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Abstract

Software testing represents a key software engineering practice to ensure source code quality and reliability. To support
developers in this activity and reduce testing effort, several automated unit test generation tools have been proposed.
Most of these approaches have the main goal of covering as more branches as possible. While these approaches have good
performance, little is still known on the maintainability of the test code they produce, i.e., whether the generated tests
have a good code quality and if they do not possibly introduce issues threatening their effectiveness. To bridge this gap,
in this paper we study to what extent existing automated test case generation tools produce potentially problematic test
code. We consider seven test smells, i.e., suboptimal design choices applied by programmers during the development
of test cases, as measure of code quality of the generated tests, and evaluate their diffuseness in the unit test classes
automatically generated by three state-of-the-art tools such as Randoop, JTExpert, and Evosuite. Moreover, we
investigate whether there are characteristics of test and production code influencing the generation of smelly tests. Our
study shows that all the considered tools tend to generate a high quantity of two specific test smell types, i.e., Assertion
Roulette and Eager Test, which are those that previous studies showed to negatively impact the reliability of production
code. We also discover that test size is correlated with the generation of smelly tests. Based on our findings, we argue
that more effective automated generation algorithms that explicitly take into account test code quality should be further
investigated and devised.
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1. Introduction

Software testing is widely recognized as a fundamental
practice to ensure the correct behavior of any successful
software project [1]. As such, with the help of testing
frameworks like, e.g., JUnit, developers create test cases
and run them periodically [2, 3]. In addition, developers
can integrate manually created tests with automatically
generated ones, which aim at testing behaviors of produc-
tion code that humans can rarely exercise [4]. To support
developers in this activity, many techniques and tools to
automatically produce test suites with high code cover-
age have been proposed [5–9]. Besides techniques aimed
at maximizing code coverage as main goal, also multi-
objective approaches have been proposed to achieve ad-
ditional objectives, such as the minimization of (i) oracle
cost [10], (ii) dynamic memory consumption [11], (iii) num-
ber of test cases [12], (iv) execution time [13], (v) number
of targets that are accidentally covered [14], and (vi) test
code quality [15, 16]. Although the effort devoted by the
research community to define techniques able to automat-
ically generate test cases, there is still a lack of empirical
investigations about the characteristics of the test code
produced by such tools. More specifically, while recent

studies have been conducted to evaluate the effectiveness
of test cases [17–22] and the usability of these tools in
practice [23], it is still unclear whether the test code auto-
matically generated is immune from design problems that
possibly negatively affect its effectiveness or the ability of
developers to interact with them.

Motivation. As pointed out by Fraser and Arcuri [24], hav-
ing well-designed generated tests is a key challenge for au-
tomated tools because the goal of these tests it to target
difficult faults for which automated oracles are not avail-
able and that, therefore, must be manually verified after
the generation process [24]. As such, developers are re-
quired to first comprehend automatically generated tests
in order to properly design assertions. Furthermore, recent
studies have shown that poorly designed test code may (i)
induce the so-called flakiness, that is, a non-deterministic
behavior of a test [19] and (ii) limit the fault detection
capabilities of test cases [22]. Finally, in case one of the
generated test cases fails, developers are still required to
understand what caused the failure by manually analyzing
the test.

For all these reasons, even if automatically generated
tests can be continuously re-generated and not maintained
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1 public void test53() throws Throwable {
2 OrganizationModelImpl organizationModelImpl0 =

new OrganizationModelImpl(’’tmp.txt’’);
3 OrganizationSoap organizationSoap0 = new

OrganizationSoap ();
4 Organization organization0 =

OrganizationModelImpl.toModel(organizationSoap0);
5 organizationModelImpl0.setPrimaryKey(4294967295L)

;
6 OrganizationWrapper organizationWrapper0 = new

OrganizationWrapper(organization0);
7 boolean boolean0 = organizationModelImpl0.equals(

organizationWrapper0);
8 assertEquals(4294967295L, organizationModelImpl0.

getPrimaryKey ());
9 assertFalse(boolean0);

10 }
11

Listing 1: Example of test case generated by EvoSuite.

during the evolution of a project, there are still a number
of major challenges making the design of test code relevant
for automated test generation techniques.

To better illustrate the problem statement, let con-
sider the following scenario. John is a developer of the
Liferay project,1 an open source portal to build personal
and professional websites. Once implemented a new code
change, John wants to ensure that such a change did not
introduce regressions. Besides running the test cases al-
ready available in the project, he decides to complement
them with those automatically generated by EvoSuite
[5]—one of the state-of-the-art automated test case gen-
eration tools—in order to enlarge the test suite and pos-
sibly identify faults missed by existing tests. Before run-
ning the entire set of tests, John has to manually check
all the assertions of the generated tests: this is a time-
consuming activity, especially because he has to under-
stand what each automatically test case is about. For in-
stance, one of those generated test cases is shown in List-
ing 1. Before checking the expected values in the assert

statements, John needs to figure out what is the target
production method: in this case, it is not immediately
clear because the test exercises the getPrimaryKey of the
class OrganizationModelImpl (line 8 of Listing 1) as well
as checking whether the object organizationModelImpl0
is equal to organizationWrapper0 (line 9 of Listing 1).
As such, understanding the correct value to assign as first
parameter of the assertions requires the analysis of the
program flow. In any case, once completing this manual
analysis, John can finally execute the test suite. As a re-
sult, the test shown in Listing 1 fails; for this reason, John
starts debugging the code to find the cause of the failure.
He starts by looking at the assertions, however they do
not provide any explanation, thus making the debugging
phase harder. At the end, John realizes that the produc-
tion code does not exhibit any real fault, but the test case
failed just because it relies on an external resource that is
never initialized (line 2 of Listing 1). Once fixed this test

1https://dev.liferay.com

design problem, the process runs fine and John can finally
put his source code change in production.

Our work and contribution. In our previous work [25],
we started analyzing the design of automatically gener-
ated test code by conducting a large-scale empirical study
on the SF110 dataset, a set of 110 open source software
projects [26], to investigate to what extent the test classes
automatically generated by EvoSuite [5] are affected by
test smells [27], i.e., symptoms of the presence of poor
design or implementation choices in test code. We explic-
itly focused on test smells for two reasons. In the first
place, they represent a good measure to quantify the qual-
ity of tests with respect to their design. Furthermore, test
smells have been connected by previous research to all the
key issues related to the design of automatically generated
test cases: they indeed hinder test code comprehensibility
and understandability [28] as well as test code effectiveness
[19, 22]. As such, they may significantly impact the de-
velopers’ ability to use automatically generated test cases
for improving source code reliability. The results achieved
in our preliminary study showed that two test smells (i.e.,
Assertion Roulette and Eager Test) were particularly dif-
fused in automatically generated test classes, but also that
the presence of test smells was strongly correlated to char-
acteristics of the project such as size and number of classes
[25].

In this paper, we build on top of our previous analy-
ses with the aim of enlarging our empirical knowledge on
the relation between test smells and automated test case
generation tools. Specifically, we extend our original work
with four new main contributions:

1. We investigate the behavior of three state-of-the-
art automated test case generation tools such as
Randoop [29], JTExpert [9], and EvoSuite [5]
which have different underlying generation algo-
rithms. This analysis aims at providing a wider
overview on whether and how test smells represent
a problem for different testing tools.

2. We improve our analysis method by running our
experiments on a curated dataset composed of 100
non-trivial classes. Indeed, Shamshiri et al. [30]
showed that the vast majority of the classes avail-
able in the SF110 corpus are branchless and, there-
fore, the tests generated for those classes are mean-
ingless and worthless to analyze in studies aimed at
understanding the characteristics of automated tools
[7, 30]. Thus, we verify the presence of test smells
only considering test classes that actually put auto-
mated test case generation tools in action.

3. We perform an analysis on the relationships be-
tween test/production code quality (as measured by
the Chidamber and Kemerer’s software metrics suite
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[31]) and the likelihood that the experimented au-
tomated test case generation tools produce smelly
tests.

4. We conduct a fine-grained manual analysis aimed at
investigating whether the characteristics of the gen-
eration algorithms employed by the considered tools
impacts on the test smell introduction.

The key results of our study show that all the con-
sidered tools naturally output a large amount of two test
smell types, namely Assertion Roulette and Eager Test,
which are the ones that previous findings revealed to sig-
nificantly hinder test code effectiveness [22]. The nature
of these tools is the cause of “smelliness”. Indeed, they
are too much eager to cover parts of source code, being
focused on code coverage, independently from any other
aspect. Furthermore, we find that the test size is corre-
lated with the generation of smelly tests, meaning that
the higher the amount of code generated by these tools
the higher the chance of introducing test smells.

Structure of the paper. Section 2 reports the background
and the literature related to test smells and automated test
case generation. In Section 3 we describe the empirical
study definition and design, while in Section 4 we report
the results. The discussion and the implications of the
study are part of Section 5, while we report the possible
threats to the validity in Section 6. Finally, Section 7
concludes the paper.

2. Background and Related Work

The main goal of our study is to investigate the promi-
nence of design problems in the test code automatically
generated by existing tools. Therefore, it is at the inter-
section of two main topics, i.e., test smells and automated
test case generation. In the following subsections, we pro-
vide an overview of the both the topics as well as of the
related literature.

2.1. Code Smells in Test Cases

Like production code, test code should also be designed
following good programming practices [32]. During the
last decade, the research community spent a lot of effort
on the definition of methods and tools for detecting de-
sign flaws in production code [33–43], as well as empirical
studies aimed at assessing their impact on maintainability
[44–62].

However, design problems affecting test code have been
only partially explored. The importance to have well de-
signed test code was originally highlighted by Beck [63],
while Van Deursen et al. [27] defined a catalog of 11 test
smells, i.e., a set of a poor design solutions to write tests,
together with refactoring operations able to remove them.
Such a catalog takes into account different types of bad

design choices made by developers during the implemen-
tation of test fixtures (e.g., a too generic setUp() method
where test methods only access a part of it), or of single
test cases (e.g., test methods checking several objects of
the class to be tested). In the context of this work, we
limit our focus on a subset of the test smells defined by
Van Deursen et al. [27], as not all of them can be studied
when considering automatically generated code. Indeed,
almost all the automated tools for generating test classes
do not produce test fixtures [5, 7, 9, 64, 65]. For this
reason, we focus on the seven test smell types that can po-
tentially affect test code automatically generated and that
are presented in the following:

Mystery Guest (MG). This smell arises when a test uses
external resources (e.g., file containing test data), and thus
it is not self contained [27]. Such tests are difficult to
comprehend and maintain, due to the lack of information
to understand them. Furthermore, it may lead the test to
be flaky [19]. To remove a Mystery Guest a Setup External
Resource operation is needed [27].

Resource Optimism (RO). Tests affected by such smell
make assumptions about the state or the existence of ex-
ternal resources, providing a non-deterministic result that
depends on the state of the resources [27]. Also in this
case, to remove the smell a Setup External Resource refac-
toring [27] is needed.

Eager Test (ET). A test is affected by Eager Test when
it checks more than one method of the class to be tested
[27], making the comprehension of the actual test target
difficult. The solution is represented by the application
of an Extract Method refactoring, able to split the test
method in order to specialize its responsibilities [66].

Assertion Roulette (AR). As defined by Van Deursen et
al. [27], this smell “comes from having a number of asser-
tions in a test method that have no explanation”. Thus,
if an assertion fails, the identification of the cause behind
the failure can be difficult. Besides removing the unneeded
assertions, to remove this smell and make the test clearer
an operation of Add Assertion Explanation can be applied
[27]. It is worth noting that one the explanatory power of
an assert statement could be subjectively assessed, e.g., a
developer may easily understand an assertion because s/he
an expert of the source code under test. Nevertheless, this
test smell arises when the cause leading an assertion to
fail is not explicitly stated within the assert statement. In
particular, JUnit developers can include, as first parame-
ter of an assert statement, a String message reporting
the motivation behind a failure caused by that assertion.
An Assertion Roulette appears if there are more than one
assert statement where such a first parameter is not set.

Indirect Testing (IT). A test that checks the correspond-
ing production class using methods of another class [27].
Such indirection, in addition to being a design error, can
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create problems in the comprehension of the sequence of
calls performed by the test case during its activities and
make the test prone to flakiness [19]. Van Deursen et al.
[27] suggest to remove this smell by applying an Extract
Method refactoring, followed by a Move Method one, in
order to re-organize such indirection moving the methods
to the appropriate test class.

For Testers Only (FTO). This smell arises when a produc-
tion class contains methods only used by test methods [27].
This kind of production classes should be removed, since
it does not provide functionalities used by other classes
in the system. From the testing side, this smell involves
an extra effort needed in order to comprehend and modify
assertions [27].

Sensitive Equality (SE). When an assertion contains an
equality check through the use of the toString method,
the test is affected by a Sensitive Equality smell. In this
case, the failure of a test case can depend on the details of
the string used in the comparison, e.g., commas, quotes,
spaces etc. [27]. A simple solution for removing this smell
is the application of an Introduce Equality Method refac-
toring, in which the use of the toString is replaced by a
real equality check.

On top of the work done by Van Deursen et al. [27],
Meszaros defined other smells affecting test code [67].
Starting from these two catalogs, Greiler et al. [68, 69]
showed that test smells related to fixture set-up fre-
quently occur in industrial projects and, therefore, pre-
sented a static analysis tool, namely TestHound, to iden-
tify fixture-related test smells. Van Rompaey et al. [70]
proposed a heuristic structural metric-based approach to
identify General Fixture and Eager Test instances. How-
ever, empirical results demonstrated that structural met-
rics have low accuracy in the detection of both test smells.
This was later confirmed by Palomba et al. [71], who
compared the performance of the techniques by Greiler
et al. [68, 69] and Van Rompaey et al. [70] with the one
achievable by Taste, a textual-based detector exploiting
information retrieval techniques to identify three test smell
types: they concluded that textual analysis can be more
precise than the structural one when detecting test smells.

As for the empirical studies, Bavota et al. [28] con-
ducted an empirical investigation in order to study (i) the
diffusion of test smells in 18 software projects, and (ii) their
effects on software maintenance. The results of the study
demonstrated that 82% of JUnit classes in their dataset
are affected by at least one test smell, but also that the
presence of design flaws has a strong negative impact on
maintainability. Tahir et al. [72] conducted an empiri-
cal study on the relation between production code quality
metrics and test smells, finding that some design aspects,
e.g., Cyclomatic Complexity, are strongly related to the
emergence of design flaws in test code. With respect to
the work by Bavota et al. [28] and Tahir et al. [72], it is

important to note that they investigated manually writ-
ten tests, while automatically generated tests are diamet-
rically different because they are created algorithmically.
As such, it may be possible that the diffuseness of some
test smells as well as their co-occurrences may be different
than those of manually generated tests, as all generation
algorithms may have peculiar ways to construct tests. This
is indeed what happens in practice: for example, Bavota
et al. [28] found that the General Fixture test smell often
appears in combination with other test smells; however,
this is not possible in automatically generated tests be-
cause the currently available tools do not generate fixtures
at all. Similarly, several Indirect Testing instances were
found in previous works targeting manually created tests,
while in our case this is unlikely because each automatic
test case generated explicitly covers a single production
class. For this reason, we argue that, on the one hand, the
diffuseness and co-occurrences of test smells in automati-
cally generated tests are different from those of manually
written ones and, on the other hand, being aware of the
co-occurrences generated by automated tools would poten-
tially help tool vendors and researchers in building novel
algorithms that are aware of them while optimizing code
coverage.

Spadini et al. [22] studied the relation of test smells
to software quality, analyzing whether (i) smelly tests are
more change- and fault-prone than other tests and (ii) pro-
duction code exercised by smelly tests is more fault-prone.
Results of their study reported that test smells represent
an important problem for maintainability and reliability
of software systems, as they negatively influence the qual-
ity of both production and test code. These findings were
also supported by Palomba and Zaidman [19], who discov-
ered that three test smells (i.e., Indirect Testing, Resource
Optimism, and Test Run War) can induce tests to have
a non-deterministic behaviour. Tufano et al. [73] studied
(i) when test smells occur in source code, (ii) what is their
survivability, and (iii) whether their presence is associated
with the presence of code smells in production code. Key
findings from their study highlight that test smells are gen-
erally introduced when the corresponding test code is com-
mitted in the repository for the first time, and that they
tend to remain in a system for a long time. Furthermore,
they discovered some relationships between test and code
smells. Finally, De Bleser et al. [74] noted that most of the
studies on test smells have been limited to Java in com-
bination with the JUnit testing framework. Therefore,
they studied the diffusion and perception of test smells
in Scala in combination with the ScalaTest testing
framework. They transposed the original test smell defini-
tions to this new context, and implemented SoCRATES,
a tool for their detection. Their results show that (i) test
smells have a low diffusion across test classes; (ii) the most
frequently occurring test smells are Lazy Test, Eager
Test, and Assertion Roulette; and (iii) many devel-
opers are able to perceive but not to identify the smells.
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With respect to the papers described so far, our work
can be considered complementary. Indeed, to the best of
our knowledge the empirical study proposed in this paper
is the first one investigating the prominence of test smells
in automatically generated test code.

2.2. Automated Generation of Test Cases for Object Ori-
ented Code

Automated test case generation techniques have been
conceived to reduce the cost of software testing and helping
developers to maximize the percentage of code elements
(e.g., statements or branches) being exercised according
to well-established code coverage criteria [75]. Broadly
speaking, the process of automated generation of a test
case for a certain method requires the selection of a test
targets, the creation of method sequences able to cover it,
and the introduction of test assertions. Last decades wit-
nessed the introduction of several techniques for test case
generation. In this section, we mainly focus on approaches
based on both random and search-based software testing.
Moreover, we describe the inner working of the three tools
we compare in the presented study.

2.2.1. Random Test Case Generation

Tools based on random testing [9, 29, 76–78] randomly
select methods and object constructors and invoke them
by using previously computed values as input. In particu-
lar, JCrasher [76] finds method calls whose return values
can be used as input parameters, but it does not analyze
the execution feedback. Eclat [78] discards the sequences
of method calls that make the program behave differently
than a set of correct training runs. Therefore, the perfor-
mances of the tool are strongly influenced by the quality
of the sample execution given as input.

Randoop. Randoop [29] similarly incrementally gener-
ates inputs by randomly selecting a method call to apply.
The algorithm that builds the sequences works as follow.
The sequences are built incrementally, starting from an
initial empty set. At first, a method m belonging to the
production class is randomly selected. Thus, Randoop
applies an extension operator to m: it creates a new se-
quence s by concatenating a set of input sequences followed
by the method call m. Such input sequences are randomly
extracted by S, i.e., the set of the valid sequences that do
not violate any contract. Once a new sequence s is built,
it is executed to assure that it is both non-redundant and
valid. If s is valid, the algorithm adds it to S. In some
particular cases multiple calls to m are necessary to reach
a desired object state. For such a reason, Randoop imple-
ments a repetition mechanism: with a given probability,
instead of appending a single call m to create a new se-
quence, it appends M calls with a maximum value set by
default to 100. At the end of the search —i.e., when the
given time limit is over— Randoop creates the regressions

test from S while the non-valid sequences are used to gen-
erate error-revealing tests. Finally, Randoop places the
assertions by iterating over each statement of the gener-
ated valid sequences S: it firstly looks at the return values
of each non-void method; then, it places the corresponding
assertion. In particular cases, e.g., for strings that repre-
sent raw object references, the assertion is not inserted.

JTExpert. As explained, traditional random testing ap-
proaches generate candidate solutions that run against the
class under test (CUT), resulting in an achieved coverage.
On the contrary, JTExpert [9] performs an informed ran-
dom search in the sense that it targets only the uncovered
branches. At first, it performs static analysis to identify i)
the ways the class under test might be instantiated, ii) the
methods that change the state of the CUT, called state-
modifier, and iii) the methods that reach a given target,
called target-viewfinder. A method sequence is composed
of a set of state-modifier methods and a target-viewfinder
method. The creation of the method sequence works as
follow. A number of n state-modifier methods is selected
and added to the sequence. n is calculated accordingly
to domain vector for the potential test candidates. Such
a vector is the sum of the CUT-instantiators, the possible
state-modifier methods and the set of the target-viewfinder
methods. To conclude the sequence, JTExpert always
puts a target-viewfinder method call at the bottom of
the sequence. It is worth to note that only the target-
viewfinder methods that can hit a previously uncovered
target are considered. To actually write the test data, JT-
Expert randomly selects one of the uncovered branches
and then generates a method sequence for such a branch
relying on the aforementioned approach. The sequence
is then executed and evaluated: in case it hits uncovered
branches, the sequence it is added to the final suite and the
branches are marked as covered; in the opposite case, the
test is discarded. At the end of the generation process,
JTExpert places the assertions relying on an approach
similar to the one detailed for Randoop.

2.2.2. Search-Based Test Case Generation

Besides random approaches, search-based software
testing approaches have also been developed [7, 24, 79–
81]. The resolution of an optimization problem using a
search algorithm requires the definition of the solution rep-
resentation and the fitness function. In the context of test
case generation for object oriented programming, a solu-
tion is represented by a not fixed sequence of construc-
tor and method invocations, including parameter values
[75]. The fitness function is a combination of two mea-
sures: approach level [80] and branch distance [79]. The
approach level represents how far is the execution path of a
given test case from covering the target branch, while the
branch distance represents how far is the input data from
changing the boolean value of the condition of the decision
node nearest to the target branch. As the branch distance
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value could be arbitrarily greater than the approach level,
it is common to normalize the value of the branch distance
[82]. The approach implemented in the eToc tool [75] se-
lects the branches to cover incrementally. In details, it
(i) enumerates all targets (e.g., branches); (ii) performs a
search, for each target, until all targets are covered or the
total search budget is consumed; (iii) combines all gener-
ated test cases in a single test suite. This can lead to an
important limitations. In particular, it (i) is sensible to
branches that are infeasible or difficult to cover and (ii) it
is not able to share potentially useful information across
individual searches. To deal with such limitations, Fraser
and Arcuri proposed the whole test suite generation ap-
proach [24], implemented in the EvoSuite tool [5]. This
approach evolves testing goals simultaneously. A candi-
date solution is represented as a test suite and the fitness
function is represented by the sum of all branch distances
and approach levels of all the branches of the program un-
der test. Nonetheless the whole suite approach proposed
by Fraser and Arcuri [24] has a drawback: it tends to re-
ward the whole coverage more than the coverage of single
branches [7]. Thus, in some cases, trivial branches are pre-
ferred to branches that are harder to cover, affecting the
overall coverage. To mitigate such a problem, Panichella
et al. [7] formulate the test data generation problem as a
many-objective problem. In particular, the authors con-
sider the branch distance and the approach level of each
branch as a specific fitness function. In this reformulation,
a test case is considered as a candidate solution, while
the fitness function is evaluated according to all branches
at the same time. Since the number of fitness functions
could be very high, the authors introduced a novel many-
objective GA, named MOSA (Many-Objective Sorting Al-
gorithm) and integrated the new approach in EvoSuite.
Panichella et al. [7] further refined MOSA by presenting
DynaMOSA. Such a variant focuses the search on a subset
of uncovered targets computed relying on the control de-
pendency graph of the CUT, to discern the targets free of
control dependencies. At the beginning of the search, Dy-
naMOSA considers as objectives only the targets that are
free of control dependencies. The objectives vector is thus
updated as soon as new targets are covered. Panichella
et al. [83] recently introduced a multi-criteria variant of
DynaMOSA that considers heterogeneous coverage targets
simultaneously.

EvoSuite. While implementing most of the previously de-
scribed approaches, the whole test suite generation ap-
proach is the one used by default by EvoSuite. It starts
randomly creating an initial population of test suites hav-
ing a maximum size M specified in input (50 by default).
While doing that, EvoSuite aims at keeping the size of
each test case constrained by an upper bound. This is done
because due to the absence of automated oracle, software
testers have to manually check the outputs and modify
the assert statements. For the same reason, EvoSuite
employs a Bloat Control mechanism that tends to prefer

shorter test cases over long ones. Once generated the ini-
tial population, the evolutionary search starts evolving it
by performing crossover and mutation operations. In the
former, a new suite (an offspring) is generated by splitting
and combining part of the test cases from two selected par-
ents. On the other contrary, mutation operators randomly
change statements of a test at a finer-grained level. Given
that, it is worth noting that the method sequences forming
the final tests do not change after the random generation
performed to initialize the population. By default, the
test cases evolved by EvoSuite do not contain assertions.
However, it is possible to generate them at the bottom of
the generation process applying mutation testing [5]. To
this end, EvoSuite generates at first a large number of
assertions that are subsequently filtered by their ability to
detect mutants: only the minimum set of assertions able
to detect all the mutants generated for the CUT is kept
in the generated test cases. Such a mechanism is able to
reduce the number of redundant assertions.

2.2.3. Test Case Generation and Code Quality

While most of the approaches described so far only
considers coverage as the primary goal to achieve, some
consider also the quality of generated test code as an objec-
tive to maximize. Afshan et al. [84] noticed that a critical
goal to achieve when generating test cases is code read-
ability. For this reason, they proposed the use of natural
language models for the generation of tests having read-
able string input. Subsequently, Daka et al. [85] defined
a post-processing technique able to optimize readability
by mutating generated tests leveraging a domain-specific
model of unit test readability based on human judgement.
Finally, Palomba et al. [15] incorporated cohesion and
coupling metrics into the process of test case generation of
MOSA with the goal of producing more maintainable test
cases. As a result, they showed that the test cases gener-
ated by the proposed approach are not only more cohesive
and less coupled, but also able to increase the branch cov-
erage and shorter tests than test cases generated by the
standard MOSA algorithm. Our work is complementary
those described above, since it has the goal to empirically
understand the extent to which automated tools for test
case generation tend to produce smelly code.

3. Empirical Study Definition and Design

In this section we report the planning of the study that
we conducted to analyze the distribution of the test smells
defined by Van Deursen et al. [27] in the context of auto-
matically generated test cases.

3.1. Goals and Research Questions

The goal of the study was to empirically determine
the extent to which unit tests generated by existing au-
tomated test case generation tools are affected by design
problems, with the purpose of understanding (i) whether
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different families of algorithms are more/less prone to pro-
duce smelly unit tests thus possibly increasing mainte-
nance costs and (ii) the likely factors influencing test smell
diffuseness. We designed the following research questions:

• RQ1: What is the diffuseness of test smells in auto-
matically generated test cases?

• RQ2: Which test smells occur together?

• RQ3: Is there a relationship between the presence of
test smells and the characteristics of the production
classes?

• RQ4: Is there a relationship between the presence of
test smells and the size of the test suite?

The first two research questions aimed at quantifying
the prominence of test smells in the tests automatically
generated by existing tools, exploring their diffuseness in
isolation (RQ1) and their co-occurrence (RQ2). Subse-
quently with RQ3 and RQ4 we analyzed possible factors
influencing the presence of smells in test code, studying
characteristics related to both production and test code.

3.2. Context Selection

The context of the study was composed of 100 classes
contained in the publicly available SF110 dataset [26].
This corpus is composed of Java classes belonging to a
representative sample of 100 projects from the Source-
Forge.net repository, augmented with 10 of the most pop-
ular projects in the repository. Such benchmark has been
widely used to assess test case generations tools [7, 24, 86],
but findings in the field [30] demonstrated that most of the
classes of the dataset are trivial to cover (e.g., they contain
branchless methods that can be fully covered by a simple
method call) and, therefore, are not suitable for studies
aimed at understanding characteristics and performance
of automated testing tools [7, 30]. Therefore, we selected
the non-trivial classes starting from an entire initial set of
23, 886 Java classes. To this end, we first computed the
McCabe’s cyclomatic complexity for each method of the
dataset by using CKJM [87]. The McCabe’s cyclomatic
complexity is defined as the number of independent paths
in the control flow graph and it is equal to the number of
branches plus one. As expected we found that most of the
classes are trivial (i.e., the cyclomatic complexity is one)
and they could be covered by a simple method call. Hence,
we decided to consider only methods with at least two con-
ditional statements (i.e., cyclomatic complexity equal to
five). Details about the considered classes, including their
name and cyclomatic complexity, are available in our on-
line appendix [88].

3.3. Extracting the Automatically Generated Test Classes

To test the behavior of different algorithms, we gen-
erated test classes by employing three publicly available

tools in their default configurations, i.e., Randoop 3.1.5
[29], JTExpert 1.4 [9], and EvoSuite 1.0.5 [89]. As de-
tailed in Section 2, Randoop exploits a feedback-directed
random testing, JTExpert relies on guided random test-
ing, and EvoSuite is based on evolutionary algorithms.
Note that the use of default values does not impact the
performance of automated test case generation tools, as
shown by Arcuri and Fraser [90]. To address the intrin-
sic non-deterministic nature of the tools, we generate each
test suite ten times for each class under test. This led to
the definition of 1, 000 test classes for each experimented
tool (10 runs * 100 subjects * 3 tools = 3, 000 test classes).
It is important to note that the link between a generated
test and a production class is intrinsically given by the
generation process itself. Indeed, all the test case genera-
tion tools work as follow: the user has to specify a given
class under test (CUT) and, afterward, the tool runs. At
the end of the search process, the tool will generate a cor-
respondent unit test, linked to the given CUT.

3.4. Extracting Test Smells

In our study, we focused on the seven test smell types
introduced in Section 2, i.e., Mystery Guest, Resource Op-
timism, Eager Test, Assertion Roulette, Indirect Testing,
For Testers Only, Sensitive Equality. Due to the high num-
ber of test classes to analyze (i.e., 1, 000 for each tool), we
could not perform a manual detection. Thus, we relied on
an automated test smell detector previously implemented
and empirically evaluated by Bavota et al. [28]. Unlike
other existing detection tools [68, 70, 71], the selected de-
tector is able to identify all the test smells considered in
this study by applying a heuristic metric-based technique
that overestimates the presence of test design flaws in or-
der to detect all the instances (100% of recall), having
an average precision of 88%. Table 1 reports the set of
rules used by the tool to detect smelly tests. While most
of the detection rules applied by the detector are rather
straightforward, it is worth discussing the one related to
the Assertion Roulette. Indeed, one can think that the
explanatory power of an assert statement could be sub-
jectively assessed, e.g., a developer may easily understand
an assertion because s/he an expert of the source code
under test. Nevertheless, this test smell arises when the
cause leading an assertion to fail is not explicitly stated
within the assert statement. In particular, JUnit develop-
ers can include, as first parameter of any assert statement,
a String message reporting the motivation behind a fail-
ure caused by that assertion. The Assertion Roulette smell
is detected if there are more than one assert statement
where such a first parameter is not set. Thus, the associ-
ated detection rule simply counts the number of assertions
in a test method and, for each of them, verifies whether
a message is reported as first parameter. Finally, the de-
tector marks a test method as affected by the smell if the
String message is not set for more than one assertions.
Note that the heuristic implemented by Bavota et al. [28]
detects the assert statements by looking at the method

7



Table 1: Rules used to detect candidate test smells.

Name Abbr. Description Precision

Mystery Guest MG JUnit classes that use an external resource (e.g., a file or database). 100%

Resource Optimism RO JUnit classes that use an external resource that is not present on the disk. 65%

Eager Test EG JUnit classes having at least one method that uses more than one method of the tested class. 69%

Assertion Roulette AR JUnit classes containing at least one method having more than one assertion statement, and having
at least one assertion statement without an explicit explanation.

100%

Indirect Testing IT JUnit classes invoking, besides methods of the tested class, methods of other classes in the pro-
duction code.

68%

For Testers Only FTO Classes in the production code having structural relationship (e.g., method invocations, inheri-
tance) with only JUnit classes.

100%

Sensitive Equality SE JUnit classes having at least one assert statement invoking a toString method. 100%

calls of the org.junit.Assert class, e.g., assertEquals
or fail.

Despite the accuracy of the detector was already as-
sessed by the original authors, it might still be possible
that its performance in our context were lower. To make
sure that the detector was really suitable for our purposes,
we re-evaluated its precision2 on a statistically significant
sample of 341 JUnit test classes marked as smelly by the
tool across the 3, 000 test classes generated by the three
investigated automated test case generation tools over the
different runs. Such a (stratified) sample is deemed to
be statistically significant for a 95% confidence level and
±5% confidence interval [91]. Specifically, two authors of
this paper first performed the validation independently:
they were provided with (i) the source code of the consid-
ered tests and corresponding production classes and (ii) a
spreadsheet file reporting the list of all the tests to clas-
sify. The task was to assign a truth value in the set {true,
false} to each test of the list: the inspector assigned the
value true when a test was actually affected by a test
smell, false otherwise. Once the inspectors had com-
pleted this task, the produced outcomes were compared,
and the inspectors discussed the differences, namely test
smell instances marked as such by one inspector, but not
by the other. All those tests positively classified as smelly
by both the inspectors were considered as actual smells.
Regarding the other instances, the inspectors opened a
discussion in order to solve the disagreement and took a
joint decision; such a discussion took three hours in total,
concerned 27 tests (11 Eager Test and 16 Indirect Testing
candidate instances), and was based on the definition of
the smells as well as the argumentation of the inspectors.
To measure the level of agreement between the two inspec-
tors, we computed the Jaccard similarity coefficient [92],
i.e., number of test smell instances identified by both the
inspectors over the union of all the instances identified by
them. The overall agreement between the two inspectors
before the discussion was 92%. As a result of the manual
validation, we found that the precision of the tool is 75%
overall. The last column of Table 1 shows the precision
achieved by the tool on the individual test smells consid-
ered: from the table, we could observe that it has 100%

2Note that the recall could not be evaluated because of the lack
of a comprehensive oracle of test smells.

precision when considering four of the seven smells, while
for Resource Optimism, Eager Test, and Indirect Testing
the precision ranges between 65% and 69%. In these cases,
the lower precision of the detector is due to the intrinsic
complexity of the detection mechanisms related to these
smells: as an example, the detection of Assertion Roulette
instances is much easier and precise than Eager Test be-
cause the former can be simply identified by considering
the structural composition of an assert statement, while
the latter requires the analysis of the behavior of a test,
namely the identification of its multiple targets. Neverthe-
less, our validation of the statistically significant sample of
instances given by the tool allowed us to claim that it is
decently accurate in all cases to allow our experiment.

3.5. Data Analysis and Metrics

Once detected the test smells affecting each of the
3, 000 JUnit test classes considered, we answered RQ1 by
verifying the distribution of test smells in the analyzed
classes. In other words, we measured how many times a
certain test smell type was found over the classes automat-
ically generated by each testing tool. We also computed
the relative diffuseness, i.e., the number of smelly JUnit
classes over the total number of classes generated.

We considered the JUnit classes generated by the test-
ing tools in different runs as independent, i.e., the ten JU-
nit classes—produced in the ten execution runs by the test-
ing tools—which test each production class in the dataset
were considered as ten different instances with no rela-
tion with each other. This choice was done to balance the
non-determinism of the generation algorithms: indeed, as
explained in Section 3.3 the selected tools may behave in
different ways during each run (e.g., generating a test smell
in one execution and producing a clean class in the sub-
sequent run). For this reason, we preferred to consider
the general behavior of the tools, focusing on a large-scale
analysis done with as many test classes as possible, rather
than focusing on the behavior of the tools with respect to
single test classes.

As for RQ2, we investigated how often the presence of
a test smell in a JUnit class implies the presence of an-
other test smell. To this aim, we generated a database of
transactions composed of the test smell instances found in
each class considered. Such a database was then analyzed
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by means of Association Rule Mining [93]: this unsuper-
vised learning technique is used to identify local patterns
highlighting attribute value conditions that occur together
in a given dataset. More formally, let I = {i1, . . . , in} be
a set of n binary attributes called items and indicating
the presence of a certain property in the element under
consideration, and let T = {t1, . . . , tm} a set of m trans-
actions indicating the set of all the elements analyzed, an
association rule is defined as an implication of the form
X ⇒ Y , where X,Y ⊆ I and X ∩ Y = ∅. In our work,
the set T is composed by all the test classes generated by
the experimented automated test case generation tools,
while each item in the set I indicates the presence of a
given test smell in that test class. Therefore, an associa-
tion rule TSleft ⇒ TSright, between two disjoint sets of
test smells implies that, if a JUnit test class is affected
by each tsi ∈ TSleft, then the same class should be af-
fected by each tsj ∈ TSright. The validity and strength
of an association rule is determined by its support and
confidence [93]:

Support =
|TSleft ∪ TSright|

T

Confidence =
|TSleft ∪ TSright|

|TSleft|
where T is the total number of classes considered. To com-
pute the association rules, we used the statistical software
R and the package arules which implements the well-
known Apriori algorithm [93]. In Section 4 we discuss the
top-5 rules output for each analyzed testing tool. More-
over, to complement the quantitative findings we also per-
formed a fine-grained qualitative analysis aimed at under-
standing the causes making a certain generation algorithm
more/less prone to produce test smells: we manually an-
alyzed the test code generated by the different tools with
the aim of relating the peculiarities of the exploited algo-
rithms and the presence of test smells. To this aim, two
authors of this paper independently reviewed all the test
classes produced by the tools looking for the root causes
which make the test code smelly.

To answer RQ3 and understand the relationship be-
tween test code and production class characteristics, we
computed the Kendall’s rank correlation (Kendall’s τ) [94]
between the distribution of the test smells and the values
of four different Object-Oriented metrics able to charac-
terize a class under different perspectives (i.e., Lines of
Code (LOC), Lack of Cohesion of Methods (LCOM), Cou-
pling Between Object Classes (CBO), Response for a Class
(RFC), and Depth of Inheritance Tree (DIT)) [31] — all
the code quality metrics were computed using the publicly
available CKJM tool3 developed by Spinellis [87].

In particular, Kendall’s τ is a measure of correlation
between two variables X and Y defined in [-1; +1], where

3The tool is available at: https://www.spinellis.gr/sw/ckjm/.

Table 2: Relative diffuseness for the seven considered test-smells
over the tests generated by EvoSuite, Randoop, and JTExpert.
We report the values per class and per method

Smells Randoop JTExpert EvoSuite

Method Class Method Class Method Class

Assertion Roulette 0.812 0.976 0.880 0.737 0.744 0.736

Eager Test 0.533 0.487 0.743 0.622 0.623 0.567

Mystery Guest 0.063 0.104 0.119 0.150 0.069 0.114

Sensitive Equality - - 0.576 0.667 0.016 0.077

Resource Optimism - - - - 0.006 0.031

For Testers Only - 0.012 - - - 0.011

Indirect Testing - - - - - -

+1 represents a perfect positive linear relationship, -1 rep-
resents a perfect negative linear relationship, and values
in between indicate the degree of linear dependence be-
tween X and Y. To interpret the results, we used estab-
lished guidelines [94] reporting that there is no correlation
when 0 ≤ ρ < 0.1, small correlation when 0.1 ≤ ρ < 0.3,
medium correlation when 0.3 ≤ ρ < 0.5, and strong cor-
relation when 0.5 ≤ ρ ≤ 1. Similar intervals also work in
cases of negative correlations.

In RQ4 we verified whether the presence of test smells
can depend on the size of the test class generated. Simi-
larly to RQ3, we employed the Kendall’s rank correlation
[94] to measure the relation between the distribution of
the test smells and the size of the corresponding JUnit
test classes.

In addition to the above quantitative analyses, we con-
ducted a qualitative investigation to assess which charac-
teristics and peculiarities of the test case generation algo-
rithms lead to the introduction of test smells. More specif-
ically, two authors of this paper jointly analyzed the source
code of the three considered tools in order to understand
how they (i) actually generate method sequences and (ii)
add assertions to the test code. During this process, the
two authors first cloned the projects from their respective
repositories; then, they both analyzed the algorithm defini-
tions, the generated test classes, and the source code when
available (i.e., for Randoop and EvoSuite). Through
this analysis, the two authors could come up with quali-
tative insights that aim at explaining the reasons behind
the results coming from the correlation analyses previously
performed. In Section 4 we discuss the results of our study
by reporting the quantitative findings first, followed by the
qualitative observations made by the automatic test case
generation tool inspectors.

4. Analysis of the Results

In this section we report and discuss the results of the
study aimed at answering our research questions.

4.1. RQ1: The Diffuseness of Test Smells
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Our first research question aimed at studying how dif-
fused test smells are in test code automatically generated
by existing testing tools.

Results. Table 2 reports, for each automated testing tool
considered, the percentage of smelly JUnit test classes and
methods found when running the test smell detector over
the generated tests. The first thing that leaps to the eye is
the high diffuseness of test smells in automatically gener-
ated JUnit classes for all the experimented test-generation
tools. On the one hand, this confirms the results pre-
viously achieved on EvoSuite [25], while on the other
hand, it demonstrates that the problem of test smells is
widely diffused also for other tools like Randoop and
JTExpert. More specifically, almost 81% of the JUnit
classes generated by EvoSuite can be considered smelly
(i.e., they contain at least one test smell instance); the
percentage is even higher for the other tools, i.e., 98%
and 92% for Randoop and JTExpert, respectively. The
results are very similar when lowering the granularity at
method-level. Among the considered test smells, Asser-
tion Roulette is the most diffused (e.g., 81% and 98% of
methods and classes generated by Randoop are affected
by this smell, respectively), followed by Eager Test (e.g.,
73% of test methods generated by JTExpert are smelly).

Discussion. The first result of our study clearly points out
that, despite different heuristics for test case generation
are employed by the considered tools, the distribution of
test smells is nearly the same (as reported in Table 2).
This is due to multiple reasons. Let first focus on the most
diffused smell, i.e., Assertion Roulette. According to the
formal definition, this smell arises when a JUnit class con-
tains at least one assertion statement without an explicit
declaration (i.e., no use of the optional first argument pro-
vided by the JUnit framework to add explanations). The
main problem leading to the high diffuseness of Assertion
Roulette relates to the fact that none of the considered
tools is able to generate those kind of comments for the
placed assertions. For instance, Listing 2 shows an exam-
ple of test case generated by Randoop: as it is possible to
observe, the test case contains 12 different assertions with-
out any explanation, either as a comment or as an optional
message passed as first parameter to the assertion. This
aspect, together with the poor readability of the test case,
would make the understanding of the exercised behavior
hard. We found this kind of issue for all the automated
test code generators.

EvoSuite only excepts to this behavior when it fails
a test verifying an exception. For the sake of compre-
hensibility, let consider the test shown in Listing 3. The
test first initializes local objects of the the BrowseNode

class and, then, exercises the code to check whether
a NullPointerException is thrown when calling the
method getSubNode with a string parameter referring to
a non-existing node. When testing for this behavior, we
noticed that Evosuite uses the assertion fail (line 8 in

1 public void test009() throws Throwable {
2 ...
3 org.junit.Assert.assertTrue("’" + str3 + "’ !=

’" + "null - null -- hi!" + "’", str3.equals("
null - null -- hi!"));

4 org.junit.Assert.assertNull(str4);
5 org.junit.Assert.assertTrue("’" + str8 + "’ !=

’" + "null - null -- hi!" + "’", str8.equals("
null - null -- hi!"));

6 org.junit.Assert.assertNotNull(arrayList21);
7 org.junit.Assert.assertTrue("’" + str26 + "’ !=

’" + "null - null -- hi!" + "’", str26.equals("
null - null -- hi!"));

8 org.junit.Assert.assertNull(str27);
9 org.junit.Assert.assertTrue("’" + str31 + "’ !=

’" + "null - null -- hi!" + "’", str31.equals("
null - null -- hi!"));

10 org.junit.Assert.assertTrue("’" + str37 + "’ !=
’" + "null - null -- hi!" + "’", str37.equals("

null - null -- hi!"));
11 org.junit.Assert.assertNull(str38);
12 org.junit.Assert.assertTrue("’" + str42 + "’ !=

’" + "null - null -- hi!" + "’", str42.equals("
null - null -- hi!"));

13 org.junit.Assert.assertNotNull(arrayList52);
14 org.junit.Assert.assertNotNull(arrayList56);
15 }
16

Listing 2: Test method automatically generated by Randoop
suffering of Assertion Roulette

1 public void test02() throws Throwable {
2 BrowseNode browseNode0 = new BrowseNode ();
3 BrowseNode browseNode1 = new BrowseNode ();
4 browseNode1.addSubNode(browseNode0);
5 // Undeclared exception!
6 try {
7 browseNode1.getSubNode(" -- \n");
8 fail("Expecting exception: NullPointerException");
9 } catch(NullPointerException e) {

10 verifyException("net.kencochrane.a4j.beans.
BrowseNode", e);

11 }
12 }
13

Listing 3: Test case generated by EvoSuite that expect a
NullPointerException

Listing 3) by including a textual message that explain what
the test is supposed to verify in production code. Thus,
in these cases the tool precludes the introduction of an
Assertion Roulette.

From our analyses, we can therefore conclude that all
the three tools tend to introduce an instance of this smell
as soon as a new assertion is added in a JUnit class. To bet-
ter understand the extent of the issue, we also computed
the assertion density [95], i.e., the number of assertions
per test case, of the tests given as output by the three
tools. We found that the tests generated by EvoSuite
have an assertion density of 2, while Randoop and JTEx-
pert generate on average suites with 14 and 5 assertions
per test, respectively. Those results are due to the mecha-
nisms used to place the assertions (described in Section 2):
as such, while Evosuite reduces the set of assertions gen-
erated via mutation testing, the other tools have very little
control over the number of placed assertions and possibly
increase the presence of Assertion Roulette instances.

Some other insights can be discussed when considering

10



the second most diffused smell, i.e., Eager Test, that arises
whether a test case invokes more than one method produc-
tion class. This smell is naturally related to the method
sequences that form the final test cases. More specifically,
with our qualitative investigation into the algorithms ex-
ploited by the considered tools we could conclude that the
presence of Eager Test instances is caused by the intrinsic
randomness in generating the method sequences forming
the final test cases. As detailed in Section 2, EvoSuite
randomly generates the initial population (i.e., the initial
set of tests) by putting together random method sequences
that likely refer to different production methods. There-
fore, the tests are scented since the beginning. Indeed,
crossover and mutation operations performed though their
evolution do not change the structure of the tests, i.e.,
these operators do not act on method sequences, thus not
removing the initial smells nor introducing new ones.

A similar phenomenon occurs with Randoop and JT-
Expert. The former extends the sequences either by ap-
pending a method call at the end of the sequence or com-
bining two existing ones: it is easy to observe how such a
mechanism leads to eager sequences. JTExpert, instead,
builds the method sequences by combining state-modifier
methods with a target-viewfinder one. While the former
are often needed to expose faulty object states, the tools
has little control over the number of state-modifier meth-
ods that form the sequence. This mechanism may induce
the introduction of sequences referring to different produc-
tion methods, thus introducing a smell.

A final discussion point regards a peculiarity of JT-
Expert. While the distribution of test smells is gener-
ally similar in all the three considered tools, the diffuse-
ness of Sensitive Equality instances in JTExpert is much
higher than the others. To recall, Sensitive Equality hap-
pens when an assertion contains an equality check though
the use of a toString method. Listing 4 shows a related
example of a test case generated by JTExpert for the
class VariableLabelTableModel. As reported, the tool
tends to generate statements where the asserts are com-
posed of calls to the toString Java API in case of checks
involving String objects, leading to the introduction of
Sensitive Equality instances. This is true for most of the
String equality controls in our dataset (94% of them are
done by means of the toString function).

Summary of RQ1. Test smells are widely diffused
in test cases automatically generated by all the ex-
perimented tools: 81%, 92%, and 98% of the JUnit
classes generated by EvoSuite, JTExpert, and Ran-
doop, respectively, can be considered smelly. Among
the studied smells, we found that Assertion Roulette
and Eager Test are the most spread within our dataset.

4.2. RQ2: On the Co-Occurrence of Test Smells

In the second research question, we investigated to
what extend test smells co-occur in automatically gener-

1 @Test public void TestCase9() throws Throwable {
2 VariableLabelTableModel

clsUTVariableLabelTableModel=null;
3 clsUTVariableLabelTableModel=new

VariableLabelTableModel(
clsUTVariableLabelTableModelP1P1,
clsUTVariableLabelTableModelP1P2);

4 int clsUTVariableLabelTableModelP2R=0;
5 clsUTVariableLabelTableModelP2R=

clsUTVariableLabelTableModel.getColumnCount ();
6 assertEquals(3,clsUTVariableLabelTableModelP2R);
7 ArrayList clsUTVariableLabelTableModelP3R=null;
8 clsUTVariableLabelTableModelP3R=

clsUTVariableLabelTableModel.getData ();
9 Object clsUTVariableLabelTableModelP3RP0R=null;

10 clsUTVariableLabelTableModelP3RP0R=
clsUTVariableLabelTableModelP3R.clone();

11 assertEquals("[]",clsUTVariableLabelTableModelP3RP0
R.toString ());

12 assertEquals(1,clsUTVariableLabelTableModelP3RP0R.
hashCode ());

13 assertEquals("[]",clsUTVariableLabelTableModelP3R.
toString ());

14 assertEquals(true ,clsUTVariableLabelTableModelP3R.
isEmpty ());

15 String clsUTVariableLabelTableModelP4R=null;
16 ...
17 }
18

Listing 4: Example of Test Case suffering of Sensitive Equality
generated by JTExpert.

ated tests.

Results. Table 3 shows, for each tool, the five most im-
portant association rules detected when considering both
the test class granularity (upper part of the table) and test
method granularity (lower part of the table). It is easy to
note that ET → AR is the rule that most frequently oc-
curs with a high support and confidence. Indeed, in case of
EvoSuite and Randoop, it represents the rule with the
highest number of occurrences (492 and 399, respectively),
while for JTExpert 510 occurrences were detected (i.e.,
for half of the generated test suites). On the one hand,
this rule might be a reflection of the high diffuseness of
those two smells in the analyzed dataset: it may be that
the massive presence of an Eager Test accidentally coin-
cides with a large amount of co-occurrences of Assertion
Roulette instances. On the other hand, however, we can
also explain such a rule with the following reasoning: with
the aim of maximizing the overall branch coverage, the in-
vestigated tools tend to exercise more production code as
possible. Often, this would eventually break the Single-
Condition Tests principle [67], i.e., the best practice of
having a single behavior exercised by each test and lead to
the introduction of an Eager Test instance. Moreover, dif-
ferent behaviors imply more production code executed by
a test case that could result in more assertions generated
via mutation testing: as a result, some Assertion Roulette
instances might be generated in the same place.

Our findings also revealed that Mystery Guest in-
stances often co-occur with both Assertion Roulette and
Eager Test in the cases of Evosuite and Randoop.
The relation that Sensitive Equality has with Assertion
Roulette when considering Evosuite and JTExpert is
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Table 3: Top 5 rules detected via Rule-Association Mining for each of the tool used. We report the values both at test suite and test case
granularity

Test Class Granularity

Randoop JTExpert EvoSuite

rule support confidence count rule support confidence count rule support confidence count

ET → AR 0.48 0.98 399 SE → AR 0.86 0.99 533 ET → AR 0.53 0.91 492

MG → AR 0.10 0.92 80 ET → AR 0.86 0.99 510 MG → AR 0.10 0.81 89

MG → ET 0.04 0.43 37 ET → SE 0.79 0.96 491 MG → ET 0.08 0.73 79

ET,MG → AR 0.04 0.81 30 ET, SE → AR 0.79 0.99 490 SE → AR 0.08 0.98 72

AR,MG → ET 0.04 0.38 30 AR,ET → SE 0.79 0.96 490 SE → ET 0.08 0.96 70

Test Case Granularity

ET → AR 0.72 0.99 548,689 ET → AR 0.92 0.99 4,628 ET → AR 0.28 0.65 5,856

MG → AR 0.12 0.95 92,879 SE → AR 0.91 0.99 4,599 MG → AR 0.20 0.42 416

MG → ET 0.07 0.59 57,822 SE → ET 0.88 0.96 4,473 MG → ET 0.01 0.33 327

ET,MG → AR 0.07 0.95 55,396 ET, SE → AR 0.88 0.99 4,452 ET,MG → AR 0.01 0.55 231

AR,MG → ET 0.07 0.59 55,396 AR,SE → ET 0.88 0.96 4,452 AR,ET → MG 0.01 0.04 231

pretty expected, as the former smell naturally appears
when the latter arises. The same tools also shared the re-
lation between Sensitive Equality and Eager Test (SE →
ET in the case of Evosuite, ET → SE in the case of JT-
Expert). Finally, it is worth remarking that also other
composite relations appeared for Randoop and JTEx-
pert (e.g., ET,MG → AR). The test smells involved in
these rules are exactly the same as those discussed so far
and the derived rules do not provide further insights on
the co-occurrences between them.

Discussion. Through the analysis of the mechanisms used
by the considered tools for the generation of method se-
quences and assertions (explained in Section 2), we could
practically explain the most recurring co-occurrences ob-
served in our study. Let first considering the most fre-
quent co-occurrence, i.e., ET → AR: this relation is to
be considered intrinsic and natural when considering the
way assertions are placed by the considered tools. Indeed,
the presence of an Eager Test implies a larger number of
calls that aim at exercising the behavior of different pro-
duction methods; this may lead a test to exercise methods
having returning values, which are the elements triggering
the introduction of assertions. As an example, Randoop
iterates over all the statements that form a sequence and
introduces an assertion for each non-void returning value.
Similarly, the more the called methods the higher the num-
ber of mutants generated by Evosuite; as a consequence,
the higher the number of possible assertions.

When considering JTExpert, we observed two co-
occurrences that involve the Sensitive Equality smell and
that do not appear in the cases of the other testing tools,
i.e., SE → AR and ET → SE. The former can be ex-
plained as follow: JTExpert mostly uses toString calls
to check object states in the assertions, therefore increas-
ing its chances to introduce a Sensitive Equality in com-
bination with an Assertion Roulette. For instance, Listing
5 shows a test case generated by JTExpert, in which
the mechanism presented above is implemented when as-
sessing the equality of a string object. As for the second

1 @Test public void TestCase0() throws Throwable {
2 CalEventModelImpl clsUTCalEventModelImpl=null;
3 clsUTCalEventModelImpl=new CalEventImpl ();
4 CacheModel clsUTCalEventModelImplP2R=null;
5 clsUTCalEventModelImplP2R=clsUTCalEventModelImpl.

toCacheModel ();
6 Object clsUTCalEventModelImplP2RP0R=null;
7 clsUTCalEventModelImplP2RP0R=clsUTCalEventModelImplP2

R.toEntityModel ();
8 assertEquals("{uuid=, eventId=0, groupId=0, companyId

=0, userId=0, userName=, createDate=null ,
modifiedDate=null , title=, description=, location
=, startDate=null , endDate=null , durationHour=0,
durationMinute=0, allDay=false , timeZoneSensitive
=false , type=, repeating=false , recurrence=,
remindBy=0, firstReminder=0, secondReminder=0}",
clsUTCalEventModelImplP2RP0R.toString ());

9 ...

Listing 5: Test generated by JTExpert using toString() to check
an assertion

co-occurrence, we can argue that Eager Test and Sensitive
Equality often appear together as a reflection of the rela-
tion that these two smells have with Assertion Roulette:
indeed, as we have seen, more method calls imply more
assertions, that in the case of JTExpert are often imple-
mented with a toString call.

A final discussion point regards the rule MG → AR,
which frequently appears in both Evosuite and Ran-
doop. In this regard, we did not find any specific causality
explaining this relation: we could just conclude that this is
due to the fact that test cases relying on external resources
often contain assertions, thus leading to the co-occurrence
between Mystery Guest and Assertion Roulette instances.

Summary of RQ2. The presence of Eager Test often
implies an Assertion Roulette: this is true for all the
considered tools with a high support and confidence.
The relation between Sensitive Equality and Assertion
Roulette is naturally confirmed, while other smells tend
to appear less together or their relation is not causal.
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Figure 1: Kendall’s correlations between the smells for the test suites
generated by EvoSuite and the structure properties of source code.

4.3. RQ3: The Relationship between Test Smells and
Structural Properties of Source Code

To answer RQ3, we correlated the structural metrics of
the production code with the occurrences of the detected
test smells. Note that we calculated the results considering
the testing tools independently.

Results. Our analyses did not highlight relevant insights
in the cases of Randoop and JTExpert: indeed, most
of the correlations between code metrics and test smells
are either negligible or not statistically significant, i.e.,
p ≥ 0.10. The only exception is related to the correlation
between DIT and Eager Test for the suites generated by
Randoop; however we did not find any relevant reason to
support the causality of such a correlation. Thus, we con-
clude that approaches implementing random algorithms—
that do not consider the nature of production code when
generating tests—do not share relevant relations with the
exercised unit, and thus they are not influenced by code
metrics. For sake of readability, we included a detailed
report of our analyses for these two tools in our online
appendix [88], while in this section we report the most
interesting results related to Evosuite.

Figure 1 shows a heap map reporting the Kendall’s
τ values achieved when studying the relationship between
the presence of test smells in tests generated by EvoSuite
and the code quality metrics of the production classes.
The figure only shows the statistically relevant τ , i.e., the
ones with p ≤ 0.05. The values marked with * indicate a
p-value between 0.05 and 0.10. As it is possible to see, dif-
ferent test smell types have noticeable correlation values
with different characteristics of the production code. For
instance, the number of lines of code of the production
classes (LOC) seems to influence the presence of several
types of smells: Eager Test (τ = 0.26), Sensitive Equality
(τ = 0.18), and Resource Optimism (τ = 0.17) have a pos-
itive correlation. On the contrary, For Tester Only shows
a negative correlation, i.e., τ = −0.15. We observe sim-
ilar correlations for the LCOM metrics: Eager Tests has
a medium correlation (τ = 0.33), while Sensitive Equality
and Resource Optimism a small one.

While LCOM and LOC are the most positively cor-
related metrics, we report negative correlations (i.e., the
percentage of smells decreases when the metric increases)
for the depth of inheritance tree (DIT) metric. We found
a medium correlation for Eager Test (τ = −0.31) and a
small one (τ = −0.24) for Assertion Roulette. This re-
sult seems to support what has been previously shown by
Nogueira et al. [96] on the ability of inheritance metrics
to provide information on the quality of test cases.

Discussion. The findings on correlation highlight some po-
tential relationships between production and test code.
During our manual analysis, we tried to further elaborate
on such relations to discover the causes behind them. As
a result, we first found that the correlation between Ea-
ger Test and lines of production code is simply due to
high density of complex methods in production classes.
Moreover, large classes in the dataset also contains large
methods with non-cohesive responsibilities which lead the
testing tools to produce test methods that check more than
one method of the class to be tested. This result corrob-
orates previous findings reported by Tufano et al. [73],
who found that code affected by code smells characterizing
complex and long code (i.e., the Spaghetti Code [66]) tend
to be related to the emergence of Eager Test instances.
This is also the motivation for the strong correlation that
we found between this test smell and the LCOM metric.
Indeed, such metric possibly indicates that a class does
not follow a responsibility-driven design [97], increasing
the probability that a test method is enforced to test more
production methods at the same time.

Size and cohesion of production code also influence the
presence of other test smells such as Assertion Roulette
and Sensitive Equality. Indeed, the more the code to be
tested, the higher the chance of adding assertions in test
code that verify the status of the production code. At
the same time, the higher the number of assertions the
higher the likelihood to test string objects and add Sensi-
tive Equality instances. So, in this latter case, the correla-
tion seems to be a reflection of the intrinsic relation that
this smell has with Assertion Roulette.

In summary, after this analysis we can claim that the
quality of production code may influence the presence of
smells in test code automatically generated by Evosuite.
Thus, developers can improve the ability of the tool to
generate qualitative tests by (i) keeping some production
code quality indicators under control and (ii) apply refac-
toring solutions that simplify the structure of production
code, thus making Evosuite more able to produce high-
quality tests. Unfortunately, this rule does not hold for
Randoop and JTExpert, both implementing random
meta-heuristics that have no specific relations with pro-
duction code. From a practical perspective, this implies
that the quality of tests generated by those tools cannot
be monitored by developers; researchers are instead called
to define more effective solutions enabling a quality-aware
random generation of test cases.
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Figure 2: Kendall’s correlations between the test smells and the test-
suite sizes generated by the three analyzed tools

Summary of RQ3. The presence of smells in tools
implementing random algorithms is not influenced by
the quality of production code. On the contrary, we
discovered some correlations between code metrics and
test smells present in tests generated by Evosuite that
might be useful for developers to keep the quality of
production code under control, immediately providing
benefits for the generation of good tests.

4.4. RQ4: The Relationship between Test Smells and Size
of the Test Suites

Our last research question aimed at targeting the re-
lation between test smells and the size of the test suites
generated by the investigated automatic tools.

Results. Figure 2 reports the Kendall’s values achieved
analyzing the relationships between the presence of test
smells and the size of the resulting test classes. The re-
sults are reported separately for each test data generator.
A white box indicates that no correlation has been calcu-
lated since the corresponding smell has not been detected
over the tests generated by a certain tool.

According to our results, we observe that the size of
the generated test suite is generally moderately correlated
with the presence of test smells. Indeed, for each of the
three analyzed tools, we report a strong correlation be-
tween the test-suite size and Eager Test, meaning that
the larger the generated tests the higher the probability
to include instances of this smell. It is worth remarking
that such a smell represents one of the most harmful ones
for the maintainability of both test and production code
[22], and having “cheap” solutions to reduce their intro-
duction might provide an important benefit for improving
the overall reliability of software systems.

For Randoop this is the unique noticeable correlation:
this might due to the fact that the Randoop’s default con-
figuration gives as output test suites with a fixed amount
of test cases. Indeed, the size of the generated tests does
not vary that much amongst the subjects of our study.
Looking at JTExpert, we found strong correlations also

for Sensitive Equality and Mystery Guest, while for Asser-
tion Roulette we observe a medium correlation with the
test suite size. Finally, when analyzing EvoSuite, we
observed medium correlations for Assertion Roulette and
Sensitive Equality, confirming the finding of our previous
study [25].

Discussion. On the basis of the correlation and manual
analyses done with respect to RQ4, we could provide two
main observations. In the first place, not all test smells
have a correlation with test size: this means that some
of them, e.g., Mystery Guest, are independent from the
mechanisms used by automatic testing tools to keep test
suite size under control. As such, our findings inform re-
searchers and tool vendors on the need for different mech-
anisms to deal with these types of test smells: for exam-
ple, post-processing refactoring activities should be pre-
ferred to inner-working instruments that possibly interfere
with the test case generation process. At the same time,
there are specific test smells, like Eager Test and Assertion
Roulette, that are influenced by test size: to some extent,
this may be expected because their appearance is naturally
related to the number of lines of code in a test suite. For
example, the higher the size of a test class the higher the
likelihood of the presence of tests that exercise more pro-
duction methods. The results of our study possibly suggest
that the introduction of certain smells may be reduced or
even precluded by keeping test suite size under control.
To further investigate this aspect, we conducted an ad-
ditional analysis by investigating the dataset provided by
Palomba et al. [15]: it contains a set of test classes auto-
matically generated by Q-Mosa, namely a quality-aware
version of Evosuite that takes into account cohesion and
coupling metrics while optimizing for code coverage. The
test classes output by Q-Mosa have been shown to have a
statistically lower size than the standard version of Evo-
Suite: thus, we can use these classes as baseline to show
the effect of keeping size under control on the presence of
test smells. To this end, we ran our test smell detector
on such classes in order to compare the test smell diffu-
sion in the tests generated by Q-Mosa and the standard
EvoSuite. As a result, we found that Q-Mosa is able
to generate 57% less Eager Test and 33% less Assertion
Roulette instances with respect to EvoSuite, while reach-
ing a higher code coverage, as reported by Palomba et al.
[15].

All in all, our analyses provide a first compelling evi-
dence that keeping test suite size under control might sub-
stantially reduce certain types of test smells appearing in
test code, without having any negative effect on the result-
ing code coverage. Of course, we are aware that further
investigations into this aspect are desirable and part of our
future research agenda.
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Summary of RQ4. Test suite size is often correlated
to the presence of Eager Test and Assertion Roulette.
Moreover, the number of instances for these two smells
may be successfully reduced by keeping test size under
control during the generation process, without damag-
ing the resulting code coverage.

5. Further Discussion and Implications

The results of our study provide a number of insights
that can be used by researchers and tool vendors to im-
prove automatic test case generation tools and approaches
with respect to the design quality of the produced tests.

Toward quality-aware testing tools. Our results revealed
the high diffuseness of test smells in the code automati-
cally generated by all the experimented testing tools. As
shown by recent research in the field [19, 22], test smells—
especially the ones occurring the most, e.g., Eager Test
and Assertion Roulette—heavily impact test/production
code quality and maintainability as well as test effective-
ness; as a consequence, we argue that such testing tools,
whose aim is to provide developers with additional tests
that can possibly catch faults hard to identify manually,
should carefully take into account quality-related aspects
in the generation process to avoid the natural introduc-
tion of design defects that might threat the overall relia-
bility of software systems. Some researchers have started
working toward this direction by proposing cohesion and
coupling metrics as secondary objectives to reach while
optimizing for code coverage [15], however we argue that
further research into this matter would be desirable. For
instance, explicitly taking test smell-related information
into account within the generation process (e.g., by con-
sidering the number of test smells as secondary objective)
may have a positive effect of the resulting design qual-
ity without necessarily impacting the overall effectiveness
of tests. At the same time, the research community would
benefit from an improved understanding of how lack of pro-
duction code quality impacts test code, e.g., whether test
cases exercising complex/smelly production classes tend
to become smelly as well. Also in this case, even if some
preliminary studies are already available [72, 73], more re-
search on the topic would provide to tool vendors further
insights on how to improve software testing tools.

Documenting tests. The smell occurring the most is by far
Assertion Roulette, which is naturally generated by cur-
rently available automated test case generation tools be-
cause of their inability to produce explanatory messages
when adding assertions in test code. The basic issue of
this smell is that it lowers the ability of developers to un-
derstand the actual reason behind a failure. On the basis
of our findings, we envision two main implications for re-
searchers and tool vendors. On the one hand, the number

of Assertion Roulette instances may be reduced by keeping
quality-related aspects into account during the generation
process, as shown in our additional analysis involving the
dataset made available by Palomba et al. [15]: this may
possibly indicate that more focused tests, i.e., test cases
that target single production methods, have less chance to
be affected by this smell. On the other hand, a mitigation
of the problem can be provided by automated solutions to
document test cases: for instance, a recent work [20] de-
vised an approach to generate summaries for tests, show-
ing that they help when developers fix bugs in production
code. We argue that (i) quality-aware solutions and (ii)
finer summarization techniques working at assertion-level
might reduce or even eliminate the problems created by
having Assertion Roulette instances in test code.

On the refactoring of test smells. Previous works have
shown that code/test smell removal can eliminate some of
the problems caused by those design issues [19, 51]. A nat-
ural implication of our study is a call for more research on
refactoring and in particular test smells refactoring [98]. In
this regard there are some key challenges to face. First, the
refactoring approaches should not affect test case reliabil-
ity and effectiveness. Second, it is not clear when refactor-
ing should be performed. On the one hand, quality-aware
test case generation approaches could integrate on-the-fly
refactoring mechanisms that avoid test smell appearance
in the first place; on the other hand, the definition of ad-
hoc post-processing steps that remove test smells could
represent another alternative to pursue.

Keeping test suite size under control. In our study, we
found that test size has a detrimental effect on test qual-
ity. This practically means that testing tools monitoring
test size while generating tests could reduce the overall
number of test smells, especially those referring to Eager
Test and Assertion Roulette. We argue that this aspect
should be more carefully considered in order to produce
more effective tools. In this sense, a key challenge is the
development of novel algorithms able to effectively inte-
grate such control mechanisms into the automated test
case generation process. To support this hypothesis, we
conducted an additional analysis to understand how the
number of test smells can be reduced by keeping quality
aspects under control. By detecting test smells in a set of
test cases generated by Q-Mosa, a quality-aware test case
generation tool, we discovered that it is possible to control
test smell diffuseness while improving code coverage and
reducing test code size as previously shown by Palomba et
al. [15]. As such, the introduction of quality metrics as
secondary objectives of currently available tools may rep-
resent a valuable way to control both size and presence of
test smells. Based on our findings, the research commu-
nity is called to further investigate and devise algorithms
able to automatically generate shorter and/or less smelly
test cases.
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On production code quality. In the case of EvoSuite, we
discovered that the quality of production code has a cor-
relation with the amount of test smells generated by the
tool. While this finding should be further corroborated by
analyses aimed at better investigating causality, our results
seem to delineate a trend for which developers might sup-
port testing tools by writing good production code. More
specifically, our findings seem to support the existence of
an interplay between source code quality and effectiveness,
since it may be possible to improve test code generated au-
tomatically by taking production code quality under con-
trol. Our results may increase the practitioners’ awareness
in measuring production code quality and applying refac-
toring to reduce its complexity. Furthermore, we believe
that researchers should further investigate to what extent
automatically generated test code is sensible to variations
in production code, e.g., to what extent the effectiveness
of generated test cases varies before and after production
code refactoring. Finally, we observed that Randoop and
JTExpert are not influenced by production code quality:
this means that refactoring production code does not en-
able the generation of better test cases when these tools
are adopted. For these tools novel solutions enabling a
quality-aware random generation of test cases should be
devised.

6. Threats to Validity

In this section we discuss the threats that might have
affected the validity of our study.

6.1. Threats to construct validity

As for threats related to the relationship between the-
ory and observation, the main threat in our study con-
cerns the way test smells were detected in the considered
projects. Given the amount of analyzed tests, we could
not perform a manual detection, therefore, we relied on
an automated solution. We employed the publicly avail-
able test smell detector originally developed by Bavota et
al. [28], as it has been reported to be highly effective
in the identification of instances of the seven test smells
considered. Furthermore, we also conducted an additional
analysis aimed at assessing its performance in our context,
manually evaluating the precision of the tool on a statisti-
cally significant set of 341 test classes. The results achieved
showed a precision of 75%, and thus we could consider the
tool suitable for our study. It is important to note that
we cannot speculate on the recall of the detector because
of the lack of a comprehensive oracle for the considered
set of classes. However, from our precision re-assessment,
it seems that the performance reported by Bavota et al.
[28] holds in our context. This makes us confident of the
fact that it also holds for recall but, of course, we cannot
exclude the presence of false negatives.

All the automated test case generation tools experi-
mented were tested using the default configuration param-
eters to conduct a fair comparison. Moreover, we ran the

tools ten times to address the non deterministic nature of
the underlying algorithms.

6.2. Threats to internal validity

Threats to internal validity are related to factors, in-
ternal to our study, that could have influenced our find-
ings. In this case, the main potential problem is related to
cause-effect relationships between what we measured and
what are the actual factors influencing the diffuseness of
test smells (RQ3 and RQ4). As explained in Section 3,
we computed a set of code metrics with the aim of un-
derstanding if there is a correlation between such metrics
and the presence of test smells: we consciously performed
a correlation analysis since our goal was to identify factors
that might be possibly employed to avoid the generation
of test smells during the process of automated test case
generation. To deal with the randomness of the employed
algorithms, we repeated the test cases generation phase
for 10 times [99]. Such randomness might have influenced
our analysis. Therefore, we computed the mean and the
standard deviation of the test smell occurrences for each
considered test smell over the different generations: we ob-
served low deviations as an indication that the behavior
of the tools do not differ much across different runs. For
instance, we detected a mean of 22 instances of Assertion
Roulette for the test suites generated by EvoSuite with
a mean standard deviation over the different runs of 2.

6.3. Threats to conclusion validity

Threats to conclusion validity concern the relationship
between experimentation and outcome. To investigate the
diffuseness of test smells (RQ1) in the test classes auto-
matically generated by the testing tools, we verified the
distribution of the smelly instances output by the detec-
tor. To assess test smell co-occurrences (RQ2) we used the
well-known association rule mining, while we measured the
relation between structural characteristics and test smell
presence (RQ3 and RQ4) through the use of appropriate
statistical procedures. Finally, to complement the quan-
titative side of the study, we manually investigated the
reasons behind the smell-proneness of certain tools.

6.4. Threats to external validity

Threats in this category are mainly related to the
generalizability of our findings. We took into account
three different automated test case generation tools rely-
ing on different algorithms with the aim of considering a
wider range of approaches with respect to the creation of
test smells. Furthermore, we conducted the experiments
on a dataset composed of a large number of classes ex-
tracted from the SF110 dataset [26]. While previous re-
search [7, 24] widely exploited such a dataset, experiment-
ing a different one (e.g., XCorpus [100]) would increases
the generalizability of the results. This is part of our fu-
ture agenda. It is worth noting that we filtered out all
the trivial classes originally belonging to the SF110 dataset
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as done in previous work [7, 30]. Due to the limitations
of the test case generation and test smell detection tools,
we limited the context of our study only to Java systems.
Replications of our work on systems written in other lan-
guages are therefore desirable.

7. Conclusion

Test code quality can influence the effectiveness of test
cases [19–22]. While previous studies investigated how
well-known indicators of poor test code quality, i.e., test
smells, influence manually-generated tests [28], in this pa-
per we analyzed the extent to which test smells affect au-
tomatically generated test cases. In particular, we con-
ducted a large-scale empirical analysis on the diffuseness
of seven test smells in the tests generated by three state-
of-the-art testing tools such as Randoop [29], JTExpert
[9], and EvoSuite [5]. Furthermore, we also assessed the
co-occurrences of smells and whether structural indicators
of test code correlate with the presence of test smells.

Our findings showed that all the considered tools tend
to generate a large amount of instances related to two
test smells, i.e., Assertion Roulette and Eager Test. As
a consequence, these tools naturally expose tests to the
risk of being less effective when catching faults in produc-
tion code. Furthermore, test size is correlated with the
generation of smelly test cases. Therefore, such charac-
teristic should be keep under control to improve test code
quality.

Our future research agenda is based on the output of
this paper. We aim at improving current automated test-
ing tools in a way that they avoid the generation of smelly
test suites. Furthermore, we aim at replicating the study
taking into account testing tools that work on different
programming languages as well as different datasets (e.g.,
the Xcorpus one [100]).
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