure 6.2: Screenshot of CoCode in use.

Server Actor

code updates /
chat messages

code updates /
chat messages

Highlight Actor| | GUI Actor Highlight Actor| | GUI Actor

Figure 6.3: Architecture of CoCode.

private messages to each other (using the input field and button on the
left side of the screen) or chat publicly (using the text area and button on
the right side of the screen).

Figure 6.3 gives an overview of CoCode’s architecture. CoCode clients
are implemented using two actors: A GUI Actor and a Highlight Actor.
The former is responsible for updating the user interface and commu-
nicating with the CoCode server. The latter is responsible for syntax
highlighting the code provided by the user. Highlighting the code in a
separate actor allows CoCode’s user interface to remain responsive while
the user is coding.
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Class Functionality

Runs on the main thread

Application | Has access to the window object (client-side)

Serves as an actor factory

Actor Runs under its own thread of control
Isolate Adheres to pass by copy semantics

Object Adheres to pass by far reference semantics
Promise Represent asynchronous computations

Table 6.1: Spiders.js’ Base-level Constructs.

The CoCode server allows clients to initially download their actors’
and user interface’s source code. Moreover, the server is responsible for
both synchronising the code base that is collaboratively edited by CoCode
users as well as for delivering chat messages between users.

We start by giving a brief overview of the constructs provided by Spi-
ders.js before explaining the implementation of CoCode using said con-
structs.

6.3 An overview of Spiders.js

Table 6.1 provides an overview of the constructs provided by Spiders.js.
In a nutshell, Spider.js provides two abstractions to represent distributed
logic (i.e. actor and application), two to represent distributed state (i.e.
isolate and far reference ) and one to represent asynchronous computation
(i.e. promise).

Distributed Logic Spiders.js programmers implement distributed logic
using CEL actors (see Section 2.3.1.1 of Chapter 2). These are
defined by extending one of two classes: Application or Actor. The
application actor is spawned by instantiating an object from its class
definition (i.e. using JavaScript’s new operator), which can only be
done once per web page or server instance. All other actors are
spawned through the application actor’s spawnActor method which
takes an extension of the Actor class as argument, spawns a new
actor with an instance of this class and returns a far reference of the
newly spawned actor.
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Client-side actors are built atop web workers. We differentiate be-
tween the application actor which runs on the client’s main thread
(i.e. the user-interface thread, and is therefore not an actual web
worker) and regular actors, each of which are supported by a single
web worker. Server-side actors are implemented as child processes,
which entails that each server-side actor is a full-fledged Node.js
instance.

For example, in CoCode the GUI Actor extends the Application
class while the Highlight Actor extends the Actor class.

Distributed State Spiders.js provides two kinds of distributed state.
The first kind crosses actor boundaries by copy and is im-
plemented by extending the Isolate class. Isolate objects provide
a synchronous API: using JavaScript’s dot operator programmers
synchronously access an isolate object’s instance variables or invoke
one of its methods. All primitive JavaScript data types (e.g. strings,
booleans, numbers, etc.) are isolates. For example, in CoCode chat
messages are implemented as isolates given that these are basically
time stamped strings.

The second kind of distributed state crosses actor boundaries
by far reference and is implemented by extending the Object
class. The actor which instantiates an object from the Object class
is said to own the object. The owning actor is able to synchronously
access the object’s fields and methods. All other actors are able to
acquire a far reference to the object. These actors are only able to
asynchronously access the object’s fields or methods. In other words,
accessing a field or invoking a method on a far reference returns a
promise which might resolve with the field’s value or method return
value. If an exception occurs during the access or invocation the
returned promise is rejected with said exception.

For example, client-side actors in CoCode distribute references to
themselves using far references.

Asynchronous Computation JavaScript already natively provides a
construct to represent asynchronous computations: promises. These
objects represent the asynchronous or delayed execution of a piece
of code. Promises offer a dual API. On the one side a promise’s
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Function Signature
remote string — number — Promise<FarRef>
buffRemote string — number — FarRef
reflectOnActor | ActorMirror
reflectOnObject | Object — ObjectMirror
reflectOnObject | Isolate — IsolateMirror
serve App string — string — number — Object — Promise<void>

Table 6.2: Standard library available to all Spiders.js actors.

constructor accepts two callbacks which allow programmers to re-
solve or reject it. On the other side programmers are able to install
callbacks, through a promise’s then and catch methods, that are
triggered upon resolution or rejection of a promise.

Spiders.js extends JavaScript promises’ functionally (i.e. the promise
APT is the same in Spiders.js and JavaScript). In Spiders.js promises
are first-class distributed objects: a promise can be sent around be-
tween actors. Moreover, one is able to resolve or reject and listen to
the resolution or rejection of a remote promise.

6.3.1 Standard Library

Table 6.2 provides an overview of the functions provided by Spiders.js’

standard library. This library is available to all actors as an instance
variable called libs. Concretely, the library provides the following func-

tionality:

remote connects to an actor running on the specified address and port

and returns a promise which resolves with a far reference to said
actor. This actor must be server-side, given that only server-side
actors are able to specify the address and port on which they are
reachable.

buffRemote connects to a server-side actor running on the specified ad-

dress and port and immediately returns a far reference to said actor.
This far reference buffers all invocations and accesses until the con-
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nection with the server is established. In contrast, remote’s return
promise only resolves once the connection is established.

For example, CoCode’s client-side actors obtain an initial far refer-
ence to the server by using buffRemote.

reflectOnActor returns the actor mirror of the actor invoking the func-
tion. We provide more detail concerning Spiders.js’ reflection capa-
bilities in Section 6.5.

reflectOnObject returns the mirror on the provided object.

serveApp allows a server-side actor to function as an HTTP server for
web applications. Concretely, serveApp takes three mandatory ar-
guments: the path to the application’s main HTML file, the path to
the application’s actor definitions and a port number on which the
actor listens to HTTP requests. When a browser connects to the
specified port it receives the HTML and actor definitions. Subse-
quently the HTML is rendered and the actors spawned. Optionally,
serveApp accepts an options object which allows programmers to
specify HTTP specific attributes (e.g. the path to publicly available
folders on the server).

For example, the CoCode server uses the serveApp function upon
booting after which clients can receive their actors’ and user inter-
face’s source code.

This concludes our overview of Spiders.js’ most important constructs.
In the following section we use these constructs to implement CoCode.

6.4 Implementing CoCode

We start our implementation of CoCode by first focusing on the client-side
functionality (i.e. syntax highlighting code). Subsequently we discuss the
implementation of the distributed aspects of CoCode.

6.4.1 Client-side Implementation

Listing 6.1 implements the standalone functionality of each CoCode client
(i.e. highlighting code in the web page as a user types). Each client uses
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class CoCodeClient extends Application{

w N

newCode(code : string){
1 highlighter . highlight (code).then((highlightedCode : string) =>

{

5 //Update user interface

6 13
}
o3
10| class HighlightActor extends Actor{

12| init ()4
13 this.libs.importScripts(’./highlightLib.js )
14|}

16| highlight (code : string) : string({
17 return highlightLib.highlight (code)
18|}

190/ }

1| let CoCode = new CoCodeClient ()
2| let highlighter = CoCode.spawnActor(HighlightActor)

Listing 6.1: Spawning client-side actors in Spiders.js.

two actors: one to update the user interface (i.e. the application actor)
and one to highlight code (i.e. the HighlightActor).

The application actor’s newCode method (line 3) is invoked for each
of the user’s key strokes (the code responsible for this is omitted for the
sake of brevity). Subsequently, the application actor invokes the highlight
method on the far reference to the highlighting actor with the new code
as argument. Given that the code is represented by a string, which is a
primitive data type, it is sent to the highlighting actor by copy. Method
invocations on far references are asynchronous: they return promises and
are translated to asynchronous messages sent to the owner of the refer-
enced object. Such a promise either resolves with the method’s return
value or is rejected with an error. In our case the application actor regis-
ters a callback (line 4) on a promise that resolves with the return value of
the highlighting actor’s highlight method. Once the promise resolves the
user interface is updated with the highlighted code.
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6.4.2 Distributed Implementation

Until now the CoCode application is standalone: it only responds to new
code being produced by the local user. Turning CoCode into a true web
application requires a server and communication between client-side in-
stances.

6.4.2.1 Implementing the Server

The CoCode server’s tasks are twofold. First, it provides an initial entry
point to the application. A client connects to the server and receives
the definition of the actors discussed in Section 6.4.1 and all of CoCode’s
HTML definitions. Second, it maintains the state of the application (i.e.
the shared code base) and notifies clients of updates to this state.

1| class CoCodeServer extends Application{

2 clients : Map<string ,FarRef<ClientInterface>>

3 currentCode : String

4

5 constructor () {

6 this. clients = new Map()

7 this.libs.serveApp(”./index.html”,”./client.js” ,8888)

sy

10 register (newClient: FarRef<ClientInterface > newName: string){
11 this. clients.forEach((client ,name)=>{

12 client .newCoder (newClient ,newName)

13 newClient .newCoder (client ,name)

14 )
15 this.clients .set (newName, newClient)

16 newClient . globalCodeUpdate (this.currentCode)
17 }

18

19 updateCode (rawCode : String){

20 this.currentCode = rawCode

[t

this.clients.forEach((client : FarRef<CoCodeClient>)=>{
client . globalCodeUpdate (rawCode)
}

N

NN N NN

}
}

j|new CoCodeServer ()

™)

Listing 6.2: Implementing the CoCode server in Spiders.js.

Listing 6.2 implements the CoCode server. The server actor starts by
setting up an HTTP server (line 7) on port 8888 (i.e. by invoking the
serveApp method). Browsers connecting to this server receive the speci-
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fied HTML files (i.e. index.html in our example) and the specified actor
definitions (i.e. client.js in our example).

The server acts as a discovery service, allowing clients to obtain refer-
ences to each other. This functionality can safely run on a single thread,
which is why the server is implemented solely by an application actor.
Concretely, the register method is invoked by a new client upon starting
the application. The arguments to this method are a self-reference to the
client and the client’s name (line 10). The method then forwards this
name and reference to all connected clients by invoking their newCoder
methods.

The server also maintains the application’s global state (i.e. the shared
code base). A clients invokes the server’s updateCode method whenever
its user presses the commit button (line 19). In turn, the server notifies
all other clients that the code base has changed.

6.4.2.2 Adapting the Clients for Distribution

The addition of the server requires us to update the implementation of our
client-side CoCode actors. Listing 6.3 shows the additions to the original
client-side code of Listing 6.1 that are needed in order to make CoCode a
full-fledged web application. The code for the highlighting actor remains
unchanged and is therefore omitted.

1| class CoCodeClient extends Application {
2| server : FarRef<CoCodeServer>

constructor (clientName : string){
super ()
6 this.server = this.libs.buffRemote(localhost ,8888)
7 this.server.register (new ClientInterface (clientName) ,clientName)

| 3

10| newCode(code : string){

11 this.server.updateCode(code)
120}

13] }

Listing 6.3: Making CoCode clients distributed.

There are two additions to the original code. First, the newCode
method (linel0) is called by the UI whenever a user types in code and
invokes the updateCode method on the server. Second, each client first
acquires a reference to the server actor through the buffRemote method
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comprised in the standard actor library (line 6). This function takes the IP
address and port number of a given server actor and returns a far reference
to said actor. In our case this reference is used by each client to register
themselves as a coder. This is done by invoking the register method on
the server reference. The arguments to this invocation are a reference
to a ClientInterface object and the client’s name. The former, which we
discuss below, is an object and is therefore passed by far reference while
the latter is a string and is passed to the server by copy.

class ClientInterface{
clientName : string
coCoders : Map<string ,FarRef<ClientInterface >>

W N R

5| constructor (clientName : string){

6 super ()

7 this.clientName = clientName

s}

9

10| newCoder(coder : FarRef<ClientInterface >,coderName : string){
11 this.coCoders. set (coderName, coder)

120}

14| globalCodeUpdate (newCode) {
15 //Highlight code and update user interface

6 }

18| newMessage (msg : Message) {
19 //Update user interface
200 }

sendPublicMessage (text : string){
this.coCoders.forEach((coder : FarRef<ClientInterface >)=>{
coder .newMessage (new Message (this.clientName , text))

[CEN]
TR W N =

NN N NN

9
6 }
28| sendPrivateMessage (to : string ,text : string){
29 this.coCoders.get (to).newMessage (new Message (this.clientName,
text))
30}
31|}

Listing 6.4: The distributed interface of CoCode clients.

Listing 6.4 provides the definition of the interface used by clients to com-
municate with each other. ClientInterface implements two pieces of func-
tionality: reacting to code updates and messaging across clients. Code
updates are broadcasted by the server to all clients by invoking the glob-
alCodeUpdate method, which highlights the code and updates the user
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interface. The server broadcasts an update as soon as a client invokes the
updateCode method (line 10 in Listing 6.3).

Users can either publicly broadcast a message (i.e. the UI invokes
the sendPublicMessage method) or send a private message to a particular
coder (i.e. through the sendPrivateMessage method).

1| class Message extends SpiderlIsolate{
2| from : string

3| text : string

4| date : Date

6| constructor (sender : string,text : string){
7 super ()

8 this.from = sender

9 this . text = text

10 this.date = new Date()

1|}

12| }

Listing 6.5: Making CoCode clients distributed.

In both cases an isolated object is created (see Listing 6.5 for the object’s
class definition) which contains the name of the sender, the date and the
actual text of the message. Remember from Section 6.3 that isolated ob-
jects are sent by copy rather than by far reference. As such, when a client
receives a message through the newMessage method, the message’s data
can directly be read from the copied object. If messages were implemented
as regular objects they would be sent by far reference. Each access to a
message (e.g. getting the message’s date) would then return a promise,
which would be impractical for this use case.

CoCode showcases how Spiders.js tackles the problems of JavaScript
actors. More precisely, Spiders.js provides the following features:

Location Transparency Programmers extend the same Actor classes
regardless of whether the actor is going to be instantiated server or
client-side. Moreover, actor semantics do not depend on their loca-
tion. For example, both client and server-side actors communicate
by asynchronously invoking methods on each other’s objects.

Fine-grained parameter passing semantics Spiders.js provides two
built-in parameter passing semantics. Isolate objects and primitive
data types (i.e. numbers, booleans, strings) cross actor boundaries
using pass-by-copy semantics. All other objects cross actor bound-
aries using pass-by-far-reference semantics.
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First-class actor references Spiders.js allows arbitrary communication
patterns between actors. It achieves this by allowing actor references
to be parameters to asynchronous method invocations.

6.5 Metaprogramming in Spiders.js

Spiders.js fulfils requirement R; for DRIA-oriented programming models:
Its actors serve as a unit of distribution for both horizontal as well as verti-
cal distribution. Through a meta-layer, Spiders.js also fulfils requirement
R4 for DRIA-oriented programming models: it allows programmers to ex-
tend built-in semantics. More precisely, Spiders.js offers a mirror-based
meta-level architecture [BUO4]. In a nutshell, mirror-based reflection
mechanisms are based on three core principles [BUO04]:

Encapsulation Meta-level entities encapsulate their implementation de-
tails. This principle promotes reuse of meta-level code by letting pro-
grammers develop their meta programs against an interface rather
than an implementation. In other words, different implementations
of the same meta-level entity can be used interchangeably as long as
they respect the provided interface.

Stratification Meta-level entities are completely separated from base-
level entities. Simply put, base-level entities should only provide
base-level functionality while meta-level entities should only offer
meta-level functionality. As a result, base-level entities do not have
direct references to their meta-level counterparts. Instead, access-
ing meta-level entities is achieved through dedicated linguistic con-
structs.

Ontological Correspondence Meta-level entities are governed accord-
ing to the same principles and rules that apply to base-level enti-
ties. There are two forms of ontological correspondence: structural
and temporal ontological correspondence. Structural correspondence
means that each base-level entity has a corresponding meta-level en-
tity. Temporal correspondence means that the meta-level architec-
ture distinguishes between code (i.e. the textual representation of a
process) and computation (the actual running process).

The following sections describe how we apply mirrors and their core prin-
ciples in Spiders.js.
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6.5.1 Mirrors in Practice

Spiders.js’ mirror architecture is heavily inspired by AmbientTalk’s mirror
architecture [MVCT'09]. As such, it provides two levels of reflection.
First, reflection on objects through object mirrors. Second, reflection on
actors through actor mirrors. We describe each of these levels in details.

6.5.1.1 Mirrors on Objects

Reconsider our CoCode application. Assume that CoCode requires to
keep track of the exact moment a chat message is sent or received by
a client. Implementing this bookkeeping functionality at the base level
(i.e. within the sendPublicMessage, sendPrivateMessage and newMessage
methods) poses two problems. First, this pollutes the base-level logic
responsible for sending and receiving messages with message bookkeeping
logic. Second, a base-level programmer is unable to accurately determine
when a chat message is actually sent or received. The programmer is only
able to determine when the sendPublicMessage, sendPrivateMessage or
newMessage methods are executed.

To implement the message bookkeeping functionality we make use of
Spiders.js’ mirrors on objects. Amongst others, mirrors on objects al-
low programmers to perform intercession [KDRB91]. In other words,
programmers are able to redefine parts of Spiders.js’ standard semantics.
Programmers do this by extending one of the two default mirrors provided
by Spiders.js: SpiderlsolateMirror or SpiderObjectMirror. The former is
used to redefine the behaviour of isolates while the later is used to redefine
the behaviour of all non-isolate objects in Spiders.js.

Listing 6.6 implements CoCode’s message bookkeeping functionality.
We start by extending the Spiderlsolate Mirror, given that chat messages
are isolates. This default isolate mirror provides two methods which we
override: pass and resolve. The former is called right before an isolate is
sent from one actor to another. The latter is called right after an isolate
is received by an actor. In both cases the mirror records the timestamp
of the interceded event.

Our chat messages are yet to be connected to instances of ChatMes-
sageMirror. In order to connect an isolate with a specific mirror it suffices
to pass an instance of the mirror class to the Isolate constructor (i.e. to the
super() call on line 7 of Listing 6.5). Actors are able to access an isolate’s
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1| class ChatMessageMirror extends SpiderIsolateMirror{
2 sentTimeStamp
receiveTimeStamp

pass (hostActorMirror: SpiderActorMirror) {
6 this.sentTimeStamp = Date.now ()
7 return super.pass(hostActorMirror)

!

9

10 resolve (hostActorMirror: SpiderActorMirror) {
11 this.receiveTimeStamp = Date.now ()

12 return super.resolve (hostActorMirror)

13 }

14| }

Listing 6.6: Implementing message bookkeeping through mirrors on
objects.

mirror through the reflectOnObject method available in their standard
library.

6.5.1.2 Mirrors on Actors

Assume we want to extend CoCode’s messaging functionality even further.
More specifically, we want to implement a delivery notification system. In
other words, clients receive delivery notifications for the private messages
they send. We implement this functionality by extending the default mir-
ror for actors, as shown in Listing 6.7.

We extend the default actor mirror to override its receivelnvocation
method. This method is invoked each time an actor receives an asyn-
chronous method invocation on one of the object it owns. The method’s
arguments are a far reference to the actor sending the message, the object
on which the method is invoked, the method’s name and arguments (we
leave out the remaining optional arguments for the sake of brevity). The
ReceptionMirror extends the default actor semantics for two specific mes-
sages. First, if the invoked method is newPrivateMessage the receiving
actor notifies the sending actor that the chat message is delivered. To
do so the receiving actor invokes the privateMessageReceived method on
the sending actor (line 5). Second, if the invoked method is privateMes-
sageReceived the receiving actor notifies the user that its chat message
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class ReceptionMirror extends SpiderActorMirror{

w N

receivelnvocation (sender: FarRef<any>, targetObject: Object,
methodName: string, args: Array<any>) {

4 if (methodName "newPrivateMessage”){

5 sender . privateMessageReceived ()

6 return super.receivelnvocation (...arguments)

7 }

8 else if (methodName = ”privateMessageReceived”){

9 //Show notification in the user interface

10 }

11 else{
12 return super.receivelnvocation (...arguments)

13 }

Listing 6.7: Implementing notification through mirrors on actors.

is delivered. All other method invocations are delegated to the default
mirror (line 12).

As is the case for isolates, actors are connected with their mirrors by
passing an instance of an actor mirror to the actor’s constructor (i.e. to
the super() call on line 5 of Listing 6.3. Actors are able to access their
mirror by invoking the reflectOnActor method which is part of the actor
standard library. This nullary method returns the mirror of the actor in
which it is invoked.

6.5.2 Spiders.js’ Meta-object and Meta-actor Protocol

A metaobject protocol [KDRB91] governs the interactions between all
objects and actors. For each Spiders.js feature this protocol dictates the
sequence of meta messages sent between objects, mirrors and actors. To
explain the protocol we use one of the most important Spiders.js features:
method invocations on far references.

We reuse CoCode’s private chat message functionality detailed in Sec-
tion 6.4.2.2. More precisely, assume that a coder c1 sends a private mes-
sage m to another client c2. Figure 6.4 provides an overview of c1’s
application actor. This actor contains two base-level objects: a far ref-
erence to ¢2’s client interface and a message m. Both these objects are
causally connected to two meta-level mirrors. Moreover, the meta-level
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Figure 6.4: Method invocation protocol at sender side.

of c¢1’s application actor also contains the actor mirror, event queue and
event loop.

The labelled arrows in Figure 6.4 showcase the first half of the protocol
responsible for method invocations on far references. This half of the
protocol is responsible for the sequence of operations at the sender side.
The protocol starts when, on the base level, a method is invoked on a far
reference. In our example the newMessage method is invoked on a far
reference to c2’s client interface with the message m as argument. The
following steps in the protocol succeed this method invocation:

Step 1. The invoke method is called on the mirror attached to the far
reference to ¢2’s client interface. Arguments to this meta-method
are the name of the invoked base method (i.e. newMessage) and the
provided arguments. The mirror on the far reference to ¢2’s client
interface implements the semantics of this method invocation.

Step 2. Translating method invocations on far references to asynchronous
messages is the responsibility of actor mirrors. In our example the
mirror on cI’s application actor sends an asynchronous message to
c2’s application actor. These semantics are implemented in an ac-
tor mirror’s sendInvocation method which takes as arguments a far
reference to the receiver, the method name and the provided ar-
guments. In our example these arguments are a reference to ¢2’s
application actor, newMessage and the message m.
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Figure 6.5: Method invocation protocol at receiver side.

Step 3. Each argument from the previous step must first be serialised
before sending the message. To this end the pass method is invoked
on each argument’s mirror. This method allows objects to determine
what information should be serialised and sent between actors. For
example, the default semantics for isolates is to return a copy of
themselves. This is the case for our example when pass is invoked
on m’s mirror.

Figure 6.5 shows the part of the method invocation protocol responsi-
ble for operations at the receiver side. This part of the protocol is subdi-
vided into three steps:

Step 4. c2’s application actor receives the message containing the in-
vocation sent by c1’s application actor. This message is handled
by invoking the receivelnvocation method on ¢2’s application actor.
This method takes as arguments a far reference to the sender, a
reference to the target object, the invoked method’s name and the
arguments used for the invocation.

Step 5. The resolve method is called on the mirror of each argument used
in the original invocation. This method is the dual of pass: it allows
an object to determine how it should be deserialised.

Step 6. The method invocation which initiated the protocol (i.e. newMes-
sage in our example) is applied to the target object. This is done
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Method Signature
getld number
getFields | Array<Field>
Introspection getMethods | Array<Method>
getField string — Field
getMethod | string — Method
addField | string — any — void
addMethod | string — Function — void

Self-modification

invoke string — Array<any> — void
access string — any
Intercession write string — any — void
pass Object
resolve Object

Table 6.3: Mirror on objects API.

by invoking the invoke method on the target object’s mirror. We
discuss this meta-method in step 1.

6.5.3 Meta-level Constructs

This section provides an exhaustive overview of the meta-constructs avail-
able in Spiders.js. For each construct we briefly discuss its API and func-
tionality. We divide the interface offered by both mirrors on objects and
mirrors on actors according to the kind of metaprogramming they pro-
vide. According to [KDRB91], metaprogramming can be divided into
three kinds. Introspection allows a program to access its own struc-
ture. Self-modification allows a program to modify its own structure.
Intercession allows a program to redefine parts of the language-level op-
erations. We classify the methods offered by Spiders.js’ object and actor
mirrors based on these three kinds of metaprogramming.

6.5.3.1 Object Mirror

Table 6.3 shows an overview of the methods provided by object mirrors.
Concretely, object mirrors in Spiders.js support the aforementioned three
kinds of metaprogramming as follows.
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Kind Method Signature
tObjects A bject
Introspection getO J.GEC > rray <O Jec,>
getObject number — Object
Self-modification addObject Object — number
initialise void

receivelnvocation | FarRef — Object — string — Array — void

Intercession receiveAccess FarRef — Object — string — void
sendInvocation FarRef — string — void
sendAccess FarRef — string — void

Table 6.4: Mirrors on actors API.

Introspection Through the mirror on objects one is able to inspect an
object’s fields and methods. A Field is a tuple containing the field’s name
and its value. Similarly, a Method is a tuple containing the method’s name
and the actual closure. getFields and getMethods return all of the objects
fields and methods respectively. Moreover, getField and getMethod return
a specific field or method.

Self-modification addField and addMethod allow one to modify an ob-
ject through its mirror. The methods respectively add a new field or
method to the mirrored base object.

Intercession One can override the default semantics for Spiders.js ob-
jects in two ways. First, by providing a custom implementation of invoke,
access or write. These methods implement the semantics of method invo-
cation, reading fields and writing fields respectively. Second, by providing
a custom implementation of pass or resolve. These methods are invoked
to serialise and deserialise an object when it is sent between actors.

6.5.3.2 Actor Mirror

Table 6.4 provides an overview of the methods offered by actor mirrors.
Concretely, actor mirrors in Spiders.js support the aforementioned three
kinds of metaprogramming as follows:

Introspection Actor mirrors provide an interface to inspect an actor’s
object heap. One can either request all objects in the heap through getO-
bjects or request a specific object using its identifier through getObject.
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Self-modification The addObject method modifies the actor’s heap by
adding the provided object. The method returns the added object’s iden-
tity in the heap.

Intercession Actor mirrors provide three entry points to override an
actor’s default behaviour. First, the initialise method that is invoked right
after an actor is spawned and before its ¢nit method is invoked. Second,
the receivelnvocation and receiveAccess methods that are invoked upon
receiving an asynchronous message from another actor. Depending on
whether this message contains a method invocation on one of the receivers
objects or a field access the receivelnvocation or the receiveAccess method
is called. Third, the sendInvocation and sendAccess methods are invoked
whenever a method is invoked on a far reference or a far reference’s field
is accessed. By default these methods send an asynchronous message to
the actor owning the far referenced object.

6.6 Evaluation

We evaluate Spiders.js along two dimensions (i.e. qualitatively and quan-
titatively): performance and ease of use for programmers. To evaluate the
former we compare the runtime results for three implementations of the
Savina benchmark suite [IS14]: one using web workers, one using child
processes and one using Spiders.js. Moreover, we measure the speedup
obtained by parallelising an example application and compare it to the
speedup obtained with built-in JavaScript actors. To evaluate the latter
we compare the implementation of a multiplayer version of the arcade
game Pong. Moreover, we use Spiders.js’ meta facilities to implement two
novel classes of replicable state.

Our evaluation shows that Spiders.js exhibits a certain performance
overhead when compared to built-in JavaScript actors, especially when
it comes to actor creation and message passing. However, as our Pong
case study shows, Spiders.js allows one to write complete web applica-
tions more effectively than is the case for plain JavaScript. Moreover, our
implementation of two novel classes of replicable state informally shows
how Spiders.js’ meta facilities easily allow one to extends its built-in se-
mantics.
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Figure 6.6: Comparing Spiders.js and web workers in the Savina Bench-
mark Suite. Run times are normalised to the results of web workers. Error
bars indicate the 95% confidence interval.

6.6.1 Performance

All benchmarks discussed in this section are performed both on the server
and client-side. Client-side benchmarks are performed in Google Chrome
(version 56.0.2924.87) on a Macbook Pro with a 2,8 GHz Intel core i7 pro-
cessor, 16GB of RAM memory running Mac OSX Sierra(version 10.12.3).
Server-side benchmarks are performed on an Ubuntu 14.04 server with two
dual core Intel Xeon 2637 processors at 3.5 GHz with 265 GB of RAM

memory.

6.6.1.1 Runtime Overhead

To measure Spiders.js’ overall overhead we compare the runtime perfor-
mance of a Spiders.js implementation and a web workers implementation
of the Savina benchmark suite [[S14]. Figure 6.6 shows the mean
run time to completion for each implementation of each application in the
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Figure 6.7: Comparing Spiders.js and child processes in the Savina Bench-
mark Suite. Run times are normalised to the results of child processes.
Error bars indicate the 95% confidence interval.

suite 2. The run times are normalised to the results obtained by web work-
ers to better highlight the overhead introduced by Spiders.js. The results
immediately show Spiders.js’ biggest overhead: actor creation (as shown
by the Fork Join(actor creation) application). Web workers are simply
spawned by providing the path to a JavaScript source file containing their
behaviour. In Spiders.js the object representing the actor must first be
serialised and sent to a newly spawned web worker which deserialises the
object before accepting any messages (see Section 6.4.1). Spiders.js also
underperforms with regards to message passing overhead and throughput
(respectively shown by the counting actor and Fork Join(throughput) ap-
plications). This is due to Spiders.js’ underlying runtime, which requires
a considerable amount of meta-data to be attached to every message sent
between actors (e.g. to handle the return values of asynchronous method
invocations). These weaknesses of Spiders.js are further showcased by our

2The results for the big benchmark contain an unknown anomaly (i.e. Spiders.js
slightly outperforms web workers for some measurements). We suspect an optimisation
of the JavaScript engine is responsible for the anomaly. Further experiments are needed
to conclusively determine the cause of the anomaly.
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Figure 6.8: Comparing method invocation performance for Spiders.js and
JavaScript objects. Error bars indicate the 95% confidence interval.

server-side comparison using a child process implementation of the Sav-
ina suite. As Figure 6.7 shows, the overhead is less pronounced but still
substantial when comparing Spiders.js and child processes.

A source of overhead not directly showcased by the Savina benchmark
suite is Spiders.js’ meta layer. Consider Figure 6.8, the figure shows re-
sults of a micro benchmark involving a Spiders.js isolate and a JavaScript
object®. We increasingly perform a number of method invocations on both
objects and measure the time it takes for the objects to return from all
invocations. As the figure showcases, method invocations on Spiders.js ob-
jects are orders of magnitude slower than is the case for plain JavaScript
objects. This is primarily due to the fact that all interactions with objects
in Spiders.js are first captured by its meta layer.
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Figure 6.9: Speedup obtained by comparing the sequential Monte Carlo
application with parallel versions using Spiders.js and web workers. Error
bars indicate the 95% confidence interval.
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Figure 6.10: Speedup obtained by comparing the sequential Monte Carlo
application with parallel versions using Spiders.js and child processes. Er-
ror bars indicate the 95% confidence interval.
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6.6.1.2 Parallelism

As the Savina benchmarks show, Spiders.js introduces an overhead com-
pared to JavaScript. However, programmers are still able to speed up their
applications using the parallelism provided by Spiders.js actors. To show
this we measure the speedup obtained by approximating 7 using the Monte
Carlo method in Spiders.js. We compare the time needed by a sequen-
tial application to approximate 7 a given number of times with a parallel
version which spreads the same workload across a variable amount of ac-
tors. We specifically choose this application as it does not require a large
number of actors nor does it require extensive communication between
these actors. As such, this benchmark alleviates Spiders.js’ weaknesses
(i.e. messaging overhead and actor creation overhead) and purely shows
Spiders.js’ parallel abilities.

Figure 6.9 shows the measured results while running this comparison
in-browser. Comparing the speedup obtained by the Spiders.js and web
workers implementation shows that Spiders.js suffers from an overhead.
This overhead is also present with regards to child processes, as shown by
Figure 6.10. However, the overhead remains within acceptable bounds:
Spiders.js is still able to significantly parallelise client and server-side web
applications.

6.6.2 Code Complexity

To measure the expressive power of Spiders.js over native JavaScript we
implement and compare a multiplayer version of the arcade game Pong?.
We classify the code of each implementation into three categories:

Message Handling Code that implements how a part of the application
is to respond to a given message. This includes implementing and
registering callbacks, dispatching on message types and implement-
ing actor methods.

Message Sending Code which implements the communication between
clients and between the clients and the server. This includes creating

Shttps://gitlab.soft.vub.ac.be/fmyter/triumvirate/tree/master/
MicroBenchmark
4 . . . .
https://github.com/myter/Spiders.js/tree/master/SpiderPong
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Figure 6.11: Proportion, in percentage of the total lines of code, dedicated
to each category of code for a native JavaScript and Spider.js implemen-
tation of multiplayer Pong.

and sending messages, opening sockets and invoking methods on far
references or defining isolate objects.

Application Logic Code which implements the game’s core function-
ality (e.g. updating the user interface when a player’s score has
changed).

To compare both implementations we measure the proportion of each cat-
egory of code to the application’s total lines of code. Ideally an applica-
tion should mostly be comprised of application logic code. Appendix A.1
and A.2 contain both implementations highlighted according to the three
categories.

Figure 6.11 shows how each implementation is divided into the three
categories. For each category of code, the figure shows the percentage it
represents with regards to the application’s total number of lines of code.
The biggest difference between both version is the proportion of the appli-
cation dedicated to message handling. In contrast to regular JavaScript,
message handling in Spiders.js is done implicitly (i.e. an actor’s meth-
ods act as message handlers). Moreover, in Spiders.js two clients are able
to send messages to each other simply by using far references. For our
pong example this entails that a client can directly send updates to his
opponent, Spiders.js will ensure that the server routes messages correctly.
In the version implemented using plain JavaScript this routing must be
implemented manually, adding additional code for message handling on
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both server and client. In conclusion, Spiders.js allows programmers to
focus on the essential complexity and logic of their application while rele-
gating accidental complexity such as message handling and routing to the
Spiders.js runtime.

6.6.3 Mirrors in Action

Section 2.2 of Chapter 2 discusses four requirements for programming
models that target DRIAs. The fourth requirement stipulates that a pro-
gramming model for DRIAs should allow programmers to define custom
parameter passing and state update semantics. To this end Spiders.js,
and by extension Triumvirate, provides a mirror-based meta layer.

This section showcases how Spiders.js’ meta layer meets the fourth
requirement for DRIA-oriented programming models. To do so we su-
plement the two classes of replicable state from Chapter 4 (i.e. eventual
replicas based on GSP [BLPF15] and strong replicas based on far refer-
ences [CGSt14]) with two new classes of replicable state. These novel
classes are implemented solely using Spiders.js’ mirrors.

e The first new class of replicable state is based on CRDTs [SPBZ11]
and is available and partition-tolerant with regards to the CAP the-
orem [Bre00].

e The second new class of replicable state is based on the two-phase
commit protocol [LS76] and is consistent and partition-tolerant with
regards to the CAP theorem.

6.6.3.1 Strong Eventual Replicas

Eventual replicas, as discussed in Section 4.3.2 of Chapter 4, guarantee
eventual consistency (see Definition 4). In a nutshell, this guarantees that
all replicas will eventually be in the same state provided that updates to
all replicas stop.

Conflict-free replicated data types [SPBZ11] guarantee strong eventual
consistency. Simply put, CRDTs guarantee that all replicas will eventually
be in the same state and that replicas never roll back operations, which
is not guaranteed by "regular” eventual consistency. This latter type of
consistency is already provided by eventual replicas and their GSP-based
implementation. CRDTs are able to provide this stronger guarantee by
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requiring the operations that apply over them to be associative, commu-
tative and idempotent.

1| class CRDT extends Isolate{
2| constructor (){

3 super (new CRDTMirror () )

|

}
5}

Listing 6.8: CRDTs in Triumvirate.

Listing 6.8 shows the definition of CRDTs in Triumvirate, which are wrap-
pers for Spiders.js isolates. It is important to note that there is no pre-
defined API for CRDTs. Rather, the API depends on the specific data
type (e.g. sets, counters, etc.). The bulk of CRDT logic is therefore
implemented by the CRDT mirror given by Listing 6.9

class CRDTMirror extends IsolateMirror{
2| broker : CRDTBroker

constructor () {

super ()

6 this.broker = new CRDTBroker(this.base)
7}

9| invoke (methodName, args) {
10 this . broker.newOperation (methodName, args)

1}

13| resolve () {

14 let newBroker = new CRDTBroker(this.base)
15 this . broker.newInstance (newBroker)

16 this.broker = newBroker

17 return super.resolve ()

15|}

19| }

Listing 6.9: CRDTMirror implementation.

The mirror’s task is to ensure that a CRDT replica maintains references to
all other replicas. Moreover, the mirror must capture method invocations
on its replica and broadcast the invocations to all other replicas. We
implement this functionality by overwriting two methods of Spiders.js’
default mirror: invoke and resolve. Invoke (line 9) delegates all invocations
to a broker object that broadcasts the invocations instead of only invoking
the method on the replica it mirrors. We discuss this broker object further
in this section.
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1| class CRDTBroker{

2| instances : Array<FarRef<CRDTBroker>>
crdt : CRDT

1| constructor (crdt){
5 super ()

6 this.instances =
7 this.crdt = crdt

!

10| newlnstance(instanceRef : FarRef<CRDTBroker>){

11 this.instances.push(instanceRef)

12 this.instances.forEach(instance=>{instanceRef.newInstance (
instance)})

13}

14| applyOperation (methodName : PropertyKey,args : Array<any>){
15 this.crdt [methodName] (... args)

16|}

18| newOperation (methodName, args){

19 this.instances.forEach(instance =>{ instance.applyOperation (
methodName, args) })

20 this.applyOperation (methodName, args)
21 }
2

o

Listing 6.10: Maintaining CRDT bookkeeping information.

As we discuss in Section 6.5.2, resolve is invoked when an actor receives
and deserialises an isolate. It is important to note that although an isolate
and its mirror are sent across actors by copy, the same does not necessarily
hold for their fields. For example, the broker field of a CRDT mirror is
a regular object and therefore adheres to pass-by-far-reference semantics.
In other words, the broker field in resolve contains a far reference to the
broker object residing in the sending actor’s heap. Our implementation
of resolve invokes the newlnstance method on this far reference before
replacing the field with a freshly created (local) broker object.

Listing 6.10 gives the definition of the broker used by CRDT mirrors.
Each broker is associated to a single CRDT replica, and therefore also
a single CRDT mirror. It implements two pieces of functionality. First,
it maintains an array of far references to the brokers of all other repli-
cas. Second, it uses this array to broadcast method invocations on its
associated CRDT replica.

The first task is implemented by the newlnstance method (line 10).
This method is invoked whenever a new replica is created and ensures
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that brokers form a full-mesh network (i.e. all brokers have references to
all other brokers). newOperation (line 18) implements the second task.
The method instructs all brokers part of the full-mesh network to apply
the provided method using the given arguments. Subsequently, the broker
locally applies the method to its associated CRDT (line 20).

Strong Eventual Replicas in Practice

class GSet<T> extends CRDT{
values : Array<I>

w N

1| constructor (){
5 super ()
6 this.values = []

|}

9| addValue(val : T) {

10 if (this.values.has(val)){
11 this.values.push(val)

12 }

131}

14| }

Listing 6.11: CRDTs in Practice.

As an example of how CRDTs are defined in Triumvirate consider List-
ing 6.11. More concretely the listing implements a grow-only set (or
GSet) [Baql5], which is a specific type of CRDT. As the name implies, a
grow-only set only allows elements to be added and does not support the
removal of elements. The set supports a single method (i.e. addValue)
which adds a value to the set provided that the value is not present in the
set yet.

Triumvirate programmers use GSets as first class values in their dis-
tributed applications. Our meta-implementation of CRDTs frees the pro-
grammer from manually doing the bookkeeping of CRDT replicas across
actors and guarantees strong eventual consistency.

6.6.3.2 Multi-replication Strong Replicas

Strong replicas guarantee sequential consistency (see Definition 1). This
ensures programmers that two strong replicas will never be in an incon-
sistent state (at the cost of not always being available). However, the
implementation of strong replicas using far references (see Section 4.3.1
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Figure 6.12: Two-phase commit.

of Chapter 4) only offers a replication factor of one. Concretely, only one
actor maintains an actual replica while all other actors only have prox-
ies to said replica. A failure for this single actor therefore entails the
unavailability of all proxies.

However, increasing the replication factor of strong replicas engen-
ders new challenges. Multiple actors now have actual replicas containing
methods and state instead of proxies to a single replica. Triumvirate must
coordinate the access to these actual replicas in order to maintain their
strong consistency. To this end we extend Triumvirate’s strong replicas
with multi-replicated strong (MRS) replicas using Spiders.js’ meta facil-
ities. We start by briefly introducing the mechanism used to coordinate
MRS replicas, two-phase commit, before detailing their implementation.

Two-phase Commit

The mechanism used to coordinate access to MRS replicas is the two-phase
commit [LS76] protocol. This protocol allows a number of processes to
either all commit a certain transaction, given by a central coordinator, or
all abort the transaction. As the name suggests the protocol operates in
two phases (see Figure 6.12):

Prepare Phase In the prepare phase the central coordinator tells all
processes to prepare to commit a given transaction. Processes ei-
ther return an acknowledgement if they were able to execute the
transaction or they return a failure otherwise.
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Commit Phase The coordinator instructs all processes to commit the
transaction to persistent storage if they all returned an acknowledge-
ment in the prepare phase. Otherwise the coordinator instructs all
processes to abort the transaction and rollback.

The protocol guarantees that when it finishes all processes have either
committed or aborted the transaction.

Applying Two-phase Commit to Replicas

Before detailing our exact implementation in Spiders.js we first provide a
high-level overview of how we apply the two-phase commit to coordinate
accesses to replicas. We differentiate between two kinds of replicas. First,
a single master replica assumes the role of coordinator in the two-phase
commit protocol. In other words, this replica ensures that transactions
either commit or abort. Such a replica is created by instantiating an
object from a MRS replicable class (i.e. using the new operator). Second,
worker replicas assume the role of processes in the two-phase commit
protocol. In other words, their role is to apply transactions and return
acknowledgements to the master replica. Worker replicas are created
when a coordinating or worker replica crosses actor boundaries (e.g. as
part of an asynchronous message send).

Writing to a MRS replica’s field starts the two-phase commit protocol.
The master replica first inquires whether all worker replicas are ready
to perform the write operation. If all replicas respond positively in a
timely fashion the master replica orders all worker replicas to perform
(i.e. commit) the write. Otherwise the master replica aborts and worker
replicas return to an idle state. Reading from a MRS replica only returns
a value if there is currently no ongoing transaction. This ensures that
reading at a given point in time always returns the same value across
replicas.
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Coordinating Replicas using Two-phase Commit

-

class MRSReplicable extends Isolate{
constructor () {

3 let tm = new TransactionManager ()
super (new MRSReplicableMirror (tm))

¥

'

5| )
o[}

Listing 6.12: MRS replicas.

Listing 6.12 shows the implementation of MRS replicas. A MRS replica
is a Spiders.js isolate with a custom mirror (i.e. a MRSReplicableMirror).
Programs create master replicas by invoking MRSReplicable’s constructor.
This creates a transaction manager that implements the two-phase com-
mit protocol. We discuss the implementation of this transaction manager
after explaining the mirrors for MRS replicas.

class MRStrongReplicableMirror extends IsolateMirror {
coordinator : TransactionManager

resolve (){
this.coordinator.registerNewReplica (this)
6 return super.resolve ()

T}

8
9| access (fieldName){

10 return this.coordinator.tryRead () .then (()=>{
11 return super.access (fieldName)

BN

13}
14
15| write (fieldName , value){

16 return this.coordinator.startWriteTransaction (fieldName , value)

17|}

1
2
3
3
1
5

19| prepare (){
20 return true

}

V)

commit (fieldName , value ) {
return super.write (fieldName , value)

}

[CEN]
goR W N =

NN N

6| }

Listing 6.13: Mirror on MRS replicas.

Listing 6.13 defines the mirror used by all MRS replicas. The mirror over-
rides Triumvirate’s default semantics using three methods. First, a cus-
tom implementation of resolve is used to register worker replicas. When a
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MRS replica is deserialised by an actor the mirror registers the deserialised
replica as a worker replica. Second, reading the field of a MRS replica is
asynchronous give that access returns a promise. This promise is resolved
by the master replica’s transaction manager when no transactions are on-
going. Third, writing to a replica’s field starts a distributed transaction.
The actual write only happens when the transaction completes. In other
words when the master replica’s transaction manager invokes the mirror’s
commit method.

1| class TransactionManager {

2| replicas : Array<FarRef<MRSReplicableMirror>> = []
3] inTransaction : boolean

1| bufferedOps : Array<Function>

6| constructor (){

7 this.inTransaction = false
8 this . bufferedOps = []

9 }

11| registerNewReplica(rep : FarRef<TransactionManager>){
12 if (this.inTransaction){

13 this . bufferedOps.push (()=>{
14 this.replicas.push(rep)

s B

16 }

7 else{

18 this.replicas.push(rep)

19 }

200 }

tryRead () {
return new Promise(resolve=>{
if (inTransaction){
this . bufferedOps.push(resolve)

TR W N =

AN

else{
resolve ()

}

30 13)

31|}

NN NN NN NN
S el

33| startWriteTransaction (fieldName , value){
34 if (this.inTransaction){
35 this.bufferedOps.push (()=>{

36 this.startTransaction (fieldName , value)
37 13)

38 }

39 else{

40 this.startTransaction (fieldName , value)
11 }

2}
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14| startTransaction (fieldName , value){
15 return new Promise ((resolve ,reject)=>{
46 let proms = this.replicas .map((replica)=>{
17 return replica.prepare()
48 })
19 let prepareResolved = false
50 Promise. all (proms) .then((acks : Array<boolean>)=>{
51 prepareResolved = true
52 let committed = this.replicas.map((replica)=>{
53 replica .commit (fieldName , value)
54 1))
55 Promise. all (committed) .then (()=>{
56 this.inTransaction = false
57 this . flushOps ()
58 resolve ()
59 b
60 b
61 setTimeout (()=>{
62 if (! prepareResolved){
63 reject (new Error(”Unable to commit write”))
64 }
65 }.,5000)
66 b
}

69| flushOps (){

70 this.bufferedOps.forEach((op : Function)=>{
71 op ()

SN

730}

74| }

Listing 6.14: Implementing the transaction manager.

Listing 6.14 shows the implementation of the transaction manager. A
transaction manager allows replicas to register themselves as workers, de-
termines when it is safe to read a field and allows replicas to write a value
to a field. These three operations can only safely be executed by the trans-
action manager when it is idle (i.e. if there is no ongoing transaction). To
this end the transaction manager maintains a inTransaction flag. If one of
the three operations is issued while this flag is set to true the transaction
manager buffers the operation in the bufferedOps array. Buffered opera-
tions are automatically performed once the transaction returns to an idle
state (i.e. once the inTransaction flag is set to false) (see the flushOps
method on line 69).

Besides the buffering functionality the first two operations’ implemen-
tations are straightforward. First, registering a new replica (see the reg-
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isterNewReplica method on line 11) happens by storing the provided ref-
erence to the worker replica in an array. Second, when a worker replica
tries to read a field it invokes the transaction manager’s tryRead method
(line 22). The promise returned by this method only resolves when the
transaction manager is idle and hence when a replica can safely read the
field’s value.

The bulk of the transaction manager’s code is dedicated to the trans-
action logic implemented by the startTransaction method on line 44. The
method is invoked by a replica when it tries to mutate one of its fields
after which it immediately returns a promise. The transaction manager
resolves the returned promise in case the ensuing transaction completes
or rejects it otherwise. The method starts by invoking each registered
replica’s prepare method (line 47). This method always returns true, it
solely serves the transaction manager to determine which replicas are con-
nected. If all replicas are online the proms promises all resolve and the
method continues (line 50). Otherwise, a timeout expires which rejects
the return promise and stops the transaction (line 61).

If all replicas are online the transaction manager invokes their commit
methods (line 53). The transaction manager only returns to the idle state
once all commit invocations return (line 55).

6.6.3.3 Concluding Remarks and Shortcomings

Our adaptation of the two-phase commit protocol to replicas still exhibits
a number of weaknesses. For example, the master replica has the sole re-
sponsibility of committing or aborting a transaction. If the master replica
crashes or becomes otherwise unavailable no other replica is able to read
or write to a field. Ideally our implementation should elect (e.g. through
the paxos algorithm [Lam98]) a new master replica when the current one
becomes unavailable. We leave this extension to our MRS replicas as
future work.

More systematic experiments are needed to validate our claim that
Spiders.js’ meta facilities allow programmers to easily implement novel
kinds of distributed state. Through the implementation of strong even-
tual replicas and MRS replicas this section informally showcases the ease
with which Triumvirate programmers can extend its built-in parameter
passing and state update semantics. Spiders.js’ mirrors allow program-
mers to override or extend exact the semantics attributed to various kinds
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of distributed state. This allows them to only write the code needed for
their novel distributed state’s logic while relying on Spiders.js for the boil-
erplate code.

6.7 Related Work

We are not the first to propose an actor framework for web applications.
However, to the best of our knowledge we are the first to design and
implement an actor framework able to run locally within a single tier (i.e.
client or server) as well as across tiers. What follows is a discussion of
actor-based solutions for JavaScript.

Since HTMLS5, client-side JavaScript developers can employ web work-
ers to execute code in parallel. At its core web workers are limited versions
of actors: Given a URL to a piece of JavaScript code, the main thread is
able to spawn web workers which will execute the code in their own thread
of control. Web workers run in a completely isolated environment which
entails that they do not have access to the lexical scope in which they are
created. Moreover, scope isolation also includes graphical elements such as
the document object model (i.e. DOM). This ensures that race conditions
between workers are avoided. However, web workers limit programmers
in a number of ways which we discuss in detail in Section 6.1.

Server-side JavaScript (i.e. Node.js) offers child processes which can
be used to execute any system-level command . They also provide a built-
in wrapper (i.e. fork) which spawns a new Node.js instance and returns
an object used to send messages to the spawned instance. However, child
processes exhibit the same limitations as web workers.

The integration of the CEL model in web applications has already
been discussed by related work [MVC11]. So far, the most notable step
towards this integration is the Q-connection® library. As is the case for
Spiders.js, g-connection differentiates between local and far references for
objects. Moreover, far references can be exchanged between web workers.
However, in Q-connection web workers must explicitly export an object
before another worker can acquire a far reference to it. Furthermore, in
Q-connection actor references are second class. We discuss this problem
in detail in Section 6.1.

*https://github.com/kriskowal/q-connection (last accessed 31-01-2019)
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Akka.js [SPH15] is an actor framework that allows one to deploy Akka
actors in any JavaScript environment. To do so it employs Scala.js to
compile the Scala/Akka code to JavaScript. Akka.js closely resembles
Spiders.js in two ways. First, it maps actors onto web workers. Second,
it allows for different actor runtimes (i.e. server and client runtimes) to
seamlessly communicate. Spiders.js’ goal is to provide JavaScript devel-
opers a coherent actor-based distributed programming model. However,
Akka.js aims to provide Akka/Scala programmers the means to easily
deploy their application to JavaScript runtimes.

Generic workers [WHSAT10] strive to unify the way in which com-
munication happens between parallel entities (i.e. web workers) and dis-
tributed entities (i.e. client/server) in JavaScript. To do so, it introduces
the notion of a generic worker which can run both in the browser and on
a server. Furthermore, generic workers provide the same communication
API regardless of the tier in which the communication partner resides.
We share the vision that web applications need a unified actor frame-
work. However, Spiders.js explicitly steps away from the traditional web
worker interface in favour of a more expressive API through communicat-
ing event-loop actors.

Syndicate [GJF16] is an actor language tailored towards reactive pro-
grams. It extends upon functional actors with a number of reactive and
event-driven features. Furthermore, it provides a JavaScript implemen-
tation of its model. This implementation differs from Spiders.js in two
ways. First, Syndicate applications run their actors on the main thread
whereas Spiders.js actors have their own thread of control. Second, to the
best of our knowledge Syndicate’s JavaScript implementation does not al-
low client-side actors to communicate with server-side actors or client-side
actors residing on a different machine.

Ambient.js [GDPDMS18] is a JavaScript/Titanium® library which al-
lows the development of cross-platform mobile applications. Spiders.js
resembles Ambient.js in two ways: both are heavily influenced by the Am-
bientTalk [CGS'14] actor language and both implement communicating
event-loop actors. However, both the aim as well as the implementation
of Ambient.js differs widely from Spiders.js. First, Ambient.js operates
in the context of mobile applications where peers are homogeneous (i.e.
there is no client/server distinction). Second, actors in Ambient.js do not

Shttp://www.appcelerator.com (last accessed 31-01-2019)
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operate under their own thread of control (i.e. all actors run atop the
main JavaScript event-loop).

Reo@JS [KJ17] is a coordination language for web workers. As is the
case for Spiders.js, it aims to provide high-level actor-based abstractions
for web applications. Reo@JS focuses on communication patterns between
web workers and offers abstractions to easily implement these patterns.
However, it does not allow to coordinate workers across different clients
or to coordinate client and server workers.

Actrix” is an actor library which supports client and server-side actors.
Actrix actors are implemented by reusing JavaScript’s event-loop (i.e. ac-
tors are not supported by their own thread of control. However, Actrix
does support communication between actors spanning over client/server
boundaries. Spiders.js and Actrix differ in the category of actors they
implement, as defined by [DKVCDMI16]. Spiders.js actors are instances
of the communicating event-loops model while Actrix actors are instances
of the active objects model. In a nutshell, Actrix actors are represented
as a single object. These actors are able to send message to each other
(i.e. invoke each other’s methods). All arguments to these remote method
invocations are passed by copy. Actrix does allow programmers to specify
the protocol used to sent these remote method invocations (e.g. socket.io,
http,etc.). Concretely, actors communicate through high-level channels
which hide the actual implementation of message sending. In contrast,
Spiders.js communicate through sockets by default. However, using Spi-
ders.js’ meta level architecture one could implement custom messaging
protocols.

The technique employed by Spiders.js to copy data from an actor’s lex-
ical scope at construction time closely resembles Scala’s spores [MHO14].
In a nutshell, spores allow programmers to create closures which can be
safely distributed (e.g. by enforcing that spores and the variables they
capture are serialisable). Both approaches rely on the programmer to
specify which variables in the actor’s or spore’s lexical scope are to be
captured. However, the spores approach is more substantial as it includes
a type system which can enforce safety properties at compile time.

"https://github.com/ismailhabib/actrix (last accessed 31-01-2019)
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6.8. SPIDERS.JS AND REQUIREMENTS FOR A
DRIA-ORIENTED PROGRAMMING MODEL

6.8 Spiders.js and Requirements for a
DRIA-Oriented Programming Model

Spiders.js enables Triumvirate to fulfil requirements R; and R4 for DRIA-
oriented programming models as follows:

Ry: The model provides modular abstractions for distributed
logic
This requirement is met by Spiders.js’ actors. Actors essentially
represent parts of a distributed application’s logic. Moreover, Spi-
ders.js actors can be sent across the network and instantiated on
both client and server and provide built-in communication mecha-
nisms. Finally, programmers are able to compose actor behaviours
through inheritance.

R4: The model allows for extensible parameter passing and state
update semantics
This requirement is met by Spiders.js’ mirror-based reflection layer.
Programmers are able to implement custom mirrors for both actors
and objects in Spiders.js. This allows them to implement custom
parameter passing and state update semantics. We illustrate this
through the implementation of strong eventual replicas and multi-
replication strong replicas.

6.9 Chapter Summary

In this chapter we introduce Spiders.js, the TypeScript library on top of
which Triumvirate is implemented. More specifically, Triumvirate exposes
Spiders.js’ actors and meta layer facilities to its programmers. Underly-
ing Spiders.js are JavaScript’s primitive concurrency abstractions: web
workers that are used client-side and child processes that are used server-
side. We identify three shortcomings which preclude programmers from
using these constructs to distribute their web application’s logic. First,
web workers and child processes provide different abstractions, APIs and
semantics. Second, values can only be sent between web workers or child
processes using pass-by-copy semantics. Third, web workers or child pro-
cesses are only able to reference each other if they reside on the same
host.
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Spiders.js claims to solve these issues as follows. First, Spiders.js ac-
tors provide the same actor abstraction and API regardless of tiers. Sec-
ond, Spiders.js supports pass-by-copy semantics for isolates or pass-by-far-
reference semantics for all other objects. Third, actor references are first-
class language constructs and can be shared between actors and objects.
Each Spiders.js actor maps directly onto a web worker or child process.
As such, Spiders.js enables vertical as well as horizontal distribution of
logic.

Finally, we discuss Spiders.js’ metaprogramming interface. In a nut-
shell, Spiders.js provides a mirror-based reflection layer. Each object and
actor in Spiders.js is associated with a mirror which implements its se-
mantics. For example, a single method (i.e. invoke) in an object mirror
implements object method invocation. Programmers can extend the de-
fault object and actor mirrors to extend Spiders.js built-in semantics.
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Conclusion

This final chapter summarises our dissertation. We start by revisiting
DRIAs in general and repeat the requirements that a programming model
should fulfil in order to support them. Subsequently, we provide a general
overview of Triumvirate and how it fulfils these requirements. Finally, we
shed light on possible avenues of future work.

7.1 Programming Distributed Rich Internet Ap-
plications

Distributed programming models typically allow programmers to express
that an object is local or remote with respect to the executing code. For ex-
ample, this is the case in models such as RMI [Mic98], tuple spaces [Gel85],
far references [CGST14], etc. In this dissertation we argue that the dis-
tributed needs of DRIAs require more expressiveness on behalf of dis-
tributed programming models.

In recent years the applications running atop the world wide web have
become increasingly complex from a distributed point of view. Early web
applications were executed by a single centralised server. This server was
responsible for the application’s logic and state. Clients were only able to
view the state or request the server to perform operations over the state.
In these early web applications all state was considered local with respect
to the server’s code. From the viewpoint of the clients’ code all state was
considered to be remote.
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In contrast, a typical DRIA relies on multiple servers. Internally, each
server is implemented as multiple independent services as well. We discuss
an example of such DRIAs, derived from our collaboration with Emixis, at
length in Chapter 2. In general DRIAs distribute both logic and state ver-
tically (i.e. between client and server) as well as horizontally (i.e. amongst
servers and amongst clients). In other words, clients and servers require
the globally distributed state to be locally accessible in order to execute
their logic. As such, DRIAs blur the lines between what is considered
local and remote state.

In Section 2.2 of Chapter 2, we identify four requirements that are
essential for a DRIA-oriented distributed programming model:

R;: The model provides modular abstractions for distributed
logic
The logic of DRIAs is distributed between clients and servers. More-
over, within the servers and clients the logic is also distributed
amongst different autonomous components (e.g. threads, web work-
ers, etc). This requires the programmer to divide the application’s
monolithic logic into multiple units of logic and deploy these com-
ponents across nodes in the network. A web-oriented programming
model should aid the developer in this task by providing modularity
abstractions for distributed logic.

Ro: The model guarantees data consistency properties specified
by the programmer
The state of a DRIA is, similarly to its logic, distributed horizontally
and vertically. As such, this state can concurrently be updated by
multiple nodes in the network. According to the CAP theorem (see
Section 1.1.1 in Chapter 1) each of these concurrent updates trades
off consistency, availability and partition tolerance. This requires
the programmer to encode this trade-off per operation on a piece
of state in their DRIA. A web-oriented programming model should
allow programmers to declaratively specify the CAP trade-off for
operations on shared state. Moreover, the model should enforce the
chosen trade-off throughout the state’s lifetime.

R3: The model supports multiple parameter passing semantics
A DRIA moves parts of its state between various nodes in the net-
work. Moreover, maintaining the state’s various consistency guaran-
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tees requires significant amounts of bookkeeping. This requires the
programmer to implement various data dissemination strategies and
to maintain the necessary bookkeeping information. A web-oriented
programming model should aid developers in this task by providing
built-in support for multiple parameter passing semantics. These
parameter passing semantics allow programmers to distribute state
as first-class values while being freed from manually keeping track
of state bookkeeping.

R4: The model allows for extensible parameter passing and state
update semantics
In general, the implications of the CAP theorem on distributed
systems is still an active field of research [DPMDT*19, LPRI1S,
SBP*18]. As such, new consistency models and conflict resolution
algorithms are regularly developed. A web-oriented programming
model should allow programmers to extend or override its built-in
parameter passing and state update semantics. This allows program-
mers to easily implement novel consistency models and algorithms
within the same programming model.

In Chapter 3 we discuss the state of the art in distributed programming
for the web in light of these four requirements. Moreover, Chapter 4
and Chapter 5 discuss specific sub fields within this state of the art in
more detail. In summary, all distributed programming models at least
partially fulfil one requirement. However, web programmers currently lack
a programming model which fulfils all four requirements and are therefore
unable to elegantly tackle the complexity of DRIAs using a single model.

7.2 Triumvirate

In this dissertation we have envisioned a programming model that fulfils
the aforementioned four requirements. Triumvirate, an object-oriented
actor-based distributed programming language, serves as a reference im-
plementation of this model.
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7.2.1 The Three Triumvirs

Triumvirate’s main novelty is its support for various types of distributed
state. Concretely Triumvirate programmers implement their web applica-
tion’s state by extending one of three classes:

Duplicable represents locally-active distributed state. Concretely, an
actor’s control flow determines when and how to apply updates on
a duplicate (i.e. an instance of the duplicable class). Moreover,
duplicates are sent between actors by copy. When an actor updates a
duplicate this only affect the actor’s local copy of said duplicate. All
primitive Triumvirate data types (e.g. strings, numbers, booleans,
etc.) are duplicable.

Replicable represents remotely-active distributed state. As is the case
for duplicates, updates to replicas (i.e. instances of the replicable
class) happen actively (i.e. as dictated by an actor’s control flow).
In contrast to duplicates, all updates made by an actor to a replica
affect all other copies of this replica. To determine which copies to
update, Triumvirate employs pass-by-replica semantics. Each time a
replica is sent between actors a copy is made that keeps a reference
to the original replica.

Triumvirate provides two kinds of built-in replicas (i.e. strong and
eventual replicas). Each kind offers a different trade-off with regards
to the CAP theorem: strong replicas are consistent and partition-
tolerant while eventual replicas are available and partition-tolerant.
In both cases the Triumvirate runtime manages concurrent, possi-
bly conflicting, updates and upholds the replica’s CAP guarantees.
Moreover, as we showcase in Section 6.6.3 of Chapter 6, Triumvirate
easily allows one to implement novel kinds of replicable classes.

Derivable represents reactive state. Updates to this kind of state are
not determined by an actor’s control flow. Rather, the reactive part
of an application’s state automatically updates as a result of updates
to the active part of the application’s state on which it depends. Tri-
umvirate programmers specify these dependencies using derivation
functions. These functions take a number of objects (i.e. duplicates,
replicas or derivations) as arguments and return a new derivation
(i.e. an instance of the derivable class). The return derivation’s
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state is recomputed each time an update is applied to one of the
input objects.

Triumvirate keeps track of the dependencies that span multiple ac-
tors (i.e. and therefore possibly multiple physically distributed ma-
chines) by employing pass-by-derivation parameter passing seman-
tics. In a nutshell, each time a derivation is sent between actors
an edge is added to a distributed dependency graph. This graph
dictates the order in which derivations are to be updated. As we
discuss in Chapter 5, it is important to ensure that these reactive
updates happen correctly (i.e. without causing glitches). To this
end Triumvirate relies on a novel update algorithm called QPROP.
QPROP is the first distributed reactive update algorithm that is
able to guarantee this correctness without relying on central coordi-
nation.

Programmers combine duplicates, replicas and derivations to implement
their DRIAS’ distributed state. Triumvirate curtails these combinations
of distributed state through a set of laws to prevent programmers from
breaking the guarantees given by duplicates, replicas and derivations.

7.2.2 Curtailing Interactions with Triumvirate’s Laws

Figure 7.1 shows how duplicates, replicas and derivations interact. In a
nutshell, Triumvirate separates the three kinds of distributed state into ac-
tive and reactive state. Active state (i.e. duplicates and strong or eventual
replicas) is imperatively updated by actors. As we discuss in Section 4.2
of Chapter 4, the preservation of availability law (i.e. Law 1) and the
preservation of consistency law (i.e. Law 2) prohibit any interaction
between strong and eventual replicas. However, Triumvirate allows pro-
grammers to convert strong replicas to eventual replicas and vice versa
using two built-in functions: thaw and freeze respectively. Triumvirate
guarantees that replicas can safely be sent between actors by enforcing
the preservation of serialisability law (i.e. Law 3).

Reactive state (i.e. derivations) updates automatically as a result of
imperative updates to active state. Active and reactive state inherently
provide two different programming paradigms (i.e. imperative and declar-
ative programming respectively). As we discuss in Section 5.3 of Chap-
ter 5, Triumvirate separates active from reactive state using the activity-
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Figure 7.1: Overview of state interactions within Triumvirate.

reactivity isolation law (i.e. Law 4). However, programmers are able to

translate active updates to reactive ones and vice versa using Triumvirate

actors’ built-in derive function.

7.2.3 Triumvirate: a DRIA-oriented Programming Model

Triumvirate fulfils the requirements for a DRIA-oriented programming

model as follows:

R1:

The model provides modular abstractions for distributed
logic

Triumvirate programmers use actors to implement their applica-
tion’s logic. These actors are modular and composable units which
can readily be deployed both on the client as well as the server. Be-
sides offering horizontal and vertical distribution, Triumvirate actors
therefore also allow programmers to implement parallel applications.

Triumvirate actors provide two built-in communication mechanisms.
First, actors explicitly communicate by invoking each other’s meth-
ods (i.e. by sending asynchronous messages). Second, actors implic-
itly communicate with each other by updating distributed shared
state (i.e. replicas or duplicates).
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Ry: The model guarantees data consistency properties specified
by the programmer
Triumvirate natively supports locally-active, remotely-active and re-
active state in the form of duplicates, replicas and derivations
respectively. Triumvirate maintains the consistency guarantees of a
piece of distributed state throughout its lifetime as follows:

Duplicates guarantee availability and partition tolerance, but do
not provide any consistency. As such, Triumvirate does not
implement any specific update mechanisms for duplicates.

Replicas are sub-divided into strong and eventual replicas. Strong
replicas guarantee partition tolerance and strong consistency.
Triumvirate guarantees this by implementing strong replicas
as far references [CGST14]. Eventual replicas guarantee avail-
ability, partition tolerance and non-strong eventual consistency.
Triumvirate ensures this guarantee by implementing eventual
replicas using the global sequence protocol [BLPF15]. More-
over, in Section 6.6.3 of Chapter 6 we implement two addi-
tional types of replicas. The first, enhances strong replicas by
guaranteeing strong consistency for multiple replicas using two-
phase commit [LS76]. The second, enhances eventual replicas
by guaranteeing strong eventual consistency through the use of
conflict-free replicated datatypes [SPBZ11].

Derivations guarantee availability, partition tolerance and even-
tual consistency. Triumvirate ensures this guarantee through a
novel reactive propagation algorithm called QPROP (see Chap-
ter 5). This algorithm guarantees that derivations update glitch
freely without resorting to central coordination.

As we discuss in the previous section, Triumvirate stipulates inter-
action rules between duplicates, replicas and derivations.

R3: The model supports multiple parameter passing semantics
Triumvirate supports three parameter passing semantics: pass-
by-copy, pass-by-replica and pass-by-derivation. Fach of these se-
mantics provide support for the three major categories of distributed
state (i.e. duplicable, replicable and derivable respectively). The
Triumvirate runtime automatically chooses the right parameter pass-
ing semantic when a piece of distributed state is sent between actors.
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This frees the programmer from manually serialising and deserialis-
ing distributed state.

R4: The model allows for extensible parameter passing and state
update semantics
Triumvirate allows programmers to extend its built-in semantics by
implementing custom mirrors at the meta level. These mirrors
offer a number of overridable hooks into the life cycle of actors and
distributed objects. As we showcase in Section 6.6.3 of Chapter 6
these hooks allow programmers to easily implement novel kinds of
distributed state.

7.3 Overview of the Contributions

The general vision (see Chapter 2) behind this dissertation is too vast
to rigorously realise and scientifically validate in the course of a single
doctoral dissertation. As such, we divide this dissertation into three con-
crete contributions to the vision that have been validated and published
at peer-reviewed venues. These contributions are the following;:

e Spiders.js [MSDM18b] is the first programming language for web
applications that uses communicating event-loop actor as its core
model. Programmers implement clients and servers as collections
of actors. Spiders.js offers a single API regardless of an actor’s lo-
cality (i.e. client or server-side). Therefore, Spiders.js is the first
language to unify distribution and parallelism for web applications
across client and server tiers.

Spiders.js was heavily influenced by the AmbientTalk [CGS™14] lan-
guage and as such employs a mirror-based reflection layer. This al-
lows programmers to extend or override Spiders.js’ built-in semantics
by implementing custom mirrors on objects or actors. We showcase
the strength of this approach by implementing two novel kinds of
distributed state (i.e. strong eventual replicas and multi-replication
strong replicas) in Section 6.6.3 of Chapter 6.

Our benchmarks showcase that Spiders.js introduces a performance
overhead compared to JavaScript. However, our benchmarks also
showcase that this overhead does not compromise Spiders.js’ ability
to parallelise web applications. Moreover, qualitative benchmarks
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show that Spiders.js frees the programmer from writing boilerplate
code thereby allowing them to focus on their DRIA’s logic.

e Triumvirate is the first distributed programming model to explic-
itly classify distributed state into three categories: duplicable, repli-
cable [MSDM18a] and derivable [MSDM19]. The Triumvirate pro-
gramming language incorporates these into its design as first-class
replicated objects. We showcase the applicability of one of these
classes (i.e. replicable) during a real-world experiment conducted at
the Onward!2018 conference'.

e Triumvirate guarantees the eventual consistency of derivations.
Moreover, Triumvirate guarantees that derivations update without
causing glitches. To do so we develop the first propagation al-
gorithm to guarantee glitch freedom of distributed reactive applica-
tions without resorting to central coordination: QPROP [MSDM19].
We prove the correctness of our algorithm and show that it signifi-
cantly outperforms existing approaches through a set of benchmarks.

7.4 Triumvirate Beyond the Current Mandate

Triumvirate serves as an initial prototype of a programming language tai-
lored to DRIAs. This dissertations showcases and validates the core ideas
behind Triumvirate. However, given the novelty of Triumvirate and its
underlying concepts it also opens a number of avenues for future research.
Concretely, we foresee the following as future work to improve Triumvirate
as a language and programming model:

Overall Performance Spiders.js, and by extension Triumvirate, suffers
from a lack of performance on two fronts. First, Spiders.js in-
troduces a non-negligible overhead (i.e. up to 5X) compared to
JavaScript. This is largely due to the fact that Spiders.js heav-
ily relies on JavaScript’s meta-level facilities. For example, objects
in Spiders.js are wrapped by JavaScript proxies in order to imple-
ment Spiders.js’ mirror-based reflection. Moreover, distributed ob-
jects (i.e. duplicates, replicas or derivations) in Triumvirate extend

"https://www.youtube. com/watch?v=17cHhDDpJbg
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Spiders.js’ built-in mirrors thereby adding an additional meta-layer.
We showcase this overhead in Section 6.6.1.1 of Chapter 6.

Spiders.js also lacks performance with regards to its memory con-
sumption. More precisely, Spiders.js currently does not perform any
distributed garbage collection. For example, far references held by
actors are kept indefinitely in the actor’s memory.

We only encountered memory-related issues in long-running Spi-
ders.js prototypes at Emixis. However, distributed garbage col-
lection is necessary for Triumvirate and Spiders.js to be usable as
platforms for extensive real-world scenarios. Triumvirate and Spi-
ders.js can benefit from a number of existing approaches with re-
gards to distributed garbage collection. These range from general-
purpose distributed garbage collection approaches [AR98] to more
specific methods such as tombstoning for conflict-free replicated data
types [SPBZ11]. We have already started research into garbage col-
lection for derivations [MSDM17].

Mixing Consistency Models Triumvirate allows programmers to im-
plement applications which require various consistency models for
their state. For example, using strong and eventual replicas in a
same application effectively mixes sequential and non-strong even-
tual consistency.

As we discuss in Section 4.2 of Chapter 4 and Section 5.3.3 of Chap-
ter 5 we restrict the direct interactions between distributed objects.
However, programmers are still able to combine values read from
different distributed objects. For example, imagine two counters:
one implemented as a strong replica and the other as an eventual
replica. Both counters maintain a single numerical field value (i.e.
a duplicate). Triumvirate does not prohibit an application from
reading and combining the values of both counters (e.g. printing
these out to a console). This combination does not infringe on the
interaction rules of Triumvirate given that both values are tech-
nically duplicates. However, from an application perspective both
counter values could offer two views with different levels of consis-
tency over the same data. As such, combining these values could
lead to application-specific inconsistencies.
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Languages such as MixT [MM18] previously identified this prob-
lem. In the specific case of MixT the solution comes in the form
of a type system which tracks the flow of values with varying con-
sistency levels through the program. MixT’s type system is able
to statically determine whether a program is correct (i.e. if gen-
eralised non-interference can be enforced). However, MixT imple-
ments distributed objects as elements in replicated data stores. This
contrasts with Triumvirate where distributed objects are first-class
entities. An avenue of future work is therefore to investigate to what
extend type systems such as the one used in MixT are portable to
the Triumvirate programming model.

Extensible Interaction Rules Triumvirate implicitly enforces a num-
ber of rules with regards to the interaction between duplicates, repli-
cas and derivations. For example, programmers cannot apply deriva-
tion functions to a mix of replicas and derivations or arbitrarily
compose strong and eventual replicas. These rules are hardcoded in
Triumvirate’s runtime and cannot readily be extended by the pro-
grammer. For example, in Section 6.6.3 of Chapter 6 we implement
two novel kinds of replicas. However, the programmer would have
to manually reimplement the correct rules for both novel replicas.

An avenue of future research is therefore to provide programmers
with a declarative way to specify interaction rules between dis-
tributed objects (e.g. through annotations). As is the case for
Spiders.js’ mirrors, programmers could extend or override certain
rules for their custom distributed objects. Moreover, Triumvirate
could statically verify whether an application is correct using these
declaratively specified rules.

Programming Support Triumvirate currently enforces its laws through
runtime exceptions. This technique solely guarantees that the Tri-
umvirate laws cannot be broken by developers. However, these run-
time exceptions do not provide the support programmers need to
avoid breaking the Triumvirate laws. For example, imagine a sce-
nario in which a Triumvirate developer relies on a third-party Tri-
umvirate library to implement his DRIA. There are two ways for
the developer to detect that its use of the library breaks Triumvirate
laws. First, by running the DRIA and catching runtime exceptions.

211



CHAPTER 7. CONCLUSION

Second, by manually going through the implementation of the li-
brary and checking its usage of it for any violations of Triumvirate’s
laws.

Ideally, Triumvirate should provide the necessary tools for the pro-
grammer to pre-emptively and automatically catch any violation of
Triumvirate’s laws. We foresee two possible avenues of future work
to solve this lack of programmer support on behalf of Triumvirate.

1. Extending TypeScript’s type system would allow us to cover
most violations of Triumvirate’s laws. For example, Laws 1
and 2 can be enforced by restricting the type of arguments one
can provide to methods of strong and eventual replicas. In the
case of Law 4 one could rely on TypeScript’s conditional types
to ensure that the derive function cannot be invoked with a
combination of active and reactive state as input arguments.
A spore-like solution [MHO14] would allow for the static en-
forcement of Law 3.

2. A static analysis tool could symbolically execute [Kin76] DRIAs
before they are deployed onto a network of nodes. Subse-
quently, the tool could detect violations of Triumvirate’s laws
and inform the programmer of said violations. Moreover, the
tool could use the symbolic information gathered during the ex-
ecution to provide examples of the input data that lead to the
violation. However, it is unclear whether this solution would
scale for larger Triumvirate applications.
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7.5 Closing Remarks

Programmers of distributed applications face a number of challenges that
are inherent to distributed systems (e.g. concurrency, lack of central re-
source management, etc. [KWWWO94]). This dissertation focuses on dis-
tributed applications for which the logic is disseminated across multiple
nodes of a distributed computing platform. As an example of such a
platform this dissertation focuses on the world wide web. DRIAs are
characterised by a number of servers and clients all concurrently running
parts of the application’s logic. As a result, each server or client requires
part of the application’s state in order to execute its logic.

Current distributed programming models do not provide the abstrac-
tions necessary to elegantly tackle the complexities of DRIAs. We identify
four requirements for a programming model to do so. First, the model
should provide modular abstractions for distributed logic. Second, the
model should support multiple parameter passing semantics. Third, the
model should allow programmers to specify consistency guarantees about
the application’s state. Fourth, the model should allow programmers to
extend or override its semantics.

This dissertation aims to contribute to a new generation of program-
ming languages tailored to DRIAs. We present Triumvirate, a novel pro-
gramming model which fulfils the aforementioned four requirements. Key
to Triumvirate are its triumvirs: three classes of objects (i.e. duplicable,
replicable and derivable) that allow programmers to implement their ap-
plication’s distributed state. These triumvirs are used by communicating
event-loop actors to execute the application’s distributed logic.

This dissertation presents a first implementation of Triumvirate atop
Spiders.js [MSDM18b], a general-purpose distributed programming lan-
guage for the web. Spiders.js unifies distribution and parallelism for web
applications by providing a single actor model for both server and client-
side web applications. Moreover, Spiders.js provides a mirror-based re-
flection API that allows programmers to extend and override its built-in
semantics.

Triumvirate uses Spiders.js meta-facilities to implement the three tri-
umvirs. Replicas [MSDM18a] come in two flavours, eventual replicas
are partition-tolerant and eventually consistent while strong replicas are
partition-tolerant and strongly consistent. Both kinds of replicas rely on
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state-of-the-art update algorithms to handle concurrent updates. In this
dissertation we present two implementations of eventual replicas (i.e. one
using the global sequence protocol [BLPF15] and another using conflict-
free replicated data types [SPBZ11]) and two implementations of strong
replicas (i.e. one using far references [CGS*14] and another using the
two-phase commit protocol [LS76]).

Concurrent updates to derivations are handled by a custom propaga-
tion algorithm called QPROP [MSDM19]. QPROP is the first reactive
propagation algorithm for distributed systems that can guarantee correct-
ness without relying on central coordination.
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Appendix A

Code Complexity
Comparison

A.1 Highlighted Native Implementation of Pong
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APPENDIX A. CODE COMPLEXITY COMPARISON

A.1.1 Server Implementation

var io = require('socket.io');
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A.1. HIGHLIGHTED NATIVE IMPLEMENTATION OF PONG

A.1.2 Server Implementation
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APPENDIX A. CODE COMPLEXITY COMPARISON

A.1.3 Client Implementation

import {Socket} from "net";
var graph = require('./graphics')
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A.1. HIGHLIGHTED NATIVE IMPLEMENTATION OF PONG

A.1.4 Client Implementation

Uil

//Invoked by the UI

//Invoked by the UI

//Invoked by the UI
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APPENDIX A. CODE COMPLEXITY COMPARISON

A.1.5 Client Implementation
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A.2. HIGHLIGHTED SPIDERS.TS IMPLEMENTATION OF PONG

A.2 Highlighted Spiders.ts Implementation of Pong
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APPENDIX A. CODE COMPLEXITY COMPARISON

A.2.1 Server Implementation

import {SpiderLib, FarRef} from "../src/spiders";
var spiders : SpiderLib = require("../src/spiders")

class SpiderPongServer extends spiders.Application{

games : Map<string,Player>
occupation : Map<string,number>
clients : Map<string,Player>

constructor(){
super ()

}

new SpiderPongServer|()
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A.2. HIGHLIGHTED SPIDERS.TS IMPLEMENTATION OF PONG

A.2.2 C(Client Implementation

import {SpiderLib, FarRef} from "../../../src/spiders";
var spiders : SpiderLib = require("../../../src/spiders")
var graph

require("./graphics")

class SpiderPongClient extends spiders.Application{
serverRef : FarRef
nickName : string
currentGame

constructor (nickName : string){
super ()
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A.2.3 Client Implementation
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