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Abstract—Bug Prediction is an activity aimed at identifying
defect-prone source code entities that allows developers to focus
testing efforts on specific areas of software systems. Recently, the
research community proposed Just-in-Time (JIT) Bug Prediction
with the goal of detecting bugs at commit-level. While this topic
has been extensively investigated in the context of traditional
systems, to the best of our knowledge, only a few preliminary
studies assessed the performance of the technique in a mobile
environment, by applying the metrics proposed by Kamei et al. in
a within-project scenario. The results of these studies highlighted
that there is still room for improvement. In this paper, we faced
this problem to understand (i) which Kamei et al.’s metrics are
useful in the mobile context, (ii) if different classifiers impact
the performance of cross-project JIT bug prediction models and
(iii) whether the application of ensemble techniques improves
the capabilities of the models. To carry out the experiment, we
first applied a feature selection technique, i.e., InfoGain, to filter
relevant features and avoid models multicollinearity. Then, we
assessed and compared the performance of four different well-
known classifiers and four ensemble techniques. Our empirical
study involved 14 apps and 42, 543 commits extracted from the
COMMIT GURU platform. The results show that Naive Bayes
achieves the best performance with respect to the other classifiers
and in some cases outperforms some well-known ensemble
techniques.

Index Terms—JIT Bug Prediction; Metrics; Empirical Study

I. INTRODUCTION

Continuous Integration (CI) [1] is a software engineering
practice in which isolated changes are immediately tested and
reported on when they are added to code base; it aims to provide
integration errors or bugs earlier, thus improving software
quality and speeding up the issue resolution activities carried
out by developers. Although CI is originated from the Extreme
Programming paradigm [2], [3], born in the early nineties, its
principles can be applied to any iterative modern development
model.

Given its nature, CI naturally fits well in the context of
emerging release planning strategies where software systems
are not released following a clearly defined road-map, but rather
continuous releases become available on weekly/daily basis
[4]. Nowadays, such emerging development release practices
is widely adopted by mobile applications: indeed, with over
two billion users relying on smart-phones and tablets for social
and emergency connectivity [5], mobile app developers need
to continuously update their apps in order to satisfy users
proposing new features or fixing important bugs [6].

In such a context, mobile developers require appropriate tools
to manage continuous changes and avoid the introduction of

bugs [7], [8]. While the research community is devising many
tools to simplify maintenance and evolution of mobile apps [9]–
[11], there is still a lack of tools that help developers in timely
spotting possible bugs. Toward this direction, a promising area
is represented by software bug prediction. This technique relies
on a set of metrics (i.e., independent variables) to characterise
a certain piece of software in order to predict its bug-proneness
(i.e., dependent variable) by using a machine learning technique
(a.k.a., classifier) [12]. As recently shown by Kamei et al. [13],
such models can be even more useful if they provide feedback
as soon as new changes are committed to repositories. Being
able to notably reduce the effort needed for code inspection,
this fine-grained technique, coined as Just-in-Time (JIT) [13],
[14], has been shown to be effective in the context of traditional
applications.

Despite the previous work to define JIT bug prediction
models, there is still lack of empirical evidence on the
performance of such models in the context of mobile apps.
Indeed, the different way in which mobile apps are developed
(e.g., continuous releases, newcomers issuing their own apps,
etc.) might have a strong influence on the performance of
models that have been not designed for taking into account
mobile-related factors.

To the best of our knowledge, this topic has been treated only
by Kaur et al. [15] and Catolino [16]. The former work explored
the usefulness of code and process metrics to predict mobile app
bugs occurring in the next release, while the latter preliminarily
assessed a within-project JIT bug prediction model (i.e., a model
relying on previous data of the considered apps) on five mobile
apps, finding that the performance are very low (i.e., ≈35%
in terms of F-Measure). As a result, these authors highlighted
how further studies are needed to apply these models in the
mobile context. In this paper, we start bridging this gap by
analysing three aspects:
• The selection of metrics. Most of the metrics used for

traditional systems have been adapted into the mobile
context [17], [18]. However, it is still unclear to what
extent these metrics are effective [15], [16].

• The impact of classifiers. Recent findings [19], [20]
showed that the choice of the machine learning technique
to build prediction models has a strong impact on the
performance (i.e., by up to 30%), as well as the use of
ensemble techniques usually improve the performance of
prediction models [19], [21]–[23]. Nevertheless, in the
context of mobile, it is still unclear which classifiers offer



the best performance.
• The need for cross-project bug prediction models. As

suggested by Hall et al. [12], cross-project models should
be further investigated to ensure a wider applicability of
bug prediction: indeed, lack of previous data might render
the application of within-project strategies not feasible.
This is particularly true in the context of mobile, where
new applications are born on daily basis and, therefore,
developers do not have information to build within-project
bug prediction models (as also shown in [16]).

To address these arguments and to assess the usefulness of
JIT bug prediction for mobile applications, we conducted an
empirical study with the aim of understanding (i) which Kamei
et al.’s metrics are relevant in mobile context, (ii) if different
classifiers impact the performance of cross-project JIT bug
prediction models, and (iii) whether the application of ensemble
techniques improves the capabilities of the models. The study
involved 14 applications for a total of 42, 543 commits extracted
from the COMMIT GURU platform [24].

To understand which metrics have more influence on the
bugginess of mobile apps commits, we first applied a feature
selection technique, i.e., InfoGain [25] on the set of metrics
proposed by Kamei et al. [13].

Once extracted this set, we experimented four standard
machine learning techniques (i.e., Logistic Regression [26],
Decision Table [27], Support Vector Machine [28], and
Naive Bayes [29]) and four ensemble methods (i.e., Random
Forests [30], Voting [31], Bootstrap Aggregating [32], and
Boosting [33]). We assessed each classifier and ensemble
technique adopting the Leave-One-Out Cross-Validation [34].

Key results of our study indicate that metrics related to
code churn, e.g., Lines of code deleted, diffusion of changes,
e.g., Number of modified directories, and history, e.g., Number
of unique changes, are important to identify risky commits.
Despite the differences between traditional systems and mobile
apps [8], these results are partially in line with traditional
bug research in traditional system [12]. We obtained similar
results when comparing the performance of JIT bug prediction
models. Indeed, we observed that the best performance for
standard classifiers is achieved by Naive Bayes, i.e., 50% of F-
Measure, while Logistic Regression performed worse than other
classifiers by up to 40% in terms of F-measure. This means that
the choice of classifier has impacted on the performance of JIT
bug prediction models [19], [20]. Finally, applying ensemble
methods does not provide evident benefits with respect to
simpler classifiers. For example, the model built using the
Boosting ensemble technique performed only 4-5% better than
the one relying on Naive Bayes.

Structure of the paper. Section II overviews the literature
related to bug prediction in the context of mobile apps. In
Section III we discuss the research methodology adopted
to build and evaluate JIT bug prediction models, while in
Section IV we report the results of the empirical study.
Section V examines the threats to the validity of the study and
the way we mitigated them. Finally, Section VI concludes the
paper and provides insights on our future research agenda.

II. RELATED WORK

Bug prediction represents a topic extensively investigated
in the context of standard systems [12], [35]–[37], using both
traditional and JIT techniques. As for mobile applications, at
the best of our knowledge, there are only two studies addressing
the topic [15], [16]. In the following, we discuss the literature
related to Just-in-Time bug prediction and cross-project bug
prediction. Furthermore, we analyze the main results related
to the role of machine learners and ensemble techniques for
bug prediction

A. Just-in-Time Bug Prediction for Traditional Systems

The research conducted by Kamei et al. [13], [14], [38],
[39] plays a key role for JIT bug prediction of traditional
systems. Indeed, they proposed a Just-in-Time quality assurance
technique as a more practical alternative to traditional bug
prediction techniques being able to provide defect feedback at
commit-time. To this aim they devised a set of metrics, named
Kamei et al.’s metrics in the following. In particular, in the first
study [13] they analysed the performance of JIT bug prediction
models considering 11 software systems; they built a logistic
regression model and validate it using 10 fold-cross validation.
In [14], [38] they performed additional analysis considering
also cross-project models. The results show that models trained
on other projects are a good solution for systems with limited
historical data. However, JIT bug prediction models perform
better in cross-project context when the training instances are
carefully selected. Finally, McIntosh and Kamei [39] showed
how fluctuations in the properties of fix-inducing changes can
impact the performance and interpretation of JIT models.

Other researchers tried to propose alternatives for Just-in-
Time quality assurance, using deep learning and textual analysis
[40], [41], while others proposed new approaches [42]–[45]
exploiting the Kamei et al.’s metrics [13]. In particulars, Yang
et al. [44] showed that simple unsupervised JIT bug prediction
models perform better than the state-of-the-art supervised
models in JIT defect prediction, and that deep learning is
suitable for JIT models [40]. Afterwards, they proposed a
two-layer ensemble learning approach for Just-in-Time defect
prediction [42]. In the inner layer, they combine Decision Tree
and Bagging to build a Random Forest model, while in the
outer layer, they use random under-sampling to train many
different Random Forest models and ensemble them once more
using stacking. The evaluation of the approach, conducted on
six open source projects, showed good results in terms of
prediction accuracy.

Huang et al. [45] replicated the study of Yang et al. [44]
while proposing a simpler but improved supervised model
which obtained similar results in terms of Recall, but performed
significantly better in terms of Precision [44]. Chen et al. [43]
proposed a multi-objective optimisation supervised method to
build JIT bug prediction models. They conducted a large-scale
empirical study to compare their approach with 43 state-of-the-
art supervised and unsupervised methods under three commonly
used performance evaluation scenarios: cross-validation, cross-
project-validation, and time wise-cross-validation. The results



confirm that supervised methods are still promising in effort-
aware JIT bug prediction models. Finally, Nayrolles and Hamou-
Lhadj [46] proposed an approach, called CLEVER (Combining
Levels of Bug Prevention and Resolution techniques) that
intercepts risky commits (commits that could contain bugs)
before they reach the central repository. They evaluated their
approach on 12 Ubisoft systems, achieving good results.

B. Just-in-Time Bug Prediction for mobile apps

In the context of Just-in-Time bug prediction of mobile
applications, Kaur et al. [15] evaluated the accuracy of code
and process metrics to predict defects in open source mobile
apps, showing that models based on process metrics are better
than those based on code metrics. In general, in the field
of mobile apps, the research community has tried to adapt
metrics used in standard software systems [15]–[18], [47],
more than proposing metrics or guidelines to measure mobile
applications. Starting from the work by Kamei et al. [13],
[14], [38], only one recent study [16] tried to adapt their set
of metrics, in the context of mobile applications. This work
considered five mobile apps from the COMMIT GURU platform
[24] and applied a feature selection technique, i.e., Wrapper
[48], in order to extract the most significant metrics to predict
commit bugginess. Finally, a logistic regression model was
built, adopting Ten-fold cross validation and a within-project
strategy. Results showed that the models were able to discover
only a limited number of bugs (Recall ≈ 25%), highlighting the
need of further analysis. The work of Catolino [16] represents
the baseline of the current paper. In particular, we performed
a large scale empirical study (i) involving more apps, (ii)
aiming to deeply analysing which Kamei et al.’s metrics can
be adapted in mobile context using a different type of feature
selection analysis, (iii) understanding if different classifiers
impact the performance of JIT bug prediction models using
a cross-project strategy, and (iv) investigating whether the
application of ensemble techniques improves the capabilities
of the models.

C. Cross-Project Bug Prediction

Several studies addressed the problem of cross-project bug
prediction, e.g., [49]–[54]. However, as highlighted by Hall et
al. [12] within-project techniques need to be gradually replaced
by cross-project solutions to ensure a wider applicability of
bug prediction. In this subsection, we recall the main papers
on the topic. In particular, Zimmermann et al. [49] conducted
a large experiment on 12 systems, showing the pitfalls of
cross-project defect prediction. Turhan et al. [50] compared the
performance of cross- and within-project strategies, concluding
that within-project ones performed better. Watanabe et al. [51]
defined a method able to adapt external data to the project
taken into account. Their results showed that it is possible
to re-use prediction models among projects developed with
different programming languages. Jureczko and Madeyski [53]
showed that a selection of external data can be successfully
exploited to predict bugs. To this aim they exploited a
clustering technique to split different projects based on their

characteristics. Nagappan et al. [52] studied the generalisability
of cross-project bug prediction models for identifying post-
release bugs. The empirical investigation of five Microsoft
systems revealed that no single set of predictors properly fits all
projects. Furthermore, they showed that within-project models
tend to perform better than cross-project ones. Finally, He et
al. [54] conducted a large experiment on 34 datasets obtained
from ten open source projects. Their results showed that cross-
project strategy worked better than within-project and those
results are strictly related with the ability to select valuable
data for training models.

D. Ensemble Techniques for Bug Prediction

Ghotra et al. [20] recently showed that the selection of the
machine learner is relevant for the performance of the bug
prediction model (it can increase/decrease up to 30%). Aiming
to exploit the best contribution of different techniques, the
research community moved their attention to the application
of ensemble methods [33]. Wang et al. [21] compared the
performances achieved with seven ensemble techniques in
the context of within-project bug prediction, finding that
Voting performed better with respect to the others. The same
results were obtained by Misirli et al. [55], who improved
the performance of within-project bug prediction using the
Voting technique. Similar results were obtained by Zhang et
al. [56] and Panichella et al. [19] that compared different
ensemble approaches, highlighting how Voting performs better.
This technique turned out to be the best ensemble technique
also in the context of cross-project bug prediction, as shown
by Liu et al et al. [57] who evaluated 17 different models.

Kim et al. [58] combined multiple training data and they
applied a random sampling in the context of within-project bug
prediction. Petric et al. [23] built a Stacking ensemble technique
[33] starting from four families of classifiers in the cross-project
bug prediction. Their results showed the improvements given by
their approach with respect to other ensemble techniques. At the
same time, Panichella et al. [19] devised CODEP, a technique
that applies a set of classification models independently and
then uses the output of the first step as predictors of a new
prediction model.

Finally, Di Nucci et al. [22] developed ASCI (Adaptive
Selection of Classifiers in bug prediction), able to dynamically
select among a set of machine learning classifiers the one
which better predicts the bug proneness of a class based
on its characteristics. They performed an empirical study
on 30 systems, showing that their approach reaches higher
performances than five different classifiers used independently
and combined with the majority voting ensemble method.

III. RESEARCH METHODOLOGY

This section describes the design of the empirical study.

A. Research Questions

The goal of the study is to identify risky code changes,
using Kamei et al.’s metrics [13], that should be reviewed
and/or tested more carefully before their integration in the



code base in the context of mobile applications, with the
purpose of reducing the effort required for testing activities,
focusing on those components that are more bug-prone. The
quality focus is on the prediction accuracy of Just-in-Time bug
prediction models trained using different standard classifiers
and ensemble methods in cross-project strategy. The perspective
is of researchers, who want to evaluate the effectiveness of
using the model when predicting bug-prone components in
mobile apps. In details, we formulated the following research
questions:
RQ1: Which of the metrics proposed by Kamei et al. are more
relevant in the context of JIT bug prediction for mobile apps?
With this research question, we analysed the relevance of the
metrics proposed by Kamei et al. in the context of mobile apps.
The goal is to understand whether the metrics used in Just-in-
Time bug prediction for traditional software are suitable also
in the mobile context. We used the feature selection algorithm
described in one of the next subsection to understand which
metrics are more suitable as predictors in JIT bug prediction.
RQ2: How different classifiers work in the context of cross-
project JIT bug prediction for mobile apps?
The aim of this research question is to assess the impact of
using different classifiers in the performance of Just-in-Time
bug prediction models. We choose several classifiers that have
been used in many previous works for bug prediction [19],
[56], and are based on different learning peculiarities (e.g.,
regression functions, neural networks, and decision trees). This
choice increases the generalisability of our results. Finally, the
motivation behind the application of a cross-project strategy
depends on the fact that in the context of mobile apps, new
applications are born on daily basis and, therefore, developers
cannot have enough information to build a prediction model,
making the within-project strategy not always feasible, as also
shown by Catolino [16].
RQ3: Do ensemble techniques improve the effectiveness of
cross-project prediction models?
Finally, we compare the performance of the models built using
ensemble techniques with those built using single classifiers. In-
deed, as shown by the research community, different classifiers
are suitable in different contexts and their combination can lead
to better performance [22], [59]. For this reason, ensemble
techniques have been used for bug prediction [22], change
prediction [60], and effort estimation [61]. As done by Kamei
et al. [14], we compare the performance of the best model
coming from RQ2 with the models trained using ensemble
techniques.

B. Context Selection

The context of the study consists of 14 open source mobile
Android applications with different size and scope. To reduce
the threats related to the generalisability of the results, we
selected mobile apps having different application domains and
size from the COMMIT GURU platform [24]. Table I shows
for each app (i) the URL of the Play Store page, (ii) the URL
of the GitHub repository, (iii) the number of commits, and

(iv) the percentage of buggy commits. The dataset used in this
study is available in the online appendix [62].

C. Building Just-in-Time Bug Prediction Models

To answer our research questions, we first need to design Just-
in-Time bug prediction models. This step requires the definition
of several aspects such as (i) the selection of the independent
variables to use in the models, (ii) the formulation of the
dependent variable that the model will predict, (iii) the choice
of a feature selection technique to avoid multi-collinearity,
(iv) the definition of training and validation strategies. The
following sub-sections report the choices that we adopt for
each aspect.

Independent Variables. As previously mentioned, we use
as independent variables the metrics proposed by Kamei et
al. [13] for Just-in-Time bug prediction. Indeed, these metrics
have been shown to perform well in the context of tradition
software systems to predict whether or not a change will induce
a bug in the future [13], [14], [38]. They take into account a
wide range of factors based on the characteristics of a software
change (i.e., a commit), such as the number of added lines, and
committers’ and developers’ experience. Table II reports the
metrics grouped according to their scope. The Diffusion scope
refers to the diffusion of changes. In general, metrics within
this scope are considered very relevant in bug prediction [63]
along with those belonging to the Size scope [64]. For the
latter, the intuition is that larger changes are more prone to
introduce bugs. Another interesting scope is the History of the
files involved in the changes. Indeed Matsumoto et al. [65]
showed how files previously modified by many developers,
(i.e., NDEV metrics) usually contain more bugs. Furthermore,
a recent study showed how developers-factors can influence
the change proneness of the code components [66]. Regarding
the Purpose scope, previous work [67] highlighted that bug-
fixing changes are more likely to induce new bugs. Finally,
regarding the Experience scope, previous work [63] showed
that high-experienced developers tend to introduce less bugs.

Dependent Variable. We considered the bugginess of
a commit as dependent variable and we analyzed 42, 543
commits. In particular, we considered a commit as buggy if it
introduced a defect that was fixed by a later commit, otherwise
we consider it clean. It is important to note that the dependent
and independent variables used in this study are available on
the COMMIT GURU platform [24].

Feature Selection. Although the independent metrics have
already been experimented in Just-in-Time bug prediction
models [13], we believe that a simple combination, obtained
by featuring together all the predictors, might lead to sub-
optimal results because of over-fitting [68]. To avoid this
issue, we study the subsets of predictors able to lead to the
best prediction performance. To this aim, we perform feature
selection [69] by applying information gain [25]. This algorithm
quantifies for each metric the gain obtained by adding it to the
prediction model. Our choice has been driven by the ability
of the algorithm to quantify the gain provided by each metric,



Table I
CHARACTERISTICS OF THE MOBILE APPS CONSIDERED IN THE STUDY

Project URL of Play Store URL of Repository #SLOC #Developers # of Commits % of Buggy Commits

Afwall https://tinyurl.com/opd8628 https://tinyurl.com/m722ouo 77,243 20 1,127 37%
Alfresco https://tinyurl.com/kfv93ez https://tinyurl.com/ya533yya 152,047 5 1,449 21%
Android Sync https://tinyurl.com/yafbk6f2 https://tinyurl.com/y9vcudjt 275,637 27 280 51%
Android Walpaper https://tinyurl.com/hpl65mr https://tinyurl.com/y7f5bjpt 35,917 1 605 22%
AnySoftKeyboard https://tinyurl.com/k9s97zl https://tinyurl.com/lqzxc3v 114,784 38 3,250 26%
Apg https://tinyurl.com/cxwqp5n https://tinyurl.com/y6vxu57x 151,204 56 4.363 30%
Atmosphere https://tinyurl.com/ybdofq5h https://tinyurl.com/y9ovae5z 56,686 101 5,757 38%
Chat Secure Android https://tinyurl.com/lero26e https://tinyurl.com/pxcupkk 98,768 35 2,869 30%
Facebook Android SDK https://tinyurl.com/6ueeu7y https://tinyurl.com/yctphsxw 103,802 64 636 28%
Flutter https://tinyurl.com/y9q57wa8 https://tinyurl.com/yd25noy3 639,350 352 13,067 1%
Kiwix https://tinyurl.com/ognzugp https://tinyurl.com/ycvufxwn 32,598 60 1,571 22%
Own Cloud Android https://tinyurl.com/8vfuemy https://tinyurl.com/ptflhfe 115,169 70 7,144 22%
Page Turner https://tinyurl.com/y9qgcffz https://tinyurl.com/yc26yklh 30,943 16 193 22%
Notify Reddit https://tinyurl.com/nd835ec https://tinyurl.com/ydce46ge 9,506 2 231 26%

Table II
THE METRICS DEFINED BY KAMEI et al. [13]

Scope Name Definition

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files

Entropy Number of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a bug fix

History
NDEV Number of developers working on the files
AGE Average number of days since the last change
NUC Number of unique change to modified files

Experience
EXP Developer experience

REXP Recent developer experience
SEXP Developer experience on a subsystem

thus allowing us to study which ones have more influence
in Just-in-Time bug prediction. More formally, let M be the
model using all the predictors and F = {f1, . . . , fn} the set
of features composing M , information gain [25] measures the
difference in terms of entropy between the set that includes fi
and the one that does not, using the following formula:

InfoGain(M,fi) = E(M)− E(M |fi) (1)

where the function E(M) represents the entropy of M when
it includes fi, and the function E(M |fi) represents the entropy
of M that does not include fi. E(M) is computed as reported
in the following equation:

E(M) = −
n∑

i=1

prob(fi) log2 prob(fi) (2)

The output of the algorithm is represented by a ranked list
where the more relevant features, i.e., the ones having the
highest expected reduction in entropy, are placed on the top.
To ensure that only the relevant features are used, we set the
cut-off point of the ranked list equal to 0.1, as suggested by
previous studies [25], [60].

In a previous work, Catolino [16] used Wrapper [48]
as feature selection algorithm. This method measures the

"usefulness" of features based on the classifier performance,
while information gain is a filtering method that picks up
the intrinsic properties of the features (i.e., the "relevance"
of the features) measured via univariate statistics instead of
cross-validation performance. Since our goal was to deeper
analyze the reasons behind the extraction of particular metrics,
we decided to use this kind of method.

It is important to note that the result of this step has been
used for the evaluation analysis of RQ1 and the selection of the
independent variables used to build JIT bug prediction models
in RQ2 and RQ3.

Data Balancing. Just-in-Time bug prediction is an imbal-
anced problem [70]. This means that the number of data
available in the training set for a certain class (e.g., the number
of buggy commits) is far less than the amount of data available
for another class (e.g.,, the number of clean commits). The
skewness of the dataset is highlighted in Table I. To handle this
issue, we apply Synthetic Minority Over-sampling Technique
(SMOTE), proposed by Chawla et al. [71] to make the training
set uniform with respect to the number of buggy commits.
Since this approach can be run once per time to over-sample
a certain minority class, we repeated the over-sampling until
all the classes considered have a similar number of instances.

Training Strategy. We experimented four standard machine
learning techniques (i.e., Logistic Regression [26], Decision
Table [27], Support Vector Machine [28], and Naive Bayes [29])
and four ensemble methods (i.e., Random Forests [30], Vot-
ing [31], Bootstrap Aggregating [32], and Boosting [33]).

Decision Table [27] describes all possible combinations of
conditions and the decision appropriate to each combination.
Each decision corresponds to a variable, relation or predicate
whose possible values are listed among the condition alterna-
tives. Each action is a procedure or operation to perform, and
the entries specify whether (or in what order) the action is
to be performed for the set of condition alternatives the entry
corresponds to.

Logistic Regression [26] is used to explain the relationship
between one dependent binary variable and one or more
metrics (interval or ratio scale) independent variables. Logistic
regression can be binomial (binary), ordinal or multinomial. In
this work, we use Binary Logistic Regression, indeed it deals



with situations in which the observed outcome for a dependent
variable can have only two possible values.

Support Vector Machine (SVM) [28] is primarily a classier
method that performs classification tasks by constructing
hyperplanes in a multidimensional space that separates cases
of different class labels. SVM can be applied for regression
and classification tasks and can handle multiple continuous
and categorical variables.

Naive Bayes [29] methods are a set of supervised learning
algorithms based on the application of Bayes’ theorem with
the naive assumption that the value of a particular feature is
independent from the value of any other feature, given the
class variable.

Random Forests [30] are a mixture of tree predictors such that
each tree depends on the values of a random vector sampled
autonomously and with the same distribution for all trees in
the forest. The generalization error for forests converges to a
limit as the number of trees in the forest becomes large, while
the generalization error of each tree depends on the strength of
the individual trees in the forest and the association between
them. A different subset of the training data is selected, with
replacement, to train each tree. Remaining training data are used
to estimate error and variable importance. Class assignment
is made by the number of votes from all of the trees and for
regression, the average of the results is used.

Voting [31] represents the simplest ensemble algorithm, and
is often very effective. It can be used for classification or
regression problems. Voting works by creating two or more sub-
models. Each sub-model makes predictions which are combined
in some way, such as by taking the mean or the mode of the
predictions, allowing each sub-model to vote on what the
outcome should be. In our case, the weak learners are the four
standard classifiers described above.

Bootstrap Aggregating [32], also called Bagging, combines the
output of various models in a single prediction. During the
training phase, m datasets with the same size as the original
one are generated by performing sampling with replacement
(bootstrap) from the training set. Hence for each dataset, a
model is trained using a weak classifier. During the test phase,
for each instance, the composite classifier uses a majority voting
rule to combine the output of the models into a single prediction.
The weak learner chosen is REPTree, since a previous study
reported good result using this technique [72].

Adaptive Boosting (AdaBoost) [33] is a well-known Boosting
technique. During the training phase, AdaBoost repetitively
trains a weak classifier on subsequent training data. At
each iteration, a weight is assigned to each instance of the
training set, with the purpose of assigning higher weights to
misclassified instances that should have more chances to be
correctly predicted by the new models. At the end of the
training phase, a weight is assigned to each model in order to
reward models having higher overall accuracy. During the test
phase, the prediction of a new instance is performed by voting
all models. The results are thus combined using the weights

of the models, in the case of binary classification a threshold
of 0.5 is applied. The weak learner chosen is DecisionStump
that has been widely used in combination with Boosting and
Bagging [72], [73].

It is important to note that all the techniques described above
have been already used for bug prediction [22], [35], [74]–[76].
Finally, before running the models, we also identified their
best configuration using the MULTI SEARCH, a generalized
version of the Grid Search algorithm [77]. Such an algorithm
represents a brute force method to estimate hyper-parameters of
a machine learning approach. Suppose that a certain classifier
C has k parameters, and each of them has N possible values.
A grid search basically considers a Cartesian product f|k×N

of these possible values and tests all of them. We selected
this algorithm because recent work in the area of machine
learning has shown that it is among the most effective methods
to configure machine learning algorithms [77].

Validation Strategy. To evaluate the models, we adopted
the Leave-One-Out Cross-Validation [34] as done by Kamei
et al. in their study [14]. Leave-one-out cross validation is
K-fold cross validation taken to its logical extreme, with K
equal to N, the number projects in the set. That means that
N separate times, the function approximator is trained on all
the data except for one project and a prediction is made for
that point.The validation was repeated 10 times, so that each
project formed the test set once.

D. Evaluation of RQ1

To perform a comprehensive empirical analysis of the
applicability of defect prediction models for mobile apps, we
started with the evaluation of which and why particular metrics
can be adopted in the mobile context. For this reason, starting
from Kamei et al.’s metrics, we deeper analysed the result
of Information Gain [25] described above, to understand the
factors that lead some metrics to be more useful than others
and trying to provide a possible interpretation.

E. Evaluation of Performance RQ2 and RQ3

To evaluate the performance of the models and answer to
the latter research questions, we first computed the harmonic
mean of precision and recall (i.e., F-Measure):

F -Measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

In addition, we computed the Matthews Correlation Coeffi-
cient (MCC) [78], defined in the following

MCC = (TP∗TN)−(FP∗FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(4)

where TP, TN, and FP represent the number of (i) true pos-
itives, (ii) true negatives, and (iii) false positives, respectively,
while FN is the number of false negatives. Its value ranges
between -1 and +1. A coefficient equal to +1 indicates a perfect
prediction; 0 suggests that the model is no better than a random



one; and -1 indicates total disagreement between prediction
and observation.

Finally, we report the Area Under the ROC Curve AUC −
ROC obtained by the experimented prediction models. This
metric quantifies the overall ability of a prediction model to
discriminate between buggy and clean commits. The closer
AUC −ROC to 1, the higher the discrimination power of the
classifier, while an AUC −ROC closer to 0.5 means that the
model is not very different from a random one.

We statistically verified the validity of our findings by using
the Scott-Knott ESD test [79]. This extension of original Scott-
Knott test [80] applies a hierarchical clustering algorithm to
group together the model performances based on the statistically
significance of the differences between them. Afterwards, it
refines the clusters by merging together the groups whose
differences are negligible in terms of effect size. We executed
the test to verify to what extent the differences in terms of
Matthew Correlation Coefficient were statistically significant.

IV. RESULTS

This section reports the analysis of the results achieved for
the three research questions formulated in our study.

Table III
GAIN PROVIDED BY EACH FEATURE WHEN PREDICTING BUGGY COMMITS.

Metric Info Gain
nuc 0.25
ld 0.25
la 0.22
nf 0.19
nd 0.17
ndev 0.15
ns 0.08
entropy 0.06
sexp 0.06
rexp 0.06
exp 0.05
lt 0.05
age 0.01
fix < 0.01

A. RQ1: Which of the metrics proposed by Kamei et al. are
more relevant in the context of JIT bug prediction for mobile
apps?

The aim of the first research question was to deeper analysing
which Kamei et al.’s metrics, used for traditional systems, are
relevant in the context of mobile apps. Previous studies analysed
how mobile apps and traditional systems result very different,
in terms of size, component etc., [8] however, the research
community showed how some metrics belonging to traditional
systems can be also adopted in the mobile context [17], [18].
The first step of this analysis consisted of pruning the non-
relevant metrics through the application of the information gain
algorithm [25], whose results are reported in Table III.

As it is possible to see, the Number of unique change to
modified files (nuc) provides a significant contribution to the

overall reduction of the entropy of the model: in particular,
the gain provided is quantifiable at 0.25. As explained in the
paper by Kamei et al. [13], “the larger the nuc, the more
likely a defect is introduced, because developers will have
to recall and track many changes". A possible explanation
behind this relevance is that mobile apps are stressed with
many changes given their presence in the app market [11],
[81]; indeed, developers have to keep up with user feedback
and reviews (all different between each other) to compete on
the app market, this lead to change several times the application.
Such ready-to-commit changes are more bug-prone.

Also the Line added (la) and Line deleted (ld) metrics provide
a strong contribution to the model (i.e., 0.25 for the former,
0.22 for the latter). Code churn is considered an important
factor in the prediction of bug prone components [64], [82],
this could be true in the case of a bug-prone commit. Indeed,
given the motivation described above for the nuc metric, in
addition to the rapid development process of mobile apps [83],
developers could be more inclined to introduce a bug.

The results also show how Number of modifies files (nf)
and Number of modified directories (nd) reduce the uncertainty
of the model during the classification of bug-prone commits
(i.e., 0.19 for the former, 0.17 for the latter). A possible
explanation behind this result could be related to the massive
usage and updating of libraries by developers in mobile apps,
as also confirmed in the study by Salza et al. [84]. This might
possibly lead to miss the adaptation of some source code files
to the newly available library, thus increasing the likelihood to
introduce defects.

Finally, we found that Number of developers working on the
file (ndev) contributes in reducing the entropy of the model (i.e.,
0.15). Being a mobile app smaller than a traditional application
in term of size, the proportion between number of developers
and app size could be obvious. However, we found some
examples where the number of contributors (developers) is
very high; e.g., Kiwix (an offline reader for Web content) and
Own Cloud (open source file sync and share software) have 52
and 67 contributors respectively. Thus, it is possible that more
developers work on the same files, making the components
more prone to errors.

Other metrics provided an information gain lower than the
threshold of 0.10, thus their usefulness can be considered
limited. It is important to point out that metrics related to
the developers’ experience (exp, rexp, sexp) give a limited
contribution when predicting bug-prone commits. A possible
explanation could be given by the rapid development of an app
as well as the high number of developers within an app [83].
Moreover, since these metrics are based on the contribution of
developers in terms of number of commits (and it is clearly
visible how the number of commits in a mobile app is extremely
low with respect to a traditional application), the computation of
these factors could be not effective. Since research community
highlighted how developers experience represents a critical
factor [35], [60], [85], we believe that new metrics related to
experience are needed.



Summary for RQ1. Metrics related to code churn (i.e.,
la and ld), diffusion of changes (i.e., nd and nf and nd),
and history (i.e., nuc and ndev) are important in risky
commits identification.

B. RQ2: How different classifiers work in the context of cross-
project JIT bug prediction for mobile apps?

Figures 1 shows the results achieved by JIT bug prediction
models built using standard classifiers. Each box-plot is based
on the distribution of the 14 mobile apps considered in this
study and 42, 543 commits. Detailed results for each mobile
app are available on the online appendix [62]. Looking at
the F-Measure 1, we notice that there is no a clear winner
among the different classifiers, especially if we consider Naive
Bayes, SVM and Decision Table. Indeed, we can notice that
the difference in terms of F-Measure (49%, 44% and 45%
respectively), and AUC-ROC (77%, 69% and 69 % respectively)
achieved by three of the experimented models is quite small.
Analysing the detailed results in [62], Naive Bayes obtained
the best performance in 12 of 14 mobile apps, with a median
value of MCC around 0.33, slightly better than Support Vector
Machine and Decision Table (i.e., +6% and +5% respectively).
The better performance of Naive Bayes partially confirms
the results reported by Hall et al. [12] in their systematic
literature review, which highlights how Naive Bayes and
Logistic regression resulted the best performing among several
classifiers. However, in our study the latter achieved the worst
performance. Analysing the detailed results in [62] we observe
that the recall value is very low (the maximum value achieved
is 15%). So, it seems that the model cannot correctly identify
the bugginess of most of the actual buggy commits present
in the considered mobile apps; it is not able to define a clear
separation at the decision boundary, thus not being able to
distinguish between commits actually affected by bugs and
those not introducing any bug. In other words, the model cannot
properly set its coefficients since it cannot adequately predict
the gain/loss from each individual feature.

We believe that this not surprising performance could depend
on the presence of a particular app namely, Flutter, that
leads to critically decrease the general performance (see the
detailed results in [62]); indeed, as it is possible to see from
Table I, it contains only 1% of risky commits on a total of
13, 067 and the operation of balancing was not so effective;
indeed a disadvantage of SMOTE is that it does not take into
consideration neighbouring examples from other classes. This
could lead to an increase of class overlapping [70], [71], so
despite the usage of different classifiers, the performances of
the models are very low (e.g., 0.03 of F-Measure). Another
possible reason is related to the nature of metrics; in particular,
they belong to the category of product metrics. It is worth
noting that process metrics work better in bug prediction as
shown by Kaur et al. [15] in the mobile context, but more in
general also in standard applications [12].

The performance is even clearer when analysing the results
of the Scott-Knott ESD test, shown in Figure 3(a). Despite the

statistical test, in terms of F-Measure there is no a clear winner
among the models, Naive Bayes is statistically better in terms
of MCC with respect to all the other classifiers. This means
that although it is able to identify a slightly higher number of
true positive, it has a stronger correlation with the dependent
variable that lead to the best performance. Decision Table
and Support Vector Machine are equivalent, while Logistic
Regression is the classifier with the worst performance. When
analysing in details precision and recall achieved by the
classifiers (see online appendix [62]), we noted that all the
considered classifiers have a similar precision (i.e., ≈0.50).
This means that half of the results reported by the models are
false positives and we are still far to models exploitable in
industrial contexts. Thus the difference reported in terms of
F-Measure is due to the difference in terms of recall. These
results confirm the ones reported in previous studies on bug
prediction [19], [22], [59].

Summary for RQ2. Naive Bayes obtained the best
performance. Although in terms of F-Measure, there is
no a clear winner among different classifiers, i.e., SVM
and DecisionTable (49%, 44% and 45% respectively),
the improvement of Naive Bayes are statically significant
with respect to the other classifiers, as shown by results
of the Scott-Knott ESD test.

C. RQ3: Do ensemble techniques improve the effectiveness of
cross-project prediction models?

The results achieved by the ensemble methods are quietly sur-
prising. In general, these techniques should be able to improve
the model performance with respect to single classifiers, as also
previous study showed [19], [21]–[23]. In our case, we observed
that there is no a clear winner; indeed, looking at Figure 2, the
differences with respect to the Naive Bayes model are quite
small (49% of F-Measure of Naive Bayes with respect to 50%
Random Forest, 54% Boosting and 51% Bagging). Boosting
and Bagging have slightly better performance than Random
Forest: this is quite strange, since previous literature frequently
showed that Random Forest is among the top machine learning
approaches to use [35], [64]. We performed the Scott-Knott
ESD test, shown in Figure 3(b), that confirmed our hypothesis.
In particular, the performance of Random Forest, Boosting,
Bagging and Naive Bayes are not statistically different, while
Voting is statistically worse than them. This result confirms a
previous study by Bowes et al. [59] who showed that applying
a Voting ensemble classifier could lead to worse results with
respect to the weak classifiers on which it is built. Thus, we
can conclude that on the one hand, ensemble techniques do
not seem to provide important improvements in the prediction
of risky commits. This means that future research should be
devoted to understand the reasons behind this partially negative
result and provide novel methodologies to address it, as also
suggested by [86], [87]. On the other hand, it confirms the
importance of hyper-parameter tuning [88]. Indeed, it is worth
to note that all the single classifiers were tuned using the
MULTISEARCH algorithm. It is worth considering that, in case
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Figure 1. Results achieved by JIT bug prediction models built using standard classifiers
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Figure 2. Results achieved by JIT bug prediction models built using ensemble classifiers

of ensemble techniques, it is not possible to tune the weak
classifier on which they relied.

Summary for RQ3. Bagging methods obtained the best
performance, i.e., 54% overall value of F-Measure. How-
ever, the differences with respect to Naive Bayes seems
to be quite small, i.e., 49%. Although Random Forest,
Boosting and Bagging result statistically significant with
respect of Naive Bayes, ensemble techniques do not
always guarantee better performance with respect to a
single classifier.

V. THREATS TO VALIDITY

In this section, we discuss factors that might have affected
the validity of the empirical study.

Threats to Construct Validity. As for threats related to the
relationship between theory and observation, a first factor
is related to the dataset exploited. In our study, we relied
on data coming from COMMIT GURU platform [24] and in
order to ensure quality and robustness of data we conducted
a preliminary data preprocessing following the guidelines

provided by Shepperd et al. [89] in order to remove noisy
data. Of course, we cannot exclude possible imprecision in the
computation of the dependent variable. Moreover about the
choice of the machine learning classifier we decided to use
techniques that have been widely used in the context of bug
prediction [22], [35], [74]–[76].

Threats to Conclusion Validity A first threat regards the
validation technique adopted when testing the different JIT
bug prediction models experimented. The usage of the Leave-
One-Out Cross-Validation [34] was driven by recent results
showing that such validation technique is among the ones
that are more stable and reliable [90]. In addition, we ran the
SMOTE algorithm [71] to balance the training set.

As for the evaluation of the performances of the experi-
mented models, we computed precision, recall, F-Measure,
AUC-ROC and MCC, able to provide an overview of the
performance of the devised models and of the compared
baselines under different perspectives, thus allowing us to
better report the performance of JIT bug prediction models.
Finally, in both RQ2 and RQ3 we statistically confirmed our
observations by exploiting the Scott-Knott ESD test [79].
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Threats to External Validity Threats in this category mainly
concern the generalisation of results. In the context of our work,
we performed the empirical study that took into account 14
open source mobile apps having different size and scope. At the
same time, we considered different types of machine learning
techniques. Of course, we cannot claim the generalisability,
however part of our future research agenda is to extend the study
with more apps that include also non open source software.

VI. CONCLUSIONS

Just-in-Time bug prediction [13] is an alternative to tradi-
tional bug prediction that is able to predict the presence of bugs
at commit-level, i.e., as soon as a new change is committed
by developers on the repository. While this technique has been
pretty explored in the context of traditional systems, to the best
of our knowledge only few previous studies addressed this issue
in the context of mobile apps [15], [16]. In particular, Catolino
[16] conducted a preliminary study in order to understand the
adaptability of the within-project JIT bug prediction model
devised by Kamei et al. [13] in the context of mobile apps,
thus showing a clear limitation of the model in finding bug
prone commits and highlighting that further analysis is needed.

In this paper, we (i) deeper analysed which Kamei et al.’s
metrics are important in the mobile context, (ii) evaluated the
performance of JIT bug prediction in a cross-project scenario,
and (iii) assessed the impact of classifiers and ensembles
selection on the overall bug prediction capabilities on a larger
set of mobile apps.

To this aim, first we applied the InfoGain algorithm [25] that
filtered only the metrics that are positively related to commit
defectiveness in the mobile context. Then, we compared the
performance of four standard machine learning techniques
(i.e., Logistic Regression [26], Decision Table [27], Support
Vector Machine [28], and Naive Bayes [29]) and four ensemble
methods (i.e., Random Forests [30], Voting [31], Bootstrap
Aggregating [32], and Boosting [33]. The study was conducted
on 14 mobile apps and a total of 42, 543 commits.

The achieved results provide the following findings:
• Metrics related to code churn (e.g., Lines of code deleted),

diffusion of changes (e.g., Number of modified directories),

and history (e.g., Number of unique changes) are important
to identify risky commits.

• These results are in line with bug prediction research for
traditional systems [12].

• The best performance for single classifiers is achieved by
Naive Bayes, i.e., 49% of F-Measure, (well appreciated and
performing in the context of bug prediction for traditional
systems [12]), while Logistic Regression performed worst
than other classifiers by up to 40% in terms of F-measure.
This means that the choice of classifier impacted on the
performance of the JIT bug prediction models [19], [20].

• Ensemble methods do not provide evident benefits with
respect to the single classifiers. Indeed, looking at the
performances achieved, the model built using the Boosting
classifier performed 4-5% better than the one relying on
Naive Bayes.

The results of this study highlighted that on the one hand,
the majority of solid and verified concepts of traditional and
JIT bug prediction can be adopted also for mobile apps (e.g.,
choice of classifier, independent variable), while on the other
hand some of them should be modified given the nature of the
development process of such applications.

This study opens new challenges for the future that are part
of our research agenda. First we plan to compare within- and
cross-project training strategies. In this context, we will exploit
the concept of local bug prediction [36], a technique that has
been already successfully applied to improve the effectiveness
of traditional bug prediction. Based on the results of RQ1, we
believe that new metrics suitable for the mobile context should
be developed. Finally, given the uneven performance of JIT
bug prediction models, we will explore new approaches that
combine classifiers such as the one proposed by Di Nucci et al.
[22] to select the most suitable classifier based on the commits
characteristics.
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