
A Graph-Based Framework for Analysing the Design of Smart
Contracts

Bram Vandenbogaerde

Vrije Universiteit Brussel

Belgium

bram.vandenbogaerde@vub.be

ABSTRACT

Used as a platform for executing smart contracts, Blockchain tech-

nology has yielded new programming languages. We propose a

graph-based framework for computing software design metrics for

the Solidity programming language, and use this framework in a

preliminary study on 505 smart contracts mined from GitHub. The

results show that most of the smart contracts are rather straightfor-

ward from an objected-oriented point of view and that new design

metrics specific to smart contracts should be developed.

CCS CONCEPTS

• Software and its engineering→ Maintaining software.

KEYWORDS

Smart Contracts, Metrics, Mining Software Repositories

ACM Reference Format:

Bram Vandenbogaerde. 2019. A Graph-Based Framework for Analysing the

Design of Smart Contracts. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3338906.3342495

1 RESEARCH PROBLEM AND MOTIVATION

Originally limited to the infrastructure for cryptocurrencies,

blockchain platforms nowadays enable executing and recording

smart contracts. These protocols were formally coined as a digital

way to facilitate, verify, or enforce the negotiation or performance

of contracts [7] and are currently used to guarantee transactions be-

tween multiple parties that would otherwise require a trusted man-

in-the-middle. As valuable assets are often involved, most existing

tool support for developing smart contracts (e.g., [1, 3, 8, 10]) fo-
cuses on finding security vulnerabilities and weaknesses. Although

these contracts follow an object-oriented design and their code

is becoming increasingly complex, there is little tool support for

evaluating and improving their maintainability. For object-oriented

software, software design metrics [4] have been proposed that

can be used to assess the quality of an implementation. Tonelli

et al. [9] have studied some initial size-related metrics for smart

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5572-8/19/08.

https://doi.org/10.1145/3338906.3342495

contracts implemented in Solidity, a popular object-oriented lan-

guage for implementing smart contracts executed on the Ethereum

blockchain platform. However, the study does not include software

design metrics.

We propose a new framework for computing object-oriented soft-

ware design metrics about Solidity smart contracts. To represent

these contracts, we employ a graph-based semantic meta-model

inspired by Mens and Lanza [5]. We use the framework in a pre-

liminary analysis of object-oriented design metrics for contracts

mined from GitHub projects.

2 A GRAPH-BASED FRAMEWORK FOR

ANALYSING SMART CONTRACTS

We introduce a framework for computing software design metrics

for Solidity smart contracts. The framework uses a three-step

process for its computation: (1) parsing the Solidity source code

into abstract syntax trees (ASTs); (2) analysis of the ASTs to create

meta-model instances; (3) computation of the software metrics

from these instances. The framework parses the code using and

an ANTLR4
1
-generated parser, and uses visitors on the produced

ASTs for a semantic analysis to resolve types and call relations.

The resulting semantic, language-agnostic
2
, meta-model is

graph-based, which enables the use of declarative graph queries to

compute design metrics and the use of a graph database for per-

sistence. Figure 1 depicts this meta-model, while fig. 2 depicts an

instance of the meta-model extracted from the contracts listed in

listing 1. The meta-model defines its entities as nodes in the graph,

and their relationships as edges. It stores containment as well as

semantic information such as where types are declared and where

functions are called from.

Figure 1: Solidity Smart Contracts Meta-Model

1
https://www.antlr.org/

2
Currently only Solidity is supported.

https://doi.org/10.1145/3338906.3342495
https://doi.org/10.1145/3338906.3342495

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia B. Vandenbogaerde

1 pragma solidity ^0.5.0;
2

3 contract account {
4 uint balance = 0;
5 mapping (address => uint) owners;
6

7 modifier onlyowners() { /* ... */ _; }
8

9 function deposit() payable external { /* ... */ }
10 function withdraw(address receiver, uint amount) external;
11 }
12

13 contract multisigaccount is account {
14 function withdraw(address receiver, uint amount) external {/* ... */}
15 }
16

17 contract bank {
18 account[] wallets;
19

20 function withdraw(uint walletid, address receiver, uint amount) payable

external {↪→

21 wallets[walletid].withdraw(receiver, amount);
22 }
23 }

Listing 1: An example of Solidity code for a banking system

Figure 2: Meta-model instance of Listing 1.

The framework is implemented in Scala, and currently relies

on the Neo4J graph database
3
for persisting the semantic meta-

models. In the interest of the framework’s generality, we do not

use the Cypher graph query language provided by Neo4J. Instead,

we opted for Gremlin [6] in which queries express path traversals

through a graph. We used Scala’s support for implicit classes to

extend this language with domain-specific operators. The following

example shows these operators in a query that extracts all functions

from the Account contract depicted in Figure 2:

g.V().contract("Account").functions()

Our framework uses similar queries to compute software design

metrics from the graph-based semantic meta-model. The following

example shows how to calculate the number of function calls for

all contracts in a project:

g.V().contract().functions().isCalled().count()

3 A PRELIMINARY EMPIRICAL STUDY ON

THE QUALITY OF SMART CONTRACTS

To evaluate the overall design of Solidity smart contracts, we

used our framework on 505 smart contracts extracted from 83

3
https://neo4j.com/

Table 1: An overview of the calculated metrics

Mean Std. Dev Median Min Max

Cyclomatic complexity 4.54 5.72 3.0 0.0 25.0

of Lines 329.87 303.40 225.0 23.0 1712.0

of Functions 26.78 24.08 18.0 2.0 142.0

of Contracts 6.08 4.86 4.0 1.0 29.0

of Modules 6.07 6.28 5.0 2.0 30.0

Fanout 0.91 1.49 0.0 0.0 7.0

Calls 5.65 6.09 3.0 0.0 28.0

Average Depth of Inheritance Tree 1.66 1.82 2.0 0.0 6.0

Average # of Children per contract 0.54 0.52 1.0 0.0 2.0

of Methods / # of Contracts 4.51 2.45 4.0 1.0 12.5

of Contracts / # of Modules 1.01 0.67 0.0 0.5 4.5

Fanout / Calls 0.11 0.16 0.0 0.0 0.75

Calls / # of Functions 0.22 0.12 0.22 0.0 0.55

Cyclomatic Complexity / # of Lines 0.01 0.01 0.0 0.0 0.04

of Lines / # of Methods 15.92 22.15 11.85 4.5 203.66

GitHub repositories. We started from the 1,917 repositories on

GitHub that are written in Solidity, and narrowed the corpus down

to 313 repositories that contain a Truffle
4
project, from which

we discarded those projects that did not compile or that could

not be analysed by our current implementation. The final corpus

consists of 83 Truffle projects and 505 Solidity smart contracts.

Table 1 provides an overview of the analysed projects, along with

descriptive statistics for their design metrics.

The metrics show that public Solidity smart contract projects

are relatively small. Usually a module contains exactly one contract,

which is unlike the Scala but similar to the Java practice of defining

one class per file.

The Fanout metric, which indicates the number of distinct con-

tracts that are called from other contracts, is also relatively low.

The number of calls to other functions is, moreover, low compared

to the number of functions in a contract. This might be counter-

intuitive at first, as uncalled methods can be indications of dead

code and are therefore discouraged in traditional software systems.

However, we argue that this is quite commonplace in Solidity

smart contracts, as the functions are designed to be mostly called

from external applications.

Finally, the inheritance mechanisms that Solidity provides

seems to be underutilized as inheritance trees are not deep, and on

average a contract does not have many children.

4 CONTRIBUTIONS AND FUTUREWORK

In this paper, we presented a graph-based framework for represent-

ing, querying, and analysing Solidity smart contracts. Its contract

representation is inspired by the work of Mens and Lanza [5]. Us-

ing this framework, we transposed well-known design metrics for

object-oriented programs [4] to Solidity smart contracts, and eval-

uated them empirically on a corpus of projects mined from GitHub.

The framework can be used to implement additional tooling for

Solidity smart contracts based on software metrics, such as the

automatic detection and refactoring of bad smells [2]. In future

work, we plan to develop design metrics that are specific to smart

contracts as well as to study the similarities and differences between

bad smells in smart contracts and object-oriented software.

4
Truffle is a collection of command-line tools for developing, testing, deploying and

managing Solidity smart contracts and their dependencies.

A Graph-Based Framework for Analysing the Design of Smart Contracts ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Santiago Bragagnolo, Henrique Rocha, Marcus Denker, and Stéphane Ducasse.

2018. SmartInspect: solidity smart contract inspector. In 2018 International Work-
shop on Blockchain Oriented Software Engineering (IWBOSE). IEEE, 9–18.

[2] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[3] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and

Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas conditions in Ethereum

smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–27.

[4] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[5] TomMens andMichele Lanza. 2002. A graph-basedmetamodel for object-oriented

software metrics. Electronic Notes in Theoretical Computer Science 72, 2 (2002),
57–68.

[6] Marko A Rodriguez. 2015. The Gremlin graph traversal machine and language

(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. ACM, 1–10.

[7] Nick Szabo. 1997. Formalizing and securing relationships on public networks.

First Monday 2, 9 (1997).

[8] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis

of ethereum smart contracts. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 9–16.

[9] Roberto Tonelli, Giuseppe Destefanis, Michele Marchesi, and Marco Ortu. 2018.

Smart contracts software metrics: a first study. arXiv preprint arXiv:1802.01517
(2018).

[10] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 67–82.

	Abstract
	1 Research Problem and Motivation
	2 A Graph-Based Framework for Analysing Smart Contracts
	3 A Preliminary Empirical Study on the Quality of Smart Contracts
	4 Contributions and Future Work
	References

