
Assessing Diffusion and Perception of Test Smells
in Scala Projects

Jonas De Bleser, Dario Di Nucci, Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Brussels, Belgium
{jonas.de.bleser, dario.di.nucci, coen.de.roover}@vub.be

Abstract—Test smells are, analogously to code smells, defined
as the characteristics exhibited by poorly designed unit tests.
Their negative impact on test effectiveness, understanding, and
maintenance has been demonstrated by several empirical studies.

However, the scope of these studies has been limited mostly to
JAVA in combination with the JUNIT testing framework. Results
for other language and framework combinations are —despite
their prevalence in practice— few and far between, which might
skew our understanding of test smells. The combination of SCALA
and SCALATEST, for instance, offers more comprehensive means
for defining and reusing test fixtures, thereby possibly reducing
the diffusion and perception of fixture-related test smells.

This paper therefore reports on two empirical studies con-
ducted for this combination. In the first study, we analyse the tests
of 164 open-source SCALA projects hosted on GITHUB for the
diffusion of test smells. This required the transposition of their
original definition to this new context, and the implementation of
a tool (SOCRATES) for their automated detection. In the second
study, we assess the perception by and the ability of 14 SCALA
developers to identify test smells. For this context, our results
show (i) that test smells have a low diffusion across test classes,
(ii) that the most frequently occurring test smells are LAZY TEST,
EAGER TEST, and ASSERTION ROULETTE, and (iii) that many
developers were able to perceive but not to identify the smells.

Index Terms—Test Smells, Test Quality, Scala Language

I. INTRODUCTION

Automated unit testing [1], [2] has become a standard, but
time-consuming activity in software engineering. Frameworks
such as JUNIT ease the burden, but do not preclude developers
from making suboptimal choices in the design of their tests.
Indeed, test code should be just as understandable and main-
tainable as production code. Van Deursen et al. [3] defined
test smells to this end, i.e., characteristics of unit tests resulting
from poor design choices, together with refactoring operations
to eliminate them. Test code impacted by smells is hard to
maintain and comprehend [4]. Moreover, recent studies have
shown that they may also impact the deterministic behaviour
of tests [5] and the quality of production code [6]. Despite
the empirical evidence against test smells, developers tend not
to be aware of the smells that exist in their tests [7] and can
therefore benefit from tools that automate their detection.

The majority of the empirical research on test smells con-
cerns the combination of JAVA and its unit test automation
framework JUNIT. However, other programming languages
have been introduced over the years and are being adopted
in practice. SCALA [8], for instance, has enjoyed a steady rise
in popularity over the past years —and for distributed systems

in particular (see e.g., [9], [10]). Some of their characteristics
have enabled the design of unit test automation frameworks
with sometimes unique features, which might impact our
understanding of diffusion and test smells. The SCALATEST
framework1, for instance, leverages SCALA’s unification of
advanced object-oriented and functional features to offer a
spectrum of 8 unit test definition styles ranging from the
JUNIT-style “FlatSpec” familiar to JAVA developers, over
the RSpec-style “FunSpec” familiar to Ruby developers, to
the BDD-style “FreeSpec” that strives to resemble natural
language specifications. Likewise, the framework leverages
SCALA’s support for first-class functions and traits to offer
a comprehensive set of features for defining, re-using, and
composing test fixtures in a fine-grained manner.2 The combi-
nation of SCALA and the SCALATEST framework arguably
gives developers more diverse options in the design and
implementation of their unit tests than the combination of
JAVA and the JUNIT framework. These newly-enabled test
design options might impact the diffusion of test smells among
real-world tests, as well as their perception by real-world
developers.

To increase the subject diversity among the existing em-
pirical studies on and strengthen the understanding of test
smells, we investigate (i) the diffusion of test smells as well as
(ii) the perception of test smells by developers in the SCALA
ecosystem.

For the first empirical study, we reconsider the definitions
of six test smells by Van Deursen et al. [3] in this new context,
and present a tool for their automated detection in 164 open-
source SCALA projects hosted on GITHUB. Quite surprisingly,
the results show that these test smells have a low diffusion
across test classes —with LAZY TEST, EAGER TEST, and
ASSERTION ROULETTE as the most prevalent ones.

The goal of the second empirical study is to understand
to what extent SCALA developers perceive existing smells
in tests and consider them a severe issue. In particular, we
survey 14 professional developers working on open-source
and industrial SCALA software systems of varying size and
scope. On average, we find that 5 out of 14 developers are
able to identify (i.e., perceive and explain) all the test smells.
In summary, the contributions of this work are four-fold:

1http://www.scalatest.org
2http://www.scalatest.org/user guide/sharing fixtures

• The transposition of six test smells introduced by Van
Deursen et al. [3] to the SCALA context, including the
refactoring required to eliminate them, supported by a
well-defined static method for their detection.

• The open-source SOCRATES (SCala RAdar for TEst
Smells) tool for automatically detecting these smells in
SCALA projects.

• A large-scale empirical study that analyses the diffusion
of test smells in the top-164 open-source SCALA projects
hosted on GITHUB.

• A survey of 14 professional SCALA developers that
assesses to what extent they are able to perceive and
identify test smells in SCALA tests.

• A publicly available appendix [11] consisting of all data
needed to replicate the studies or to conduct similar ones.

The remainder of the paper is organised as follows. Sec-
tion II describes the test smells that we consider, the rules
that we adopt to detect them in SCALA projects, and the
corresponding refactorings. Sections III and IV describe our
empirical studies including the research questions and the
results that we obtained. Section VII discusses the threats that
could affect the validity of the results. Section VI discusses the
related literature. Finally, Section VIII concludes the paper.

II. TEST SMELLS IN SCALA SYSTEMS

We start our discourse by presenting our study subjects.
Van Deursen et al. [3] originally introduced test smells using
examples implemented in JAVA and the JUNIT framework. We
now reconsider the former study in the context of SCALA and
its SCALATEST framework. The choice for this framework is
motivated by its distribution among the real-world projects in
our corpus (cf. Figure 1 of Section III). As this is the first study
on SCALATEST test smells, we focus our resources on the six
smells considered by the majority of the existing empirical
studies for JUNIT [4], [6], [12]–[15] —which includes the
smells with the highest observed diffusion [13], [16].

For each test smell, we provide: (i) an adaption of its
definition to the new context, (ii) an example instance, (iii)
a static detection method based on the rules introduced by
Bavota et al. [4], [12], and (iv) a refactoring to eliminate
the smell and its negative impact. Note that all example tests
share the same classes under test; Ingredient and Recipe
depicted in Listing 1.
1 case class Ingredient(name: String, weight: Int)
2 case class Recipe(name: String, ingredients: List[Ingredient]) {
3 def names: List[String] = ingredients.map(_.name)
4 def hasIngredients: Boolean = ingredients.nonEmpty
5 }
6 object Recipe {
7 def fromFile(file: BufferedSource): Recipe = ...
8 }

Listing 1. Example SCALA classes under test.

A. ASSERTION ROULETTE (AR)

Definition. A test case that contains more than one assertion
of which at least one does not provide a reason for assertion
failure. In case the test fails, this test smell encumbers iden-
tifying which assertion failed and the reason why. Listing 2
depicts a SCALA example of this test smell and its resolution.

Detection Method. The detection method for this test smell
amounts to finding all assertions in a test case and verifying
that each assertion is provided with an additional argument.

Refactoring. SCALATEST complements the familiar
assert with the more expressive assertResult,
assertThrows, cancel, assume, and fail. Each takes
the assertion’s failure explanation as an optional argument.
The framework also provides the withClue construct which
uses its given parameter as the failure explanation for all
of the assertions in its scope. ASSERTION ROULETTE can
therefore be resolved by either (i) providing a description or
clue as an additional argument to assert and its variants,
or by (ii) wrapping the assertions inside a withClue.
1 "A recipe with one ingredient" should "have names=List(’Chocolate’)" in {
2 val recipe = Recipe("Chocolate Cookies", List(Ingredient("Chocolate", 100)))
3 assert(recipe.names.head == "Chocolate")
4 assert(recipe.names.size == 1)
5 }

1 "A recipe with one ingredient" should "have names=List(’Chocolate’)" in {
2 val recipe = Recipe("Chocolate Cookies", List(Ingredient("Chocolate", 100)))
3
4 assert(recipe.names.head == "Chocolate",
5 s"The name of the ingredient was ${recipe.names.head}")
6
7 withClue(s"The size of the ’names’ was ${recipe.names.size}") {
8 assert(recipe.names.size == 1)
9 }

10 }

Listing 2. Example ASSERTION ROULETTE and its refactoring.

B. EAGER TEST (ET)
Definition. A test case that checks or uses more than one

method of the class under test. Since its introduction [3],
this smell has been somewhat broadly defined. It is left to
interpretation which method calls count towards the maximum.
Either all methods invoked on the class under test could
count, or only the methods invoked on the same instance
under test, or only the methods of which the return value is
eventually used within an assertion. We have opted for the first
interpretation in this study, but all others are valid too.

Detection Method. Our method to detect this smell consists
of three steps: (i) identifying the class under test and collecting
all of its methods; (ii) collecting the set of methods called from
the test case; (iii) computing the size of the intersection of the
outcomes (i) and (ii). If the intersection is larger than 1, more
than one method is being tested by the test case.

Refactoring. Splitting the test into test cases that each test a
single method of the class under test. For the example depicted
in Listing 3, we opt to use a fixture to avoid duplicating the
recipe object in each test case.
1 "The recipe" should "have two ingredients" in {
2 val ingredients = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
3 val recipe = Recipe("Cookies and Milk", ingredients)
4 assert(recipe.hasIngredients, "...")
5 assert(recipe.names.equals(List("Cookie", "Milk")), "...")
6 }

1 def fixture = new {
2 val ingredients = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
3 val recipe = Recipe("Cookies and Milk", ingredients)
4 }
5
6 "The recipe" should "have two ingredients" in {
7 val f = fixture
8 assert(f.recipe.names.equals(List("Cookie", "Milk")), "...")
9 }

10
11 "The recipe" should "have ingredients" in {
12 val f = fixture
13 assert(f.recipe.hasIngredients, "...")
14 }

Listing 3. Example EAGER TEST and its refactoring.

C. GENERAL FIXTURE (GF)

Definition. A test fixture that is too general. Ideally, test
cases should use all the fields provided by their fixture. This
might be difficult to uphold when the fixture is shared by
several test cases. SCALATEST features no less than 4 different
means for defining and sharing fixtures. The detection methods
and refactorings for this smell are four-fold too.

Type I - GLOBAL FIXTURE: Detection Method. Similar
to JUNIT, SCALATEST supports defining fixtures by mixing
in the trait BeforeAndAfter or BeforeAndAfterEach
in a class. These traits respectively enable providing code, as
the value for a by-name parameter to methods before or
after, that must run before or after the test or each test case
of the test. This code typically initializes the fields used within
the test or test case. The detection of this smell requires three
steps: (i) identify a test class that mixes in one of these traits
and calls their before or after methods, (ii) collect the
set of fields assigned in the code provided as an argument to
these methods, and (iii) determine whether a test case of the
class does not reference one of the assigned fields.

Type I - GLOBAL FIXTURE: Refactoring. The test cases
defined in Listing 4 share none of the fields defined in their
common fixture. This instance of the smell can be eliminated
by removing trait BeforeAndAfter from the test class, and
by demoting the fields referenced in the argument to method
before to local, immutable variables in the appropriate test
case. In case groups of test cases each use a different group
of fields, and the groups should remain together, SCALATEST
supports defining a local fixture per individual test case rather
than a global fixture for the entire test class —which can be
reused as illustrated in the remainder of this section.
1 class RecipeTestSuite extends FlatSpec with BeforeAndAfter {
2 var emptyRecipe: Recipe = _
3 var recipe: Recipe = _
4
5 before {
6 emptyRecipe = Recipe("Empty", List.empty[Ingredient])
7 recipe = Recipe("Cookies and Milk",
8 List(Ingredient("Cookie", 100), Ingredient("Milk", 200)))
9 }

10
11 "The recipe" should "have two ingredients" in {
12 assert(recipe.names.equals(List("Cookie", "Milk")), "...")
13 }
14
15 "The empty recipe" should "have no ingredients" in {
16 assert(!emptyRecipe.hasIngredients, "...")
17 }
18 }

1 class RecipeTestSuite extends FlatSpec {
2 "The recipe" should "have two ingredients" in {
3 val ingredients = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
4 val recipe = Recipe("Cookies and Milk", ingredients)
5 assert(recipe.names.equals(List("Cookie", "Milk")), "...")
6 }
7
8 "The empty recipe" should "have no ingredients" in {
9 val emptyRecipe = Recipe("Empty", List.empty[Ingredient])

10 assert(!emptyRecipe.hasIngredients, "...")
11 }
12 }

Listing 4. Example TYPE I GENERAL FIXTURE and its refactoring.

Type II - LOAN FIXTURE: Detection Method. So-called
“loan fixture methods” are methods with a body that serves
to set up and tear down fixture objects, respectively before
and after the call from their body to the function provided
to them as a parameter. Method withRecipe in Listing 5 is
such a loan fixture method, calling its parameter test on line
8 with the fixture objects it has set up. The method itself is

called from line 11 and line 16, for the purpose of loaning the
objects to the test cases defined by its function argument on
lines 12–13 and lines 17–18 respectively. Multiple loan fixture
methods can be defined in a test class, and shared with the
appropriate test cases. Despite the increase in expressivity, this
definition style is not less prone to the GF test smell. Detecting
the GF smell in fixtures defined through loan fixture methods
requires: (i) collecting the parameters of the function given
as an argument for the call to the loan fixture method from
the test case, and (ii) checking whether every parameter is
referenced in the body of the function.

Type II - LOAN FIXTURE: Refactoring. The fixture should
be removed, in case the test case uses none of its objects,
or split into several local fixtures. Note the changes in the
parameter and argument lists as a result of the refactoring
below, as well as the composition of two separate local fixtures
for the last test case.
1 class RecipeTestSuiteLF extends FlatSpec {
2
3 def withRecipe(test: (Recipe, Recipe) => Any) {
4 val ingredients1 = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
5 val ingredients2 = List(Ingredient("Eggs", 100), Ingredient("Bacon", 200))
6 val cookiesAndMilk = Recipe("Cookies and Milk", ingredients1)
7 val baconAndEggs = Recipe("Eggs", ingredients2)
8 test(cookiesAndMilk, baconAndEggs)
9 }

10
11 "The recipe" should "have 2 ingredients (Eggs, Bacon)" in withRecipe {
12 (cookiesAndMilk, baconAndEggs) =>
13 assert(baconAndEggs.names.equals(List("Eggs", "Bacon")), "...")
14 }
15
16 "The recipe" should "have 2 ingredients" in withRecipe {
17 (cookiesAndMilk, baconAndEggs) =>
18 assert(cookiesAndMilk.ingredients.size == 2, "...")
19 }
20 }

1 class RecipeTestSuite extends FlatSpec {
2
3 def withCookiesAndMilk(test: (Recipe) => Any) {
4 val ingredients = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
5 val cookiesAndMilk = Recipe("Cookies and Milk", ingredients)
6 test(cookiesAndMilk)
7 }
8
9 def withBaconAndEggs(test: (Recipe) => Any) {

10 val ingredients = List(Ingredient("Eggs", 100), Ingredient("Bacon", 200))
11 val baconAndEggs = Recipe("Eggs", ingredients)
12 test(baconAndEggs)
13 }
14
15 "The recipe" should "have 2 ingredients (Eggs, Bacon)" in withBaconAndEggs {
16 baconAndEggs =>
17 assert(baconAndEggs.names.equals(List("Eggs", "Bacon")), "...")
18 }
19
20 "The recipe" should "have 2 ingredients" in withCookiesAndMilk {
21 cookiesAndMilk =>
22 assert(cookiesAndMilk.ingredients.size == 2, "...")
23 }
24
25 "Different recipes" should " not be equal" in withBaconAndEggs {
26 baconAndEggs =>
27 withCookiesAndMilk { cookiesAndMilk =>
28 assert(cookiesAndMilk.equals(baconAndEggs), "...")
29 }
30 }
31 }

Listing 5. Example TYPE II GENERAL FIXTURE and its refactoring.

Type III - FIXTURE CONTEXT: Detection Method. So-
called “fixture context” objects are instances, such as the ones
instantiated on lines 11–13 and lines 15–17 of Listing 6, of
an anonymous class that mixes in at least one trait such as
RecipeFixture that provides and initializes fields for the
fixture. The body of the anonymous class itself corresponds
to the test case, such as the assert expressions on lines 12
and 16. Note that multiple traits can be mixed into the “fixture
context” object (e.g., new X with Y with Z) as required
by the fixture for a specific test case. Fixtures defined in this
manner, as expressive it may be, are still prone to the GF

test smell. Its detection requires: (i) collecting the fields mixed
into and provided by the “fixture context” object, (ii) verifying
whether every field is referenced in test case (i.e., the body
of the corresponding anonymous class creation expression).

Type III - FIXTURE CONTEXT: Refactoring. The refac-
toring consists of splitting the fixture into multiple smaller
fixtures. A trait can be dedicated to each field, rendering them
easier to compose as needed for individual test cases.

1 class RecipeTestSuiteFCO extends FlatSpec {
2
3 trait RecipeFixture {
4 val ingredients1 = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
5 val ingredients2 = List(Ingredient("Eggs", 100), Ingredient("Bacon", 200))
6 val cookiesAndMilk = Recipe("Cookies and Milk", ingredients1)
7 val baconAndEggs = Recipe("Eggs", ingredients2)
8 }
9

10 "The recipe" should "have two ingredients (Eggs, Bacon)"
11 in new RecipeFixture {
12 assert(baconAndEggs.names.equals(List("Eggs", "Bacon")), "...")
13 }
14
15 "The recipe" should "have two ingredients" in new RecipeFixture {
16 assert(cookiesAndMilk.ingredients.size == 2, "...")
17 }
18 }

1 class RecipeTestSuiteFCOR extends FlatSpec {
2
3 trait BaconAndEggsRecipe {
4 val baconAndEggs = Recipe("Eggs", List(Ingredient("Eggs", 100),
5 Ingredient("Bacon", 200)))
6 }
7
8 "The recipe" should "have two ingredients named Eggs and Bacon"
9 in new BaconAndEggsRecipe {

10 assert(baconAndEggs.names.equals(List("Eggs", "Bacon")), "...")
11 }
12 }

Listing 6. Example TYPE III GENERAL FIXTURE and its refactoring.

Type IV - WITH FIXTURE: Detection Method. One more
fixture definition style is available to classes that extend a type
from package org.scalatest.fixture. Each of the test
cases in such a class take the same fixture as parameter, such
as f on line 13 of Listing 7. This fixture can be set up and
torn down by overriding method withFixture in the test
class, the body of which needs to apply the method’s function
parameter —which corresponds to the executed test case— to
the fixture. This definition style eliminates some of the boiler-
plate involved in the “loan fixture method” style, but is only
applicable when most test cases share the same fixture. The
GF smell can manifest itself if the class defining the fixture
(e.g., FixtureParam on line 3) provides fields that are not
referenced from a test case. It is convenient and common to use
the case class feature of Scala to define the fixture class,
which is the only variant we can support detecting without
computationally expensive program analyses. The detection
requires: (i) finding test classes that inherit from package
org.scalatest.fixture, (ii) resolving the type of the
argument to the function called from within withFixture
to its type definition, and (iii) ensuring that all test cases within
the class use the fields provided by this case class.

Type IV - WITH FIXTURE: Refactoring. There are mul-
tiple ways to eliminate this smell, but it is clear that the
other definition styles such as LOAN FIXTURE or FIXTURE
CONTEXT can be of help. As an example, please refer to
Listing 5 which represents a potential refactoring.

1 class RecipeTestSuiteWF extends fixture.FlatSpec {
2
3 case class FixtureParam(cookiesAndMilk: Recipe, baconAndEggs: Recipe)
4
5 def withFixture(test: OneArgTest): Outcome = {
6 val ingredients1 = List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
7 val cookiesAndMilk = Recipe("Cookies and Milk", ingredients1)
8 val ingredients2 = List(Ingredient("Eggs", 100), Ingredient("Bacon", 200))
9 val baconAndEggs = Recipe("Eggs", ingredients2)

10 val theFixture = FixtureParam(cookiesAndMilk, baconAndEggs)
11 test(theFixture)
12 }
13
14 "The recipe" should "have two ingredients named Eggs and Bacon" in { f =>
15 assert(f.baconAndEggs.names.equals(List("Eggs", "Bacon")), "...")
16 }
17
18 "The recipe" should "have two ingredients" in { f =>
19 assert(f.cookiesAndMilk.ingredients.size == 2, "...")
20 }
21 }

Listing 7. Example TYPE-IV GENERAL FIXTURE.

D. LAZY TEST (LT)

Definition. More than one test case with the same fixture
that tests the same method. This smell affects test maintain-
ability, as assertions testing the same method should be in the
same test case. Like EAGER TEST, the original definition [3]
leaves some details to interpretation. We consider every call
to the class under test as a potential cause of LAZY TEST,
irrespective of whether their results are used in an assertion.

Detection Method. A LAZY TEST can be detected in three
steps: (i) identify the class under test and collect its methods,
(ii) collect the set of method calls to the class under test in
each test case, (iii) compute the size of the intersection of the
outcomes of (i) and (ii). A non-empty intersection is indicative
of a method tested by multiple test cases.

Refactoring. Merge the individual test cases that execute
the same method into a single one. The result is one test case
per method of the class under test, which is said to improve
the traceability between production and test code.
1 "The recipe" should "have zero ingredients" in {
2 val recipe = Recipe("Cookies and Milk", List.empty)
3 assert(
4 !recipe.hasIngredients,
5 s"The number of ingredients was ${recipe.ingredients.size}"
6)
7 }
8
9 "The recipe" should "have two ingredients" in {

10 val recipe = Recipe(
11 "Cookies and Milk",
12 List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
13)
14
15 assert(
16 recipe.hasIngredients,
17 s"The number of ingredients was ${recipe.ingredients.size}"
18)
19 }

1 "The recipe" should "zero ingredients" in {
2 val emptyRecipe = Recipe("Cookies and Milk", List.empty)
3 val recipe = Recipe(
4 "Cookies and Milk",
5 List(Ingredient("Cookie", 100), Ingredient("Milk", 200))
6)
7
8 assert(
9 !emptyRecipe.hasIngredients,

10 s"The number of ingredients was ${emptyRecipe.ingredients.size}"
11)
12
13 assert(
14 recipe.hasIngredients,
15 s"The number of ingredients was ${recipe.ingredients.size}"
16)
17 }

Listing 8. Example LAZY TEST and its refactoring.

E. MYSTERY GUEST (MG)

Definition. A test case that uses external resources that
are not managed by a fixture. A drawback of this approach
is that the interface to external resources might change over

time necessitating an update of the test case, or that those
resources might not be available when the test case is run,
endangering the deterministic behavior of the test. Note that
we do not consider RESOURCE OPTIMISM [3], which requires
analysing the state or the existence of external resources.
Indeed, RESOURCE OPTIMISM is a special case of MYSTERY
GUEST and the following refactoring resolves both smells.

Detection Method. This smell can be detected by
identifying test cases that contain instance creation
expressions for resource-related types (e.g., java.io.File,
java.nio.file.Path,java.io.FileInputStream,
or java.net.URI) and factory methods for reading
files such as scala.io.Source#fromFile, or
methods for setting up connections to a database using
java.sql.DriverManager#getConnection.

Refactoring. Manage resources explicitly in a fixture.

1 "A recipe" should "be able to be initialized from a file" in {
2 val file = scala.io.Source.fromFile("ingredients_recipe.txt")
3 val recipe = Recipe.fromFile(file)
4 assert(recipe.ingredients.size == 20, "...")
5 }

1 def withRecipeFile(test: BufferedSource => Any) {
2 val path = "file.txt"
3 val contents =
4 """
5 |BaconAndEggs
6 |bacon,100
7 |eggs, 200
8 """.stripMargin
9

10 Files.write(Paths.get(path), contents.getBytes(StandardCharsets.UTF_8))
11 assume(new File(path).exists(), s"File $path did not exists")
12 test(scala.io.Source.fromFile(path))
13 }
14
15 "A recipe" should "be able to be created from file" in withRecipeFile { file =>
16 val recipe = Recipe.fromFile(file)
17 assert(recipe.ingredients.size == 20, "...")
18 }

Listing 9. Example MYSTERY GUEST and its refactoring.

F. SENSITIVE EQUALITY (SE)

Definition. A test case with an assertion that compares the
state of objects by means of their textual representation, i.e.,
by means of the result of toString().

Detection Method. This smell can be detected by (i)
enumerating the assertions in a test case (as described in
section II-A) and by (ii) verifying whether they contain or
rely on a call to the toString() method.

Refactoring Compare the members of the object states
structurally instead of relying on toString() of the wholes.

1 "A recipe" should "have as ingredient: Ingredient(’Chocolate’, 100)" in {
2 val recipe = Recipe("Chocolate Cookies", List(Ingredient("Chocolate", 100)))
3 assert(recipe.toString() == "Recipe(Chocolate Cookies,List(Ingredient(

Chocolate,100)))", "...")
4 }

1 "A recipe" should "have as ingredient: Ingredient(’Chocolate’, 100)" in {
2 val recipe = Recipe("Chocolate Cookies", List(Ingredient("Chocolate", 100)))
3 assert(recipe.ingredients == List(Ingredient("Chocolate", 100)), "...")
4 }

Listing 10. Example SENSITIVE EQUALITY and its refactoring.

III. DIFFUSION OF TEST SMELLS

We now present the design and the results of our empirical
study on test smell diffusion in open-source SCALA systems.

Figure 1. Usage distribution of unit testing frameworks in SCALA systems.

A. Study Design

The goal of our study is to analyse test smell diffusion
in open-source SCALA systems using the detection methods
defined in Section II, for the purpose of increasing the subject
diversity among the existing empirical studies on test smells,
and understanding whether SCALA’s testing frameworks —
with their unique feature sets and support for multiple test
and fixture definition styles— impact diffusion, from the
perspective of researchers in and tool builders for software
quality. The study aims to answer the following research
questions:

• RQ1: To what extent are test smells spread across test
classes written in SCALA?

• RQ2: Which test smells occur more frequently in test
classes written in SCALA?

The initial dataset consists of 72, 619 open-source SCALA
projects that were created on Github between January 2010
and July 2018. We discarded the projects that (i) lack test
classes, (ii) are not using the SCALA BUILD TOOL3 (SBT) for
build automation (required to obtain semantic information for
smell detection), or (iii) are outdated and no longer compile.
After this preprocessing phase, 2, 920 projects remain.

Based on this dataset, we conduct a preliminary analysis to
assess which of the testing frameworks SCALATEST, SPECS2,
SCALACHECK and JUNIT are the most prevalent. The result-
ing usage distribution for each framework is shown in Figure 1.
It is clear that SCALATEST is the most used framework.
Surprisingly, the popular JUNIT framework is barely used,
despite the interoperability of JAVA and SCALA.

The remainder of our study focuses on projects that use
SCALATEST, the most widely used testing framework, and
that have more than 1, 000 LOC in both production and test
code. Thus, the final dataset is composed of 164 projects,
summarized in Table I. Given its size, a manual inspection
of the test classes for test smells is prohibitive. We developed
SOCRATES to this end, which supports all 8 test definition
styles of SCALATEST —of which the “FlatSpec”, “FunSuite”,
and “WordSpec” styles are the most prevalent among the test
classes in our dataset, as shown in Table III. For every project
in the dataset, the SOCRATES tool:

1) clones the master branch from the GITHUB repository,
and verifies that the project uses SBT for build automa-
tion;

3https://github.com/sbt/sbt

TABLE I
DATASET CHARACTERISTICS OF 164 SCALA PROJECTS.

1st Quartile Mean Median 3rd Quartile Total
of Production Files 25.75 74.79 48.00 86.00 12,266
of Test Files 13.75 35.62 20.50 42.25 5,841
of Production LOC 2,107.25 7,236.02 3,717.50 6,740.25 1,186,708
of Test LOC 1,400.00 3,958.37 1,959.5 4,032.75 649,172
of Test Classes 9.75 29.96 15.50 31.00 4,914
of Test Cases 49.75 149.87 84.50 184.75 24,578

TABLE II
PERCENTAGE OF PROJECTS, TEST CLASSES, AND TEST CASES EXHIBITING

THE DIFFERENT SMELLS ALONG WITH PRECISION AND RECALL OF OUR
TOOL FOR EACH SMELL.

Test Smell % per Projects % per Test Class % per Test Case Precision Recall
AR 44.51% 15.97% 12.71% 100.00% 100.00%
ET 51.82% 6.57% . 6.12% 96.49% 66.27%
GF - Type I 10.36% 1.11% 1.22% 96.67% 96.67%
GF - Type II 5.48% 0.38% 0.13% - -
GF - Type III 9.75% 1.62% 1.53% 100.00% 88.87%
GF - Type IV 1.82% 0.28% 0.18% - -
LT 62.19% 11.05% 22.99% 99.44% 75.32%
MG 15.85% 1.95% 1.41% 100.00% 100.00%
SE 13.41% 2.72% 1.12% 100.00% 100.00%

2) compiles the project using the SEMANTICDB4 compiler
plugin for SBT which exposes the semantic information
maintained by the compiler (i.e., symbol and type
resolution),

3) parses the test classes to Abstract Syntax Trees (AST’s),
4) determines the used testing style for each test class,
5) collects all test cases within the test class, and
6) uses the AST of each test case and the extracted se-

mantic information to detect the presence of test smells
using the methods defined in Section II.

B. Analysis of the Study Results

Table II lists, for each test smell, the percentage of projects
and the percentage of test classes that exhibit at least one
instance of that smell. Figure 2 depicts the diffusion of
test smells on a per-project basis (i.e., for each project, the
percentage of test classes that exhibit a test smell). For the
actual answer to RQ1, we investigated how many test classes
and projects are affected by at least one test smell. We find
that 1, 381 out of 4, 914 (28.10%) test classes and that 138
out of 164 (84.14%) projects are affected by at least one test
smell. These numbers differ from those found by the studies
that target the combination of JAVA and JUNIT (i.e., [12],
[16]), which we discuss in section V.

Summary for RQ1. Although 84.14% of the projects are
affected by at least one test smell, only 28.10% of their
test classes exhibit them. Therefore, we conclude that the
diffusion of test smells in SCALA projects is not very high
with respect to the one observed in JAVA projects [4], [12].

Turning to RQ2, it is clear that LAZY TEST, EAGER TEST,
and ASSERTION ROULETTE are the most prevalent test smells.
LAZY TEST occurs in almost 2 out of 3 projects (62.19%),
or in 11.05% of the test classes. Thus, many projects have
at least one test class that is affected by this smell, but

4https://scalameta.org/docs/semanticdb/guide.html

TABLE III
DISTRIBUTION OF TEST DEFINITION STYLES AMONG THE TEST CLASSES.

FlatSpec FunSuite WordSpec FunSpec FreeSpec FeatureSpec PropSpec RefSpec
46.47% 26.73% 11.41% 10.66% 3.64% 0.59% 0.46% 0%

TABLE IV
DISTRIBUTION OF TEST FIXTURE DEFINITION STYLES AMONG THE TEST

CASES WITH A FIXTURE.

Type I - Global Type II - Loan Method Type III - Context Object Type IV - With
44.85% 17.06% 33.87% 4.20%

the smell does not occur frequently in multiple test classes.
EAGER TEST occurs in about 1 out of 2 projects (51.82%),
but only in 6.57% of the test classes. Thus, we observe that
instances of EAGER TEST do not occur frequently in several
test classes. Finally, ASSERTION ROULETTE occurs in almost
half of projects (44.51%) and in 15.97% of the test classes. On
average, LAZY TEST, ASSERTION ROULETTE, and EAGER
TEST occur in half of the SCALA systems.

The remaining three smells GENERAL FIXTURE, MYSTERY
GUEST, and SENSITIVE EQUALITY are less diffused. GEN-
ERAL FIXTURE occurs in about 1 out of 4 projects (27.41%)
and in 3.39% of the test classes. Note that these results
are the sum of the results for the four types of GENERAL
FIXTURE, as explained in Section II. In contrast to JUNIT,
where the fixture of a test class applies to all of its test
cases by default, the first-class status of traits and functions
in SCALA enables SCALATEST to support the fine-grained
definition and sharing of fixtures between individual test cases
through so-called “fixture context objects” and “loan fixture
methods” respectively. This could have a positive impact on
the prevalence of the GENERAL FIXTURE test smell. Indeed,
the distribution in Table IV shows that about 51% of all test
cases with a fixture use one of these fixture definition styles.

MYSTERY GUEST is present in about 1 out of 7 (15.85%)
projects, but in only 1.95% of all test classes. The last smell,
SENSITIVE EQUALITY, is present in 13.41% and 2.72% of the
projects and test classes respectively.

Summary for RQ2. Across SCALA projects, LAZY
TEST (62.19%), EAGER TEST (51.82%), and ASSERTION
ROULETTE (44.51%) are the three most prevalent test
smells, while GENERAL FIXTURE (27.41%), MYSTERY
GUEST (15.85%), and SENSITIVE EQUALITY (13.41%)
are the least prevalent.

It is important to note that the SOCRATES tool does not
only use syntactic information from the ASTs of the test cases,
but also semantic information such as types and definition-
use relations from their compilation. This enables detecting
the aforementioned test smells more precisely (Table II), but
might come at the expense of recall. We therefore investigated
the precision and recall of SOCRATES manually by validat-
ing a statistically significant sample (confidence level: 95%,
confidence interval: 5%) of the test cases. Two of the authors
inspected 377 test cases to determine whether the tool correctly
identified or missed the smells in each test case. Disagreements

Figure 2. Diffusion of test smells across SCALA Projects

during the validation were resolved by carefully checking both
the code snippet and the test smell definition. The last two
columns of Table II list the precision and recall of the tool for
each type of test smell, while the complete results are available
in our appendix [11]. Across the smells, SOCRATES achieves
a high precision of 98.94% and a more than modest recall of
89.59%. These values are similar to those obtained by the tools
used in previous empirical studies such as the one performed
by Palomba et al. [16] that achieved 88% of precision and
100% of recall. Therefore, we deem the tool sufficiently strong
to support our conclusions.

IV. PERCEPTION OF TEST SMELLS

We now describe the empirical study into the extent to
which SCALA developers perceive test smells as problematic.

A. Study Design

The goal of the study is assess the knowledge of test
smells among and the perception of their severity by SCALA
developers, for the purpose of increasing the subject diversity
among the studies into this matter, prioritizing research on and
tool support for the identification and elimination of specific
smells, and assessing the need for knowledge dissemination
on test smells —from the perspective of researchers in, tool
builders for, and educators of software quality. The study aims
to answer the following research question:

• RQ3: To what extent do developers perceive smelly tests
and are able to identify the actual smells in test classes
written in SCALA?

The study takes the form of a survey among professional
SCALA developers.

Objects. We consider the test smells discussed in Section II
as the objects of this survey. At the beginning of every survey
question, we show the code for the classes under test from
Listing 1. For the test smell in question, we then provide the
corresponding example unit test from Section II that exhibits
this smell, without providing any additional information about
the design flaw. As such, there is no need to explain the context
and purpose of the system under test further. Each participant
has to indicate whether he or she perceives the test smell and
has to motivate their answer through the following questions:

• Does this unit test exhibit a test smell according to your
experience?

• If yes, indicate which piece(s) of code and/or which
reasons might cause this test smell. If no, leave blank.

• If yes, how severe would you rate this test smell on a
Likert scale. If no, leave blank.

Participants. To have a representative sample of SCALA
developers, we invite members of several SCALA meet-up
groups5 to participate to our survey. In total, 14 developers
were willing to participate in our survey. All are professionals
with most developers (10 out of 14) working on industrial
systems, and the remaining (4 out 14) working on open-source
systems. 13 participants have more than 5 years of experience
developing in SCALA, while 10 have more than 10 years of
experience. This is impressive given that SCALA was released
only in 2004. They use multiple testing frameworks: SCA-
LATEST (78.6%), SCALACHECK (50%), SPECS2 (42.9%), and
JUNIT (21.4%). This partially confirms the analysis on the
most popular testing frameworks presented in Section III. 11
of the participants consider themselves as experienced in the
domain of software testing and 9 of them as experienced
SCALA developers. Their experience is also reflected by the
size of the biggest project on which they have worked. Indeed,
most projects range from 10K to 100K LOC. The survey is
hosted on Google Forms and is designed to be completed
in approximately 20 minutes. We collect the answers over a
timespan of 2 weeks.

We address RQ3 by means of Figure 3. This plot depicts
the number of participants that perceived and identified each
test smell. More specifically, it depicts:

• The absolute number of cases in which test smells have
been perceived by participants. A test smell is perceived
whenever the participant answered yes to the question:
Does this unit test exhibit a test smell according to your
experience?

• The absolute number of cases in which test smells have
been identified by the participants. A participant is able
to identify a test smell if the given explanation correctly
pinpoints the cause of the test smell. The explanations

5https://www.meetup.com

Figure 3. Absolute number of participants that perceived the smells compared
to the ones that correctly identified them.

are collected from the question ”If yes, indicate which
piece(s) of code and/or which reasons might cause this
test smell. If no, leave blank.”. For example, an expla-
nation that clearly verifies that the participant pinpointed
GENERAL FIXTURE is the following: ”[...] concrete test
data is best constructed and tailored for each specific
tests.”, while one such as ”Too much scaffolding” is
considered too general and thus we cannot assert that
the participant correctly identified the test smell.

Based on the aforementioned data analysis, we are able to
verify which test smells are the most perceived and which ones
are most identified (RQ3).

B. Analysis of the Results

For RQ3, we analyse the survey answers quantitatively and
quantitatively.

Assertion Roulette. This smell was perceived by 9 out of 14
participants. However, only 2 of them identify the problem of
the test having multiple assertions without failure explanation
(e.g., [...] several assertions within same test case).

General Fixture. We discuss all variants of the GENERAL
FIXTURE smell. We observe that, on average, 10 out of 14
participants perceive each of the variants. Additionally, 7 out
of 14 participants also correctly identify the cause of these
smells. It emerges that developers are well aware of the correct
usage of fixtures, as confirmed by several detailed explanations
of the participants such as: ”Two different test cases uses
the same fixture that is badly tailored for each. Each test
case should have specific data made for it, reusing test data
should remove code duplication when needed, in this case it’s
coupling the scenarios for no reason” and ”unused fixtures in
tests, plus in this case because each fixture is only used in one
test you’re paying a readability penalty for nothing”.

Eager Test. EAGER TEST smell is perceived by 9 out of 14
participants, but only 3 of them are able to correctly identify
the cause of this smell. In these cases, the explanations are

very short and to the point, such as ”Should only test one
thing, and [...]”.

Mystery Guest. Half of the participants (7 out of 14)
perceive that the unit test exhibited an instance of MYSTERY
GUEST. 5 of these 7 developers identify the problem (e.g.,
”[...] instead of a file would have simplified testing to avoid
using external resources, there are also alternatives to gener-
ate tmp files for the test case, so that the file content and the
test checks are easier to keep in sync”).

Sensitive Equality. Almost all participants (11 out of 14)
perceive the smell. They correctly identify the problematic
piece of code, namely the use of toString. Their explana-
tions are all very similar and correctly pinpoint the problem.
One participant, for instance, does so as follows: ”Testing
‘toString‘ to check for behaviour is easily broken. Adding
parameters to the class or renaming it would immediately
break the test.”. This is testament to the awareness of the smell.

Lazy Test. 11 out of 14 participants perceived this smell,
but none was able to identify it correctly. It looks like many
developers are simply not aware of this smell, which is also
reflected by the large number of occurrences of this smell, as
depicted in Figure 2. It is worth mentioning that one of the
participants misinterpreted the name of the smell, and assumes
that it is related to an incongruence between the test descrip-
tion (i.e., lines 1 and 9 of Listing 8) and its implementation:
”[...] you call it ”the lazy test” but yeah, those assertions
don’t match the test labels, they aren’t specific/strong enough
assertions”. Surprisingly, multiple participants remarked the
same incongruence: ”Should only test one thing, and descrip-
tion should match assertion, ”[...] Moreover, the description
doesn’t match the test: just verifying that [...], and ”The tests
description does not match the assertions” Its inclusion in the
survey was unintentional, yet several developers perceive it as
a new kind of test smell. This indicates that SCALATEST users
rely on the descriptions of a test to understand its purpose.
Note that JUNIT only recently provides the @DisplayName
annotation to the same end.

Summary for RQ3. The considered test smells are per-
ceived by developers. The most identified test smells are
SENSITIVE EQUALITY, GENERAL FIXTURE, and MYS-
TERY GUEST, while no developer was able to identify
LAZY TEST correctly. Only 5 out of 14 (35.71%) are able
to explain the cause of these smells. This shows that many
developers are not able to correctly identify most of the
smells, even though they perceive a design issue.

V. DISCUSSION

Given that SCALA and JAVA have the basics of object-
oriented programming on the JVM in common, we performed
a high-level discussion and comparison with the results ob-
tained by previous studies that target test smells in JAVA
systems. We did not perform a strict quantitative comparison
because the datasets considered in the studies have different
characteristics.

Diffusion. Greiler et al. [14] analysed the diffusion of
fixture-related test smells, including the GENERAL FIXTURE
studied in this paper, in 3 industrial JAVA systems that use
either the JUNIT or TESTNG unit testing frameworks. They
found that GENERAL FIXTURE occurs in respectively 13.5%,
23%, and 32% of each of the systems’ test cases. Among
the 164 open-source SCALA systems studied in this paper, we
found an instance of GENERAL FIXTURE in only 3.06% of the
test cases. Note that the studies differ on the detection method
used for the smell in that SOCRATES reports the smell as
soon as at least one field is not used by a test case, while
Greiler et al. evaluate the ratio of referenced fixture fields
against a 0.7 threshold —and still observe a higher diffusion.
We find a potential explanation in an observation made by the
authors in their discussion of fixture definition means: “The
more fine-grained directives which TESTNG offers are not
used”. This is in contrast to the distribution among the SCALA
test cases with a fixture depicted in Table IV. We therefore
recommend that unit testing frameworks include features that
support the fine-grained definition and sharing of case-specific
fixtures, and that developers use them.

Bavota et al. [12] investigated the diffusion of test smells
in 27 JAVA systems. We started from the detection methods
outlined in their work for our transposition to the SCALA
context in Section II. Still, they found 82% of the subject
test classes to be affected by at least one test smell, which
is higher than our 28.10% of test classes among the 164
SCALA systems. Part of the explanation must be their inclusion
of the TEST CODE DUPLICATION and INDIRECT TESTING
smells, affecting 35% and 11% of the JUNIT test classes
respectively. However, the results for ASSERTION ROULETTE
and EAGER TEST differ too: these smells occur in 55% and
34% respectively of the JUNIT test classes, and only in 15.97%
and 6.57% of the SCALATEST test classes. The studies do
agree on ASSERTION ROULETTE and EAGER TEST being
among the three most prevalent test smells.

An explanation for the lower diffusion of EAGER TEST
might be that fields are by default public in SCALA, and
that its syntax enables protecting these fields at a later point
in time by true accessor methods (i.e., that do not directly
return or set the value of the field) without having to substitute
method calls for field accesses.6 For the JUNIT study, calls to
accessor methods —including those returning or setting the
field’s value directly— still count towards those considered
in the EAGER TEST (and LAZY TEST) detection rule. We
recommend researchers to exclude them instead.

An explanation for the lower diffusion of ASSER-
TION ROULETTE among the SCALATEST classes might
be that the framework features a popular DSL for
specifying assertions as should-based sentences such
as string should startWith regex "Hel*o" or
a [Exception] should be thrownBy, for which the
framework does not take an explicit failure explanation mes-

6A pair of getter field and setter field = methods can be defined so
that existing field read and writes become calls to the appropriate method.

sage as argument but rather generates one itself based on
the other operators in the sentence. Our analysis therefore
does not consider them as an assertion without explanation.
Similar DSLs might not be as popular or comprehensive for
JUNIT, but we recommend their use from the perspective of
co-evolution of assertion and explanation.

Perception. We are only aware of three other studies that
assess the perception of test smells by developers.

Bavota et al. [12] complement the aforementioned diffusion
results with a controlled experiment involving 61 participants
ranging from students to professional developers. However,
their main aim was not to assess the participants’ perception
of test smells, but to verify the impact of JUNIT smells on
software maintenance. The results of the user study show that
test smells negatively impact program comprehension during
maintenance activities.

The aforementioned study by Greiler et al. [14] on fixture-
related smells in JUNIT and TESTNG tests does include a
survey among 13 professionals. The results show that devel-
opers recognise that fixture-related smells are problematic and
agree that they impact test maintenance negatively. However,
it is not clear whether developers would be able to recognize
the smells without the detection tool used in the study.

The study with results closest to our own is by Tufano et
al. [13] who investigated developers’ perception of JUNIT
test smells in a survey among 19 participants. Their study
considers the same test smells, except for the omission of
LAZY TEST, and found that developers do not really perceive
test smells as actual design problems (only in 17% of the
cases) and are even less capable of identifying them precisely
(only in 2% of the cases) without tool support. The difference
to our experimental design, apart from the focus on the
combination of SCALA and SCALATEST, is that the tests
used in the survey stem from real-world systems and that
the participants are contributors to those projects. While these
participants may be more aware of the design tradeoffs made in
the system’s history, they may also recognize its shortcomings
less. The overall conclusions of both surveys align though.

VI. RELATED WORK

In the last decade, several methods and tools to detect design
flaws in production code have been proposed [17]–[20], as
well as empirical studies aimed at assessing their impact on
maintainability [21]–[31].

Despite the importance of testing [1] and of well-designed
test components [32], design problems affecting test code have
been only partially explored. In this context, Van Deursen et
al. [3] defined a catalog of 11 test smells, i.e., a set of a
poor design solutions to write tests, together with refactoring
operations able to remove them. These smells take into ac-
count poor design choices adopted by developers during the
implementation of test fixtures or of single test cases. Based
on the work of Van Deursen et al. [3], another catalogue was
defined by Meszaros [33].

Most of the approaches for test smell detection [14], [34]
are based on structural metrics. Palomba et al. [35] argued that

this information does not suffice for test smell detection and
proposed TASTE, a text-based detector exploiting information
retrieval techniques to identify test smells such as GENERAL
FIXTURE and EAGER TEST. Their empirical study showed
that exploiting textual information can lead to more accurate
detectors. Later on, Spadini et al. [6] studied the relation
of test smells and software quality. Their results show that
test smells are an important problem for maintainability and
reliability of software systems, badly influencing the quality of
both production and test code. Similar findings were reported
by Palomba and Zaidman [5], who discovered that three test
smells can induce tests flakiness. Finally, Tufano et al. [13]
highlighted that test smells are generally introduced when test
code is committed for the first time, and often developers do
not refactor them.

With respect to the papers described so far, our work is, to
the best of our knowledge, the first one targeting SCALA, a
more modern programming language with a rich ecosystem
of testing frameworks, and of which the adoption has been
rapidly increasing over the last decade.

VII. THREATS TO VALIDITY

In this section, we discuss the threats that might have
affected the validity of our conclusions.

Threats to construct validity. These threats mainly concern
the measurements we performed. We detected test smells in a
corpus of open-source SCALA projects using our SOCRATES
static analysis tool. As its precision and recall have a major
influence on the results, we manually validated SOCRATES
in Section III-B on a statistically significant subset of test
cases (377 test cases, with a confidence level of 95% and
a confidence interval of 5%), and observed a precision of
98.94% and a recall of 89.59% —in line with those achieved
by other state-of-the-art tools [4], [16].

We also note that some definitions of test smells leave
details open to interpretation, while others require semantic
information to detect them correctly. With respect to the
former, we started our transposition to SCALA from the test
smell detection rules used in the studies by Bavota et al. [4],
[12], the results of which we compare against in the discussion
section. With respect to the latter, our future work includes
incorporating more of the semantic information provided by
the SEMANTICDB library, and in particular information about
the type hierarchy and call graph. We currently identify the
corresponding production class for a test class through naming
conventions such as those used in existing studies [4], [6],
[16]. We acknowledge that SOCRATES might therefore have
missed some links between production and test classes. Fi-
nally, we assume that src/test only contains unit tests and
not integration tests as they should be in src/it. However,
this is a convention that developers might not follow and it
could bias the results.

A threat to the validity of the survey results is the artificial
nature of the test smell samples that we provided to the
participants. These samples were designed to focus developers
on the design issues of the tests, and to avoid long training

sessions about the systems under tests which are difficult to
realize for studies with industrial developers. We are also
aware that only showing examples of tests that exhibit a
smell, along with its name, could have biased the participants.
However, the impact is limited to the perception results only,
as participants had to explain their answer for the identification
results.

Threats to internal validity. These threats concern factors
internal to our study that we cannot control. The number
of participants that we found willing to participate in the
survey represents the largest of these threats for its results.
We interviewed 14 experienced SCALA developers working
on open-source and industrial software systems. This sample
is by no means representative and replications with a larger
number of participants are desirable.

Threats to external validity. These threats concern the gen-
eralization of our results. For the study on the diffusion of test
smells, we selected a subset composed of the top-164 SCALA
projects hosted on GITHUB. We considered only projects with
test classes and that are built using SBT 0.13+ and SCALA
2.11+. We selected projects with more than 1, 000 LOC of
production and of test code and using SCALATEST, the most
popular testing framework for SCALA. This subset of projects
may not be representative of industrial software systems, and
therefore replications in this context are desirable.

Finally, our diffusion results might not hold for other test
smells. We covered a comprehensive set of 6 test smells, which
were reported as the most diffused among JUNIT tests by
existing studies [4], [16]. Analysing the diffusion of additional
test smells is therefore on our future research agenda.

VIII. CONCLUSION AND FUTURE WORK

Earlier research has demonstrated that test smells can impact
test effectiveness, understanding, and maintenance negatively
—but has mostly been limited in scope to the combination
of JAVA with the JUNIT testing framework. Other language
and framework combinations may give developers different
options for the design and implementation of their unit tests.

Our results from 164 open-source projects show that test
smells are less diffused in SCALA tests that use SCALATEST
than in JAVA tests that use JUNIT. We also observe that
developers are often unable to perceive and even less to
identify test smells —as was already the case for the JAVA and
JUNIT combination. Therefore, we argue for more language
and framework diversity in empirical research on test smells,
as well as research to assess the impact and harmfulness of
test smells.

The difference between the languages is even more pro-
nounced when analyzing the GENERAL FIXTURE smell. For
this reason, we deem that language designers should provide
support for fine-grained definitions of test fixtures and that
developers should use more fine-grained means such as “loan
fixture methods” and “fixture context objects” for defining and
sharing case-specific fixtures instead of using general fixtures.

REFERENCES

[1] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[2] B. Beizer, Software testing techniques. Dreamtech Press, 2003.
[3] A. van Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring test

code,” in Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP),
2001, pp. 92–95.

[4] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, 2012, pp. 56–65.

[5] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?” in Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on. IEEE, 2017, pp. 1–12.

[6] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2018.

[7] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of
test smells,” in Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on. IEEE, 2016, pp. 4–15.

[8] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger, “The scala language specifica-
tion,” 2007.

[9] R. Kuhn, B. Hanafee, and J. Allen, Reactive design patterns. Manning
Publications Company, 2017.

[10] M. Nash and W. Waldron, Applied Akka Patterns: A Hands-On Guide
to Designing Distributed Applications. ” O’Reilly Media, Inc.”, 2016.

[11] J. D. Bleser, D. D. Nucci, and C. D. Roover, “Assessing
Diffusion and Perception of Test Smells in Scala Projects,” 3 2019.
[Online]. Available: https://figshare.com/articles/Assessing Diffusion
and Perception of Test Smells in Scala Projects/7836332

[12] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, 2015.

[13] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: ACM, 2016, pp. 4–15.

[14] M. Greiler, A. van Deursen, and M.-A. Storey, “Automated detection of
test fixture strategies and smells,” in Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST),
March 2013, pp. 322–331.

[15] M. Greiler, A. Zaidman, A. van Deursen, and M.-A. Storey, “Strategies
for avoiding text fixture smells during software evolution,” in Proceed-
ings of the 10th Working Conference on Mining Software Repositories
(MSR). IEEE, 2013, pp. 387–396.

[16] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code:
An empirical study,” in Proceedings of the 9th International Workshop
on Search-Based Software Testing. ACM, 2016, pp. 5–14.

[17] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 612–
621.

[18] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman, “A
textual-based technique for smell detection,” in Program Comprehension

(ICPC), 2016 IEEE 24th International Conference on. IEEE, 2016, pp.
1–10.

[19] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, May
2015.

[20] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
“Toward a smell-aware bug prediction model,” IEEE Transactions on
Software Engineering, 2017.

[21] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, Blob and Spaghetti Code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011, 1-4 March 2011, Old-
enburg, Germany. IEEE Computer Society, 2011, pp. 181–190.

[22] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the International Workshop on Refactoring Tools.
ACM, 2011, pp. 33–36.

[23] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

[24] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “A large-scale empirical study on the lifecycle of code
smell co-occurrences,” Information and Software Technology, vol. 99,
pp. 1–10, 2018.

[25] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. de Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, pp. 1188–1221, 2018.

[26] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014, pp. 101–110.

[27] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” IEEE Transactions on Software Engineering, 2017.

[28] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2004, pp. 223–232.

[29] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance effort,”
IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156, 2013.

[30] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software
Engineering, vol. 43, no. 11, pp. 1063–1088, 2017.

[31] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell re-
lations on software maintainability: An empirical study,” in Proceedings
of the International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 682–691.

[32] A. Schneider, “Junit best practices,” ser. Java World, 2000.
[33] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson

Education, 2007.
[34] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On the

detection of test smells: A metrics-based approach for general fixture
and eager test,” IEEE Transactions on Software Engineering, vol. 33,
no. 12, pp. 800–817, Dec 2007.

[35] F. Palomba, A. Zaidman, and A. Lucia, “Automatic test smell detection
using information retrieval techniques,” in Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2018.

