
Mining Scala Framework Extensions for
Recommendation Patterns

Yunior Pacheco1,2, Jonas De Bleser1, Tim Molderez1, Dario Di Nucci1, Wolfgang De Meuter1, Coen De Roover1

1Vrije Universiteit Brussel
Brussels, Belgium

{ypacheco, jdeblese, tmoldere, ddinucci, wdmeuter, cderoove}@vub.be

2Pinar del Rio University
Pinar del Rio, Cuba

Abstract—To use a framework, developers often need to hook
into and customise some of its functionality. For example, a
common way of customising a framework is to subclass a
framework type and to override some of its methods. Recently,
Asaduzzaman et al. defined these customisations as extension
points and proposed a new approach to mine large amounts
of Java code examples and recommend the most frequently
used example, so called extension patterns. Indeed, recommending
extension patterns that frequently occur at such extension points
can help developers to adopt a new framework correctly and to
fully exploit it.

In this paper, we present a differentiated replication study of
the work by Asaduzzaman et al. on Java frameworks. Our aim
is to replicate the work in order to analyse extension points and
extension patterns in the context of Scala frameworks. To this
aim, we propose SCALA-XP-MINER, a tool for mining extension
patterns in Scala software systems to empirically investigate our
hypotheses.

Our results show that the approach proposed by the reference
work is also able to mine extension patterns for Scala frameworks
and that our tool is able to achieve similar Precision, Recall and F-
measure compared to FEMIR. Despite this, the distribution of the
extension points by category is different and most of the patterns
are rather simple. Thus, the challenge of recommending more
complex patterns to Scala developers is still an open problem.

Index Terms—Framework; Extension Points, Usage Patterns,
Graph Mining, Scala Language, Mining Software Repository

I. INTRODUCTION

A significant part of software development involves becom-
ing familiar with APIs from different libraries and frameworks.
Libraries and frameworks enable code reuse, provide high-
level abstractions for common tasks, and help unify the
programming experience [1]. However, the flexibility of large
libraries and frameworks usually comes at the expense of
sophisticated APIs that must be accessed and combined. Ad-
ditionally, these usage patterns require specialised knowledge
about the behaviour of the API [2] to be used correctly. Thus,
making efficient use and exploiting all the possibilities offered
by libraries and frameworks can be quite difficult due to
specific requirements and relations between its components.
In general, the larger and more sophisticated the library or
framework is, the harder this challenge. Furthermore, the
library or framework may not be documented completely or
clearly [1].

When using a framework, it is either necessary or com-
mon to extend its functionality. Several studies analysed how
developers use libraries in software systems; providing tools
to explore and navigate usage examples [3]–[5], documenting
techniques [6], and recommending usage patterns obtained
from mining code examples [7], [8]. However, there are
relatively few studies that focus on common ways to extend a
framework and to provide recommendations to developers in
this respect.

In this paper, we replicate the work of Asaduzzaman et al.
[9] for mining framework extension patterns in Java code in
the context of Scala frameworks. These patterns can be derived
by grouping frequently occurring framework method calls
that provide developers a way to extend the framework (e.g.,
methods that expect a subclass of a framework class) and can
provide useful suggestions to developers about how to extend
a framework. To this end, given a framework, a significant
number of projects that are using it need to be mined in
order to get usable and useful recommendations. Manually
inspecting every framework extension is not feasible, thus
we present SCALA-XP-MINER, a tool for mining extension
patterns in Scala code.

SCALA-XP-MINER is needed not only because Scala is
gaining traction in industry, but also because of the unique
features of this programming language that may impact the
way in which framework extension points and patterns oc-
cur. For example, features such as case classes, implicit
type conversions, companion objects, implicit classes, implicit
parameters, by-name parameters, etc. might introduce new
possibilities to extend frameworks. Despite this, first we would
like to analyse to what extent the approach of Asaduzzaman
et al. [9] is able to mine extension patterns in Scala code.
Therefore we conducted a differentiated replication study [10]
with the aim of analysing the diffusion and the characteristics
of the extension points in Scala code. The replication is dif-
ferentiated as we re-implemented the original approach [9] in
a different context (i.e., Scala software systems). In particular,
we analysed 467 open-source Scala projects to find extension
patterns for five popular Scala frameworks: SPARK, HADOOP,
PLAY, MOCKITO, and AKKA.

Our results show that the approach proposed by Asaduzza-

man et al. [9] is able to mine extension patterns for Scala code.
Furthermore, our tool achieves a similar Precision, Recall and
F-measure as the work of Asaduzzaman et al. [9]. Despite
this, the distribution of the extension points by category is
different. In particular, we observe that few patterns belong to
the Extend category and none of the extension patterns belong
to the Implement category.

In summary, the contributions of this work are three-fold:
• a differentiated replication study [10] of the work by

Asaduzzaman et al. [9] in the context of Scala code.
• SCALA-XP-MINER, a tool that recommends patterns for

the extension points of a given framework by mining
for patterns among the extension point usages in Scala
projects that use the framework

• a comprehensive replication package [11] including all
the raw data and the scripts used in the study.

Structure of the paper. The remainder of this paper is
organised as follows. Section II describes FEMIR, the tool [9]
developed by Asaduzzaman et al. for mining framework
extension patterns in Java software systems, while Section III
presents SCALA-XP-MINER, a tool that replicates the approach
implemented in FEMIR to mine extension patterns in Scala
software systems. Section IV discusses the replication study
that we conducted on a dataset of Scala projects. The threats to
validity are discussed in Section V, while Section VI presents
an overview of existing techniques that assist developers in
using frameworks, and Section VII concludes the paper.

II. FEMIR: RECOMMENDING
EXTENSION EXAMPLES IN JAVA

In this section, we provide an overview of FEMIR, together
with a summary of its empirical evaluation.

A. Mining Extension Patterns using FEMIR

Extension Points have been defined by Asaduzzaman et al.
as ”means provided by a framework, that allow developers
to customise its behaviour, to meet application specific re-
quirements”. For example, frameworks can define an extension
point as a public method that takes a framework type as one
of its parameters. A common way of using such an extension
point (i.e., an extension point usage) is by calling the method
with an instance of the framework type itself, or with an
instance of a user-defined subtype that overrides some of the
inherited methods [9].

1 class SparkContext(config: SparkConf) {
2 def addSparkListener(listener: SparkListenerInterface) = ...
3 }
4 class StageInfoRecorderListener extends SparkListener {
5 override def onJobStart(jobStart: SparkListenerJobStart): Unit = ...
6 override def onStageCompleted(stageCompleted: SparkListenerStageCompleted):

Unit = ...
7 }
8 case class StageMetrics(sparkSession: SparkSession) {
9 sparkSession.sparkContext.addSparkListener(new StageInfoRecorderListener)

10 ...
11 }

Listing 1: Example of extension usage of the SPARK
framework in Scala.

Listing 1 depicts a simplified example of an exten-
sion point and its usage in SPARK. In this example,

addSparkListener, as well as onJobStart(), and
onStageCompleted() are extension points. As described
before, these methods are extension points because they
take at least one parameter of a framework type and are
defined in a framework class (i.e., SparkContext) or
in a subclass (i.e., StageInfoRecorderListener), re-
spectively. The method call addSparkListener on the
instance sparkSession.sparkContext represents an
extension point usage. In this case, the method takes an
instance of StageInfoRecorderListener which ex-
tends from SparkListener, which in turn extends from
SparkListenerInterface.

It is worth noting that the methods onJobStart()
and onStageCompleted() are overridden in the class
StageInfoRecorderListener. In this way, an instance
of this class can modify the default behaviour inherited from
the framework.

org/apache/spark/SparkContext

addSparkListener()

org/apache/spark/scheduler/SparkListenerInterface

ch/cern/sparkmeasure/StageInfoRecorderListener

onJobStart()

method_call

parameter

argument

onStageCompleted()

extends

org/apache/spark/scheduler/SparkListenerInterface

override override

Fig. 1: The EXTENSION GRAPH that represents the exten-
sion point usage of SparkContext#addSparkListener
shown in Listing 1.

org/apache/spark/SparkContext

addSparkListener

org/apache/spark/scheduler/SparkListenerInterface

Client

onJobStart

org/apache/spark/scheduler/SparkListenerInterface

method_call

parameter

argument

override

extends

Fig. 2: An EXTENSION PATTERN extracted from Figure 1.

Each extension point is represented by means of an ex-
tension graph. Such a graph consists of several types of
nodes: RECEIVER TYPE, METHOD CALL, PARAMETER TYPE,
ARGUMENT TYPE, OTHER METHOD CALLS, EXTENDED
CLASS, IMPLEMENTED INTERFACE, OVERRIDING METHOD,
and FRAMEWORK METHOD CALL. These extension graphs are
built by parsing and analysing the source code of a project that
uses the framework for which we want to obtain the extension
points. Figure 1 shows the extension graph generated for the
example shown in Listing 1.

The subgraphs that most frequently occur in the extension
graphs are called EXTENSION PATTERNS. These patterns are

useful to describe how an extension point is commonly used.
The miner uses an iterative and incremental approach to
mine these extension patterns. First, a one-node subgraph is
generated for each input extension graph. These one-node
graphs are compared each other and the most frequent ones
are grown by adding an adjacent node from the corresponding
input extension graph. The growing process is iterated until
all nodes of the input extension graphs have been considered.
To further improve the quality of the extension patterns, the
support of the nodes that were not previously included is
computed. The support of a node is defined as the number
of extension graphs that contain the node, divided over the
number of all extension graphs. A node is added if this
measure is higher than a threshold δ, for which the default
value is 0.3.

It is clear that there are multiple kinds of extension patterns
according to how the framework is to be extended. Asaduzza-
mann et al. [9] grouped these patterns and created a taxonomy
of four categories to describe the complexity of the pattern:

(i) SIMPLE: an instance of a framework class is passed as
an argument to the extension point without modifying it;

(ii) CUSTOMISE: before passing the argument of a framework
type to the extension point, a number of state changing
methods are called on it;

(iii) EXTEND: the argument to the extension point is an
instance of a new class that extends a framework class;

(iv) IMPLEMENT: the argument to the extension point is an
instance of a new class that implements a framework
class.

Extension patterns are very useful to aid the developer in
using a framework. For example, the extension pattern for
the addSparkListener is shown in Figure 2. This pattern
belongs to the category EXTEND and shows that a possible use
of the extension point addSparkListener is to provide a
subclass which extends SparkListenerInterface and
overrides onJobStart.

B. Recommending Extension Patterns in FEMIR

FEMIR returns a subset of extension patterns given a frame-
work type. In particular, it considers all extension point usages,
but only returns those of which the receiver type corresponds
to the given framework type. These patterns are then sorted
by their category and frequency in the mined dataset. Finally,
based on the selected recommendation strategy the top-n
patterns are shown to the developer. These strategies are:

• LOCAL: it recommends the top-n patterns within the same
category.

• GLOBAL: it recommends the top-n patterns regardless of
the category.

• D: after applying the local strategy, it retrieves all the
extension graphs that contain the patterns and recom-
mends only the patterns of which their extension graph
contains the highest number of different kinds of nodes.
We enumerated the different kinds of nodes in Section II.

After having selected a recommended pattern, the related code
example is displayed. In the following subsection we detail the
process adopted for evaluating FEMIR.

C. Evaluation of the Patterns Recommended by FEMIR

The authors analysed how developers extend five widely-
used open-source frameworks: SWING, JFACE, JUNIT,
JUNG, and JGRAPHT. For each framework they analysed
between 167 to 300 projects.

Given an extension point, the authors first evaluated the
effectiveness of FEMIR in recommending an extension pattern
that matches the actual usage of the extension point. To do
this, they developed an evaluation system that collects the
extension graphs from the subject classes for each framework.
The evaluation system applies the 10-fold cross validation
technique to measure the performance. In particular, it divides
the extension graphs in ten folds, each containing the same
number of graphs. At each iteration of the evaluation, the
patterns are mined in nine folds and then used on the remaining
one. Note that for each extension pattern from the test set,
FEMIR proposes the top-n extension graphs to recommend.
Each recommendation is represented as a graph. The authors
computed precision, recall, and F-Measure as follows. Let S
and O be two graphs representing the suggested extension
graph and the original one respectively.

Precision =
|O| ∩ |S|
|S|

Recall =
|O| ∩ |S|
|O|

F −Measure = 2 · precision · recall
precision+ recall

Note that not all the recommendations were evaluated, but
only the top-n (i.e., top-1, top-3, top-5). Given the top-n
recommendations, only the extension pattern achieving the
best F-Measure was evaluated.

Beside evaluating the effectiveness of FEMIR, the authors
also evaluated its quality by showing some examples of the
proposed extension patterns. Afterwards, they analysed the
distribution of the extension patterns with respect to their
category and how many patterns were found per framework
type. The latter analysis was needed to understand whether
the suggestions provided by FEMIR are useful for developers.
Finally, they studied to what extent extension points are used
together by grouping the extension graphs with respect to their
receiver type. In a following discussion, they clarified aspects
such as the effectiveness of FEMIR in detecting different
categories of extension patterns, the quality of a canonical
form representation, and the effect of a threshold value δ on
the effectiveness. Lastly, they analysed the efficiency of the
tool in terms of runtime performance. We discuss the results
in section IV.

In this paper, we conduct a differentiated replication study
of the work of Asaduzzaman et al. [9] in the context of Scala
software systems. In summary, the approach of Asaduzzamann
et al. [9] analyses source code and generates extension graphs
for each extension point. These graphs are processed using a

Source Code
Importer

Source Code

Extension Point Graphs

Extension Point
Patterns Miner

1

3

2

Visualisation Tool

Extension Point
Patterns

Fig. 3: Overview of the approach

frequent subgraph mining algorithm to extract the extension
patterns. These patterns are then grouped in categories ac-
cording to a taxonomy and recommended to the developers.
To this aim, we propose SCALA-XP-MINER, a tool that mines
extension patterns in Scala software systems. The next section
presents a complete overview of SCALA-XP-MINER.

III. SCALA-XP-MINER: RECOMMENDING
EXTENSION EXAMPLES IN SCALA

Our framework for mining extension patterns in Scala
projects consists of three components: a source code importer,
a pattern miner, and a visualisation tool. Figure 3 depicts the
interactions between these components.

We follow a 3-step approach similar to the one proposed
in the reference work [9]. First, we build a graph for each
of the extension usages in the Scala projects that depend
on the framework under analysis. Next, we mine extension
patterns using the information previously extracted. Finally,
we visualise the input and output of the mining algorithm in
a way that allows the developer to browse and understand the
results.

1. Source Code Importer. The importer takes the source
code of framework clients as input and collects information
on framework usages: for each framework method call in
the source code, the importer statically checks whether it
corresponds to an extension point. To be considered, the
method call must have at least one parameter that is related
to a framework type. For each extension point, we collect the
method name, the return type, and the types of the parameters.

To construct the extension graphs, the importer resolves the
types of the receiver and the arguments of the extension point.
Thus, the type hierarchy and the list of overridden methods
must be computed. These steps are necessary but not sufficient
to completely support Scala. For example, in Java there is a
difference between implements and extends, while in
Scala this concept does not exist. In this case, we consider
that a class implements an interface only when its first
parent is a trait; while in all the other cases it extends
a class. In general, SCALA-XP-MINER has to support Scala-
specific features such as singleton and companion objects,
implicits, lambda expressions, etc. to analyse Scala source
code correctly. It also identifies method calls of which the

receiver is either the same as the receiver of the extension
point or refers to one of its arguments. This is needed because
more complex patterns could be composed of multiple method
calls. The importer extracts the required syntactic and semantic
information through the SCALA-META1 library.

2. Extension Patterns Miner. The miner is responsible for
mining the extension patterns. The frequent subgraph mining
algorithm, used in the miner, takes as input the set of extension
graphs generated by the importer in the previous step. The
frequent subgraph mining algorithm is a variant of the Apriori
algorithm [12]. This variant, unlike the Apriori algorithm, does
not use a support parameter to determine the set of subgraphs
to be expanded, but instead, takes the top-k frequent candidate
subgraphs. To obtain extension patterns for a given project,
we mine projects and represent the found extension points
by means of extension graphs. Finally, we use the mining
algorithm to obtain the extension patterns such as the pattern
shown in Figure 2.

3. Visualization Component. The visualisation component
is used to configure the tool and to browse through and inspect
its results. The user can select the Scala projects to import
through the SOURCE CODE IMPORTER. The EXTENSION
PATTERNS MINER then analyses the projects to discover
extension usages of a specific framework (given as input).
After the computation, the tool displays a list view and a graph
view of the extension graphs built by the importer and that
constitute the input to the mining algorithm. Finally, the tool
supports inspecting the frequent extension patterns uncovered
by the mining algorithm, and comparing them to their matches
among the input data, to corroborate the validity of the mining
process.

IV. EMPIRICAL STUDY DESIGN AND RESULTS

The goal of our empirical study is to replicate the work of
Asaduzzaman et al. [9], with the purpose of understanding
the distribution of extension points and the possibilities for
recommending extension patterns for Scala frameworks. This
is from the perspective of both researchers and developers: the
former are interested in understanding to what extent extension
points are used throughout Scala projects, while the latter are
interested in using extension patterns. To this end, our study is
designed to answer, in the context of Scala, the same research
questions as those from the reference work:

• RQ1: To what extent are the proposed recommendations
accurate?

1https://github.com/scalameta/scalameta

TABLE I: Characteristics of the projects considered in the
replication study for each framework

Framework # Projects # Files # Classes # Methods # LOC
Spark 102 13,144 19,448 86,156 2,148,572
Akka 107 10,836 18,615 63,865 1,158,327
Mockito 99 10,097 12,845 43,159 992,510
Hadoop 58 10,344 15,324 71,447 1,799,918
Play 101 7,898 10,642 40,656 741,414

TABLE II: Accuracy of the extension patterns suggested by SCALA-XP-MINER for each framework and strategy along with
the statistics on the extension graph composition (RMC: receiver method call, AMC: argument method call, E: class extension,
I: class implementation, FMC: framework method call, O: overridden method, Other: other node types). ARS is the average
recommendation size, while No REC represents the percentage of receiver objects for which it was not possible to provide
suggestions

Framework Strategy RMC
AMC

E
I

O
FMC Other ARS No REC Precision Recall F-Measure

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Spark
Global

9.50% 0.03% 0.47% 90.00%
4 50.83% 0.92 0.95 0.96 0.85 0.89 0.91 0.88 0.91 0.93

Local 4 53.03% 0.93 0.95 0.97 0.85 0.89 0.91 0.88 0.92 0.93
D 4 53.18% 0.90 0.94 0.96 0.84 0.88 0.91 0.86 0.91 0.93

Akka
Global

3.96% 0.17% 1.42% 94.45%
3 27.46% 0.96 0.97 0.97 0.88 0.91 0.92 0.91 0.94 0.94

Local 3 28.93% 0.96 0.97 0.98 0.88 0.92 0.93 0.91 0.94 0.95
D 3 28.78% 0.95 0.97 0.97 0.88 0.91 0.92 0.91 0.94 0.94

Mockito
Global

11.55% 0.03% 0.03% 88.39%
3 27.31% 0.96 0.97 0.97 0.88 0.91 0.92 0.91 0.94 0.94

Local 3 0.65% 0.96 0.97 0.97 0.72 0.79 0.82 0.82 0.87 0.88
D 3 0.65% 0.96 0.97 0.97 0.72 0.77 0.80 0.82 0.85 0.87

Hadoop
Global

3.70% 0.06% 0.03% 96.21%
4 15.06% 0.96 0.96 0.96 0.97 0.98 0.98 0.96 0.97 0.97

Local 4 23.49% 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98
D 4 23.64% 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98

Play
Global

17.02% 0.10% 0.06% 82.82%
4 11.40% 0.92 0.94 0.96 0.85 0.88 0.90 0.87 0.90 0.92

Local 4 15.36% 0.93 0.95 0.97 0.94 0.88 0.90 0.87 0.90 0.92
D 4 15.38% 0.92 0.95 0.96 0.85 0.88 0.90 0.88 0.90 0.92

• RQ2: To what extent is the approach able to provide
accurate suggestions for each category of extension pat-
terns?

• RQ3: How are extension patterns distributed by cate-
gory?

• RQ4: How are extension points distributed across frame-
work classes?

• RQ5: To what extent do developers use multiple extension
points to extend a component?

• RQ6: What is the impact of algorithm tuning on the
performance?

• RQ7: How does the approach perform in terms of exe-
cution time?

The goal of RQ1 is to determine the accuracy of SCALA-
XP-MINER in recommending extension patterns, while RQ2

focuses on the ability of the approach to suggest useful
recommendations for each category of extension points. With
RQ3, we assess the distribution of extension patterns in terms
of the categories defined in the reference work. In RQ4

we examine the usefulness of the approach in terms of the
number of suggestions proposed for a given receiver type.
With RQ5 we analyse to what extent developers use multiple
extension points when they need to extend a component of a
framework. RQ6 analyses the effect of tuning the parameter
δ used in FEMIR-GLOBAL and FEMIR-LOCAL. Finally, RQ7

investigates the performance of the approach in terms of the
execution time needed for training the algorithm and showing
the recommendations.

In contrast to the reference work, we focus on frameworks
that provide a Scala API and on software systems implemented
in Scala and hosted on GITHUB. We considered only repos-
itories that adhere to the requirements of using SBT 0.13+
and Scala 2.11+ because we rely on SCALA-META to generate
semantic information2. To select the final subset, we carried
out a preliminary study to find the most prominent Scala

2SBT 0.13 was released in 2013; Scala 2.11 was released in 2014.

frameworks. We grouped the packages imported by 177.828
Scala software systems, and concluded that SPARK, AKKA,
HADOOP, MOCKITO, and PLAY are the most used frame-
works. These five frameworks provide APIs both for Scala
and Java, and these can be used interchangeably. Therefore, we
could not disambiguate between them and collected all frame-
work usages from both APIs. Given these frameworks, we
analysed the top-250 projects in terms of their number of stars,
a well-known metric of popularity [13]. In particular, first we
mined Scala repositories that imported at least one class from
the considered frameworks (e.g., org.apache.spark.*).
Then, we ranked them by stars and analysed the top-250
projects for each framework. Note that we were not able
to build all projects and therefore had to discard some. We
used the number of stars as a proxy for project size. The
characteristics of the successfully analysed repositories are
shown in Table I. We will now discuss the design and results
for each research question in detail:

A. RQ1 — To what extent are the proposed recommendations
accurate?

Design. Like the reference work, our tool produces its rec-
ommendations for a given extension point using one of three
strategies: LOCAL, GLOBAL, and D (see Section II-B). To
evaluate the accuracy of these recommendations, we apply the
10-fold cross validation technique. Given every recommended
extension pattern from the training set and an actual usage
from the test set, the tool computes precision, recall, and F-
Measure as previously defined in section II-B. Between the
top-n recommendations, the extension pattern achieving the
best F-Measure is evaluated. In other words, for each input
extension graph from the test set, the top-n patterns from the
training set able to suggest it are computed. Please note that in
case SCALA-XP-MINER is not able to return all the requested
recommendations, we consider only the available ones. Among
these patterns, the one achieving the best F-Measure is selected

TABLE III: Accuracy of the top-n recommendations for each extension pattern category on SPARK

Extension Pattern Category Precision Recall F-Measure
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Simple 0.93 0.95 0.97 0.87 0.91 0.93 0.89 0.93 0.95
Customise 0.94 0.95 0.96 0.75 0.78 0.78 0.81 0.84 0.84

Extend - - - - - - - - -
Implement - - - - - - - - -

and compared to the actual extension usage. The results are
then aggregated using the mean operator.

FEMIR Results. The F-Measure obtained by FEMIR-
GLOBAL ranges between 67% and 82% for the top-5 recom-
mendations. FEMIR-LOCAL performance is close to FEMIR-
GLOBAL. In particular, FEMIR-LOCAL improves the precision
at the cost of recall. Finally, FEMIR-D performs worse than
FEMIR-GLOBAL in all the cases but one (i.e., JGRAPHT).

SCALA-XP-MINER Results. Table II shows the precision,
recall, and F-measure of the extension patterns recommended
by SCALA-XP-MINER. In summary, we notice that in the
context of Scala frameworks, the three strategies do not have a
significant impact on the results. Using the GLOBAL strategy,
precision ranges between 92% and 97%, and recall between
85% and 98%. As reported also in the reference study, the
LOCAL strategy results in improved precision (between 93%
and 98%) but a slightly worse recall (between 72% and 98%).
We also confirm that the D strategy does not guarantee better
results. In general, we observe that our precision and recall
achieved on Scala frameworks are better than those achieved
on Java frameworks by the reference work [9]. We believe
that this is due to the nature of the extension patterns found.
Looking at the composition of the extension graphs, we notice
that in most of the cases these graphs are composed only
by nodes of type Other (i.e., RECEIVER TYPE, METHOD
CALL, PARAMETER TYPE, ARGUMENT TYPE, as defined in
Section II-A).

In terms of size, the recommendations provided by SCALA-
XP-MINER consist of three or four nodes on average. This
means that most of the Scala framework usages recognized
by SCALA-XP-MINER are simpler compared to the Java ones.
We also analyse the percentage of cases for which SCALA-
XP-MINER is not able to provide a recommendation. It is
surprising to find that in case of SPARK for half (i.e., between
50.83 - 43.19%) of the extension points, it is not possible to
provide a recommendation; while for the other frameworks
this value ranges between 0.54% and 28.78%. Further inves-
tigations into the reasons for this behaviour of the approach
on Scala frameworks are part of our future agenda.

B. RQ2 — To what extent is the approach able to provide
accurate suggestions for each category of extension patterns?

Design. To answer this research question, we repeat the
evaluation performed for RQ1 with respect to the accuracy
of the approach in detecting the different types of extension
patterns (i.e., SIMPLE, CUSTOMISE, EXTEND, IMPLEMENT).
For brevity’s sake, we only report the results for SPARK, the

most used framework in our dataset. The results for the other
frameworks are available in our online appendix [11].

FEMIR Results. FEMIR is able to recommend extension
patterns for the four different categories. The patterns belong-
ing to the EXTEND category are detected with higher accuracy.

SCALA-XP-MINER Results. Table III shows the precision,
recall, and F-Measure for each extension pattern category.
On SPARK, SCALA-XP-MINER is able to recommend only
extension patterns belonging to the SIMPLE and CUSTOMISE
categories. Nevertheless, we can observe that the extension
patterns belonging to the latter category have a lower recall
compared to the former one, while their precision is similar.
This behaviour differs from what has been observed in the
reference work [9]. For this reason, we analyse a subset of
patterns. We achieved similar results when looking at the other
frameworks. In general, we find that the higher the size of the
actual usage graphs, the lower the recall achieved by SCALA-
XP-MINER.

C. RQ3 — How are extension patterns distributed by cate-
gory?

Design. We evaluate the distribution of the extension pat-
terns by category for all the frameworks considered in our
replication. It is worth recalling that, when the extension usage
graphs are mined to extract the extension patterns, SCALA-XP-
MINER assigns to each extension pattern a category, as defined
in the taxonomy from the reference paper.

0%

25%

50%

75%

100%

Spark Akka MockitoHadoop Play

Simple

Customize

Extend

Implement

Fig. 4: Distribution of extension patterns by categories for each
framework

FEMIR Results. The extension pattern belonging to the
CUSTOMISE category are the most commonly occurring cate-
gory, followed by the category SIMPLE. The extension patterns
belonging to the EXTEND and IMPLEMENT categories are not
very diffused, but they are the hardest to learn as well.

SCALA-XP-MINER Results. Figure 4 depicts the distribu-
tion of extension patterns by category. The most prominent
extension category is SIMPLE, which indicates that most of
the arguments to an extension point are instances of an actual
framework class and are not modified before use. The second
most diffused category is CUSTOMISE which indicates that
often several methods are called to modify the method’s
argument. Extension patterns belonging to the EXTEND and
IMPLEMENT categories are a minority. This result is similar
to the one obtained in the reference paper [9]. It is remarkable
that we do not identify any instances of the IMPLEMENT
category. We believe this is because in Scala only traits are
barely used as the first parent to inherit from. We also observe
that the distributions are similar across all the frameworks.

D. RQ4 — How are extension points distributed across frame-
work classes?

Design. The recommendations provided by SCALA-XP-
MINER are useful only if developers are not overloaded by
suggestions. For this reason, we evaluate the distribution of
extension points for each class. We group the extension graphs
by the class of the receiver and then compute the number
of distinct extension points for each class. As for RQ2, we
report the results only for SPARK. The remaining results are
contained in our online appendix [11].

1 2 3 4 5 6 7 8 9 10 > 10

Number of extension points

F
re

q
u
e
n
cy

 o
f
cl

a
ss

e
s

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Fig. 5: Distribution of extension points by classes on SPARK

FEMIR Results. The results show that only 4% of the
classes have 10 or more extension points. Thus, the sugges-
tions can be read easily by developers.

SCALA-XP-MINER Results. Figure 5 depicts the distribu-
tion of extension points by classes (receiver type) on the
SPARK framework. Similar to the reference paper [9], we
observe that the majority of the classes have less than four

1 2 3 4 5 6 7 8 9 10 > 10

Number of extension points

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l f

re
q
u
e
n
cy

 o
f
u
sa

g
e
s

0
5

1
0

1
5

2
0

2
5

3
0

Fig. 6: Usage frequencies of SPARK framework classes with
different numbers of extension points

extension points, while only a small number of the classes 3%
have ten or more extension points. This distribution, similar for
the remaining frameworks, means that it will rarely happen for
a developer to be overloaded by a high number of suggestions.
From fig. 6, however, we note that a small number of classes
is highly used by developers. Indeed, 28% of the usages relies
on these classes. However, this behaviour is not observable for
all frameworks (e.g., AKKA and PLAY).

E. RQ5 — To what extent do developers use multiple extension
points to extend a component?

Design. In this research question, our aim is to understand
how frequently extension patterns are used together. To answer
this question, we group the extension point usages, represented
by extension graphs, based on the methods that are called
on the same receiver object. For each of these methods we
check if it corresponds to an extension point. Each group of
extension graphs provides the set of extension points that are
used together.

TABLE IV: Number of cases in which multiple extension
points are used together

Framework 1 (%) 2 (%) 3 (%) 4 (%) >4 (%)
Spark 16,812 (99.96) 4 (0.02) 1 (0.01) - 1 (0.01)
Akka 6,821 (99.98) 2 (0.02) - - -
Hadoop 1,676 (100.00) - - - -
Mockito 3,077 (100.00) - - - -
Play 7,283 (99.90) 3 (0.04) 4 (0.05) - 1 (0.01)

FEMIR Results. In 83% of all extension points, developers
use only one extension point to extend a component of
a framework. Cases in which developers use five or more
extension points together are rare.

SCALA-XP-MINER Results. Table IV reports the number of
cases in which multiple extension points were used together,
along with the percentages. As in the reference work [9], we
find that rarely extension patterns are used together. Indeed,
the percentage of cases in which extension patterns are used

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0
1
.0

5
1
.1

0

Threshold value

P
e
rf

o
rm

a
n
c
e
 m

e
tr

ic
 v

a
lu

e
s

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

Precision

Recall

F−measure

Fig. 7: Influence of the threshold on precision, recall and F-
Measure for the SPARK framework.

together is less than 1%. We observed this behaviour also for
other frameworks. In particular, in two cases (i.e., HADOOP
and MOCKITO) extension points are even never used together.

F. RQ6 — What is the impact of algorithm tuning on the
performance?

Design. We evaluate the influence of the threshold value δ
on the results. As for RQ2 and RQ4, we show only the results
for SPARK, because it is the largest framework considered
in our replication study. Similar to RQ1 and RQ2, we use
the 10-fold cross validation to determine precision, recall, and
F-Measure, while varying the threshold value δ between 0
and 1 at intervals of 0.10. Considering that in the reference
paper [9] it was not clear how many recommendations where
selected, we replicated this research question taking the top-1
recommendation.

FEMIR Results. FEMIR-GLOBAL and FEMIR-LOCAL use
a threshold value δ to improve the quality of the extension
pattens. The authors evaluated the effect of tuning this value.
They showed that the model built with δ = 0.3 is able to
achieve the best trade-off in terms of precision and recall.

SCALA-XP-MINER Results. Figure 7 depicts the variation
of precision, recall, and F-measure as the value of the δ
parameter increases in the case of SPARK. Our goal is to find
a threshold that maximises the F-measure, as this measure
represents a trade-off between precision and recall. From the
plot it is clear that the F-measure reaches its highest value
when the δ ranges between 0.3 and 0.5. After this point,
further increasing δ gradually decreases the F-measure. For
this reason, in contrast to the reference paper, we recommend a
slightly higher threshold value of 0.4. We argue that this is due
to the distribution of extension points by categories. Indeed,
as seen in RQ3, the majority of extension patterns belong to
the SIMPLE and CUSTOMISE categories. Thus, considering the
small average size of the patterns recommended by SCALA-
XP-MINER, a slightly higher δ is suggested.

G. RQ7 — How does the approach perform in terms of
execution time?

Design. We measure the runtime performance of SCALA-
XP-MINER by measuring the average time required to make
recommendations for a given extension point. In particular,
we calculate the execution time needed by SCALA-XP-MINER
for mining the extension patterns and for providing a recom-
mendation. As previously done for other RQs, we show the
results obtained on SPARK, our largest framework. In total, we
computed the execution time needed to recommend each one
of the 1.093 recommendations and we aggregate the values
using the mean operator. The mining process was performed
on a machine with 2 Intel Xeon 2637 (4 cores at 3.50 GHz) and
256 GB of RAM, while the recommendations were analysed
on a machine with an Intel CORE i7 (2.93 GHz) and 16 GB
of RAM (similar to the one used as in the reference work [9]).

FEMIR Results. On average, recommending an extension
graph requires 0.92s. However, it is worth noting that most of
the computational effort is needed for analysing the source
code and building the extension graphs (e.g., 78h for the
JFACE project).

SCALA-XP-MINER Results. To compute a recommendation
for SPARK, 0.24 seconds are needed on average. However, this
is only a fraction of the total time because the time required to
analyse the source code and to generate framework extension
graphs is significantly higher (i.e., about 17 hours for SPARK).
It is worth mentioning that this is a one-time operation. Our
results are consistent with those achieved in the reference
work [9].

V. THREATS TO VALIDITY

In this section, we discuss the threats that might affect the
validity of our replication study.

Threats to construct validity. We collected extension
points in a large corpus of Scala projects using SCALA-XP-
MINER. We are aware that the precision of SCALA-XP-MINER
and the automated tool used for the evaluation have a crucial
influence on the results. To mitigate this threat, we manually
analysed a sample of the extension patterns to verify whether
they were correctly detected. We identify SCALA-META and
SEMANTICDB as threats to construct validity, given that
SCALA-XP-MINER extensively uses these libraries which are
relatively new. We were not able to resolve the type of every
argument (e.g., the result type of a polymorphic method call) in
6.47% of the cases. Nevertheless, these libraries have already
been adopted by many industrial developers as indicated by
the many use cases3.

Threats to external validity. We selected a subset of
the most used projects from the largest open-source hosting
service GITHUB. We concluded that SPARK, HADOOP, AKKA,
PLAY and MOCKITO are among the most used frameworks,
while having different domains and characteristics. Consid-
ering that we rely on SCALA-META and SEMANTICDB, we

3https://scalameta.org/

selected only those projects built using SBT 0.13+ and Scala
2.11+. The selection of the subset could be a threat to
external validity because these frameworks may not be directly
applicable to industrial environments. To select the projects,
we used the number of stars as a proxy for importance; we
are aware that other proxies [13], [14] could be used, but our
goal was to analyse those ones that were more popular by
developers.

Threats to conclusion validity. We adopted 10-fold cross
validation. We are aware of the existence of other validation
methodologies that might provide a better interpretation of
the results. However, we chose to apply this methodology to
compare our results with those achieved by Asaduzzaman et
al. [9]. The metrics (i.e., precision, recall, and F-measure)
employed to evaluate the accuracy of the extension patterns
could form another threat. We relied on the same metrics as
used in the reference work in order to compare results.

VI. RELATED WORK

In addition to the work of Asaduzzamanet al. [9], the sub-
ject of our replication study, this section discusses related work
in the areas of mining for patterns in framework extension and
API usages.

Mining Framework Extensions. Michail [15], [16] de-
veloped CODEWEB, a technique that extracts reuse rela-
tionships to discover library usage examples. Bruch et al.
[17] proposed FRUIT, an Eclipse plug-in relying on data
mining techniques that extracts reuse patterns from existing
framework instantiations to create framework usage scenarios
based on five class properties (extends, implements, over-
rides, calls, and instantiations). Dagenais and Ossher proposed
XFINDER [18] to semi-automatically locate framework exten-
sion examples through concern-oriented documentation, so-
called guides. This tool is close to FEMIR, but it requires
developers to provide framework-specific steps (e.g., extend
class A, override method m, etc.) for each pattern in order
to automatically locate implementation examples. In other
words, the framework documentation is used as a template and
XFINDER finds instances of the template within the codebase.
In contrast, FEMIR and SCALA-XP-MINER are able to mine
these patterns automatically based on implementation exam-
ples. Thummalapenta and Xie [19], [20] developed SPOTWEB,
a code search engine for frameworks and libraries written
in Java. This tool determines the frequency of framework
classes and methods by mining code examples. SPOTWEB
assists software developers in reusing APIs of an existing
framework by detecting hotspots (i.e., frequently used APIs)
and coldspots (i.e., barely used APIs). Bruch et al. [21]
proposed an approach to document object-oriented white-box
frameworks by mining four kinds of documentation items.
Moritz et al. developed EXPORT [22] to automatically mine
and visualise API usage examples. This technique is able find
API usage examples that occur across several functions of a
program.

Mining API Usage Patterns. Archarya et al. [23] analyzed
static traces of source code to mine API usage patterns as
partial orders. Zhong et al. proposed MAPO [24]; this tool
first clusters API calls, after which it generates sequences
of method calls that are mined to discover frequent patterns.
Considering that the sequences could be redundant, MAPO
could produce redundant patterns. Nguyen et al. [8] intro-
duced the GROUM representation and proposed GROUMINER,
a tool to mine frequent patterns and anomalous API usages
from a dataset of GROUMS. Based on this work, Mover et al.
[25] proposed an optimization that scales to large corpora of
software systems. The optimization uses a combination of fre-
quent itemset mining and SAT solving and was implemented
in a tool called BIGGROUM.

Wang et al. [26] proposed two quality metrics (i.e., suc-
cinctness and coverage). They employed these metrics in an
approach that combines frequent pattern mining and cluster-
ing. The technique resulted in UP-MINER (USAGE PATTERN
MINER), a tool capable of outperforming MAPO [24].

Afterwards, Fowkes et al. [27] proposed a Probabilistic
API Miner (PAM) to mine API usage patterns that both
outperforms MAPO and UP-MINER. Finally, Nguyen et al.
presented FOCUS, a tool that mines open-source project
repositories to recommend API usage patterns. FOCUS out-
performs PAM in terms of success rate, accuracy, and execu-
tion time.

VII. CONCLUSION

In this paper, we presented a differentiated replication
study [10] of the work by Asaduzzaman et al. [9] that
proposes an approach to recommend extension patterns by
mining Java source code examples. We replicated the study for
frameworks and systems developed in Scala to verify whether
the approach is also suitable in this context. To this end, we
have proposed SCALA-XP-MINER, a tool that analyses Scala
projects, mines extension patterns, and recommends usable
patterns for a given framework.

The results show that SCALA-XP-MINER and thus the refer-
ence approach are able to propose accurate recommendations,
even if in most cases these suggestions are rather simple. In
particular, we find that the extension patterns recommended
by SCALA-XP-MINER on Scala are on average composed of
three or four nodes which indicates that most framework
usages are rather simple. This implies that the results obtained
for Scala frameworks through SCALA-XP-MINER are more
accurate with respect to those obtained for Java ones through
FEMIR. Extension points belonging to the EXTEND categories
are rare, while the most common ones belong to the SIMPLE
and CUSTOMISE categories. It is remarkable that we were not
able to find any extension points belonging to the IMPLEMENT
category. This observation may be due to how Scala developers
usually extend frameworks. Furthermore, some of the Scala
features such as implicit parameters, companion objects, and
by-name parameters enable Scala-specific means of using
framework extension points. Supporting Scala-specific usages
is part of our future agenda. We find that the distribution of the

extension points by classes is similar to the reference work:
most classes have less than four extension points. Despite this,
28% of the usages belong to the few classes that have more
than ten extension points. We find that developers are unlikely
to use multiple extension points together (less than 1% of
the cases). Considering that in the reference work between
3% and 16% of extension points are used together, we state
that this could be due to the selection of the frameworks or
to the Scala language. Further analysis is part of our future
agenda. Regarding the delta-parameter tuning, we find that a
value of 0.4 achieves a better precision, recall, and F-measure.
This value is slightly higher than the one for the reference
work (i.e., 0.3). The execution time needed to compute a
recommendation is slightly lower (0.24s) with respect to the
reference work. However, as concluded by Asaduzzaman et al.
[9], most of the computational effort is due to the preceding
source code analysis and pattern mining.

As future work, we first plan to implement a recommen-
dation component, in the form of a plugin for ECLIPSE or
INTELLIJ, to recommend extension points to developers. This
plugin could assist not only researchers, but also developers
in extending frameworks. Another direction will be to identify
and support Scala-specific extension point usage means. This
is likely to result in new categories of extension patterns
that can be added to the taxonomy of the reference paper.
Their incorporation in SCALA-XP-MINER might result in less
straightforward pattern recommendations. With respect to this
aspect, we will involve Scala developers in empirical studies
where applying this tool on real systems could assess the
patterns’ usefulness and the real impact of the recommenda-
tions. Finally, we are also interested in extending SCALA-XP-
MINER to assist developers when designing new frameworks.
For instance, the tool may indicate what kinds of extension
points are used infrequently, which extension points are more
error-prone, or which ones more complex to use. [28].

REFERENCES

[1] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[2] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[3] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proceedings of the 21st IEEE International Conference
on Program Comprehension, 2013.

[4] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” in Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation, 2005.

[5] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 204–213.

[6] R. Alur, P. Černỳ, P. Madhusudan, and W. Nam, “Synthesis of interface
specifications for java classes,” ACM SIGPLAN Notices, vol. 40, no. 1,
pp. 98–109, 2005.

[7] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in Proceedings of the 23rd European
Conference on Object-Oriented Programming, 2009, pp. 318–343.

[8] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 383–392.

[9] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Recom-
mending framework extension examples,” in 2017 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2017, pp.
456–466.

[10] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[11] Y. Pacheco, J. De Bleser, T. Molderez, D. Di Nucci, W. De Meuter, and
C. De Roover. (2019) Mining scala framework extensions for recommen-
dation pattern. https://figshare.com/projects/saner2019-appendix/58529.
Online appendix.

[12] C. C. Aggarwal, Data mining: the textbook. Springer, 2015.
[13] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that

impact the popularity of github repositories,” in Proceedings of the 2016
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2016, pp. 334–344.

[14] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software
engineering research,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 466–476.

[15] A. Michail, “Data mining library reuse patterns in user-selected appli-
cations,” in ase. IEEE, 1999, p. 24.

[16] ——, “Data mining library reuse patterns using generalized association
rules,” in Proceedings of the 22nd international conference on Software
engineering. ACM, 2000, pp. 167–176.

[17] M. Bruch, T. Schäfer, and M. Mezini, “Fruit: Ide support for framework
understanding,” in Proceedings of the 2006 OOPSLA workshop on
eclipse technology eXchange. ACM, 2006, pp. 55–59.

[18] B. Dagenais and H. Ossher, “Automatically locating framework exten-
sion examples,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. ACM, 2008, pp.
203–213.

[19] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web,” in Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2008, pp. 327–336.

[20] ——, “Spotweb: detecting framework hotspots via mining open source
repositories on the web,” in Proceedings of the 2008 international
working conference on Mining software repositories. ACM, 2008, pp.
109–112.

[21] M. Bruch, M. Mezini, and M. Monperrus, “Mining subclassing directives
to improve framework reuse,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 141–150.

[22] E. Moritz, M. Linares-Vásquez, D. Poshyvanyk, M. Grechanik,
C. McMillan, and M. Gethers, “Export: Detecting and visualizing api
usages in large source code repositories,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Press, 2013, pp. 646–651.

[23] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial
orders from source code: from usage scenarios to specifications,” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, pp. 25–34.

[24] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in European Conference on Object-
Oriented Programming. Springer, 2009, pp. 318–343.

[25] S. Mover, S. Sankaranarayanan, R. B. P. Olsen, and B.-Y. E. Chang,
“Mining framework usage graphs from app corpora,” in 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 2018, pp. 277–289.

[26] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining
succinct and high-coverage api usage patterns from source code,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 319–328.

[27] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining across
github,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp.
254–265.

[28] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
and M. Di Penta, “Focus: A recommender system for mining api
function calls and usage patterns,” in Proceedings of the 41st ACM/IEEE
International Conference on Software Engineering, 2019.

