
A Language-Parametric Modular Framework

for Mining Idiomatic Code Patterns

Dario Di Nucci1 Hoang Son Pham2 Johan Fabry3 Coen De Roover1

Kim Mens2 Tim Molderez1 Siegfried Nijssen2 Vadim Zaytsev3

1Vrije Universiteit Brussel, Belgium 2Université catholique de Louvain, Belgium
3Raincode Labs, Belgium

Abstract

In an ongoing industry-university collabora-
tion we are developing a language-parametric
framework for mining code idioms in legacy
systems. This modular framework has
a pipeline architecture and a language-
parametric meta representation of the arte-
facts used by each of its 5 components: source
code importer, mining preprocessor, pattern
miner, pattern matcher, and modernisation
assistant. The pipeline enables reuse of its
components across systems and languages, as
well as for project partners to work on each
of these components separately. An exam-
ple is the exploration of novel pattern mining
techniques independently of the languages on
which they will be applied and the modernisa-
tion assistant in which they will be used. Our
first results on mining Java and COBOL code
are promising, even though challenges still lie
ahead to make the framework and its consti-
tuting components truly scalable, customis-
able, and language independent.

1 Introduction

Legacy systems have been informally defined as “large
software systems that we do not know how to cope
with but that are vital to our organisation” [1, 2]. To
keep their business value, legacy systems must evolve

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

over time by being replaced, redeveloped, rearchi-
tected, reengineered, reused, or by having their soft-
ware components and platforms migrated when tradi-
tional maintenance practices can no longer achieve the
desired system properties [3]. Technology consulting
firms estimate that 180–200 billion lines of legacy code
are still in active use [4]. Since the potential benefits
for legacy system modernisation are well recognised,
these systems are being slowly replaced or retired in
favour of alternatives.

This paper presents an initial framework that is be-
ing developed by two universities and a legacy mod-
ernisation company in the context of a code mining
project. The company has been active since 1998,
had a series of successful migration projects with a
streak of satisfied customers, and has already won
three migration-related technology excellence awards
from Microsoft. The project’s objectives, elaborated
upon later in the paper, are to advance the state of
the art in legacy modernisation by applying a novel
merge of techniques from artificial intelligence, pattern
mining, and program analysis.

Software systems that are regarded as legacy by
their owners consist of more than just the old, obso-
lete, and soon to be retired artefacts written in 1960s
languages like assembler [5] and COBOL [6]. As time
went by, the circle of legacy has started to include
systems that were built with 4th generation languages
(4GLs) of the 1980s [7], developed using model-driven
architecture (MDA) of the 1990s [8], or created using
domain-specific languages (DSLs) of the 2000s [9]. It
is thus crucial for legacy software modernisation com-
panies to be able to adapt to new languages and pre-
viously unknown idioms.

Conquering even one legacy ecosystem with all its
languages, dialects, configurations and preprocessors,
is a substantial effort for a company. It is beyond
trivial to reuse knowledge about prior successful mi-

1



gration projects to cope with the next one, for each of
them is unique in some way. The patterns to solve the
Y2K problem [10] are drastically different from pat-
terns for database migration or turning procedural to
object-oriented code, and renovation patterns, working
effectively in one 4GL, are often inapplicable to an-
other 4GL. In this context, any degree of automation
in the discovery and detection of coding idioms and
modernisation patterns and their corresponding code
transformation actions is worthwhile to pursue. How-
ever, traditional software analysis and analytics tools
are usually geared towards detecting precise matches
for known patterns, such as a particular combination
of conditions and GO TO jumps that can be refactored
into a WHILE loop. What is really needed instead,
and what we are aiming to achieve, is the ability to
find and act upon unknown patterns that are perhaps
only adhered to a limited extent.

After having introduced the context of our work,
the rest of this paper is organised as follows: section 2
explains our objectives in sufficient detail to appreci-
ate the rest; section 3 dives into prior related work
around code idioms—patterns that we are mining for;
section 4 visualises the pipeline of our framework (Fig-
ure 1) and explains its components; section 5 reports
on preliminary results and concludes the paper.

2 Project Goals

The goal of our work is to design and implement a
framework to explore novel pattern mining algorithms
for source code and to incorporate them in an intel-
ligent software modernisation assistant tool set. Ide-
ally, at the end of the project (end 2020), we should
have a tool set powerful enough to help legacy soft-
ware engineers analyse a previously unseen codebase
in an unknown software language (or a mix of lan-
guages) for previously unknown patterns. With these
tools, it should be possible to analyse the available
data (often just source code) quickly and efficiently,
recognise frequently occurring patterns, confront do-
main experts with them and annotate them with mod-
ernisation actions to produce a mature modernisation
solution within weeks, not decades.

The framework being developed is language-
parametric thanks to a metamodel representation that
is able to support a variety of software languages. The
modernisation assistant will pro-actively recommend
source code modernisation actions [11] by comparing
the code being renovated with insights gained by treat-
ing the source code and development history as data.
The assistant will continuously mine for previously un-
known patterns within the system’s source code and
structure. Thus, the modernisation recommendations
made by the assistant can improve over time as it re-

fines or uncovers more previously unknown patterns.
The three main goals of our framework are to:

1. Discover syntactic patterns to replace large,
repeated, error-prone programming idioms [12] by
more succinct macros or proven programming lan-
guage built-ins, with the purpose of improving
code reliability, understandability, and maintain-
ability.

2. Discover code deviating from expected pat-
terns which may be indicative of dissimilarities
and dormant errors.

3. Propose actions to improve respect of id-
ioms such as rewriting old-style FOR loops to
functional alternatives in Java 8+ or replacing ad
hoc string manipulations in older COBOL ver-
sions with modern equivalents from the standard
library.

3 Idiomatic Code Patterns

Coding conventions and idioms are syntactic patterns
in the source code. Conventions describe an overall
syntactic style that is meant to foster readability and
maintainability of source code [13]. Idioms are frag-
ments of code that recur frequently across different
projects, and play one semantic role [12]. A piece of
code is often termed idiomatic if experienced devel-
opers consider it to be written in an intuitive, natu-
ral way. An idiom can be described in the form of a
code template, i.e., a snippet of code where parts can
be abstracted away with meta-variables. Examples of
scenarios that can be described with idioms include it-
eration over a data structure, manipulating resources
(open, close, lock, etc.), handling errors, or executing
database transactions.

IDEs often offer facilities to manually define idioms
and insert them whenever needed. However, these do
not help programmers if they are using a language or li-
brary the IDE is not familiar with. To assist program-
mers, Allamanis et al. [12] describe an approach that
mines for code idioms in a corpus of idiomatic code.
These idioms are represented as a syntactic probabilis-
tic model that uses probabilities to measure the qual-
ity of a proposed idiom. Similar approaches have been
used for measuring how natural/idiomatic code is, or
how it changes when bugs are fixed [14, 15, 16, 17].
Based on such measures, these approaches have all
found that software is repetitive—in other words, that
idioms are often used.

Allamanis et al. created the Naturalize tool [18],
which learns the coding convention style of a program
and suggests changes to improve code consistency. It
uses statistical natural language processing to suggest

2



natural identifier names and formatting conventions.
A follow-up project [19] focused on suggesting appro-
priate method and class names from their bodies by
using a neural network and an n-gram language model.

As idioms and coding conventions directly relate to
a programming language’s syntax, most existing work
focuses on tools targeted at one specific language. Our
work goes beyond this through the use of metamodels
to provide a language-parametric representation for id-
ioms and conventions. Our goal is to demonstrate that
patterns can be mined across multiple languages with
relatively small tooling effort.

4 The Framework

As depicted in Figure 1, our framework is structured
as a pipeline, comprising five main components:

4.1 Source Code Importer

A first challenge of the metamodel for our moderni-
sation assistant is to accommodate multiple (legacy)
programming languages. Indeed, it would not be eco-
nomical if a new version of the metamodel had to be
re-implemented for every language or even language di-
alect it is applied to. To address this issue within our
framework, the metamodel defines a language-agnostic
abstract syntax tree format (AST) for source code.
The purpose of the source code importers is thus to
transform programs in a given language to their rep-
resentation in this format.

4.2 Mining Preprocessor

Before they are passed to the pattern miner, the ASTs
may be preprocessed in order to enhance the mining
process. Different preprocessing steps may be applied,
depending on what is being mined for. For example,
when considering naming conventions as part of the
mining, one preprocessor can split identifiers into a
subtree based on camelcase or based on underscores.
Another example would be mining at a granularity of
procedure-level entities and hence first removing ele-
ments at finer granularities like statements or (module-
level) variable declarations.

4.3 Pattern Miner

The pattern miner is responsible for extracting id-
iomatic code patterns, taking the preprocessed ASTs
as input. We are currently exploring the use of fre-
quent graph mining algorithms, though other mining
algorithms may be tried in the future. The most popu-
lar frequent graph mining algorithms are developed for
trees [20] and undirected graphs [21, 22, 23], although
standard algorithms produce a (too) large amount of

patterns (as discussed in section 5). Thus, an im-
portant component of our pattern miner is the def-
inition of the heuristics and constraints used during
the mining process, so as to avoid discovering redun-
dant or useless patterns [12]. We are currently ex-
ploring what heuristics work best for different kinds
of idioms, and how to represent these heuristics in an
idiom- and language-agnostic way, so that they can
easily be adapted when looking for other kinds of id-
ioms, or when mining other languages. We also lever-
age the grammar of the language as a filter in the pro-
cess, which has, to the best of our knowledge, never
been done before.

4.4 Pattern Matcher

The pattern matcher is responsible for finding all AST
subtrees that match the patterns extracted by the
miner. While these ASTs are already known to the
pattern miner, we may want to apply postprocessing
steps to the patterns that are found, e.g., to further
generalise them such that the patterns are more widely
applicable. The pattern matcher is then needed to
find matches of these modified patterns. Another ap-
plication of the pattern matcher is that, when a pat-
tern was mined in one project, the pattern matcher
can now match this pattern against any other project.
The tool is designed to be language-parametric and is
based on code templates [24, 25]. A template is a con-
crete snippet of source code, in which some parts can
be replaced by wildcards or metavariables. It is also
possible to attach so-called “directives” to parts of the
snippet, which can affect the semantics of the pattern
to match in various ways.

4.5 Modernisation Assistant

The modernisation assistant provides a GUI that al-
lows to inspect all patterns uncovered by the pattern
miner, and their matches, both as text and as graphs.
The engineer is presented a list of patterns with their
pattern size, support, confidence, and type of root
AST node. A specific pattern can be selected for in-
spection showing an overview of pattern matches in the
source code as well as concrete source code snippets
highlighted according to the structure of the pattern.

The modular architecture of our framework is key
to achieve our research objectives. For example, given
a new programming language we mainly need to pro-
vide a new Source Code Importer. However, it is likely
that we also need to define or configure a Preprocessor
specific to the kind of idioms we want to mine for in
that language, and that we need to adapt the heuris-
tics and constraints used by the Pattern Miner. But
the general pipeline and algorithms would remain the
same. Similarly, if we would like to explore alterna-

3



Source Code 
Importer

Source Code Meta-Model
Representations

Pattern Miner

Pattern Matcher

Modernization Assistant

1 3

4

5

Code Idioms

Mining 
Preprocessor

Enhanced Meta-Model
Representations

2

Figure 1: Our Language-Parametric Modular Framework for Mining Idiomatic Code Patterns

tive or more advanced pattern mining algorithms, in
a language-agnostic way, this could be done mostly by
replacing the Pattern Miner.

5 Preliminary Results & Challenges

In this section, we report on the current state of the
implementation of our framework, some preliminary
results, as well as some of the challenges we have faced:

5.1 Source Code Importer.

We currently have importers for COBOL and Java.
The former is pragmatic custom code that is able to
process the entire NIST COBOL 85 compliance test
suite1 as well as the code for a variety of industrial
legacy systems. The latter uses the Eclipse Java meta-
model and is able to successfully produce ASTs for all
source code in QUAATLAS [26]: a refined subset of the
Qualitas Corpus [27] of Java programs. The importers
also produce a description of the grammar of the lan-
guage that is used by the miner. Again, the Java im-
porter uses the Eclipse Java meta-model to produce
this grammar, whereas for the COBOL importer this
is custom code.

5.2 Mining Preprocessor.

For the moment, we have only implemented a prepro-
cessing component that is able to split the identifiers
contained in a node into a subtree based on camel-
case or the dash/underscore convention. When using
that preprocessor, instead of considering identifiers as
similar only when they are equal, identifiers can be
matched at a finer-grained level based on the similar
keywords they contain.

1https://www.itl.nist.gov/div897/ctg/cobol_form.htm

5.3 Pattern Miner.

Our pattern miner implements the FreqT [28] frequent
subtree mining algorithm. Although we have found
that pure FreqT can indeed be used for mining id-
iomatic code patterns, it does have some limitations
such as being highly time consuming and generating a
large amount of patterns as well as redundant patterns.
To tackle these problems, we have been exploring var-
ious customisations of the FreqT algorithm. Most sig-
nificantly, we have worked on using the grammar itself
as a source of input to drive the pattern search. As a
result, we have managed to reduce the execution time
of FreqT significantly, and to limit the number of dis-
covered patterns. Although we have not completed a
full empirical study yet, many of the discovered pat-
terns seem to correspond to relevant code idioms.

To achieve these results, we had to use a variety
of heuristics and constraints. However, selecting the
appropriate constraints to apply is not a trivial task
since it seems to depend partly on the language and on
the kinds of patterns one wants to find. Even though
those constraints can easily be configured for other lan-
guages and other kinds of patterns, it is less obvious
how to choose the appropriate constraints for legacy
languages that are less well-known, or when we do not
know upfront what kind of patterns we are looking for.
A particular challenge of our current research therefore
remains how to efficiently search for and evaluate in-
teresting and surprising patterns.

5.4 Pattern Matcher.

Currently, our pattern matcher is able to match precise
syntactic patterns. In the future, we plan to support
anomaly detection including the on-demand detection
of partial matches for a given mined pattern. To fa-
cilitate inspection by a software engineer, the pattern
matching algorithm should also quantify its results by
indicating the extent to which a partial match corre-

4

https://www.itl.nist.gov/div897/ctg/cobol_form.htm


sponds to a given pattern.

5.5 Modernisation Assistant.

Based on the output of the miner and pattern matcher,
the modernisation assistant is able to visualise pat-
terns, matches and their corresponding source code.
Despite its seemingly summarising role, it was useful
from very early on in the project to explore mining
results and let human users interpret them. It has
consequently been a driving force in customising the
miner and matcher to provide results that are more
straightforwardly interpretable by a modernisation en-
gineer. For example, we found that since patterns are
subtrees with “holes”, it is important for highlighted
source code to show which part of the source code cor-
responds to the subtree and which part of that code
corresponds to a “hole”. Hence, the pattern matcher
should include this information in each match.

6 Conclusions and Future Work

In this paper we have outlined our language-
parametric modular framework for mining idiomatic
code patterns whose goal is to assist software mod-
ernization engineers in their work of migrating legacy
systems. We reported some preliminary results, as well
as some challenges we faced.

The most notable challenges lie in choosing the ap-
propriate heuristics and constraints when mining since
they seem to depend partly on the language and on
the kinds of patterns one wants to find. This is partic-
ularly relevant since the modernisation engineer will
face languages that are unknown to us and will not
know upfront what kind of patterns to look for. In
light of this, our focus is currently on establishing how
to efficiently search for and evaluate interesting and
surprising patterns. This would allow for easier exper-
imentation with heuristics and constraints.

Obviously, more challenges still remain to make our
framework truly scalable and language independent,
but our promising first results make us confident that
our goals will be reached.

Acknowledgments

The project is funded by the Belgian Innoviris TeamUp
project INTiMALS (2017-TEAM-UP-7).

References

[1] K. Bennett, “Legacy Systems: Coping with Suc-
cess,” IEEE Software, vol. 12, no. 1, pp. 19–23,
1995.

[2] J. Bisbal, D. Lawless, B. Wu, and J. Grimson,
“Legacy Information Systems: Issues and Direc-

tions,” IEEE Software, vol. 16, no. 5, pp. 103–111,
1999.

[3] R. Khadka, B. V. Batlajery, A. M. Saeidi,
S. Jansen, and J. Hage, “How Do Professionals
Perceive Legacy Systems and Software Modern-
ization?” in ICSE’14. ACM, 2014, pp. 36–47.

[4] N. Veerman, “Revitalizing modifiability of legacy
assets,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 16, no. 4-5,
pp. 219–254, 2004.

[5] V. Blagodarov, Y. Jaradin, and V. Zaytsev,
“Raincode Assembler Compiler,” in SLE’16,
2016, pp. 221–225.

[6] M. P. A. Sellink, H. M. Sneed, and C. Ver-
hoef, “Restructuring of COBOL/CICS Legacy
Systems,” in CSMR’99. IEEE, 1999, pp. 72–82.

[7] V. Zaytsev, “Open Challenges in Incremental
Coverage of Legacy Software Languages,” in
PX/17.2, 2017, pp. 1–6.

[8] S. J. Mellor, K. Scott, A. Uhl, D. Weise, and R. M.
Soley, MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, 2004.

[9] M. Völter, S. Benz, C. Dietrich, B. Engelmann,
M. Helander, L. C. L. Kats, E. Visser, and
G. Wachsmuth, DSL Engineering: Designing,
Implementing and Using Domain-Specific Lan-
guages, 2013.

[10] C. Jones, The Year 2000 Software Problem:
Quantifying the Costs and Assessing the Conse-
quences. ACM Press/Addison-Wesley, 1997.

[11] A. F. Iosif-Lazar, A. S. Al-Sibahi, A. S. Dimovski,
J. E. Savolainen, K. Sierszecki, and A. Wa-
sowski, “Experiences from Designing and Validat-
ing a Software Modernization Transformation,” in
ASE’15. IEEE, 2015, pp. 597–607.

[12] M. Allamanis and C. Sutton, “Mining Idioms
from Source Code,” in FSE’14. ACM, 2014, pp.
472–483.

[13] B. Goncharenko and V. Zaytsev, “Language De-
sign and Implementation for the Domain of Cod-
ing Conventions,” in SLE’16, 2016, pp. 90–104.

[14] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu,
A. Bacchelli, and P. Devanbu, “On the Natural-
ness of Buggy Code,” in ICSE’16. IEEE, 2016,
pp. 428–439.

5



[15] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and
P. Devanbu, “On the Naturalness of Software,”
in ICSE’12. IEEE, 2012, pp. 837–847.

[16] B. Lin, L. Ponzanelli, A. Mocci, G. Bavota, and
M. Lanza, “On the Uniqueness of Code Redun-
dancies,” in ICPC’17, 2017, pp. 121–131.

[17] J. C. Campbell, A. Hindle, and J. N. Ama-
ral, “Syntax Errors Just aren’t Natural: Improv-
ing Error Reporting with Language Models,” in
MSR’14. ACM, 2014, pp. 252–261.

[18] M. Allamanis, E. T. Barr, C. Bird, and C. Sut-
ton, “Learning Natural Coding Conventions,” in
FSE’14. ACM, 2014, pp. 281–293.

[19] ——, “Suggesting Accurate Method and Class
Names,” in FSE’14. ACM, 2015, pp. 38–49.

[20] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok,
“Frequent Subtree Mining—An Overview,” Fun-
damenta Informaticae, vol. 66, no. 1-2, pp. 161–
198, 2005.

[21] M. Kuramochi and G. Karypis, “Frequent Sub-
graph Discovery,” in ICDM’01. IEEE, 2001, pp.
313–320.

[22] X. Yan and J. Han, “gspan: Graph-based sub-
structure pattern mining,” in ICDM’02. IEEE,
2002, pp. 721–724.

[23] S. Nijssen and J. N. Kok, “A Quickstart in Fre-
quent Structure Mining Can Make a Difference,”
in KDDM’04. ACM, 2004, pp. 647–652.

[24] C. De Roover and K. Inoue, “The ekeko/x Pro-
gram Transformation Tool,” in SCAM’14. IEEE,
2014, pp. 53–58.

[25] T. Molderez and C. De Roover, “Automated Gen-
eralization and Refinement of Code Templates
with ekeko/x,” in SANER’16, vol. 1. IEEE, 2016,
pp. 669–672.

[26] C. De Roover, R. Lammel, and E. Pek, “Multi-
dimensional Exploration of API Usage,” in
ICPC’13. IEEE, 2013, pp. 152–161.

[27] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble, “The Qual-
itas Corpus: A Curated Collection of Java Code
for Empirical Studies,” in APSEC’10. IEEE,
2010, pp. 336–345.

[28] T. Asai, K. Abe, S. Kawasoe, H. Arimura,
H. Sakamoto, and S. Arikawa, Efficient Substruc-
ture Discovery from Large Semi-structured Data,
2002, pp. 158–174.

6


