
Mining Patterns in Source Code using Tree
Mining Algorithms

Hoang Son Pham1, Siegfried Nijssen1, Kim Mens1,
Dario Di Nucci2, Tim Molderez2, Coen De Roover2,

Johan Fabry3, and Vadim Zaytsev3

1 ICTEAM, UCLouvain, Belgium
2 Software Languages Lab, Vrije Universiteit Brussel, Belgium

3 Raincode Labs, Belgium

Abstract. Discovering regularities in source code is of great interest to
software engineers, both in academia and in industry, as regularities can
provide useful information to help in a variety of tasks such as code com-
prehension, code refactoring, and fault localisation. However, traditional
pattern mining algorithms often find too many patterns of little use and
hence are not suitable for discovering useful regularities. In this paper
we propose FREQTALS, a new algorithm for mining patterns in source
code based on the FREQT tree mining algorithm. First, we introduce
several constraints that effectively enable us to find more useful patterns;
then, we show how to efficiently include them in FREQT. To illustrate
the usefulness of the constraints we carried out a case study in collabora-
tion with software engineers, where we identified a number of interesting
patterns in a repository of Java code.

Keywords: Pattern Mining, Frequent Tree Mining, Source Code Regularities

1 Introduction

During software development, many design and coding conventions get encoded
in program source code, either explicitly or implicitly, through regularities such
as API usage protocols, design patterns, coding idioms or conventions. Being able
to discover such source code regularities in software systems is of great interest to
software engineers, to help understanding, analysing, transforming, improving,
maintaining or evolving a particular system, or to improve best practices for the
development of new systems.

A data type of particular interest in the context of source code is the Ab-
stract Syntax Tree (AST). ASTs capture not only the textual content, but also
the structure of the code. However, to analyse these trees, algorithms capable
of operating on tree structures are needed. Frequent tree mining algorithms [1,
2] support this task. However, they typically find large numbers of patterns.
This makes their output often useless in practice to software engineers. Several
solutions to this problem have been proposed, ranging from constraint-based

1

2 Hoang Son Pham et al.

pattern mining approaches and condensed representations, to statistically mo-
tivated pattern set mining approaches [3]. Among these, constraint-based data
mining approaches are of particular interest, as they allow developers to specify
easy to interpret constraints on the patterns to include in the output of the algo-
rithm, and are guaranteed to find all patterns satisfying the constraints, contrary
to sampling based approaches [4].

However, applying constraint-based data mining and condensed representa-
tions on the ASTs of software repositories is not straightforward. While frequent
pattern mining has been studied extensively in the frequent tree mining litera-
ture, constraint-based tree mining algorithms did not receive a similar attention.

In this paper, we therefore propose a novel constraint-based tree mining algo-
rithm, specifically designed for the analysis of software repositories. It combines
two ideas: (i) maximal frequent subtree mining to ensure that a condensed rep-
resentation of only large patterns is found, (ii) constraint-based data mining, in
which additional constraints are imposed on the patterns to be found. Our ap-
proach is based on the addition of a number of novel constraints to the FREQT
algorithm [5], combined with a new approach to find maximal subtrees.

In collaboration with software engineers we analysed in detail the quality of
the patterns found. The results show (i) a significant reduction of the execution
time and number of discovered patterns with respect to the original FREQT
algorithm, (ii) that many of the discovered patterns highlight relevant code reg-
ularities, (iii) that some of the patterns found are significantly larger than the
simpler coding idioms found in earlier studies [4].

The paper is organised as follows. Section 2 introduces frequent subtree min-
ing and FREQT. Section 3 presents the key ideas of our solution, which is
implemented by the FREQTALS algorithm described in Section 4. In Section 5
we conduct a case study to validate FREQTALS. Section 6 overviews related
literature on pattern mining of semi-structured data and pattern mining applied
to software. Section 7 concludes the paper.

2 Background

2.1 Frequent Subtree Mining

Abstract Syntax Trees are labelled, ordered, and rooted trees; they are produced
by programming language parsers. We adopt a previously studied definition [1, 5]
for ordered trees T = (V,E, λ,Σ); V = {1, 2, . . . , n} is the set of node identifiers;
E ⊆ V × V is the set of edges; λ : V 7→ Σ is a function that associates labels to
nodes of V ; Σ is the set of allowed labels. We assume the nodes are identified
using contiguous integers listed in the order of a depth-first, left-to-right traversal
of the tree; node n is called the rightmost node of the tree. The shortest path
from node 1 to node n is its rightmost path.

Given two trees T1 = (V1, E1, λ1, Σ) and T2 = (V2, E2, λ2, Σ), T2 is an in-
duced subtree of T1 (T1 � T2) if there is an injective function f : V2 7→ V1 such
that: (1) edges are preserved: for all (v, v′) ∈ E2: (f(v), f(v′)) ∈ E1; (2) labels

Mining Patterns in Source Code using Tree Mining Algorithms 3

are preserved: for all v ∈ V2: λ2(v) = λ1(f(v)); (3) order is preserved: if v1 < v2
for a pair of nodes in V2, then f(v1) < f(v2).

The support of a pattern tree is the number of trees in a database in which
the pattern occurs. Frequent subtree mining is the problem of finding all pat-
terns of which the support is higher than a given minimum support threshold.
These patterns satisfy the minimum support constraint, which we will refer to
as constraint C0 in this paper.

The number of frequent subtree patterns can become large, in particular
for small minimum support thresholds. To deal with this issue, one solution is
to mine condensed representations [1, 2] and maximal frequent subtrees. Let Tc
denote the set of all patterns that satisfy C0. We can define the problem of
finding maximal frequent subtrees as the problem of finding all patterns not
dominated by other patterns:

max(Tc) = {T ∈ Tc | 6 ∃T ′ ∈ Tc : T ′ � T}.

2.2 FREQT

FREQT was designed to mine frequent patterns from labelled ordered trees [5].
It searches for patterns using a depth-first search, where it grows patterns using
rightmost path extension. The idea is to add new nodes only to the right of the
rightmost path of a pattern. Hence, a pattern is created by adding its nodes in
the order of a depth-first, left-to-right traversal.

Algorithm 1: FREQT

1 FP = ∅
2 C ←− findLabels()
3 prune(C)
4 for each c ∈ C do
5 add (FP, c)
6 expand(c)

7 output(FP)

Algorithm 2: expand procedure

1 function expand(f):
2 C ←− findCandidates(f)
3 prune (C)
4 for each c ∈ C do
5 add (FP, c)
6 expand(c)

The structure of the depth-first search algorithm is described in Algorithms 1
and 2. By default FREQT only uses minimum support (C0) and maximum size
(referred to as C1) constraints in the prune function. Anti-monotonic constraints
are used to effectively reduce the size of the search space. A constraint is anti-
monotonic iff for all pairs of patterns with T1 � T2, if T2 does not satisfy the
constraint, then T1 does not satisfy the constraint either. In addition, to avoid
undesirable patterns from being added to the set FP, a minimum size constraint
(referred to as C2) is used in the add function.

Algorithms for finding only maximal frequent subtrees exist [1, 2]; they usu-
ally reduce the search space by checking all extensions for all occurrences of a
pattern. This is problematic for trees with a large fanout, such as ASTs.

4 Hoang Son Pham et al.

3 Maximal Constraint-based Frequent Subtree Mining

In this section, we will show how the AST representation allow us to impose
additional meaningful constraints on patterns. There are two important ideas
underlying these constraints.

First, given that programming languages are typically well-structured, parts
of the data have a very predictable structure. Patterns that either reflect only
this predictable structure, or that only include part of it, are not useful. For
instance, by definition of the Java programming language, a node with label
InfixExpression always has the same three children, leftOperand, operator
and rightOperand. Clearly, a pattern composed of these four nodes is a fre-
quent pattern but it is not interesting, as it is a consequence of the language
and not the particular source code that is being mined. Patterns including the
InfixExpression label, but not its three children, are not meaningful either, as
by definition, these child nodes must be present.

Second, small fragments of ASTs are hard to interpret. In practice, we found
that many software engineers find easier to interpret a code fragment if it is
sufficiently large, allowing to put a pattern in its context. In terms of the patterns
that we find, this means that our patterns need to satisfy minimum size criteria.

To find a small set of patterns which are sufficiently large and correctly reflect
interesting program structures we propose the following constraints.

Constraints on Labels. To limit the number of patterns considered, the use of
labels is a straightforward solution. The key benefit of label-based constraints is
that they are easy to configure by software engineers. We consider the following
constraints:

C3. Limit the set of labels allowed to occur in the root of patterns;
C4. Provide labels forbidden from occurring in the pattern;
C5. Limit the number of siblings in a pattern that can have the same label.

Constraints on Leafs. It is desirable that patterns not only represent the
structure of the language, but also provide program-specific information. As such
specific information can be found in the leaf nodes of ASTs in the database, we
add this constraint:

C6. All leaf nodes in a pattern must have a label that is included in Σleaf, where
Σleaf is the set of labels that occur in the leafs of the trees in the database.

Constraint on Obligatory Children. Given a node, some of its children can
be mandatory because they reflect a specific programming language construct
(e.g., the InfixExpression shown before). To avoid unnecessarily small pat-
terns, we first need to characterise which labels are structural. We consider a
label to be structural iff:

– in each of its occurrences, no two children have the same label;
– for all pairs of occurrences of the label, the order of the common child labels

is the same.

Mining Patterns in Source Code using Tree Mining Algorithms 5

For every label a ∈ Σ, we define its obligatory child labels g(a) as the set of
child labels common to all its occurrences. We added the follow constraint on
obligatory child labels:

C7. Let L be the structural labels in D. For all nodes with a label a ∈ L, we
require that its set of children includes nodes with all obligatory labels g(a).
Note that in combination with the leaf constraint, this constraint enforces that
all structural nodes have leaf nodes as descendant.

Maximal subtree mining. We wish to ensure that the patterns found are
as large as possible, while also being nonredundant. We propose to solve this
using the following new idea: in a first phase, we find all patterns under the
earlier mentioned constraints, combined with a maximum size constraint. This
constraint limits the size of the search space. Subsequently, we grow the pat-
terns found under these constrains as large as possible, and return the maximal
patterns among these large patterns.

More formally, let Tcm be the set of subtrees identified using constraints C0-
C7, including a maximum size constraint and let Tc be the set of trees that
satisfies constraints C0-C7, without maximum size constraint. Let occ(T) be the
root occurrences of a particular tree. Let C(T) = {T ′ ∈ Tc | occ(T) = occ(T ′)}.
Then we wish to find: max(∪T∈Tcm

C(T)).

4 The FREQTALS Tree Mining Algorithm

In this section, we present FREQTALS, an extension of the FREQT algorithm
that takes into account the novel ideas described in Section 3.

Constraints C3–C5 are all anti-monotonic in the following sense: if a tree does
not satisfy the constraint, any supertree with the same root will not satisfy it
either. To deal with such constraints we modified the prune function: extensions
that do not satisfy the constraints are not added as candidates.

Constraints C6 and C7 are harder to implement, as these constraints are not
anti-monotonic. For instance, when we start the search process, the pattern will
certainly not contain leaf labels; they will only be added later. However, FREQT
grows patterns only by adding nodes to the right of the rightmost path. This
enables us to deal with C6 and C7 as follows.

For C6, we know that the only leaf that we can still add a child to, is the
rightmost node. Hence, if any leaf other than the rightmost node has a label not
in the set of permitted leaf labels Σleaf, the search process will not be able to
resolve this violation. Hence, in prune we add a condition that any tree in which
a leaf other than the rightmost node has a label not in Σleaf is pruned.

For C7, we exploit that obligatory child nodes of a structural node must
occur in a specific order. Consider a structural label with three obligatory child
labels σ1, σ2, σ3. If a pattern already includes σ1 and σ3, the algorithm will not
be able to add σ2. In prune we add a condition so that any tree with such a
situation is pruned.

6 Hoang Son Pham et al.

Algorithm 3: FREQTALS algorithm

input : D, constraints C0–C7.
output:MP.
/* Step 1: mine subtrees under constraints C0-C7 using FREQT with

modified Add and Prune functions */

1 FP = FREQT(D)
/* Step 2: group the subtrees */

2 ROM←− groupRootOccurrence(FP)
/* Step 3: find the maximal subtrees under constraints C2-C7 */

3 MP = ∅
4 for each r ∈ ROM do
5 c←− root label of r
6 mineMaximalSubtrees(c, r,MP)

7 output(MP)

Maximal subtree mining. The most näıve algorithm to find maximal patterns
would be one in which we grow a maximal pattern for each pattern satisfying the
earlier constraints. While correct, this algorithm would also be time consuming.
Algorithm 3 shows an outline of FREQTALS, which solves the problem more
efficiently, while finding the same set of patterns. It has three phases:

1. search frequent subtrees under constraints C0–C7;
2. group frequent subtrees by root occurrences;
3. for each set of root occurrences identified, run a search process (without C0

and C1) to identify the maximal subtrees having these root occurrences.

Delving into more detail, in Line 1 we call the FREQT algorithm, using the
modified add and prune functions. Furthermore, we add an optimisation so that
any tree having a frequent extension, will not be put in FP.

In Line 2 we group the root occurrences. Essentially, for all frequent patterns
found, we first compute the set: RO = {occ(T) |T ∈ FP}. Note that multiple
trees in FP may have the same occ(T). Hence, this set is smaller than the
original set of patterns. Subsequently, we only keep those sets of root identifiers
that are minimal: ROM = {r ∈ RO | 6 ∃r′ ∈ RO : r′ ⊂ r}. This optimisation
does not affect our results. The key idea is that a pattern appearing in the larger
set of occurrences, will also appear in the smaller set of occurrences.
Subsequently, in line 6 we start a search for maximal patterns for each set of
root occurrences r ∈ ROM. Here, for reasons of simplicity we made the choice
to use a modified version of FREQT:

– we start the search with the root label appearing in the root occurrences r;
– the root occurrences considered during the search are only those in r, even

if the root label has more occurrences in the original data;
– instead of using the minimum support constraint, we impose the constraint

that the patterns searched for appear in all the given root occurrences;
– we do not apply a maximum size constraint;

Mining Patterns in Source Code using Tree Mining Algorithms 7

Constraint Variable Value

C0 Minimum Support Threshold 5

C1 Maximum # of Leaves 4

C2 Minimum # of Leaves 2

C3 Root Labels TypeDeclaration, Block

C4 Black List Labels Javadoc, Modifiers, Annotations, ...

C5 Maximum # of Similar Siblings 10

Table 1. FREQTALS configuration for CheckStyle

– for each pattern that is generated, we check whether it should be included
in MP and we update MP accordingly.

Note that patterns considered by mineMaximalSubtrees may have more occur-
rences in the original data. This is not harmful, as any such pattern will still
be maximal and frequent. The key idea is that running FREQT on a smaller
set of root occurrences, with a constraint that does not allow to lose any root
occurrence, makes the search more efficient.

5 Empirical Evaluation

To evaluate FREQTALS, we carried out an empirical study on source code
written in Java. We analysed the results from a qualitative (Section 5.1) and a
quantitative (Section 5.2) point of view. More specifically, we analyse Check-
style, a well-documented static code analysis tool for Java that was selected
from the the Qualitas Corpus [6].

Table 1 reports how we configured the algorithm for our evaluation. A mini-
mum support threshold of 5 was chosen as for lower values the number of pat-
terns exploded. We also focused only on AST sub-trees with root nodes of type
TypeDeclaration (i.e., a Java method definition) or Block (i.e., a Java method
body), because we were interested in the program logic.

5.1 Qualitative Analysis

The main purpose of our qualitative analysis is to determine whether the patterns
identified by our algorithm are indeed useful.

With the given configuration, FREQTALS found 147 patterns that we man-
ually analysed. To illustrate the characteristics of the patterns mined by FRE-
QTALS, below we provide a detailed analysis of some of the patterns shown in
Figure 1. The Checkstyle tool implements several design patterns such as the
Visitor. Thus, some combinations of abstract methods are reused among many
different classes (e.g., getDefaultTokens() and visitToken()) and it is not
surprising that our algorithm discovers many patterns with this pair of meth-
ods. Overall, 83 out of 147 mined patterns contained this pair. Pattern 34 shows
an example of such a design pattern instance that contains 4 reused methods:

8 Hoang Son Pham et al.

public final class ReturnCountCheck extends AbstractFormatCheck {
 ...
 @Overwrite
 public int[] getDefaultTokens(){
 return new int[] {
 TokenTypes.CTOR_DEF,
 TokenTypes.METHOD_DEF,
 TokenTypes.LITERAL_RETURN,
 };
 }
 ...
 @Overwrite
 public int[] getRequiredTokens() { … }
 ...
 @Overwrite
 public void visitToken(DetailAST aAST){
 switch (aAST.getType()) {
 case TokenTypes.CTOR_DEF:
 case TokenTypes.METHOD_DEF:
 ...
 break;
 ...
 default:
 ...
 }
 }
 ...
 @Overwrite
 public void leaveToken(DetailAST aAST){
 switch (aAST.getType()) {
 case TokenTypes.CTOR_DEF:
 case TokenTypes.METHOD_DEF:
 ...
 default:
 ...
 }
 }
 ...
}

private void visitMethod(final DetailAST aMethod)
 ...
 DetailAST child = objBlock.getFirstChild();
 while (child != null) {
 if (child.getType() == TokenTypes.METHOD_DEF) {
 ... }
 child = child.getNextSibling();
}

Pattern 27: AST traversal.

Pattern 34: An instance of Checkstyle’s Visitor design pattern

public int[] getDefaultTokens(){
 return new int[] {
 TokenTypes.ASSIGN, // '='
 TokenTypes.DIV_ASSIGN, // "/="
 TokenTypes.PLUS_ASSIGN, // "+="
 …
 };
}

Pattern 18: Method structure.

private boolean checkParams(DetailAST aMethod){
 ...
 if ((aAST.getType() == TokenTypes.VARIABLE_DEF) ||
 (aAST.getType() == TokenTypes.PARAMETER_DEF))
 {
 …
 }

Pattern 140: IF Statement.

@Override
public void leaveToken(DetailAST aAST) {
 switch(aAST.getType()) {
 case TokenTypes.OBJBLOCK:
 case TokenTypes.SLIST:
 case TokenTypes.LITERAL_FOR:
 ...
}

Pattern 9: Check for different blocks.

Fig. 1. Examples of patterns found in Checkstyle

getDefaultTokens, getRequiredTokens, visitToken, and leaveToken. Pat-
tern 27 shows a recurrent code snippet that checks every node of a given AST.
Pattern 9 is an interesting example of a code structure that checks for different
types of AST objects. This structure is quite frequent in Checkstyle since it
allows developers to customise the framework to write their own kinds of source
code checks. Pattern 140 is also a typical code idiom recurring in Checkstyle.

5.2 Quantitative Analysis

We limit our quantitative comparison between FREQT and FREQTALS to
Checkstyle, the dataset already considered in Section 5.1. We set C0 to 8,
while keeping the same values, shown in Table 1, for the other settings. It is
worth noting that for a more fair comparison, FREQT was modified to add a
constraint on the minimum and maximum number of leaves. FREQTALS dis-
covered 1,288 frequent patterns in 23 seconds, while the original FREQT did

Setup 1 Setup 2 Setup 3

102.5

103

N
u
m
b
er

of
p
at
te
rn
s

(a) Number of generated patterns

Setup 1 Setup 2 Setup 3

101.7

101.8

101.9

102

M
ax

im
al

si
ze

of
p
at
te
rn

(b) Maximum size of pattern

Setup 1 Setup 2 Setup 3
101

102

103

R
u
n
n
in
g
ti
m
e
(s
ec
on

d
s)

(c) Running time

Fig. 2. Comparisons of three setups

Mining Patterns in Source Code using Tree Mining Algorithms 9

not finish within the search budget (i.e., 60 minutes); it found 717,859 patterns
within these 60 minutes.

To evaluate the different steps of FREQTALS, we executed it in three se-
tups: the first applies constraints C0-C7; the second filters the results obtained
by the first to keep only the maximal frequent patterns; the third applies all
the constraints (except C0 and C1) combined with maximal subtree mining.
We ran these three setups on entire Checkstyle project. Similar to previous
experiment, C0 was set to 8, and other settings were kept the same as shown
in Table 1. Figure 2 shows the results. Note that to compare the results more
easily we used a logarithmic scale for the plots in this Figure. In the first plot,
we observe that the number of patterns discovered by the third setup is much
smaller, as intended. Similarly, in the second plot, we see that the maximum size
of the patterns mined by the third setup is larger, as desired. Nevertheless, there
is no free lunch, as in the third plot we can observe that the third setup is more
time consuming.

6 Related Work

This section discusses related work concerning pattern mining of (i) general
semi-structured data and (ii) source code regularities and idioms.

Pattern Mining of Semi-structured Data. Extensive, but rather old lit-
erature exists on frequent tree mining algorithms [1, 2]. Such algorithms can
be categorised according to their input data, type of output patterns, and the
approach taken for mapping patterns to data. Only algorithms designed for or-
dered, rooted trees, using an induced subtree relation are relevant to this work.
The most well-known such algorithm is FREQT [5]. A benefit of FREQT is that
it is a conceptually simple algorithm in which it is easy to add constraints. How-
ever, a major problem of frequent tree mining algorithms is that the number of
output patterns is often very large. To tackle this problem, maximal frequent
tree mining algorithms, i.e., CMTreeMiner [1], were developed. However, none
of these algorithms operate on ordered trees. In recent years few new algorithms
have been proposed, due to a lack of applications of such algorithms. Our work
addresses this weakness by showing how pattern mining algorithms can indeed
find useful patterns, as validated by software engineers. A notable exception is
an algorithm that operates on attributed trees [7]. Our trees are not attributed,
and hence we could not apply this algorithm.

Mining Software Patterns. There is an extensive literature on applying min-
ing algorithms to software artefacts in general. Early examples include applica-
tions of formal concept analysis [8] and of association rule mining [9] for dis-
covering design regularities. Narrowing down to the discovery of source code
regularities, Allamanis et al. [4] describe an approach that mines for code idioms
in a corpus of idiomatic code using non-parametric Bayesian methods. Simi-
lar approaches, like Bhatia et al. [10] mine for idioms using recurrent neural
networks, aiming to correct incorrect uses of coding idioms. An advantage of
FREQTALS is that the criteria used to include patterns in the output of the

10 Hoang Son Pham et al.

algorithm remain easy to understand, even for experts without background in
statistics.

7 Conclusion and Future Work

In this paper, we proposed the FREQTALS algorithm, an extension of FREQT
that combines maximal frequent subtree mining and constraint-based data mining
to mine structural source code regularities. Experimental results show that (i) a
significant reduction of the execution time and the number of discovered patterns
with respect to the original frequent tree mining algorithm, (ii) that many of
the discovered patterns highlight relevant code regularities, (iii) that some of
the patterns found are significantly larger than expected. However, choosing
appropriate configurations for a programming language is a difficult task. We
envision to replicate our empirical evaluation on a larger set of systems and to
define new guidelines to help software engineers in configuring our algorithm.

Acknowledgments This work was conducted in the context of an industry-university

research project between UCLouvain, Vrije Universiteit Brussel and Raincode Labs,

funded by the Belgian Innoviris TeamUp project INTiMALS (2017-TEAM-UP-7).

References

1. Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok, “Frequent subtree mining–an
overview,” Fundamenta Informaticae, vol. 66, no. 1-2, pp. 161–198, 2005.

2. A. Jiménez, F. Berzal, and J. C. C. Talavera, “Frequent tree pattern mining: A
survey,” Intell. Data Anal., vol. 14, no. 6, pp. 603–622, 2010.

3. C. C. Aggarwal and J. Han, Eds., Frequent Pattern Mining. Springer, 2014.
4. M. Allamanis and C. Sutton, “Mining idioms from source code,” in Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 472–483.

5. T. Asai, K. Abe, S. Kawasoe, H. Sakamoto, H. Arimura, and S. Arikawa, “Efficient
substructure discovery from large semi-structured data,” IEICE TRANSACTIONS
on Information and Systems, vol. 87, no. 12, pp. 2754–2763, 2004.

6. E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble, “The qualitas corpus: A curated collection of java code for empirical
studies,” in Software Engineering Conference, 2010 17th Asia Pacific. IEEE,
2010, pp. 336–345.

7. C. Pasquier, J. Sanhes, F. Flouvat, and N. Selmaoui-Folcher, “Frequent pattern
mining in attributed trees: algorithms and applications,” Knowl. Inf. Syst., vol. 46,
no. 3, pp. 491–514, 2016.

8. K. Mens and T. Tourwé, “Delving source code with formal concept analysis,”
Comput. Lang. Syst. Struct., vol. 31, no. 3-4, pp. 183–197, Oct. 2005.

9. A. Lozano, A. Kellens, K. Mens, and G. Arevalo, “Mining source code for struc-
tural regularities,” in Proceedings of the 2010 17th Working Conference on Reverse
Engineering. IEEE Computer Society, 2010, pp. 22–31.

10. S. Bhatia and R. Singh, “Automated correction for syntax errors in programming
assignments using recurrent neural networks,” arXiv preprint arXiv:1603.06129,
2016.

