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Abstract. Traditional machine-based static analyses use a worklist algorithm to explore the analysis
state space, and compare each state in the worklist against a set of seen states as part of their fixed-point
computation. This may require many state comparisons, which gives rise to a computational overhead.
Even an analysis with a global store has to clear its set of seen states each time the store updates
because of allocation or side-effects, which results in more states being reanalyzed and compared.

In this work we present a static analysis technique, MODF, that does not rely on a set of seen states, and
apply it to a machine-based analysis with global-store widening. MODF analyzes one function execution
at a time to completion while tracking read, write, and call effects. These effects trigger the analysis of
other function executions, and the analysis terminates when no new effects can be discovered.

We compared MODF to a traditional machine-based analysis implementation on a set of 20 benchmark
programs and found that MODF is faster for 17 programs with speedups ranging between 1.4x and
12.3x. Furthermore, MODF exhibits similar precision as the traditional analysis on most programs and
yields state graphs that are comparable in size.
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1 Introduction

1.1 Motivation

Traditional machine-based analyses [25] use a worklist algorithm to explore the analysis state space. The
worklist contains the program states that still have to be explored by the fixed-point computation. In order
to reach a fixed point, every state that is pulled from the worklist has to be checked against a set of seen
states. If the state was already analyzed, then it must not be reanalyzed to ensure termination of the analysis.

Comparing states in this manner gives rise to a computational overhead, especially if the store is contained
in the program states. To accelerate the fixed-point computation, global-store widening can be applied [22].
Global-store widening lifts the store out of individual states and turns it into a global analysis component,
making it a shared component of each state that the analysis produces. This reduces the number of times
states have to be reanalyzed and compared, and state comparison itself also becomes cheaper.

Yet, despite improved tractability, an analysis with a global store may still require many state compar-
isons. Moreover, each time the global store is updated, the set of seen states has to be cleared because all
states explored so far were computed with a previous version of the store that is different from the latest one.
Although clearing the set of seen states makes checking for membership of this set cheaper, naive approaches
do so in an indiscriminate manner. Seen states that are not dependent on a particular store update will
still be removed from the set of seen states, and will be reanalyzed without the analysis discovering new
information (new states, new store updates, ...). This causes the analysis to reanalyze and compare states
unnecessarily.

Therefore, the impact of maintaining a set of seen states on the performance, which is unpredictable in
general, motivated the following two research questions.

1. How to design a static analysis that does not require a set of seen states to reach a fixed point? and
2. What are the implications on performance and precision when compared to a traditional technique?

As the set of seen states plays an important role in ensuring termination of the analysis, our answer fo-
cuses on its fixed-point mechanism while assuming regular semantics and configurability (lattices, context-
sensitivity, ...).



1.2 Approach

In this work we present a static analysis technique for higher-order, side-effecting programs, called MODF,
that does not rely on a set of seen states for computing a fixed point. MODF analyzes one single function
execution at a time to completion while tracking read, write, and call effects. These effects trigger the analysis
of other function executions, and the analysis terminates when no new effects can be discovered. This means
that, unlike existing analyses that rely on effects, MODF uses the effects discovered during analysis to drive
the analysis itself. The result of the analysis is a flow graph that can be queried by client analyses for
obtaining information about fundamental program properties such as control flow and value flow.

Whenever during a function execution another function is called, a call effect is generated and the cached
return value of the called function is retrieved from the store and used as return value. If it is the first call
to a particular function, then the called function is added to the worklist for future analysis. Whenever a
function reads from the global store, this read dependency is tracked. Upon a write to an address in the store,
all read-dependent functions are added to the worklist for reanalysis. When a function returns, its return
value is written to the store using the function as the address. Calls beyond the initial one to a particular
function do not by themselves trigger that function’s reanalysis. Because both the arguments and the return
value are stored, writing the argument values at call time and writing the return value at return time ensures
that the required (dependent) functions are reanalyzed, thereby honoring the call/return pattern.

By not relying on a set of seen states, MODF avoids the associated state comparisons, and by tracking read
and write effects MODF is more selective in reanalyzing program states. The goal of this design is to remove
an important source of overhead in naive implementations of machine-based techniques such as AAM [25]. In
addition, caching of return values in combination with selective reanalysis acts as a memoization mechanism
that a MODF analysis can benefit from.

We applied MODF to a traditional AAM analyzer with global-store widening, and our evaluation shows
that for many benchmark programs the MODF analyzer is indeed faster while maintaining precision (Sec-
tion 4).

Contributions

— The formal definition of a function-modular static analysis design for higher-order, side-effecting programs
that does not rely on a set of seen states (MODF).

— The application of MODF to AAM, a well-known and widely used analysis approach.

— The implementation of an AAM-based MODF analyzer and its evaluation in terms of performance and
precision.

Overview of the Paper We first introduce MODF (Section 2) and formalize our approach (Section 3). We
then compare a MODF analyzer to an AAM analyzer in terms of performance and precision (Section 4). We
discuss related work (Section 5) and conclude by presenting open questions for future research (Section 6).

2 Overview of the Approach

We illustrate MODF through a number of examples involving (recursive) function calls, higher-order functions,
and side-effects.

Function execution occurs in a particular execution contert, and the combination of a function f and its
execution context is denoted by k¢. The program itself is executed in an initial context denoted by kg, but
in the remainder of this paper we treat it like any other function execution context and refer to it as such
(conceptually a program can be thought of as representing the body of an implicit main function that is
called to start the exection of the program). MODF analyzes each function execution separately from other
executions, tracking function calls and accesses to the global store. When an address is read from the store,
a read effect is generated by the analysis: r(x) denotes a read effect on variable x (we use variable names as
addresses for simplicity). Similarly, when a value is added or modified in the store, a write effect is generated:
w(x) denotes a write effect on variable x. MODF does not immediately step into a function when it is called,



but rather models these calls through call effects: ¢(k) denotes a call effect on the context k. Tracking read,
write, and call effects enables detecting how changes made by the execution of one function affect other
function executions.

2.1 Simple Function

Consider the following Scheme program, which defines a function £ and calls it twice.

(define (f) 3)
(£)
(£)

MODF starts by analyzing the initial context kg. When encountering the first call to £, MODF produces a call
effect c(ky) and looks up the return value of f in the store at address k¢ (contexts are used as addresses in
the store). Because f has not yet produced a return value, the lookup results in the bottom value L, which
denotes the absence of information. Looking up this return value produces a read effect r(x). The presence
of this effect results in k¢ having a read dependency on address k.

The second call to f is treated in the same manner, so that context kg is now fully analyzed. This is
represented by the following graph, where green nodes correspond to expressions that have to be evaluated
by the program, and red nodes correspond to values reached by evaluating the preceding green node. The
edges correspond to transitions in the evaluation of the program and may be annotated with one or more
effects. For clarity, we omit some of the read effects in the graphs that follow.

c(ks) c(ks)
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Because the analysis of context x¢ yielded a function call with context ¢, and context ¢ was not encountered
before, MODF proceeds by analyzing it. This produces an abstract return value int (assuming a type lattice
as the abstract domain for values), which is written in the store at location ky, thereby producing a write

effect w(ky).

w (k)

Because context k: updates address k¢, and kg has a read dependency on this address, the analysis of
the context kg is retriggered with the updated store, during which the resulting values of function calls to £
are now correctly resolved. No new effects are discovered.

c(k c(k
Ko: [ (£) (rz) 5 int ) >|' (£) } (r2) S int |

Because all discovered contexts have been analyzed and no new store-changing effects were detected,
MoDF has reached a fixed point.

2.2 Higher-order Function

The following example illustrates the analysis of higher-order functions. Function g returns a closure £ which
is called on the last line.

(define (f) 3)
(define (g) £)
(define x (g))
(x)



The first iteration of MODF analyzes the initial context kg and detects the call to function g, immediately
followed by the assignment of value L to variable x because no return value was previously computed for g.
The call to variable x therefore results in a 1 value as well.

c(kg)
Ko: (g “(1) {0)) (1)

In the next iteration MODF analyzes context rg, as it was encountered for the first time during the
previous iteration. The analysis detects that g returns function £, and this return value is stored at address
Kg-

The third iteration reanalyzes ko as one of the addresses read by this context (xg) has been written to.
The value of variable x now is function f, and a call effect is generated on context ks that immediately
returns value | because £ has not been analyzed previously.

c(rg) e c(ks)
ko | (g) () S (%) S |
r(ng) " r(n:) ©

The fourth iteration analyzes newly discovered context k¢ and discovers abstract return value int, which
is stored at address kg, generating a write effect.

fi: - ED

The fifth and final iteration reanalyzes the initial context, for which the call (x) produces the return
value int residing at address ¢, and MODF reaches a fixed point.

c(kyg) c(k
Ko: | (g) } £ >® o{ (x) ) (5e) Jint )

Although this example only considers a program in which a function is returned by another function,
MODF supports closures as arguments to or return values of function calls.

2.3 Recursion and Function Arguments

The next example features a recursive function sum which computes the sum of natural numbers between 1
and n.

(define (sum n acc)
(if (= n 0)
acc
(sum (- n 1) (+ acc n))))
(sum 5 0)



First, the initial context kg is analyzed, and the call to sum immediately results in value 1, generating a call
effect for context Kgy,. During this iteration (i.e., at the call site), the analysis binds the argument values
in the store, generating the corresponding write effects. The store itself is global to the analysis, and only
grows monotonically. In our examples we use the name of a variable as the address at which we store its
value, so that a particular function parameter is always stored at the same address and multiple calls to sum
cause the different arguments values to become joined in the store.

Ko: | (sum 5 0) } C{foue) >@

r'(Ksum),W(n), w(acc)

The second iteration of MODF proceeds with the analysis of context kg, and the possible return value
int, stemming from expression acc in the then-branch, is detected. The value corresponding to the recursive
call in the else-branch is L as the address Kgy, is not yet bound in the store at this point.

Rsum (= 0) J A 2CC ) )= int l
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In the third iteration, the analysis has to consider either kg or Ksum, because both contexts have a read
dependency on address Kguy, which was written during the previous iteration. Although the order in which
contexts are analyzed may influence the convergence speed of a MODF analysis, it will not influence its end
result. For this example’s sake, we assume MODF reanalyzes k¢ first, in which the call to sum now produces
return value int by reading address Kgy, in the store.

Ko: [ (sum 5 0) } ©{fieun) @

r(Ksu),W(n), w(acc)

Finally, context kgy, is reanalyzed, and the recursive call now also results in the expected abstract value
int. Because the return value of the sum function was already determined to be int, the store does not change
and no additional contexts have to be analyzed, concluding the analysis.

Rsun' (=n 0) acc) A int
t ) W (o)
N ) ©(#ow) (int)
(sum (- n 1) (+ acc n))) (int (int)

r(Ksum),W(n), w(acc) — W (Ksun)

2.4 Mutable state

In this final example we mutate state using the set! construct. Variable x in the program below initially
holds an integer value. After evaluating x a first time, function f is called, which changes the value of x to
a string, and variable x is evaluated again.



(define x 0)

(define (f) (set! x "foo"))

(display x)

(£)

(display x)

A first analysis of initial context kg correctly infers the first value for x (int) but incorrectly infers its second
value as execution context ks has not yet been analyzed. However, the read dependency of k¢ on the address
of variable x is inferred as a read effect.

c(ks)
o (@) )>|'int} (D) ? () >®W

In the next iteration, context k: is analyzed. It writes to the address of variable x and to return location
KRf.

Kf: ((set! b'e "foo")} )\ str ) ){ str)

Finally, the reanalysis of context kg is triggered due to changes on addresses on which it depends (x and
kg), and a sound over-approximation of the possible value of x is obtained.

—— c(ke)
ko ) {int, str} (£) 'r(/ff))E str} (%) r(x)> {int, str}
£

3 Formal Definition

We formally define MODF for a higher-order, side-effecting language as a process that alternates between
two phases:

1. An intra-contert analysis analyzes a function execution context given an input store, and tracks the
effects performed within this context.

2. An inter-context analysis triggers subsequent intra-context analysis based on the effects observed during
previous intra-context analyses.

Before introducing these analysis phases, we provide the concrete operational semantics of the language
under analysis.

3.1 Input Language

As input language for the formal definition of MODF, we use the untyped A-calculus in A-Normal Form with
support for side-effects through set!. A-Normal Form, or ANF, is a restricted syntactic form for A-calculus
programs in which operators and operands are restricted to atomic expressions. Atomic expressions ae are
expressions that can be evaluated immediately without impacting the program state, as opposed to non-
atomic expressions that may impact the program state. This syntactic simplification of the language does
not limit its expressiveness, as any A-calculus program can be automatically rewritten into its A-Normal
Form [4]. We assume the domain of expressions (Exp) to be finite, as any program contains a finite number
of expressions and we only consider expressions appearing in the analyzed program.

We include atomic expressions that denote integer and string primitive values in the language for consis-
tency with the examples given previously and to illustrate that they do not present any complications with
respect to the analysis. Other primitive values can be added in a similar fashion.



The set! operator modifies the value of a variable x to the value resulting from the evaluation of an
atomic expression ae. While the presentation in this paper focuses on a functional language with only set!
as an imperative construct, nothing prevents the MODF approach from being applied to languages with other
and additional imperative constructs.

e € Expu=ae | (f ae) lam € Lam ::= () (x) €)
| (set! x ae) x € Var a finite set of identifiers
| (et ((xe))e) n € 7Z the set of finite integers
frae€e AExpu=2x | lam | n | s s € S the set of finite strings

3.2 Concrete Semantics

The concrete semantics of the input language is defined as a transition relation, denoted ¢, — ¢’, o’. It acts
on a state ¢ and a store o, producing a successor state and store.

State space. A state is composed of a control component ¢, which can either contain an expression to evaluate
in an environment (ev(e, p)) or a value (val(v)), and a stack ¢, which itself is a sequence of frames representing
the continuation of the execution. The values (v) in this language are primitive values such as integers
(int) and strings (str), and closures (clo) that bind lambda-expressions with their defining environments.
Environments map variables to addresses, and stores map addresses to values. We leave addresses undefined
for the sake of generality, but we assume that there are infinitely many concrete addresses.

seXu={cu) ¢ € Frame ::= let(a, e, p)
¢ € Control ::=ev(e,p) | val(v) p € Env = Var — Addr
v € Val :=clo(lam, p) | int(n) | str(s) o € Store = Addr — Val

L€ Stack i=d:1 | € a € Addr an infinite set of addresses

Atomic evaluation. Atomic expressions are evaluated by the atomic evaluation function A : AExp x Env X
Store — Val that, given an environment and a store, computes the value of the atomic expression. Variable
references x are evaluated by looking up the address of that variable in the environment and returning the
value that resides in the store at that address. The evaluation of a lambda expression results in a closure
that pairs the lambda expression with the current environment. Integers and strings are tagged with their
respective type during atomic evaluation.

Az, p,0) = o(p(x)) A(lam, p, o) = clo(lam, p) A(n, p, o) = int(n) A(s, p,o) = str(s)

Transition relation. The transition relation is defined using 5 rules.
Function A is used by the transition relation to evaluate an atomic expression into a value, leaving the
stack and the store unmodified.

v=A(ae, p,0)

(ev(ae, p),t),0 — (val(v),t), o

For a function call, first the operator f and the operand ae are evaluated atomically. Evaluation then
continues by stepping into the body €’ of the called function with the environment and store extended with
the value v of the argument = at a fresh address generated by the allocation function alloc : Var — Addr.

clo(O\@eh, p') = A(f, p,0) v = Alae, p,o) a = alloc(x) o' =p'lz— a
(ev((f ae), p),1),0 — (ev(e/, p"), 1), ola = 0]




A set! expression is evaluated by first evaluating the atomic expression ae to obtain the new value v for
x, and then updating the value of x in the store.

v=A(ae, p,0)

(ev((set! x ae),p),t),0 — (val(v),),o[p(z) — v]

A 1let expression is evaluated in two steps. A first rule pushes a continuation on the stack and evaluates
the expression for which x has to be bound to the result. The environment is extended at this point to enable
recursion, so that a function can refer to itself in its body (meaning that this let is equivalent to Scheme’s
letrec).

a = alloc(x) p = plr — d] (' =let(a, ez, p’) it

(ev((let ((z €1)) €2),p),1),0 — (ev(er,p'),t), 0

A second rule then acts when a value has been computed for the variable x by evaluating the body of the
let after binding the address of = to its value in the store.

o' =ola s ]

(val(v),let(a, e, p) : 1), 0 — (ev(e, p),i), 0
This completes the rules for the concrete semantics of the input language.

Allocation. The alloc function for allocating addresses in the store is a parameter of the analysis. For defining
concrete semantics, natural numbers can be used as concrete addresses, i.e., we take Addr = N and have
alloc generate fresh addresses each time it is called.

Collecting Semantics. The concrete collecting semantics of a program e is the set of states that the program
may reach during its execution. It is defined as the fixed point of a transfer function F¢ : P(X x Store) —
P(X x Store), where function Z(e) : Exp — X' injects a program represented by an expression into an initial
state.

FoS) ={(Z(e), Du J (o) I(e) = (ev(e []),€)
5,08
5,00
In the remainder of this section, we discuss approaches to soundly over-approximate the set of concrete
states formed by lfp(F¢). First, we abstract all elements of the state space except for the stack (Section 3.3),
resulting in an infinite abstract interpretation. We then examine and compare different existing approaches
for abstracting the stack and introduce and discuss the approach taken by MODF (Section 3.4).

3.3 Abstracting Values

Similar to Earl et al. [3], we perform a first abstraction of the concrete semantics to obtain a baseline
abstract interpretation to illustrate the similarities and differences between MODF and related work. In this
abstraction, we render the set of values and the set of addresses finite but leave the stack untouched.

State space. This first abstraction consists of rendering the set of addresses finite, which implies that stores
now map to sets of values rather than a single value. To ensure that the set of values is finite, we also
abstract primitive values into their type, although other finite abstractions would work as well. As a result,
all components of this state space are finite with the exception of the stack, which can grow infinitely
(something we address in the next sections). We highlight the main changes in the formalism in gray.

¢ € X u={c,1) ¢ € Frame ::= let(a, e, p)
1) p € Env = Var — Addr
o € Store = Addr — P(Val)

¢ € Control == ev(e,p) | val( {v,...

v € Val ::=clo(lam,p) | int | str
L€ Stack i=¢:1 | € a € Addr a finite set of addresses



Atomic evaluation. The changes in the state space propagate to the atomic evaluation function. The atomic
evaluation function A : AExp x Env x Store — P(Val) now evaluates to a set of abstract values, losing
information about concrete values of integers and strings.

Az, p,0) = o(p(x)) A(lam, p,o) = { clo(lam, p) } A(n, p,0) = {int} A(s,p,0) = {str}

Transition relation. The rules of the transition relation are updated to account for the changes in the store
and atomic evaluation function. Because multiple values can be bound at the same address in the store, it
is crucial that store updates become store joins instead for the sake of soundness. Store joins are defined
as the pointwise lift of the join operation of abstract values (which in our case, is the set union). To avoid
unnecessary non-determinism, we introduce the V' € P(Val) metavariable to denote a set of values.

V = A(ae, p,0)
(ev(ae, p),t),0 = (val( V ),.),0

clo(O@eh, p') € A(f,p,0) V = A(ae, p,0) a = alloc(x)  p' =p'lr d
(ev((f ae),p), i), 0 — (ev(e, p"),1), 0 Ula— V]

V = A(ae, p,0)
(ev((set! z ae),p),t), 0 — (val(V), 1), 0 U [p(x) — V]

a = alloc(x) o' = plr — a J =1let(a,ez,p') 1 o =cglla— V]

(ev((let ((z 1)) e2),p),1),0 — (ev(er,p'),), 0 (val( V' ),let(a,e,p) : 1),0 — (ev(e,p),i),0

/

Allocation and context sensitivity. The choice for the abstraction of the set of addresses and for the definition
of the alloc function influences the context-sensitivity of the abstract interpretation. For example, abstracting
addresses to variable names (Addr = Var, with alloc(z) = x) results in a context-insensitive 0-CFA analysis.
Any allocation function is sound [12], and it is possible to introduce more precise context-sensitivities. We
refer to Gilray et al. [7] for a discussion of the impact of allocation on the precision of analyses.

Collecting semantics. Using the abstraction defined here, the abstract collecting semantics of a program e
is defined similarly to the concrete collecting semantics. The abstract transfer function F¢ uses the abstract
transition relation instead of the concrete one.

FS) ={(Z(e), My v J (10"

s,0€S
o0 = <o’

The fixed point of the abstract transfer function defines the abstract collecting semantics. However, the set
defined by lfp(F¢) may not be computable as we have not performed abstraction of the stack. It is therefore
not suitable for static analysis without additional abstractions as discussed in the following sections.

3.4 Abstracting the Stack

We left the stack untouched until now, which means it can grow infinitely, resulting in an abstract interpre-
tation that may not terminate. Multiple approaches for abstracting the stack have been proposed, which we
summarize here before detailing our own approach in MODF.



AAM Abstraction AAM (Abstracting Abstract Machines [25]) is a technique for finitely abstracting
machine-based interpreters. AAM eliminates potentially infinite recursion by allocating recursive components
in the store and—as we did in Section 3.3—making the set of store addresses finite. With a finite number
of addresses in the store the store cannot grow infinitely, and therefore AAM provides a suitable foundation
for static analysis. The solution proposed in AAM to abstract the stack therefore is to thread the potentially
infinite sequence of stack frames through the store, rendering the stack finite.

State space. The components of the state space that require adaptation are the store, which now also contains
stacks, and the stacks themselves, which contain at most a single continuation frame and the address at which
the rest of the stack resides in the store. To differentiate between stack addresses and value addresses in the
store, we introduce contexts (k) to represent stack addresses.

ce X = {cu) p € Env = Var — Addr

€ Control ::= , 1({v,...
¢ onere evie,p) | va ({v ) o € Store = (Addr + K) — P(Val + Stack)
v € Val ::=clo(lam,p) | int | str

L€ Stack :=¢: K | €
¢ € Frame ::=let(a, e, p)

a € Addr a finite set of addresses

k € K a finite set of contexts

Transition relation. The only rules of the transition relation impacted by these changes are the rules that
push and pop continuation frames from the stack.

To evaluate a let binding, a continuation frame is pushed onto the stack. First a stack address is allocated
using stack allocation function allocCtz. The store can then be extended at the address returned by the stack
allocator to contain the current continuation, and a new stack is used in the resulting state. When the let
continuation has to be popped from the stack, the rest of the stack is looked up in the store at address k.

V = A(ae, p,0)
(ev(ae, p), ), 0 ~ (val(V),1), 0

/!

clo(O\@eh, p') € A(f,p, o) V = A(ae, p,0) a = alloc(x) o' =px— a
(ev((f ae),p),t),0  (ev(e',p”),i),cU]ars V]

V = A(ae, p,0)
(ev((set! z ae),p),i),0 ~ (val(v),t), o U[p(z) — V]

a = alloc(z) o' = plx — d J =let(a,e2,p'): K k = allocCtz(ey, p) o =oU[k— {i}]

<ev((1et ((x e1)) 62)7p)7L>aO"H <eV(€17p/),L/>,O'/

=oUla— V] L € (k)

/

a,/
<Va1(V)7 let(av €, p) LR >7 0 ~ <eV(67 p)7 L>7 o
Allocation and context sensitivity. Like function alloc, function allocCtz is a parameter of the analysis that
can be used to influence the context sensitivity of the analysis. To facilitate comparison with MODF (see
Section 3.4), we take K = Exp x Env and allocCtz : Exp x Env — K with allocCtz(e, p) = (e, p). With this

definition of allocCtz, and because environments contain addresses, any context sensitivity introduced by
the value address allocator alloc will also influence the context-sensitivity of stack addresses.

Collecting semantics. The abstract transfer function for computing the abstract collecting semantics needs

to be adapted to use the transition relation developed here. In contrast to the abstract transfer function of
Section 3.3, the resulting abstract collecting semantics is guaranteed to be computable, as the abstraction

10



is finite. This therefore results in an abstract interpretation suitable for a static analysis, although the
resulting analysis may not be efficient. If the fixed point is computed with the usual fixed-point computation
techniques, such as the commonly used worklist algorithm [19], this requires maintaining a set of states that
have been visited in order to avoid re-visiting a state more than once. This in turn ensures that the algorithm
terminates.

Because traditional, unoptimized AAM is inefficient, a common performance optimization technique is
widening of the global store [25]. Global-store widening widens all reachable stores into a single global store,
in effect removing the store as component from individual states.

F(S,0) = {Z@rDulJss ]
€S  <eS
S, 0~»C ,0  G,0~5G ,0
Although global store-widening improves the performance of the analysis (at the cost of precision), the fixed-
point computation of the transfer function using a worklist algorithm has to carefully clear the set of seen
states when changes are performed on the global store, as the store is shared with all explored states and
changes therefore may impact states that have already been visited. While clearing this set of seen states
is crucial for soundness, it does however cause a significant cost, as many of the states present in the set of
seen states may not be impacted by the store changes, but will still have to be visited. Our experiments,
described in Section 4 and in which we observed that 80% of the reanalyzed states in AAM do not yield
new states, confirm this. The worst-case complexity of AAM for computing the context-insensitive 0-CFA
analysis is O(n?) [25], with n representing the size of the program.

Pushdown Abstraction CFA2 [26] and PDCFA [3] are two approaches that use a pushdown automaton
instead of a finite state machine to approximate the behavior of a program. However, besides requiring
significant engineering effort, using these two techniques as the foundation for static analysis yields a com-
putational costs in O(2") for CFA2 and in O(n®) for PDCFA, resp. [8]. Additionally, CFA2 only supports
programs that are written in continuation-passing style.

A AC Abstraction Johnson et al. [10] proposes a variation on stack abstraction found in AAM called AAC
(Abstracting Abstract Control). AAC does not allocate stacks in the value store, but instead introduces
a different “stack store” for this purpose. This enables the allocation of stack addresses that consist of
all components that influence the outcome of a procedure application (assuming the absence of first-class
control), i.e., the entire calling context including the value store. This in turn leads to full call /return precision
under a given value abstraction, but without requiring the complex implementation of pushdown automata.
In AAC the continuation is also split into a local continuation and a meta-continuation. The local continuation
represents the intraprocedural stack and is represented as a sequence of frames, i.e., with maximal precision.
A local continuation is bounded by a meta-continuation which is allocated in the store at function calls
and therefore represents the interprocedural (call) stack. Although AAC offers high precision, the worst-case
computational cost of a context-insensitive AAC flow analysis [10] was found to be O(n®) [8], where n is the
size of the input program. P4F [8] is the name for the technique of choosing AAC stack addresses consisting
only of an expression and an environment. While this results in a reduced computational cost of O(n?) for
a context-insensitive analysis, maximal (pushdown) call/return precision for side-effecting programs is lost
because the store is not a component of the stack address.

Modular Abstraction Rather than abstracting the stack, MODF, the approach presented in this paper,
modifies the fixed-point computation to ensure that the stack cannot grow infinitely. Similarly to AAC,
during the execution of the body of a function, the stack is modeled as a sequence of frames that can grow.
By modifying the fixed-point computation to compute local fixed points for each function call, and because
the only means of looping in the input language is recursion, the stack cannot grow infinitely, ensuring the
termination of the abstract semantics with MODF. In the next section we describe changes made to the
abstract semantics introduced in Section 3.3 in order to obtain a MODF analysis.
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3.5 Intra-Context Abstract Semantics for Modf

We first describe changes made to the state space and the abstract transition relation to accomodate for the
fixed point computation of MODF.

State space. Contrary to AAM, MODF leaves the stack untouched and preserves its concrete nature. Instead
it is the fixed-point computation that ensures that the stack cannot grow infinitely. Two extra components
are necessary to approximate the semantics of a program using MODF.

1. Transition relations are annotated with effects (eff) in order to denote operations performed during a
transition: a write effect (w(a)) indicates that the store has been modified at address a, a read effect (r)
indicates that the store has been accessed at address a, and a call effect (c(x)) indicates that there has
been a function call to the function denoted by context . These effects are used to detect dependencies
between the analyzed contexts.

2. The ret(x) continuation frame is introduced to represent the end of the execution of a function body.
Results of function calls are written in the store at addresses that correspond to execution contexts.

ce X = {c,1) p € Env = Var — Addr
¢ € Control :=ev(e,p) | val({v,...}) eff € Eff :==w(a) | r(a) | c(k)
v € Val ::=clo(lam,p) | int | str o € Store = (Addr + K) — P(Val)
L€ Stack :=¢:1 | € a € Addr a finite set of addresses
¢ € Frame = let(a,e,p) | ret(k) k € K a finite set of contexts

Atomic evaluation. The atomic evaluation function A : AExp x Env x Store — P(Val) x P(Eff) may read
from the store, and therefore now returns a set of effects indicating whether this was the case.

A, p,0) = o(ple), (o))} Altam, p,) = {clo(iam, p)}, {}
A(”,Pa 0) = {int}v{} A(s,p,o) = {Str}7{}

Transition relation. The transition relation is annotated with effects too: ¢, 0 £ ¢’, o’ indicates that the
transition has generated the set of effects in £. When evaluating an atomic expression, the transition relation
is annotated with the effects generated by the atomic evaluation function.

V,E = A(ae, p,0)
(ev(ae, p),1),0 L (val(V),1),0

Function calls are evaluated differently than in the AAM semantics and its variant discussed so far. In
MODF each function execution is analyzed in isolation from other function executions. The evaluation of a
function call therefore does not step into the body of the called function, but rather generates a call effect ¢
that will be used by the fixed-point computation to trigger additional intra-context analyses. Immediately
after generating a call effect, the return value for the execution context is read from the store, thereby also
generating a read effect r(k). If execution context k was not analyzed before, then o(x) = L and the result
of the function call is L. A function call also results in a write effect w(a) being generated at address a of
the parameter of the function call.

Vi, Ev € A(f,p,0) clo(O\@eh,p') e Vy V,Ey = A(ae, p,0) a = alloc(x)
" =p'lz — a k = allocCtz (€', p") V'=0(k) E=FE UEyU{w(a),c(k),r(k)}

(ev((f ae),p), i), o L (val(V'),1),0 U [a > v]
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When evaluating a set!, a write effect is generated for the address being modified.

V.Ey = Aae, p,0)  E = EiU{w(p(z))}
(ev((set! z ae), p),t),0 L (val(V),1), o U[p(z) — V]

Rules for evaluating a let remain the same, with the exception that a write effect is generated when the
value is bound into the store.

a = alloc(x) o = plr — a J =1let(a,ez,p’) 1 E = {w(a)} o' =oUla— V]
(ev((let ((x e1)) e2),p),1),0 s (ev(er,p),/), o (val(V),let(a,e,p) : 1),0 & (ev(e, p), 1), 0’

A new rule is added to account for the ret frame, which is reached at the end of a function execution.
When a function call with context k reaches the end of its execution, the resulting value is allocated in the
store at address k and a write effect w(k) is generated.

E=A{w(x)}
(val(V),ret(k) : €),0 £ (val(V),¢e),0 U [5 > v]

Allocation and context sensitivity. Similarly to previous stack abstractions, in MODF the definition of the
allocation strategy will influence the context sensitivity of the resulting analysis. While the semantics of
Mopbr is different, the existing allocation strategies for the value store (function alloc) developed in the
context of AAM [7] can be reused in order to obtain analyses with various context sensitivities.

MODF also requires an allocator for function execution contexts (function allocCtz). Unlike in AAM
or AAC, however, in MODF contexts are not considered to be stack addresses because they are not used
to store continuations (although contexts are used as addresses to store return values). Similar to existing
approaches that require one, context allocator allocCtr in MODF can be used to tune the precision of
the analysis. However, because the inter-context analysis must be able to analyze execution contexts, at
least the following information must be determinable from a function execution context in MODF: (i) the
syntactic function, and (ii) the argument values. For the argument values, one option would be to include
the argument values as part of the context. We opt for including the extended environment (the environment
after binding function parameters) instead, so that the signature of allocCtx is allocCtzx : Exp x Env — K
with allocCtx (e, p) = (e, p). With this choice of context allocator, the single mechanism of read-dependency
tracking (also of the addresses of the function parameters) suffices to trigger the reanalysis of function
executions when they are called with different argument values.

Note that when taking a context-insensitive alloc function (0-CFA), then taking only a function as
execution context (as we did in the examples in Section 2) is sound, since each parameter is its own address
and a function therefore corresponds with a single and unique set of parameter addresses.

3.6 Intra-Context Analysis

Contrary to AAM-style analyses, MODF cannot be used with a traditional transfer function for computing
the abstract collecting semantics. Instead, MODF performs local fixed-point computations for each function
execution context through an intra-contert analysis, which will be used by an inter-context analysis (pre-
sented in the next section) in order to obtain the abstract collecting semantics. The intra-context analysis
is defined as a function Intra : K x Store — A x Store x P(Eff) which, given a context x and a store o,
provides:

— Some information computed by the analysis, represented by an element of A; we define A as the set of
reachable states within a context (A = P(X)) because it most closely resembles the collecting semantics
computed by a machine-based analysis such as AAM.

— The resulting store, which has to contain the return value of the context at address ret(x), i.e., for the
resulting store ¢’ we should have ret(x) € dom(o’).
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— The set of effects generated by the transition relation during the analysis of context k.

With the definition of the abstract transition relation -Z;,, we define the intra-context analysis as the
fixed-point computation of a transfer function F7 , acting on elements of the domain A x Store x P(Eff).
For a context under analysis x and for an initial store o, this domain consists of the set of reachable states,
the store, and the set of generated effects.

}'gf;ﬂ)(S, o, E)={sw},00,9)U U U<}, o B
SES
c,avszvlaq',a’

where ¢y = (ev(e, p),ret((e, p)) : €)

This transfer function deems as reachable the initial state ¢, and any state ¢’ that can be reached in one
abstract transition from a reachable state ¢. The initial stack consists of a single stack frame ret to mark the
boundary of the function execution. Effects detected during transitions are collected and will be used by the
inter-context analysis to detect contexts that need to be reanalyzed. The intra-context analysis is defined as
the least fixed point of the transfer function: Intra(k,c) = lfp(F2). The only way a state could be reachable
from itself would be through a recursive call, but this is delegated to the inter-context analysis. Therefore
the computation of this fixed point does not require a set of seen states and associated state comparisons.

3.7 Inter-Context Analysis

The inter-context analysis operates on a worklist of execution contexts, analyzing one execution context until
completion before moving on to the next one. A MODF analysis starts with the inter-context analysis on a
worklist containing the root context as sole element. The root context represents the initial context in which
the input program is evaluated. The inter-context analysis terminates when its worklist is empty, returning
the mapping from contexts to intra-context analysis results. The inter-context analysis also keeps track of
the read dependencies of contexts on addresses to support the mechanism of reanalyzing contexts when an
address they depend on is written to.

Formally speaking, the inter-context analysis is defined by the function Inter : P(K) x (Addr — P(K)) x
Storex (K — A) — (K — A). It acts on a worklist of contexts (P(K)), a map that tracks which addresses are
read from by which context (Addr — P(K)), a global store (Store), and a map S that stores the most recent
results from intra-context analyses (K — A). Since we compute collecting semantics, we have A = P(X).

Inter(@,_,_,S8) =S

Inter(k W ks, R,0,5) = Inter(ks U U K U U K, RU |_| [a— {k}],0’, Sk — 5]

c(k')EE w(a)EE r(a)€EE
x'@dom(c) k' €R(a)
o(a)£o’ (a)

where (S’ o', E) = Intra(k, o)

If the worklist is empty, map S is returned. Otherwise, the inter-context analysis pulls a context x from its
worklist and performs an intra-context analysis. Based on the results of the intra-context analysis, additional
contexts may be added to the worklist. Adding contexts to the worklist requires comparing contexts which
is cheaper than comparing states in a traditional analysis where the worklist contains program states. Also
note the absence of a set of seen states, which is needed in traditional algorithms to ensure termination. A
context ' is added to the worklist if at least one of the following two conditions is met.

1. Context " was called (c(x’) € E) and has not yet been analyzed (modelled as £’ ¢ dom(c)).
2. Context £’ has a read dependency on an address a (k' € R(a)) and a was written to (w(a) € E) in a
way that changes the store (o(a) # o'(a)).

Any address o’ that was read during the intra-context analysis of context k (i.e., r(a’) € E) is registered as
being depended upon by k by updating the mapping of read dependencies R accordingly. The global store
is also updated and the result S’ of the intra-context analysis is stored in S.
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Collecting semantics. Let kg = allocCtz(e,[]) be the root context for program e. The abstract collecting
semantics of program e is obtained by computing Inter(kg, &, &, &, &), which results in a mapping S € K —
A from contexts to the set of states that may be reachable in that context.

3.8 Soundness

Soundness of the Abstract Semantics Except from the rule for function calls, our abstraction of the transition
relation rules follows the usual AAM recipe. Their soundness is proven by a case analysis [25]. As our function
call rule does not step into the body of the called function, its soundness solely relies on the fact that o(k)
holds a sound approximation of the result of a function call —which is proven in the last paragraph of this
section.

Soundness of the Intra-Context Analysis We have to show that given an approximation of the store o, our
intra-context analysis Intra(k, o) yields a sound over-approximation for the reachable states, the store, and
the effects returned. This is the case because all states reachable from its input store and context will be
analyzed, by definition. The soundness of the intra-context analysis therefore also relies on the fact that the
given input store is sound.

Soundness of the Inter-Contexrt Analysis The soundness proof for the inter-context analysis amounts to
showing that the considered store eventually becomes a sound over-approximation of all possible stores
reached by the concrete semantics, and contains an over-approximation of all return values of each function
at the address corresponding to their context. This is shown by the fact that intra-context analyses are sound
for the store with which they are executed, hence the resulting store is completed with information coming
from the analysis of a context given an input store. This in turn will trigger other analyses based on the
discovered read dependencies and function calls. We note that a discovered context that has not yet been
analyzed will be analyzed by the intra-context analysis, and that a context that has already been analyzed
will be analyzed upon changes to values in the store. Eventually, all reachable contexts will be analyzed for
all possible changes to the values they depend on, resulting in a sound over-approximation of the store and
a sound over-approximation of all possible return values of these contexts. Hence, the inter-context analysis
is sound.

3.9 Termination

Termination of the Intra-Context Analysis The intra-context analysis, defined as a fixed-point computation,
always terminates. All components of the abstract state space are finite, except for the stack: the abstract
address domain Addr itself is made finite by the abstraction, and this propagates to the other components
of the state space. The resulting set of abstract environments is finite, as there is a finite number of variable
names and a finite number of abstract addresses to compose them from. The set of abstract values (Val) is
finite as there is a finite number of abstract environments from which closures can be composed. The sets of
stores (Store), effects (Eff), and contexts (K) become finite too.

Even though the Stack abstract domain is not finite, the intra-context analysis cannot construct an
infinite stack. Stacks only grow when analyzing let expressions, and there can only be a finite number of
such expressions within a function body. Constructing an infinite stack requires loops in the analysis, which
is precluded by our use of the value cached in the store for a (potentially recursive) function call. The
fixed-point computation for the intra-context analysis will therefore always terminate.

Termination of the Inter-Context Analysis The inter-context analysis terminates when its worklist is empty.
This worklist grows in two cases.

First, when a function call with context & is encountered for the first time (i.e., a c¢(x) effect is discovered),
k is added to the worklist. There is a finite number of syntactic function calls, and once a function call has
already been considered (modelled as x € dom(o)), it will not be considered again. The worklist can hence
not grow indefinitely through function calls.
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Second, when a write effect w(a) is discovered for an address that is read by a context x, this context is
added to the worklist under the condition that the value residing at address a in the store has itself changed
(o(a) # d'(a)). The store being monotone and the number of possible values associated with each address
in the store being finite, values will eventually stabilize. This ensures that a given context can be considered
for reanalysis only a finite number of times.

Altogether, each context x will only be analyzed a finite number of times, and there can only be a finite
number of contexts for a given program. This ensures that the inter-context analysis always terminates.

3.10 Complexity

Complezity of the Intra-Context Analysis The intra-context analysis can execute at most a number of tran-
sitions equal to the number of expressions in the context under analysis. Hence, the complexity of the
intra-context analysis given a specific context and specific store is in O(|Exp|), where |Exp| is the size of the
program under analysis.

Complexity of the Inter-Context Analysis Each context managed by the inter-context analysis can be an-
alyzed for each change in the store to each of the addresses read in that context. An address can have at
most |Exp| different values, hence the number of changes to an address is bounded by |Exp|. Similarly, with
our address allocation strategy, there are at most |Exp| addresses in the store, hence each context can be
analyzed at most |Exp|? times.

The inter-context analysis manages at most |Exp| contexts. With these bounds, one derives a worst-case
time complexity of O(|Exp|*): there are at most |Exp| contexts, each analyzed at most |Exp|? times, and the
complexity of the analysis of one context being bounded by |Exp|. However, note that for a given program,
the number of contexts is inversely proportional to the size of each context: a program with the worst-case
context length (|Exp|) can have only one context, as its number of expressions is equal to the size of the
program. Conversely, a program with the worst-case number of contexts (|Exp|) has the minimal size for each
context. In fact, the number of contexts is related to the size of the contexts in such a way that the worst-case
of their multiplication is |Exp|. Hence, MODF has a worst-case time complexity of O(|Exp|?), which is equal
to the worst-case time-complexity of a 0-CFA AAM analysis widened with a global store [25]. In practice,
as we evaluate in Section 4, MODF executes in a lower analysis time than the equivalent AAM analysis.

4 Evaluation

We implemented an AAM analyzer and a MODF analyzer in the Racket dialect of Scheme, and evaluated
them on several Scheme benchmark programs. Compared to the descriptions and formalizations presented
in this paper, the analyzers support a more extensive input language and semantics featuring conditionals,
lists, vectors, and additional primitives. Our AAM analyzer is a faithful implementation of an AAM analysis,
more specifically the AAC variant introduced by Johnson and Van Horn [10], configured with 0-CFA store
value allocators and a stack value allocator identical to that of MODF.

To make the comparison possible and fair, we actually derived MODF from the AAM implementation,
only changing what was necessary. Therefore both implementations share infrastructure for ASTs, lattices,
machine semantics (the intra-context small-step relation), primitives, and so on. We did not optimize the
AAM and MODF analyzer and will address applying and evaluating different optimization strategies as
future work (also see Section 5). The worklist strategy used by the inter-context analysis of MODF and by
the AAM analysis both follow a last-in first-out strategy. The analyzers’ implementation and test setup,
including benchmark programs, are publicly available!.

Our set of benchmark programs consists of 20 Scheme programs coming from a variety of sources, in-
cluding the Gabriel performance benchmarks [6], benchmarks from related work typically used to challenge
control-flow analyses (see Section 5), and benchmarks from the Computer Language Benchmarks Game [5]. In
the remainder of this section we report on the soundness, precision, and performance of our implementations
on these programs.

! https://github.com/jensnicolay/modf
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4.1 Soundness Testing

We first established the correctness of our AAM-based semantics by running each benchmark program
under concrete semantics and checking that it produced a single answer equivalent to the answer computed
by Racket for the same program. We then mechanically checked that, for each program and under abstract
semantics, the abstract values for all variables produced by our AAM and MODF implementations subsume
their corresponding concrete values after abstraction [1]. From these experiments we conclude that both
analyzers are sound w.r.t. to our set of benchmark programs.

4.2 Precision Evaluation

We measured the overall precision of each analysis by counting the number of abstract values in all states of
the results of each analysis. Because we use a set lattice, set size can be used as a measure of precision: the
more elements are in a set representing an abstract value, the lower the precision. Column Values in Table 1
lists the results of this experiment (lower is better). In comparison to AAM, MODF may lose precision with
respect to function argument values and the return value for a function execution context, as under our test
configuration (0-CFA) these values are joined in the store. Upon reanalysis of a context, this may introduce
spurious results. In contrast, AAM will not have spurious results for a first call to a function, but may have
spurious results for subsequent calls. As seen from the numbers in Table 1, we conclude that in practice the
AAM and MODF analyzers are similar in precision for the majority of our benchmark programs.

AAM Mobr Difference

Program  |Exp| Values Mono Values Mono Values Mono

primtest 281 66 55 66 55 +0% +0%
partialsums 326 86 73 86 73 +0% +0%
treeadd 354 123 57 128 57 +5%  +0%
spectralnorm 400 109 89 109 89 +0% +0%
matrix 351 106 7 109 74 +2% -4%
classtree 430 439 97 441 91 +0%  -6%
fankuch 415 131 98 133 97 +2% -1%
destruct 356 167 48 163 48 2%  +0%
supermerge 202 972 21 990 18 +2% -14%
churchnums 194 403 19 403 19 +0% +0%
deriv 331 735 46 756 47 +3%  +2%
regex 540 426 69 423 69 -1%  +0%
triangl 448 698 40 659 40 -6%  +0%
graphs 1407 657 198 657 197 +0% -1%
mazefun 1100 2587 117 2615 116 +1% -1%
dderiv 449 2463 49 2457 49 +0% +0%
scm2java 1769 5908 266 5956 265 +1% -1%
browse 1251 8935 129 8606 129 -4%  +0%
mceval 1390 13178 159 13049 159 1% +0%
boyer 2260 115365 86 115574 86 +0% +0%

Table 1. Precision comparison between AAM and MODF. |Exp| is the number of atoms present in the program under
analysis. Values is the sum of the set of abstract values (lower is better), and Mono is the number of monomorphic
call sites detected by the analysis (higher is better). The Difference columns indicate the difference in percentage of
the results for AAM and MODF: a positive percentage indicates that MODF has detected more elements. For Values,
lower percentages are better, and for Mono, higher percentages are better.

Although the measurements of the number of values give a good indication of the overall precision of the
analysis results, they do not reveal much about “useful” precision. Therefore we also counted the number of
singleton sets computed by each abstract analysis (column Mono in Table 1, higher is better). Singleton sets
indicate abstract values that, in our configuration, represent either a single primitive type, a single closure, or
a single address (list or vector). Therefore, this measure of precision is interesting for client analyses such as
type analysis, call graph reachability, and monomorphic call inference (a single closure value for an operator
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position corresponds to a monomorphic function call). We conclude again that the precision of the AAM
analyzer and MODF analyzer are comparable in this respect for the majority of the benchmark programs.

4.3 Performance Evaluation

We measured the time it takes for the analyses to complete, and how many abstract states are computed
in this time. Table 2 depicts the results sorted in ascending order by AAM analysis time. The results show
an average speedup of 3.7 for MODF over AAM on our set of 20 benchmark programs. MODF finished the
analysis faster in 17 out of 20 programs, with speedup factors ranging between 1.4 and 12.3. We registered a
slowdown for 3 out of 20 programs, with a doubling of analysis time for one smaller benchmark. The higher
the AAM analysis time for a program, the better MODF performs: in Table 2 MODF generally results in a
speedup.

AAM MoODF Reduction

Program  |Exp| States Time States Time States Time

primtest 281 178 18 183 7 1.0x 2.6x
partialsums 326 223 18 225 7 1.0x 2.6x
treeadd 354 263 28 292 35 0.9x 0.8x
spectralnorm 400 256 31 269 10 1.0x 3.1x
matrix 351 237 44 256 27 0.9x 1.6x
classtree 430 352 72 465 137 0.8x 0.5x
fankuch 415 308 73 338 54 0.9x 1.4x
destruct 356 274 95 306 58 0.9x 1.6x
supermerge 202 356 295 212 63 1.7x 4.7x
churchnums 194 428 309 318 82 1.3x 3.8X
deriv 331 419 313 400 118 1.0x 2.7x
regex 540 579 558 491 86 1.2x 6.5%
triangl 448 371 861 373 205 1.0x 4.2Xx
graphs 1407 918 2020 898 347 1.0x 5.8x%
mazefun 1100 1066 2655 1140 3379 0.9x 0.8x
dderiv 449 750 3003 546 889 1.4x 3.4X
scm2j ava 1769 2446 24925 1602 2356 1.5x 10.6x
browse 1251 1565 41478 1510 10621 1.0x 3.9%
mceval 1390 2333 46483 2478 23040 0.9x 2.0x
boyer 2260 13048 5241215 2154 425915 6.1x 12.3x%

Table 2. Performance comparison between AAM and MODF. For AAM and MODF, column States is the number of
states that the analysis has explored, and Time is the time taken by the analysis to run to completion, in milliseconds.
The Reduction columns indicate the improvement in number of states and in time resulting from MODF, as a factor
of the number of states explored (resp. the time taken) by AAM over the number of states explored (resp. the time
taken) by MODF. A higher reduction factor shows more improvement resulting from MODF.

To gain insights to why MODF is faster on these programs, we performed some additional measurements
with the following averaged results:

1. 8% of the running time of the AAM analyzer is spent checking seen states, which is avoided by MODF.

2. Adding return value merging to the AAM analyzer—something inherently present in MODF—only im-
proves its running time by 2%.

3. 80% of reanalyzed states by the AAM analyzer do not yield new states, while this is the case for 63% of
reanalyzed states by the MODF analyzer.

Considering that, apart from the effect tracking and the fixed-point computation, both analyzers share
the same implementation, we can conclude that (i) avoiding the cost of checking for seen states, and (ii)
profiting of a worklist strategy that can selectively reanalyze states upon store updates in combination with
memoization of return values are the two major factors in explaining why MODF outperforms AAM on our
set of benchmark programs.
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MODF also tends to produce smaller flow graphs than AAM as analysis time increases, although for the
smaller benchmarks MODF slightly outputs more program states. The reason is that MODF immediately
continues after a function call with the cached result fetched from the store, even if the function was not
previously analyzed. In the latter case, a L return value results, which does not occur in AAM. However, for
the larger benchmarks, the advantages of MODF and especially its return value memoization outweigh these
1 return flows, and MODF often produces flow graphs with less states than AAM. It is also worth noting
that MODF often is faster even when producing more states.

In conclusion, while MODF loses some precision for some programs when compared with AAM, we believe
that the tradeoff our technique proposes between performance and precision is worthwhile.

5 Related Work

Modular analysis. MODF can be regarded as a modular analysis in that function execution contexts are
analyzed one at a time and to completion. The concept of a modular analysis was formalized by Cousot and
Cousot [2], which presents different general-purpose techniques. Sharir and Pnueli [21] introduces a program
analysis that integrates an interprocedural analysis with intraprocedural analysis, similarly to MODF. The
result of the intraprocedural analysis is a summary that is used by the interprocedural analysis. However,
this approach remains limited to a first-order setting while MODF was explicitly designed with support
for higher-order, side-effecting programs. Moreover, unlike modular summary-based analyses, MODF does
reanalyze function execution contexts as new contexts and effects are discovered.

Abstract machines. In this paper we compare a MODF analyzer against an implementation of a variation of
AAM, a well-known machine-based analysis approach [10,25] Related work has produced different techniques
and extensions for AAM with varying trade-offs between precision and performance, of which a summary
can be found in Gilray et al. [8]. MODF itself also uses AAM-style semantics for its small-step analysis of
functions, which makes the comparison with the AAM analyzer justified and straightforward, the latter also
on a technical level by maximizing code reuse. Applications of AAM are found in various domains, such
as detecting function purity [18], performing symbolic execution for contracts [15], analyzing concurrent
programs [14,23,24], determining function coupling [16], discovering security vulnerabilities [17] or performing
malware analysis [11]. The approach used by MODF could improve the performance of such applications and
other client analyses without impacting their precision.

Might and Shivers [13] introduced abstract garbage collection and abstract counting as techniques for
increasing the performance and precision of a store-based abstract interpretation. Abstract garbage collection
reclaims unused store addresses, but is not straightforward to adapt for MODF because of the per-context
analysis in combination with a global store. Abstract counting keeps track of whether an address is allocated
exactly once or multiple times in the store. If the address has only been allocated once, a strong update can
be used instead of a weak update. Abstract counting is orthogonal to MODF and incorporating it into our
approach and evaluating its effects is future work.

In this paper we compare unoptimized implementations of a MODF and an AAM analyzer. Johnson et
al. [9] presents OAAM, a series of 6 steps that can be applied to optimize naive global-store AAM imple-
mentations for higher-order, functional languages, resulting in two to three order of magnitude speedups.
However, OAAM requires heavy semantics and implementation engineering, while MODF is a simple tech-
nique that can be applied to side-effecting semantics as well. Some OAAM optimizations can be applied to
MoDF (e.g., store pre-allocation), while others clearly cannot (e.g., optimizations that rely on the absence
of side effects, or those that involve the set of seen states).

Effect systems. MODF relies on effects to drive the inter-context analysis. This however differs from typical
usages of effect systems [20]. A first difference is that effect systems usually extend a static type system,
while MODF does not make any assumptions about the type system of the analyzed language. Another major
difference is that effect systems are used to reason about the effects performed in the program under analysis,
while MODF relies on effects during the analysis to perform a general-purpose static analysis that can serve
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a number of client applications. Hence, while both MODF and effect systems use effects, the way effects are
used is entirely different.

6 Conclusion

We presented MODF, a technique for the static analysis of higher-order, side-effecting programs in a modular
way. MODF analyzes one single function execution at a time to completion while tracking read, write, and
call effects. These effects trigger the analysis of other function executions, and the analysis terminates when
no new effects can be discovered.

The goal of MODF’s design is to reduce the overhead associated with maintaining a set of seen states
while exploring the state space. By not relying on a set of seen states, MODF avoids many state comparisons,
and by tracking read and write effects MODF is more selective in reanalyzing program states than traditional
implementations of machine-based static analyses such as AAM.

We implemented an AAM analyzer and derived a MODF analyzer from it by adding effect tracking and
changing the fixed point computation, and evaluated the two implementations on 20 benchmark programs.
Our experiments show an average speedup of 3.7 for MODF over AAM on our set of benchmark programs.
MobDF finished the analysis faster in 17 out of 20 programs, with speedup factors ranging between 1.4 and
12.3. We also found that the AAM and MODF analyzer are similar in precision for the majority of our
benchmark programs, while computing flow graphs of similar size or smaller.

In future research we will experiment with different concepts of modules and context sensitivities for
analyzing modules, and will also examine opportunities to incrementalize and parallelize the approach.
Although MODF is already inherently incremental in the sense that upon a change in the input program
initially only the directly affected execution contexts can be (or should be) reanalyzed, the monotonicity of
the global store complicates matters in terms of precision. The modular nature of MODF and the fact that
the approach tracks interference between modules by design should facilitate its parallelization.
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