
GUARDIAML: Machine Learning-Assisted Dynamic
Information Flow Control

Angel Luis Scull Pupo∗, Jens Nicolay∗, Kyriakos Efthymiadis†,
Ann Nowé†, Coen De Roover∗ and Elisa Gonzalez Boix∗

∗Software Languages Lab
Vrije Universiteit Brussel

Email: firstname.lastname@vub.be
†Artificial Intelligence Lab
Vrije Universiteit Brussel

Email: firstname.lastname@vub.be

Abstract—Developing JavaScript and web applications with
confidentiality and integrity guarantees is challenging. Informa-
tion flow control enables the enforcement of such guarantees.
However, the integration of this technique into software tools
used by developers in their workflow is missing.

In this paper we present GUARDIAML, a machine learning-
assisted dynamic information flow control tool for JavaScript web
applications. GUARDIAML enables developers to detect unwanted
information flow from sensitive sources to public sinks. It can
handle the DOM and interaction with internal and external
libraries and services. Because the specification of sources and
sinks can be tedious, GUARDIAML assists in this process by
suggesting the tagging of sources and sinks via a machine learning
component.

Index Terms—JavaScript Security, Programming Languages,
Information Flow Control, Machine Learning

I. INTRODUCTION

In applications that deal with information that is sensitive
in nature, it is important to keep track of which information
flows where to detect and prevent information leaks. This is
especially so for web and cloud applications, which orchestrate
different internal and external services by exchanging informa-
tion to implement the application’s functionality. Information
flow control (IFC) can be used to enforce data confidentiality
and integrity guarantees over application data [1]. However,
IFC is challenging in any non-trivial application context. In
particular, for web and cloud applications written in JavaScript,
we identify the following specific challenges:

• How to deal with the various services with which the
application interacts, and of which the source code may
or may not be available?

• How should DOM nodes be handled?
• How can sources and sinks of information be identified,

especially in large applications that interact with many
different services?

In this paper, we present GUARDIAML, a novel tool for
dynamic IFC that uses machine learning for identifying po-
tential sources and sinks of information flows. The goal of
GUARDIAML is to enforce IFC in JavaScript web and cloud
applications. This is achieved in two steps. First, a developer
can annotate sources and sinks in a JavaScript source file,

assisted by recommendations from the tool. After annotations
are added, GUARDIAML can produce an instrumented version
of the source code that can be executed instead of the original
code. The instrumentation performs the actual tagging and
tracking of data, and only changes the external behavior of
the program w.r.t. the original when an information control
policy is violated.

The foundation of GUARDIAML is GIFC [2], a security
policy specification language and library for dynamically en-
forcing policies. GIFC handles a large set of JavaScript features
including the DOM, and enables the modeling of libraries
and web APIs. GUARDIAML extends GIFC with a machine
learning component to statically detect potential sources and
sinks. The algorithm used by this component was trained using
the Node.js API as a dataset in which we manually annotated
methods as sources or sinks. Supervised machine learning was
performed to let the algorithm learn how to correctly classify
sources and sinks to their respective class, and to show that
the algorithm can generalize to unseen examples.

II. BACKGROUND

A. Information flow control for web applications

Informally, information flow control enables preventing
unwanted flows from sensitive sources of information to public
sinks. In a web application, for example, IFC can prevent the
flow of sensitive data (e.g., passwords, credit card information,
etc.) to malicious domains by means of web APIs like the
XMLHttpRequest API or setting the src property of images,
which are sinks of information. An IFC policy requires sources
to be labeled with an appropriate security label. For example,
non-sensitive sources producing values that are considered
to be publicly observable could be associated with a “low”
label L. In contrast, sensitive sources producing values that
should not be observable outside the application could be
tagged with a “high” label H . By also labeling sinks, an IFC
policy could then disallow H values from flowing to L sinks.
Conceptually, IFC associates values with the same label as
the source that produced them, and also lifts all operations on
values to correctly label their output (e.g., the concatenation
of a H string with a L string is a H string).



IFC Enforcement: IFC policies can be verified ahead of
time by means of static analysis or dynamically enforced
through runtime monitoring. Due to its dynamic features
(eval, dynamic function creation, etc.), a dynamic enforce-
ment approach is often preferred for JavaScript and web
applications [3]–[5]. Runtime monitoring can be achieved by
modifying the browser’s interpreter, by running an interpreter
on top the browser interpreter, or by instrumenting the appli-
cation’s source code. Given the number of browser vendors
and browser versions, code instrumentation is best suited.

Types of IFC: There are two types of information flow that
determine how values and their security labels are dissemi-
nated in an application [1]. First, an explicit flow represents
a direct propagation of values. For example, in the variable
declaration statement var y = x; there is an explicit flow
from x to y, and the value of y will have the same label as the
value of x. Second, an implicit flow of information involves
value flow that depends on control flow. For example, in the
conditional statement if (h) y = 1 else y = 0; there is an
implicit flow from h to y, and the value of y will have the same
label as the value of h. Besides if, other control constructs
that cause implicit flows are while, break, continue, return,
and throw.

IFC Challenges: Handling implicit flows is already a
challenging task for any dynamic IFC approach. Addition-
ally, several features and characteristics of web applications
complicate the process of tracking information flow by an
IFC monitor. For example, the functionality of reacting to
user input and user-generated events or performing network
requests are implemented in external libraries such as the
JavaScript Standard Library and the Document Object Model
(DOM), and exposed by means of web APIs. The internals of
these web APIs are not available (they are often implemented
in other languages such as C++) and therefore have to be
considered as black boxes by the IFC monitor. This makes it
impossible for the IFC monitor to know how the information
flows within an external library. As another example, dynamic
code evaluation (e.g eval) allows the program to execute
unknown code represented as a string value.

GIFC: Practical IFC for Web Applications

In prior work we developed GIFC [2], an IFC mechanism for
JavaScript. GIFC uses code instrumentation to weave an IFC
monitor into the application source code, making it portable
across runtime engines and browser vendors. GIFC’s monitor
is based on the permissive upgrade technique [3], which
makes the enforcement more precise. GIFC is also able to
deal with dynamic code evaluation, and features a function
model mechanism that enables information tracking through
APIs calls and DOM.

GIFC’s IFC policy specification interface is composed
of two functions: tagAsSource and tagAsSink.
tagAsSource(exp) allows developers to indicate that
values produced by expression exp should be handled as
sensitive. tagAsSink(exp) tags exp value as a sink of
information. After the sources and sinks of the program are

defined, GIFC’s enforcement mechanism prevents any explicit
or implicit flow of sensitive information to a public sink.

Listing 1. Specification of sources and sinks.
1tagAsSink(console.log);
2

3function getPassword() {
4var pass = document.querySelector("#pass").value;
5return tagAsSource(pass);
6}
7

8function singleAssign() {
9var pass = getPassword();
10console.log(pass);
11}

Example: Listing 1 shows a concrete example how a
developer can specify sources and sinks in GIFC. Line 1
tags the console.log function as a sink. The user-provided
password in line 4 is considered sensitive and therefore tagged
as such (line 5) before exiting the function. The function
singleAssign attempts to log the password to the console (line
10), but this is captured and blocked by GIFC’s enforcement
mechanism.

III. APPROACH: MACHINE LEARNING-ASSISTED IFC

The manual annotation of all sources and sinks is a tedious
task for programmers employing IFC policies. For this reason
GUARDIAML is equipped with a machine learning (ML)
component for automating parts of the process of identifying
sources and sinks, alleviating the burden on developers. Given
a function call, the ML component should predict whether
this function call targets a source, a sink, or neither. The ML
algorithm employs Support Vector Machines (SVMs) and we
used an annotated Node.js API as training data. We opted
for SVM as it is a very popular and successful classification
method within the ML literature and it has been shown to work
in a similar task before [6], making it a natural choice. For
the ML component, a sink is defined as a call to a resource
method that either creates or overwrites a previous value, and
a source is defined as a call to a resource method that reads
and returns a value at the application code.

We draw inspiration from [6], in which ML is used to
classify sinks and sources in the Android API. This approach
is, however, specific to how the Android API is coded and what
conventions are used, which is reasonable as it is application
specific. In this work, we focus on the Node.js API and
devise an approach to deal with sinks and sources specific
to Javascript by using the language’s idioms.

Support Vector Machines: SVMs are AI technique which
provides a discriminative, max margin classifier and is for-
mally defined by separating hyperplanes. It is a suitable algo-
rithm in our setting as it is a supervised method which finds
the optimal hyperplanes to separate the categories in a given
dataset. Specifically, it finds the hyperplane that minimizes the
maximum distance to the decision boundary. Loosely, what
the algorithm finds is the distance of the data points to a
decision boundary, which has been calculated such that the



maximum distance of data points is minimized. For an in-
depth discussion on SVMs we refer the reader to [7].

Dataset creation: In this work we use the Node.js API
to train GUARDIAML’s classifier. However, data regarding
the Node.js API is not available in a usable form to apply
supervised machine learning (i.e., there exist no labelled
dataset). Transforming and enriching the API specification to
make it a suitable target for supervised ML was a long and
manual process. To encode the labelled dataset, we use a json-
formatted text that includes the necessary information to apply
ML. This is further explained in Section IV-A.

Our approach defines features of inputs that are fed to the
SVM for training based on characteristics of naming, such as
whether a method starts with a specific keyword such as get
or set. We devised a list of common keywords for sinks and
sources for Javascript as a driving force, as this would increase
the applicability of our approach to other APIs written in that
language. Of course, this design decision makes the algorithm
sensitive to particular naming conventions. However, we ar-
gue that if coding conventions are followed, we expect our
algorithm to generalize well to unseen instances of different
APIs coded in Javascript. In case an API uses a very specific
naming convention, then features need to be re-designed and
a new SVM trained, which does not limit applicability of our
approach as it is a straightforward process.

Annotating examples is important in order to use supervised
methods to tackle this problem. We performed labelling on
some of the methods of the API manually in order to create
a training and test set. The details are the following:

• 265 labelled examples (out of 510)
• 21% are sinks
• 30% are sources
• 49% are neither

We applied machine learning on the labeled dataset in order
to learn how to handle new unseen method specifications, or
entire APIs, and automatically classify each method into one
out of three possible classes: sink, source or neither.

Performance: The SVM was trained by first splitting the
annotated data into a training set and a test set at 80% to 20%
ratio. This is standard procedure in ML research to be able
to evaluate an algorithm’s performance on unseen data. The
classifier is using the training data in order to learn the optimal
way to correctly classify each example to its associated class.
After the SVM has been trained the results on the testing
set are reported, which basically provides an assessment of
how good the algorithm is in classifying the data. A trained
classifier that performs well can then be applied to new, unseen
examples with the expectation of correct classification.

Class Precision Recall
neither 0.93 0.97
source 1.00 0.91
sink 0.94 0.94
avg/total 0.95 0.95

TABLE I
SVM CLASSIFICATION FOR SINKS AND SOURCES IN THE NODE.JS API.

Table I shows the results the SVM classifier obtained for
sinks and sources in the Node.js API. We present our results
using precision and recall. Precision is defined as the ratio
of true positives over the sum of true and false positives, i.e.
the ability of a classifier not to label negative examples as
positive. Recall is the ratio of true positives over the sum of
true positives and false negatives, i.e., the ability of a classifier
to find all the positive examples.

The results in Table I show that using an SVM for IFC
analysis in the Node.js API is very successful. We managed
to obtain 95% performance both for precision and recall. This
trained SVM can therefore be given unseen method specifica-
tions and full APIs and classify new examples correctly. It can
be used as a module in GUARDIAML to automatically identify
sinks and sources so that security policies can be deployed in
relevant places.

IV. IMPLEMENTATION

We implemented our machine learning-assisted IFC ap-
proach in a tool called GUARDIAML. Figure 1 shows the tool
overall architecture, which consists of 5 components.

Fig. 1. GUARDIAML implementation architecture

The GUARDIAML Front-end is a VSCode plugin that offers
commands to (1) ask for sources and sinks, or (2) instrument
and execute a JavaScript application under IFC monitoring.

The GUARDIAML Language Server is a Node.js applica-
tion that implements a Language Server Protocol (LSP) [8],
which enables communication between development tools.
Our GUARDIAML language server is responsible for process-
ing all the commands and providing the diagnostics to the
GUI.

The Guardia IFC monitor (GIFC) [2] is responsible for the
source code instrumentation of either JavaScript programs or
HTML pages. In the case of JavaScript source code, it is also
responsible for executing it.

The ML Python Server is responsible for suggesting sources
and sinks. It receives as input an array of JSON objects as
shown in Figure 2. Each object encodes an expression in the
textRaw property and its location in the loc property. The result
will be the classification of each element as a source, sink, or
neither.

The Web Server is responsible for serving instrumented
HTML pages. When it is invoked, it first starts a web server



and then opens a web browser with the URL pointing to the
given input.

GUARDIAML components’ interaction

Programmers interact with GUARDIAML through com-
mands that in turn trigger the interaction between its compo-
nents. In what follows, we detail how the components interact
as a result of one concrete command, namely executing the
GIFC monitoring mechanism.

Listing 2 shows how to register a handler that reacts to the
Execute IFC monitor command (line 1). The handler receives
the command’s arguments (e.g., the editor source code) and
calls the GIFC component. If there is an IFC policy violation
during the execution of the code being analyzed, an error is
thrown that includes the source code location of the violation.
We use the term diagnostic to refer to a compiler error or
warning that is shown in the user interface [9]. Line 8 sends the
diagnostics to the GUARDIAML Front-end, which will update
the GUI accordingly.

Refactoring driven by machine learning

A code action [9] can be associated with a diagnostic. In
GUARDIAML, code actions enables the refactoring of code to
tag sources and sinks of information. The code actions and
the refactoring code are computed in the Language Server
Component as a result of the ML Python Server’s suggestions.

Listing 2. Example of language server command handler.
1 connection.onExecuteCommand((params) => {
2 let diagnostics = [];
3 try {
4 IFCMonitor.run(params.src);
5 } catch (error) {
6 diagnostics.push(IFCMonitor
7 .diagnostics(error));
8 connection.sendDiagnostics({
9 uri: params.docUri.external,

10 diagnostics: diagnostics
11 });
12 }
13 })

Scanning the app

In order to give suggestions of sources and sinks, the ML
component is provided with every function call expression that
appears in an application’s source code. To obtain all function
call expressions we build the abstract syntax tree (AST) of
the source code using Acorn.js 1. The resulting AST is then
traversed using Estraverse 2, visiting all its nodes looking for
CallExpression nodes. For every CallExpression, we collect
the expression source code and its AST location information
as shown in Figure 2.

1https://github.com/acornjs/acorn
2https://github.com/estools/estraverse

A. ML component
We used scikit-learn [10], a Python library for ML, to train

the SVM model. We used grid search to optimize for kernel
selection and also used 5-fold cross validation. We found that
the best results were obtained by using a radial basis function
kernel.

Training: The input to the SVM is given in the form of
JSON following the specification shown in Figure 2. From

Fig. 2. Input format for SVM.

this specification features are automatically extracted from
the textRaw field. Each input’s respective class is denoted
in the cl field. The inputs come in the form of a binary
representation based on the presence or absence of a feature.
Table II shows a partial list of features used as input to the
classifier assuming only 3 keywords; get, set, log; if a
feature is present then its respective bit is set to 1.

Function Binary Representation
getPassword(u) 001
setEmail(e) 010
console.log() 100

TABLE II
SAMPLE FEATURES ASSUMING THREE KEYWORDS: GET, SET, LOG.

Prediction: The server loads the trained SVM model and
waits for a request for classification. The server expects a
method, or lists of methods, in JSON format as shown in
Figure 2. For prediction, only the textRaw is needed. The
JSON file may contain more information, such as metadata
about the location of a method in the source code for display-
ing diagnostics. Prediction does not alter any of provided input
values but results in the addition of a new field, cl to indicate
whether a method is a source (1), a sink (2), or neither (0).

V. GUARDIAML IN ACTION

In this section we describe GUARDIAML from the program-
mer’s perspective by means of an concrete example extracted
from the IFC benchmarks used in prior and related work [2],
[11]. The goal of this example, shown in Figure 4, is to leak the
length of a user password pass, of which the input is simulated
by function getInput(), in function chkpassword(). To this
end, a for loop counts up from 0 to 16, throwing an exception
when loop counter variable j is equal to the password length.
At line 13 in the catch block, the code attempts to log the
value of the loop counter (now bound to len) that corresponds
to the actual password length in case it is less than 16
characters long.

In order for developers to test whether their application is
leaking information, they need to declare IFC policies by an-
notating sources and sinks of sensitive information. Instead of



doing this manually, GUARDIAML allows developers to select
the command Suggest sources and sinks from the command
palette of its VSCode interface (Figure 3). Any suggestions are
then highlighted in green in the source code and also are listed
in the problems panel of the IDE (Figure 4). Clicking on a

Fig. 3. GUARDIAML commands.

Fig. 4. Sources and sinks suggestions.

suggestion applies a code refactoring for that suggestion which
makes GUARDIAML annotate the corresponding expression
as a source or a sink (Figure 5). Once all sources and sinks

Fig. 5. Tag as source of sensitive information.

are identified and annotated, the programmer can execute an
instrumented version of the program by selecting the Execute
IFC monitor command. The monitoring dynamically enforces
IFC and any information flow violation will halt the execution.
The source code location of where a violation occurred is
reported as a diagnostic to GUARDIAML’s Front-end. The
diagnostic is shown in the problems panel and by highlighting
the corresponding code in red (Figure 6).

A video showing the features of GUARDIAML can be found
at: https://youtu.be/LkwpeSJ9K5Q

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented GUARDIAML, a ma-
chine learning-assisted IFC plugin for Visual Studio Code.

Fig. 6. Information flow violation example.

GUARDIAML adds IFC to the developer’s toolbox, enabling
the verification of the confidentiality of web applications.
The suggestions of sources and sinks using ML alleviates
developers of the burden of manually specifying sources and
sinks. Moreover, the tool may suggest security-relevant points
in an application of which developers may not be aware.

As future work, we plan to train the SVM model with other
APIs such as the DOM to cover a wider range of information
sources and sinks. It would also be interesting to augment
GUARDIAML with functionality to facilitate the debugging of
IFC violations by tracing back and visualizing information
flows from a sink to its sources.

REFERENCES

[1] D. Hedin and A. Sabelfeld, “A Perspective on Information-Flow Con-
trol.” Software Safety and Security, 2012.

[2] A. L. S. Pupo, L. Christophe, J. Nicolay, C. De Roover, and E. G. Boix,
“Practical Information Flow Control for Web Applications.” RV, vol.
11237, no. 5, pp. 372–388, 2018.

[3] T. H. Austin and C. Flanagan, “Permissive dynamic information flow
analysis.” PLAS, pp. 1–12, 2010.

[4] A. Bichhawat, V. Rajani, D. G. 0001, and C. H. 0001, “Generalizing
Permissive-Upgrade in Dynamic Information Flow Analysis.” CoRR,
vol. cs.CR, pp. 15–24, 2015.

[5] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and
C.-A. Staicu, “A Survey of Dynamic Analysis and Test Generation for
JavaScript,” ACM Comp. Surveys, vol. 50, no. 5, pp. 1–36, Nov. 2017.

[6] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks.” in NDSS, 2014.

[7] T. M. Mitchell, “Machine learning book,” 1997.
[8] Language Server Protocol. [Online]. Available: https://microsoft.github.

io/language-server-protocol/
[9] “Visual studio code api reference,” Apr 2016. [Online]. Available:

https://code.visualstudio.com/docs/extensionAPI/vscode-api
[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] B. Sayed, I. Traoré, and A. Abdelhalim, “If-transpiler: Inlining of hybrid
flow-sensitive security monitor for JavaScript,” Computers & Security,
vol. 75, pp. 92–117, Jun. 2018.

https://youtu.be/LkwpeSJ9K5Q
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://code.visualstudio.com/docs/extensionAPI/vscode-api

	Introduction
	Background
	Information flow control for web applications

	Approach: Machine learning-assisted IFC
	Implementation
	ML component

	GuardiaML in Action
	Conclusion and Future Work
	References

