
An Automated
Delta-Debugging Approach

to Resilience Testing of Actor Systems
through Fault Injection

Jonas De Bleser

Dissertation submitted in fulfillment of the requirement for
the degree of Doctor of Philosophy in Sciences

October 9, 2020

Promotor:
Prof. Dr. Coen De Roover, Vrije Universiteit Brussel, Belgium

Jury:
Prof. Dr. Viviane Jonckers, Vrije Universiteit Brussel, Belgium (chair)

Prof. Dr. Geraint Wiggins, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Martin Monperrus, KTH Royal Institute of Technology, Sweden

Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel, Belgium
Prof. Dr. Kris Steenhaut, Vrije Universiteit Brussel, Belgium

Prof. Dr. Fabio Palomba, University of Salerno, Italy

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

© 2020 Jonas De Bleser

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel: +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789493079755
NUR 980

All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

Abstract

Until recently, software systems were typically designed with a monolithic
architecture and deployed as a single executable. However, these systems strug-
gle to keep up with the growing number of concurrent requests and increasingly
shorter development cycles. Development teams therefore migrate to systems
with a distributed architecture consisting of fine-grained services that can eas-
ily be scaled and developed independently. Although there are several ways to
implement these services, the actor model is increasingly prevalent.

However, the distributed nature of these systems exposes them to abnormal
conditions under which they may no longer remain operational. For example, the
network might temporarily fail and could result in messages being lost. A resilient
system can cope with such abnormal conditions by detecting them, limiting their
negative impact, and restoring normal operation.

While existing actor model frameworks support the development of resilient
systems, it remains the responsibility of developers to properly use this support
and test the system’s operation under abnormal conditions. Unfortunately, devel-
opers have been shown to have a tendency to test the system only under normal
conditions. A system can therefore be less resilient than expected. Testament
to this are the many outages and failures of systems that can lead to loss of
turnover and customers. Therefore, automated approaches are needed to test
the resilience of actor systems.

This dissertation presents an automated and dynamic analysis approach that
injects faults during test execution to determine the resilience of the system. To
efficiently explore all possible faults, we propose an exploration strategy based
on delta debugging. This strategy can also be combined with optimizations to
identify defects earlier. We explore one optimization where the causality of actor
events is used to prune away certain faults, and a number of others where faults
are given a priority to inject certain faults earlier. We implement our approach
in the Chaokka tool. This tool is built for the actor model framework Akka
and the testing framework ScalaTest which are widely used in practice. We
also present an automated and static analysis approach to assess the quality of
existing tests into which faults will be injected. We implement this approach
in the Socrates tool and observe a low distribution of so-called test smells
throughout the Scala ecosystem.

Finally, we demonstrate the applicability of our approach by testing the re-
silience of actor systems in which various defects are present. We conclude that
our approach finds defects 5 times faster compared to a naive approach. This
dissertation therefore provides a solid foundation to automatically and efficiently
test system resilience.

i

ii ABSTRACT

Samenvatting

Tot voor kort werden softwaresystemen doorgaans ontworpen met een mono-
lithische architectuur en uitgerold als één enkel uitvoerbaar bestand. Zulke sys-
temen hebben echter moeite om een groeiend aantal gelijktijdige verzoeken en
steeds kortere ontwikkelingscycli bij te houden. Ontwikkelingsteams migreren
daarom naar systemen met een gedistribueerde architectuur die bestaat uit aparte
services die gemakkelijk los van elkaar geschaald en ontwikkeld kunnen worden.
Het actor model komt steeds vaker voor in de implementatie van deze services.

Het gedistribueerde karakter van deze systemen stelt ze echter bloot aan ab-
normale omstandigheden waaronder ze kunnen falen. Zo kan het netwerk bi-
jvoorbeeld tijdelijk falen en kunnen berichten verloren gaan. Een veerkrachtig
systeem kan met zulke abnormale omstandigheden overweg door ze te detecteren,
hun negatieve impact te beperken, en de normale werking te herstellen.

Hoewel bestaande frameworks ondersteuning bieden voor het ontwikkelen van
veerkrachtige systemen door middel van het actor model, blijft het de verantwo-
ordelijkheid van ontwikkelaars om deze ondersteuning correct te gebruiken en de
werking ervan onder abnormale omstandigheden te testen. Helaas is het aange-
toond dat ontwikkelaars de neiging hebben om het systeem alleen onder normale
omstandigheden te testen. Een systeem kan daarom minder veerkrachtig zijn
dan gedacht. Een bewijs hiervan zijn de vele storingen van systemen die kunnen
leiden tot het verlies van omzet en klanten. Er zijn daarom geautomatiseerde
aanpakken nodig om de veerkracht van actor-gebaseerde systemen te testen.

Dit proefschrift presenteert een geautomatiseerde en dynamische aanpak die
fouten injecteert tijdens de uitvoering van tests om de veerkracht van het sys-
teem te bepalen. Om alle mogelijke fouten efficiënt te verkennen, presenteren wij
een strategie op basis van delta debugging. Deze exploratie strategie kan ook
gecombineerd worden met optimalisaties om defecten eerder te identificeren. We
presenteren een optimalisatie waarbij de causaliteit van actoren wordt gebruikt
om bepaalde fouten over te slaan, en een aantal andere waarbij fouten een pri-
oriteit krijgen om bepaalde fouten eerder te injecteren. We implementeren onze
aanpak in de tool Chaokka. Deze tool is gebouwd voor het actor model frame-
work Akka en het testing framework ScalaTest die in de praktijk veel gebruikt
worden. We presenteren ook een geautomatiseerde en statische aanpak om de
kwaliteit van bestaande tests, waarin fouten geïnjecteerd zullen worden, te beo-
ordelen. We implementeren deze aanpak in de tool Socrates en observeren een
lage verspreiding van zogenaamde test smells doorheen het Scala ecosysteem.

Ten slotte demonstreren we de toepasbaarheid van onze aanpak door de
veerkracht te testen van actor-gebaseerde systemen waarin verschillende defecten
aanwezig zijn. We concluderen dat onze aanpak defecten 5 keer sneller vindt
in vergelijking met een naïeve aanpak. Dit proefschrift biedt daarom een sterke
basis aan om de veerkrachtigheid van systemen automatisch en efficiënt te testen.

iii

iv SAMENVATTING

Acknowledgements

I would like to take the opportunity to express my gratitude towards all the
people who have supported me over the past four years and contributed to this
dissertation, directly or indirectly.

First and foremost, I would like to express my gratitude and appreciation to
Coen De Roover for being my promotor and whose expertise, understanding,
and patience enabled me to present this dissertation. Thank you for your count-
less support and comments on my research during the past years. I am also
extremely thankful towards my guiding post-doc Dario Di Nucci for teaching me
how to write international conference papers that get accepted and providing me
valuable feedback on my ideas. I would also like to extend my sincere thanks
to Martin Monperrus, Fabio Palomba, Kris Steenhaut, Wolfgang De Meuter,
Geraint Wiggins, and Viviane Jonckers for being the members of my jury and
their insightful comments, discussions, and feedback. Furthermore, I would like
to say thank you to Ahmed and Quentin for proofreading this dissertation.

Next, I would like to thank all members of the Software Languages Lab for
spending their precious time with me, providing me with relevant insights and
suggestions during research presentations, and accepting me for who I am. I
would also like to thank the members of the Church of Iron (Florian, Christophe,
Joeri) for their support during each workout. Looking at my current physique,
it is clear that these workouts had exceptional success. Noah and Kevin, thanks
for joining me on the daily commute and making the ride more enjoyable. Thank
you Quentin for sharing the office with me and providing me with the necessary
quietude to do pioneering research. Thank you Jens (yes, both) for interrupting
my daily thoughts with conversations about static analysis, which I soundly over-
approximated to be bottom. Thank you Maarten for the interesting discussions
about dynamic analysis and helping me out with my ideas.

Finally, I’m grateful for the support that my family provided me throughout
my entire life, without whose love and encouragement I would not have finished
this dissertation. I would also like to thank my closest friends for the necessary re-
laxation and with whom I enjoyed numerous of conversations, parties, vacations,
and events. I’m looking forward to many more of these once the COVID-19 pan-
demic is over. Absurdly enough, this pandemic has provided me with a sense
of serenity to write this dissertation. Nevertheless, I sincerely hope that this
pandemic will be over soon.

Again, thank you all, stay safe, and don’t forget to read the remainder of this
dissertation.
— Jonas

v

vi ACKNOWLEDGEMENTS

Contents

Abstract i

Samenvatting iii

Acknowledgements v

1 Introduction 1
1.1 Context . 2
1.2 Problem Statement . 4
1.3 Approach . 5

1.3.1 Socrates: Test Smell Detection 6
1.3.2 Chaokka: Resilience Testing 7

1.4 Publications . 8
1.5 Contributions . 9
1.6 Outline . 10

2 The Scala Ecosystem 11
2.1 The Programming Language Scala 12
2.2 The Testing Framework ScalaTest 14

2.2.1 Writing Tests in Theory . 14
2.2.2 Writing Tests in Practice 16

2.3 The Actor Model Framework Akka 18
2.3.1 Actors . 19
2.3.2 Persistent Actors . 20
2.3.3 Guaranteed Message Delivery 21
2.3.4 The TestKit Library . 22

2.4 Conclusion . 22

vii

viii CONTENTS

3 Socrates: A Static Analysis Approach to Detecting Test Smells 25
3.1 Motivation . 26

3.1.1 Limited Context Diversity and Tool Support 26
3.1.2 Negative Impact on Software Aspects 26

3.2 Literature Study . 27
3.2.1 Summary . 31

3.3 Overview of the Approach . 32
3.4 Syntactic and Semantic Information 33

3.4.1 Information Extraction . 33
3.4.2 Identification of Test Classes 35
3.4.3 Linking Test Classes to Production Classes 35

3.5 Static Detection Methods for Test Smells 36
3.5.1 Assertion Roulette . 36
3.5.2 Eager Test . 37
3.5.3 General Fixture . 38
3.5.4 Lazy Test . 43
3.5.5 Mystery Guest . 44
3.5.6 Sensitive Equality . 45

3.6 Implementation . 45
3.6.1 Usage . 45
3.6.2 Extension . 46

3.7 Conclusion . 48

4 Empirical Study on Test Smells in the Scala Ecosystem 49
4.1 Perception of Test Smells . 50

4.1.1 Motivations . 50
4.1.2 Design . 51
4.1.3 Results . 52
4.1.4 Threats to Validity . 55

4.2 Diffusion of Test Smells . 56
4.2.1 Design . 56
4.2.2 Results . 58
4.2.3 Threats to Validity . 63

4.3 Conclusion . 64

5 State of The Art in Resilience Testing 65
5.1 Resilience and Its Meaning . 66

5.1.1 The Concepts of a Resilient System 66
5.1.2 Incorporating Resilience Mechanisms is Difficult 68

5.2 Fault Injection . 69
5.2.1 Terminology . 70
5.2.2 Architecture . 72

CONTENTS ix

5.3 Chaos Engineering . 73
5.3.1 Interest of Industry . 74
5.3.2 Observations . 74

5.4 Lineage-driven Fault Injection (LDFI) 75
5.5 Delta Debugging (DD) . 79

5.5.1 Terminology . 79
5.5.2 The Minimizing Delta Debugging Algorithm 82
5.5.3 Properties . 85
5.5.4 Partitioning Strategy . 87
5.5.5 The General Delta Debugging Algorithm 89
5.5.6 Complexity . 92

5.6 Overview of Resilience Testing Approaches 94
5.6.1 Developer-specified Exploration of Fault Scenarios 96
5.6.2 Exhaustive Exploration of Fault Scenarios 100
5.6.3 LDFI-driven Exploration of Fault Scenarios 107
5.6.4 DD-driven Exploration of Fault Scenarios 113

5.7 Observations . 115
5.8 Conclusion . 116

6 Chaokka: A Dynamic Analysis Approach to Resilience Testing117
6.1 Motivation . 118

6.1.1 Difficulties of Implementing Resilience Mechanisms 118
6.1.2 Difficulties of Testing Resilience Mechanisms 120

6.2 Overview of the Approach . 122
6.2.1 Fault Injection as Foundation 124

6.3 Trace Analysis . 124
6.3.1 Execution Trace . 125
6.3.2 The Causality Relation . 126
6.3.3 Actor-based Fault Scenarios 127

6.4 Exploration Strategies . 129
6.4.1 Developer-specified Exploration 129
6.4.2 Exhaustive Exploration . 129
6.4.3 Delta Debugging Exploration 130

6.5 Pruning Strategies . 133
6.5.1 Developer-specified Pruning 133
6.5.2 Causality-based Pruning . 133

6.6 Prioritization Strategies . 138
6.6.1 Shuffle . 139
6.6.2 Registration Time . 139
6.6.3 Message Time . 140
6.6.4 Actor Fan-In . 140
6.6.5 Actor Fan-Out . 141

x CONTENTS

6.6.6 Actor Fan-In/Fan-Out . 142
6.6.7 Summary . 142

6.7 Implementation . 143
6.7.1 Usage . 143
6.7.2 Extension . 144
6.7.3 Limitations . 147

6.8 Application Domains . 148
6.9 Conclusion . 149

7 Experimental Evaluation of Resilience Testing 151
7.1 Detection of Resilience Defects . 152

7.1.1 Design . 152
7.1.2 Results . 157

7.2 Prioritization of Faults . 161
7.2.1 Design . 161
7.2.2 Results . 162

7.3 Discussion and Observations . 169
7.4 Threats to Validity . 170
7.5 Conclusion . 171

8 Conclusion and Future Work 173
8.1 Summary . 174
8.2 Contributions . 176

8.2.1 Socrates: Statically Detecting Test Smells 176
8.2.2 Chaokka: Dynamically Testing Resilience 177

8.3 Future Work . 177
8.4 Concluding Remarks . 179

List of Algorithms

1 The algorithm to determine the causality relation. 134
2 The algorithm to collect causally-connected turns. 136
3 The causality-based pruning strategy. 137
4 The prioritization strategy shu. 139
5 The prioritization strategy rt. 139
6 The prioritization strategy mt. 140
7 The prioritization strategy fi. 141
8 The prioritization strategy fo. 141
9 The prioritization strategy fifo. 142

xi

xii LIST OF ALGORITHMS

List of Figures

2.1 A formal description of testing systems. 14
2.2 The relationship between programs, tests, oracles, and specifications. 15
2.3 A conceptual description of the actor model. 19

3.1 The architecture of Socrates. 32
3.2 The abstract syntax tree of the object Test. 33
3.3 The SemanticDB payload of the object Test. 34
3.4 The typical directory structure of system built with sbt. 35
3.5 The required options to execute Socrates. 46
3.6 An overview of test smells reported by Socrates. 46

4.1 The perception of test smells by developers. 53
4.2 The usage of testing frameworks in the Scala ecosystem. 56
4.3 The mean percentage of test classes that are affected by a test smell. 59
4.4 The diffusion of test smells in test classes across Scala systems. . 61

5.1 Resilient systems detect and recover from abnormal conditions. . . 67
5.2 A conceptual view of resilient systems. 68
5.3 The relation between fault, error, and failure. 70
5.4 The typical architecture of a fault injection approach. 72
5.5 The lineage graph extracted from the system’s execution. 76
5.6 The extended lineage graph extracted from the system’s execution. 78
5.7 A 1-minimal fault scenario in a non-monotone fault space. 84
5.8 A 1-minimal fault scenario in a monotone fault space. 86
5.9 The effect of an optimal partitioning strategy. 87
5.10 The effect of a sub-optimal partitioning strategy. 88
5.11 A 1-minimal difference in a non-monotone fault space. 91
5.12 The best-case performance of delta debugging. 93
5.13 The worst-case performance of delta debugging. 93

6.1 The architecture of Chaokka. 122

xiii

xiv LIST OF FIGURES

6.2 The fault injection architecture as the foundation of our approach. 124
6.3 A formal description of execution traces. 125
6.4 A formal description of the causality relation. 126
6.5 A formal description of fault scenarios. 127
6.6 An illustrative actor system with a resilience defect. 131
6.7 An illustrative causality relation. 135

7.1 The communication topology of eBay’s payment platform. 153
7.2 A generated actor system with a seeded resilience defect. 154
7.3 The number of test executions for all three resilience analyses. . . . 158
7.4 The overhead of Chaokka for each fault type. 160
7.5 A summary of each prioritization strategy. 162
7.6 An overview of each analysis with ascending prioritization strategy. 165
7.7 An overview of each analysis with descending prioritization strategy.167
7.8 A complete overview of each prioritization strategy. 168

List of Listings

2.1 An excerpt of the Stack class provided by Scala. 12
2.2 A test class for the Stack class consisting of two test cases. 17
2.3 A test class for the Stack class that uses a fixture. 18
2.4 The Accumulator actor in Akka. 20
2.5 A persistent actor in Akka. 21
2.6 An integration test for both actors. 22

3.1 An illustrative example of a test smell. 26
3.2 The object Test with its method main. 33
3.3 The illustrative Scala classes under test. 36
3.4 An example of Assertion Roulette and its refactoring. 37
3.5 An example of Eager Test and its refactoring. 38
3.6 An example of General Fixture (Type I) and its refactoring. . 39
3.7 An example of General Fixture (Type II) and its refactoring. 40
3.8 An example of General Fixture (Type III) and its refactoring. 41
3.9 An example of General Fixture (Type IV). 42
3.10 An example of Lazy Test and its refactoring. 43
3.11 An example of Mystery Guest and its refactoring. 44
3.12 An example of Sensitive Equality and its refactoring. 45
3.13 The class Explorable. 47
3.14 An implementation of the class Explorable. 47
3.15 The classes TestClassTestSmell and TestCaseTestSmell. 47
3.16 An implementation of the class TestCaseTestSmell. 48

5.1 A recipe in Gremlin. 97
5.2 A policy in PreFail. 98
5.3 A policy in Setsudo. 99
5.4 A Destini recovery specification. 102
5.5 A developer-specified resilience hypothesis. 103

6.1 A test case with additional code to find resilience defects. 121
6.2 An illustrative fault scenario. 129

xv

xvi LIST OF LISTINGS

6.3 A resilience analysis in Chaokka. 143
6.4 The abstract class Perturbation. 144
6.5 The implementation of the class Perturbation. 144
6.6 The abstract class ResilienceAnalysis. 145
6.7 An implementation of the class ResilienceAnalysis. 145
6.8 The trait PrioritizationStrategy. 146
6.9 An implementation of the trait PrioritizationStrategy. 146

7.1 The method to generate unordered pairs from a list of nodes. . . . 153
7.2 The method to select a random subset with cardinality m. 154
7.3 A test case to test the behavior of our generated actor systems. . . 155

List of Tables

1.1 Socrates and Chaokka are demonstrators of our vision. 6

3.1 A summary of Van Rompaey et al. 28
3.2 A summary of Greiler et al. 28
3.3 A summary of Bavota et al. 29
3.4 A summary of Tufano et al. 29
3.5 A summary of Palomba et al. 30
3.6 A summary of Spadini et al. 30
3.7 A summary of Spadini et al. (2) 30
3.8 A summary of the test smells discussed in each study. 31

4.1 The data set and its characteristics used in our empirical study. . . 57
4.2 The usage of testing styles in the Scala ecosystem. 57
4.3 The precision and recall of Socrates for each test smell. 58
4.4 The prevalence of each test smell. 62
4.5 The distribution of each test fixture definition style. 62

5.1 We discuss each approach based on the described 8 properties. . . 94
5.2 An overview of the state of the art in resilience testing. 95

7.1 The data set for our evaluation. 156
7.2 A summary of each resilience analysis. 158
7.3 A summary of each resilience analysis for each actor system. 159
7.4 A summary of all prioritization strategies. 163
7.5 A summary of the ascending prioritization strategies. 164
7.6 A summary of the descending prioritization strategies. 166

xvii

xviii LIST OF TABLES

List of Acronyms

DD Delta Debugging

LDFI Lineage-driven Fault Injection

JVM Java Virtual Machine

SBT Scala Build Tool

AR Assertion Roulette

ET Eager Test

LT Lazy Test

GF General Fixture

MG Mystery Guest

SE Sensitive Equality

RO Resource Optimism

SHU Shuffle

RT Registration-Time

MT Message-Time

FI Fan-In

FO Fan-Out

FIFO Fan-In/Fan-Out

xix

xx

Chapter 1

Introduction

Imagine a world in which software systems aren’t affected by hardware, soft-
ware, nor human failures. Many developers would consider this a utopian world.
Unfortunately, the real world is ruled by Murphy’s law. Anything that can go
wrong, will go wrong. And more likely than not, it will go wrong at the moment
when least desired. Software testing has therefore become a standard activity of
the development process.

Traditionally, developers would manually test the system to find defects and
to ensure the correctness of their system. It is trivial to see that such a manual
approach is far from efficient and does not scale to increasingly large and complex
systems. In response, test automation frameworks were proposed and they have
considerably improved the efficiency of software testing by means of automating
the execution of tests. However, these frameworks provide limited support to
implement the tests themselves. For example, developers do not get feedback on
the quality or coverage of the tests. We therefore envision that these frameworks
should become intelligent testing platforms which amplify the effort of developers.
In order to demonstrate our vision, we present two approaches that integrate
with current testing practices and amplify existing test suites implemented by
developers.

Section 1.1 presents the context of this dissertation and explains the rela-
tionship between test automation, automated testing, and test amplification.
Additionally, we highlight that more efficient means of testing are required as
the industry is moving towards complex systems with a distributed architecture.
Next, Section 1.2 defines the problem statement, while Section 1.3 explains the
research goals and our approaches. Section 1.4 and Section 1.5 respectively lists
the supporting publications and contributions of this dissertation. Finally, Sec-
tion 1.6 presents the outline of this dissertation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Context
Software testing [Bec03,Bei03] is a software engineering activity in which devel-
opers determine whether the system meets the specified requirements and works
as expected. Decades ago, developers would test their monolithic systems right
before the release through manual interaction. Developers would provide inputs,
navigate through components, and compare outputs to determine the correct-
ness of the system. However, such a manual testing approach does not longer
fit today’s needs. Not only should testing occur early in the development pro-
cess, tests should also be executed continuously so that new and old defects are
found immediately after a change. Furthermore, the complexity of contemporary
systems is increasing as systems are migrating from a monolithic architecture to-
wards a distributed architecture consisting of many services. This requires more
advanced testing approaches as multiple services are now involved instead of one
monolithic system. Additionally, the system should also be tested under condi-
tions that are specific to a distributed environment. A manual testing approach
can no longer extensively cover the entire behavioural spectrum of such systems.
As a result, development teams have been seeking more efficient testing practices
to keep up with the current demands of software testing.

Test Automation

One way to increase test efficiency is by reducing the human interaction and
automating the execution of tests so they can be repeated reliably. For that
reason, test automation frameworks (or testing frameworks) have been proposed
to execute tests without human interaction. For example, JUnit was introduced
around 1998 to test Java systems and is still actively.

To facilitate the automation of tests, testing frameworks provide support to
execute tests with varying granularity. Unit tests have the smallest granularity
as they are supposed to only test the functionality of a single component. This
is a first line of defence against problems. When all unit tests pass, developers
assume that individual components work as expected. Next, integration tests
determine whether several components also work correctly when put together.
Finally, end-to-end (E2E) testing simulates real user interaction with the system
and determines whether the system under test works correctly from start to end.
Given this level of automation, tests can now be executed repeatedly to ensure
that the system still works after a change. The practice of repeating tests is
called regression testing [YH12] and has become a default part of the software
testing process. As a result, test efficiency has steadily improved over the past
two decades.

1.1. CONTEXT 3

Complex Distributed Systems

With the advent of complex systems that have to scale to millions of concurrent
requests, increasingly more and complicated tests have to be implemented by
developers. For example, we observe that development teams are increasingly
migrating towards systems with a distributed architecture to keep up with the
increasing demands of scalability and increasingly short development and deploy-
ment processes [MS20]. These systems need non-functional requirements such as
availability, scalability, and resilience more than ever before. Yet, developers
still have to come up with many ad-hoc tests by themselves as current testing
frameworks provide limited support for such tests.

Moreover, the efficiency of humans in implementing these tests is not always
optimal. The main reason is that test quality depends on the developer’s ef-
fort and experience. For example, several studies [ECS15, BHP+17, BGP+17]
indicated that developers only tend to cover the most likely execution paths of
the system under normal conditions (e.g., no exceptions or network failures).
This is likely to negatively affect test efficiency in the long run as certain de-
fects might only arise under abnormal conditions. It becomes clear that current
testing frameworks do not longer suffice to test these increasingly more complex
systems and therefore leave ample room for defects in the system.

Automated Testing

The problem of current testing frameworks becomes apparent when you look at
the history: they were originally designed to support developers in automating
manual tests, but not necessarily in the process of implementing them. Therefore,
test efficiency is still largely dominated by humans because both their thoughts
(e.g., coverage of test scenarios) and their efforts (e.g., quality of the implemented
test cases) account for a significant part of the testing process. While education
and training could improve the efficiency of humans, the possible gains remain
limited. Automated testing approaches therefore try to replace the generation
and implementation process of humans by computers.

Several approaches to automated testing have been proposed over the past
decade based on techniques such as concolic testing [GKS05,QR11], search-based
testing [HJ01,HJZ15], and fuzzing [SGA07]. However, they cannot always cover
complex behaviour and typically require specifications or formal models of the
expected behaviour which might not always be available. Moreover, these ap-
proaches do not always integrate with contemporary testing practices and frame-
works which hinders adoption: humans remain the dominant producer of tests.

4 CHAPTER 1. INTRODUCTION

Towards Test Amplification

Despite the fact that humans might not implement each test in an optimal way,
human-written tests have become widely available. It might therefore be better
to embrace the effort of humans rather than trying to completely replace it with
automated approaches. This has given rise to the idea of test amplification.

Danglot et al. [DVPY+19] introduced test amplification as an umbrella for
the various activities that amplify (i.e., augment, enhance, refactor, or optimize)
test suites. For example, test cases could be analysed and refactored such that
they are more maintainable, provide more coverage of the system, or contain
better oracles to determine the correctness of the system.

While the field of test amplification is still nascent, several state-of-the-art
approaches already show that test amplification can improve the software testing
process in the contexts such as Android applications (e.g., [AMM15,ZE14]) and
microservices architectures (e.g., [RE19]). Moreover, we envision that amplifying
existing test suites is a logical step forward and will enjoy increasing adoption
in the future for several reasons. First, test amplification approaches have ac-
cess to both system-specific executions and oracles. This is in contrast to many
automated testing techniques that can only find system-agnostic errors such as
crashes or unhandled exceptions. Second, testing suites are currently the key
way to ensure that a system runs correctly. Unit, integration and end-to-end
tests are unlikely to be replaced. Finally, a typical development team spends
about 50% of their time and costs on software testing [MSB11]. It is therefore no
surprise that test suites of software companies consist of a large number of tests
that can be amplified automatically. In this way, tests can be further improved
with minimal effort of developers. However, test amplification remains a largely
unexplored field.

1.2 Problem Statement
We explained the need for optimizing test efficiency in order to keep up with the
demands of testing contemporary systems. However, humans will likely remain
a large producer of tests as Agile development practices [HH02] advocate to
test early and often. As a result, extensive test suites with tests have become
available, but their full potential remains largely unexploited at current times.

We therefore argue that the scope of testing frameworks should be broadened:
they should not only provide support for automating the execution of tests, but
also provide support for amplifying tests. Our vision is therefore that testing
frameworks will evolve into intelligent testing platforms that provide a next step
to improve the efficiency of the testing process. We formulate the problem state-
ment and vision of this dissertation as follows:

“There is a need for intelligent testing platforms that amplify existing
tests to further improve the test efficiency”

1.3. APPROACH 5

1.3 Approach
Our research goal is to demonstrate the feasibility of our vision of intelligent
testing platforms. To this end, we propose advancements in two of the four
forms of test amplification [DVPY+19] as discussed below.

1. Amplification by adding new tests as variants of existing ones. The
first form generates variants of existing test cases. For example, Baudry
et al. [BFLT06] improve the mutation score of existing test suites by gen-
erating variants of them through a bacteriological algorithm, while Thum-
malapenta et al. [TMX+11] generalized unit tests into parameterized unit
tests.

2. Amplification by synthesizing new tests with respect to changes.
The second form synthesizes new tests as a reaction to a change or commit.
While the first approach is applicable to all test cases, this one only concerns
test cases that are changed in a commit. For example, Xu et al. [XR09] use
concolic execution to only target branches that are not yet covered by the
existing test suite after a change.

3. Amplification by modifying existing test code.
The third form modifies existing test cases to improve them in terms of
quality, oracles, etc. Unlike the first way, no new test cases are gener-
ated. For example, Xie et al. [Xie06] amplifies object-oriented unit tests
by adding assertions on the state of the receiver object and parameters in
order to strengthen the test cases. This form is of particular interest to us
as Chapter 3 will present Socrates — an approach that analyses test code
in order to improve its quality through refactorings.

4. Amplification by modifying test execution.
The final form modifies the test execution in order to determine additional
runtime information about the system under test. The work in this cat-
egory typically instruments the system to intercept, modify and monitor
certain locations in the system. For example, failures in the microservices
architecture of eBay were found through test amplification of end-to-end
tests [RE19]. This form is of particular interest to us as Chapter 6 will
present Chaokka — an approach that modifies test execution in order to
assess a system’s resilience.

Our approaches incorporate automated program analyses that leverage infor-
mation from existing tests. These analyses either extract information through a
dynamic analysis (i.e., by observing the execution of a test) or a static analy-
sis (i.e., by analysing the implementation of a test). Each analysis has its own
strengths and weaknesses, but both kinds of information can be leveraged to
achieve a particular engineering goal.

6 CHAPTER 1. INTRODUCTION

In particular, Socrates [DBDNDR19a,DBDNDR19b] is a general approach
that improves the quality of tests by leveraging a static analysis, while Chaokka
[DBDNDR20] is an approach that improves the resilience of systems by leveraging
a dynamic analysis. Both are stepping stones towards our vision of intelligent
testing platforms and are tailored to the specifics of the Scala ecosystem which
is particularly under-investigated in research.

Socrates Chaokka
Analyses test code

to improve the quality of tests
Analyses and modifies test executions

to improve a system’s resilience
Static analysis Dynamic analysis

Table 1.1: Socrates and Chaokka are demonstrators of our vision.

1.3.1 Socrates: Test Smell Detection
First, we propose a static analysis approach to test amplification where existing
test code is analysed to improve the quality of test code. Our motivation behind
this work is the presence of test smells [vMBK01].

These smells indicate poor design choices of developers in the implementation
of tests. For example, studies have shown the negative impact of test smells on
maintainability [BQO+15] and flakiness of tests [PZ19]. Additionally, studies
have shown relationships between test smells and defects in production and test
code [TPB+16,SPZ+18]. Therefore, their absence contributes to an increased test
efficiency and results in tests that become better subjects for test amplification
at a later stage. However, existing studies about test smells and tool support to
detect test smells are limited and tailored to the Java ecosystem. As a result, the
current knowledge about test smells might not generalize to different ecosystems.

We therefore propose Socrates [DBDNDR19b, DBDNDR19a] as an auto-
mated approach to detecting test smells in the Scala ecosystem. In particular,
we implement Socrates for the most popular testing framework ScalaTest
to show its integration with current testing practices and its potential applica-
bility to the industry. Our approach requires a system and its test suite as input
and will start by automatically discovering all tests in the test suite. Next, it
executes a static analysis on the source code of the tests to detect 6 test smells.
Our approach is unique in its detection because it leverages both syntactic and
semantic information about the source code.

The output of Socrates is an overview that indicates which test cases are
affected by which test smell. This tool therefore provides valuable and actionable
feedback to increase the quality of tests. We will assess the test quality in the
Scala ecosystem by using Socrates on 164 Scala projects.

1.3. APPROACH 7

1.3.2 Chaokka: Resilience Testing
Second, we propose a dynamic analysis approach to test amplification where test
execution is modified to improve coverage of abnormal behaviour. Our motivation
behind this work is the need for resilience [TKG09] in contemporary systems with
a distributed architecture and fine-grained services.

A resilient system deals with abnormal conditions in a way that limits their
negative impact on the system. That is, the system might temporarily degrade
the quality of its services while recovering the system to its normal operation.
However, studies [GZ13, ECS15] have shown that developers do not often test
the system and its resilience mechanisms under abnormal conditions: exception
handling code is usually of poor quality and developers tend to write tests to
confirm behaviour, rather than to break it. It is therefore likely that a part of
the system will be impacted under abnormal conditions, even when the system’s
normal operation was properly designed and tested.

Additionally, we observe that the actor model is increasingly used to imple-
ment services in a distributed architecture. In this model, actors are concurrent
processes that exchange information through asynchronous messages as there is
no shared memory in this model. However, despite the model its popularity,
there are limited resilience testing approaches for actor systems.

We therefore propose Chaokka [DBDNDR20] as an automated approach to
finding resilience defects. In particular, we implement Chaokka for the most
popular actor model framework Akka to show its integration with current de-
velopment practices and its potential applicability to the industry. Our approach
requires an actor system and a test suite as input. It first observes the execution
of the tests under normal conditions. Next, it repeatedly injects faults during the
test executions to simulate the abnormal conditions for the system under test. A
change in test outcome indicates a resilience defect that can be diagnosed through
the injected faults.

The output of Chaokka is a report that provides valuable and actionable
feedback to increase the resilience of systems. We assess the efficiency of different
resilience analyses by using Chaokka on generated actor systems seeded with
resilience defects. We consider Chaokka as the most novel of our contributions
since it targets the least researched form of test amplification. Nevertheless,
Socrates is equally important as it can ensure the quality of tests before being
amplified by Chaokka.

8 CHAPTER 1. INTRODUCTION

1.4 Publications
This dissertation is supported by the following publications:

• A Delta-Debugging Approach to Assessing the Resilience of Ac-
tor Programs through Run-time Test Perturbations.
2020 IEEE/ACM International Conference on Automation of Software Test
(AST). De Bleser, J., Di Nucci, D., & De Roover, C. [DBDNDR20]
This paper presents the core contribution of this dissertation. It introduces
the resilience testing tool Chaokka for detecting issues in the implementa-
tion of resilience mechanisms. The tool analyses systems that are built with
Akka and tested with ScalaTest. The key contribution is the founda-
tion for resilience testing of actor systems through fault injection and delta
debugging with support for causality-based pruning.

• Assessing Diffusion and Perception of Test Smells in Scala projects.
2019 IEEE/ACM International Conference on Mining Software Reposito-
ries (MSR). De Bleser, J., Di Nucci, D., & De Roover, C. [DBDNDR19a]
This paper presents two studies about test smells. It introduces the test
smell detection tool Socrates to detect test smells in test suites. The tool
analyses tests in ScalaTest. The contribution is twofold: an empirical
study of six kinds of test smells in 164 Scala systems, as well as a sur-
vey on the perception and knowledge about test smells by 14 professional
Scala developers.

• SoCRATES: Scala Radar for Test Smells.
2019 ACM SIGPLAN Symposium on Scala. De Bleser, J., Di Nucci, D., &
De Roover, C. [DBDNDR19b]
This paper presents the implementation and internal working of our test
smell detection tool Socrates. The key contribution is the description of
its architecture which enables developers to use and extend Socrates for
further research in the domain of test smells.

Two additional publications document our academic track record, touching
upon topics addressed in this dissertation such as mining software repositories in
the Scala ecosystem and bug detection in event-driven systems.

• Mining Scala Framework Extensions for Recommendation Pat-
terns.
2019 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). Pacheco, Y., De Bleser, J., Molderez, T., Di
Nucci, D., De Meuter, W., & De Roover, C. [PDBM+19]
This paper presents work about framework extension points and patterns.
It introduces the tool scala-xp-miner to mine for extension patterns in
Scala systems. The key contributions include the replication of a Java
study in the context of the Scala ecosystem, as well as the open-source tool
scala-xp-miner and a replication package to facilitate further research.

1.5. CONTRIBUTIONS 9

• Static Taint Analysis of Event-driven Scheme Programs.
2017 European Lisp Symposium. De Bleser, J., Stiévenart, Q., Nicolay, J.,
& De Roover, C. [DBSNDR17]
This paper presents work about static bug detection of event-driven sys-
tems. It introduces an Abstracting Abstract Machines (AAM) approach to
detect generic bugs in an event-driven extension of Scheme.

1.5 Contributions
The contributions of this dissertation are twofold. We believe that both contri-
butions demonstrate the feasibility of our vision of intelligent testing platforms.
With respect to the state of the art on test smells, the contributions are published
in two international conference papers (i.e., [DBDNDR19a,DBDNDR19b]) and
include:

• The design of an automated and static analysis approach to detect test
smells including the transposition of six test smells introduced by Van
Deursen et al. [vMBK01] for Java to Scala.

• The implementation of our approach for the testing framework ScalaTest
in the open-source tool Socrates (Scala Radar for Test Smells) to show
its applicability. Its implementation provides a modular way to analyse
tests for test smells and can be a foundation for further research.

• A survey with 14 professional Scala developers about test smells.

• A large-scale empirical study that analyses the diffusion of test smells in
164 open-source Scala systems hosted on Github which demonstrates the
applicability of the approach.

With respect to the state of the art on resilience testing, the contributions are
published in an international conference paper (i.e., [DBDNDR20]) and include:

• The design of an automated and dynamic analysis approach to resilience
testing which combines fault injection, delta debugging, and test amplifi-
cation to find resilience defects in actor systems.

• The implementation of our approach for the actor framework Akka and the
testing framework ScalaTest in the open-source tool Chaokka (Chaos
in Akka) to show its applicability. Its implementation provides a modu-
lar way to define resilience analyses and can be a foundation for further
research.

• Multiple optimizations including a pruning strategy based on the causality
of actor events and actor-specific prioritization strategies.

• A study on actor systems with varying size and resilience defects to demon-
strate the applicability of the approach.

10 CHAPTER 1. INTRODUCTION

1.6 Outline
The dissertation consists of 8 chapters and is organized as follows:

Introduction (Chapter 1) defines the context, problem, approach, and con-
tributions of this dissertation.

The Scala Ecosystem (Chapter 2) presents the Scala ecosystem with its
testing framework ScalaTest and its actor model framework Akka.

Socrates: Detecting Test Smells (Chapter 3) proposes Socrates as an
automated and static analysis approach to detecting test smells. This chap-
ter presents the implementation of our approach for the testing framework
ScalaTest.

Empirical Study on Test Smells in the Scala Ecosystem (Chapter 4)
presents our empirical study of 6 test smells in the Scala ecosystem and
discusses the awareness of developers about test smells in ScalaTest.

State of The Art in Resilience Testing (Chapter 5) provides an overview
of the related work on resilience testing and discusses our observations.

Chaokka: Resilience Testing (Chapter 6) proposes Chaokka as an auto-
mated and dynamic analysis approach to resilience testing. This chapter
presents the implementation of our approach for the actor framework Akka
and the testing framework ScalaTest.

Experimental Evaluation of Resilience Testing (Chapter 7) evaluates
Chaokka and the efficacy of multiple resilience analyses that combine
different exploration, pruning, and prioritization strategies.

Conclusion and Future Work (Chapter 8) summarizes this dissertation and
discusses avenues for future work.

Chapter 2

The Scala Ecosystem

This chapter provides information about the Scala ecosystem and two of its
frameworks. Our choice for situating this dissertation in the context of Scala
is twofold. Not only does the ecosystem have its roots in the academic world
[OAC+07], it also provides multiple frameworks for implementing and testing dis-
tributed systems that are increasingly adopted by the industry. In particular, we
present the programming language Scala, the testing framework ScalaTest,
and the actor model framework Akka.

Section 2.1 briefly presents the features of the programming language Scala.
Next, Section 2.2 discusses the testing framework ScalaTest. We start by ex-
plaining how developers test their systems in theory to understand the concepts
of software testing. Subsequently, we explain how developers write tests in prac-
tice using ScalaTest. Finally, Section 2.3 discusses the actor model framework
Akka. We start by explaining the actor model in theory and describe how it
is adopted by contemporary systems in practice. In particular, we discuss how
actors and its corresponding mechanisms are implemented in Akka.

11

12 CHAPTER 2. THE SCALA ECOSYSTEM

2.1 The Programming Language Scala
Scala1 [OAC+07] is an industrial-strength programming language that has en-
joyed a steady rise in popularity over the past years and has been adopted by
many organizations such as Twitter, Paypal, and LinkedIn2. This statically-
typed language combines object-oriented and functional programming in one con-
cise, high-level language of which we discuss the different features that are im-
portant for understanding the remainder of this dissertation. Listing 2.1 provides
the reader a first glimpse of Scala code.

1 class Stack [A] protected (array : Array [AnyRef], start : Int , end: Int)
2 extends ArrayDeque [A](array , start , end)
3 with IndexedSeqOps [A, Stack , Stack [A]]
4 with StrictOptimizedSeqOps [A, Stack , Stack [A]]
5 with IterableFactoryDefaults [A, Stack]
6 with ArrayDequeOps [A, Stack , Stack [A]]
7 with Cloneable [Stack [A]]
8 with DefaultSerializable {
9

10 def this(initialSize : Int = ArrayDeque . DefaultInitialSize) =
11 this(ArrayDeque . alloc (initialSize), start = 0, end = 0)
12
13 override def iterableFactory : SeqFactory [Stack] = Stack
14
15 override protected [this] def stringPrefix = " Stack "
16
17 def push(elem: A): this.type = prepend (elem)
18
19 def push(elem1 : A, elem2 : A, elems : A*): this.type = {
20 val k = elems . knownSize
21 ensureSize (length + (if(k >= 0) k + 2 else 3))
22 prepend (elem1). prepend (elem2). pushAll (elems)
23 }
24
25 def pushAll (elems : scala . collection . IterableOnce [A]): this.type =
26 prependAll (elems match {
27 case it: scala . collection .Seq[A] => it.view. reverse
28 case it => IndexedSeq .from(it).view. reverse
29 })
30
31 def pop (): A = removeHead ()
32
33 def popAll (): scala . collection .Seq[A] = removeAllReverse ()
34
35 def popWhile (f: A => Boolean) = removeHeadWhile (f)
36
37 final def top: A = head
38
39 protected override def klone (): Stack [A] = {
40 val bf = newSpecificBuilder
41 bf ++= this
42 bf. result ()
43 }
44
45 override protected def ofArray (array : Array [AnyRef], end: Int) =
46 new Stack (array , start = 0, end)
47 }

Listing 2.1: An excerpt of the Stack class provided by Scala.

1https://www.scala-lang.org
2https://www.lightbend.com/case-studies

https://www.scala-lang.org
https://www.lightbend.com/case-studies

2.1. THE PROGRAMMING LANGUAGE SCALA 13

The code above is the implementation of a stack data structure in Scala3.
We will refer back to this code throughout the discussion of each feature below.

Interoperability. Scala runs on the Java Virtual Machine (jvm). This
design choice enables developers to execute their Scala code on many dif-
ferent platforms and architectures such as Windows and Linux. This
choice also facilitates the integration with popular programming languages
such as Java. Additionally, Scala can also be used to build robust web ap-
plications by means of Scala.js which compiles Scala code to JavaScript.
For several years, developers have been able to use Scala Native to build
native applications that no longer run on the jvm.

Type Inference. One of the benefits of statically-typed languages is type
checking at compile-time. However, this traditionally requires developers
to declare the type of every variable which slows down development. Scala
partially reduces this effort by providing a powerful type inference system.
This system can often automatically determine types when the developer
only provides a minimum amount of information. For example, type infer-
ence detects that String is the result type of the method stringPrefix
(line 15).

Inheritance. Scala supports single inheritance but lacks support for multi-
ple inheritance of classes. However, it features traits as a way to achieve
multiple inheritance. This concept enables developers to inherit state and
behaviour from multiple traits into a single class. Inherent to this concept
is ambiguity: there may be situations where a particular feature is inher-
ited from more than one parent class (i.e., the diamond problem [BLS94]).
This problem is resolved through linearization which puts classes and traits
in a linear order to describe the chain of super calls at compile time. For
example inheritance is used to extend from the class ArrayDeque (line 2)
and to mix in behaviour from the traits (lines 3 to 8). The invariant type
variable A is used throughout the code to support polymorphism.

Pattern Matching. Case classes are used to represent immutable structural
data types in Scala. Specific to this kind of class is that they implement
structural equality and have the ability to be deconstructed with pattern
matching. For instance, Java does not have the ability to directly decon-
struct constructor arguments of a type and match their value. Cumbersome
code has to be written to do type casting (i.e., applying the instanceof
operator) and then comparing the values of the fields, while Scala enables
you to do this directly through case classes and pattern matching. For
example, the pattern matching functionality is used to support different
behaviour of the method pushAll (line 26). It checks whether the parame-
ter elems is of type scala.collection.Seq[A] (line 27) or any other type
which requires conversion (line 28).

3https://github.com/scala/scala/blob/v2.13.2/src/library/scala/collection/mutable/Stack.scala

https://github.com/scala/scala/blob/v2.13.2/src/library/scala/collection/mutable/Stack.scala

14 CHAPTER 2. THE SCALA ECOSYSTEM

First-class functions. Functions are first-class values in Scala. Developers
can leverage higher-order functions together with implicit conversions and
case classes to create advanced domain-specific languages (DSL). Some of
these characteristics have enabled the design of testing frameworks such
as ScalaTest and ScalaCheck. Section 2.2 discusses the features of
ScalaTest in more detail. For example, higher-order functions such as
popWhile enable developers to pass around functions (line 35).

Concurrency models. Scala provides concurrency models such as shared
memory, futures, and multithreading. An implementation of the actor
model is also available as a framework under the name of Akka. This
framework enables developers to build scalable, concurrent, and distributed
systems which are some of the requirements for contemporary systems
(e.g., [KHA17,NW16]). Section 2.3 provides an in-depth discussion of this
framework.

While the programming language Scala provides features that facilitate the
development of software systems, developers remain uncertain whether their im-
plementation works as expected. Software testing [Bec03, Bei03] has therefore
become a standard practice in the development process.

2.2 The Testing Framework ScalaTest
The Scala ecosystem includes several testing frameworks of which ScalaTest4

is the most popular testing framework [DBDNDR19a]. Compared to other test-
ing frameworks, ScalaTest leverages some of Scala’s advanced object-oriented
and functional features to support various styles of defining tests and tests fix-
tures.

2.2.1 Writing Tests in Theory
We briefly describe the formal foundations of software testing to understand its
concepts and make the connection between theory and practice.

p ∈ Program = a set of programs
s ∈ Specification = a set of specifications

t ∈ Test = a set of tests
o ∈ Oracle ⊆ Test × Program

corr ⊆ Program × Specification
corrt ⊆ Test × Program × Specification

Figure 2.1: A formal description of testing systems according to [SWH11].
4http://www.scalatest.org

http://www.scalatest.org

2.2. THE TESTING FRAMEWORK SCALATEST 15

Figure 2.1 shows a formal description of testing systems as defined by Staats
et al. [SWH11]. The authors define a testing system as a tuple of the following 6
elements: In summary, a specification defines the intended behaviour that a given
program is expected to adhere to. In an ideal world, the predicate corr would
determine whether a specification holds for a given program. Unfortunately, the
value of corr(p, s) is generally not decidable because a complete specification
might not be available or not all aspects of the program might be observable.

Therefore, two concepts are derived from the specification. Tests represent
executions of the program with respect to the specification. Similarly, oracles
approximate the specification and determine whether tests pass for a given pro-
gram. The predicate corrt defines correctness with respect to a test. That is,
corrt holds if and only if the specification holds for a program and a test. The
outcome of this predicate is the outcome of test cases in testing frameworks. It
is important to note that oracles and tests are likely to be approximations of a
specification as summarized in Figure 2.2.

P

O T

S

P attempts to
implement S

O approximates S

Observa
bility

 of P
 lim

its
information available to O

Semantics of P are tested in TDistinguish incorrect P from S

Combination of O and T determines efficacy of the testing process

Figure 2.2: The relationship between programs (P), tests (T), oracles (O), and
specifications (S). Adapted from [SWH11].

To understand why oracles approximate specifications, we start by the defi-
nition of a perfect oracle. Staats et al. [SWH11] define an oracle as perfect when
it is both complete and sound. On the one hand, an oracle is complete when it
is able to determine all violations for a given combination of test, program, and
specification.

corrt(t, p, s)⇒ o(t, p)

However, oracles might be imperfect and may contain flaws in practice. For
example, the method push does not violate the specification, but the oracle says
otherwise because it misinterpreted its return value.

16 CHAPTER 2. THE SCALA ECOSYSTEM

On the other hand, an oracle is sound when its judgements are always correct.
Intuitively, a sound oracle fits the conventional wisdom about testing: we assume
that the program is correct for the tests when the oracle says that they all pass.

o(t, p)⇒ corrt(t, p, s)

However, oracles might not be sound in practice [SWH11]. For example, the
oracle might determine that the method pop returns an element from a non-
empty stack such that the test passes. However, that element was not the first
element on the stack which violates the specification. Ideally, one would have the
perfect oracle that is both complete and sound.

∀t, o : o(t, p)⇔ corrt(t, p, s)

Unfortunately, such an oracle (i.e., the actual specification) is rarely avail-
able in practice. Therefore, developers have to manually compare the observed
and expected behaviour by writing assertions that represent the oracle. That is,
developers are approximating the specification as not everything might be ob-
servable. As a result, oracles may both fail to detect faults (i.e., the oracle is
incomplete) and may detect faults that do not exist (i.e., the oracle is unsound).
In the literature, the test oracle problem [BHM+14] represents the challenge of
defining a correct oracle that distinguishes the correct behaviour from incorrect
behaviour.

2.2.2 Writing Tests in Practice
To ease the burden of software testing, most programming language ecosystems
include testing frameworks with different features. For instance, developers of
Java and Python programs often use JUnit5 and unittest6 as their respective
testing framework. These frameworks enable developers to write test suites that
determine whether the observed behaviour is equal to the expected behaviour
of a given system. In the next section, we discuss the features of the testing
framework ScalaTest.

2.2.2.1 Testing Styles

Most testing frameworks provide developers with one specific testing style to
write tests. For example, tests in JUnit are simply methods with an annotation,
while tests in unittest are methods whose name starts with test. However,
ScalaTest offers a spectrum of 8 different testing styles through an advanced
domain-specific language. Developers are free to choose whatever style fits them
and they can even use multiple styles in the same test suite. For example, List-
ing 2.2 on the next page shows the test class StackSpec which consists of two
test cases (line 3–9 and line 11–16) and tests the class defined in Listing 2.1.

5https://junit.org
6https://docs.python.org/3/library/unittest.html

https://junit.org
https://docs.python.org/3/library/unittest.html

2.2. THE TESTING FRAMEWORK SCALATEST 17

This class uses the FlatSpec style which dictates that tests are written in
the form of X should Y in. The first test case uses assertions to compare the
expected behaviour of Stack with the observed behaviour. For example, the
first assertion (line 7) checks whether the result of popping the first element
of the stack is the number 2. The second test case uses assertions to check
whether an exception is thrown and whether the caught exception is indeed of
type NoSuchElementException.

1 class StackSpec extends FlatSpec with Matchers {
2
3 "A Stack " should "pop values in last -in -first -out order " in {
4 val stack = new Stack [Int]
5 stack .push (1)
6 stack .push (2)
7 stack .pop () should be (2)
8 stack .pop () should be (1)
9 }

10
11 it should " throw NoSuchElementException when empty " in {
12 val emptyStack = new Stack [Int]
13 a [NoSuchElementException] should be thrownBy {
14 emptyStack .pop ()
15 }
16 }
17 }

Listing 2.2: A test class for the Stack class consisting of two test cases.

2.2.2.2 Test Fixtures

Many tests often require the same set of data to execute the test. In terms
of maintainability, it is therefore better to share the data across tests instead of
duplicating them for each test. A fixture represents such data and can be as simple
as a single variable, or as complex as an in-memory database. Test classes and
test cases can then use the data defined in the fixtures. Typically, these fixtures
are automatically initialized before the test and cleaned up after the test by the
testing framework. In ScalaTest, fixtures can be defined in multiple ways such
as first-class functions and traits. This results in a comprehensive set of features
for defining, re-using, and composing test fixtures in a fine-grained manner. This
is in contrast to JUnit and other testing frameworks where fixtures are applied
to all test cases in a test, while ScalaTest also enables fixtures to be applied to
single test cases. For example, we rewrote the code from Listing 2.2 such that it
uses a fixture. The result is shown in Listing 2.3 where the fixture StackFixture
is defined which provides a fresh instance of a stack. This particular fixture
definition style is distinctive by its use of a trait (line 3) and anonymous class
instance creation expressions (e.g., new StackFixture (line 7)). The use of a
trait provides the benefit that fixtures can be composed when necessary and
improves maintainability in the long run. Each test case uses its own instance of
the fixture such that the stack variable (line 4) is not shared between them. This
avoids problems where one instance would be shared across multiple test cases
and might result in flaky tests.

18 CHAPTER 2. THE SCALA ECOSYSTEM

1 class StackSpec extends FlatSpec with Matchers {
2
3 trait StackFixture {
4 val stack = new Stack [Int]
5 }
6
7 "A Stack " should "pop values in LIFO order " in new StackFixture {
8 stack .push (1)
9 stack .push (2)

10 stack .pop () should be (2)
11 stack .pop () should be (1)
12 }
13
14 it should " throw NoSuchElementException " in new StackFixture {
15 a [NoSuchElementException] should be thrownBy {
16 stack .pop ()
17 }
18 }
19 }

Listing 2.3: A test class for the Stack class consisting of two test cases that
use the StackFixture fixture.
To conclude, we see that ScalaTest provides a wide variety of features which

are not always present in other testing frameworks. This gives an opportunity
to determine how these features of ScalaTest are used in practice and whether
some of these affect the quality of existing tests. Analysing and refactoring
existing tests is known to be one form of test amplification as discussed in the
first chapter.

2.3 The Actor Model Framework Akka
Systems with a distributed architecture are built on top of services with different
kinds of granularity. We observe that the actor model is increasingly used to
implement these systems. The actor model is originally introduced by Hewitt et
al. [HBS73] and later revised by Agha [Agh85] and differs from shared-memory
models in several ways. This concurrency model presents actors as concurrent
processes with a mailbox. An actor can do 3 things: process messages, spawn
actors, and change their own behaviour and state. As there is no shared state in
this model, actors need to exchange asynchronous messages to access or update
each other’s state. These messages are placed in the mailbox of the receiving actor
and are processed in first-in-first-out (FIFO) order by default. These aspects are
shown in Figure 2.3. The processing of one message by an actor defines a turn
and each turn happens atomically (i.e., there is no interleaving of other turns).

2.3. THE ACTOR MODEL FRAMEWORK AKKA 19

State

Actor

Behavior
Mailbox

State

Actor

Behavior

State

Actor

Behavior
Mailbox

Mailbox

Figure 2.3: Each actor has a state, a behaviour, and a mailbox. Actors solely
communicate with each other through asynchronous messages that are queued in
their mailboxes. Every message is processed atomically in a turn and can modify
the state and behaviour of an actor.

While there exist many frameworks and languages that adopted the actor
model, Akka7 is among the most popular implementations of the actor model
[HBS73]. It enables developers to build powerful reactive, concurrent, and dis-
tributed applications on the jvm. Akka has enjoyed adoption8 by large or-
ganizations such as Paypal and LinkedIn which rely on Akka to scale their
services to the many concurrent requests of their users. Moreover, Akka received
attention in the form of books on distributed systems [KHA17,NW16] as well as
academic papers [TPLJ13,TDJ13,SPH15, IS14].

Beyond implementing the original actor model, Akka also provides additional
features such as clustering, supervision mechanisms, actor persistence, and mes-
sage delivery guarantees to facilitate the implementation of large-scale resilient
systems.

2.3.1 Actors
Akka provides a blueprint of an actor through the trait akka.actor.Actor.
Listing 2.4 shows the class Accumulator that inherits from this trait and repre-
sents a service that accumulates numbers. The trait enforces the implementation
of the method receive (line 6). This method returns a partial function that spec-
ifies the actor behaviour (i.e., how and which messages are processed). The actor
understands two types of messages: CountCommand (line 7) and String (line 10).
While the former could match multiple instance of CountCommand (e.g., different
amount), the latter will only exactly match when the value is "result".

7https://akka.io
8https://www.lightbend.com/case-studies

https://akka.io
https://www.lightbend.com/case-studies

20 CHAPTER 2. THE SCALA ECOSYSTEM

The actor mutates the state by changing the variable count to the value of
amount and sends a Confirm message back in response to the former, while it will
send the value of count to the sender in response to the latter. The ! operator is
used to send a message to an actor (e.g., line 9 and 11), while sender() returns
the actor which has sent the current message. Note that messages are sent to
location-transparent addresses represented by the type akka.actor.ActorRef
(e.g., as returned by sender()). This transparency facilitates development as it
does not matter whether the actor behind this address is local or remote. Akka
will do the necessary actions to make sure the message arrives at the destination.

1 import akka. actor . Actor
2
3 class Accumulator extends Actor {
4 var count : Int = 0
5
6 override def receive : Receive = {
7 case CountCommand (id: Long , amount : Int) =>
8 count = count + amount
9 sender () ! Confirm (id)

10 case " result " =>
11 sender () ! count
12 }
13 }

Listing 2.4: The Accumulator actor in Akka.

2.3.2 Persistent Actors
One of the problems of actors is that they lose their state when restarted or
migrated between clusters. To be resilient to restarts, Akka features persistent
actors which follow the principles of Event Sourcing [Fow05]. A command is
a message that requires the receiving actor to undertake an action. Whenever
this command is valid, the actor will persist an event and execute the action
once persisted. To reconstruct its original state, all persisted events are replayed
whenever an actor is restarted (e.g., upon a failure).

Akka provides the trait akka.persistence.PersistentActor as a blueprint
of a persistent actor. Listing 2.5 shows the class GuaranteedDeliveryActor that
implements this trait and represents a service that persists its state with event
sourcing. This trait enforces the implementation of the methods receiveCommand,
receiveRecover, and persistenceId. The method receiveCommand (line 13)
is similar to the method receive as it specifies the behaviour of the actor. The
method receiveRecover (line 18) defines how persisted events are replayed and
the method persistenceId (line 27) defines how the entity is uniquely identified
in the journal where events are persisted to and read from. To persist an event,
a developer must call persist (line 14–15) with the event to be persisted and
a callback (i.e., updateState) to be executed when the given event has been
persisted asynchronously.

2.3. THE ACTOR MODEL FRAMEWORK AKKA 21

1 import akka. actor . ActorRef
2 import akka. persistence .{ PersistentActor , AtLeastOnceDelivery }
3
4 trait Event
5 case class Plus(amount : Int)
6 case class PlusEvent (amount : Int) extends Event
7 case class ConfirmEvent (id : Long) extends Event
8 case class Confirm (id : Long)
9

10 class GuaranteedDeliveryActor (ref: ActorRef)
11 extends PersistentActor with AtLeastOnceDelivery {
12
13 override def receiveCommand : Receive = {
14 case Plus(a) => persist (PlusEvent (a))(updateState)
15 case Confirm (id) => persist (ConfirmEvent (id))(updateState)
16 }
17
18 override def receiveRecover : Receive = {
19 case e : Event => updateState (e)
20 }
21
22 def updateState (e: Event): Any = e match {
23 case PlusEvent (a) => deliver (ref.path)(id => CountCommand (id , a))
24 case ConfirmEvent (id) => confirmDelivery (id)
25 }
26
27 override def persistenceId : String = "actor -1"
28 }

Listing 2.5: A persistent actor in Akka.

2.3.3 Guaranteed Message Delivery
Recall that the expression actor ! message is used to send a message to an
actor. By default, this message is sent with at-most-once message delivery se-
mantics. This means that the message is sent only once and partial network
failures or a crashes of the receiving side might result in a loss of the mes-
sage. To be resilient to message loss, messages can be sent with at-least-once
message delivery guarantees. Akka provides a blueprint of such a mechanism
through the trait AtLeastOnceDelivery which provides the methods deliver
and confirmDelivery. The method deliver (Listing 2.5, line 23) accepts two
arguments which include the destination address of the actor and a callback.
This callback is called with a unique identifier generated by Akka and returns
the message CountCommand that has to be sent. The framework will periodically
resend this message until an acknowledgement with that identifier has been reg-
istered through a call to the method confirmDelivery with the corresponding
identifier. The actor that has to confirm a message sends a Confirm message
back with that identifier id (Listing 2.4, line 9). The handler of the receiving
actor for Confirm messages then calls method confirmDelivery to confirm the
delivery (Listing 2.5, line 24).

22 CHAPTER 2. THE SCALA ECOSYSTEM

2.3.4 The TestKit Library
Akka features the testing library TestKit9 which seamlessly integrates with
ScalaTest. It provides features such as timeout-aware assertions and means to
collect specific messages to facilitate the testing of actor systems. Listing 2.6
shows a test class that uses features of TestKit and ScalaTest to check
whether the actors from the previous sections are implemented correctly.

1 import akka. actor .{ ActorSystem , Props }
2 import akka. testkit .{ ImplicitSender , TestKit }
3 import org. scalatest .{ BeforeAndAfterAll , FlatSpecLike , Matchers }
4 import scala . concurrent . duration ._
5
6 class ExampleTest () extends TestKit (ActorSystem (" SystemUnderTest "))
7 with FlatSpecLike with ImplicitSender
8 with Matchers with BeforeAndAfterAll {
9

10 " Accumulator " must " correctly accumulate numbers " in {
11 val a = system . actorOf (Props [Accumulator], name="A")
12 val props = Props (new GuaranteedDeliveryActor (a))
13 val actor = system . actorOf (props , name="GDA")
14
15 for (i <- 1 to 10) { actor ! Plus(i) }
16 Thread . sleep (2000)
17 a ! " result "
18
19 expectMsg ((1 to 10).sum)
20 }
21
22 override def afterAll : Unit = {
23 TestKit . shutdownActorSystem (system , 5 * 60 seconds)
24 }
25 }

Listing 2.6: An integration test for both actors.
First, both actors are instantiated by calls to the method system.actorOf

(lines 12–14) with an instance of the Props class. Note that this is different to
how normal classes would be instantiated in Scala. Next, 10 Plus messages are
sent to GuaranteedDeliveryActor (line 16). After waiting for 2 seconds, the test
actor sends a message "result" to Accumulator to retrieve the total sum (line
18). The call to expectMsg (line 20) will wait by default for 3 seconds to receive a
reply. When a reply is received, it will compare its payload to the expected result
of (1 to 10).sum. Otherwise, an instance of TimeoutException is thrown.

2.4 Conclusion
This chapter presented the Scala ecosystem. First, we discussed the program-
ming language Scala and briefly summarized its features. We consider this
ecosystem a good fit for this dissertation as Scala has roots in the academic
world and has been adopted by the industry over the past years. Second, we dis-
cussed the most popular testing framework ScalaTest. This testing framework
provides different styles of testing, as well as different ways of defining fixtures.

9https://doc.akka.io/docs/akka/current/testing.html

https://doc.akka.io/docs/akka/current/testing.html

2.4. CONCLUSION 23

These features are less available in existing testing frameworks which might affect
the quality of tests. The next chapter therefore investigates the quality of tests in
the Scala ecosystem. Finally, we discussed the actor model framework Akka.
This framework provides the necessary means to build resilient and distributed
complex systems. These systems will play a role in our resilience testing approach
discussed in Chapter 6.

24 CHAPTER 2. THE SCALA ECOSYSTEM

Chapter 3

Socrates: A Static Analysis
Approach to Detecting Test
Smells

As indicated in the first chapter, the majority of tests are still manually im-
plemented. This results in tests with varying quality based on the effort and
expertise of developers. However, studies have shown that low test quality can
affect comprehensibility and maintainability in the long run. Testing frameworks
should therefore help developers with the implementation of high quality tests,
especially when they are used as input to test amplification approaches.

One way to assess test quality is by searching for so-called test smells. These
test smells are poor design choices made by developers during the implementation
of tests. Their absence should therefore indicate a high test quality. However,
developers only have a limited number of tools available which can only detect
smells in the Java ecosystem. Therefore, we explore the concept of test smells
in the Scala ecosystem.

First, Section 3.1 presents the notion of a test smell and lists our motivations
for this research by showing the negative impact of test smells. Section 3.2 then
provides an overview of existing empirical studies and discusses the current ob-
servations about test smells. As concluded from the state of the art, the majority
of the only studies detect test smells in the Java ecosystem. Next, Section 3.3
presents an overview of Socrates which is our static analysis approach to detect-
ing test smells in ScalaTest. The next chapter will use Socrates to conduct
an empirical study of test smells in the Scala ecosystem. This is followed by
Section 3.4 which describes our unique test smell detection method. Section 3.5
then provides information about the test smells including their definitions, their
transposed detection methods, and their manual refactoring methods to elimi-
nate each smell. Finally, Section 3.6 briefly discusses the usage of Socrates and
its possibilities to be extended with support for additional smells.

25

26 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

3.1 Motivation
As developers still write code manually, many poor design choices can be made
during development. Code smells [Fow18] indicate bad characteristics of the
system code, whereas test smells indicate potential problems with test code.
The seminal paper of Van Deursen et al. [vMBK01] introduces the concept of
test smells. These smells indicate poor design choices made by developers during
the implementation of test cases, tests fixtures, or even complete test suites. The
authors define a set of 11 test smells and their corresponding refactoring method.

Listing 3.1 shows a test case that exhibits a test smell related to asserting the
toString method. This particular test case suffers from the smell Sensitive
Equality as its assertion depends on the result of calling the method toString.
We provide thorough explanations and examples later in this chapter.

1 "A recipe " should "have 100 gr of Chocolate as only ingredient " in {
2 val il = List(Ingredient (" Chocolate ", 100))
3 val recipe = Recipe (" Chocolate Cookies ", il)
4 val result = " Recipe (Chocolate Cookies ,List(Ingredient (Chocolate ,100)))"
5
6 assert (recipe . toString () == result , "...")
7 }

Listing 3.1: An illustrative example of a test smell.
Our motivation to detect test smells in the Scala ecosystem is twofold and

follows from the observations of our literature study discussed in Section 3.2.

3.1.1 Limited Context Diversity and Tool Support
Our literature study indicates that most empirical research on test smells is lim-
ited to the Java ecosystem where JUnit is the most popular testing framework.
As a result, the current knowledge about test smells might be skewed. Further-
more, developers have limited access to open-source tool support to detect test
smells which leaves ample room for low-quality tests.

However, having high-quality tests should be a priority as it facilitates main-
tenance and test amplification. For example, Abdi et al. [ARD19] hint that it is
better to discard tests with low readability in the Smalltalk ecosystem before
using them as input for test amplification. This is an important motivation as
we will later amplify existing tests in Chapter 6.

3.1.2 Negative Impact on Software Aspects
Our literature study shows that test smells have a negative impact on different
aspects of the system under test, as well as the tests themselves. In total, we
found 5 publications and briefly discuss their observations.

3.2. LITERATURE STUDY 27

1. Impact on Defect Proneness. In a study of 221 releases of 10 Java
systems, Spadini et al. [SPZ+18] observed that tests with smells are more
prone to changes and defects. Moreover, when tests exhibit test smells it
also makes production code prone to defects.

2. Impact on Flakiness. In a study of 19532 JUnit tests belonging to
18 Java systems, Palomba et al. [PZ17, PZ19]1 determined that 54% of
the flaky tests can be attributed to the characteristics of the test smells.
Refactoring test smells was also determined as an effective strategy to fix
more than half of the flaky tests.

3. Impact on Maintainability. In a study of 987 JUnit classes belonging
to 25 open-source and 2 industrial Java systems, Bavota et al. [BQO+15]
determine that test smells have a strong negative impact on program com-
prehension and maintenance.

4. Impact on Production Code. From a survey with 19 Java developers,
Tufano et al. [TPB+16] concluded that test smells are not perceived as
actual design problems. In a study of 152 open-source projects belonging
to ecosystems Apache and Eclipse, the authors also found a relationship
between smells in test and production code.

Despite that these studies and surveys show the negative impact of test smells,
the majority of developers remain unaware of test smells [TPB+16]. The next
section presents the details of our literature study and was used to conclude these
observations.

3.2 Literature Study
Before investigating test smells in the Scala ecosystem, we explore the liter-
ature to identify the current knowledge about tests smells. Van Deursen et
al. [vMBK01] provides the most prominent catalogue of test smells used in the
literature. We therefore start our exploration with that seminal paper and do
not consider others such as those of Meszaros [Mes07], Garousi et al. [GK18], or
Peruma [Per18]. We explore all publications that cite the work of Van Deursen
et al. and investigate what kind of smells they investigate and in which context
this is done. Our exploration resulted in a list of 9 publications which includes
the most relevant studies. We summarize each approach with a table that con-
sists of the programming language, the testing framework, and the test smells
that were considered in the study. A summary of our literature study is provided
in the next section.

1Both papers were retracted because of an over-approximation of its results. However, the study still
presents evidence for the impact of test smells on test flakiness.

28 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

Van Rompaey et al.
Van Rompaey et al. [VRDBDR07] define metrics-based detection methods for 2
test smells: General Fixture and Eager Test. They argue that the tradi-
tional means for test quality assurance (i.e., human reviewing) is not a reliable
means for test smell detection. Their study on Java systems with tests written
in JUnit show that a metrics-based approach can be a more reliable detection
mechanism. However, they did not consider metrics for other known test smells
and indicate that the predictive power of their method is limited.

Java JUnit General Fixture, Eager Test

Table 3.1: Summary of Van Rompaey et al. [VRDBDR07]

Greiler et al.
Greiler et al. [GvS13,GZvS13] argue that there is a lack of tool support for de-
velopers to analyse and adjust test fixtures. To this end, the authors present
TestHound as a tool that provides reports on test smells and recommends
refactorings to eliminate them. The tool is able to analyse tests written in
TestNG and JUnit. Their tool is only able to find the test smell called Gen-
eral Fixture (including variants) in large Java systems. Moreover, the result
of a questionnaire with 13 developers shows that tool support is beneficial in
understanding and adjusting test fixtures. However, the scope of their work is
limited to General Fixture and it is unclear to what extent other test smells
occurred in the analysed systems.

Java JUnit, TestNG General Fixture

Table 3.2: Summary of Greiler et al. [GvS13,GZvS13]

Bavota et al.
Bavota et al. [BQO+12, BQO+15] investigate the distribution of 11 test smells
in an empirical study on Java open-source systems with tests written in JUnit.
They present the first empirical evidence highlighting that test smells occur fre-
quently. In particular, they demonstrate that 82% of the test suites were affected
by at least one test smell. However, their tool sacrifices precision by using simple
rules that overestimate the presence of test smells and the tool is not publicly
available. Besides the empirical study, they conducted an survey with 20 stu-
dents to assess the impact on software comprehension. Their results show that
the majority of test smells have a strong negative impact and show the need for
automated detection of test smells to improve software quality.

3.2. LITERATURE STUDY 29

Java JUnit

Eager Test, Lazy Test, Mystery Guest,
Assertion Roulette, General Fixture,
Sensitive Equality, Test Duplication,
Test Run War, For Testers Only,
Resource Optimism, Indirect Testing

Table 3.3: Summary of Bavota et al. [BQO+12,BQO+15]

Tufano et al.
Tufano et al. [TPB+16] investigate the perception of 5 test smells in a study with
19 developers. Their results indicate that developers lack knowledge about test
smells and highlight the need for tool support.

Similar to Bavota et al., they conduct an empirical study on 152 open-source
Java systems to analyse the presence of test smells and their association with
code smells. In particular, they use the tool of Bavota et al. [BQO+15] to detect
test smells which might overestimate the presence of test smells. The results
demonstrate that test smells are introduced upon the first commit and stay in
the system for a long time (80% is not fixed after 1000 days). Additionally, they
found several associations with code smells for the test smells Eager Test and
Assertion Roulette. These observations only amplify the need for automated
tool support, as already indicated by earlier works. One of the limitations of this
work is that they did not consider the prevalence of test smells in an empirical
study. This might have given another perspective as their data set is different
from other studies.

Java JUnit
Assertion Roulette, Eager Test,
General Fixture, Mystery Guest,
Sensitive Equality

Table 3.4: Summary of Tufano et al. [TPB+16]

Palomba et al.
Palomba et al. [PDNP+16] conducted an empirical study to understand the dis-
tribution of 8 test smells in 110 open-source Java systems. The main difference
between this study and the previous ones is that they analyse JUnit tests that
were automatically generated using EvoSuite [FA11]. Similar to Tufano et al.,
they also investigate correlations of test smells with both other test smells and
structural metrics (e.g., number of classes or lines of code). Similar to previous
works, the authors use the tool of Bavota et al. [BQO+15]. Their results confirm
what is currently known in the state of the art: a high distribution where 83%
of JUnit classes are affected by at least one test smell. Moreover, they found
that the majority of the smells have strong positive correlations with structural

30 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

characteristics such as the number of classes and their lines of code. However,
these results should be interpreted with caution as the distribution is based on
generated tests —which might not be representative for human-written tests.

Java JUnit

Eager Test, Resource Optimism,
Mystery Guest, Assertion Roulette,
General Fixture, Sensitive Equality,
Test Duplication, Test Run War,
For Testers Only, Indirect Testing

Table 3.5: Summary of Palomba et al. [PDNP+16]

Spadini et al.
Spadini et al. [SPZ+18] analysed 10 Java software systems to assess the asso-
ciation between the presence of 6 test smells and change- and defect-proneness
of both test and production code. This work is also based on the test smell de-
tection tool of Bavota et al. [BQO+15] but they did not include numbers about
test smell distributions. However, the results confirm the negative impact of test
smells on software quality attributes such as maintainability. Similar findings
were reported by Palomba et al. [PZ17]. This work demonstrates that auto-
mated test smell detection tools do not only benefit the quality of test suites, but
also the overall quality of the system as a whole.

Java JUnit
Eager Test, Resource Optimism,
Mystery Guest, Assertion Roulette,
Indirect Testing, Sensitive Equality

Table 3.6: Summary of Spadini et al. [SPZ+18]

In a recent publication, Spadini et al. [SSO+20] analysed 1489 open-source
projects to determine severity thresholds of test smells and conducted a study
with 31 developers to evaluate the thresholds. This work uses the test smell
detection tool TsDetect from Peruma [Per18] and the results therefore include
additional smells. The results indicate that their severity thresholds are in line
with how developers perceive test smells. Additionally, the participants agree
that test smells have an impact on the maintainability of a test suite.

Java JUnit

Assertion Roulette, Empty Test,
Conditional Test Logic, General Fixture,
Mystery Guest, Sleepy Test, Eager Test,
Ignored Test, Resource Optimism,
Magic Number Test, Verbose Test

Table 3.7: Summary of Spadini et al. [SSO+20]

3.2. LITERATURE STUDY 31

3.2.1 Summary
Table 3.8 summarizes our exploration of the state of the art in test smells, in-
cluding our approach at the bottom of the table. The results show that existing
studies analyse a similar set of test smells, but also that they only targeted test
smells in the Java ecosystem. On the one hand, that is because several studies
use the same tool of Bavota et al. [BQO+15]. On the other hand, the majority of
these test smells have clear definitions which makes them uniformly detectable.

G
en

er
al

F
ix

tu
re

M
ys

te
ry

G
ue

st

R
es

ou
rc

e
O

pt
im

is
m

E
ag

er
T

es
t

La
zy

T
es

t

A
ss

er
ti

on
R

ou
le

tt
e

Se
ns

it
iv

e
E

qu
al

it
y

Van Rompaey et al. [VRDBDR07] 3 3

Greiler et al. [GvS13] 3

Greiler et al. [GZvS13] 3

Bavota et al. [BQO+12] 3 3 3 3 3 3 3

Bavota et al. [BQO+15] 3 3 3 3 3 3 3

Tufano et al. [TPB+16] 3 3 3 3 3

Palomba et al. [PDNP+16] 3 3 3 3 3

Spadini et al. [SPZ+18] 3 3 3 3 3

Spadini et al. [SSO+20] 3 3 3 3 3

De Bleser et al. [DBDNDR19a] 3 3 3 3 3 3

Table 3.8: A summary of the test smells discussed in each study.

Note that we did not include the test smells Test Duplication (td), Test
Run War (trw), For Testers Only (fto), and Indirect Testing (it)
which were investigated in [BQO+12], [BQO+15], and [TPB+16] (except trw).
We excluded these because we consider td to be defined overly general, trw
to be too time-consuming to compute since there is an exponential number of
possible orderings of tests, and both fto and it to be less important smells
since we did not find them mentioned in other work. Additionally, some of these
studies (i.e., [SSO+20]) analyse test smells which were only proposed recently
and are therefore excluded from the table. We leave their static detection for
future work. The next section presents an overview of our approach to detecting
test smells in the Scala ecosystem.

32 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

3.3 Overview of the Approach
As concluded from our literature study, there is a lack of automated tool support
to detect test smells. Manually inspecting systems to find test smells is too time-
consuming and error-prone. To this end, we present Socrates: Scala Radar for
Test Smells. Socrates statically detects all test smells enumerated in Table 3.8,
except Resource Optimism which requires a dynamic analysis. We consider
this set as a good choice since they are considered by the majority of existing
studies and include the smells with the highest observed diffusion [TPB+16,
PDNP+16]. Figure 3.1 shows the architecture of Chaokka. We discuss each
step of the process in detail below.

Scala
System

ScalaTest
Test Suite

Custom
Compilation

Parsing to
AST

Linking
Classes

Test Smell
Detection

Socrates

Report

Figure 3.1: The architecture of Socrates.

In essence, Socrates works in several steps as discussed below:

1. Input. Socrates requires a Scala system and its test suite written with
the testing framework ScalaTest. Additionally, the project should use
SBT as build tool.

2. Compilation. It automatically compiles the project using the Seman-
ticDB2 compiler plugin for SBT which exposes the semantic information
maintained by the compiler (i.e., symbol and type resolution),

3. Parsing. Next, it parses the test classes to Abstract Syntax Trees (ASTs),
determines the used testing style for each test class, and collects all test
cases within the test class.

4. Linking. The detection of test smells requires knowledge of the class under
test. Therefore, we try to link the production class to each test class.

5. Detection. Finally, Socrates uses the gathered information of each test
case (i.e., syntactic and semantic information, as well as linked production
class) to detect test smells.

6. Report. The output is shown through a user interface which indicates the
absence or presence of each test smell for the collected test cases and test
classes.

2https://scalameta.org/docs/semanticdb/guide.html

3.4. SYNTACTIC AND SEMANTIC INFORMATION 33

3.4 Syntactic and Semantic Information
While state-of-the-art approaches either rely on textual of syntactical informa-
tion, Socrates also relies on semantic information such as types and symbols.
We illustrate the difference between each type of information by means of the
source code shown in Listing 3.2. This examples consists of a Scala object that
defines a main method which calls println.

1 object Test {
2 def main(args: Array [String]): Unit = {
3 println (" hello world ")
4 }
5 }

Listing 3.2: The object Test with its method main.

3.4.1 Information Extraction
First, Socrates starts by extracting syntactical information. Figure 3.2 shows
the abstract syntax tree from Listing 3.2.

1 Defn. Object (
2 Nil ,
3 Term.Name("Test"),
4 Template (
5 Nil ,
6 Nil ,
7 Self(Name(""), None),
8 List(
9 Defn.Def(

10 Nil ,
11 Term.Name("main"),
12 Nil ,
13 List(
14 List(
15 Term. Param (
16 Nil ,
17 Term.Name("args"),
18 Some(
19 Type. Apply (Type.Name(" Array "), List(Type.Name(" String ")))
20),
21 None
22)
23)
24),
25 Some(Type.Name("Unit")),
26 Term. Block (
27 List(
28 Term. Apply (
29 Term.Name(" println "),
30 List(Lit. String (" hello world "))
31)
32)
33)
34)
35)
36)
37)

Figure 3.2: The abstract syntax tree of the object Test.

34 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

This representation enables Socrates to find each part of the source code.
For example, Defn.Def (line 9) represents the syntactic definition of the method
main, while Term.Apply (line 28) represents the function application of println
on the string "hello world" (line 30). Now, let’s assume that we want to collect
all invocations of the method println. This can be done by searching for all
nodes that match the following pattern:

Term.Apply(Term.Name("println"), List(Lit.String(_)))

However, it might be that these patterns represent calls to a user-defined or
imported println method, while we only want those patterns that call the pre-
defined println method from the standard library of Scala. This is where the
semantic information comes into play. Figure 3.3 shows the generated Seman-
ticDB for the illustrative example in Listing 3.2.

1 Summary :
2 Schema => SemanticDB v4
3 Uri => Test. scala
4 Text => empty
5 Language => Scala
6 Symbols => 3 entries
7 Occurrences => 7 entries
8
9 Symbols :

10 _empty_ /Test. => final object Test extends AnyRef { +1 decls }
11 _empty_ /Test.main (). => method main(args: Array [String]): Unit
12 _empty_ /Test.main () .(args) => param args: Array [String]
13
14 Occurrences :
15 [0:7..0:11) <= _empty_ /Test.
16 [1:6..1:10) <= _empty_ /Test.main ().
17 [1:11..1:15) <= _empty_ /Test.main () .(args)
18 [1:17..1:22) => scala / Array #
19 [1:23..1:29) => scala / Predef . String #
20 [1:33..1:37) => scala /Unit#
21 [2:4..2:11) => scala / Predef . println (+1).

Figure 3.3: The SemanticDB payload of the object Test.
This document has two main sections: symbols and occurrences. We can find

the symbol of a specific AST node by looking up its position in the occurrences,
the returned value can then be looked up in the symbols section, which returns all
necessary information about the symbol3. For example, println occurs at posi-
tion [2:4..2:11) (line 21) which refers to symbol scala/Predef.println(+1).
As a result, patterns can be collected with 100% precision.

Among other things, Socrates also uses this semantic information to build
the class hierarchy of the system. To do so, it collects the type, the fully qualified
name and the parents of each class and links them together by traversing the
inheritance chain. This hierarchy will be used in the next phase to determine
which test classes inherit from a ScalaTest class.

3https://scalameta.org/docs/semanticdb/specification.html

https://scalameta.org/docs/semanticdb/specification.html

3.4. SYNTACTIC AND SEMANTIC INFORMATION 35

3.4.2 Identification of Test Classes
Socrates only analyses the necessary files and detects these by assuming that
the system follows the directory structure shown in Figure 3.4. The tool considers
all classes in src/main/scala as production classes and src/test/scala as test
classes.

1 src/
2 main/
3 resources /
4 <files to include in main jar here >
5 scala /
6 <main Scala sources >
7 java/
8 <main Java sources >
9 test/

10 resources
11 <files to include in test jar here >
12 scala /
13 <test Scala sources >
14 java/
15 <test Java sources >

Figure 3.4: The typical directory structure of system built with sbt.
Subsequently, we filter the test classes to only keep those that really represent
a test class, and not simply an auxiliary class. We use the computed class hi-
erarchy from the previous phase to check whether the test class inherits from
a class defined by ScalaTest. The tool supports the majority of the testing
styles from ScalaTest: FlatSpec, FunSuite, WordSpec, FunSpec, FreeSpec,
FeatureSpec, PropSpec, and RefSpec. The tool also checks several variants of
these styles: {s}Like, Async{s} and Async{s}Like where {s} is a style. For
example, the tool will identify the following four styles of FunSpec: FunSpec,
FunSpecLike, AsyncFunSpec and AsyncFunSpecLike.

3.4.3 Linking Test Classes to Production Classes
Some test smells such as Lazy Test and Eager Test require information about
the production class to correctly identify the smell. Our tool adopts a widely-
used naming convention to determine the link between production and test class.
The algorithm works as follows:

• let N be the fully qualified name of a test class

• determine whether N contains one of the following suffixes: Test, Tests,
TC, TestCase, Spec, Specification, Suite, Prop

• if so, extract the suffix from N and return the class with the same name
and package

• if not, then we are unable to determine the production class

36 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

For example, the suffix Tests is determined when the class ShoppingCartTests
resides in the package be.vub.soft. This results in a production class that
should exist in the package be.vub.soft and have the name ShoppingCart. We
link a production class to a test class if and only if there exists a production class
with the same name and which resides in the same package, other test classes
are discarded. The test classes that adhere to these requirements are further
analysed to determine the test cases and fixtures.

After collecting all necessary information, the final step of Socrates consists
in detecting test smells in test classes and test cases. Some smells are specific to
test classes (e.g., General Fixture), while most of them are specific to test
cases (e.g., Assertion Roulette). Each detection method uses both AST and
semantic information to detect test smells. We present the detection methods of
each of the 6 test smells in the next section.

3.5 Static Detection Methods for Test Smells
For each test smell, we transpose the original definition from Van Deursen et
al. to the context of Scala. We provide an example instance, a static detection
method, and a manual refactoring method to eliminate the smell and its negative
impact. We will describe each test smell by means of the same Ingredient and
Recipe classes shown in Listing 3.3.

1 case class Ingredient (name: String , weight : Int)
2 case class Recipe (name: String , ingredients : List[Ingredient]) {
3 def names : List[String] = ingredients .map(_.name)
4 def hasIngredients : Boolean = ingredients . nonEmpty
5 }
6 object Recipe {
7 def fromFile (file: BufferedSource): Recipe = ...
8 }

Listing 3.3: The illustrative Scala classes under test.

3.5.1 Assertion Roulette (AR)
Definition. A test case that contains more than one assertion of which at least

one does not provide a reason for assertion failure. In case the test fails, this
test smell encumbers identifying which assertion failed and the reason why.
Listing 3.4 depicts a Scala example of this test smell and its resolution.

Detection Method. The detection method for this test smell amounts to find-
ing all assertions in a test case and verifying that each assertion is provided
with an additional argument.

Refactoring. ScalaTest complements the familiar assert with the more ex-
pressive assertResult, assertThrows, cancel, assume, and fail. Each
takes the assertion’s failure explanation as an optional argument. The
framework also provides the withClue construct which uses its given pa-
rameter as the failure explanation for all of the assertions in its scope.

3.5. STATIC DETECTION METHODS FOR TEST SMELLS 37

Assertion Roulette can therefore be resolved by either (i) providing a
description or clue as an additional argument to assert and its variants,
or by (ii) wrapping the assertions inside a withClue block.

1 "A recipe with one ingredient " should "have names =List(’ Chocolate ’)" in {
2 val il = List(Ingredient (" Chocolate ", 100))
3 val recipe = Recipe (" Chocolate Cookies ", il)
4 assert (recipe . names .head == " Chocolate ")
5 assert (recipe . names .size == 1)
6 }

1 "A recipe with one ingredient " should "have names =List(’ Chocolate ’)" in {
2 val il = List(Ingredient (" Chocolate ", 100))
3 val recipe = Recipe (" Chocolate Cookies ", il)
4
5 assert (recipe . names .head == " Chocolate ",
6 s"The name of the ingredient was ${ recipe . names .head}")
7
8 withClue (s"The size of the ’names ’ was ${ recipe . names .size}") {
9 assert (recipe . names .size == 1)

10 }
11 }

Listing 3.4: An example of Assertion Roulette and its refactoring.

3.5.2 Eager Test (ET)
Definition. A test case that checks or uses more than one method of the class

under test. Since its introduction [vMBK01], this smell has been somewhat
broadly defined. It is left to interpretation which method calls count to-
wards the maximum. Either all methods invoked on the class under test
could count, or only the methods invoked on the same instance under test,
or only the methods of which the return value is eventually used within an
assertion. We have opted for the first interpretation in this study, but all
others are valid too.

Detection Method. Our method to detect this smell consists of three steps:
(i) identifying the class under test and collecting all of its methods; (ii)
collecting the set of methods called from the test case; (iii) computing the
size of the intersection of the outcomes (i) and (ii). If the intersection is
larger than 1, more than one method is being tested by the test case.

Refactoring. Splitting the test into test cases that each test a single method of
the class under test. For the example depicted in Listing 3.5, we opt to use
a fixture to avoid duplicating the recipe object in each test case.

1 "The recipe " should "have two ingredients " in {
2 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
3 val recipe = Recipe (" Cookies and Milk", il)
4 assert (recipe . hasIngredients , "...")
5 assert (recipe . names . equals (List(" Cookie ", "Milk")), "...")
6 }

38 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

1 def fixture = new {
2 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
3 val recipe = Recipe (" Cookies and Milk", il)
4 }
5
6 "The recipe " should "have two ingredients " in {
7 val f = fixture
8 assert (f. recipe . names . equals (List(" Cookie ", "Milk")), "...")
9 }

10
11 "The recipe " should "have ingredients " in {
12 val f = fixture
13 assert (f. recipe . hasIngredients , "...")
14 }

Listing 3.5: An example of Eager Test and its refactoring.

3.5.3 General Fixture (GF)
Definition. A test fixture that is too general. Ideally, test cases should use all

the fields provided by their fixture. This might be difficult to uphold when
the fixture is shared by several test cases. ScalaTest features no less than
4 different means for defining and sharing fixtures. The detection methods
and refactorings for this smell are four-fold too.

Type I - Global Fixture: Detection Method. ScalaTest has support to
define fixtures through the traits BeforeAndAfter or BeforeAndAfterEach.
These traits respectively enable providing code, as the value for a by-name
parameter to methods before or after, that must run before or after the
test or each test case of the test. This code typically initializes the fields
used within the test or test case. The detection of this smell requires three
steps: (i) identify a test class that mixes in one of these traits and calls their
before or after methods, (ii) collect the set of fields assigned in the code
provided as an argument to these methods, and (iii) determine whether a
test case of the class does not reference one of the assigned fields.

Type I - Global Fixture: Refactoring. The test cases defined in Listing 3.6
share none of the fields defined in their common fixture. This instance of
the smell can be eliminated by removing trait BeforeAndAfter from the
test class, and by demoting the fields referenced in the argument to method
before to local, immutable variables in the appropriate test case. In case
groups of test cases each use a different group of fields, and the groups
should remain together, ScalaTest supports defining a local fixture per
individual test case rather than a global fixture for the entire test class
—which can be reused as illustrated in the remainder of this section.

3.5. STATIC DETECTION METHODS FOR TEST SMELLS 39

1 class RecipeTestSuite extends FlatSpec with BeforeAndAfter {
2 var emptyRecipe : Recipe = _
3 var recipe : Recipe = _
4
5 before {
6 emptyRecipe = Recipe (" Empty ", List. empty [Ingredient])
7 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
8 recipe = Recipe (" Cookies and Milk", il)
9 }

10
11 "The recipe " should "have two ingredients " in {
12 assert (recipe . names . equals (List(" Cookie ", "Milk")), "...")
13 }
14
15 "The empty recipe " should "have no ingredients " in {
16 assert (! emptyRecipe . hasIngredients , "...")
17 }
18 }

1 class RecipeTestSuite extends FlatSpec {
2 "The recipe " should "have two ingredients " in {
3 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
4 val recipe = Recipe (" Cookies and Milk", il)
5 assert (recipe . names . equals (List(" Cookie ", "Milk")), "...")
6 }
7
8 "The empty recipe " should "have no ingredients " in {
9 val emptyRecipe = Recipe (" Empty ", List. empty [Ingredient])

10 assert (! emptyRecipe . hasIngredients , "...")
11 }
12 }

Listing 3.6: An example of General Fixture (Type I) and its refactoring.

Type II - Loan Fixture: Detection Method. So-called “loan fixture meth-
ods” are methods with a body that serves to set up and tear down fixture
objects, respectively before and after the call from their body to the func-
tion provided to them as a parameter. Method withRecipe in Listing 3.7
is such a loan fixture method, calling its parameter test on line 8 with the
fixture objects it has set up. The method itself is called from line 11 and
line 16, for the purpose of loaning the objects to the test cases defined by
its function argument on lines 12–13 and lines 17–18 respectively. Multiple
loan fixture methods can be defined in a test class, and shared with the
appropriate test cases. Despite the increase in expressiveness, this defini-
tion style is not less prone to the gf test smell. Detecting the gf smell
in fixtures defined through loan fixture methods requires: (i) collecting the
parameters of the function given as an argument for the call to the loan fix-
ture method from the test case, and (ii) checking whether every parameter
is referenced in the body of the function.

Type II - Loan Fixture: Refactoring. The fixture should be removed, in
case the test case uses none of its objects, or split into several local fix-
tures. Note the changes in the parameter and argument lists as a result
of the refactoring below, as well as the composition of two separate local
fixtures for the last test case.

40 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

1 class RecipeTestSuiteLF extends FlatSpec {
2
3 def withRecipe (test: (Recipe , Recipe) => Any) {
4 val il1 = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
5 val il2 = List(Ingredient ("Eggs", 100) , Ingredient (" Bacon ", 200))
6 val cookiesAndMilk = Recipe (" Cookies and Milk", il1)
7 val baconAndEggs = Recipe ("Eggs", il2)
8 test(cookiesAndMilk , baconAndEggs)
9 }

10
11 "The recipe " should "have 2 ingredients (Eggs , Bacon)" in withRecipe {
12 (cookiesAndMilk , baconAndEggs) =>
13 assert (baconAndEggs . names . equals (List("Eggs", " Bacon ")), "...")
14 }
15
16 "The recipe " should "have 2 ingredients " in withRecipe {
17 (cookiesAndMilk , baconAndEggs) =>
18 assert (cookiesAndMilk . ingredients .size == 2, "...")
19 }
20
21 }

1 class RecipeTestSuite extends FlatSpec {
2
3 def withCookiesAndMilk (test: (Recipe) => Any) {
4 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
5 val cookiesAndMilk = Recipe (" Cookies and Milk", il)
6 test(cookiesAndMilk)
7 }
8
9 def withBaconAndEggs (test: (Recipe) => Any) {

10 val il = List(Ingredient ("Eggs", 100) , Ingredient (" Bacon ", 200))
11 val baconAndEggs = Recipe ("Eggs", il)
12 test(baconAndEggs)
13 }
14
15 "The recipe " should "have 2 ingredients (Eggs , Bacon)" in
16 withBaconAndEggs {
17 baconAndEggs =>
18 assert (baconAndEggs . names . equals (List("Eggs", " Bacon ")), "...")
19 }
20
21 "The recipe " should "have 2 ingredients " in withCookiesAndMilk {
22 cookiesAndMilk =>
23 assert (cookiesAndMilk . ingredients .size == 2, "...")
24 }
25
26 " Different recipes " should "not be equal " in withBaconAndEggs {
27 baconAndEggs =>
28 withCookiesAndMilk { cookiesAndMilk =>
29 assert (cookiesAndMilk . equals (baconAndEggs), "...")
30 }
31 }
32
33 }

Listing 3.7: An example of General Fixture (Type II) and its
refactoring.

3.5. STATIC DETECTION METHODS FOR TEST SMELLS 41

Type III - Fixture Context: Detection Method. Fixture contexts are in-
stances of an anonymous class that mixes in at least one trait such as
RecipeFixture that provides and initializes fields for the fixture. List-
ing 3.8 uses these context at Lines 11–13 and lines 15–17. The body of
the anonymous class itself corresponds to the test case, such as the assert
expressions on lines 12 and 16. Note that multiple traits can be mixed
into the “fixture context” object (e.g., new X with Y with Z) as required
by the fixture for a specific test case. Fixtures defined in this manner, as
expressive it may be, are still prone to the gf test smell. Its detection
requires: (i) collecting the fields mixed into and provided by the “fixture
context” object, (ii) verifying whether every field is referenced in test case
(i.e., the body of the corresponding anonymous class creation expression).

Type III - Fixture Context: Refactoring. The refactoring consists of split-
ting the fixture into multiple smaller fixtures. A trait can be dedicated to
each field, rendering them easier to compose as needed for individual test
cases.

1 class RecipeTestSuiteFCO extends FlatSpec {
2
3 trait RecipeFixture {
4 val il1 = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
5 val il2 = List(Ingredient ("Eggs", 100) , Ingredient (" Bacon ", 200))
6 val cookiesAndMilk = Recipe (" Cookies and Milk", il1)
7 val baconAndEggs = Recipe ("Eggs", il2)
8 }
9

10 "The recipe " should "have two ingredients (Eggs , Bacon)"
11 in new RecipeFixture {
12 assert (baconAndEggs . names . equals (List("Eggs", " Bacon ")), "...")
13 }
14
15 "The recipe " should "have two ingredients " in new RecipeFixture {
16 assert (cookiesAndMilk . ingredients .size == 2, "...")
17 }
18 }

1 class RecipeTestSuiteFCOR extends FlatSpec {
2
3 trait BaconAndEggsRecipe {
4 val il = List(Ingredient ("Eggs", 100) , Ingredient (" Bacon ", 200))
5 val baconAndEggs = Recipe ("Eggs", il)
6 }
7
8 "The recipe " should "have two ingredients named Eggs and Bacon " in
9 new BaconAndEggsRecipe {

10 assert (baconAndEggs . names . equals (List("Eggs", " Bacon ")), "...")
11 }
12 }

Listing 3.8: An example of General Fixture (Type III) and its
refactoring.

42 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

Type IV - With Fixture: Detection Method. The traits defined in the
package org.scalatest.fixture provide another way of using fixtures.
Each of the test cases in such a class take the same fixture as parameter,
such as f on line 13 of Listing 3.9. This fixture can be set up and torn down
by overriding method withFixture in the test class, the body of which
needs to apply the method’s function parameter —which corresponds to the
executed test case— to the fixture. This definition style eliminates some
of the boilerplate involved in the “loan fixture method” style, but is only
applicable when most test cases share the same fixture. The GF smell can
manifest itself if the class defining the fixture (e.g., FixtureParam on line 3)
provides fields that are not referenced from a test case. It is convenient and
common to use the case class feature of Scala to define the fixture class,
which is the only variant we can support detecting without computationally
expensive program analyses. The detection requires: (i) finding test classes
that inherit from package org.scalatest.fixture, (ii) resolving the type
of the argument to the function called from within withFixture to its type
definition, and (iii) ensuring that all test cases within the class use the fields
provided by this case class.

Type IV - With Fixture: Refactoring. There are multiple ways to elimi-
nate this smell, but it is clear that the other definition styles such as Loan
Fixture or Fixture Context can be of help. We refer the reader back
to Listing 3.7 which shows a potential refactoring.

1 class RecipeTestSuiteWF extends fixture . FlatSpec {
2
3 case class FixtureParam (cookiesAndMilk : Recipe , baconAndEggs : Recipe)
4
5 def withFixture (test: OneArgTest): Outcome = {
6 val il1 = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
7 val il2 = List(Ingredient ("Eggs", 100) , Ingredient (" Bacon ", 200))
8 val cookiesAndMilk = Recipe (" Cookies and Milk", il1)
9 val baconAndEggs = Recipe ("Eggs", il2)

10
11 val theFixture = FixtureParam (cookiesAndMilk , baconAndEggs)
12 test(theFixture)
13 }
14
15 "The recipe " should "have two ingredients named Eggs and Bacon " in {
16 f => assert (f. baconAndEggs . names . equals (List("Eggs", " Bacon ")), "...")
17 }
18
19 "The recipe " should "have two ingredients " in { f =>
20 assert (f. cookiesAndMilk . ingredients .size == 2, "...")
21 }
22 }

Listing 3.9: An example of General Fixture (Type IV).

3.5. STATIC DETECTION METHODS FOR TEST SMELLS 43

3.5.4 Lazy Test (LT)
Definition. More than one test case that tests the same method while using

identical fixtures. This smell affects test maintainability since assertions
about one method should be in the same test case and not spread across
different ones. Like Eager Test, the original definition [vMBK01] leaves
some details to interpretation. We consider every call to the class under
test as a potential cause of Lazy Test, irrespective of whether their results
are used in an assertion.

Detection Method. A Lazy Test can be detected in three steps: (i) identify
the class under test, (ii) for each test case, collect the set of methods that
belong to that class under test, (iii) for each test case, compute the inter-
section of all other test cases. A non-empty intersection is indicative of a
method that is referred to in multiple test cases.

Refactoring. Merge the individual test cases that execute the same method
into a single one. The result is one test case per method of the class under
test, which is said to improve the traceability between production and test
code.

1 "The recipe " should "have zero ingredients " in {
2 val recipe = Recipe (" Cookies and Milk", List. empty)
3 assert (! recipe . hasIngredients ,
4 s"The number of ingredients was ${ recipe . ingredients .size}")
5 }
6
7 "The recipe " should "have two ingredients " in {
8 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
9 val recipe = Recipe (" Cookies and Milk", il)

10
11 assert (recipe . hasIngredients ,
12 s"The number of ingredients was ${ recipe . ingredients .size}")
13 }

1 "The recipe " should "zero ingredients " in {
2 val emptyRecipe = Recipe (" Cookies and Milk", List. empty)
3 val il = List(Ingredient (" Cookie ", 100) , Ingredient ("Milk", 200))
4 val recipe = Recipe (" Cookies and Milk", il)
5
6 assert (! emptyRecipe . hasIngredients ,
7 s"The number of ingredients was ${ emptyRecipe . ingredients .size}")
8
9 assert (recipe . hasIngredients ,

10 s"The number of ingredients was ${ recipe . ingredients .size}")
11 }

Listing 3.10: An example of Lazy Test and its refactoring.

44 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

3.5.5 Mystery Guest (MG)
Definition. A test case that uses external resources that are not managed by

a fixture. A drawback of this approach is that the interface to external
resources might change over time necessitating an update of the test case,
or that those resources might not be available when the test case is run,
endangering the deterministic behaviour of the test. While Resource
Optimism additionally requires the external resource to exists and be in a
correct state, we consider the smell to be a special case of Mystery Guest.
However, we do not this additional check as that path cannot always be
statically determined. Nevertheless, the following refactoring resolves the
common problem of both smells.

Detection Method. This smell can be detected by identifying test cases that
contain resource instances such as java.io.File, java.nio.file.Path,
java.io.FileInputStream, and java.net.URI, as well as factory methods
for reading files such as scala.io.Source#fromFile and methods for con-
necting to databases such as java.sql.DriverManager#getConnection.

Refactoring. Manage resources explicitly in a fixture.

1 "A recipe " should "be able to be initialized from a file" in {
2 val file = scala .io. Source . fromFile (" ingredients_recipe .txt")
3 val recipe = Recipe . fromFile (file)
4 assert (recipe . ingredients .size == 20, "...")
5 }

1 def withRecipeFile (test: BufferedSource => Any) {
2 val path = "file.txt"
3 val contents =
4 """
5 | BaconAndEggs
6 |bacon ,100
7 |eggs , 200
8 """. stripMargin
9

10 Files . write (Paths .get(path), contents . getBytes (StandardCharsets . UTF_8))
11 assume (new File(path). exists () , s"File $path did not exists ")
12 test(scala .io. Source . fromFile (path))
13 }
14
15 "A recipe " should "be able to be created from file" in withRecipeFile {
16 file =>
17 val recipe = Recipe . fromFile (file)
18 assert (recipe . ingredients .size == 20, "...")
19 }

Listing 3.11: An example of Mystery Guest and its refactoring.

3.6. IMPLEMENTATION 45

3.5.6 Sensitive Equality (SE)
Definition. A test case with an assertion that compares the state of objects

by means of their textual representation, i.e., by means of the result of
toString().

Detection Method. This smell can be detected by (i) enumerating the asser-
tions in a test case (as described in section 3.5.1) and by (ii) verifying
whether they contain or rely on a call to the toString() method.

Refactoring. Compare the members of the object states structurally instead of
relying on toString() of the wholes.

1 "A recipe " should "have as ingredient : Ingredient (’ Chocolate ’, 100)" in {
2 val il = List(Ingredient (" Chocolate ", 100))
3 val recipe = Recipe (" Chocolate Cookies ", il)
4 val result = " Recipe (Chocolate Cookies ,List(Ingredient (Chocolate ,100)))"
5 assert (recipe . toString () == result , "...")
6 }

1 "A recipe " should "have as ingredient : Ingredient (’ Chocolate ’, 100)" in {
2 val il = List(Ingredient (" Chocolate ", 100))
3 val recipe = Recipe (" Chocolate Cookies ", il)
4 assert (recipe . ingredients == List(Ingredient (" Chocolate ", 100)), "...")
5 }

Listing 3.12: An example of Sensitive Equality and its refactoring.

3.6 Implementation
We briefly discuss the usage and the possibilities to extend Socrates with sup-
port for additional smells as it could be used as a foundation for further research.

3.6.1 Usage
Socrates is available as an IntelliJ IDEA plugin that can be downloaded
from Github4. The plugin must be installed before it can be used within a
project. Figure 3.5 shows the options that can be used to configure the process.

The first option specifies the location of the rt.jar. This is needed to build
the SemanticDB of the Scala standard library. The second option is the
location of the ivy2 cache. This folder contains all of external dependencies which
are required to successfully compile the project. These jar files are required
to build the SemanticDB. Multiple folders can be separated by colons (e.g.,
path1:path2). The third option specifies the location of the SBT binary. This is
required as Socrates will execute a SBT task that activates a compiler plugin
in the background. The final option enables the developer to specify custom

4https://github.com/jonas-db/socrates

https://github.com/jonas-db/socrates

46 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

Figure 3.5: The required options to execute Socrates.

SBT options. By default, this includes an increased memory allocation because
building the SemanticDB for a project can require a significant amount of
memory. An example output of Socrates is shown in Figure 3.6.

Figure 3.6: An overview of test smells reported by Socrates.

The active tab displayed in the figure reports the test smells related to test
cases, while the other tab reports on the test smells Global Fixture and
Eager Test related to test classes only. The results can be sorted by column
and filtered to quickly investigate whether a given test class or test case exhibits
a particular test smell.

3.6.2 Extension
Next to providing Socrates as an IntelliJ IDEA plugin, we also provide it
as an open-source project on Github. This to facilitate further research as our
literature study indicated a lack of open-source tool support. For that reason,
we implemented Socrates from the bottom up to be extensible.

3.6. IMPLEMENTATION 47

3.6.2.1 Compilation

Every project must be compiled with a SBT compiler plugin5. This plugin inserts
dependencies and compilation options to generate the SemanticDB. All of this
happens in the background by executing the command sbt semanticdb.

3.6.2.2 Identifying Test Cases

One should be able to implement their own test case identification strategies to
detect a different testing style or framework, as well as their own test smell detec-
tion strategies to detect new smells. Listing 3.13 shows the class that a developer
should implement to identify test cases, while Listing 3.14 shows an implemen-
tation of this class to detect test cases that use the testing style FunSuite.

1 abstract class Explorable {
2 def explore (ast: Tree , document : TextDocument): List[ScalaTestCase]
3 }

Listing 3.13: The class Explorable.

1 object FunSuite extends Explorable {
2
3 def explore (ast: Tree , d: TextDocument): List[ScalaTestCase] =
4 ast. collect ({
5 case t@Term. Apply (
6 Term. Apply (Term.Name("test"),
7 Lit. String (_) :: _),
8 p) =>
9 val paramFixtures , loanFixtures , fixtureContexts = ...

10 ScalaTestCase (t, d, paramFixtures , loanFixtures , fixtureContexts)
11 })
12 }

Listing 3.14: An implementation of the class Explorable.

3.6.2.3 Identifying Test Smells

Listing 3.15 shows the classes that a developer can implement to detect new
test smells. The class TestClassTestSmell and TestCaseTestSmell is used to
detect smells in test classes and test cases respectively. Listing 3.16 shows the
implementation of Sensitive Equality. We refer the reader to the implemen-
tation for more information and examples.

1 abstract class TestClassTestSmell extends TestSmell {
2 def verify (ts: ScalaTestClass , pdb: ProjectDatabase): Boolean
3 }
4
5 abstract class TestCaseTestSmell extends TestSmell {
6 def verify (
7 tc: ScalaTestCase ,
8 ts: ScalaTestClass ,
9 pdb: ProjectDatabase): Boolean

10 }

Listing 3.15: The classes TestClassTestSmell and TestCaseTestSmell.

5https://gist.github.com/olafurpg/a74404dfee6b3da03892af17357074d9

48 CHAPTER 3. SOCRATES: DETECTING TEST SMELLS

1 object SensitiveEquality extends TestCaseTestSmell {
2
3 val assertions : PartialFunction [Tree , Tree] = {
4 case a@Term. Apply (Term.Name(t), _) if t. equals (" assert ") => a
5 case a@Term. Apply (Term.Name(t), _) if t. equals (" assertResult ") => a
6 case a@Term. Apply (Term.Name(t), _) if t. equals (" assume ") => a
7 case a@Term. Apply (Term.Name(t), _) if t. equals (" cancel ") => a
8 case a@Term. Apply (Term.Name(t), _) if t. equals ("fail") => a
9 }

10
11 def hasToString (tree: Tree): Boolean = {
12 tree. collect ({
13 case t@Term. Select (_, Term.Name(" toString ")) => t
14 }). nonEmpty
15 }
16
17 override def verify (
18 testCase : ScalaTestCase ,
19 testSuite : ScalaTestClass ,
20 pdb: ProjectDatabase): Boolean = {
21 testCase .ast. collect (assertions). exists (a => hasToString (a))
22 }
23
24 override val description : String = " SensitiveEquality "
25 }

Listing 3.16: An implementation of the class TestCaseTestSmell.

3.7 Conclusion
This chapter presented our static analysis approach to detecting test smells. We
started by defining the concept of test smells. Next, we presented our literature
study and its three key observations which we used as our motivation for this
research. First, the majority of the studies are based on systems in the Java
ecosystem where the testing framework JUnit is the most prominent. Second,
tests smells can have severe impact on multiple software aspects. Finally, de-
velopers have limited tool support which leaves ample room for low quality test
suites. Based on these observations, we therefore proposed Chaokka to detect
test smells in the Scala ecosystem. We explained our unique approach that
uses both syntactic and semantic information. Additionally, we transposed test
smell definitions to the Scala ecosystem and provided both a static detection
and refactoring method. Finally, we explained several details on the implemen-
tation. In the next chapter, we will use Socrates to empirically investigate the
prevalence of test smells in the Scala ecosystem.

Chapter 4

Empirical Study on Test
Smells in the Scala
Ecosystem

In the previous chapter, we observed that most empirical research on test smells
focuses on the Java ecosystem where JUnit is the most prominently used testing
framework. This might have skewed the current understanding of test smells.
This chapter therefore presents two studies that aim to broaden the existing
knowledge about test smells. For each study, we provide details about the design,
the studies, and the results.

First, Section 4.1 discusses the knowledge of Scala developers about test
smells. We conduct a survey to investigate whether developers can identified test
smells. Similar to previous studies, we conclude that the majority of developers
are not aware of test smells. Next, Section 4.2 presents an empirical study on
the diffusion of test smells. We analyse the test suites of 164 Scala systems
from Github. Our results indicate a lower diffusion of test smells in the Scala
ecosystem. Finally, we conclude this research on test smells by discussing our
observations.

49

50 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

4.1 Perception of Test Smells
This section reports on the first study where we assess whether developers are
aware of test smells in the Scala ecosystem. Section 4.1.1 briefly highlights
our motivations for this study. Section 4.1.2 presents the design of the study,
while Section 4.1.3 discusses the results. Similar to studies in the context of the
Java ecosystem, our results indicate that developers are not completely aware of
test smells in the Scala ecosystem. On average, we find that only 5 out of 14
developers are able to identify existing instances of each test smell.

4.1.1 Motivations
Based on our exploration of the state of the art, we are only aware of four studies
that surveyed developers about test smells. We briefly discuss them to explain
our motivation for our survey.

Bavota et al. [BQO+15] complement the aforementioned diffusion re-
sults with a survey involving 61 participants ranging from students to
professional developers. However, their main aim was not to assess the
participants’ perception of test smells, but to verify the impact of JUnit
smells on software maintenance. The results of the user study show that
test smells negatively impact program comprehension during maintenance
activities.

Greiler et al. [GvS13] conducted a study on smells related to fixtures
in JUnit and TestNG tests and surveyed 13 professionals. The results
show that developers recognize that fixture-related smells are problematic
and agree that they impact test maintenance negatively. However, it is not
clear whether developers would be able to recognize the smells without the
detection tool used in the study.

Tufano et al. [TPB+16] investigated developers’ perception of JUnit
test smells in a survey among 19 participants. Their study considers the
same test smells, except for the omission of Lazy Test, and found that
developers do not really perceive test smells as actual design problems (only
in 17% of the cases) and are even less capable of identifying them precisely
(only in 2% of the cases) without tool support.

Spadini et al. [SSO+20] analysed 1489 open-source projects to determine
severity thresholds for test smells and conducted a study with 31 developers
to evaluate their thresholds. The results shows that their severity thresholds
are in line with the participants’ perception of how test smells impact the
maintainability of tests.

4.1. PERCEPTION OF TEST SMELLS 51

It is clear that these studies are conducted in the context of Java and JUnit
with tests stemming from real-world systems. Therefore, we want to investigate
the developers’ perception of test smells in the context of Scala and ScalaTest
with artificial tests. Our results should give us a broader view on the awareness
of developers about test smells. Additionally, we are interested to see whether
the results of our survey align with those observed in existing surveys.

4.1.2 Design
We conduct a survey with 14 Scala developers to understand the knowledge
of developers about test smells. In particular, we assess whether developers
perceive test smells (i.e., assume or know something is wrong) and whether they
can identify the corresponding cause (i.e., explain the problem). This survey
provides insights for researchers because our study broadens the knowledge of
test smells in a different ecosystem and for developers of testing tools because we
open-source our implementation of Socrates. Educators of software quality can
use our results to see whether there is a need for education and training on test
smells. In particular, this study aims to answer the following research question:

• RQ1: To what extent do developers perceive and identify tests smells in the
Scala ecosystem?

4.1.2.1 Survey

We invite members of Scala meet-up groups1 to participate in our survey. This
ensures that we have a representative sample of experienced and enthusiastic
Scala developers. The purpose of the survey and the concept of a test smell
are explained to the participant at the beginning of the survey. The questions
of this survey are based on the test smells and their illustrative examples from
Section 3.5. We provide a unit test that exhibits a particular smell for each
question, without providing any additional information about the design issue.
Each participant has to indicate whether he or she perceives the test smell and
has to motivate their answer through the following questions:

• Does this unit test exhibit a test smell according to your experience?

• If yes, indicate which piece(s) of code and/or which reasons might cause
this test smell. If no, leave blank.

The survey is hosted on Google Forms and is designed to be completed in
approximately 20 minutes.

1https://www.meetup.com

52 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

4.1.2.2 Set of Data

In summary, we collected answers from 14 developers that were willing to partic-
ipate in our survey and were collected over a time span of 2 weeks. The majority
of the developers (10 out of 14) work on industrial systems and the remaining (4
out 14) work on open-source systems. These systems range from 10K to 100K
lines of code. Furthermore, 13 participants have more than 5 years of experience
developing in Scala, while 10 have more than 10 years of experience. More-
over, 11 out of 14 participants consider themselves experienced in the domain
of software testing. Their experience is also reflected by the diversity of used
testing frameworks: ScalaTest (79%), ScalaCheck (50%), Specs2 (43%),
and JUnit (21%).

4.1.2.3 Studies

Our first study addresses RQ1 by conducting Study1. This study is based on
the set of data discussed in Section 4.1.2.2.

Study1: We analyse the answers of the survey in a quantitative and quali-
tative manner to determine the knowledge of Scala developers about test
smells.

4.1.3 Results
Figure 4.1 shows the results of this survey in a quantitative manner. In particular,
the plot shows the following:

• The number of cases in which test smells have been perceived by partic-
ipants. A test smell is perceived whenever the participant answered yes
to the question: "Does this unit test exhibit a test smell according to your
experience?".

• The number of cases in which test smells have been identified by the partic-
ipants. A test smell is identified whenever the given explanation correctly
pinpoints the cause of the test smell. The explanations are collected from
the question: "If yes, indicate which piece(s) of code and/or which reasons
might cause this test smell. If no, leave blank.".

A test smell can only be identified when it has been perceived by the partic-
ipant. Arguably, the answers to the first question might have been biased which
is why we consider the answers to the second question as truth. The number
of developers that perceived the test smells is the combination of both numbers.
For example, Assertion Roulette (ar) has been perceived 9 times in total,
but only identified twice. This means that the 7 other participants incorrectly
identified the smell and that 3 participants out of the 14 simply did not perceive
this smell.

4.1. PERCEPTION OF TEST SMELLS 53

7

2

6

3

3

6

5

7

4

6

3

7

11

2

5

2

11

0

5

10

AR ET

GF −
 Ty

pe
 I

GF −
 Ty

pe
 II

GF −
 Ty

pe
 II

I

GF −
 Ty

pe
 IV LT M

G SE

Test Smells

P
ar

tic
ip

an
ts

Perceived + Identified Perceived + Unidentified

Figure 4.1: Absolute number of participants that perceived and identified the
smells.

This plot shows that the test smells Sensitive Equality, General Fix-
ture, and Mystery Guest are the most identified, while no developer was able
to identify Lazy Test correctly. On average, only 5 out of 14 (36%) developers
are able to explain the cause of these smells. This shows that developers are not
able to correctly identify most of the smells, even though they perceive a design
issue. We discuss the results of each test smell in a qualitative manner below.

Assertion Roulette. This smell was perceived by 9 out of 14 participants.
However, only 2 of them identified the problem of the test having mul-
tiple assertions without a failure explanation (e.g., [...] several assertions
within same test case). Indeed, contemporary integrated development en-
vironments (IDE) and test runners are able to pinpoint the failed assertion
in the code and might be able to generate a simple error message based
on the expressions in the assertion. This mitigates the potential negative
impact of the smell on maintenance and comprehensibility.

54 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

Moreover, ScalaTest provides a more advanced domain-specific language
to write assertions in a more readable and human-friendly way such as
string should startWith regex "Hel*o". The framework does not take
an explicit failure explanation as argument but rather generates one itself
based on the other operators in the sentence. These reasons might ex-
plain the low number of participants that are able to identify Assertion
Roulette. It also raises questions about whether Assertion Roulette
should still be considered a test smell.

General Fixture. On average, we observe that 10 out of 14 participants per-
ceive each of the four variants and that 7 out of 14 participants are able to
correctly identify the cause of these smells. It emerges that developers are
well aware of the correct usage of fixtures, as confirmed by several detailed
explanations of the participants such as: "Two different test cases use the
same fixture that is badly tailored for each. Each test case should have
specific data made for it, reusing test data should remove code duplication
when needed, in this case it’s coupling the scenarios for no reason" and
"unused fixtures in tests, plus in this case because each fixture is only used
in one test you’re paying a readability penalty for nothing".

Eager Test. The smell Eager Test is perceived by 9 out of 14 participants,
but only 3 of them are able to correctly identify the cause of this smell.
In these cases, the explanations are very short and to the point, such as
"Should only test one thing, and [...]". As mentioned in Section 3.5, this
smell has some ambiguity. For some developers, it might not be a problem
to assert multiple fields or methods if they belong to the same object.

Mystery Guest. Half of the 14 participants perceive that the unit test exhib-
ited an instance of Mystery Guest. 5 of these 7 developers identify the
problem with external resources. For example, one participant said "[...]
instead of a file would have simplified testing to avoid using external re-
sources, there are also alternatives to generate tmp files for the test case,
so that the file content and the test checks are easier to keep in sync").
Despite fixtures with assumptions being the preferred approach to set up
external resources, nobody mentioned this as a solution. This solution can-
cels tests whenever the fixture was not correctly initialized instead of being
executed and ultimately failing.

Sensitive Equality. The majority of the participants (11 out of 14) perceive
and correctly identify the smell Sensitive Equality. Their explanations
are all very similar and correctly pinpoint the problem, namely the use of
toString in an assertion: "Testing ‘toString‘ to check for behaviour is easily
broken. Adding parameters to the class or renaming it would immediately
break the test.". These explanations reflect the high awareness of this smell.

4.1. PERCEPTION OF TEST SMELLS 55

Lazy Test. 11 out of 14 participants perceived this smell, but none was able to
identify it correctly. It looks like many developers are simply not aware
of this smell, or do not consider this to be a smell at all. We were not
able to pinpoint the exact reason due to a lack of convincing answers.
Surprisingly, multiple participants remarked an inconsistency between the
description and the purpose of the test: "Should only test one thing, and
description should match assertion, "[...] Moreover, the description doesn’t
match the test: just verifying that [...], and "The tests description does not
match the assertions" The inclusion of this inconsistency was unintentional,
yet several developers perceive this as a smell which might indicate that
developers heavily rely on the descriptions of a test to understand its pur-
pose. This can also be related to ScalaTest itself and its different testing
styles. They might encourage developers to describe their tests in a more
natural way. This is in contrast to JUnit which only recently provides the
@DisplayName annotation to describe their tests.

RQ1 Summary

The most identified test smells are Sensitive Equality, General Fix-
ture, and Mystery Guest, while no developer was able to identify Lazy
Test correctly. Only 5 out of 14 (36%) developers are able to explain the
cause of these smells. This aligns with the current knowledge that the ma-
jority of developers are not aware of test smells (e.g., [TPB+16]).

4.1.4 Threats to Validity
We identify several threats that might influence the validity of our results and
conclusions. In general, replications of the survey with a larger number of par-
ticipants, a larger set of test smells, and more realistic test cases are desirable.

First, we identify the artificial nature of the test cases used in the survey as
a threat. They might not reflect real and complex test cases which exhibit test
smells. We opted for such examples so that developers can focus on the design
issues of the tests without the need for long training sessions about the system
under test.

Second, we are also aware that only showing examples of tests that exhibit
a smell, along with its name, could have biased the participants. However, the
impact is limited to the perception results only as participants had to give a
correct explanation for the identification results. In the end, our results are
similar to those observed in previous studies (e.g., [TPB+16], [GvS13]).

Finally, the population of participants might have influenced the results. We
were able to interview 14 Scala developers that work on open-source and indus-
trial software systems, similar to the study by Tufano et al. [TPB+16]. While our
aim was to get a representative population, we were limited to gather participants
through mouth-to-mouth advertisement at Scala meetings and workshops.

56 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

4.2 Diffusion of Test Smells
This section reports on the study concerning the diffusion of test smells in the
Scala ecosystem. Section 4.2.1 presents the design of the study, while Sec-
tion 4.2.2 discusses the results. The results hint that test smells have a low
diffusion across test classes in the Scala ecosystem — with Lazy Test, Eager
Test, and Assertion Roulette as the most prevalent ones.

4.2.1 Design
We conduct an empirical study on a set of 164 open-source systems collected
from Github to understand the diffusion of test smells in the Scala ecosystem.
We apply our detection methods from Section 3.5 to detect six smells. In general,
we aim to understand to what extent test smells are diffused in the context of
Scala ecosystem and its testing framework ScalaTest. Therefore, this study
benefits both researchers (i.e., context diversity) and developers of testing tools
(i.e., are tools able to detect test smells and to what extent). In particular, this
study aims to answer the following research questions:

• RQ2: To what extent are test smells spread in the Scala ecosystem?

• RQ3: Which test smells occur more frequently in the Scala ecosystem?

4.2.1.1 Data Set

To define our set of open-source Scala systems, we start by collecting all Scala
repositories that were created on Github between January 2010 and July 2018
through the Github API. This results in an initial set of 72, 619 systems. Next,
we apply a selection process that discards projects that: (i) lack test classes, (ii)
do not use SBT for build automation, or (iii) are outdated and no longer compile.

0 2000 4000 6000

Test Classes

F
ra

m
ew

or
k

Framework ScalaCheck JUnit Specs2 ScalaTest

Figure 4.2: The usage of testing frameworks in the Scala ecosystem.

4.2. DIFFUSION OF TEST SMELLS 57

After this selection phase, 2, 920 projects remain on which we conduct a
preliminary analysis to assess which testing frameworks are the most preva-
lent. Figure 4.2 shows the resulting usage distribution of ScalaTest, Specs2,
ScalaCheck and JUnit. It is apparent that ScalaTest is the most used
testing framework, while the popular JUnit framework is barely used, despite
the interoperability of Java and Scala. Given that ScalaTest is the most
prominent testing framework in the Scala ecosystem, we further reduce our
set to only those systems that use ScalaTest. Additionally, we filter out low-
quality systems that have less than 1, 000 lines of code in both production and
test code. The resulting set consists of 164 systems. The collection and filtering
was executed on an Ubuntu 18.04.3 instance with 252GB of RAM and 8 Intel(R)
Xeon(R) CPU E5-2637 v3 @ 3.50GHz with Hyper-Threading enabled. Table 4.1
summarizes several characteristics of these systems. Numbers are rounded to the
nearest whole.

1st Quartile Mean Median 3rd Quartile Total
of Production Files 26 75 48 86 12,266
of Test Files 14 36 21 42 5,841
of Production LOC 2,107 7,236 3,718 6,740 1,186,708
of Test LOC 1,400 3,958 1,960 4,033 649,172
of Test Classes 10 30 16 31 4,914
of Test Cases 50 150 85 185 24,578

Table 4.1: The data set and its characteristics used in our empirical study.

As indicated previously, ScalaTest offers a wide range of testing styles. Ta-
ble 4.2 summarizes the usage of each testing style in ScalaTest. Percentages are
rounded to the nearest whole. We found FlatSpec, FunSuite, and WordSpec to
be among the most popular styles. Their popularity might be explained by their
similarity to xUnit testing frameworks. Additionally, these styles are presented
first in the documentation of ScalaTest.
FlatSpec FunSuite WordSpec FunSpec FreeSpec FeatureSpec PropSpec RefSpec

46% 27% 11% 11% 4% 1% 1% 0%

Table 4.2: The usage of testing styles in the Scala ecosystem.

4.2.1.2 Tool

We use our tool Socrates for the studies. With respect to existing tools,
Socrates does not only use syntactic information from the abstract syntax
trees, but also semantic information such as types and symbols. This should
improve the precision with which test smells are detected, but might come at the
expense of recall. Therefore, we manually investigate the precision and recall of
Socrates by validating a statistically significant sample of the tests with a con-
fidence level of 95% and a confidence interval of 5%. Precision measures whether
the detected smells are indeed smells, while the recall measures how many test
smells were not found by the tool.

58 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

The process involved two of the authors of [DBDNDR19a] which inspected
377 test cases to determine whether our tool correctly identified the smells in each
test case or not. Disagreements during the validation were resolved by carefully
checking both the code snippet and the test smell definitions. Table 4.3 shows
the results of this manual validation. The precision and recall of Socrates for
each test smell. The complete results are available in our appendix2.

Test Smell Precision Recall
Assertion Roulette 100% 100%
Eager Test 96% 66%
General Fixture - Type I 97% 97%
General Fixture - Type II - -
General Fixture - Type III 100% 89%
General Fixture - Type IV - -
Lazy Test 99% 75%
Mystery Guest 100% 100%
Sensitive Equality 100% 100%

Table 4.3: The precision and recall of Socrates for each test smell.

On average, Socrates achieves a high precision of 99% and modest recall
of 90%. Our sample did not contain any test cases that exhibit type I and type
II of General Fixture. These values are similar to state-of-the-art tools of
previous empirical studies. For instance, the tool of Palomba et al. [PDNP+16]
achieved a precision of 88% and a recall of 100%. Therefore, we deem Socrates
sufficiently suitable for our studies.

4.2.1.3 Studies

We address RQ2 and RQ3 by conducting Study2 and Study3 respectively.
These studies use the data set discussed in Section 4.2.1.1.

Study2: We compute the number of systems and test classes that exhibit
at least one of the six test smells.

Study3: We compute the percentage of systems, test classes, and test cases
that exhibit at least one instance of a particular smell.

4.2.2 Results
We discuss the systems and test classes that have at least one of the six test
smells (RQ2) in Section 4.2.2.1, while Section 4.2.2.2 discusses foreach system,
test class, and test case whether it contains a specific test smell (RQ3).

2https://figshare.com/articles/Assessing_Diffusion_and_Perception_of_Test_Smells_in_Scala_Projects/7836332

https://figshare.com/articles/Assessing_Diffusion_and_Perception_of_Test_Smells_in_Scala_Projects/7836332

4.2. DIFFUSION OF TEST SMELLS 59

4.2.2.1 Study2: At Least One Test Smell

We compute the number of systems and classes that exhibit at least one of the
six test smells. We computed that 138 out of 164 (84%) systems and 1, 381 out
of 4, 914 (28%) test classes are affected by at least one test smell. These numbers
differ from those found by studies that assess test smell diffusion in the Java
ecosystem. Additionally, we briefly compare our results to the work of Bavota
et al. [BQO+15,PDNP+16] where the authors investigated the diffusion of test
smells in 27 Java open-source systems. They found that 82% of the test classes
is affected by at least one test smell. This is significantly higher than the 28% of
test classes among the 164 Scala systems. While the studies differ in numbers,
they tend to agree on which test smells are the most prevalent. Figure 4.3 shows
the percentage of test classes affected by each test smell.

0

20

40

60

Ass
er

tio
n

Rou
let

te

Eag
er

 Te
st

Gen
er

al
Fixt

ur
e

La
zy

 Te
st

M
ys

te
ry

 G
ue

st

Sen
sit

ive
 E

qu
ali

ty

Test Smell

P
er

ce
nt

ag
e

of
 A

ffe
ct

ed
 C

la
ss

es

Ecosystem

Java

Scala

Figure 4.3: The mean percentage of test classes that are affected by a test smell.

It is clear from the plot that the ranking of each smell is similar across ecosys-
tems, despite the difference in absolute numbers. Moreover, the studies do agree
on Assertion Roulette, Eager Test, and General Fixture as the three
most prevalent test smells when Test Code Duplication is discarded as the
second most present test smell.

60 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

However, it is important to note that these findings are indicative and might
not be compared in absolute numbers for several reasons: the set of systems is
different; the languages differ; the number of tests smells differ; and different
detection tools were used. Nevertheless, we list several plausible reasons for this
difference. We believe this can provide insights for further research on test smells
across different ecosystems.

First, the authors included Test Code Duplication and Indirect Test-
ing as tests smells, affecting 35% and 11% of the test classes respectively. Given
that code duplication is a general design smell and occurs in about 1 out of 3
classes, it is likely that this test smell has contributed to the high diffusion. The
same applies for indirect testing, but to a lesser extent. Secondly, the authors
state that their detection tool uses very simple detection rules that overestimate
the presence of test smells in the code. Despite their modest precision, it might
have influenced the projects and test classes that exhibit at least one test smell.

Second, an explanation for the lower diffusion of Eager Test might be that
fields are by default public in Scala, and that its syntax enables protecting these
fields at a later point in time by true accessor methods (i.e., that do not directly
return or set the value of the field) without having to substitute method calls
for field accesses.3 For the JUnit study, calls to accessor methods —including
those returning or setting the field’s value directly— still count towards those
considered in the Eager Test (and Lazy Test) detection rule. We recommend
researchers to exclude them instead.

Next, an explanation for the lower diffusion of Assertion Roulette among
the ScalaTest classes might be that the framework features a popular DSL
for specifying assertions as should-based sentences. For example, developers
can specify X should contain Y or a [Exception] should be thrownBy for
which the framework does not take an explicit failure explanation message as
argument but rather generates one itself based on the other operators in the
sentence. Our analysis therefore does not consider them as an assertion without
explanation. Such a DSL might not be as popular or comprehensive for JUnit,
but we recommend their use from the perspective of co-evolution of assertion and
explanation.

Finally, JUnit does not provide limited means for defining fine-grained fix-
tures. This might have influenced developers to make more mistakes, resulting
in a higher diffusion of General Fixture. Since fixtures play an important
role in test suites, and therefore occur often, it might have contributed to the
higher diffusion across test classes and systems. We therefore recommend that
unit testing frameworks include features that support the fine-grained definition
and sharing of case-specific fixtures, and that developers use them. These fix-
tures do not only make tests more maintainable, they also avoid code duplication
across test cases.

3A pair of getter field and setter field_= methods can be defined so that existing field read and writes
become calls to the appropriate method.

4.2. DIFFUSION OF TEST SMELLS 61

RQ2 Summary

The Scala ecosystem has a high number (84%) of systems that are affected
by at least one test smell, but only few (28%) of their test classes exhibit
them. Compared to the Java ecosystem, we conclude that the diffusion of
test smells is lower in the Scala ecosystem. Nevertheless, we observe a
similar trend in the diffusion of each test smell across these ecosystems.

4.2.2.2 Study3: At Least One of Each Test Smell

Figure 4.4 shows the diffusion of each test smell in the Scala ecosystem, while
Table 4.4 shows the percentage of systems, test classes, and test cases that exhibit
at least one instance of a particular smell. Percentages are rounded to the nearest
whole. We discuss each test smell in detail.

0

25

50

75

100

Ass
er

tio
n

Rou
let

te

Eag
er

 Te
st

Gen
er

al
Fixt

ur
e

(I)

Gen
er

al
Fixt

ur
e

(II
)

Gen
er

al
Fixt

ur
e

(II
I)

Gen
er

al
Fixt

ur
e

(IV
)

La
zy

 Te
st

M
ys

te
ry

 G
ue

st

Sen
sit

ive
 E

qu
ali

ty

Test Smell

P
er

ce
nt

ag
e

of
 A

ffe
ct

ed
 C

la
ss

es

Figure 4.4: The diffusion of test smells in test classes across Scala systems.

Assertion Roulette. Assertion Roulette occurs in almost half of projects
(45%) and in 16% of the test classes.

General Fixture. We go into more detail for fixtures as they are an impor-
tant and advanced feature of ScalaTest (cf. Section 3.5.3). General
Fixture occurs in about 1 out of 4 projects (27%) and in 3% of the test
classes. Note that these results are the sum of the four types of General
Fixture. In contrast to JUnit, where the fixture of a test class applies
to all of its test cases by default, traits and first-class functions in Scala
enable ScalaTest to support fine-grained fixture definitions.

62 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

Test Smell % per System % per Test Class % per Test Case
Assertion Roulette 45% 16% 13%
Eager Test 52% 7% 6%
General Fixture - Type I 10% 1% 1%
General Fixture - Type II 5% 0% 0%
General Fixture - Type III 10% 2% 2%
General Fixture - Type IV 2% 0% 0%
Lazy Test 62% 11% 23%
Mystery Guest 16% 2% 1%
Sensitive Equality 13% 3% 1%

Table 4.4: The percentage of systems, test classes, and test cases exhibiting the
different test smells.

Table 4.5 shows the distribution of each test fixture definition style. Per-
centages are rounded to the nearest whole. We observe that the majority
(i.e., 79%) of the tests use type I and type III, followed by type II (17%)
and type IV (4%). About 49% (i.e., type I and type IV) use a fixture that
applies to the whole test class which indicates that fine-grained fixtures are
indeed used.

Type I - Global Type II - Loan Method Type III - Context Object Type IV - With
45% 17% 34% 4%

Table 4.5: The distribution of each test fixture definition style.

Eager Test. Eager Test occurs in about 1 out of 2 projects (52%), but only
in 7% of the test classes. The results show that Eager Test does not
frequently occur in multiple test classes, but rather in few test classes in
half of the projects.

Mystery Guest. Mystery Guest is present in about 1 out of 7 (16%) projects,
but in only 2% of all test classes. It is not surprising that only few test
classes exhibit this smell as tests occasionally use external resources.

Sensitive Equality. Sensitive Equality is present in 13% and 3% of the
projects and test classes respectively.

Lazy Test. Lazy Test occurs in almost 2 out of 3 projects (62%), or in 11%
of the test classes. A plausible explanation for this high occurrence is the
fact that developers are not aware of this smell as found in Section 4.1.3.
Additionally, our tool does not take into account nested tests which is a
feature of ScalaTest to reduce boilerplate. We made this design decision
as it greatly simplified the detection of this smell. As a result, Socrates
considers nested test cases to be lazy and this might have impacted the
high diffusion of this smell. Indeed, from a manual inspection of several
systems we found that our results over-approximate the diffusion of Lazy
Test when nesting is incorporated.

4.2. DIFFUSION OF TEST SMELLS 63

RQ3 Summary

In the Scala ecosystem, Lazy Test (62%), Eager Test (52%), and As-
sertion Roulette (45%) are the three most prevalent test smells, while
General Fixture (27%), Mystery Guest (16%), and Sensitive Equal-
ity (13%) are the least prevalent.

4.2.3 Threats to Validity
We identify several threats that might impact the validity of the results of the
our study. First, the set of 164 systems is only a subset of the many open-
source Scala systems publicly available. We considered several criteria to select
these systems such as the size of the system and test suite (i.e., +1, 000 lines of
code), the build automation (i.e., sbt v0.13+), and the relevance (i.e., Scala
v2.11+), and its testing framework (i.e., ScalaTest). These systems might
not be representative for real industrial software systems. Second, we detect test
smells by means of Socrates which is implemented entirely from the bottom up
by ourselves. Its precision and recall are thus major factors in the validity of our
results. Therefore, we manually validated the output of Socrates on a sample
of test cases in Section 4.2.1.2 and concluded that we achieve numbers similar
to state-of-the-art tools [BQO+12, PDNP+16]. Third, some definitions of test
smells leave details open to interpretation. We discuss our strict detection rules
in Section 3.5 and used these throughout the whole study. However, these might
differ from the rules used in the studies by Bavota et al. [BQO+12,BQO+15]
to which we compare some of our results. Unfortunately, their tool is not open-
source so we cannot discuss the similarities or differences in detail. Moreover, our
tool incorporates semantic information (i.e., type and symbol resolution, class
hierarchy) next to syntactic information which is the only information considered
by state-of-the-art tools. Fourth, the results might not hold for other test smells
as we only covered 6 test smells that are among the most analysed smells in
existing studies. We consider the analysis of the remaining test smells as future
work. Finally, the corresponding production class for each test class is identified
through naming conventions such as those used in existing studies [BQO+12,
PDNP+16, SPZ+18]. We acknowledge that Socrates might have missed some
links between production and test classes. Additionally, we assume a directory
structure to detect the folder with unit tests (i.e., system/src/test). However,
this is only a convention which developers are not obliged to follow. This might
have resulted in tests and test smells left to be undetected. In general, empirical
studies with a large number of systems including industrial systems are desirable.

64 CHAPTER 4. EMPIRICAL STUDY ON TEST SMELLS IN SCALA

4.3 Conclusion
This chapter presented a survey and an empirical study about test smells in the
Scala ecosystem. First, our survey assessed the perception of developers about
test smells. The results indicate that developers are not completely aware of test
smells. Second, our empirical study investigated the diffusion of test smells in
Scala systems hosted on Github. The results indicate a lower diffusion of test
smells in Scala systems compared to Java systems. The lower number of test
smells could also indicate that test suites in the Scala ecosystem are suitable
for test amplification, and hence used as input to our resilience testing approach.

Chapter 5

State of The Art in
Resilience Testing

Resilience is a quality of contemporary systems that continues to gain traction
over the past decade. However, its meaning is not always clear as the literature
interchanges resilience with other software quality attributes such as availability,
dependability and reliability. Moreover, the number of existing resilience testing
approaches is limited and these approaches do not always provide the neces-
sary means to efficiently detect resilience defects, let alone find defects in actor
systems. This chapter therefore explores the state of the art in resilience testing.

Section 5.1 defines the meaning of resilience as well as its relation to other soft-
ware quality attributes. Next, we discuss multiple techniques related to resilience
testing. First, Section 5.2 presents fault injection along with its terminology and
typical architecture. This technique is often used as foundation for resilience
testing. Next, Section 5.3 presents Chaos Engineering which is an approach to
test the resilience of a system in production environments through fault injection.
Subsequently, we explain two techniques that can efficiently explore a fault space:
Lineage-Driven Fault Injection (LDFI) and Delta Debugging (DD). Section 5.4
explains LDFI as a technique that leverages redundancy to efficiently explore the
fault space, while Section 5.5 explains the necessary terminology and details of
the delta debugging algorithms. We provide examples to illustrate the internal
workings of each algorithm and motivate our choice for using delta debugging.

Section 5.6 then provides an overview of the state of the art. We categorize
existing work into four categories based on their exploration strategy and assess
each of these approaches on a set of properties that are desirable for resilience
testing approaches. Finally, we summarize our observations in Section 5.7 and
incorporate these into our approach to resilience testing presented in the next
chapter.

65

66 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.1 Resilience and Its Meaning
Over the past decade, resilience continued to gain traction. However, its meaning
is not always clear. The word resilience originates from the Latin verb resilire1,
which means "to jump back" or "to rebound". It is a combination of the prefix re-
(i.e., "back") and the verb salire (i.e., "to jump") and thus literally means the act
of jumping back. However, in order to determine what it means to be resilient
in the year 2020 we start our discourse by determining contemporary definitions
of resilience found in the literature:

The Reactive Manifesto2: "The system stays responsive in the
face of failure. [...] Failures are contained within each component,
isolating components from each other and thereby ensuring that parts
of the system can fail and recover without compromising the system
as a whole. [...]"

Reactive Design Patterns [KHA17] and Merrian-Webster3:
"The ability of a substance or object to spring back into shape or the
capacity to recover quickly from difficulties"

IBM4: "Software solution resiliency refers to the ability of a solution
to absorb the impact of a problem in one or more parts of a system,
while continuing to provide an acceptable service level to the business."

The Dependability Community [Lap08]: "The persistence of
service delivery that can justifiably be trusted, when facing changes."

From these definitions, it is clear that resilience is a dynamic concept where action
and reaction occurs when the system experiences conditions that are not normal
or unlikely to happen (e.g., network failures or disk failures). Given the different
definitions, we informally define resilience in this dissertation as follows:

Definition 5.1. Resilience.
A system is resilient when it continues to deliver its services under abnormal
conditions through detection and recovery. The system might temporarily
degrade its services until recovered.

5.1.1 The Concepts of a Resilient System
Figure 5.1 shows an illustrative timeline of how resilient systems react under
abnormal conditions. By default, a resilient system runs its normal operation
until an abnormal condition occurs. For example, an abnormal condition could
be a network disruption that breaks the communication between two services.
However, this condition might not always affect the system.

1https://www.wordsense.eu/resilire
2https://www.reactivemanifesto.org
3https://www.merriam-webster.com/dictionary/resilience
4https://www.ibm.com/developerworks/websphere/techjournal/1407_col_nasser/1407_col_nasser.html

https://www.wordsense.eu/resilire
https://www.reactivemanifesto.org
https://www.merriam-webster.com/dictionary/resilience
https://www.ibm.com/developerworks/websphere/techjournal/1407_col_nasser/1407_col_nasser.html

5.1. RESILIENCE AND ITS MEANING 67

For example, it might be that those two services are not communicating at
that point in time. The impact starts when abnormal conditions cause abnormal
events and degrade the normal operation. For example, one service did not
receive a reply because of a network disruption. Resilience mechanisms are able
to detect these abnormal events and actively try to recover from the detected
abnormalities. For example, the mechanism tries to send the message again as
part of the recovery. In the worst case, one service might temporarily fail to
communicate with another service. It might also be that the reply is received
but with a high latency. However, this degradation should remain temporary
because otherwise the system is not considered to be resilient. Of course, some
degradations might not be recoverable because a system can only be resilient to
what it can control. After a successful recovery of the resilience mechanism, the
system continues its normal operation as nothing happened. This shows that
detection and recovery are important parts of a resilient system.

Normal Operation

Time

Degraded Operation Normal Operation

Abnormal
Condition
Occurs Detection Recovery

Abnormal
Event
Occurs

Figure 5.1: Resilient systems detect and recover from abnormal conditions.

It should also be clear that resilience is not a binary concept. Resilience
is a matter of degree and differs between systems. For example, one system
might be more resilient to disk failures, while the other might be more resilient
to partial network failures. Additionally, resilience is closely related to other
software quality attributes such as reliability, dependability, and availability.

For example, systems with high availability will have less impact of abnormal
conditions and degraded operation during recovery since the system has other
services available. Similarly, systems with high reliability have a low probability
of failing. A system with low reliability could lead to more faults and thus require
higher levels of resilience. A resilient system maintains a high reliability by
providing its services under abnormal conditions. Performance is also related to
resilience as resilience mechanisms need to detect and recover from abnormalities
which could have an impact on throughput and latency. Dependability [ALR+01,
ALRL04] focusses on the broader concept of fault tolerance which can be achieved
to means such as redundancy and resilience. Through these examples, it becomes
clear that resilience is closely related to other quality attributes and indicates that
a system should be more than resilient alone.

68 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

We summarize the key concepts of a resilient system in Figure 5.2. The
goal of any system is to provide its services under normal operation. Resilient
systems go one step further by also protecting them from failing under abnormal
conditions and recovering them to their normal operation. This is done through
incorporating resilience mechanisms such that they avoid the failure of services.

Resilient
Systems

Resilience
Mechanisms

Detection Recovery

Incorporate

Software
Failures

Hardware
Failures

Network
Failures

Abnormal
Conditions Servicescan cause

failures to

protect

Figure 5.2: Resilient systems incorporate resilience mechanisms to protect their
services from failing under abnormal conditions.

5.1.2 Incorporating Resilience Mechanisms is Difficult
Despite the need for resilience as reflected by frequent system outages [GDJ+11,
HRJ+16], as well as new industrial practices such as Chaos Engineering (cf.
Section 5.3) that advocate for testing resilience in production environments, im-
plementing and testing system’s resilience remains difficult.

5.1.2.1 The Implementation Process

The implementation of these resilience mechanisms remains non-trivial for multi-
ple reasons. First, contemporary distributed systems are inherently complex due
to their distributed communication and data requirements, as well as their dy-
namic scaling policies, cluster configurations, and infrastructure as code [Mor16].
Implementing resilience mechanisms to keep the system operational under ab-
normal conditions further increases the system’s complexity. Second, studies
such as [ECS15] have shown that resilience mechanisms (e.g., try-catch blocks
for exceptions) are commonly neglected by developers and tend to exhibit poor
quality. Post-mortem reports of outages show that their cause is often due to
missing or incorrect fault handling logic [JGS11]. Finally, resilience mechanisms
can be spread across multiple components.

5.2. FAULT INJECTION 69

5.1.2.2 The Testing Process

Additionally, testing these resilience mechanisms under abnormal conditions is
also hard for multiple reasons. As a result, developers remain unaware about
whether their systems are indeed resilient.

First, developers often only test the most important features and focus on
functionality under normal conditions [KBLJ13,BHP+17] (i.e., “happy paths”)
due to timing and budget constraints [GZ13,BGP+17]. Heorhiadi et al. [HRJ+16]
have a similar observation as they state that unit and integration tests are not
able to catch exceptional behaviour since systems still crash even though all
tests pass. Manually testing scenarios under abnormal conditions remains an
additional, repeating, and time-consuming development task.

Second, the space of all possible combinations of faults is typically large.
The majority of state-of-the-art approaches explore this space exhaustively or
selectively. However, testing the resilience with an exhaustive approach might
not always be feasible since it involves testing an exponential number of fault
combinations. Selective approaches, in contrast, require developers to specify
combinations of faults to be explored. However, this requires substantial effort
from developers and might result in defects that are not found.

Third, guarantees about the resilience of individual components do not neces-
sarily hold for systems composed from these components [ARH15]. Therefore, the
interaction of multiple components should be tested under abnormal conditions
to gain confidence in a system’s resilience.

Finally, developers are accustomed to frameworks for unit and acceptance
testing, yet these frameworks do not provide the necessary means to test a system
under abnormal conditions. Currently, tests have to be cluttered with additional
logic to simulate or trigger specific faults at certain moments. Developers might
therefore skip testing the behaviour of their system under abnormal conditions.
Testament to this is a study of crash reports [HRJ+16] which indicates that
developers do not always test the resilience of the system under certain conditions.

5.2 Fault Injection
Failures can be prevented through extensive testing. Fault Injection [AALC96] is
the process of deliberately introducing faults in a system in order to evaluate its
ability to prevent or mitigate failures. Fault injection techniques can be either
hardware-based, software-based, simulation-based, emulation-based, or based on
a combination of multiple techniques. Each technique has its application domain,
as well as it own advantages and disadvantages [ZAV+04]. In this dissertation,
we focus on software-based fault injection.

70 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.2.1 Terminology
We use the terminology as defined by Avizienis et al. [ALR+01]. Figure 5.3 shows
the relation between fault, error and failure.

Fault Error Failure

Cause of error
and failure

Unintended
internal state

Adverse
behavior

Figure 5.3: The relation between fault, error, and failure.

In a nutshell, a fault in a target might cause an error, and this error might
result in a failure. Informally speaking, the granularity of fault targets can range
from low-level instructions (e.g., system calls) to language constructs (e.g., ex-
ception handlers) to complete services (e.g., payment service). A failure can
occur due to the lack of mechanisms that prevent errors or the incorrect working
of those mechanisms. For example, a wrong input (i.e., fault) causes an ex-
ceptional state (i.e., error), and this exception causes the system to crash (i.e.,
failure). An exception handler could have prevented this failure.

Definition 5.2. Fault.
A fault is the adjudged or hypothesized cause of an error.

Definition 5.3. Error.
An error is that part of the system state that may cause a subsequent failure.

Definition 5.4. Failure.
A system failure is an event that occurs when the delivered service deviates
from correct service.

Note that a fault might lead to different errors depending on the context.
For example, a wrong input might cause a different exception depending on
the state of the system. In turn, an error might be caused by several different
faults or multiple faults at once. For example, two independent inputs or their
combination might cause the same exception. Faults are said to be dormant
when they do not result in an error, otherwise they are active. Similarly, errors
are said to be latent when they are present but do not result in a failure. We
also provide the following definitions related to our fault injection approach.

5.2. FAULT INJECTION 71

Definition 5.5. Fault Target.
A fault target is the component of a software system in which faults are
injected.

Definition 5.6. Fault Type.
A fault type indicates what the injector should inject into a fault target.

Definition 5.7. Fault Model.
A fault model maps fault targets to fault types.

Definition 5.8. Fault Tuple.
A fault tuple consists of a fault target and a fault type defined by the fault
model (i.e., (fault target, fault type)) and is denoted as δ.

Definition 5.9. Fault space.
The fault space F = {δ0, δ1, . . . , δn} is the set of fault tuples determined by
a given fault model and a given set of fault targets.

Definition 5.10. Fault Scenario. A fault scenario f ⊆ F consists of
none, one or more faults. A fault scenario may or may not lead to a failure.
We use ∅ to denote the empty fault scenario.

Given a system with components C1 and C2, fault types F1 and F2, and a
fault model that maps C1 7→ F1, C2 7→ F1, and C2 7→ F2. A fault scenario could
then be one of the following:

{}

{(C1, F1)}

{(C1, F1), (C2, F1)}

{(C2, F1), (C2, F2)}

That is, a fault scenario is an element of the power set of the fault space F .
Ordering does not matter here as the target should not only indicate the com-
ponent, but also the timing if applicable.

Definition 5.11. Failure Scenario. A failure scenario is a fault scenario
that causes a failure.

For example, the fault scenario {(C2, F2)} is a failure scenario when its
injection results in a system crash. We denote this as follows:

{(C2, F2)} ⇒ crash

72 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.2.2 Architecture
Figure 5.4 shows the architecture of fault injection approaches which consists of
several components. The target is the system in which faults will be injected.
Both the generator and injector stimulate the system, while the monitor only
observes the system. The generator generates a workload or input which is used
as to execute the system. The injector is responsible for injecting faults in certain
fault targets. Finally, the monitor intercepts program execution and reports back
information about the execution. Code instrumentation is used to add mecha-
nisms that trigger a fault and intercept system calls to observe the system’s
execution during fault injection. The controller is the overarching component
that manages the generator, injector and monitor. In this way, the monitor can
communicate with the injector to indicate when a fault should be injected. A
fault injection experiment typically consists of several runs where different fault
scenarios are injected. We refer the reader to [ZAV+04,Nat11,NCM16] for more
background information on fault injection.

Controller

Generator Injector Monitor

Target

Observes
behavior

Injects
faults

Generates
workloads

Figure 5.4: The typical architecture of a fault injection approach.

5.3. CHAOS ENGINEERING 73

5.3 Chaos Engineering
Fault injection has been increasingly incorporated in resilience testing. In particu-
lar, Netflix began practising a form of resilience testing around 2008 [BBDR+16]
by injecting faults in production systems.

At that moment, they made the shift from data centers to the cloud and
figured out that a different approach was required to assess a system’s resilience5:

"We have found that the best defence against major unexpected failures
is to fail often. By frequently causing failures, we force our services
to be built in a way that is more resilient."

As a result, they devised a complete practice around this idea and named it
Chaos Engineering6 [BBDR+16]:

"Chaos Engineering is the discipline of experimenting on a system
in order to build confidence in the system’s capability to withstand
turbulent conditions in production."

Ideally, Chaos Engineering addresses the most significant weaknesses of sys-
tems before they affect services or users in production. There are five principles
that describe an ideal application of Chaos Engineering:

1. Build a hypothesis around steady-state behaviour. Performance
metrics such as throughput, error rates, and latency are usually used to
define the steady state behaviour.

2. Vary real-world events. Typical events include hardware and software
failures, but also non-failure events like a spike in requests.

3. Run experiments in production. Real traffic captures the most promi-
nent paths through your system and will likely find real failures faster.

4. Automate experiments to run continuously. Manually experimenting
with complex systems that change over time is not sustainable.

5. Minimize blast radius. Care must be taken when doing Chaos Engi-
neering since experimenting in production can cause fatal consequences for
services and users.

Chaos Engineering is considered to be a form of experimentation that gener-
ates new knowledge about the system. This differs from general testing as the
outcome is known in advance. For example, chaos experiments could simulate
hardware failures such as crashes, network disruptions, and disk failures where
the granularity ranges from services to data centers, as well as simulate software
failures such as throwing exceptions, low level I/O errors, and trigger different
behaviour of methods.

5https://netflixtechblog.com
6http://principlesofchaos.org

https://netflixtechblog.com
http://principlesofchaos.org

74 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.3.1 Interest of Industry
The Chaos Engineering practice has been continuously improved over the last
decade. As a result, companies have started adopting this practice and started
developing other Chaos Engineering tools7 to improve the resilience of their sys-
tems. In particular, Netflix has developed tools to facilitate and automate their
experiments.

These tools have evolved in a suite of open-source tools called The Simian
Army8 to be used for systems hosted on Amazon Web Services (AWS).
The Simian Army consists of services in the cloud for generating various kinds
of failures, detecting abnormal conditions (i.e., these services are called “mon-
keys” according to Netflix), and testing the ability to survive them. For in-
stance, Chaos Monkey [CTBV15] randomly terminates virtual machine in-
stances, Janitor Monkey searches for unused resources such as clusters or
volumes for clean up, and Conformity Monkey detects instances that do not
conform to predefined rules for security. Additionally, we present the most im-
portant tools and approaches that incorporate Chaos Engineering in Section 5.6.

Next to Netflix, there are many companies9 interested in resilience test-
ing their production systems including large organizations such as Google and
Amazon [RKAL12], Microsoft [Nak15], and Facebook [Sve14]. Chaos Engi-
neering has also been applied in software-intensive organizations such as financial
institutions, healthcare provides, and online retailers [BBDR+16]. For example,
some banks are known to verify the redundancy of their transactional systems
by following the principles of Chaos Engineering. The online retailer Bol.com
conducted a study10 to tune resilience in their microservices architecture. This
architecture is known to handle more than 10 million active users and over 22
million products at current times. This shows that companies see value in re-
silience testing and more companies are likely to incorporate methods like Chaos
Engineering into their development process.

5.3.2 Observations
While Chaos Engineering is the dominant practice to assess resilience in produc-
tion environments, we observe important similarities and distinctions with our
approach to assess resilience in development environments.

Practice. Chaos Engineering is a method for generating new information
about the system when tested under abnormal conditions by investigating
resilience hypotheses. For example, this practice aims to determine what
happens with services or metrics when certain conditions occur. This gives
developers insights and confidence that their systems will remain opera-
tional during these conditions.

7https://github.com/dastergon/awesome-chaos-engineering
8https://github.com/Netflix/SimianArmy
9https://coggle.it/diagram/WiKceGDAwgABrmyv

10https://dspace.library.uu.nl/handle/1874/366205

https://github.com/dastergon/awesome-chaos-engineering
https://github.com/Netflix/SimianArmy
https://coggle.it/diagram/WiKceGDAwgABrmyv
https://dspace.library.uu.nl/handle/1874/366205

5.4. LINEAGE-DRIVEN FAULT INJECTION (LDFI) 75

Our approach to resilience testing is a method to generate information as
well. However, it will determine whether the functionality remains the
same under certain conditions by leveraging the test oracle as source of
truth (i.e., assertions). This is in contrast to Chaos Engineering which
typically doesn’t have a desirable outcome in advance. It is a practice to
determine these outcomes and does not focus on functional correctness.

Environment. The interest of Chaos Engineering lies in the behaviour
of the system in production. The advantage of production environments is
that user requests are representative behaviour of the system. This might
lead to detecting problematic behaviours that might otherwise be difficult
to foresee in development environments. However, we argue that the risk of
experimenting with a production system might be too large when knowledge
is limited. This dissertation therefore focuses on experimenting in develop-
ment environments where we amplify existing test suites. Once developers
are confident about their system’s resilience in development environments,
they can still apply practices such as Chaos Engineering in the produc-
tion environment. As a result, we consider our approach as a first step
to generate information about the system’s functionality under abnormal
conditions. Additionally, we argue that testing environments are becom-
ing more representative of production environments due to containerization
techniques such as Docker11.

Oracle. The typical way to assess the effect of Chaos Engineering is by
means of general metrics (e.g.,memory usage or throughput) or application-
specific metrics (e.g., number of video plays). Our approach leverages test
oracles as a way to find resilience defects. The system might therefore be
not resilient whenever the test oracle determines that the test fails.

5.4 Lineage-driven Fault Injection (LDFI)
Lineage-driven Fault Injection (LDFI) [ARH15] is a technique to efficiently ex-
plore fault scenarios to assess the fault tolerance of systems. In contrast to
random or heuristic-based search strategies, LDFI is able to systematically cover
the fault space and detect complex faults by leveraging data lineage [BKWC01,
CWW00] and backwards reasoning. In this way, LDFI avoids exploring combi-
nations of faults that are not possible in practice. For example, it can determine
that certain fault scenarios can only be explored when a certain fault occurs first
in the system’s execution path.

5.4.0.1 Illustrative example

We explain the process of LDFI through an illustrative example, inspired by and
adapted from [AAS+16].

11https://docker.com

https://docker.com

76 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

The way that LDFI works is by capturing the lineage of a successful execution
and then uses backwards reasoning. That is, it starts with the goal and reasons
backward to find a sequence of steps that could prevent that successful execution.
In this illustrative example, the successful outcome is data durability which is
achieved through broadcasting the information to two independent databases.
Such an outcome is typically defined by a correctness specification which can
consist of invariants, assertions, pre and post conditions etc. In an informal
way, backwards reasoning is similar to asking why an effect has happened (i.e.,
which cause has which effect). Given our illustrative example, our first question
therefore is:

"Why is this information durably stored?"

The answer to this question is that the information is stored in two separate
databases. Consequently, we keep asking these kind of questions in order to
determine the cause of this effect. The next question therefore is:

"Why is this information stored in two separate databases?"

The answer to this question is that a broadcast of that information is sent to
both databases. Finally, the last question could be:

"Why is there a broadcast?"

The answer to this final question might be that the broadcast is the result
of the client pressing a button. The result of this backwards reasoning about
a successful outcome yields a lineage graph as shown in Figure 5.5. This is a
directed graph where nodes represent steps and edges represent causality.

Durably
stored

Store2 Store1

Broadcast1

Client

Figure 5.5: The lineage graph extracted from the system’s execution.

5.4. LINEAGE-DRIVEN FAULT INJECTION (LDFI) 77

That is, the lineage graph contains directed paths from causes to effects and
hereby reveals redundant paths that yield the same outcome. Redundancy is
an important part of LDFI as it considers the system to be fault tolerant when
it finds an alternative (i.e., redundant) execution path while injecting a fault
scenario that achieves the same outcome.

Formally, the lineage graph consists of the nodes {Broadcast1, Store1, Store2}.
We omit the root and leaf node since these represent the cause and outcome. As
a result, there are 23 combinations12 that could prevent the desired outcome.
For example, fault scenarios that target Store1 or both Store1 and Broadcast1
might result in the data no longer being durable stored. However, this remains
to be tested.

LDFI encodes these lineage graphs as a conjunction of disjunctions of propo-
sitional variables that can be either true or false. Every clause in the conjunction
represents one path in the lineage graph. This is done for every path in the graph
and results in a formula in conjunctive normal form (CNF) [Sch05]. For exam-
ple, one path is encoded as a clause with two variables: Store1 ∨ Broadcast1.
The lineage graph from Figure 5.5 can be encoded as the combination of the two
available paths:

(Store1 ∨Broadcast1)
∧ (Store2 ∨Broadcast1)

A fault is simulated in a component (e.g., message or database) when a vari-
able is set to true in the formula. The goal of LDFI is, given such a formula,
to find which variables need to be set to true to make the formula yield the
value. This formula is solved as a SAT problem [DMB11] through a SAT solver
(e.g., Z3 [DMB08]). The system is correct with respect to a correctness spec-
ification when the formula is unsatisfiable (i.e., the boolean formula results in
false), otherwise a fault scenario will be presented (i.e., the literals that are true).
LDFI only generates the minimal solutions which results in the following 3 fault
scenarios:

{Broadcast1}
{Store1}
{Store2}

For example, failing the broadcast (i.e., setting Broadcast1 to true) results in
the formula to be true. Thus this fault has to be injected to determine whether
the desired outcome indeed fails or whether redundant paths are found.

It is important to note that LDFI is an iterative process that extends the
lineage graph over time with new knowledge (i.e., redundant paths). For exam-
ple, injecting a failure in {Broadcast1} (i.e., the broadcast fails) results in a new
lineage graph, as shown in Figure 5.6 on the next page.

12In fact, 23 − 1 combinations as the empty combination cannot affect the outcome.

78 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Durably
stored

Store1 Store2

Broadcast1

Client

Broadcast2

Client

Figure 5.6: The extended lineage graph extracted from the system’s execution.

In particular, this system seems to send multiple broadcasts whenever there
was no acknowledgement from both databases. As a result, this system is fault
tolerant with respect to the fault scenario {Broadcast1}. The new lineage graph
is encoded in the following CNF formula:

(Store1 ∨Broadcast1)
∧ (Store2 ∨Broadcast1)
∧ (Store1 ∨Broadcast2)
∧ (Store2 ∨Broadcast2)

Solving this formula results in the following two minimal fault scenarios be-
cause setting these variables to true will resolve the formula to true (i.e., the
formula is satisfiable):

{Store1, Store2}
{Broadcast1, Broadcast2}

This is in contrast to a naive manner which would require to test all 24

combinations. This process is repeated up to some bound in time or the size
of fault scenarios. For example, given that there are only two databases, it
doesn’t make sense to inject the first fault scenario as the outcome will always
be incorrect. However, injecting the latter might again reveal new information
about the system’s redundancy as it might send the broadcast up to 5 times
before a write is no longer durably stored. Again, it is important to understand
that LDFI is able to explore the fault space much more efficient because execution
paths and redundancy are explicit in the lineage graph.

5.5. DELTA DEBUGGING (DD) 79

We will not use LDFI in our approach because it focusses on redundancy and
it poses several limitations. First, LDFI requires a fine-grained lineage in order
to inject faults and be complete. In practice, collecting this lineage information
seems not as trivial as it seems [AAS+16,CWC+19]. A trade-off between com-
pleteness and precision must be considered in order to get meaningful results.
Second, LDFI returns solutions in no specific order and considers all faults as
equal. This means that, while it covers the fault space and will find failures
eventually, it might take longer to find them. Trivially, it is more beneficial when
certain faults are prioritized and failures are found sooner. Finally, LDFI presents
the decision problem as a SAT problem, which is known to be NP-complete13.
Although a solution to an NP-complete problem can be verified fast (i.e., verified
in polynomial time), it remains slow (i.e., exponential time) to find solutions.

5.5 Delta Debugging (DD)
"Yesterday, my program worked. Today, it does not. Why?" [Zel99] is a question
that occurs ever so often during development. A good starting point is to ex-
amine the changes and narrow them down to a smaller set of changes that still
causes the failure. However, manually examining large sets of changes quickly be-
comes infeasible. Delta Debugging [Zel99,ZH02] is a technique that automatically
minimizes a given set of changes so that developers can immediately reproduce
and resolve the failure. Zeller et al. proposed the automated delta debugging
algorithm in [Zel99], but later revised it to the minimizing and general delta
debugging algorithm [ZH02] which guarantees minimal solutions.

5.5.1 Terminology
The original papers present delta debugging in the context of minimizing program
input or code changes. We adapt the definitions and algorithm presented in
[Zel99,ZH02] to the context of our dissertation: minimizing fault scenarios.

Definition 5.12. The passing and failing fault scenario.
Delta debugging works by means of a passing fault scenario f3 and a failing
fault scenario f7. We consider f3 to be initially empty (i.e., f3 = ∅), while
f7 consists of all possible faults (i.e., f7 = F).

It will become clear that these two fault scenarios are the opposites of each
other. For now, the reader can ignore the passing fault scenario (f3) and only
focus on the failing fault scenario (f7).

The delta debugging algorithm would typically start from a failing fault sce-
nario that is much smaller than the set of all possible faults. The reason is that
the algorithm was proposed as a debugging algorithm. Developers already had a
failing fault scenario f7 and would use delta debugging to minimize it.

13https://en.wikipedia.org/wiki/NP-completeness

https://en.wikipedia.org/wiki/NP-completeness

80 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

In our case, we do not have this information upfront which is why we start
from the whole fault space. Note that F can be large for complex systems.
For that reason, we choose to combine delta debugging in combination with
test amplification (cf. ??) to reduce this fault space. The set of faults is then
only based on the execution of the test case which typically is only a part of
the system’s behaviour. Additionally, developers could manually reduce these
failing scenarios f7 from the start by pruning or prioritizing certain faults (cf.
Section 5.5.4). For example, developers might choose to not inject faults into
certain components of the system. However, this requires domain knowledge
which might not always be available.

Definition 5.13. The function test.
The function test : P(F)→ {3, 7, ?} determines for a fault scenario f ⊆ F
whether the test passes (3) or not (7). The function returns unresolved (?)
whenever the result is indeterminate. Trivially, test(f3) = test(∅) = 3 and
test(f7) = test(F) = 7.

The function test returns in all its simplicity the outcome of running the test
case after injecting the given fault scenario. In our implementation, unresolved
(?) is returned when the fault injector was not able to inject all faults. We start
from the fact that test(f3) = test(∅) = 3 because test should pass when no
faults are injected. Similarly, we start from test(f7) = test(F) = 7 because test
should fail when all faults are injected. When test(∅) 6= 3 or test(F) 6= 7 there is
no point in using delta debugging as the initial test already failed without faults
or no failure was found in the fault space respectively.

Note that the goal of delta debugging is to minimize a given failing fault
scenario to the smallest possible fault scenario. Ideally, that would mean finding
the globally minimal fault scenario.

Definition 5.14. Globally minimal fault scenario.
A fault scenario f ⊆ f7 is the globally minimal fault scenario of f7 when it
represents the set with the least faults that still causes the failure. That is,
∀f ′ ⊆ f7 : (|f ′| < |f | ⇒ test(f ′) 6= 7).

However, determining this global minimum is computationally expensive as
it requires testing an exponential number of fault scenarios (i.e., 2|f7| − 2). The
two scenarios that are skipped are test(f3) = 3 and test(f7) = 7 as these are
known. A typical alternative is then to find a local minimum.

Definition 5.15. Locally minimal fault scenario.
A fault scenario f ⊆ f7 is a locally minimal fault scenario of f7 when the
following holds: ∀f ′ ⊂ f : (test(f ′) 6= 7).

Note that the set from which subsets are taken differs between a globally and
locally minimal fault scenario (i.e., f7 in contrast to f).

5.5. DELTA DEBUGGING (DD) 81

Although this might result in better performance when f is much smaller
than f7, finding a local minimum still requires testing an exponential number
of fault scenarios (i.e., 2|f | − 2). Therefore, delta debugging searches for an
approximation of the minimal fault scenarios. That is, a fault scenario that
satisfies n-minimality: all fault scenarios that can be created by removing any
combination of up to n faults from the n-minimal one, should no longer cause a
failure (i.e., 3 or ?).

Definition 5.16. n-minimal fault scenario.
The fault scenario f ⊆ f7 is n-minimal when all of testing subsets with up to
n faults removed do not result in 7: ∀f ′ ⊂ f : |f |−|f ′| ≤ n⇒ (test(f ′) 6= 7)

Naturally, we want to keep n small in order to have an acceptable time com-
plexity and approximation. Therefore, the most interesting n-minimality is the
1-minimality: removing any single fault no longer makes it fail, but removing
two or more faults might still make the fault scenario fail. This shows why it is
an approximation in favour of performance: it might not be the globally minimal
fault scenario.

Definition 5.17. 1-minimal fault scenario.
The 1-minimal fault scenario f ⊆ f7 is 1-minimal when the n-minimal dif-
ference holds with n = 1. That is, ∀δi ∈ f : test(f ′3 − {δi}) 6= 7.

However, it is not efficient to test each scenario where a single element is
removed. This brings us to the minimizing delta debugging algorithm [ZH02]
which uses a strategy similar to binary search [Knu71]. We discuss its details on
the next page.

82 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.5.2 The Minimizing Delta Debugging Algorithm
This minimizing delta debugging algorithm ddm [ZH02] takes as input a failing
fault scenario f7 such that test(f7) = 7 and a function test. ddm calls the internal
function ddm2 which then recursively calls itself. We explain each of the four
cases below the algorithm. The passing fault scenario f ′3 remains ∅ through the
whole algorithm. Its purpose will become clear in the remainder of this chapter
where we discuss the general delta debugging algorithm (cf. Section 5.5.5). Delta
debugging minimizes f7 by partitioning it into different subsets ∆i. Each ∆i has
a cardinality equal (or almost equal due to uneven numbers) to |∆i| ≈ |f ′7|/n,
where the granularity n equals to 2 at the beginning to mimic a binary search.
We define the function t as a typical implementation of the method find14 on
lists: it returns the first ∆i that satisfies the condition test(f •∆i) == � where
f is a fault scenario, • is a set operator (i.e., ∪ or −), and � is one of the three
possible outcomes of calling test (i.e., 3, 7, or ?). The algorithm proceeds to
the next case when no ∆i is found.

Definition 5.18. The Minimizing Delta Debugging Algorithm.

ddm(f7, test) = ddm2(∅, f7, 2)

ddm2(f ′3, f ′7, n) =


ddm2(f ′3, ∆′, 2) if ∆′ = t(f ′3,∪, 7) (1)
ddm2(f ′3, f ′7 −∆′, max(n− 1, 2)) if ∆′ = t(f ′7,−, 7) (2)
ddm2(f ′3, f ′7, min(2n, |f ′7|)) if n < |f ′7| (3)
f ′7 otherwise (4)

where
f ′7 = ∆1 ∪ . . . ∪∆n : (∀i, j : ∆i ∩∆j == ∅ ∧ |∆i| ≈ |f ′7|/n)

t(f, •,�) = ∆i : (∃i ∈ {1, . . . , n} : test(f •∆i) == �)
precondition ddm2 : test(f ′7) == 7 ∧ n ≤ |f ′7|

Case 1. Whenever the outcome of testing the fault scenario f ′3 ∪ ∆i is 7,
ddm2 calls itself with f ′7 = ∆′ = ∆i while keeping n = 2. Intuitively, we
know that this fault scenario contains the faults we are looking for which
is why we continue to minimize ∆′ only.

Case 2. Whenever the outcome of testing the fault scenario f ′7 − ∆i is
7, we continue the search with f ′7 = ∆′ = f ′7 −∆i (i.e., the complement),
but change n = max(n − 1, 2). Intuitively, we know that the faults must
be in the complement and not in the subset ∆i as removing ∆i still makes
test fail. The reason why the recursive step chooses between the maximum
n− 1 and 2 is because the granularity stays the same in that way. Hence,
some of the n− 1 subsets from case 2 do not needed to be tested again in
case 1. Otherwise, proceeding with n = 2 would require the algorithm to
work down again until the previous granularity is achieved again.

14https://www.scala-lang.org/api/current/scala/collection/immutable/List.html#find(p:A=>Boolean):Option[A]

https://www.scala-lang.org/api/current/scala/collection/immutable/List.html#find(p:A=>Boolean):Option[A]

5.5. DELTA DEBUGGING (DD) 83

Case 3. All results of test gave either passing (3) or indeterminate (?)
results. To increase the chance of getting a 7 as test outcome, the algorithm
increases the granularity by dividing fault scenarios into 2n subsets instead
of n. This is repeated until the granularity n reaches |f ′7|. By then, the
cardinality of each ∆i equals to 1 and hence the failing fault scenario f ′7 is
1-minimal already.

Case 4. The final step returns the 1-minimal failing fault scenario.

There are two important things to note. First, the function test must be
deterministic, and thus the system must also have a deterministic execution.
This is trivial to understand as test is the source of truth for the delta debugging
algorithm. In order to support non-deterministic systems, developers have to
ensure identical executions through record-replay mechanisms or frameworks. In
this dissertation, we assume the execution to be deterministic. We refer the
reader to Section 6.7.3 where we discuss this limitation in more detail.

Second, a fault scenario can cause multiple independent failures. The algo-
rithm does not distinguish between those as test simply returns 7 whenever there
is a failure. Depending on the partitioning strategy, a different failure might be
found instead of the original failure. This can be avoided by including more infor-
mation about the failure instead of just returning the test outcome. For example,
properties such as the location of the failure or the current call stack can be in-
cluded. This means that the function test will only return 7 when the failure was
the same as the first found failure, while in all other cases it returns ? whenever
the found failure has different properties. This will return the fault scenario that
caused the original failure. The remaining fault scenarios can still be found by
repeating the delta debugging algorithm for each other failure. For simplicity,
our implementation distinguishes between different failing test outcomes through
their associated exception messages.

Figure 5.7 shows an illustrative example of the minimizing delta debugging
algorithm where a fault scenario of 20 faults is simplified to a combination of 4
faults (1, 2, 3, 11) which required 72 executions of test. Step 3 is not explicitly
shown but occurs when the value of n changes. Steps marked with a diamond (�)
are already tested in a previous test. For example, tests 3 and 4 perform the same
test as in test 2 and 1 respectively. This indicates that a simple caching strategy
can already reduce the number of performed tests. Indeed, caching enables the
algorithm to skip 29 out of the 72 tests (40%) which results in 43 unique tests
for the example below.

84 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

n ∆i |∆i|
Fault Scenario

� Case1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 ∆0 10 1 2 3 4 5 6 7 8 9 10 3 1
2 2 ∆1 10 11 12 13 14 15 16 17 18 19 20 3 1
3 2 ∆0 10 11 12 13 14 15 16 17 18 19 20 3 2�
4 2 ∆1 10 1 2 3 4 5 6 7 8 9 10 3 2�
5 4 ∆0 5 1 2 3 4 5 3 1
6 4 ∆1 5 6 7 8 9 10 3 1
7 4 ∆2 5 11 12 13 14 15 3 1
8 4 ∆3 5 16 17 18 19 20 3 1
9 4 ∆0 15 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 2
10 4 ∆1 15 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 7 2
11 3 ∆0 5 1 2 3 4 5 3 1�
12 3 ∆1 5 11 12 13 14 15 3 1�
13 3 ∆2 5 16 17 18 19 20 3 1�
14 3 ∆0 10 11 12 13 14 15 16 17 18 19 20 3 2�
15 3 ∆1 10 1 2 3 4 5 16 17 18 19 20 3 2
16 3 ∆2 10 1 2 3 4 5 11 12 13 14 15 7 2
17 2 ∆0 5 1 2 3 4 5 3 1�
18 2 ∆1 5 11 12 13 14 15 3 1�
19 2 ∆0 5 11 12 13 14 15 3 2�
20 2 ∆1 5 1 2 3 4 5 3 2�
21 4 ∆0 2 1 2 3 1
22 4 ∆1 2 . . 3 4 3 1
23 4 ∆2 2 5 11 3 1
24 4 ∆3 2 12 13 3 1
25 4 ∆4 2 14 15 3 1
26 4 ∆0 8 . . 3 4 5 11 12 13 14 15 3 2
27 4 ∆1 8 1 2 . . 5 11 12 13 14 15 3 2
28 4 ∆2 8 1 2 3 4 12 13 14 15 3 2
29 4 ∆3 8 1 2 3 4 5 11 . . 14 15 7 2
30 3 ∆0 2 1 2 3 1�
31 3 ∆1 2 . . 3 4 3 1�
32 3 ∆2 2 5 11 3 1�
33 3 ∆3 2 14 15 3 1�
34 3 ∆0 6 . . 3 4 5 11 . . 14 15 3 2
35 3 ∆1 6 1 2 . . 5 11 . . 14 15 3 2
36 3 ∆2 6 1 2 3 4 14 15 3 2
37 3 ∆3 6 1 2 3 4 5 11 7 2
38 2 ∆0 3 1 2 3 3 1
39 2 ∆1 3 . . . 4 5 11 3 1
40 2 ∆0 3 . . . 4 5 11 3 2�
41 2 ∆1 3 1 2 3 3 2�
42 4 ∆0 1 1 3 1
43 4 ∆1 1 . 2 3 1
44 4 ∆2 1 . . 3 3 1
45 4 ∆3 1 . . . 4 3 1
46 4 ∆4 1 5 3 1
47 4 ∆5 1 11 3 1
48 4 ∆0 5 . 2 3 4 5 11 3 2
49 4 ∆1 5 1 . 3 4 5 11 3 2
50 4 ∆2 5 1 2 . 4 5 11 3 2
51 4 ∆3 5 1 2 3 . 5 11 7 2
52 3 ∆0 1 1 3 1�
53 3 ∆1 1 . 2 3 1�
54 3 ∆2 1 . . 3 3 1�
55 3 ∆3 1 5 3 1�
56 3 ∆4 1 11 3 1�
57 3 ∆0 4 . 2 3 . 5 11 3 2
58 3 ∆1 4 1 . 3 . 5 11 3 2
59 3 ∆2 4 1 2 . . 5 11 3 2
60 3 ∆3 4 1 2 3 11 7 2
61 2 ∆0 2 1 2 3 1�
62 2 ∆1 2 . . 3 11 3 1
63 2 ∆0 2 . . 3 11 3 2�
64 2 ∆1 2 1 2 3 2�
65 4 ∆0 1 1 3 1�
66 4 ∆1 1 . 2 3 1�
67 4 ∆2 1 . . 3 3 1�
68 4 ∆3 1 11 3 1�
69 4 ∆0 3 . 2 3 11 3 2
70 4 ∆1 3 1 . 3 11 3 2
71 4 ∆2 3 1 2 11 3 2
72 4 ∆3 3 1 2 3 3 2�

Figure 5.7: An example where a 1-minimal fault scenario is found in a non-
monotone fault space.

5.5. DELTA DEBUGGING (DD) 85

5.5.3 Properties
Besides test execution being deterministic, the illustrative example above does
not make any assumptions about the fault space. This brings us to two important
properties.

Definition 5.19. Consistency.
A fault space is consistent if all its fault scenarios produce a determinate
result. That is, ∀f ⊆ F : (test(f) 6= ?).

While consistency will speed up the performance, this property might not
always be present in practice. For example, injecting faults during test execution
might stop the actor system from progressing. This could be considered an
indeterminate result since the test didn’t execute completely. Additionally, an
indeterminate result also depends on the application domain. For example, it
is much more likely to get indeterminate results when minimizing ASTs as not
every AST node can be arbitrarily combined. As a result, compilation issues can
arise which are considered to be indeterminate results as well.

Yet, delta debugging will still find a 1-minimal fault scenario even when the
fault space is inconsistent. However, this will be at the expense of performance
since the fault scenario will have to be partitioned in smaller ones, hence more
fault scenarios have to be tested. This is guaranteed since the initial failing fault
scenario was determined to fail. As a result, there must be a combination of
faults that cause that failure.
Definition 5.20. Monotonicity.
A fault space is monotone if there are no compensating faults. Given a
fault scenario f that fails the test, all fault scenarios consisting of at least
all tuples of f will not pass. That is, ∀f ⊆ F : (test(f) = 7 ⇒ ∀f ′ ⊇ f :
(test(f ′) 6= 3)). Similarly, given a fault scenario f that passes the test, all
fault scenarios consisting of at most all tuples of f will not fail. That is,
∀f ⊆ F : (test(f) = 3⇒ ∀f ′ ⊆ f : (test(f ′) 6= 7)).

A monotone fault space implies that combinations of faults cannot cancel
each other out. In this dissertation, we do not assume the fault space to be
monotone. Monotonicity can speed up the performance as the function test
can return 3 whenever a superset of f has already passed the test and return 7
whenever a subset of f has already failed the test. Naturally, checking this should
be more efficient than doing a complete test execution. The delta debugging
algorithm is able to find the 1-minimal fault scenario without any assumptions
about monotonicity

Figure 5.8 shows the algorithm when a monotone fault space is assumed.
Steps marked with a star (?) are skipped because the current fault scenario is
either a subset of a cached passing fault scenario or a superset of a cached failing
fault scenario. Indeed, besides the 29 tests that can be skipped due to caching,
26 additional tests can be skipped due to a monotone fault space. As a result,
only 17 (23.6%) unique tests are required instead of the original 72.

86 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

n ∆i |∆i|
Fault Scenario

� Case1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 ∆0 10 1 2 3 4 5 6 7 8 9 10 3 1
2 2 ∆1 10 11 12 13 14 15 16 17 18 19 20 3 1
3 2 ∆0 10 11 12 13 14 15 16 17 18 19 20 3 2�
4 2 ∆1 10 1 2 3 4 5 6 7 8 9 10 3 2�
5 4 ∆0 5 1 2 3 4 5 3 1?

6 4 ∆1 5 6 7 8 9 10 3 1?

7 4 ∆2 5 11 12 13 14 15 3 1?

8 4 ∆3 5 16 17 18 19 20 3 1?

9 4 ∆0 15 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 2
10 4 ∆1 15 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 7 2
11 3 ∆0 5 1 2 3 4 5 3 1�
12 3 ∆1 5 11 12 13 14 15 3 1�
13 3 ∆2 5 16 17 18 19 20 3 1�
14 3 ∆0 10 11 12 13 14 15 16 17 18 19 20 3 2�
15 3 ∆1 10 1 2 3 4 5 16 17 18 19 20 3 2
16 3 ∆2 10 1 2 3 4 5 11 12 13 14 15 7 2
17 2 ∆0 5 1 2 3 4 5 3 1�
18 2 ∆1 5 11 12 13 14 15 3 1�
19 2 ∆0 5 11 12 13 14 15 3 2�
20 2 ∆1 5 1 2 3 4 5 3 2�
21 4 ∆0 2 1 2 3 1?

22 4 ∆1 2 . . 3 4 3 1?

23 4 ∆2 2 5 11 3 1
24 4 ∆3 2 12 13 3 1?

25 4 ∆4 2 14 15 3 1?

26 4 ∆0 8 . . 3 4 5 11 12 13 14 15 3 2
27 4 ∆1 8 1 2 . . 5 11 12 13 14 15 3 2
28 4 ∆2 8 1 2 3 4 12 13 14 15 3 2
29 4 ∆3 8 1 2 3 4 5 11 . . 14 15 7 2
30 3 ∆0 2 1 2 3 1�
31 3 ∆1 2 . . 3 4 3 1�
32 3 ∆2 2 5 11 3 1�
33 3 ∆3 2 14 15 3 1�
34 3 ∆0 6 . . 3 4 5 11 . . 14 15 3 2?

35 3 ∆1 6 1 2 . . 5 11 . . 14 15 3 2?

36 3 ∆2 6 1 2 3 4 14 15 3 2?

37 3 ∆3 6 1 2 3 4 5 11 7 2
38 2 ∆0 3 1 2 3 3 1?

39 2 ∆1 3 . . . 4 5 11 3 1?

40 2 ∆0 3 . . . 4 5 11 3 2�
41 2 ∆1 3 1 2 3 3 2�
42 4 ∆0 1 1 3 1?

43 4 ∆1 1 . 2 3 1?

44 4 ∆2 1 . . 3 3 1?

45 4 ∆3 1 . . . 4 3 1?

46 4 ∆4 1 5 3 1?

47 4 ∆5 1 11 3 1?

48 4 ∆0 5 . 2 3 4 5 11 3 2
49 4 ∆1 5 1 . 3 4 5 11 3 2
50 4 ∆2 5 1 2 . 4 5 11 3 2
51 4 ∆3 5 1 2 3 . 5 11 7 2
52 3 ∆0 1 1 3 1�
53 3 ∆1 1 . 2 3 1�
54 3 ∆2 1 . . 3 3 1�
55 3 ∆3 1 5 3 1�
56 3 ∆4 1 11 3 1�
57 3 ∆0 4 . 2 3 . 5 11 3 2?

58 3 ∆1 4 1 . 3 . 5 11 3 2?

59 3 ∆2 4 1 2 . . 5 11 3 2?

60 3 ∆3 4 1 2 3 11 7 2
61 2 ∆0 2 1 2 3 1�
62 2 ∆1 2 . . 3 11 3 1?

63 2 ∆0 2 . . 3 11 3 2�
64 2 ∆1 2 1 2 3 2�
65 4 ∆0 1 1 3 1�
66 4 ∆1 1 . 2 3 1�
67 4 ∆2 1 . . 3 3 1�
68 4 ∆3 1 11 3 1�
69 4 ∆0 3 . 2 3 11 3 2?

70 4 ∆1 3 1 . 3 11 3 2?

71 4 ∆2 3 1 2 11 3 2?

72 4 ∆3 3 1 2 3 3 2�

Figure 5.8: An example where a 1-minimal fault scenario is found in a monotone
fault space.

5.5. DELTA DEBUGGING (DD) 87

5.5.4 Partitioning Strategy
The performance of delta debugging is determined by the order in which each
subset ∆i is tested. While the algorithm seems to suggest that fault scenarios are
partitioned and tested sequentially from left to right, it is not required. A fault
scenario could sort its faults and then partition them such that each ∆i is tested
in a different order than partitioning an unordered fault scenario from left to
right. Even better, these fault scenarios can be tested in parallel (e.g., [HK16]).

We illustrate the possible gain and loss in performance by revisiting the il-
lustrative example. By partitioning ∆i in such a way that the faults 1, 2, 3,
and 11 are together in a subset, we can actually achieve a better performance.
Given that the fault space is monotone, we only need 12 unique tests compared
to the 17 unique tests in Figure 5.8, an improvement of 29.4%. Similarly, in a
non-monotone fault space the difference is even bigger. Here, we only need 16
tests instead of the 43 unique tests in Figure 5.7, an improvement of 62.8%.

n ∆i |∆i|
Fault Scenario

� Case1 2 3 11 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20
1 2 ∆0 10 1 2 3 11 4 5 6 7 8 9 7 1
2 2 ∆0 5 1 2 3 11 4 7 1
3 2 ∆0 2 1 2 3 1
4 2 ∆1 2 . . 3 11 3 1
5 2 ∆2 1 4 3 1
6 2 ∆0 3 . . 3 11 4 3 2
7 2 ∆1 3 1 2 . . 4 3 2
8 2 ∆2 4 1 2 3 11 7 2
9 2 ∆0 2 1 2 3 1�
10 2 ∆1 2 . . 3 11 3 1�
11 2 ∆0 2 . . 3 11 3 2�
12 2 ∆1 2 1 2 3 2�
13 4 ∆0 1 1 3 1?

14 4 ∆1 1 . 2 3 1?

15 4 ∆2 1 . . 3 3 1?

16 4 ∆3 1 . . . 11 3 1?

17 4 ∆0 3 . 2 3 11 3 2
18 4 ∆1 3 1 . 3 11 3 2
19 4 ∆2 3 1 2 . 11 3 2
20 4 ∆3 3 1 2 3 3 2

Figure 5.9: An optimal partitioning strategy can improve the performance of
delta debugging.

However, a sub-optimal partitioning strategy can also deteriorate the per-
formance. For example, Figure 5.10 shows the execution when the faults 1, 2,
3, and 11 no longer reside in the same ∆i. In a monotone fault space, now 18
unique tests are required compared to the 17 unique tests in Figure 5.8. However,
67 unique tests are required when the fault space is non-monotone. This is in
contrast to the 43 unique tests of Figure 5.7, a decline of 55.8%. Through these
illustrative examples it becomes clear that partitioning strategies can affect the
performance in both ways. We will later discuss several strategies to order faults
based on actor-specific characteristics (cf. Section 6.6).

88 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

n ∆i |∆i|
Fault Scenario

� Case1 4 5 6 7 2 8 9 10 11 12 13 14 15 16 17 18 19 20 3
1 2 ∆0 10 1 4 5 6 7 2 8 9 10 11 3 1
2 2 ∆1 10 12 13 14 15 16 17 18 19 20 3 3 1
3 2 ∆0 10 12 13 14 15 16 17 18 19 20 3 3 2�
4 2 ∆1 10 1 4 5 6 7 2 8 9 10 11 3 2�
5 4 ∆0 5 1 4 5 6 7 3 1?

6 4 ∆1 5 2 8 9 10 11 3 1?

7 4 ∆2 5 12 13 14 15 16 3 1?

8 4 ∆3 5 17 18 19 20 3 3 1?

9 4 ∆0 15 2 8 9 10 11 12 13 14 15 16 17 18 19 20 3 3 2
10 4 ∆1 15 1 4 5 6 7 12 13 14 15 16 17 18 19 20 3 3 2
11 4 ∆2 15 1 4 5 6 7 2 8 9 10 11 17 18 19 20 3 7 2
12 3 ∆0 5 1 4 5 6 7 3 1�
13 3 ∆1 5 2 8 9 10 3 3 1?

14 3 ∆2 5 11 17 18 19 20 . 3 1?

15 3 ∆0 10 2 8 9 10 11 17 18 19 20 3 3 2?

16 3 ∆1 10 1 4 5 6 7 11 17 18 19 20 . 3 2
17 3 ∆2 10 1 4 5 6 7 2 8 9 10 3 3 2
18 6 ∆0 2 1 4 3 1?

19 6 ∆1 2 . . 5 6 3 1?

20 6 ∆2 2 7 3 3 1?

21 6 ∆3 2 2 8 3 1?

22 6 ∆4 2 9 10 3 1?

23 6 ∆5 2 11 17 3 1?

24 6 ∆6 2 18 19 . . 3 1?

25 6 ∆7 1 20 . 3 1?

26 6 ∆0 13 . . 5 6 7 2 8 9 10 11 17 18 19 20 3 3 2
27 6 ∆1 13 1 4 . . 7 2 8 9 10 11 17 18 19 20 3 7 2
28 5 ∆0 2 1 4 3 1�
29 5 ∆1 2 7 2 3 1?

30 5 ∆2 2 8 9 3 1?

31 5 ∆3 2 10 11 3 1?

32 5 ∆4 2 17 18 . . . 3 1?

33 5 ∆5 2 19 20 . 3 1?

34 5 ∆6 1 3 3 1?

35 5 ∆0 11 7 2 8 9 10 11 17 18 19 20 3 3 2?

36 5 ∆1 11 1 4 8 9 10 11 17 18 19 20 3 3 2
37 5 ∆2 11 1 4 . . 7 2 . . 10 11 17 18 19 20 3 7 2
38 4 ∆0 2 1 4 3 1�
39 4 ∆1 2 7 2 3 1�
40 4 ∆2 2 10 11 3 1�
41 4 ∆3 2 17 18 . . . 3 1�
42 4 ∆4 2 19 20 . 3 1�
43 4 ∆5 1 3 3 1�
44 4 ∆0 9 7 2 . . 10 11 17 18 19 20 3 3 2?

45 4 ∆1 9 1 4 10 11 17 18 19 20 3 3 2?

46 4 ∆2 9 1 4 . . 7 2 17 18 19 20 3 3 2
47 4 ∆3 9 1 4 . . 7 2 . . 10 11 19 20 3 7 2
48 3 ∆0 3 1 4 . . 7 3 1?

49 3 ∆1 3 2 . . 10 3 3 1?

50 3 ∆2 3 11 19 20 . 3 1?

51 3 ∆0 6 2 . . 10 11 19 20 3 3 2?

52 3 ∆1 6 1 4 . . 7 11 19 20 . 3 2?

53 3 ∆2 6 1 4 . . 7 2 . . 10 3 3 2?

54 6 ∆0 1 1 3 1?

55 6 ∆1 1 . 4 3 1?

56 6 ∆2 1 7 3 1?

57 6 ∆3 1 3 3 1�
58 6 ∆4 1 2 3 1?

59 6 ∆5 1 10 3 1?

60 6 ∆6 1 11 3 1?

61 6 ∆7 1 19 . . 3 1?

62 6 ∆8 1 20 . 3 1�
63 6 ∆0 8 . 4 . . 7 2 . . 10 11 19 20 3 3 2
64 6 ∆1 8 1 . . . 7 2 . . 10 11 19 20 3 7 2
65 5 ∆0 1 1 3 1�
66 5 ∆1 1 7 3 1�
67 5 ∆2 1 3 3 1�
68 5 ∆3 1 2 3 1�
69 5 ∆4 1 10 3 1�
70 5 ∆5 1 11 3 1�
71 5 ∆6 1 19 . . 3 1�
72 5 ∆7 1 20 . 3 1�
73 5 ∆0 7 7 2 . . 10 11 19 20 3 3 2?

74 5 ∆1 7 1 2 . . 10 11 19 20 3 7 2
75 4 ∆0 1 1 3 1�
76 4 ∆1 1 2 3 1�
77 4 ∆2 1 10 3 1�
78 4 ∆3 1 11 3 1�
79 4 ∆4 1 19 . . 3 1�
80 4 ∆5 1 20 . 3 1�
81 4 ∆6 1 3 3 1�
82 4 ∆0 6 2 . . 10 11 19 20 3 3 2�
83 4 ∆1 6 1 10 11 19 20 3 3 2?

84 4 ∆2 6 1 2 . . . 11 19 20 3 7 2
85 3 ∆0 2 1 3 3 1?

86 3 ∆1 2 2 . . . 11 3 1?

87 3 ∆2 2 19 20 . 3 1�
88 3 ∆0 4 2 . . . 11 19 20 . 3 2?

89 3 ∆1 4 1 19 20 3 3 2?

90 3 ∆2 4 1 2 . . . 11 3 7 2
91 2 ∆0 2 1 11 3 1?

92 2 ∆1 2 2 3 3 1?

93 2 ∆0 2 2 3 3 2�
94 2 ∆1 2 1 11 3 2�
95 4 ∆0 1 1 3 1�
96 4 ∆1 1 11 3 1�
97 4 ∆2 1 3 3 1�
98 4 ∆3 1 2 3 1�
99 4 ∆0 3 2 . . . 11 3 3 2?

100 4 ∆1 3 1 2 3 3 2?

101 4 ∆2 3 1 2 . . . 11 3 2?

102 4 ∆3 3 1 11 3 3 2?

Figure 5.10: A sub-optimal partitioning strategy can reduce the performance of
delta debugging.

5.5. DELTA DEBUGGING (DD) 89

5.5.5 The General Delta Debugging Algorithm
As mentioned previously, the minimizing delta debugging algorithm produces a
1-minimal fault scenario as output. This means that we are only cutting away
faults from the failing fault scenario in a way similar to binary search. However,
minimization only considers the failing fault scenario (f7) and ignores the passing
fault scenario (f3). Remember that the passing fault scenario remained equal to
∅ throughout the execution of the algorithm. However, the passing fault scenario
can contain valuable information when the function test is expensive to call.
In [ZH02], Zeller et al. indicate that it is generally more efficient to track this
information to find the difference between a passing and failing fault scenario.

Therefore, the algorithm can be made more efficient by not only cutting away
faults from the failing fault scenario, but also by adding faults to the passing
fault scenario. By combining both strategies, we can narrow down the difference
between a failing and a passing fault scenario. Intuitively, one is working from
top to bottom (i.e., minimizing the failing fault scenario), while another one is
working from bottom to top (i.e., maximizing the passing fault scenario), until
they meet each other. As a result, the general delta debugging algorithm searches
for n-minimal differences instead of n-minimal fault scenarios.

Definition 5.21. Minimal difference.
The difference ∆ = f ′7 − f ′3 between two fault scenarios f ′3 and f ′7 with
∅ = f3 ⊆ f ′3 ⊂ f ′7 ⊆ f7 is minimal if for all subsets of ∆ the following
holds: adding a subset of faults to f3 no longer makes it pass, and removing
that same subset from f7 no longer makes it fail. That is, ∀∆i ⊂ ∆ :
test(f ′3 ∪∆i) 6= 3 ∧ test(f ′7 −∆i) 6= 7.

We adapt the definitions for n-minimality as follows:

Definition 5.22. n-minimal difference.
The difference ∆ = f ′7 − f ′3 of two fault scenarios f ′3 and f ′7 with ∅ = f3 ⊆
f ′3 ⊂ f ′7 ⊆ f7 is n-minimal
when the minimal difference holds for all the subsets with a cardinality
bounded by n. That is, ∀∆i ⊂ ∆ : (|∆i| ≤ n ⇒ (test(f ′3 ∪ ∆i) 6= 3 ∧
test(f ′7 −∆i) 6= 7)).

Definition 5.23. 1-minimal difference.
The 1-minimal difference ∆ = f ′7−f ′3 of two fault scenarios f ′3 and f ′7 when
the n-minimal difference holds with n = 1. That is, ∀δi ∈ ∆ : |∆i| ≤ n ⇒
(test(f ′3 ∪ {δi}) 6= 3 ∧ test(f ′7 − {δi}) 6= 7.

The concept of 1-minimality remains the same: a difference is 1-minimal when
every individual fault contributes to the failure, but removing any combination
of faults might still result in failure.

90 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

The general delta debugging algorithm takes as input a passing fault sce-
nario f3 such that test(f3) = test(∅) = 3, a failing fault scenario f7 such that
test(f7) = 7, and a function test. The partitioning strategy and the function t
remain the same as with the minimizing delta debugging algorithm. We explain
each of the six cases below the algorithm. The output is the tuple (f ′3, f ′7) such
that the difference ∆ = f ′7 − f ′3 is 1-minimal.

Definition 5.24. The General Delta Debugging Algorithm.

dd(f7, test) = dd2(∅, f7, 2)

dd2(f ′3, f ′7, n) =



dd2(f ′3, f ′3 ∪∆′, 2) if ∆′ = t(f ′3,∪, 7) (1)
dd2(f ′7 −∆′, f ′7, 2) if ∆′ = t(f ′7,−, 3) (2)
dd2(f ′3 ∪∆′, f ′7, max(n− 1, 2)) if ∆′ = t(f ′3,∪, 3) (3)
dd2(f ′3, f ′7 −∆′, max(n− 1, 2)) if ∆′ = t(f ′7,−, 7) (4)
dd2(f ′3, f ′7, min(2n, |∆|)) if n < |∆| (5)
(f ′3, f ′7) otherwise (6)

where
∆ = f ′7 − f ′3 = ∆1 ∪ . . . ∪∆n : (∀i, j : ∆i ∩∆j == ∅ ∧ |∆i| ≈ |∆|/n)

t(f, •,�) = ∆i : (∃i ∈ {1, . . . , n} : test(f •∆i) == �)
precondition dd2 : test(f ′3) == 3 ∧ test(f ′7) == 7 ∧ n ≤ |∆|

Case 1. Whenever a difference ∆i is added to f ′3 and calling test with
this difference fails (i.e., f ′3 ∪ ∆i == 7), the recursive call continues with
f ′3 = f ′3, f ′7 = f ′3 ∪ ∆i, and n = 2. Intuitively, we know that test fails
because either the difference ∆i contains the faults or the faults are a
combination of the passing fault scenario and the difference. Thus, we
minimize the failing fault scenario.

Case 2. Whenever a difference ∆i is removed from f ′7 and calling test with
this difference passes (i.e., f ′7−∆i == 3), the recursive call continues with
f ′3 = f ′7 −∆i, f ′7 = f ′7, and n = 2. Intuitively, we know that the difference
contains the fault(s) as removing it from f ′7 causes test to pass. Thus, we
maximize the passing fault scenario.

Case 3. Whenever a difference ∆i is added to f ′3 and calling test with
this difference passes (i.e., f ′3∪∆i == 3), the recursive call continues with
f ′3 = f ′3 ∪∆i, f ′7 = f ′7, and a possibly adapted n. Intuitively, we know that
the difference does not contain any faults. Thus, we maximize the passing
fault scenario.

Case 4. Whenever a difference ∆i is removed from f ′7 and calling test with
this difference fails (i.e., f ′7 − ∆i == 7), the recursive call continues with
f ′3 = f ′3, f ′7 = f ′7 −∆i, and a possibly adapted n.

5.5. DELTA DEBUGGING (DD) 91

Case 5. All results of test gave indeterminate results. To increase the
chance of getting a determinate (3 or 7) result, we can increase the granu-
larity of each difference by dividing them into 2n parts instead of n. This
is repeated until the granularity n is |∆| as by then the difference consists
of a single fault.

Case 6. The final step returns a passing and failing fault scenario of which
the difference is 1-minimal.

The general delta debugging algorithm dd is a generalization of the minimizing
delta debugging algorithm ddm presented earlier. This is easy to see as cases 2
and 3 are not executed when the function test only returns 3 for f ′3. However,
it is important to note that the general delta debugging algorithms typically
produces a different output then the minimizing delta debugging algorithm. The
former searches for a 1-minimal difference between a passing and failing fault
scenario, while the latter only searches for a 1-minimal failing fault scenario.

Figure 5.11 shows the application of the general delta debugging algorithm
on the example from Figure 5.7. The algorithm yields the passing fault scenario
f ′3 = {2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} and ∆ = {1} as the 1-minimal
difference.

n ∆i |∆i|
Fault Scenario

� Step1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f3 .
f7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∆ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 ∆0 10 1 2 3 4 5 6 7 8 9 10 3 1
2 2 ∆1 10 11 12 13 14 15 16 17 18 19 20 3 1
3 2 ∆0 10 11 12 13 14 15 16 17 18 19 20 3 2�

f3 11 12 13 14 15 16 17 18 19 20
f7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∆ 1 2 3 4 5 6 7 8 9 10

4 2 ∆0 15 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 7 1
f3 11 12 13 14 15 16 17 18 19 20
f7 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20
∆ 1 2 3 4 5

5 2 ∆0 12 1 2 11 12 13 14 15 16 17 18 19 20 3 1
6 2 ∆1 12 . . 3 4 11 12 13 14 15 16 17 18 19 20 3 1
7 2 ∆2 11 5 11 12 13 14 15 16 17 18 19 20 3 1
8 2 ∆0 13 . . 3 4 5 11 12 13 14 15 16 17 18 19 20 3 2

f3 . . 3 4 5 11 12 13 14 15 16 17 18 19 20
f7 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20
∆ 1 2

9 2 ∆0 14 1 . 3 4 5 11 12 13 14 15 16 17 18 19 20 3 1
10 2 ∆1 14 . 2 3 4 5 11 12 13 14 15 16 17 18 19 20 3 1
11 2 ∆0 14 . 2 3 4 5 11 12 13 14 15 16 17 18 19 20 3 2�

f3 . 2 3 4 5 11 12 13 14 15 16 17 18 19 20
f7 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20
∆ 1

Figure 5.11: The general delta debugging algorithm applied to our illustrative
example.

92 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Isolating this difference only requires 9 unique tests, compared to 43 unique
tests for proving a 1-minimal fault scenario: an improvement of 79%. While the
number of tests is indeed lower, developers have to take into account both the
passing fault scenario and the 1-minimal difference which might pose difficulties
for developers. In this case, developers still need to check 14 faults and are not
aware that the failure is caused by the combination of faults 1, 2, 3, and 11. How-
ever, this might be clear for developers with domain knowledge. Nevertheless,
the general delta debugging algorithm can give a significant improvement when
the input are large fault scenarios (e.g., 103 to 106 faults) as shown in [ZH02].

While both algorithms have their own purposes, we propose the following
guidelines to developers. First, the partitioning strategy should be carefully se-
lected as the examples show how it can affect performance. Secondly, we advise
the use of the minimizing delta debugging algorithm in the ideal case as its
output is a 1-minimal fault scenario at the expense of more tests. The general
delta debugging algorithm could be applied when the function test takes a sig-
nificant amount of time, the testing budget is limited, the fault space is large, or
a combination of these. While fewer test executions are required, its output is a
1-minimal difference. However, the passing fault scenario can still be significantly
large which might make it harder to find combinations of faults. However, for
single faults the difference contains the single fault when the fault space is con-
sistent. We conclude that there is no clear-cut choice between both algorithms
as they have different purposes.

5.5.6 Complexity
To finalize the background on the delta debugging algorithm, we briefly discuss
the best and worst cases in terms of time and difference cardinality. These
complexities apply to both the minimizing and general delta debugging algorithm.

Definition 5.25. Time complexity.
The best-case time complexity of the delta debugging is log2(|f7|) when the
fault space is consistent. The worst-case time complexity of delta debugging
is quadratic: |f7|2 + 3|f7|.

That is, the best case resembles a binary search algorithm. The example
shown in Figure 5.12 presents an ideal case where the input is a fault scenario
with 20 faults where only fault 1 causes a failure, all combinations with fault 1 fail,
and all combinations without fault 1 pass. This example shows the logarithmic
behaviour of delta debugging. That is, 4 tests are needed to find the fault since
log2(|f7|) = log2(20) ≈ 4. The outcome will be the same for both the minimizing
and general delta debugging algorithm since only case 1 is executed for such
cases.

5.5. DELTA DEBUGGING (DD) 93

n ∆i |∆i|
Fault Scenario

� Case1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 ∆0 10 1 2 3 4 5 6 7 8 9 10 7 1
2 2 ∆0 5 1 2 3 4 5 7 1
3 2 ∆0 2 1 2 7 1
4 2 ∆0 1 1 7 1

Figure 5.12: An illustrative example of the best-case performance.

The worst-case time complexity can be determined by splitting the algorithm
into two phases: one phase where every test is indeterminate and thus requires
doing recursive calls in case 3 which results in 4|f7| tests. The other phase is
where the faults are found in the last test which results in |f7|2− |f7| tests. This
results in the worst-case time complexity of 4|f7| + |f7|2 − |f7| = |f7|2 + 3|f7|.
We refer the reader to [ZH02] for the complete proof. While a quadratic time
complexity is still better than an exponential time complexity (i.e., testing all
subsets), Zeller et al. indicate that is unlikely that a fault scenario f7 would
require |f7|2 + 3|f7| tests because case 1 quickly narrows down the fault scenario.

n ∆i |∆i|
Fault Scenario

� Case1 2 3 4 5
1 2 ∆0 2 1 2 . . . ? 1
2 2 ∆1 2 . . 3 4 . ? 1
3 2 ∆2 1 5 ? 1
4 2 ∆0 3 . . 3 4 5 ? 2
5 2 ∆1 3 1 2 . . 5 ? 2
6 2 ∆2 4 1 2 3 4 . ? 2
7 4 ∆0 1 1 ? 1
8 4 ∆1 1 . 2 . . . ? 1
9 4 ∆2 1 . . 3 . . ? 1
10 4 ∆3 1 . . . 4 . ? 1
11 4 ∆4 1 5 ? 1�
12 4 ∆0 4 . 2 3 4 5 ? 2
13 4 ∆1 4 1 . 3 4 5 ? 2
14 4 ∆2 4 1 2 . 4 5 ? 2
15 4 ∆3 4 1 2 3 . 5 ? 2
16 4 ∆4 4 1 2 3 4 . ? 2�
17 5 ∆0 1 1 ? 1�
18 5 ∆1 1 . 2 . . . ? 1�
19 5 ∆2 1 . . 3 . . ? 1�
20 5 ∆3 1 . . . 4 . ? 1�
21 5 ∆4 1 5 ? 1�
22 5 ∆0 4 . 2 3 4 5 ? 2�
23 5 ∆1 4 1 . 3 4 5 ? 2�
24 5 ∆2 4 1 2 . 4 5 ? 2�
25 5 ∆3 4 1 2 3 . 5 ? 2�
26 5 ∆4 4 1 2 3 4 . ? 2�

Figure 5.13: An illustrative example of the worst-case performance.

94 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Definition 5.26. Difference cardinality.
The best-case cardinality of the 1-minimal difference ∆ is |dd(f7)| = 1 when
the fault space is consistent.

That is, the general debugging algorithm always returns a single failure-
inducing fault when there are only determinate results (3 or 7). This follows
directly from the best-case time complexity. The cardinality of the difference
might not be 1 when the fault space is not consistent, but a 1-minimal difference
is always guaranteed.

5.6 Overview of Resilience Testing Approaches
We conduct a literature study to understand the current approaches to resilience
testing. We review 15 approaches in the context of monolithic systems, dis-
tributed systems, microservice architectures, and mobile applications and sum-
marize the results in Table 7.3. For each approach, we discuss the 8 proper-
ties discussed in Table 5.1. We group and discuss them according to the way
they explore fault scenarios: developer-specified (Section 5.6.1), exhaustive (Sec-
tion 5.6.2), LDFI (Section 5.6.3), and Delta Debugging (Section 5.6.4).

Properties

Context In which context are these approaches presented? What kind of systems are analysed?

Fault Model
Does the fault model support generic faults or faults specific a particular domain?
What kind of fault targets does the fault model support? For example, approaches
might only target a set of microservices and only inject failures related to the network.

Exploration

Is there a way to automatically generate and explore fault scenarios efficiently? Are
fault scenarios automatically generated or do developers have to specify them by them-
selves? For example, automated approaches could reduce the effort of developers while
manually-written fault scenarios might leave failures undetected.

Granularity
Does the approach explore combinations of faults? For example, approaches might
only focus on combinations of two faults rather than a single one.

Pruning

Is it possible to narrow down the fault space with domain knowledge of developers?
For example, developers might know that injecting faults in a specific component is
useless because it has already been tested thoroughly or known to cause system failures.
Pruning strategies could reduce the time to find failures.

Prioritization
Is it possible to prioritize certain fault scenarios according to strategies or developer
knowledge? For example, historical data might indicate that new components should
be tested first. Prioritizing strategies could reduce the time to find failures.

Environment
Is the approach used in a production or development environment? Is this choice
motivated by risk or other reasons?

Oracle

What oracles are used to measure the resilience of a system after faults have been
injected? For example, do developers need to manually check the outcome or is this
automatically validated? Some approaches might require oracles or specifications in a
custom language which might pose a barrier for usage.

Table 5.1: We discuss each approach based on the described 8 properties.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 95

#
N
am

e
C
on

te
xt

Fa
ul
t
M
od

el
Ex

pl
or
at
io
n

G
ra
nu

la
rit

y
Pr

un
in
g

Pr
io
rit

iz
at
io
n

En
vi
ro
nm

en
t

O
ra
cl
e

1
G

re
m

li
n
[H

R
J+

16
]

M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

Fa
il-
st
op

/c
ra
sh

fa
ilu

re
s,

pe
rf
or
m
an

ce
/o

m
iss

io
n
fa
ilu

re
s,

an
d
cr
as
h-
re
co
ve
ry

fa
ilu

re
s

D
ev
el
op

er
-s
pe

ci
fie

d
M
ul
tip

le
N
o

N
o

Pr
od

uc
tio

n
G

re
m

li
n
R
ec
ip
e

2
P

re
Fa

il
[J
G
S1

1]
D
ist

rib
ut
ed

Sy
st
em

s
(J

av
a)

C
ra
sh

fa
ilu

re
s,

di
sk

fa
ilu

re
s,

ne
tw

or
k
fa
ilu

re
s,

an
d
no

de
/r
ac
k-
le
ve
ln

et
w
or
k
pa

rt
iti
on

in
g

D
ev
el
op

er
-s
pe

ci
fie

d
M
ul
tip

le
D
ev
el
op

er
-s
pe

ci
fie

d
po

lic
ie
s

N
o

D
ev
el
op

m
en
t

R
ec
ov
er
y
Sp

ec
ifi
ca
tio

n

3
Se

ts
ud

o
[G

B
JG

15
]

D
ist

rib
ut
ed

Sy
st
em

s
(J

av
a)

N
od

e/
lin

k/
di
sk

fa
ilu

re
s,

an
d
ne

tw
or
k
fa
ilu

re
s

D
ev
el
op

er
-s
pe

ci
fie

d
M
ul
tip

le
N
o

N
o

D
ev
el
op

m
en
t

M
et
ric

s

4
C

ha
os

M
on

ke
y
[C

T
B
V
15

]
M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

(A
W

S)
C
ra
sh

fa
ilu

re
s†

Ex
ha

us
tiv

e
Si
ng

le
N
o

N
o

Pr
od

uc
tio

n
M
et
ric

s

5
Fa

te
an

d
D

es
ti

ni
[G

D
J+

11
]

D
ist

rib
ut
ed

Sy
st
em

s
(J

av
a)

C
ra
sh

fa
ilu

re
s,

pe
rm

an
en
t
di
sk

fa
ilu

re
s,

di
sk

co
rr
up

tio
n
fa
ilu

re
s,

tr
an

sie
nt

fa
ilu

re
s,

an
d
no

de
/r
ac
k-
le
ve
ln

et
w
or
k
pa

rt
iti
on

in
g

Ex
ha

us
tiv

e
M
ul
tip

le
D
ep

en
de

nc
y-
ba

se
d

he
ur
ist

ic
s

N
o

D
ev
el
op

m
en
t

D
es

ti
ni

Sp
ec
ifi
ca
tio

n

6
Sh

or
tC

ir
cu

it
[C

SM
15

]
M
on

ol
ith

ic
Sy

st
em

s
(J

av
a)

Tr
y-
ca
tc
h
fa
ilu

re
s

Ex
ha

us
tiv

e
Si
ng

le
N
o

N
o

D
ev
el
op

m
en
t

Te
st

Su
ite

s

7
C

ha
os

M
ac

hi
ne

[Z
M
H

+
19

]
M
on

ol
ith

ic
Sy

st
em

s
(J

av
a)

Tr
y-
ca
tc
h
fa
ilu

re
s

Ex
ha

us
tiv

e
Si
ng

le
D
ev
el
op

er
-s
pe

ci
fie

d
an

no
ta
tio

ns
N
o

Pr
od

uc
tio

n
M
et
ric

s

8
T

ri
pl

eA
ge

nt
[Z
M
19

]
M
on

ol
ith

ic
Sy

st
em

s
(J

av
a)

Tr
y-
ca
tc
h
fa
ilu

re
s

Ex
ha

us
tiv

e
Si
ng

le
N
o

N
o

D
ev
el
op

m
en
t

A
cc
ep

ta
bi
lit
y
O
ra
cl
e

9
C

ha
os

O
rc

a
[S
ZM

+
19

]
M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

(D
oc

ke
r)

Sy
st
em

ca
ll
fa
ilu

re
s

Ex
ha

us
tiv

e
Si
ng

le
D
ev
el
op

er
-s
pe

ci
fie

d
ca
lls

C
al
l-b

as
ed

Pr
od

uc
tio

n
M
et
ric

s

10
M

ol
ly

[A
R
H
15

]
D
ist

rib
ut
ed

Sy
st
em

s
(D

ed
al

us
)

C
ra
sh
-s
to
p
fa
ilu

re
s,

m
es
sa
ge

de
liv

er
y
fa
ilu

re
s,

an
d
(t
em

po
ra
ry
)
ne

tw
or
k
pa

rt
iti
on

s†
LD

FI
M
ul
tip

le
N
o

N
o

D
ev
el
op

m
en
t

C
or
re
ct
ne

ss
Sp

ec
ifi
ca
tio

n

11
ld

fi
-n

et
fl

ix
[A

A
S+

16
]

M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

C
ra
sh

fa
ilu

re
s,

ha
rd
w
ar
e
fa
ilu

re
s,

an
d
so
ftw

ar
e
fa
ilu

re
s

LD
FI

M
ul
tip

le
N
o

N
o

Pr
od

uc
tio

n
M
et
ric

s

12
ld

fi
-a

kk
a
[G

hi
19

]
A
ct
or

Sy
st
em

s
(S

ca
la

+
A

kk
a)

C
ra
sh

fa
ilu

re
s
an

d
m
es
sa
ge

de
liv

er
y
fa
ilu

re
s

LD
FI

M
ul
tip

le
N
o

N
o

D
ev
el
op

m
en
t

C
or
re
ct
ne

ss
Sp

ec
ifi
ca
tio

n

13
In

te
ll

iF
T

[C
W
C

+
19

]
M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

Fu
nc

tio
na

lf
ai
lu
re
s
an

d
pe

rf
or
m
an

ce
fa
ilu

re
s

LD
FI

M
ul
tip

le
Fe

ed
ba

ck
-b
as
ed

he
ur
ist

ic
s

Pr
io
rit

y-
ba

se
d

D
ev
el
op

m
en
t

Te
st

Su
ite

s

14
M

ad
aa

ri
[R

E1
9]

M
ic
ro
se
rv
ic
e
A
rc
hi
te
ct
ur
es

R
em

ot
e
pr
oc
ed

ur
e
ca
ll
fa
ilu

re
s

LD
FI

M
ul
tip

le
N
o

Pr
io
rit

y-
ba

se
d

D
ev
el
op

m
en
t

Te
st

Su
ite

s

15
T

ho
r
[A

M
M
15

]
M
ob

ile
A
pp

lic
at
io
ns

(A
nd

ro
id
)

A
nd

ro
id

se
rv
ic
e
fa
ilu

re
s

D
el
ta

D
eb

ug
gi
ng

M
ul
tip

le
A
bs
tr
ac
tio

n-
ba

se
d

he
ur
ist

ic
s

N
o

D
ev
el
op

m
en
t

Te
st

Su
ite

s

16
C

ha
ok

ka
[D

B
D
N
D
R
20

]
A
ct
or

Sy
st
em

s
(S

ca
la

+
A

kk
a)

C
ra
sh
-r
ec
ov
er
y
fa
ilu

re
s
an

d
m
es
sa
ge

id
em

po
te
nc

y
fa
ilu

re
s

D
el
ta

D
eb

ug
gi
ng

M
ul
tip

le
C
au

sa
lit
y-
ba

se
d

he
ur
ist

ic
Pr

io
rit

y-
ba

se
d

D
ev
el
op

m
en
t

Te
st

Su
ite

s

Ta
bl
e
5.
2:

O
ve
rv
ie
w

of
th
e
st
ar
t
of

th
e
ar
t
w
or
k
in
cl
ud

in
g
ou

r
ap

pr
oa
ch

C
ha

ok
ka

at
th
e
bo

tt
om

of
th
e
ta
bl
e.

C
on

te
xt
.

D
et
er
m
in
es

th
ek

in
d
of

sy
st
em

sf
or

w
hi
ch

th
ea

pp
ro
ac
h
is
pr
es
en
te
d.

Fa
ul
t
M
od

el
.
In
di
ca
te
st

he
ki
nd

of
fa
ilu

re
st

ha
tt

he
fa
ul
t

m
od

el
sim

ul
at
es
.T

he
sy
m
bo

l†
in
di
ca
te
st

he
la
ck

of
re
co
ve
ry

fa
ilu

re
s(
e.
g.
,c
ra
sh
-r
ec
ov
er
y
fa
ilu

re
s)
.E

xp
lo
ra
ti
on

.
D
et
er
m
in
es

th
e
w
ay

in
w
hi
ch

fa
ul
t
sc
en

ar
io
s
ar
e
ex
pl
or
ed

.
M
an

ua
lr

eq
ui
re
s
de

ve
lo
pe

rs
to

w
rit

e
sp
ec
ifi
ca
tio

ns
,
w
hi
le

ot
he

r
te
ch
ni
qu

es
ar
e
au

to
m
at
ed

.
Ex

ha
us
tiv

e
re
pr
es
en
ts

al
l
(a
nd

po
ss
ib
le

re
du

nd
an

t
an

d
in
fe
as
ib
le
)
co
m
bi
na

tio
ns

of
tu
pl
es
.
G
ra
nu

la
ri
ty
.

Id
en
tifi

es
w
he

th
er

th
e
ge
ne

ra
te
d
fa
ul
t
sc
en
ar
io
s
co
ns
ist

of
sin

gl
e
or

m
ul
tip

le
tu
pl
es
.
P
ru
ni
ng

.
In
di
ca
te
s
w
he

th
er

ad
di
tio

na
l

op
tim

iz
at
io
ns

ar
e
us
ed

to
pr
un

e
th
e
fa
ul
t
sp
ac
e.

P
ri
or
it
iz
at
io
n.

In
di
ca
te
s
w
he

th
er

fa
ul
t
sc
en

ar
io
s
ar
e
or
de

re
d
by

a
sp
ec
ifi
c

pr
op

er
ty
.
E
nv

ir
on

m
en
t.

R
ep

re
se
nt
s
th
e
en
vi
ro
nm

en
t
in

w
hi
ch

th
e
ap

pr
oa
ch

is
pr
es
en
te
d
an

d
sh
ou

ld
be

us
ed

.
O
ra
cl
e.

D
et
er
m
in
es

th
e
w
ay

in
w
hi
ch

or
ac
le
s
ar
e
de

fin
ed

.
Te

st
su
ite

s
an

d
m
et
ric

s
ar
e
pr
ov

id
ed

as
-is

an
d
ar
e
pa

rt
of

th
e
sy
st
em

,
w
hi
le

sp
ec
ifi
ca
tio

ns
ar
e
no

t.
T
he

se
ne

ed
to

be
w
rit

te
n
ex
pl
ic
itl
y
be

fo
re

th
e
ap

pr
oa
ch

ca
n
be

us
ed

an
d
m
ay

re
qu

ire
ad

di
tio

na
l

de
ve
lo
pe

r
eff

or
t
to

le
ar
n
th
e
sp
ec
ifi
ca
tio

n
la
ng

ua
ge
.

96 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.6.1 Developer-specified Exploration of Fault Scenarios
This section discusses three approaches (i.e., Gremlin [HRJ+16], PreFail [JGS11],
and Setsudo [GBJG15]) that explore developer-specified fault scenarios.

5.6.1.1 Gremlin

Current post-mortem reports indicate that missing or faulty recovery logic are
a significant cause of failures [HRJ+16]. However, this does not mean that de-
velopers do not implement resilience mechanisms. On the contrary, they im-
plement them often but remain unaware of their effectiveness until the failure
occurs [ECS15]. Heorhiadi et al. present Gremlin [HRJ+16] as a resilience
testing framework for microservice architectures which consist of loosely-coupled
distributed processes that typically communicate via synchronous REST calls.
Systems built with this architecture are becoming more prominent as the de-
mand for horizontal scaling keeps increasing. However, moving towards such an
architecture poses several challenges such as distributed communication and run-
time heterogeneity that make resilience testing more difficult. Gremlin has the
following properties:

Fault Model. Gremlin manipulates the network to detect failures of mi-
croservices. The reasons why Gremlin does not directly inject faults into
the microservices itself are threefold: failures can be emulated by manip-
ulating the communication mechanisms between services (e.g., drop mes-
sages to simulate a crashed service), failure recovery mechanisms can be
observed from the network (e.g., determine whether messages are retried),
and runtime heterogeneity of microservices requires different instrumenta-
tion approaches. Gremlin supports faults that cause the most common
types of failures encountered in microservice architectures. These include
failures due to a complete stop of a service (i.e., crash-stop failures) and
failures due to a service that recovers incorrectly (i.e., crash-recovery fail-
ures), as well as performance failures.

Environment. Gremlin is presented in the context of production envi-
ronments. It has been integrated into IBM’s Cloud15 to test microservice
architectures. Gremlin does not generate the workload for the system and
assumes that developers provide real or test requests.

Exploration. Fault scenarios are generated imperatively by developer-
specified recipes as shown in Listing 5.1. The developers have the freedom
to inject faults in any target (line 1), as well as use assertions as an or-
acle (line 2). Fault scenarios are thus one or more tuples. By means of
these recipes, developers at IBM have successfully detected errors related
to failure-handling logic and timeout handlers in a proprietary microservice
application.

15https://www.ibm.com/cloud

https://www.ibm.com/cloud

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 97

However, there might exist a learning curve before developers become fa-
miliar with these recipes. A limitation of this approach is that it requires
expertise and a mental model of the system which evolves over time. How-
ever, the authors indicate automatic recipe generation as a key area for
future work.
1 Overload (ServiceB)
2 HasBoundedRetries (ServiceA , ServiceB , 5)
3
4 def Overload (Service1):
5 for s in dependents (Service1):
6 Abort (s, Service1 , Error =503 , Pattern =’test -* ’,
7 On=’request ’, Probability =.25)
8 Delay (s, Service1 , Interval =’100 ms ’,
9 Pattern =’test -* ’, On=’request ’,Probability =.75)

Listing 5.1: A recipe in Gremlin.

Pruning. Developers manually write recipes and hereby inherently prune
the fault space. However, developers might also accidentally miss failures
as recipes only represent certain fault scenarios. We therefore believe that
pruning should only be used when the overall system has been thoroughly
tested already (e.g., skip faults in mature services).

Prioritization. There is no prioritization involved since fault scenarios
are produced by the algorithmic recipes. It remains up to developers to
decide in which order the recipes are executed. Nevertheless, developers
might still outperform automated strategies with their domain knowledge.

Oracle. Each recipe contains assertions which are automatically checked.
The focus of these assertions is mainly on the working of resilience mech-
anisms itself and not on the internal state of microservices. To this end,
Gremlin provides several base assertions to ease the work of the developer.
For example, the assertion HasBoundedRetries(Src, Dst, ...) checks
whether such a mechanism is implemented correctly between two given ser-
vices. The developer can always query a centralized store with event logs
in case custom assertions are needed.

5.6.1.2 PreFail

Joshi et al. [JGS11] empirically observed that recovery procedures of resilience
mechanisms are often buggy in cloud systems such as HDFS, Cassandra, and
ZooKeeper. The major reasons are that developers fail to anticipate failures or
that they incorrectly implement the recovery mechanism. The authors indicate
that previous work primarily addresses single failures during program execution
despite cloud systems facing multiple failures. This is understandable as the
challenge lies in the combinatorial explosion of multiple failures. In general,
it is not feasible to explore all failure scenarios in practice. However, domain
knowledge of developers can drastically reduce the fault space to be explored.

98 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

To this end, the authors present PreFail, a programmable tool for multiple-
failure injection where developers can express heuristics to reduce the space of
failure scenarios. The tool is split up into a failure-injection engine and failure-
injection driver. The former is an fault injection tool that injects prescribed faults
in components, while the latter generates fault scenarios based on developer-
specified heuristics. PreFail has the following properties:

Fault Model. The targets of PreFail are defined by the failure-injection
engine and includes Java library calls, network-level calls, disk-level calls,
and system calls. PreFail then injects faults to determine the system’s
resilience to partitioning failures related to node, disk, and network.

Environment. PreFail is presented in the context of development en-
vironments. It requires a workload, but the format of these workloads
remains unclear. One limitation is that PreFail does not control all kinds
of non-determinism such as network message ordering.

Exploration. PreFail is generic and supports different use cases where
fault scenarios can consists of one or more tuples. Combinations of two
or three tuples are automatically generated but are later pruned by the
policies provided by developers. This is essential to mitigate combinatorial
explosion in the number of failure scenarios and makes testing for combi-
nations feasible. An example of a heuristic is shown below and written
in Python. This policy prunes away failure sequences where crashes are
injected after a write I/O.
1 def flt(fs):
2 for f in failure_sequences :
3 fp = failure_injection_point (f)
4 isCrash = (fp[’failure ’] == ’crash ’)
5 isWrite = (fp[’ioType ’] == ’write ’)
6 isBefore = (fp[’place ’] == ’before ’)
7 if isCrash and (not (isWrite and isBefore)):
8 return False
9 return True

Listing 5.2: A policy in PreFail.

Pruning. There are many different ways in which developers can reduce
the fault space. For example, policies can reduce the number of fault scenar-
ios based on the kind of fault targets (e.g., only two out of three replicas),
the kind of fault types (e.g., those that cause rack or disk failures), do-
main knowledge (e.g., only target the first file write), probabilities (e.g.,
likelihood of rack or disk failures), etc.

Prioritization. While the heuristics reduce the number of fault scenarios,
they do not impose an order in which they are explored.

Oracle. The authors indicate that they wrote recovery specifications for
every target workload to capture recovery bugs in the system. However,
the language and kind of assertions of these specifications remains unclear.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 99

5.6.1.3 Setsudo

Modern distributed systems are often designed to be fault-tolerant to partition-
ing. However, Ganai et al. [GBJG15] state that partition-tolerance is not tested
rigorously in practice. To this end, the authors propose Setsudo, a testing
framework for distributed systems. This framework works with policies defined in
the Perturbation Testing Policy Language (PTPL). This policy language enables
developers to express fault scenarios in a declarative style with four constructs:
targets, actions, pre hooks, and post hooks. Each of these can be combined
without limitations to express fault scenarios. Setsudo automatically translates
these fault scenarios into actual fault injections during execution by intercept-
ing targets through AspectJ and simulating varying failures. Setsudo has the
following properties:

Fault Model. Setsudo supports different kinds of faults such as the
ones that simulate network failures, network congestions, disk failures, data
corruption, and node crashes. The fault targets vary between nodes, disks,
links, etc.

Environment. Setsudo is a testing framework and presented in the
context of development environments. The authors indicate that client-side
workloads are required but do not give information about their format.

Exploration. While fault scenarios are automatically generated from a
test policy, it remains up to developers to provide the policy. Fault scenarios
are one or more tuples. An example of such a policy S is shown below where
each tuple xi consists of a precondition, target, action, and postcondition.
For example, state-healthy (line 5) is a predicate that checks the service
is running, while node-shardLeader-1 (line 8) refers to the service that is
currently the leader.
1 S =(x0 *(x1 *((x2 +(x3+x0))*x0)))
2
3 x0 = (state - solrSteady and state -zkSteady ,
4 node -client , check -health , abort - error)
5 x1 = (state -healthy , node -client ,
6 request - indexEmpty , state - indexEmpty)
7 x2 = (x21 * x22)
8 x21 = (true , node - shardLeader -1, down , wait - timed)
9 x22 = (true , node - shardLeader -1, up , wait - timed)

10 x3 = (x31 * x32)
11 x31 = (true , node - shardNonLeader -all , down , wait - timed)
12 x32 = (true , node - shardNonLeader -all , up , wait - timed)

Listing 5.3: A policy in Setsudo.

Pruning. Developers manually write policies and hereby inherently prune
fault scenarios. However, this can still generate many redundant fault sce-
narios which are not pruned. The authors plan to automatically remove
such redundant fault scenarios in future work.

100 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Prioritization. There is no prioritization of fault scenarios. While the
authors indicate this is part of their future work, they give no information
about how such a prioritization would work.

Oracle. The oracle is based on one of the following three anomalies: a slow
response, no response, or an incorrect response. A monitor checks for any
of these anomalies during each fault scenario execution. It automatically
reports failures and stores information for later diagnosis.

5.6.2 Exhaustive Exploration of Fault Scenarios
This section discusses six approaches (i.e., Chaos Monkey [CTBV15], Fate
and Destini [GDJ+11], ChaosMachine [ZMH+19], ShortCircuit [CSM15],
TripleAgent [ZM19], and ChaosOrca [SZM+19]) that automatically and ex-
haustively generate fault scenarios.

5.6.2.1 Chaos Monkey

Around 2010, Netflix presented Chaos Monkey [CTBV15] as one of the first
Chaos Engineering tools. Netflix had started moving to the cloud a couple
of years earlier because vertical scaling resulted in many points of failure and
disruptions. It was expected that a shift to the cloud would reduce infrastructure-
related issues since they no longer had to manage their own infrastructure and
horizontal scaling would reduce single points of failure. Of course the cloud still
incurs failures from time to time. Netflix needed a new approach to make their
microservice architecture resilient to occasionally disappearing instances of their
services on Amazon Web Services (AWS). Chaos Monkey has the following
properties:

Fault Model. The fault targets are service instances deployed on AWS
and the faults simulate terminations. Terminating an instance can simulate
both network failures as well as instance failures. It does this at a much
more frequent rate than typically seen in reality in order to gain confidence
that an unlikely termination would not cause service disruptions. Chaos
Monkey automatically detects the running instances. This is required as
it is not feasible for developers to manually specify each instance in Net-
flix’s microservice architecture. Not only does the architecture consists of
thousands of instances running in the cloud, services also change over time,
both in terms of location (e.g., due to cluster migration) and number (e.g.,
due to elasticity).

Environment. Given its goal, it is clear that Chaos Monkey targets
production environments and uses real user requests as the workload. In
particular, it targets systems running on AWS instances.

Exploration. Fault scenarios are automatically generated but contain
only one tuple consisting of an AWS instance and a termination fault.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 101

However, approaches that randomly generate fault scenarios cannot quan-
tify progress. For example, it remains unclear whether all services were
explored, neither whether all critical ones were considered. However, com-
mon reasons to use random exploration is its simplicity and its applicability
in a setting where the system and its environment are considered a black
box.

Pruning. The first version of Chaos Monkey did not allow developers
to specify particular instances of services. Over the years, Chaos Monkey
has become more sophisticated in the way it allows developers to specify
termination frequencies, grouping, and exceptions16.

Prioritization. Chaos Monkey randomly shuts down instances. As
a result, there is not prioritization involved for services that might need
more attention. For example, a recently-deployed service might cause more
failures than mature ones.

Oracle. The approach of Chaos Monkey does not involve an automated
oracle. It remains up to developers to manually assess the impact of these
terminations through metrics and logs. This is also a reason why Chaos
Monkey only terminates instances during business hours.

5.6.2.2 Fate and Destini

Gunawi et al. [GDJ+11] argue that failure recovery is challenging in cloud sys-
tems and indicate that it remains hard to systematically explore and test re-
covery mechanisms with current testing frameworks. The authors propose two
advancements in cloud recovery testing: Fate and Destini. Fate systemati-
cally explores combinations of multiple failures and addresses the challenge of
exponential explosion by means of pruning strategies. Destini is a specification
language that enables developers to specify recovery behaviour. Fate has the
following properties:

Fault Model. Fate targets so-called I/O points. These points are system
or library calls that perform disk or network I/O. The fault model of Fate
consists of faults that cause six failures: crash, permanent disk failure, disk
corruption, node-level and rack-level partitioning, and transient failure.

Environment. The main purpose of Fate is to test recovery mechanisms
during development. A workload is required to run the tool which can either
be real or test requests to the cloud system. One limitation of Fate does
not control all kinds of non-determinism such as network message ordering.

Exploration. Fault scenarios are one or more tuples. By default, Fate
generates fault scenarios automatically and exhaustively. However, the
authors indicate that exhaustive exploration remains a challenge.

16https://netflix.github.io/chaosmonkey/Configuring-behavior-via-Spinnaker

https://netflix.github.io/chaosmonkey/Configuring-behavior-via-Spinnaker

102 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Pruning. Given the large fault scenario space, a simple filter can be used
to reduce the fault space. For example, only faults in specific components
should be explored. Fate also provides two built-in pruning strategies
which can be enabled by developers to reduce the number of fault sce-
narios. These strategies are based on dependencies between faults. The
first strategy effectively prunes away fault scenarios when two faults are
not causally related (i.e., the second occurs independently of the first).
The second strategy prunes away fault scenarios where symmetric code is
involved (i.e., identical code that runs concurrently on different nodes).

Prioritization. While Fate supports so-called prioritization strategies,
they only prune the search space but do not impose an ordering in which
the fault scenarios are explored.

Oracle. While developers are accustomed to testing frameworks, the au-
thors claim that these are limited in expressing recovery specifications.
Therefore, Destini provides a Datalog-based specification language that
enables developers to write recovery specifications. An example of such a
specification is shown below which informally throws an error whenever a
cnpEv event occurs and the system is not in the expected state stateY for
a given set of I/O points (Pi). Fate itself informs Destini about failure
events such that it can decide whether the recovery specification is violated
or not. However, this specification language might be an obstacle for de-
velopers as it imposes a learning curve. Moreover, replacing Destini does
not seem possible as it is tightly coupled to Fate.
1 errX(P1 ,P2 ,P3) :- cnpEv (P1), NOT -IN stateY (P1 ,P2 ,_)

Listing 5.4: A Destini recovery specification.

5.6.2.3 ChaosMachine

Exceptions represent unexpected and abnormal conditions in a system. They oc-
cur so frequently that the majority of programming languages provide try-catch
constructs to specify exceptional behaviour which is typically different from the
normal one. It is essential that systems are resilient to these exceptions. Zhang
et al. present ChaosMachine [ZMH+19] as a tool that reveals the strengths
and weaknesses of every try-catch block in the system. The approach inserts
additional bytecode at the beginning of each block such that exceptions can be
thrown during execution. The inserted code communicates with a controller that
orchestrates the experiments to assess the resilience of the system. ChaosMa-
chine has the following properties:

Fault Model. ChaosMachine tests the resilience of try-catch blocks
by means of inserting code that throws exceptions at run-time. These
exceptions vary across systems as they depend on the type of the exceptions
that can be thrown.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 103

The fault model is thus based on try-catch blocks as targets and exceptions
as their faults. These blocks are automatically detected through the use of
ASM17. Exceptions are only thrown at the beginning of a block. Note that
a try-catch block can be split up to catch different kinds of exceptions. A
fault tuple consist of a try-catch block, an exception, and a number that
indicates how many times this exception has to be thrown (e.g., only the
first 10 times or always)

Environment. As the name suggests, ChaosMachine follows the prin-
ciples of Chaos Engineering (cf. Section 5.3). That is, ChaosMachine
allows developers to specify, discover and falsify hypotheses in order to as-
sess the system’s resilience to exceptions. By definition, this means that
the tool is presented in the context of production environments.

Exploration. Fault scenarios are automatically generated and consist of
a single tuple. Try-catch blocks are tested one at a time thus combina-
tions of exceptions are not considered. By default, every try-catch block is
exhaustively explored to detect failures.

Pruning. ChaosMachine considers hypotheses to test through developer-
specified annotations as shown in Listing 5.5. Automated and exhaustive
discovery is supported as well. Moreover, developers can limit hypothesis
discovery to a specific package by configuring this explicitly. As a result,
certain fault scenarios can be pruned by developers. This gives developers
the freedom to leverage their domain knowledge in order to select critical
try-catch blocks and validate their corresponding hypothesis.
1 state = SystemState .A;
2 try {
3 ... // an error is thrown
4 state = SystemState .B;
5 } catch (
6 @ ChaosMachine (hypoth = Hypoth . RESILIENT)
7 Exception e
8) {
9 ... // handles the exception

10 state = SystemState .B;
11 }

Listing 5.5: A developer-specified resilience hypothesis.

Prioritization. ChaosMachine does not prioritize the try-catch blocks.

Oracle. The oracle is based on metrics gathered from the production
environment through monitoring (e.g., CPU usage) or developer-specified
metrics. Developers have to specify thresholds on these metrics in order
to determine the outcome of a hypothesis. According to these metrics,
try-catch blocks are classified in four categories: resilient (i.e., equivalent
behaviour), observable (i.e., user-visible effects), debuggable (i.e., excep-
tion is logged), and silent (i.e., neither observable nor debugging).

17https://asm.ow2.io

https://asm.ow2.io

104 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

5.6.2.4 ShortCircuit

Cornu et al. [CSM15] focus on resilience against unanticipated exceptions. To
this end, they present an approach called short-circuit testing (for brevity, we
call this approach ShortCircuit) which aims to test resilience against excep-
tions by analysing their corresponding try-catch blocks. Each try-catch block is
automatically detected through a static analysis and the collected type of the
exception of each block is simply its statically declared type. These blocks are
assessed according to two contracts: source-independence and pure resilience.
The former indicates that a block’s behaviour is identical under abnormal condi-
tions (i.e., when the try-catch block is executed), but still differs from behaviour
under normal conditions. The latter indicates that the block’s behaviour is al-
ways identical, regardless under which conditions. Moreover, source-independent
blocks can be refactored to catch more exceptions. The authors propose catch-
stretching to replace the exception type with one of its super types with as goal
to make the try-catch block more resilient. ShortCircuit has the following
properties:

Fault Model. The targets of this approach are try-catch blocks. The
authors use a static analysis to determine all try-catch blocks and issue a
standard run of all test cases to determine whether a test covers a try-catch
block. In contrast to previous approaches, one could argue that this fault
model has a dynamic behaviour (i.e., the faults are based on the statically
declared exception types which differ between programs).

Environment. ShortCircuit is meant to be used during development
as it leverages existing test suites. This relates to the concept of Test
Amplification (cf. ??), similar to what we use in our approach.

Exploration. A fault scenario is automatically generated and consists of a
single tuple. Only one try-catch block is tested at a time and an exception
is only thrown at the beginning of a block. The approach exhaustively ex-
plores fault scenarios with try-catch blocks that are not explicitly triggered.

Pruning. ShortCircuit does not prune fault scenarios. Given a program
and its test suite, it will detect all try-catch blocks in the program and assess
them all by triggering an exception during successive test executions.

Prioritization. The authors do not indicate the possibility of prioritizing
certain try-catch blocks. We believe ordering try-catch blocks (e.g., by the
number of calls to their enclosing method) can speed up detection.

Oracle. ShortCircuit uses test suites as an oracle to assess program cor-
rectness and to determine whether the try-catch blocks are source-independent
or resilient. The latter can informally be considered as “the perfect plan B”
(e.g., read from database instead of cache) and is by construction source-
independent. Systems with such try-catch blocks are therefore more desir-
able since behaviour remains the same under any condition.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 105

5.6.2.5 TripleAgent

Zhang et al. [ZM19] propose failure-oblivious computing [RCD+04] to make sys-
tems resilient to uncaught and incorrectly handled exceptions. Their approach
is implemented in the tool TripleAgent and serves two main purposes. First,
it classifies locations (i.e., statements in methods that can throw exceptions)
into three categories according to the effect of the exception. A location is clas-
sified as either fragile (i.e., a single exception causes unexpected behaviour),
sensitive (i.e., multiple exceptions cause unexpected behaviour), or immunized
(i.e., resilient to any number of exceptions). Second, it automatically indicates
improvements to exception-handling problems. Every method on the stack af-
ter the source of an exception but before the default handling method can be
a failure-oblivious method. A method is failure-oblivious when an instrumen-
tation of it with a default try-catch block has no effect on the outcome when
an exception is thrown in a method below. These failure-oblivious methods pro-
vide the same resilience guarantees as the original exception handling defined in a
method higher up on the call stack. TripleAgent reports the methods between
the source of exception and its handler that are found not to be failure-oblivious
might cause resilience issues. TripleAgent has the following properties:

Fault Model. TripleAgent tests the resilience of methods against un-
caught exceptions. Fault targets are statements in a method. Compared
to other approaches where an exception is only injected at the beginning
of a method, it injects checked exceptions before statements that throw an
exception. Fault tuples therefore consist of a method, statement location
and exception. In this way, the tool explores all possibilities and can differ-
entiate the impact of exceptions at different locations. A static analysis is
used to find out the statically-declared checked exceptions of each method.
Only those exceptions are injected by TripleAgent. The exceptions can
be injected in two ways: only when the target is reached for the first time,
or every time the target is reached.

Environment. TripleAgent is presented in the context of development
environments. It requires a Java system and a production-like workload
as input. For example, the authors evaluate a file transfer client where the
workload represents the user downloading a large file from the internet.
The authors indicate that using TripleAgent in production is part of
their long-term goal.

Exploration. Fault scenarios are automatically generated and consist of
a single tuple. By default, the proposed algorithm selects all locations of
all methods where checked exceptions can be thrown and thus exhaustively
explores the fault space.

Pruning. Developers are not able to leverage their domain knowledge to
skip certain methods, exceptions or locations.

106 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Prioritization. TripleAgent does not support method prioritization.

Oracle. The authors indicate that no test suites are required, but instead
requires a so-called acceptability oracle. This oracle defines acceptable
behaviour in terms of generic and domain-specific oracles. For example,
an acceptability oracle could be that the transfer client does not crash and
exits normally and is able to download a complete file. However, it remains
vague how these oracles are defined and in which language.

5.6.2.6 ChaosOrca

Simonsson et al. [SZM+19] apply the principles of Chaos Engineering to con-
tainerized applications. In particular, they present ChaosOrca, a tool that as-
sesses the resilience of system calls in Docker18 containers. Docker containers
heavily rely on these system calls to communicate with the kernel of the operating
system. As a result, the resilience of the application inside the container is corre-
lated with the working of these calls. The tool automatically detects all system
calls during the execution of the containerized application through system-level
instrumentation (i.e., bpftrace19). ChaosOrca has the following properties:

Fault Model. The fault targets of ChaosOrca are Docker containers
and their processes within. To assess the resilience of these containers, it
is enough to test the resilience to unexpected system calls results. The
faults can cause delayed execution and error codes. While there are over
100 error codes, the evaluation only considers 6 of them which are related
to resource and permission issues. A fault tuple therefore consists of a
system call, and an error code or delay. The authors indicate that system
call errors are representative of real-life failures. For example, the error
code EACCES represents the lack of sufficient permissions for the attempted
operation.

Environment. As the name suggests, ChaosOrca employs the princi-
ples of Chaos Engineering. By definition, this means that the tool targets
systems in production. ChaosOrca is unique in the fact that it conducts
experiments under production workload without instrumenting the appli-
cation inside the Docker container.

Exploration. Fault scenarios consist of a single tuple and are automat-
ically generated and exhaustively explored. Combinations of system calls
are not considered.

Pruning. The approach can target single containers and single processes
within them. Additionally, domain-knowledge of developers can be lever-
aged to indicate interesting system calls. By default, it exhaustively anal-
yses all kinds of system calls.

18https://www.docker.com
19https://github.com/iovisor/bpftrace

https://www.docker.com
https://github.com/iovisor/bpftrace

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 107

Prioritization. By default, ChaosOrca orders system calls by the num-
ber of invocations and manually-specified system calls (e.g., calls with a
low number of invocations, yet interesting to test because it is a critical
call). This increases the likelihood that the most important system calls
are tested first. As a result, the confidence in resilience of the system in-
creases faster.

Oracle. ChaosOrca records generic system metrics such as CPU us-
age, RAM usage, and network I/O. The authors indicate that the tool also
supports additional metrics provided by developers. While the tool auto-
matically computes metric differences, it remains unclear when the Chaos
Engineering experiment fails and whether this always indicates an actual
resilience issue (e.g., whenever the metric changes or goes above a certain
threshold).

5.6.3 LDFI-driven Exploration of Fault Scenarios
This section discusses five approaches (Molly [ARH15], ldfi-netflix [AAS+16],
ldfi-akka [Ghi19], IntelliFT [CWC+19], and Madaari [RE19]) that auto-
matically generate and explore fault scenarios using lineage-driven fault injection.
We refer the reader back to Section 5.4 for details on LDFI.

5.6.3.1 Molly

The seminal paper of Alvaro et al. presents an implementation of LDFI called
Molly [ARH15]. The authors use Molly to detect fault-tolerance bugs in large-
scale complex distributed systems such as the reliable message queue Kafka
and Paxos [Lam19]. The results indicate that Molly can find failures with an
order of magnitude faster than a random exploration of the fault space. Molly
was presented as a formal prototype where both the system and the correctness
specification is specified in the Dedalus language [AMC+10] — a declarative
rule-based language based on Datalog [EGM97]. Data lineage can therefore
easily be extracted from program executions through program rewrites. The
correctness specification can be expressed with pre and post conditions.

Fault Model. Molly focuses on crash-stop failures, message delivery
failures, and network partition failures. The authors indicate crash-recovery
failures as an avenue of future work. The presented fault model consists
of three parameters: a logical time to bound the execution, a logical time
at which message loss ceases, and a maximum number of crashes. The
first parameter is required to guarantee completeness. The second one
is to model intermittent message losses which eventually resolve. This
also avoids infinite message losses which are uncommon [BK14] and would
otherwise cause Molly to find counterexamples all the time (i.e., by losing
all messages). The last parameter indicates the maximum number of node
crashes (i.e., crash-stop) that can occur to avoid crashing all nodes.

108 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Environment. Molly is not specific to development or production en-
vironments. However, we consider it to be mainly used in development
environments. This is based on publications which indicate that deriving
a lineage from systems in production environments is challenging. Addi-
tionally, the approach assumes that messages are successfully delivered and
received in a deterministic order (i.e., the execution is deterministic) which
might not always be feasible to do in production environments.

Exploration. Fault scenarios consist of one or more tuples and are auto-
matically generated and explored by LDFI.

Pruning. Compared to exhaustive approaches, LDFI prunes away many
fault scenarios that are not possible for a given lineage. Developers can
prune away some of these fault scenarios but makes LDFI incomplete.

Prioritization. By definition, LDFI does not incorporate any explicit
ordering as it is represented as a decision problem. As a result, it will
return fault scenarios based on the underlying implementation of the SAT-
solver.

Oracle. The authors state that a correctness specification is required.
For this reason, Molly provides built-in contracts with a pre and post
condition to express distributed invariants.

5.6.3.2 LDFI-AKKA

Ghidei [Ghi19] explores a transposition of the ideas of Molly to the general-
purpose programming language Scala, in which data lineage cannot readily
be extracted from a given program. The author presents ldfi-akka20 which
extends Molly to the general-purpose, object-oriented language Scala where
distributed programs are written using the actor framework Akka.

The author utilizes program rewrites for inserting both logging and control-
ling constructs. ScalaFix21 is a well-known library to transform ASTs through
developer-specified syntactic or semantic rules. For logging information about the
actor system and its events, they make actors extend a specific trait and rewrite
the receive block. ldfi-akka uses the collected information to build a lineage
graph based on the exchanged actor messages during system execution. However,
the evaluation hints that this approach might not scale on a fine-grained level of
actor messages. In order to deterministically replay the execution, ldfi-akka
wraps message sends within a check to see whether the message should be sent
according to the previously recorded execution.

20https://github.com/KTH/ldfi-akka
21https://github.com/scalacenter/scalafix

https://github.com/KTH/ldfi-akka
https://github.com/scalacenter/scalafix

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 109

Fault Model. This work extends and adapts Molly to the actor-based
framework Akka. The targets are therefore messages and actors, while the
faults simulate message failures and node crashes.

Environment. The author does not indicate whether a development or
production environment is targeted. However, given the limited scalability
we deem this technique to be only usable in development environments.
ldfi-akka is also only sound and complete under several assumptions. A
synchronous execution model must be used (i.e., all messages are eventually
delivered and have a deterministic ordering, analogous to Molly [ARH15]),
the program rewrites and SAT solver must be sound, and the programs
must be deterministic in their nature.

Exploration. Fault scenarios consist of one or more tuples. ldfi-akka au-
tomatically generates and explores fault scenarios through LDFI. However,
the evaluation hints this approach might not scale properly at a message-
based granularity. This is a major limitation as Akka systems are typically
much larger than the programs used in the evaluation. These programs in-
clude (i) two examples presented in the original work of Molly [ARH15],
(ii) illustrative examples22 from the documentation of Akka including the
well-known Dining Philosophers [Dij78], and (iii) an implementation of the
Observable Atomic Consistency Protocol [ZH18]. However, ldfi-akka is
not able to execute the latter two. The former because the SAT solver was
overwhelmed with too many literals, and the latter because the program
deadlocks due to program rewrites that force a synchronous execution.

Pruning. ldfi-akka does not provide means to prune fault scenarios.
However, such an optimization might reduce the burden on the SAT solver.

Prioritization. ldfi-akka does not provide a way to prioritize fault
scenarios.

Oracle. The authors state that a correctness specification is required. An
oracle is given in the form of a predicate implemented in Scala.

5.6.3.3 LDFI-NETFLIX

Alvaro et al. [AAS+16] investigate how the prototype Molly [ARH15] can be
adapted and used at the scale of Netflix. While this approach has no specific
name, we call it ldfi-netflix. The authors indicate three major problems and
present their solutions with respect to Netflix’s microservice architecture.

The first problem relates to the Dedalus language which is used to imple-
ment the distributed system and makes it trivial to collect lineage information.
However, there are too many systems to port at Netflix and not all source code
is available which makes this infeasible.

22https://github.com/akka/akka-samples

https://github.com/akka/akka-samples

110 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Netflix therefore uses call graphs which are produced by their internal trac-
ing system. These call graphs do not contain functions, but rather the services
that participated in a user request. It is clear that the granularity of the lineage
is much higher then the one achieved by the research prototype Molly [ARH15].
While this approach enables Netflix to do automated fault injection, it is fun-
damentally less precise.

The second problem lies in replayability. Given the complex and dynamic
microservice infrastructure it is infeasible to replay user requests correctly as
internal state changes, service versions change constantly, and not all services
are idempotent for every request. To resolve this issue, they map individual
requests to a set of request classes using an equivalence relation. Intuitively,
two requests belong to the same request class when they interact with the same
services. In this way, failure hypotheses found in one request can be tested in
another request that maps to the same request class. In reality, these requests
are not always deterministic and therefore this mapping only produces a class
when the classifier has a high confidence that the request belongs to a class.

The final problem that needs to be resolved is to merge requests of the same
request class into a single model. By default, a request does not contain redun-
dancy because an alternative way is not explored in the original user requests.
Therefore, Netflix incrementally builds a model of the redundant ways a re-
quest class can provide a desired outcome. This coarse-grained lineage model is
extended over time (i.e., grouping the call graphs of all requests of one request
class into one model). LDFI uses this model to generate failure hypotheses. These
hypotheses are then tested in subsequent requests that belong to the hypothesis
its required request class.

Fault Model. Netflix uses a typical microservice architecture and there-
fore uses microservices as fault targets. The injected faults simulate failures
caused by timeouts, internal server errors (i.e., a 500 HTTP response code),
and exception handlers.

Environment. This work is presented in the context of production envi-
ronments. The authors indicate the difficulties and the trade-offs of using
LDFI in practice.

Exploration. Fault scenarios consist of one or more tuples. The under-
lying implementation of LDFI automatically generates and explores fault
scenarios. It is clear that the adaptation of LDFI from the research proto-
type Molly into Netflix’s microservice architecture poses several chal-
lenges. However, the authors show that this is feasible with some trade-offs
regarding data lineage and replayability. A more fine-grained lineage would
reduce the fault scenarios that ultimately are false positives.

Pruning. LDFI already prunes a large part of the search space. There is
no additional means to select fault scenarios.

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 111

Prioritization. By definition, LDFI does not incorporate any prioritiza-
tion as it is represented as a decision problem. The authors indicate that
detecting the most likely failure is part of their future work. However, this
requires transforming the decision problem (i.e., is there a set of faults)
into an optimization problem (i.e., which is the most likely set of faults).
The following two papers present approaches to tackle this problem.

Oracle. The oracles are based on metrics captured during the experiment.
However, multiple requests are tested to avoid false positives and the oracles
only mark an experiment as failed when 75% of the requests result in a
failure.

5.6.3.4 IntelliFT

Cui et al. [CWC+19] address two limitations of LDFI in a short paper with limited
details. One limitation is that each user request is considered in isolation, with-
out considering historical results of other requests. The other limitation is that
many redundant fault scenarios are generated, which could be pruned by using
previous results. To this end, the authors present IntelliFT, a feedback-based
implementation of LDFI which guides the exploration more efficiently through
historical results and heuristics, while leveraging existing integration test cases
to simulate user requests.

The algorithm consists of two parts. The first part randomly explores some
failure scenarios and measures their impact on test outcome. Next, the second
part will select and explore the most likely fault scenarios guided by feedback
of the subsequent fault scenarios. Similar to the previous paper, they use dis-
tributed logging to collect a lineage graph. The results show that their approach
only tries 12% of the fault scenarios determined by LDFI to find failures with
a naive implementation. However, it is unclear whether completeness remains
guaranteed. IntelliFT has the following properties:

Fault Model. The fault targets are microservices and faults simulate the
typical kind of failures in microservice architectures such as delay, discon-
nections, overload, and crashes.

Environment. IntelliFT uses integration tests to generate user requests
and capture the internal service call graph. IntelliFT is therefore pre-
sented in the context of development environments.

Exploration. Fault scenarios consist of one or more tuples and are gener-
ated and explored by the underlying LDFI implementation.

Pruning. While LDFI explores every possible fault scenario, selection is
used to filter the fault space by means of two heuristics. The first one is
based on propagation of failures. In particular, when an upstream service
observes the same error as its downstream service, it means that both
cannot handle the same failure.

112 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

This means that the scenario were both services are injected with a fault can
be pruned. The second one is based on the likelihood that more complex
failure scenarios will not succeed when simple failure scenarios already fail.

Prioritization. The prioritization of fault scenarios is determined by three
priorities: the priority of the request class, the priority of the fault type,
and the priority of the service. These priorities are, however, dynamically
computed based on subsequent executions of failure scenarios. Informally,
a request class has a high priority when there is a high number of found
failures and a low number of tested fault scenarios. A fault has a high
priority when there is a high number of found failures and a low number of
tested fault scenarios with this type of fault. A service has a high priority
when the service is not capable of handling a high number of tested failure
scenarios.

Oracle. The oracle is based on HTTP response codes for functional fail-
ures and on metrics for performance failures. For functional failures, a
failure is detected when the HTTP response code is anything except 200.
Otherwise, the absence of a failure is detected, except when the payload
contains keywords such as error and exception. For performance failures,
an upper bound is used on the metric (e.g., latency).

5.6.3.5 Madaari

Raina et al. [RE19] presented Madaari23 during a conference talk. It is impor-
tant to note that there are no scientific publications about this work and thus
affects the level of detail at which we can describe this work. The motivation
for the work is based on the fact that LDFI considers all faults as equal. How-
ever, this differs in reality because complex or new services are more likely to be
prone to faults, compared to more robust or mature services. This intuition is
backed up by historical post-mortem reports and logs [HRJ+16]. The proposed
approach converts LDFI from a decision problem to an optimization problem. In
particular, it introduces an order in which LDFI explores fault scenarios at eBay.
While LDFI originally was presented as a rather formal technique, it becomes
clear that large companies are investing time and money to make this technique
work for their large-scale architectures. Madaari has the following properties:

Fault Model. The authors talk about failed remote procedure calls (RPC)
in their real-world example. We therefore assume that remote procedure
calls inside microservices are the fault targets and faults are response codes.

Environment. The authors show a real-world application of Madaari
to eBay’s payment platform. They use techniques similar to those from
previous work to distil a lineage graph of their system.

23https://rsmemory.info/video/YoqS0F2ApamiY4g/jotb19-madaari.html

https://rsmemory.info/video/YoqS0F2ApamiY4g/jotb19-madaari.html

5.6. OVERVIEW OF RESILIENCE TESTING APPROACHES 113

However, it remains unclear whether Madaari is really used in the context
of production environments as their use of tests as oracle seems to suggest
otherwise. We therefore situate Madaari in the context of development
environments.

Exploration. Fault scenarios consists of one or more tuples and are au-
tomatically generated and explored by LDFI. As future work, the authors
indicate that currently only time (i.e., the order of the call graph) is con-
sidered and not state. The call graph already imposes an ordering in which
faults are injected (i.e., time). However, it might be interesting to only
generate fault scenarios where the state of a fault target matches a particu-
lar predicate. For example, only inject a fault in a mail service when there
are at least 5 mails queued for a given email address.

Pruning. The authors do not present any means to prune fault scenarios.

Prioritization. The authors use two kinds of priorities to order fault
scenarios. The first priority is based on the depth of a node in the lineage
graph, while the second one is based on the size of the sub graph below
a given node. That is, the closer one node is to the root, the more likely
that a failure of another node in the sub graph will manifest itself in that
one node. Thus, when injecting a fault in one node and the outcome is
still successful, the whole graph below that one node does not need to be
explored any more.

Oracle. The authors propose end-to-end (E2E) tests in order to replay
interactions and assertions to determine the outcome. Given the automated
characteristics of E2E tests, we assume that no manual effort is required to
determine the outcome.

5.6.4 DD-driven Exploration of Fault Scenarios
This final section discusses the approach of Thor [AMM15] which automatically
explores fault scenarios using delta debugging (cf. Section 5.5).

5.6.4.1 Thor

Adamsen et al. [AMM15] observe that developers of mobile applications often
ignore unusual behaviour in their test suites. That is, developers do not test
for events that are unlikely to happen during the use of the application. In
particular, the authors focus on events that should be neutral to the execution:
whether they occur or not should not affect the outcome. To this end, Adamsen
et al. [AMM15] present Thor. This tool automatically tests Android applica-
tions under abnormal conditions by injecting neutral events in each test case and
determining whether test outcome remains identical. Thor has the following
properties:

114 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Fault Model. The Android framework consists of more than 60 different
services that each have their own neutral events. That is, events that should
not affect the outcome. For example, rotating a screen, temporary connec-
tion loss, or carrier changes are events that are considered to be neutral.
Thor targets these services and injects different kinds of neutral events to
mimic service actions that would not occur under normal conditions. These
events are injected in the application immediately after instructions that
trigger events (e.g., click or swipe) in a test case. The fault tuples therefore
consist of a trigger instruction of a test event and a set of neutral event
sequences for a given service. In the evaluation, Thor only injects events
related to the activity manager and the audio service.

Environment. Thor is presented in the context of development environ-
ments as it applies test amplification on existing test suites.

Exploration. Fault scenarios consist of one or more tuples and are ex-
plored by delta debugging. Important to note is that all neutral event
sequences are concatenated together and injected aggressively after a trig-
ger instruction. For example, the event sequences pause-resume targeting
the activity manager and wifi-4G-wifi targeting the connection manager
are concatenated a list s=[pause-resume,wifi-4G-wifi] such that a fault
scenario would look similar to {(clickX, s)}, {(clickY, s)}. Merging
all event sequences together is possible since neutral event sequences are
closed under concatenation. Thor leverages delta debugging to find out
the minimal neutral event sequence that causes the failure.

Pruning. Neutral events must be decided by developers as it can be a
subjective matter. Thor does not enable developers to filter out certain
trigger instructions. However, the authors present a way to reduce redun-
dant injections by means of tracking abstract states. These states consist of
an abstraction that includes the user interface state together with a trigger
event and neutral events. Whenever such a state is already seen, the in-
jection is skipped because any failure caused by that injection would likely
have been found already. However, this mechanism may cause some failures
to be missed.

Prioritization. Delta debugging its performance can be affected by chang-
ing the order in which partitions are tested (cf. Section 5.5.4). However,
the authors do not discuss this matter and therefore assume that injection
points or neutral events are not prioritized during testing.

Oracle. Thor amplifies existing test suites. Therefore, the oracle is based
on the assertions that developers wrote and their effect on test outcome.
No additional oracles or specifications are needed which facilitates the use
for developers.

5.7. OBSERVATIONS 115

5.7 Observations
We now discuss the following observations made throughout our survey of the
state of the art. Based on these observations, we distil the shape for our approach
to resilience testing which we present in the next chapter.

Fault Model. The majority of the fault models can be divided into
two categories. The first category groups models about exceptions, while
the second one groups models about typical faults in distributed systems
(e.g., node, disk, and network failures). The approach of Adamsen et
al. [AMM15] presents an atypical fault model: neutral events in Android.
Our fault model consists of faults that try to uncover message idempotency
failures and actor restart failures. These faults should be neutral in a re-
silient system: whether they occur or not should not affect functionality.
The fault targets are fine-grained as they are the actual messages that are
exchanged between actors.

Environment. About one third of the approaches is presented in the con-
text of production environments due to their Chaos Engineering method-
ology, while the others are presented in the context of development envi-
ronments. Both environments have their own merits. On the one hand,
injecting faults in production environments can be risky as it might crash
the system. On the other hand, development environments have to rely on
artificial workloads which might not be representative of typical requests
through the system.
Our approach is presented in the context of development environments be-
cause we consider our approach to be the first step towards a resilient system
during the software development process.

Exploration. Several of the approaches require developers to write fault
scenarios manually. However, these approaches require manual effort and
extensive domain knowledge which might not be always available. Despite
these drawbacks, it might outperform automated analyses as the fault sce-
narios capture only the fault space that is of interest to developers. The
majority of the approaches use a default approach: exhaustively generate
and explore all fault scenarios one by one. As a result, testing budget is
wasted as many fault scenarios have to be explored. LDFI avoids exploring
multiple fault scenarios by exploiting the system’s redundancy. We also
found one approach (i.e., [AMM15]) that uses the delta debugging algo-
rithm in combination with neutral events to efficiently explore the fault
space. In particular, it iteratively explores one fault scenario consisting of
all fault tuples and determines a minimal fault scenario when a failure is
found.
Our approach automatically generates fault scenarios based on information
of the system’s execution and provides an exploration strategy based on delta
debugging to find resilience defects efficiently.

116 CHAPTER 5. STATE OF THE ART IN RESILIENCE TESTING

Pruning. Several approaches provide means to prune the fault space.
This is either by means of manually writing fault scenarios or by applying
heuristics. It is vital to reduce the fault space when possible as the fault
space is typically large for distributed systems.
Our approach provides a pruning strategy based on the causality relation
between actors and their messages.

Prioritization. The majority of the approaches do not provide means to
prioritize fault scenarios. This shows a major area of research to further
optimize resilience testing.
Our approach provides means to prioritize fault scenarios based on actor-
specific prioritization strategies. We evaluate the impact of the different
strategies for each of our exploration strategies.

Oracle. The majority of approaches utilize test suites or metrics to con-
clude whether a failure occurs or not. Some use dedicated specification
languages. It is known that developers put a vast amount of time and ef-
fort in test suites. As a result, they include domain knowledge that can be
reused in the context of resilience testing.
Our approach leverages the test oracles from existing test suites and uses
these to determine whether injecting faults in a test case leads to a failure.

5.8 Conclusion
This chapter provided an overview of the state of the art in resilience testing.
First, we started by defining the meaning of resilience, its concepts, and its dif-
ficulties. Next, we discussed Fault Injection, Chaos Engineering, Lineage-Driven
Fault Injection (LDFI), and Delta Debugging (DD) as they are closely related to
resilience testing. We defined the necessary terminology such as faults, failures,
and fault scenarios to understand the foundations of fault injection. Addition-
ally, we illustrated the internal workings of LDFI and the minimizing and general
delta debugging algorithm. Overall, this should provide enough terminology and
background information to understand the remainder of this dissertation. We
then presented the results of our literature study where we assessed existing re-
silience testing approaches on several properties. We concluded that existing
work is limited for actor systems and also provides ample room for better explo-
ration, pruning, and prioritization strategies. We grouped each of the approaches
into four categories based their fault scenario exploration strategy: developer-
specified, exhaustive, LDFI-based, or DD-based. We also identified three main
categories of failures: failures related to exceptions, failures related to distributed
systems, and failures related to neutral event sequences in mobile applications.
Finally, we summarized our observations for each property and discussed how we
will incorporate these observations into our approach to resilience testing. We
present our approach and its implementation in the next chapter.

Chapter 6

Chaokka: A Dynamic
Analysis Approach to
Resilience Testing

As mentioned in the first chapter, contemporary systems are increasingly mi-
grating to distributed architectures with fine-grained services. The actor model
provides a foundation to build such distributed systems and has been widely
adopted in the industry through frameworks such as Akka. However, the dis-
tributed nature of these systems exposes them to certain conditions to which
they should be resilient. Despite that actor model frameworks provide multiple
resilience mechanisms, it remains difficult to implement them and test whether
they work as expected under such conditions. This chapter therefore describes
our approach to resilience testing in the context of actor systems.

Section 6.1 presents the motivations behind this work. We describe the po-
tential resilience defects that can occur during the implementation of resilient
actor systems. Next, Section 6.2 provides an overview of Chaokka — our auto-
mated resilience testing approach that is built on top of the frameworks Akka
and ScalaTest. The following sections then detail each step of Chaokka.
Section 6.3 formally presents the concept of execution traces, causality, and fault
scenarios in the context of the actor systems. Section 6.4 introduces three ex-
ploration strategies including our strategy based on delta debugging. In order
to navigate more efficiently through the fault space, Section 6.5 discusses prun-
ing strategies including our causality-based strategy, while Section 6.6 presents
multiple prioritization strategies to find resilience defects sooner. Penultimately,
Section 6.7 briefly discusses the usage of Chaokka and its possibilities to be
extended with support for additional resilience defects and strategies. We will
use Chaokka in the next chapter to determine the efficacy of resilience analyses
with different combinations of strategies. Finally, Section 6.8 discusses several
application domains of our resilience testing approach.

117

118 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.1 Motivation
Even though it is increasingly important in this age to have resilient distributed
actor systems, it remains hard to implement and test resilience mechanisms (cf.
Section 5.1.2). Not only because these mechanisms have to be integrated in sys-
tems that already are inherently complex, but also because automated resilience
testing approaches are limited in number.

In particular for actor systems implemented with Akka, Section 6.1.1 ex-
emplifies the potential defects in two resilience mechanisms, while Section 6.1.2
demonstrates how hard and cumbersome it is for developers to manually explore
the behaviour of a system under abnormal conditions.

6.1.1 Difficulties of Implementing Resilience Mechanisms
To increase the resilience of systems, frameworks provide resilience mechanisms
such as guaranteed message delivery, compartmentalization, actor supervision
strategies, persistence of actor state, and circuit breakers to temporarily suspend
actor interactions. We discussed several of these mechanisms in Section 2.3.
However, implementing these resilience mechanisms further increases the sys-
tem’s complexity which might result in defects. We discuss one defect of the
resilience mechanism that guarantees message delivery and one defect of the re-
silience mechanism that handles actor restarts.

6.1.1.1 Guaranteed Message Delivery

On the level of messages, developers need to account for message delivery failures.
This can be mitigated by implementing at-least-once message delivery semantics.
However, implementing this resilience mechanism can lead to two defects:

1. developers may forget that a message can arrive more than once, and

2. developers may not be aware that messages might arrive out of order.

Both defects arise when the receiving actor is implemented incorrectly. How-
ever, these defects are the result of the sender’s resilience mechanism that re-
peatedly sends messages until it has received an acknowledgement. This implies
that the mechanism is spread across two actors which might complicate the im-
plementation. We only focus on the former defect as idempotency is a known
problem [Hel12,HROE13] and the latter has been widely studied in general as
a concurrency defect (e.g., [LMBM18,TPLJ13]). There are two possibilities to
avoid handling messages more than once: either by tracking the identifiers of
messages to avoid processing the same message twice, or by making the message
processing idempotent at the level of the business logic.

6.1. MOTIVATION 119

The example we have shown earlier in Listing 2.4 and Listing 2.5 on page 21
demonstrates the difficulty of implementing at-least-once delivery correctly. The
code is actually a simplified version of a real-world question posted on Stack-
overflow1. In that question, a developer experienced a problem with messages
arriving multiple times:

"The problem is that I get different results each time I run this pro-
gram. The correct answer is 49995000 but I don’t always get that
[when sending integers 1 to 9999 to the actor GuaranteedDeliveryAc-
tor]."

At first sight, the implementation (i.e., Listing 2.4 and Listing 2.5) and test
case (i.e., Listing 2.6) look correct and seem to work in most cases. However,
the developer forgot to take into account that Accumulator may receive a mes-
sage more than once. For example, because the confirmation message sent by
GuaranteedDeliveryActor was not received in time by Accumulator. The so-
lution is to make sure that message processing is idempotent. However, systems
might not always be designed for idempotence [Hel07]. Moreover, verifying idem-
potency appears to be non-trivial [HROE13] and challenging [RV13].

6.1.1.2 Event Sourcing

On the level of actors, developers need to account for actor restarts. An actor
might be terminated and subsequently restarted by the framework when un-
handled exceptions occur, certain supervision strategies are used, or actors are
migrated from one cluster to another, or simply because actors had to be shut-
down. This can be mitigated by implementing Event Sourcing [Fow05] which is
the default mechanism of persistent actors. However, implementing this mecha-
nism can lead to two defects:

1. developers may not persist all the necessary state, and

2. developers may not replay the actor state correctly.

We focus on both defects as many distributed system failures are due to
services that fail to recover their state after a restart [OZRA19, LLLG16] with
inconsistent states as a result [CDSL+19]. In fact, restarting actors can also result
in sending messages again which might lead to the aforementioned problem of
not handling messages in an idempotent way.

The actor GuaranteedDeliveryActor shown in Listing 2.5 is resilient to actor
restarts, but its communication partner Accumulator shown in Listing 2.4 is not.
Any restart will reset its internal state such that count becomes 0. This, however,
will unlikely become clear from running the tests in normal conditions.

1https://stackoverflow.com/questions/27592304

https://stackoverflow.com/questions/27592304

120 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.1.1.3 Neutral Events

When we take a closer look at these events (i.e., duplicate messages and actor
restarts) that can cause these defects, we can informally say they should be
neutral to the execution of the system. That is, it shouldn’t make a difference
when messages are received more than once or when actors are restarted at any
moment in time. Deciding whether these events are truly neutral or not could
depend on the system and must be decided by the developers. For example, an
actor might perform additional side effects besides rehydrating its state upon
restart. Nevertheless, this concept of neutrality is also considered in other work
[AMM15] where events of Android services are considered to be neutral to the
execution of the application. For example, rotating the screen or changing the
mobile network should not change the execution. We follow the same reasoning
and consider these events to be neutral the execution of a resilient actor system.

6.1.2 Difficulties of Testing Resilience Mechanisms
One of the difficulties for developers remains to test these mechanisms under
abnormal conditions and is therefore typically neglected. Studies have shown that
tests often only cover the so-called happy paths2 and therefore neglect exceptional
behaviour [ECS15,JGS11]. As a result, developers stay in the dark about whether
their resilience mechanisms indeed work as expected.

Recall from Section 2.3.4 that TestKit provides means to test actors. How-
ever, the abnormal conditions under which resilience mechanisms are meant to
work correctly have to be simulated manually. Additionally, intercepting the tar-
get (e.g., specific messages) requires overriding and partially re-implementing the
internal behaviour of the actor. For example, simulating the conditions where
messages can arrive multiple times requires developers to adapt the test case
from Listing 2.6 to the one shown in Listing 6.1.

In particular, the method receiveCommand has to be overridden to find our
target message (line 15–20) and updateState has to be changed to send the
message twice (line 23–37). While the event PlusEvent is simple to handle in
this case, it still requires duplicating the original implementation and modify-
ing the call to deliver (line 27). This example shows that developers have to
put significant effort to determine resilience defects as there is no support from
Akka, nor from TestKit itself to do such things. Testing approaches that can
automatically determine such resilience defects are therefore needed.

2https://en.wikipedia.org/wiki/Happy_path

https://en.wikipedia.org/wiki/Happy_path

6.1. MOTIVATION 121

1 import akka. actor .{ ActorSystem , Props }
2 import akka. testkit .{ ImplicitSender , TestKit }
3 import org. scalatest .{ BeforeAndAfterAll , FlatSpecLike , Matchers }
4 import scala . concurrent . duration ._
5
6 class ExampleTest () extends TestKit (ActorSystem (" SystemUnderTest "))
7 with FlatSpecLike with ImplicitSender
8 with Matchers with BeforeAndAfterAll {
9

10 " Accumulator " must " correctly accumulate numbers " in {
11
12 var target : Plus = null
13 val a = system . actorOf (Props [Accumulator], name="A")
14 val props = Props (new GuaranteedDeliveryActor (a) {
15 override def receiveCommand : Receive = {
16 case m@Plus(amount) =>
17 // Determine our target message
18 if(amount == 2) target = m
19 super . receiveCommand (m)
20 case e => super . receiveCommand (e)
21 }
22
23 override def updateState (e: Event) = e match {
24 case PlusEvent (amount) =>
25 var duplicate : CountCommand = null
26 // Deliver the original message
27 deliver (ref.path)(id => {
28 duplicate = CountCommand (id , amount)
29 duplicate
30 })
31 // Deliver the message one more time
32 if(target != null) {
33 context . actorSelection (ref.path) ! duplicate
34 target = null
35 }
36 case e => super . updateState (e)
37 }
38 })
39 val actor = system . actorOf (props , name="GDA")
40
41 for (i <- 1 to 10) { actor ! Plus(i) }
42 Thread . sleep (2000)
43 a ! " result "
44
45 expectMsg ((1 to 10).sum)
46 }
47
48 override def afterAll : Unit = {
49 TestKit . shutdownActorSystem (system , 5 * 60 seconds)
50 }
51
52 }

Listing 6.1: A test case with additional code to find resilience defects.

122 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.2 Overview of the Approach
As observed in Chapter 5, there is a lack of automated tool support for testing
the resilience of actor systems. Manually testing that resilience mechanisms
work correctly under abnormal conditions might not only be time-consuming,
but also error-prone due the inherent complexity and large fault space. To this
end, we presented Chaokka: Chaos in Akka. Chaokka is an automated
resilience testing tool for systems implemented for the Akka and ScalaTest
frameworks. Figure 6.1 shows the architecture of Chaokka. We discuss each
step of the process in detail below and refer the reader to Section 6.7 for details
on its implementation.

Actor
System

Test
Suite

Test
Discovery

Initial Test
Execution

Trace
Analysis

Resilience
Analysis

Resilience
Report

Initial Test
Execution

Trace
Analysis

Resilience
Report

Exploration
Strategy

Pruning
Strategy

Prioritization
Strategy

...

Resilience
Analysis

Figure 6.1: The architecture of Chaokka.

1. Input. Chaokka requires an actor system written with Akka and a test
suite written with the ScalaTest framework. No modifications to the
source or to the test code are required.

2. Test Discovery. Chaokka automatically discovers test cases written
with ScalaTest and maintains test information in an index file which is
built when Chaokka runs for the first time. This file maps test cases to
their meta data such as name, duration, and test outcome. Subsequent
runs will load this index file to initialise the tool. The index file only needs
to be rebuild whenever the test suite is extended with new test cases.

6.2. OVERVIEW OF THE APPROACH 123

3. Resilience Testing. Chaokka tests the resilience of the system through
each test case individually. For each test case, it performs following steps:

(a) Initial Test Execution. First, Chaokka hooks itself into the imple-
mentation of the Akka framework through AspectJ3. It executes an
initial run of the test case and monitors the execution through these
hooks to collect an execution trace (cf. Section 6.3.1). This trace cap-
tures all events about actors being started, messages being sent, and
actors processing turns.

(b) Trace Analysis. Next, Chaokka analyses the captured execution
trace and determines the initial fault space. This is done by analysing
the trace for fault targets and generating fault tuples by combining
each target with a potential fault specified by the fault model. For
example, only persistent actors can be injected with a fault that simu-
lates a restart. Based on this fault space, different fault scenarios (cf.
Section 6.3.3) are analysed by a resilience analysis.

(c) Resilience Analysis. Finally, Chaokka executes a given resilience
analysis which is composed of three strategies: an exploration strat-
egy (cf. Section 6.4), a pruning strategy (cf. Section 6.5), and a
prioritization strategy (cf. Section 6.6). The exploration strategy will
determine in which systematic way the fault space is tested (e.g., delta
debugging), the pruning strategy will determine which faults remain
in the fault space (e.g., only faults related to specific actors), and the
prioritization strategy will determine in which order the exploration
strategy will explore faults (e.g., faults related to complex actors first).
This analysis repeats its exploration strategy until a failing fault sce-
nario is found that satisfies certain requirements (e.g., 1-minimality
for delta debugging) and for which the test oracle determines that the
test fails when the scenario is injected a run time.

4. Output. The output of Chaokka is a resilience report which includes the
found fault scenario. This information is actionable as it contains which
faults have to be injected in which fault target to make the system fail.
While developers with domain knowledge could manually debug the system
with this information, it might not be feasible for complex systems. We
refer the reader to actor debugging tools such as Kompós [MLA+17] and
Actoverse [SW17] that can be used by developers to set breakpoints on
the targets of the failure-inducing faults. The combination of such tools
and our resilience report should therefore help developers to detect and fix
resilience defects.

3We refer the reader to the source code to get an overview of all hooks.

124 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.2.1 Fault Injection as Foundation
Our resilience testing approach adopts the typical fault injection architecture
shown in Figure 6.2 and targets actor systems.

The generator component will use a given test suite and determine whether
the actor system executes as expected during fault injection. The injector model
will use our fault model specific to resilience defects in Akka. The monitor will
observe the behaviour of the system, capture an execution trace, and determine
the test outcome. Our approach uses the test oracle as its source of truth to
determine resilience defects. The key reason for this choice is that test suites
contain domain-specific execution scenarios and information about the expected
behaviour in the form of assertions. This is in contrast to generic assertions
that only assert whether the system produces a crash or whether an exception
is thrown. Moreover, the choice for alternative oracles are limited. Manual
observation of the system is difficult to scale, while oracles in the form of custom
specifications might present a barrier to usage in practice due to their associated
learning curve and expressiveness [GDJ+11]. Finally, the controller coordinates
each component to test the resilience of the target system.

Controller

Generator Injector Monitor

Target

Observes
behavior

Injects
faults

Generates
workloads

Figure 6.2: The fault injection architecture as the foundation of our approach.

6.3 Trace Analysis
The next sections provides information about the initial test execution and the
captured execution trace. Section 6.3.1 describes the notion of an execution trace.
Traces capture the necessary information about the execution of the actor system.
Next, Section 6.3.2 presents the causality relation which partially orders actors
events and is leveraged by one of our pruning strategies. Finally, Section 6.3.3
describes the semantics of fault scenarios in actor systems.

6.3. TRACE ANALYSIS 125

6.3.1 Execution Trace
Our resilience testing approach is based on the notion of an execution trace. This
trace captures all events that occur in the actor system during test execution and
will be analysed to get an initial fault scenario. Formally, a trace t is a finite set
of events where each event is either a Create, Send, or Turn event. Our definition
of a trace does not impose an ordering. Typically, events in a trace would be
ordered in the way they are recorded. However, events of different actors can
happen in parallel which renders the trace’s total ordering as incorrect. We will
determine the order of events through their send and turn identifiers as explained
in the next section. Figure 6.3 shows the formal definition of a test execution
trace and the information that it captures.

e ∈ Event :: = Create(aparent, bchild, fpersistent,mregistration)
| Send(afrom, bto, hmsg, isend, jturn, falod)
| Turn(afrom, bto, hmsg, isend, jturn)

t ∈ Trace = P(e1, e2, . . . , en)
f ∈ Flag is a finite set of boolean flags

h ∈ Hashes is a finite set of message hashes
i, j ∈ Identifier is a finite set of unique identifiers
a, b ∈ Address is a finite set of actor addresses

m ∈ Timestamp is a finite set of timestamps

Figure 6.3: A formal description of execution traces.

The addresses a and b denote unique locations in the actor system. For
instance, the address akka://system@host.com:5678/user/actor-1 represents
the actor with name actor-1 that was created by the parent actor with name
user. Both actors reside on the node akka://system@host.com:5678 of the
network. The identifiers i and j uniquely identify each message that is sent and
each turn in which a message is processed. A global counter is used for each
identifier.

1. Create. A Create event is captured whenever an actor at address aparent
creates a new actor at address bchild. The flag fpersistent indicates whether
this actor is persistent or not, while the timestamp mregistration indicates
the number of milliseconds elapsed since the UNIX epoch. These times-
tamps can be used to determine which actors are created before others.

2. Send. A Send event is captured whenever an asynchronous message with
hash hmsg is sent from actor at address afrom to actor at address bto. The
flag falod indicates whether this message was sent with at-least-once mes-
sage delivery semantics or not.

126 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

Note that synchronous messages are not supported out-of-the-box the actor
model. Nevertheless, they can be simulated with asynchronous messages
and blocking behaviour. The identifier isend will be a new identifier, while
jturn will be the identifier of the current turn. In this way, we know from
which turn this message was sent.

3. Turn. A Turn event is captured whenever a message with hash hmsg from
the actor at address bfrom is going to be processed by actor at address ato
(i.e., the start of the turn). Recall that a turn corresponds to the atomic
application of the actor’s behaviour to a message taken from its mailbox.
The turn identifier jturn will be a new identifier, and isend will be the send
identifier which was sent along with the message. In this way, we know
which message caused this turn.

6.3.2 The Causality Relation
The purpose of these send and turn identifiers is to order events of actors and
determine which events caused which other events. In particular, each Turn
event has knowledge about the message (i.e., isend) by which it was caused, and
each Send event has knowledge about the turn (i.e., jturn) from which it was
sent. Each identifier has its own global counter which is shared across all actors.
When comparing two events of the same actor, an event with a higher identifier
always happened after an event with a lower identifier.

Based on these identifiers, we can detect the causality relation � ⊆ Event×
Event [Fid88] between two trace events e and e′ (i.e., which turn sent a message
and which message caused a turn) as shown in Figure 6.4.

e � e′ if they are the same event, (1)
e � e′ if e and e′ are turn events of the same actor (2)

with turn identifiers j and j′ and j < j′,
e � e′ if e and e′ are send events of the same actor (3)

with send identifiers i and i′ and i < i′,
e � e′ if e is a turn event with turn identifier j (4)

and e′ is a send event with turn identifier j′

and j == j′, and
e � e′ if e is a send event with send identifier i (5)

and e′ is a turn event with send identifier i′

and i == i′, and
e � e′ if e � e′′ and e′′ � e′ (i.e., transitivity) (6)

Figure 6.4: A formal description of the causality relation.

6.3. TRACE ANALYSIS 127

For example, when an actor has two Turn events e with jturn = 1 and e′ with
jturn = 4, it means that the event e happened before the event e′ (i.e., e � e′).
When an actor has two Send events s with isend = 5 and s′ with isend = 4
it means that event s′ happened before the event s (i.e., s′ � s). Similarly,
when an actor has the Turn event e with jturn = 4 and two Send events e′ with
jturn = 4 ∧ isend = 1 and e′′ with jturn = 4 ∧ isend = 3 it means that there were
two messages sent in that turn (i.e., e � e′ � e′′).

It is important to note that events are only partially ordered and that events
of different actors do not have an order, unless they are causally related. For
example, the Turn events e with jturn = 1 of an actor, and e′ with jturn = 4 of
another actor are not ordered by default. They can only be ordered when there
exists a Send event e′′ with jturn = 1∧ isend = 1 occurs at the turn with jturn = 1
and when the turn jturn = 4 process the message with isend = 1. This is achieved
by the transitivity of rules 4 (i.e., a turn causes a send) and 5 (i.e., a send
causes a turn). This causality relation, also called the happens-before relation,
provides an effective way to analyse the dynamic behaviour of systems. It has
been widely used in concurrent program verification and testing [SRA03,SG03] as
the extracted causal partial order can be investigated against a desired property.
We will use this relation in order to collect all turns from an execution trace that
are causally related to turns of a failing actor. This should reduce the fault space
to be explored as not every turn in the system trace might be responsible for a
given failure. Section 6.4 discusses this pruning strategy in further detail.

6.3.3 Actor-based Fault Scenarios
Our resilience testing approach analyses a trace to determine potential fault
targets and their corresponding fault types. It then repeatedly executes the test
while injecting different fault scenarios. To this end, every exploration strategy
generates a fault scenario that consists of fault tuples (cf. Section 5.2). Each
fault tuple consists of a fault target which is always a message. This message is
identified by the sender and receiver address, as well as the hash of the message
payload. Figure 6.5 formally defines fault scenarios.

t ∈ FaultTarget = (afrom, bto, hmsg)
p ∈ FaultType = Duplicate | Restart
u ∈ FaultTuple = (t, p)

s ∈ FaultScenario = P(u1, u2, . . . , un)
h ∈ Hash is a finite set of message hashes

a, b ∈ Address is a finite set of actor addresses

Figure 6.5: A formal description of fault scenarios.

128 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

We have two fault types: Duplicate and Restart. The former is injected in
actors that receive messages with guaranteed message delivery, while the latter is
injected in persistent actors. These faults simulate abnormal conditions that need
to be handled by the persistence mechanism (i.e., Restart) or might be caused by
the guaranteed message delivery mechanism (i.e., Duplicate). We refer the reader
back to Section 6.1 for more details about defects in these resilience mechanisms.

1. Duplicate. The receiving actor might receive messages multiple times
when messages are sent with guaranteed message delivery. This happens
when the sender sends a message again because it has not received an
acknowledgement in a timely manner.
Our approach attempts to uncover defects in the implementation by gen-
erating a fault tuple with fault type Duplicate for every Send event of
which the message was sent using at-least-once message delivery seman-
tics (i.e., falod is true). The sender afrom, the receiver bto, and the mes-
sage hash code hmsg are set correspondingly. Note that not every mes-
sage will be duplicated as some are sent with at-most-once message de-
livery semantics. This fault helps developers to detect whether at-least-
once delivery messages are correctly processed. For example, the fault
tuple ((from, to, 12345), Duplicate) is created when the send event
is Send(from, to, 12345, 1, 2, true). This will duplicate the message
in the mailbox of the actor with address to.

2. Restart. Persistent actors that are restarted due to a node failure or
migration to another node in the cluster might not recover to its last known
state due to defects in the implementation of its state persistence or recovery
mechanism. Crash-recovery failures belong to the most common types of
modern-day failures in the cloud [HRJ+16]. In theory, this defect could also
occur for actors without persistence. However, the recovery mechanism
would simply be resetting its initial state. Therefore, we only focus on
persistent actors as we want to assess whether the persistence mechanism
was correctly implemented.
Our approach attempts to uncover defects by generating a Restart fault
for every Send event that targets a persistent actor (i.e., fpersistent is true).
Restarts can happen after any message, regardless of their message delivery
guarantees. The reason why we restart the actor after any message is
because that is when they internally transition to a new state, and at
every transition there might be a defect in the implementation. The sender
afrom, the receiver bto (i.e., the actor that is restarted), and the message
hash code hmsg are set correspondingly. This fault helps developers to
detect whether events are correctly persisted and replayed during recovery.
For example, the fault tuple ((from, to, 12345), Restart) is created
when Send(from, to, 12345, 1, 2, _) and Create(p, to, true, 1)
are the send and create event respectively. This will restart the actor with
address to after the turn of this message has finished.

6.4. EXPLORATION STRATEGIES 129

Listing 6.2 depicts an illustrative example of a fault scenario in json format.
This fault scenario consists of one fault tuple that duplicates a message sent from
TestActor and received by actor Accumulator.

1 [{
2 "from": "akka :// system /user/ TestActor "
3 "to": "akka :// system /user/ Accumulator ",
4 " message ": " 28259285928 ",
5 " duplication ": true ,
6 }]

Listing 6.2: An illustrative fault scenario where one message is duplicated.
The reader might ask himself why the faults targets are not identified by the

send identifiers of each message since they already uniquely define each message.
This is the ideal case in theory. However, our implementation does not han-
dle non-determinism of the actor scheduler and does not replay test execution.
As a result, send identifiers change across different test execution runs and are
therefore not suitable to identify fault targets. We address this limitation in
Section 6.7.3.

6.4 Exploration Strategies
Our resilience testing approach iteratively explores all possible fault scenarios.
However, developers are bound by limited test budgets and therefore expect
exploration strategies to be efficient. In this section, we present three exploration
strategies that test fault scenarios in different ways.

6.4.1 Developer-specified Exploration
Similar to writing test cases, developers can write developer-specified fault sce-
narios such as shown in Listing 6.2. While this strategy can be useful when a
specific fault scenario needs to be tested, it remains infeasible to manually ex-
plore a complete fault space. Not only because developers have to think about
every possible fault scenario, but also because developers might not be able to
reduce it to a minimal fault scenario. As a result, a fault scenario that causes
a failure might be found but remains too large to identify the exact faults that
cause the resilience defect. The next exploration strategy therefore automates
the exploration to remove the manual effort.

6.4.2 Exhaustive Exploration
An automated but naive exploration strategy is to sequentially explore every
possible fault scenario of a given fault space (i.e., f ∈ P(F)). By sorting and
exploring fault scenarios in ascending order of cardinality, it will find the minimal
fault scenario once a failure occurs.

130 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

While this strategy removes the manual effort, it might be infeasible to find
a minimal fault scenario within the given test budget. The reason is straightfor-
ward: there is an exponential number (i.e., 2|F|) of fault scenarios to be tested.
Therefore, we slightly adapt this exploration strategy so that it only explores
fault scenarios consisting of a single fault. We will refer to this exploration strat-
egy as naive. This results in a linear performance with respect to the number
of faults in the worst case. We will use this exploration strategy as our baseline
when comparing the differences in performance of each exploration strategy. It is
clear that this strategy will miss combinations of faults, but we do not consider
combinations in this dissertation.

6.4.3 Delta Debugging Exploration
To the best of our knowledge, we are the first to propose the delta debugging
algorithm [ZH02] in the context of resilience testing. We refer the reader back to
Section 5.5 for the details of the algorithm.

6.4.3.1 Motivation

Our choice for incorporating the delta debugging algorithm into our resilience
testing approach is motivated by multiple reasons:

Applicability. Several works indicate the applicability and the success
of this technique. For example, Scott et al. [SBN+16] used it to mini-
mize faulty executions of distributed systems, Brummayer et al. [BLB10]
used it to debug boolean formula solvers, Zhou et al. used it to debug
failures in microservice architectures [ZPX+19,ZPX+18], and Adamsen et
al. [AMM15] used it to detect failures in Android applications.

Combinations. Several outage reports [HRJ+16,GDJ+11] indicate that
failures are caused by a combination of multiple faults. The delta debugging
algorithm is able to find combinations of faults which is not trivial for
manual or random approaches.

Partitioning. The algorithm is based on partitioning and testing fault
scenarios. Therefore, a well-chosen partitioning strategy based on charac-
teristics of the faults could speed up the algorithm. For example, Misherghi
et al. [MS06] present hierarchical delta debugging to speed up the perfor-
mance when the input is structured data (e.g., AST or XML).

Ordering. Besides the partitioning strategy, the efficiency with which
delta debugging finds fault scenarios also depends on the order in which the
partitioned fault scenarios are tested. For example, developers can leverage
both domain knowledge and prioritization strategies to test certain fault
scenarios before others.

6.4. EXPLORATION STRATEGIES 131

Monotonicity. It is not uncommon that combinations of faults undo each
other. While the first version assumed monotonicity [Zel99], the general
version does not make this assumption [ZH02] at the expense of more test
executions (cf. Section 5.5.3).

Inconsistency. The algorithm finds a solution even when certain fault
scenarios produce indeterminate results (e.g., the system does not execute
correctly and test outcome cannot be resolved). This is important as inde-
terminate results occur more often than not in practice [Zel99].

Scalability. While the definition of the delta debugging algorithm suggests
that partitions of fault scenarios are tested sequentially, the reality differs.
The fault scenarios can be tested in parallel as there are no dependencies
between each other except the system under test. Hodovan et al. [HK16]
investigate parallelism and achieve 4 to 5 times speedup compared to a
sequential algorithm. Similarly, Zhou et al. [ZPX+19] present a technique
for delta debugging microservice systems in parallel.

6.4.3.2 Illustrative Example

Recall that the delta debugging algorithm recursively tries to reduce the fault
space to a 1-minimal fault scenario (i.e., every single fault in the scenario is
needed to trigger the failure). We will refer to this exploration strategy as dd.
We illustrate this strategy by means of an illustrative actor system whose com-
munication topology is shown in Figure 6.6.

C

E

η

A

B

δ

X

γ

αε

D

ζ

βθ

Figure 6.6: An illustrative actor system with a resilience defect.

132 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

Every node represents an actor and every directed edge represents a message
that is being sent from one actor to another one. This actor system consists
of 6 persistent actors that send 8 messages with guaranteed message delivery.
We omitted the acknowledgement messages as response to each message from
Figure 6.6. The order in which these messages are sent and received does not
matter. The actor system has a defect in the resilience mechanism of actor C
which incorrectly recovers the state. This problem can be found by restarting
the actor after processing ε from actor B. This exploration strategy starts with
the fault scenario that contains all Restart faults for each message in the system.
For simplicity, we represent a fault scenario with the fault targets (i.e., messages)
only instead of the complete fault tuples.

{α, ᾱ, β, β̄, γ, γ̄, δ, δ̄, ε, ε̄, ζ, ζ̄, η, η̄, θ, θ̄}

This fault scenario consists of both messages sent with at-least-once message
delivery guarantees (denoted with greek letters) and messages sent with at-most-
once message delivery guarantees (denoted with greek letters with a bar). The
former are the messages that alter the state, while the latter are the acknowledge-
ment messages. We detail the corresponding steps of this exploration strategy
below and use the marks 3 and 7 to indicate that the test succeeds and fails
respectively. Trivially, the initial fault scenario results in a system failure when
injected into the system during test execution because the tests fails whenever ε
is included.

{α, ᾱ, β, β̄, γ, γ̄, δ, δ̄, ε, ε̄, ζ, ζ̄, η, η̄, θ, θ̄} → 7

The algorithm proceeds by partitioning the scenario into two smaller scenar-
ios. It continues with the first fault scenario shown below and determines that
this scenario makes the test fail.

{α, ᾱ, β, β̄, δ, δ̄, ε, θ} → 7

Note that, while we initially ordered the faults for simplicity, the fault sce-
narios are partitioned in a non-deterministic way. The fault scenario would have
been {α, ᾱ, β, β̄, γ, γ̄, δ, δ̄} when the ordering would be based on the greek
letters. In Section 6.6, we will discuss multiple prioritization strategies to make
such ordering explicit. For now, the reader can assume that the ordering is un-
specified. Next, the fault scenario is split up again and the algorithm continues
with the first fault scenario.

{α, ᾱ, β, δ} → 3

Since this fault scenario does not affect the test outcome, the algorithm pro-
ceeds to the next fault scenario and determines that the system fails.

{β̄, δ̄, ε, θ} → 7

6.5. PRUNING STRATEGIES 133

As a result, this fault scenario needs to be partitioned again into smaller ones.
The remaining steps of the algorithm determine that the test fails when actor C
is restarted, after having received the message ε from actor B.

{θ, β̄} → 3

{δ̄, ε} → 7

{δ̄} → 3

{ε} → 7

Clearly, this resembles the best case performance of the delta debugging al-
gorithm. We refer the reader back to Section 5.5 for multiple other illustrative
examples.

6.5 Pruning Strategies
From our exploration of the state of the art in resilience testing, we observed
that several approaches use pruning strategies to reduce the fault space (cf. Sec-
tion 5.7). Next to a developer-specified pruning strategy, we present one that can
be used in combination with the exploration strategy based on delta debugging.

6.5.1 Developer-specified Pruning
Our approach includes a default pruning strategy where developers can manually
specify which fault targets have to be pruned. This is similar to approaches that
require developer-specified fault scenarios as discussed in Section 5.6.1. However,
this strategy should only be used when developers have knowledge of the system
as pruning too much can render the resilience testing approach ineffective. For
example, pruning away all faults related to one specific actor might result in a
smaller fault space, but can leave resilience defects uncovered.

6.5.2 Causality-based Pruning
Zeller et al. [ZH02] already hinted the potential benefits of combining systematic
testing and program analysis. To the best of our knowledge, we are the first to
propose a pruning strategy in the context of resilience that leverages ideas from
program analysis [Wei84] and causality [Lam19].

In a nutshell, the strategy runs a causality analysis to determine which actor
events are causally related. Based on this information, the strategy prunes the
causality relation so that only Send and Turn events are retained that might have
affected the actor for which an assertion has failed. Thus this strategy requires
the address of the failing actor because only in that way can the strategy decide
which events are causally related.

134 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

It then determines all fault targets that should not be pruned and removes
every fault tuple from the current fault scenario that refers to these targets.
Intuitively, this strategy prunes away messages that are not relevant to make the
test fail and thus their removal reduces the fault space.

Algorithm 1 determines the causality relation from an execution trace. Es-
sentially, the algorithm links one turn (i.e., tb on line 3) to another turn (i.e., ta
on line 1) by means of the message that was sent from within the former (i.e., se
on line 2) and that gave rise to the latter. Finally, line 4 merges (|+|) the turn ta
to the current list of turns found at turn tb in the causality relation. We merge
them since one turn can send multiple messages.

ALGORITHM 1: The algorithm to determine the causality relation.
Input : trace, an execution trace
Output: cr, the causality relation represented by mapping turns to a list of

causally connected turns (i.e., Map[Turn,List[Turn]])
1 for ta ← trace.turns do

// Find the Send se that caused ta
2 se ← trace.sends.find(s ⇒ s.isend == ta.isend)

// Find the Turn tb that caused se
3 tb← trace.turns.find(t ⇒ se.jturn == t.jturn)

// Thus, tb caused ta via se
4 cr ← cr |+| (tb 7→ ta)
5 return cr

Recall from Section 6.3.1, that send and turn identifiers isend and jturn are used
to find out exactly which turns caused which sends, and which sends caused which
turns. The result of applying Algorithm 1 to the execution trace of Figure 6.6
yields the causality relation shown in Figure 6.7.

Here, nodes represent a unique actor turn, incoming edges represent the mes-
sage that caused that turn, and outgoing edges represent a message that was sent
from within that turn. The messages of type Update are sent with at-least-once
delivery guarantees, while the messages of type Confirm are sent with at-most-
once delivery guarantees and acknowledge the reception of Update messages. The
numbers prefixed with S and T are the corresponding send and turn identifiers.
The first node (i.e., the turn of TestActor) and edge (i.e., the message Update)
simulates a request to the entry point of the system (i.e., actor A). The different
colours of the nodes can be ignored for now.

A naive way of finding all relevant faults is by collecting all turns of any actor
which happened before the last turn of the actor for which an assertion failed.
For example, all turns in Figure 6.7 would be collected when actor C fails because
all turns happened before that actor’s last turn (i.e., T17). However, this is it
is clear that some actor turns (e.g., T6 and T8) and their messages cannot have
affected T17 as there is no transitive causality between these actors. A better way
is to use the causality relation extracted from the trace as shown in Figure 6.7.

6.5. PRUNING STRATEGIES 135

ActorD, T10

ActorB, T12

Confirm, S165

ActorE, T13

Update, S164

ActorA, T1

ActorE, T2

Update, S84

ActorD, T3

ActorE, T5

Confirm, S106

ActorA, T4

ActorB, T7

Update, S116

ActorX, T6

Update, S117

Update, S142

ActorA, T9

Confirm, S143

ActorC, T11

Update, S141

ActorB, T14

Confirm, S177

ActorE, T15

Update, S176

ActorA, T8

Update, S94 Confirm, S95

Confirm, S135

ActorD, T16

Confirm, S195

ActorC, T17

Confirm, S212

TestActor, T0

Update, S3

Figure 6.7: The causality relation extracted from the illustrative actor system.

136 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

We can use this relation to collect only those turns that are causally-connected
to any turn of the failing actor. Those turns can be found by collecting all paths
in the causality relation from the root to any turn of that actor. This is what
Algorithm 2 determines which expects three arguments.

ALGORITHM 2: The algorithm to collect causally-connected turns.
Input : cr, the causality relation

addr, the actor address for which an assertion failed
m, the maximum turn identifier

Output: collected, the set of causally connected turns
// All paths start from the root

1 setOfPaths ← { cr(cr.root) }
// The set of causally connected turns

2 collected ← ∅
// While there are unexplored paths

3 while setOfPaths 6= ∅ do
// Take the first path in the set

4 pathOfTurns ← setOfPaths.take(1)
// Take the last turn of that path (prepended at l12)

5 lastTurnOnPath ← pathOfTurns.head
// That turn is of an actor at address addr

6 if lastTurnOnPath.bto == addr then
// Collect all turns on this path

7 for turn ← pathOfTurns do
8 collected ← collected + turn

// Keep exploring, get turns caused by lastTurnOnPath
9 connectedTurns ← cr.getOrElse(lastTurnOnPath, [])

// Check if these turns are valid
10 for turn ← connectedTurns do

// Turn identifier must be lower than m
11 if turn.jturn ≤ m then

// Prepend turn to path
12 setOfPaths ← setOfPaths + (turn :: pathOfTurns)

13 return collected

The first argument is the causality relation as determined by Algorithm 1, the
second argument is the failing actor’s address, and the last argument specifies
the threshold below which turns need to be collected. As mentioned before,
this pruning strategy requires the address of the actor for which an assertion
failed. This information needs to be available in some format and accessible to
the strategy. For example, our implementation extracts this information from
the standard error message of the assertion. In essence, the algorithm performs
a breadth-first search to collect all paths to a given actor and returns all unique
turns on these paths.

6.5. PRUNING STRATEGIES 137

For example, Algorithm 2 returns the following set of turns for actor C:

{T1, T2, T4, T7, T11, T15, T17}

However, this is only a subset of the required turns. For example, the turns
on the path to turn T5 of actor E should also be included as they might have
influenced turn T15 of actor E, which then caused the last turn T17 of actor C.
Therefore T5 might have affected the run-time state of actor E and messages from
that turn might have been affected by it. For example, an actor might change
its state by incrementing a counter when a certain message arrives. This counter
might later affect another actor because its value was included in a message that
was sent to another actor which eventually failed due to that value. Therefore,
turns that might have affected one of the returned turns should also be considered.
Algorithm 3 repeats this process until every turn included.

ALGORITHM 3: The causality-based pruning strategy.
Input : cr, the causality relation

addr, the actor address for which an assertion failed
c, a fault scenario

Output : c’, the filtered fault scenario
// Find all turns to the failing actor

1 turns ← collectCausallyConnectedTurns(cr, addr, Integer.Max)
// The set of causally-connected turns

2 affected ← ∅
// While there are unexplored turns

3 while turns 6= ∅ do
// Take a turn

4 turn ← turns.take(1)
// This causally-connected turn might have affected the actor

5 affected ← affected + turn
// Find all causally connected turns for this turn

6 extra ← collectCausallyConnectedTurns(cr, turn.kto, turn.jturn)
// Extend only with turns we haven’t visited yet

7 turns ← turns + (extra - affected)
// Pruning the fault scenarios.

8 c’ ← c.filter(p ⇒
9 affected.contains(s ⇒

10 s.afrom == p.afrom ∧ s.bto == p.bto ∧ s.hmsg == p.hmsg))
11 return c’

Line 1 collects all turns of the failing actor, while the other turns are deter-
mined through the while-loop on lines 3–7. This loop computes the additional
turns of actor E that happened before T15. Algorithm 3 would determine that
the turns on the paths below have to be included as well:

[T1, T2, T3, T5] and [T1, T2, T4, T7, T10, T13]

138 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

This results in the final set of turns which are stored in the variable affected
of Algorithm 3:

{T1, T2, T3, T4, T5, T7, T10, T11, T13, T15, T17}

Finally, the given fault scenario is filtered such that only fault tuples remain
in the scenario if and only if their fault target (i.e., message) causes one of the
collected turns (line 8—10). Figure 6.7 depicts the final set of causally-connected
turns in blue, while gray ones are pruned.

From the description of the causality-based pruning strategy, it should be
clear that more fault tuples can be pruned when their fault targets are part of
independent execution paths and do not have a transitive relation to the failing
target actor. Such paths typically occur in microservices architectures and sys-
tems using publish and subscribe mechanisms (cf. Section 6.8). For example, an
actor might broadcast a message to 10 actors which causes one actor to fail. As a
result, 9 out of 10 faults can be pruned since the other 9 messages can have never
affected the failing actor (i.e., they are not causally connected). This strategy
can also be further improved by tracking at which turn identifier an assertion
fails. In that way, we only need to consider turns of the failing actor that have
a smaller turn identifier than the tracked one. That is, line 1 of Algorithm 3
can use that turn identifier instead of the default Integer.Max. Note that this
pruning strategy should only be combined with the exploration strategy where
delta debugging is used. The reason is that the naive strategy already only tests
fault scenarios consisting of one fault, hence there is nothing left to prune. In
the next section, we discuss prioritization strategies which can be combined with
any exploration strategy.

6.6 Prioritization Strategies
Recall Section 5.5.4 where we already discussed the impact of partitioning fault
scenarios on the performance of delta debugging in particular. Prioritization
strategies change the partitioning by first ordering faults according to a given
priority and then partitioning them from left to right. These strategies address
the desire to find failure-inducing faults as fast as possible and to optimally use
the available test budget. For example, failures might be found sooner when faults
are first injected in complex actors that receive the most messages. However,
finding a good prioritization strategy remains challenging and can influence the
performance of any exploration strategy in both ways. Additionally, the majority
of existing resilience testing approaches do not provide the ability to order faults
(cf. Section 5.7). In this dissertation, we therefore investigate prioritization
strategies that are based on characteristics of the actor system. We are only
aware of one publication (i.e., [LKMA10]) that uses actor-specific prioritization
strategies. However, that is in combination with dynamic partial-order reduction.

6.6. PRIORITIZATION STRATEGIES 139

We therefore transpose two heuristics from that publication to the context of
resilience testing and propose three new ones that are based on the number of
interacting actors during the system’s execution. Prioritization strategies only
require an execution trace to compute the priority of each fault. The priority is
always determined for the receiving actor of the fault target. We present each
prioritization strategy in the following sections.

6.6.1 Shuffle (SHU)
This strategy computes the priority of fault tuple based on a random number. We
use this strategy as the default prioritization strategy since it remains general.
Algorithm 4 shows the trivial implementation of this strategy.

ALGORITHM 4: The prioritization strategy shu.
Input : trace, the execution trace
Output : mapping, a mapping of actor addresses to priorities

1 mapping ← []
// Explore all registrations

2 for r ← trace.registrations do
// Put the timestamp for that actor in the mapping

3 mapping ← mapping + (r .bchild 7→ Math.random())
4 return mapping

6.6.2 Registration Time (RT)
This strategy computes the priority for a fault tuple based on the registration
timestamp (i.e., mregistration) of the receiving actor (i.e., bto). This strategy is
based on the CreatedActor heuristic from [LKMA10]. The reasoning behind this
strategy is that actors that are registered first are more likely to be more complex
than those registered later. For example, an actor that manages a set of worker
actors to achieve a particular goal will be registered before the worker actors.
Algorithm 5 shows the trivial implementation of this strategy.

ALGORITHM 5: The prioritization strategy rt.
Input : trace, the execution trace
Output : mapping, a mapping of actor addresses to priorities

1 mapping ← []
// Explore all registrations

2 for r ← trace.registrations do
// Put the timestamp for that actor in the mapping

3 mapping ← mapping + (r .bchild 7→ r .mregistration)
4 return mapping

140 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.6.3 Message Time (MT)
This strategy computes the priority for a fault tuple based on the lowest turn
identifier (i.e., jturn) of the receiving actor (i.e., bto). This identifier represents
the first received message. This strategy is based on the Queue heuristic from
[LKMA10]. The reasoning behind this strategy is that actors might be more
complex when they receive messages early as they are more likely to be higher
up in the communication topology. Algorithm 6 shows the implementation of
this strategy.

ALGORITHM 6: The prioritization strategy mt.
Input : trace, the execution trace
Output : mapping, a mapping of actor addresses to priorities

1 mapping ← []
// Explore all turns

2 for turn ← trace.turns do
// Get the current priority for this actor

3 priority ← mapping.getOrElse(turn.bto, Integer.Max)
// Turn identifier must be lower than current priority

4 if turn.jturn < priority then
// Replace the mapping

5 mapping ← mapping + (turn.bto 7→ turn.jturn)
6 return mapping

6.6.4 Actor Fan-In (FI)
This strategy computes the priority for a fault tuple based on the number of
distinct actors from which the receiving actor (i.e., bto) receives messages. The
reasoning behind this strategy is that actors are likely to be more complex when
they receive messages from several different actors. For example, actors that
implement the scatter-gather pattern4 [Ver15] might benefit from this strategy.
In that case, the aggregator actor accumulates responses from different actors
and thus is more likely to be complex. Algorithm 7 shows the implementation of
this strategy. The algorithm collects all messages and computes for each receiving
actor (i.e., bto) a set of distinct sender actors (i.e., afrom) and determines the
priority on the cardinality of the set.

4https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

6.6. PRIORITIZATION STRATEGIES 141

ALGORITHM 7: The prioritization strategy fi.
Input : trace, the execution trace
Output : mapping, a mapping of actor addresses to priorities

1 sets ← []
// Explore all sends

2 for send ← trace.sends do
// Get the current fan-in of receiving actor

3 set ← sets.getOrElse(send.bto, ∅)
// Update the mapping

4 sets ← sets + (send.bto 7→ (set + send.afrom))
// Use set cardinality as priority

5 mapping ← sets.map((address, set)⇒ (address, set.size))
6 return mapping

6.6.5 Actor Fan-Out (FO)
Similar to the previous strategy, this strategy computes the priority for a fault
tuple based on the number of distinct actors to which the receiving actor (i.e.,
bto) sends messages. While an actor might be more complex when it has a high
fan-in, the same applies to actors that send messages to many different actors.

For example, the actor in the scatter-gather pattern will send messages to
multiple different actors and therefore is likely to have a high fan-out value.
Algorithm 8 shows the implementation of this strategy. The algorithm collects
all messages and computes for each sender actor (i.e., afrom) a set of distinct
receiving actors (i.e., bto) and determines the priority on the set’s cardinality.

ALGORITHM 8: The prioritization strategy fo.
Input : trace, the execution trace
Output : mapping, a mapping of actor addresses to priorities

1 sets ← []
// Explore all sends

2 for send ← trace.sends do
// Get the current fan-out of sending actor

3 set ← sets.getOrElse(send.afrom, ∅)
// Update the mapping

4 sets ← sets + (send.afrom 7→ (set + send.bto))
// Use size of sets as priority

5 mapping ← sets.map((address, set)⇒ (address, set.size))
6 return mapping

142 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.6.6 Actor Fan-In/Fan-Out (FIFO)
The last prioritization strategy computes the priority for a fault tuple based on
the ratio of the fan-in and fan-out priorities of the receiving actor. It returns
Integer.Max as priority when there does not exist a fan-out value for the actor.
The reasoning behind this strategy is that actors that communicate with different
actors in both ways are more likely to be more complex. This should classify
actors into three different groups: actors that receive from many distinct actors
(i.e., fifo > 1), actors that send to many distinct actors (i.e., fifo < 1), and
actors that send to and receive from many distinct actors (i.e., fifo ≈ 1). This
ratio might be more representative then only the fan-in or fan-out heuristic.
Algorithm 9 shows the implementation of this strategy.

ALGORITHM 9: The prioritization strategy fifo.
Input : fi, a fan-in mapping

fo, a fan-out mapping
Output : mapping, a mapping of actor addresses to priorities
// Compute the ratio based on fan-in and fan-out

1 mapping ← fi.map((address, fip)⇒
2 // Get the fan-out priority
3 fop ← fo.getOrElse(address, Integer.Max)
4 // Replace the mapping
5 (address 7→ fip/fop))
6 return mapping

6.6.7 Summary
We propose multiple prioritization strategies that use actor-specific characteris-
tics to find failure-inducing faults sooner. Additionally, we provide an ascending
and descending implementation for each strategy as it can be interesting to com-
pletely reverse the ordering. While determining effective strategies is a research
domain on its own, we evaluate these different strategies in Section 7.2 to get a
better understanding of how they can affect the performance of each exploration
strategy. We leave more advanced strategies such as those using historical data
or machine learning for a future avenue.

6.7. IMPLEMENTATION 143

6.7 Implementation
We briefly discuss the implementation of Chaokka5 as it can be a foundation
for further research.

6.7.1 Usage
While we do not provide a user interface for this tool, running an analysis requires
minimal effort of developers. Listing 6.3 demonstrates the minimal code required
to execute a resilience analysis. This analysis uses our exploration strategy based
on delta debugging with a developer-specified pruning strategy and ascending
prioritization strategy.

1 val target = "path/to/ target "
2 val suite = Some(" MyTestSuite ")
3 val test = Some(" MyTestCase ")
4
5 val runner = new ResilienceAnalysisRunner (target , suite , test)
6 val analysis = new DDResilienceAnalysis (PersistentActorRestart) with

AscendingFanIn {
7 override def onInitialFilter (targets : List[Traceable]): List[Traceable]

= targets . filter ({
8 case s: Send => s. clazz . equals (" Packet ")
9 case _ => false

10 })
11 }
12
13 runner . initialize ()
14 runner . analyse (p => analysis , 10)

Listing 6.3: A resilience analysis in Chaokka that tests for resilience defects
with respect to actor restarts.
Developers must create an instance of the class ResilienceAnalysisRunner

to run Chaokka and expects the target path of the system as a minimum
(line 5). Optionally, one can provide the name of a test suite, or test suite
and test case to only apply the analysis to a certain tests only. Next, one
must choose which resilience analysis to run and create an instance of it (i.e.,
DDResilienceAnalysis) (line 6). This analysis uses a developer-specified prun-
ing strategy (i.e., the method onInitialFilter) to only keep messages of type
Packet. It also makes use of the ascending variant of the fan-in prioritization
strategy (i.e., AscendingFanIn).

As the fault type (i.e., PersistentActorRestart), we choose to inject faults
in persistent actors to check whether the system is resilient to actors being
restarted. The developer then has to call the method initialize (line 13)
which discovers tests in the target system or loads an existing index file, and the
method analyse (line 14) with the number of times that the analysis has to be
repeated. Once the runner completes successfully, the results will be available in
the console and CSV files.

5https://github.com/jonas-db/chaokka

https://github.com/jonas-db/chaokka

144 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.7.2 Extension
Chaokka is implemented from the ground up to be extensible. One should
be able to implement other resilience analyses with exploration strategies and
heuristics with minimal effort through the provided classes.

6.7.2.1 Perturbations

The abstract class Perturbation shown in Listing 6.4 defines the interface for
implementing new types of faults. The method pre determines whether the fault
can be injected in a given target (i.e., Traceable). The method inject creates
one or more fault tuples (i.e., ActorConfig) which will consists of the target and
the fault type.

1 abstract class Perturbation {
2 def pre(perturbable : Traceable , report : TestReport): Boolean
3 def inject [A <: Traceable](
4 perturbable : A,
5 report : TestReport ,
6 messageCandidates : Set[Traceable],
7 actorCandidates : Set[Traceable]): List[ActorConfig]
8 }

Listing 6.4: The abstract class Perturbation.
For instance, Listing 6.5 shows the implementation of a perturbation which

targets user messages sent with at-least-once delivery semantics. The method pre
only returns true for these messages (i.e., Send) when they are sent between two
user actors, while the method inject creates the corresponding ActorConfig
which consists of a fault target (i.e., ActorMessage). The number 1 in the
ActorMessage determines that the fault is a duplication of the current message.

1 object AtLeastOnceDeliveryDuplication extends Perturbation {
2
3 override def pre(p: Traceable , r: TestReport): Boolean = p match {
4 case s: Send if
5 s. spath . contains ("/user/") && s. rpath . contains ("/user/") &&
6 r. atLeastOnceDeliveryMessages . contains (s. clazz)
7 => true
8 case _ => false
9 }

10
11 override def inject [Send](
12 p: Send ,
13 report : TestReport ,
14 messageCandidates : Set[Traceable],
15 actorCandidates : Set[Traceable]): List[ActorConfig] =
16 p match {
17 case Send(senderName , _, receiverName , _, hash , clazz , _, _) =>
18 val message = ActorMessage (clazz .r, hash , 1, senderName .r)
19 val config = ActorConfig (receiverName .r, List(message))
20 List(config)
21 }
22 }

Listing 6.5: The implementation of a fault that simulates a message that
arrives multiple times due to the guaranteed message delivery.

6.7. IMPLEMENTATION 145

6.7.2.2 Resilience Analysis

Secondly, the abstract class ResilienceAnalysis shown in Listing 6.6 defines
the interface for implementing analyses with different exploration strategies. The
method run should be implemented by the developer. The function test will ex-
ecute the current test case with the passed set of faults (i.e., Set[ActorConfig]).
Several methods (line 11-15) are given a default implementation. The method
onInitialReport (line 4–8) determines the fault targets for a given fault type
(i.e., value of perturbation), while the method onSubsequentReport is called
for every subsequent test run. There will always be one initial run to get an
initial trace, and then multiple test runs were a fault scenario is injected. The
method hasNext determines whether there are fault scenarios left to be tested
and the method next correspondingly provides this next scenario.

1 abstract class ResilienceAnalysis {
2 val perturbation : Perturbation
3 var perturbations : Set[ActorConfig] = Set. empty [ActorConfig]
4 def run(
5 test: Set[ActorConfig] => Status ,
6 initialReport : TestReport ,
7 start : Long ,
8 timeout : Int): Unit
9 def name: String

10
11 def onInitialReport (r: Option [TestReport]): Unit = ...
12 def onSubsequentReport (report : Option [TestReport]): Unit = ...
13 def hasNext : Boolean = ...
14 def next (): ActorConfig = ...
15 def onInitialFilter (targets : List[Traceable]): List[Traceable] = ...
16 }

Listing 6.6: The abstract class ResilienceAnalysis.
For example, Listing 6.7 shows the implementation of a resilience analysis

that loads a fault scenario from a JSON file. The elements of the fault scenario
are assigned to the variable perturbations. Since there is only one fault scenario
to be explored, the method hasNext is overridden to return false.

1 class StaticResilienceAnalysis (
2 configFilePath : String ,
3 override val perturbation : Perturbation)
4 extends ResilienceAnalysis {
5
6 perturbations = JSONParser .load(configFilePath , 0). toSet
7
8 override def run(
9 test: Set[ActorConfig] => Status ,

10 initialReport : TestReport ,
11 start : Long ,
12 timeout : Int): Unit = {
13 test(perturbations)
14 }
15
16 override def hasNext : Boolean = false
17 override def name: String = " static "
18 }

Listing 6.7: The implementation of a resilience analysis that uses a developer-
specified exploration strategy which loads a fault scenario from a JSON file.

146 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

6.7.2.3 Prioritization Strategies

Finally, the trait PrioritizationStrategy shown in Listing 6.8 defines the inter-
face for implementing prioritization strategies. Such an implementation provides
the method compute which returns the list of n partitions of faults sorted ac-
cording the priority of the fault tuples, the method sorter specifies the order
of two given priorities (i.e., ascending or descending order), and one variable
abbreviation which is a string representation of the strategy for reporting pur-
poses.

1 trait PrioritizationStrategy {
2 def compute (faults : Set[ActorConfig], n: Int): List[Set[ActorConfig]]
3 def sorter : (Int , Int) => Boolean
4 val abbreviation : String
5 }

Listing 6.8: The trait PrioritizationStrategy.
For instance, Listing 6.9 shows the implementation of the MessageTime strat-

egy. This strategy computes the priority of fault targets based on the identifier of
the turn that processes the first message. We refer the reader back to Section 6.6
for the details of each prioritization strategy.

1 trait MessageTime extends PrioritizationStrategy {
2
3 override def compute (faults : Set[ActorConfig], n: Int):
4 List[Set[ActorConfig]] = this. initialReport match {
5 case Some(r) =>
6 var mapping : Map[String , Int] = Map. empty
7
8 // Collect all turns and keep the first turn for every actor
9 this. onInitialFilter (r. trace). foreach ({

10 case s: Turn =>
11 val current = mapping . getOrElse (s.rpath , s. turnID)
12 val nw = if(s. turnID < current) s. turnID else current
13 mapping = mapping + (s. rpath -> nw)
14 case _ => ()
15 })
16
17 // Sort based on priority
18 val heuristic : List[ActorConfig] = faults . toList . sortWith ((a,

b) => {
19 val ai = mapping . getOrElse (a. actorName .toString , 0)
20 val bi = mapping . getOrElse (b. actorName .toString , 0)
21
22 sorter (ai , bi)
23 })
24
25 distribute (heuristic , faults , n).map(x => x. toSet)
26 case None =>
27 List. empty
28 }
29
30 override val abbreviation : String = " MessageTime "
31 }

Listing 6.9: The implementation of the mt prioritization strategy.

6.7. IMPLEMENTATION 147

6.7.3 Limitations
Chaokka is the first resilience testing tool for actor systems and therefore has
several limitations in terms of scalability, non-determinism, and test cases.

Scalability. Chaokka is currently limited to a single actor system hosted
on a single physical machine. This limitation affects the kind and scale
of systems that Chaokka can test. Nevertheless, Akka is built around
the notion of location transparent actor addresses which abstract away the
difference between communicating with actors running on the same jvm or
a different jvm (e.g., a cluster of multiple machines). Configuration files or
environment variables can be used to change the actor’s location without al-
tering the code. In this way, our approach can test a completely distributed
deployment on a single jvm. Furthermore, one could wrongly assume that
actor systems running on a single physical machine are resilient. Arguably,
the probability for a message to be lost or an actor to be restarted is much
lower on a single jvm then it is on a distributed system. Nevertheless, a
shutdown of the whole system requires actors to recover in the same way
as when actors would be distributed.

Non-determinism. Chaokka extracts fault targets from the trace of the
first test execution only. Therefore, our approach might miss resilience de-
fects when test executions are non-deterministic. For example, subsequent
test executions might spawn different actors or exchange different messages,
or both. We distinguish two kinds of non-determinism: due the scheduler
(e.g., one message arrives before another one) or due to data (e.g., the result
of the method random). Chaokka does not enforce prior execution paths
during subsequent runs of a test and is therefore limited to deterministic
systems. A consequence of not recording and replaying the actor schedule
is that we have to identify messages by their sender, receiver and message
hash, instead of the unique send identifier. Chaokka will therefore not be
able to distinguish between multiple identical messages or detect changes in
message payload across different runs of a test. Implementing the required
record-replay mechanisms (e.g., [AMB+18, LPV19, GKS05]) for Akka is
left for a future avenue.

Test Case Format. The causality-based pruning strategy expects that
tests adhere to a specific format consisting of three steps: send message,
wait for result, assert stable state. The first step consists of one message
that is sent to the system to initiate a request, the second step blocks until
a given condition is satisfied (e.g., wait for the system to respond), and
the final step consists of asserting the response, the system, or both. This
approach greatly simplifies the implementation as the turn of the test actor
and the sent message will be the root of our causality relation. Otherwise
there might be multiple causality relations which makes the implementation
of our approach more complex. Thus, this boils down to an implementation
detail which can be solved through additional engineering efforts.

148 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

Soundness & Completeness. It is important to understand that we
present a testing approach and not a verification approach. Chaokka
therefore might not be complete and might not find all defects in the im-
plementation of resilience mechanisms. However, incompleteness is typical
for dynamic analyses as they are limited to what can be observed during one
or more executions of the program under analysis. Moreover, Chaokka
explores more behaviours of the system under test than defined in the orig-
inal test suites. This can lead to failed test outcomes even when the system
is resilient and vice versa. For example, it might be that the the oracle
determines that the test failed because the assertions are too strong with
respect to all possible executions. However, the quality of the existing test
oracles is a general problem and beyond our control (cf. Section 2.2). We
consider Chaokka to be sound when the test suites and their oracles are
sound.

6.8 Application Domains
Our approach to resilience testing can be generalized to multiple other distributed
architectures such as microservices and message brokers. We also provided
Chaokka as an open-source tool so that developers can use its implementation
as a foundation.

Actor Frameworks. Chaokka targets Akka since it is the most popu-
lar implementation of the actor model on the jvm, with both a Java and
a Scala implementation. However, our approach should be equally ap-
plicable to actor frameworks and languages such as Erlang, Orleans,
Pykka, Actix, etc. While some of these might offer fewer abstractions
for implementing resilience mechanisms, ad-hoc implementations are also
prone to the discussed implementation problems (cf. Section 6.1). To sup-
port applications built in these frameworks and languages, it should suffice
to intercept actor events at run time and collect them in the proposed
execution trace format (cf. Section 6.3.1).

Microservices. According to the Scala Developers Survey 20196,
the Scala ecosystem is used by a majority of developers to implement
microservices. It is easy to draw similarities between the actor model and
microservices architectures [LF14] as one could argue that an actor is the
smallest feasible granularity for such a service. Indeed, this is the point of
view taken by Lagom7, a microservices framework built on top of Akka.
Our approach should therefore be transposable to microservice frameworks
such as Lagom and Spring Cloud8.

6https://scalacenter.github.io/scala-developer-survey-2019
7https://www.lagomframework.com
8https://spring.io/projects/spring-cloud

https://scalacenter.github.io/scala-developer-survey-2019
https://www.lagomframework.com
https://spring.io/projects/spring-cloud

6.9. CONCLUSION 149

Message brokers. Message brokers such as Kafka9 or RabbitMQ10

enable consumers to subscribe to messages which are published to a topic
by independent producers. These are often used in combination with mi-
croservices, but also to connect multiple independent systems. Several of
these brokers support mechanisms for at-least-once message delivery which
exposes them to similar defects as presented in this dissertation. For exam-
ple, consumers of message brokers should be aware that they can receive
messages multiple times and need to take the corresponding actions.

6.9 Conclusion
This chapter presented our dynamic approach to resilience testing of actor sys-
tems. We started by motivating the need for automated resilience testing because
implementing and testing resilient distributed actor systems remains difficult.
Next, we provided an overview of Chaokka — our dynamic approach to re-
silience testing which aims to uncover resilience defects. It uses fault injection
as its foundation to simulate the system under abnormal conditions. We then
formally defined the concepts of execution traces, the causality relation, and fault
scenarios in actor systems. Next, we proposed several exploration, pruning, and
prioritization strategies that can be composed to form a resilience analysis. We
presented our exploration strategy based on delta debugging and our pruning
strategy based on causality of actor events. Moreover, we presented five different
prioritization strategies that use actor-specific characteristics. Penultimately, we
discussed the implementation of Chaokka including its usage, its extension pos-
sibilities, and its limitations. Finally, we discussed several application domains
that are closely related and could benefit from our approach. The next chapter
presents an evaluation of our approach by applying Chaokka on actor systems
seeded with resilience defects.

9https://kafka.apache.org
10https://www.rabbitmq.com

https://kafka.apache.org
https://www.rabbitmq.com

150 CHAPTER 6. CHAOKKA: RESILIENCE TESTING

Chapter 7

Experimental Evaluation of
Resilience Testing

This chapter evaluates our approach to resilience testing. In particular, the
goal of this evaluation is to examine the performance of resilience analyses that
combine different exploration, pruning, and prioritization strategies. To this
end, we run Chaokka on generated actor systems seeded with defects in their
resilience mechanisms.

First, Section 7.1 presents a study on the performance of our approach to
resilience testing. We compare the results of three resilience testing analyses
configured with a default prioritization strategy. The analysis rt-n uses a naive
exploration strategy, the analysis rt-dd uses our exploration strategy based on
delta debugging, and the analysis rt-dd-o optimizes rt-dd with causality-based
pruning. We also determine the overhead of our implementation for the actor
model framework Akka by comparing test execution times with and without
fault injection. Based on the mean number of test executions required to find a
resilience defect, we observe that rt-dd and rt-dd-o are respectively about 3
and 5 times faster than rt-n. Next, Section 7.2 presents a study on the effect of
prioritization strategies on the performance. We conclude that these strategies
can deteriorate the performance of an analysis with a naive exploration strategy,
while it has limited effect on the performance of analyses with our exploration
strategy. Finally, we conclude this chapter by summarizing our observations.

151

152 CHAPTER 7. EXPERIMENTAL EVALUATION

7.1 Detection of Resilience Defects
This section reports on the performance of our approach and the execution over-
head of our implementation. Section 7.1.1 presents the design of the study, while
Section 7.1.2 presents the results. The results show that the exploration strategy
based on delta debugging is able to achieve a speedup of about 3, while a speedup
of about 5 is achieved when pruning is additionally enabled. The overhead of our
implementation for the Akka framework is limited when it simulates duplicate
messages, but quickly increases when it simulates actor restarts.

7.1.1 Design
The goal of this evaluation is to understand the difference in performance between
different resilience analyses when the default prioritization strategy (i.e., shu)
is enabled. The analysis rt-n uses the exhaustive exploration strategy (i.e.,
naive), while the analysis rt-dd uses our exploration strategy (i.e., dd). We
also investigate the performance of the analysis rt-dd-o which combines dd with
our causality-based pruning strategy. We refer the reader back to Chapter 6 for
the details about each strategy. This study aims to answer the following research
questions:

• RQ1: What is the performance of the resilience analyses rt-dd and rt-dd-o
compared to rt-n in detecting the resilience defects?

• RQ2: What is the overhead of Chaokka on the execution of test cases?

7.1.1.1 Generation Process

We automatically generate actor systems for our studies and randomly seed them
with resilience defects because we could not find representative open-source actor
systems that have resilience mechanisms (i.e., guaranteed message delivery and
persistent actors) implemented in the majority of their actors. A true empirical
study to evaluate our approach is therefore not possible.

Nevertheless, the generated actor systems feature communication topologies
that are representative for known microservices architectures. For example, Fig-
ure 7.1 shows the architecture of eBay’s payment platform1. That is, we assume
that one actor corresponds to one microservice. This evaluation approach is also
used in the context of microservices binary trees of various depths are generated
to represent systems (e.g., Gremlin [HRJ+16]).

1See https://youtu.be/U7X3qONf3sU?t=1182 for a description.

https://youtu.be/U7X3qONf3sU?t=1182

7.1. DETECTION OF RESILIENCE DEFECTS 153

1

2 3 4 5

7 6 12 10

2411

9 8 16 15 14 13 25 18

19 2021 3217

272322 38 29

37 36 26

28

3331

30

35 34

Figure 7.1: The communication topology of eBay’s payment platform.

The generation algorithm is simple, yet effective enough to create representa-
tive topologies. This process consists of three steps. The input to this generation
process is n and m, indicating the number of actors and messages respectively
present in the system. First, we represent an actor system by a list of n identi-
fiers where each identifier represents a single actor. We consider the first actor
in the list to be the root actor (i.e., the entry point of the system). Next, the
method generatePairs shown in Listing 7.1 generates pairs of the form (x, y)
from this list. Such a pair represents a connection where x sends a message to
y. For simplicity, each actor understands only one type of message and therefore
the pair adheres to the constraint that the identifier of x is always smaller than
the identifier of y to avoid infinite loops.

1 def generatePairs (nodes : List[Int]): List [(Int , Int)] = {
2 var a: List [(Int , Int)] = List. empty
3
4 for(i <- 0 until nodes .size) {
5 for(j <- (i+1) until nodes .size) {
6 val pair = (nodes (i), nodes (j))
7 a = pair :: a
8 }
9 }

10
11 a
12 }

Listing 7.1: The method to generate unordered pairs from a list of nodes.
For example, calling the method generatePairs with List(1, 2, 3, 4, 5)

will yield the following pairs:

(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

Next, the method randomSubset shown in Listing 7.2 selects an arbitrary
subset of m pairs. The cardinality of this subset represents the number of mes-
sages that are exchanged in the actor system as each connection represents one
message.

154 CHAPTER 7. EXPERIMENTAL EVALUATION

1 def randomSubset (pairs : List [(Int , Int)], m: Int) =
2 scala .util. Random . shuffle (pairs).take(m)

Listing 7.2: The method to select a random subset with cardinality m.
For example, selecting a subset of cardinality 5 will yield the following pairs:

(1,2), (2,4), (3,4), (3,5), (4,5)

However, each pair in this set does not connect with another pair as there is no
connection between the actors 2 and 3. As a final step, we perform a final check
to determine actors without a connection and mitigate this lack of connectivity.
That is, we check whether every actor receives at least one message from another
actor. This is repeated for each pair, excluding the pair that represents the root
actor. A random connection is generated when an actor does not receive any
message. For example, this step would detect that there doesn’t exist such a
pair (_,3) for the pairs (3,4) and (3,5). That is, actor 3 does not receive any
message as there does not exist a pair where the y is actor 3. As a result, it might
generate the random pair such as (1,3) or (2,3) such that the pairs now define
an actor system with n actors where there is at least one message between each
actor:

(1,2), (1,3), (2,4), (3,4), (3,5), (4,5)

As a result, we get slightly more messages in the system then initially specified
(i.e., more than m messages). This will also be the reason why our generated
systems do not have a rounded number of faults in our studies. Figure 7.2 shows
a generated actor system consisting of 50 actors.

0

1

21

12

16

23

4

13

30

48

5

20

631 8

26 46

10

34

24

25

29

14

41

2

32

15

40

44

3949

28

33

37

9

11

42

duplicate

3

38 36

47

17

3522

45

27

7

19

18

43

Figure 7.2: A generated actor system with a seeded resilience defect.

By default, each actor is resilient to actor restarts and message delivery fail-
ures. This is achieved by having each actor persisting a counter as its internal
state and checking for duplicated messages by keeping track of which messages
have already been received.

7.1. DETECTION OF RESILIENCE DEFECTS 155

During the execution of the system, messages are sent with guaranteed mes-
sage delivery to one or more actors and acknowledged with a message that is
delivered at most once. Each message changes the internal state of the receiv-
ing actor. As indicated in Section 2.3.2, this is done through event sourcing.
An event is persisted for each received message and the actor’s counter value is
incremented once the event is successfully persisted.

The actors of each generated system can simulate two kinds of resilience
defects. The first defect is an incorrect implementation of the recovery mechanism
by not rehydrating the counter value, while the second defect is an incorrect
implementation of message idempotence by skipping the check for duplicated
messages. For each system, we also generate a test case as shown in Listing 7.3.

1 def assertSystem (
2 name: String ,
3 topology : List [(Int , List[Int])],
4 messageDeliveryFaults : Set[Int] = Set () ,
5 persistenceFaults : Set[Int] = Set ()): Unit = {
6
7 // Stable after 5 seconds of no message activity
8 Stabilizer .init (5 * 1000)
9

10 // Instantiate the actors for the given topology
11 val t = Topology (topology , messageDeliveryFaults , persistenceFaults)
12 val rfs: Set[ActorRef] = Topology . generate (system , t, testActor)
13 val m: Map[String , String] = rfs.map(x => (x.path.name -> x.path)). toMap
14
15 // Expected state is the number of unique paths to that actor
16 def findPaths = (r) => t. findPaths (r.path.name. substring (6). toInt)
17 val expected = rfs.map(r => (r.path. toString -> findPaths (r))). toMap
18
19 // Initiate the system with a request .
20 val head = system . actorSelection (system . child (s"actor -0"))
21 head ! Update (-1, 1)
22
23 // Wait for a stable system state .
24 Await . ready (Stabilizer . stabilize () , 60 * 60 seconds)
25
26 // Ask the state of each actor .
27 rfs. foreach (_ ! State)
28
29 // Wait for replies .
30 var resultAll : List [(Int , Int)] = List. empty [(Int , Int)]
31 while (resultAll .size != expected .size) {
32 val r = receiveOne (Duration .Inf)
33 r match {
34 case m: (Int , Int) => resultAll = m :: resultAll
35 case m => m
36 }
37 }
38
39 // Sort on actor name , then assert the state of each actor .
40 val sorted = resultAll . sortBy (_._1). zipWithIndex
41 sorted . foreach (r => {
42 // Get the complete path for a given actor name
43 val p = m("actor -"+r._2)
44 // Assert that the actors state is the expected value
45 assert (r._1._2 == expected (p), s" Something failed , error @[${p}]")
46 })
47 }

Listing 7.3: A test case to test the behavior of our generated actor systems.

156 CHAPTER 7. EXPERIMENTAL EVALUATION

This test case sends a message to the entry point of the system (i.e., the
root actor) and asserts the system’s state after all communication has happened.
It does that by starting all actors for the given topology and uses the sets
messageDeliveryFaults and persistenceFaults to determine which actors
have to simulate a specific resilience defect (line 11—12). The next lines com-
pute the expected state for each actor (line 16—17). This state is automatically
computed based on the generated topology. In particular, we compute the final
counter value of each actor by counting the number of paths from the root ac-
tor to each actor. This number of paths to each actor equals to the number of
messages it will receive, and therefore equals the value of the counter. Next, it
sends an initial message to the root actor (line 21). It will then wait until the
system’s execution is complete (line 24) and wait to receive a state update from
each actor (line 27—37). Finally, it checks whether the received counter value is
equal to the expected counter value for each actor (line 40—46). We will evaluate
our approach based on these generated actor systems and test cases.

7.1.1.2 Data Set

We create our data set by repeating the generation process 10 times with n =
50, increasing m, and randomly choose the resilience defect type. This ensures
that we generate a diverse set of actor systems with different communication
topologies. Table 7.1 summarizes the data set which consists of 10 generated
actor systems where each system has 50 actors, a varying number of messages,
and a varying type of resilience defect.

1 2 3 4 5 6 7 8 9 10
Messages 258 408 616 378 1026 626 706 854 1770 2008

Resilience Defect D D D R D R R R D D
Fault Targets 129 204 308 378 513 626 706 854 885 1004

Table 7.1: The data set consists of 10 actor systems with a varying number of
fault targets. The resilience defect is either related to restarting actors (R) or
duplicating messages (D).

Remember that our approach uses messages as fault targets because the turns
that process these messages represent a computational step of each actor. There-
fore, we can find defects at a fine-grained level. Such a defect is either an imple-
mentation mistake related to the guaranteed message delivery mechanism which
does not account for duplicate messages (D), or an implementation mistake re-
lated to the persistence mechanism which does not hydrate the state correctly
after a restart (R). It is clear that the number of fault targets is half of the number
of messages when the resilience defect is related to guaranteed message delivery.
The reason for that is that the number of messages includes both messages sent
with at-most-once and at-least-once message delivery semantics. However, dupli-
cation of messages can only occur for messages sent with at-least-once semantics.

7.1. DETECTION OF RESILIENCE DEFECTS 157

7.1.1.3 Studies

Our evaluation consists of two studies. We address RQ1 and RQ2 by conducting
Study1 and Study2 respectively. Each study is based on the set of data discussed
in Section 7.1.1.2.

Study1: We create 3 variants of each system of our data set by seeding the
given resilience defect in one of the actors with number 5, 25, or 45. These
actors reside at different locations in the communication topology. The
resulting set of systems thus consists of 30 actor systems with varying size
and defect location. We run each analysis (i.e., rt-n, rt-dd, and rt-dd-o)
on these actor systems with the default prioritization strategy enabled. We
repeat the studies for each system 10 times with a timeout of 30 minutes.
We compare the number of test executions to assess the performance of
each analysis.

Study2: We select the largest generated actor system from our set of data
(i.e., the one with 2008 messages) and systematically select and apply n
faults, where n increases in steps of 100. We repeat this study 10 times and
compare the execution time to assess the overhead of each defect.

Caching of fault scenarios is enabled while monotonicity is disabled during
each study. All studies are executed on an Ubuntu 18.04.3 instance with 252GB of
RAM and 8 Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz with Hyper-Threading
enabled.

7.1.2 Results
We discuss the performance of the analyses rt-n, rt-dd, and rt-dd-o (RQ1)
in Section 7.1.2.1, while the overhead of Chaokka (RQ2) is discussed in Sec-
tion 7.1.2.2. For each of the results, we provide box plots to visualize the results
on a high level and provide several tables with detailed information to get a com-
plete overview of the results. Note that all numbers are based on the 3 variants
of each system and that these numbers are only based on analyses that did not
time out.

7.1.2.1 Study1: Performance of The Resilience Analyses

Figure 7.3 shows the results of all analyses that did not time out after 30 minutes.
It is clear that the number of test executions required by rt-n fluctuates widely,
while rt-dd and rt-dd-o require fewer tests to find the seeded resilience defect
and are much more stable in performance. We summarize the results in Table 7.2,
while Table 7.3 summarizes the result for each system individually.

158 CHAPTER 7. EXPERIMENTAL EVALUATION

0

50

100

12
9

20
4

30
8

37
8

51
3

62
6

70
6

85
4

88
5

10
04

Faults

Te
st

 E
xe

cu
tio

ns Resilience Analysis

RT−DD

RT−DD−O

RT−N

Figure 7.3: The number of test executions for all three resilience analyses.

Mean Median Analyses Timeouts
rt-n 47 33 229 71

rt-dd 14 15 300 0
rt-dd-o 10 11 300 0

Table 7.2: A summary of each resilience analysis executed on the set of 30 gener-
ated actor systems. It includes the mean and median number of test executions
required to detect the seeded resilience defect, as well as the number of timeouts.

The following observations are based on the means shown in Table 7.2. It
takes rt-n 33 and 37 tests more to find the defect compared to rt-dd and
rt-dd-o respectively, while it takes rt-dd 4 tests more compared to rt-dd-o.
rt-n therefore requires 3.36 and 4.70 times the test executions of rt-dd and
rt-dd-o respectively, while rt-dd requires 1.4 times the tests of rt-dd-o. That
is, rt-dd and rt-dd-o are respectively about 3 and 5 times faster than rt-n.

7.1. DETECTION OF RESILIENCE DEFECTS 159

rt-dd-o is about one and a half times faster than rt-dd and indicates that
our pruning strategy can further improve the performance.

We also discuss our observations based on the medians shown in Table 7.2.
It takes rt-n 18 and 22 tests more to find the defect compared to rt-dd and
rt-dd-o respectively, while it takes rt-dd 4 tests more compared to rt-dd-o.
rt-n therefore requires 2.20 and 3.00 times the test executions of rt-dd-o
and rt-dd respectively, while rt-dd requires 1.36 times the test executions of
rt-dd-o. Based on the medians, rt-dd and rt-dd-o are about 2 and 3 times
faster than rt-n. rt-dd-o remains about one and a half times faster than rt-dd.

1 2 3 4 5 6 7 8 9 10
Messages 258 408 616 378 1026 626 706 854 1770 2008

Resilience Defect D D D R D R R R D D
Fault Targets 129 204 308 378 513 626 706 854 885 1004

rt-n
Mean 52 63 32 49 34 62 49 46 42 41
Median 36 47 14 35 9 62 42 26 20 30
Timeouts 0 4 13 1 13 6 2 6 12 14

rt-dd
Mean 12 12 13 13 15 14 14 14 14 15
Median 12 12 13 13 14 14 14 14 14 15
Timeouts 0 0 0 0 0 0 0 0 0 0

rt-dd-o
Mean 8 10 11 8 11 8 8 10 13 10
Median 7 11 11 9 12 9 8 10 12 9
Timeouts 0 0 0 0 0 0 0 0 0 0

Table 7.3: The mean and median number of test executions needed to find a
resilience defect, as well as the number of timeouts. These numbers are based on
the 3 variants of each system. The resilience defect is either related to restarting
actors (R) or duplicating messages (D).

Testament to the efficiency of both rt-dd and rt-dd-o is that they never
timed out as shown in Table 7.3. This means that these analyses run for a total
of 300 times without any timeouts (i.e., 10 systems × 3 variants × 10 analyses).
This is in contrast to rt-n which timed out in 71 of the cases and thus only
has a total of 229 successful runs. Table 7.3 shows the number of timeouts for
each system and analysis. This table also shows the mean and median number of
required test executions to find the seeded resilience defect. Note that rt-n did
not necessarily time out more often when an increasing number of faults needed
to be explored because the default prioritization strategy randomly shuffles fault
scenarios.
RQ1 Summary

Both rt-dd and rt-dd-o outperform rt-n. The mean number of test ex-
ecutions of rt-dd and rt-dd-o is respectively about 3 and 5 times lower
than rt-n to find a single resilience defect. rt-dd-o demonstrates that our
causality-based pruning strategy can be leveraged to further improve perfor-
mance.

160 CHAPTER 7. EXPERIMENTAL EVALUATION

7.1.2.2 Study2: Overhead of Chaokka

Figure 7.4 shows the difference in test execution time when test cases are injected
with increasingly larger fault scenarios.

0

200

400

600

800

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Faults

S
ec

on
ds Type

Duplication

Restart

Figure 7.4: The overhead of Chaokka for each fault type.

We observe that the overhead of scenarios consisting of duplication faults
grows linearly, yet at a very slow rate. On the contrary, the overhead of scenarios
consisting of restart faults seems to grow exponentially at a fast rate. This was to
be expected as sending and queueing asynchronous messages is computationally
cheap and thus causes little overhead. However, restarting and hydrating an
actor is computationally more expensive. In particular, the actor instance needs
to be stopped, restarted, and hydrated again with all events from the journal
which causes a larger overhead. However, this overhead might be less for actors
that persist and recover their state through other means than event sourcing.

Nevertheless, the overhead of at most 13 minutes for a large fault scenario of
1000 faults is still within acceptable limits and indicates that Chaokka could
be integrated into the testing process of particular systems. As shown in other
studies (e.g., [HRJ+16]), fault injection approaches inherently cause some over-
head due to code instrumentation and monitoring. There is also ample room for
improvements in our implementation which we discuss in Section 7.3.

7.2. PRIORITIZATION OF FAULTS 161

RQ2 Summary

Chaokka causes an acceptable execution overhead, but might become prob-
lematic when large fault scenarios consisting of faults related to persistent
actors have to be explored. However, this overhead is specific to the imple-
mentation of our approach for the actor model framework Akka.

7.2 Prioritization of Faults
This section reports on the performance of resilience analyses that combine prior-
itization strategies with the exploration strategies naive and dd. We presented
several prioritization strategies typical to actor systems in Section 6.6 and imple-
mented them in Chaokka. Section 7.2.1 presents the design, while Section 7.2.2
presents the results of this study. The results show that the prioritization strate-
gies have limited impact on the performance when combined with dd. The differ-
ence between ordering faults in ascending and descending order with respect to
the prioritization strategy can significantly change the performance of analyses
that use naive, while the change remains limited for analyses that use dd.

7.2.1 Design
The goal of this study is to understand the difference in performance of analyses
that combine each prioritization with the exploration strategy naive or dd. This
evaluation aims to answer the following research questions:

• RQ3: What is the impact on the performance when prioritization strategies
are combined with the exploration strategy naive or dd?

• RQ4: What is the impact of ordering faults in ascending and in descending
order?

7.2.1.1 Studies

We address RQ3 and RQ4 by conducting a single study Study3.

Study3: We use the largest actor system (i.e., the system with 2008 messages)
from our data set summarized in Table 7.3. We create 3 variants of this
system by adding a single resilience defect related to guaranteed message
delivery in the actors with number 5, 25, and 45. We test each of the 5
prioritization strategies separately in both ascending and descending order
combined with the exploration strategy naive or dd. This results in a
set of 30 analyses because we have 3 varying systems and a total of 10
prioritization strategies. We repeat the analyses for each system 10 times
with a timeout of 30 minutes. Caching of fault scenarios is enabled while
monotonicity is disabled.

162 CHAPTER 7. EXPERIMENTAL EVALUATION

7.2.2 Results
We discuss the impact of prioritization strategies when combined with naive
and dd (RQ3) in Section 7.2.2.1, while we discuss the difference in ordering
priorities ascending and descending order (RQ4) in Section 7.2.2.2. For each
of the results, we provide box plots that visually summarize the results and
provide several tables with detailed information to get a complete overview of
the results. A dash (-) in the results indicates that the analysis was not able to
find any resilience defect within the given time (i.e., every run timed out).

7.2.2.1 Study3: Impact of Prioritization Strategies

Figure 7.5 shows the number of test executions for each prioritization strategy.
We prefix ascending and descending prioritization strategies with the letter A
and D respectively. It only includes the results of analyses that did not time out
after 30 minutes. Note that each box plot aggregates the results of the 3 variants
of the system where the defect is either in actor 5, 25, or 45.

0

25

50

75

100

125

SHU
AFI

AFO

AFIF
O

AM
T

ART
DFI

DFO

DFIF
O

DM
T

DRT

Prioritization Strategy

Te
st

 E
xe

cu
tio

ns

Exploration Strategy

Delta Debugging

Naive

Figure 7.5: A summary of each prioritization strategy.

First, we discuss the results for the exploration strategy naive. We observe
that an analysis which combines naive with the strategies dfi, dfifo, dmt, or
drt is not able to find any resilience defect without timing out since there is no
box plot in Figure 7.5.

7.2. PRIORITIZATION OF FAULTS 163

This already indicates that strategies can deteriorate the performance and
only cause timeouts. Analyses with the ascending variants of each prioritization
strategy are able to find defects, but still time out in multiple cases. This is also
clear from Table 7.4 which shows the mean and median number of test executions
required to find the resilience defects, and the number of timeouts. Each column
aggregates the results of the 3 variants of the system.

shu afi afo afifo amt art dfi dfo dfifo dmt drt

naive
Mean 41 55 35 25 69 24 - 13 - - -
Median 25 61 19 24 52 24 - 12 - - -
Timeouts 14 10 11 20 25 20 30 20 30 30 30

dd
Mean 14 14 13 15 14 14 16 14 16 15 17
Median 14 14 14 15 14 13 16 15 16 15 16
Timeouts 0 0 0 0 0 0 0 0 0 0 0

Table 7.4: A summary of the mean and median number of required test executions
of each prioritization strategy based on the analyses that did not time out.

Looking at the means and medians, we observe that the strategies afi and
amt perform worse than the default strategy shu. However, they have a different
number of timeouts. Similarly, afo, afifo, art, and dfo have a better mean
and median number of test executions than the strategy shu, but time out more
for certain defect locations. While the strategy dfo seems to achieve a small
improvement on the number of test executions, it still times out in 20 of the 30
runs, and still has more timeouts than shu. We also notice that the number
of timeouts for afi, afifo, art, and dfo are a multiple of 10. Upon further
inspection, the results show that the location of the resilience defect has played
a role in these timeouts. This will become clear later in this chapter when we
present the results for each defect location.

Next, we discuss the results for the exploration strategy dd. Table 7.4 clearly
shows that none of the analyses timed out. However, looking at the results we
only see a limited impact on performance. Looking at the means and medians,
only afo and art are able to reduce the number of test executions by 1 compared
to shu (i.e., an improvement of about 7%). We also observe that drt is among
the strategies that require the most number of test executions. In the worst case,
this strategy increases the number of test executions with 3 (i.e., a loss of about
21%). Based on Figure 7.5 and Table 7.4, we summarize the following conclu-
sions for analyses that search for a single defect.

RQ3 Summary

The results indicate that prioritization strategies have a limited impact when
combined with the exploration strategy dd. However, the choice of a wrong
prioritization strategy in combination with naive can deteriorate the perfor-
mance.

164 CHAPTER 7. EXPERIMENTAL EVALUATION

7.2.2.2 Study4: Impact of Ascending and Descending Order

Figure 7.6 shows plots for each of the ascending prioritization strategies in iso-
lation, while Table 7.5 shows the mean and median number of test executions
of the analyses that did not time out. The results are split up for each defect
location (i.e., actor 5, 25, and 45) and the analyses are prefixed by the first letter
of their exploration strategy (i.e., N or D). From Table 7.5, observe that not
every analysis with an ascending prioritization strategy finds the defects within
30 minutes when combined with naive, while analyses with dd never time out.
For example, while the strategy afifo was not able to find defects 25 and 45,
the strategy afo was able to find these but not able to find defect 5. As another
example, we observe that the strategies afi and art are unable to find defect 45.
Looking at the means of both strategies in Table 7.5, art is able to find defects
5 and 25 respectively 19 and 2 times faster. However, the large speedup to find
5 is rather coincidental and is due to the internal working of Akka.

Naive DD
n-5 n-25 n-45 d-5 d-25 d-45

shu
Mean 123 43 33 16 14 13
Median 123 18 25 15 14 13
Timeouts 9 5 0 0 0 0

afi
Mean 19 92 - 13 14 15
Median 14 91 - 13 14 15
Timeouts 0 0 10 0 0 0

afo
Mean - 59 13 18 13 12
Median - 59 13 18 13 12
Timeouts 10 1 0 0 0 0

afifo
Mean 25 - - 13 15 16
Median 24 - - 13 15 16
Timeouts 0 10 10 0 0 0

amt
Mean 52 - 73 15 15 14
Median 52 - 73 15 15 14
Timeouts 9 10 6 0 0 0

art
Mean 1 46 - 10 14 14
Median 1 46 - 10 14 14
Timeouts 0 0 10 0 0 0

Table 7.5: The mean and median number of test executions required to find
each resilience defect. These numbers are only based on analyses that use an
ascending prioritization strategy and did not time out.

We also observe that combining ascending prioritization strategies with dd
only slightly impacts performance. Additionally, the difference in performance
for each defect location does not fluctuate as widely as it does when strategies are
combined with naive. On the one hand, combining naive with the strategies art
(n-5), shu (n-25), and afo (n-45) require the lowest number of test executions
to find each defect. On the other hand, combining dd with the strategies art
(d-5), afo (d-25), and afo (d-45) require the lowest number of test executions.

7.2. PRIORITIZATION OF FAULTS 165

25

50

75

100

125

N−5 N−25 N−45 D−5 D−25 D−45
SHU

Te
st

 E
xe

cu
tio

ns

0

10

20

30

40

50

N−5 D−5 D−25 D−45
AFIFO

Te
st

 E
xe

cu
tio

ns

0

30

60

90

N−5 N−25 D−5 D−25 D−45
AFI

Te
st

 E
xe

cu
tio

ns

0

30

60

90

N−25 N−45 D−5 D−25 D−45
AFO

Te
st

 E
xe

cu
tio

ns

25

50

75

100

N−5 N−45 D−5 D−25 D−45
AMT

Te
st

 E
xe

cu
tio

ns

0

10

20

30

40

N−5 N−25 D−5 D−25 D−45
ART

Te
st

 E
xe

cu
tio

ns

Figure 7.6: An overview of each analysis with ascending prioritization strategy.

166 CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.7 shows plots for each of the descending prioritization strategies in
isolation, while Table 7.6 shows the mean and median number of test executions
of the analyses that did not time out. In contrast to the ascending strategies,
we observe that many analyses time out when they use a descending variant in
combination with naive, while a combination with dd again never times out.
That is, dfifo, dfi, dmt, and drt are not able to find any defect within the
given time limit. Only the combination of dfo and naive is able to find defect
5 without timing out and does this in a similar number of test executions as the
combination of dfo and dd. Surprisingly, the strategy shu seems to perform the
best for these analyses.

naive dd
n-5 n-25 n-45 d-5 d-25 d-45

shu
Mean 123 43 33 16 14 13
Median 123 18 25 15 14 13
Timeouts 9 5 0 0 0 0

dfi
Mean - - - 17 16 13
Median - - - 17 16 13
Timeouts 10 10 10 0 0 0

dfo
Mean 13 - - 13 16 15
Median 12 - - 13 16 14
Timeouts 0 10 10 0 0 0

dfifo
Mean - - - 17 16 15
Median - - - 17 16 15
Timeouts 10 10 10 0 0 0

dmt
Mean - - - 15 15 16
Median - - - 14 15 16
Timeouts 10 10 10 0 0 0

drt
Mean - - - 18 17 13
Median - - - 18 17 13
Timeouts 10 10 10 0 0 0

Table 7.6: The mean and median number of test executions required to find each
resilience defect. These numbers are only based on analyses that use a descending
prioritization strategy and did not time out.

Based on the means in bold from Table 7.6, we make the following observa-
tions. On the one hand, combining naive with the strategies dfo (n-5), shu
(n-25), and shu (n-45) require the lowest number of test executions to find each
defect. On the other hand, combining dd with the strategies dfo (d-5), shu (d-
25), and shu (or dfi or drt) (d-45) require the lowest number of test executions
to find each defect.

7.2. PRIORITIZATION OF FAULTS 167

25

50

75

100

125

N−5 N−25 N−45 D−5 D−25 D−45
SHU

Te
st

 E
xe

cu
tio

ns

13

14

15

16

17

18

D−5 D−25 D−45
DFIFO

Te
st

 E
xe

cu
tio

ns

13

14

15

16

17

18

D−5 D−25 D−45
DFI

Te
st

 E
xe

cu
tio

ns

10

12

14

16

N−5 D−5 D−25 D−45
DFO

Te
st

 E
xe

cu
tio

ns

12

14

16

D−5 D−25 D−45
DMT

Te
st

 E
xe

cu
tio

ns

13

14

15

16

17

18

D−5 D−25 D−45
DRT

Te
st

 E
xe

cu
tio

ns

Figure 7.7: An overview of each analysis with descending prioritization strategy.

168 CHAPTER 7. EXPERIMENTAL EVALUATION

0

25

50

75

100

125

SHU AFI AFO AFIFO AMT ART DFI DFO DFIFO DMT DRT
Prioritization Strategy

Te
st

 E
xe

cu
tio

ns

Exploration Strategy

Naive (5)

Naive (25)

Naive (45)

DD (5)

DD (25)

DD (45)

Figure 7.8: A complete overview of each prioritization strategy.

While Figure 7.5 aggregated the results of each variant, Figure 7.8 shows the
results of each variant individually. It is important to note that some of these
results might not be comparable because of the limited number of analyses that
do not time out. For example, the combination of naive and the strategy shu
had only 1 successful result (i.e., 123). It could therefore be that this result is an
outlier in a larger set of successful analyses. This is also the reason why we do
not compute absolute performance differences between the different strategies.
Nevertheless, the results show that an analysis with a naive exploration strategy
does not perform well as reflected by the number of timeouts. We summarize our
conclusions below.
RQ4 Summary

There is a clear performance difference between ascending and descending
variants of each prioritization strategy when combined with a naive explo-
ration strategy. A sub-optimal prioritization strategy and the location of the
resilience defect can be detrimental to the performance. In contrast, the per-
formance difference is limited when analyses combine prioritization strategies
with dd.

7.3. DISCUSSION AND OBSERVATIONS 169

7.3 Discussion and Observations
We discuss several topics based on our results and observations.

1. Combinations of Faults. It is clear from the results that both rt-dd
and rt-dd-o can achieve better performance than rt-n when searching for
single faults. While our approach can already find combinations of faults,
we leave an in-depth investigation of failures arising from combinations of
faults for future work. Moreover, the general delta debugging algorithm
is quadratic in the worst case, while a naive approach would be exponen-
tial since every possible combination has to tested. This shows that delta
debugging can achieve sufficient performance even when combinations of
faults have to be found.

2. Fine-grained Priority. Looking back at Table 7.5, we observe that sev-
eral analyses did not always time out or didn’t time out at all. For example,
the combination of naive with amt timed out 9 times for defect 5, while
it timed out 6 times for defect 45. This is due to the fact that fault tuples
with the same priority are not ordered by other characteristics. For exam-
ple, given that actor 1, 5, and 10 have the same priority, fault tuples δ1, δ5,
and δ10 that have these actors as target are ordered in an unspecified way:
the implementation might return [δ1, δ5, δ10], or [δ5, δ1, δ10], or any other
permutation. This can result in a slightly different number of required test
executions and can make the difference between timing out or not. We
intentionally left the order of actors with the same priority unspecified as
it remains general. That is, the prioritization strategies only use the given
characteristic to compute the priority. A straightforward solution is to in-
clude other characteristics into the ordering such as actor names or message
types.

3. Determining Appropriate Strategies. A resilience analysis that com-
bines naive with well-chosen prioritization strategies could outperform an
analysis with our exploration strategy dd. For example, Table 7.5 indicates
that an analysis with naive and art would only require 1 test execution
to find defect 5, while it would take 10 test executions for an analysis based
on dd. However, our results indicated that choosing a wrong prioritization
strategy with a naive exploration strategy can deteriorate performance.
Additionally, distributed systems are more likely to be complex and thus
have a large fault space. Therefore, we consider our exploration strategy
dd to be the best choice in general as our results show that it has a more
stable performance compared to naive. However, automatically detecting
whether a certain combination of strategies is appropriate could further
improve performance and preclude developers from deteriorating the per-
formance with a wrong decision.

170 CHAPTER 7. EXPERIMENTAL EVALUATION

4. Overhead of Test Execution. Our implementation can be improved
in several aspects. Currently, capturing execution traces, monitoring fault
targets, and checking for faults in the fault scenario all occur on a single
analysis thread. There might be more efficient ways to implement these
mechanisms and thus improve the performance. Checkpointing [PBKL94]
can be used as an improvement to the overhead of restarting the actor
system for every test execution. There exist several utilities such as CRIU2

that can be used to capture the state of a system on the jvm. Complex
systems likely take several seconds or several minutes to start before any
functionality is available which slows down the approach. Checkpointing
could help as it can deploy a known state in matter of milliseconds3.
Another point of improvement is to automatically scale timeouts in tests as
a test might fail because of the fault injection overhead. We made sure this
was not the case for our analyses. However, this is a common problem in
practice as timeouts can also occur when tests are run on a slower machine
or network. The ScalaTest framework therefore provides a way to scale
timeouts by a given factor. Thus, developers can easily adapt the timeouts
of their tests and therefore mitigate aforementioned problems.

5. Prioritizing Fault Types. Given the larger overhead of restarting actors,
we propose to test for issues related to guaranteed message delivery first
and only then for issues related to actor restarts. The reasoning behind this
is two-fold. First, the overhead of duplicating messages is small and thus
can achieve results in a reasonable time. Second, actors can send messages
during their recovery. As a result, this might cause duplicated messages
on the receiver side. Additionally, the overhead of restarting actors quickly
increases when more need to be started which might not fit the given testing
budget for large systems. Nevertheless, several engineering efforts might be
able to reduce this overhead.

7.4 Threats to Validity
While we put significant effort in attempting to collect Akka systems from
Github, we were unable to find actor systems where a majority of actors imple-
mented these resilience mechanisms. Therefore, we evaluated our approach on a
set of generated actor systems and ensured that their communication topologies
are representative for those of known microservice architectures (e.g., Figure 7.1
from eBay) and that a varying number of messages and defect locations are
incorporated to have a diverse data set. Nevertheless, we acknowledge that our
results are only valid for the kind of actor systems that we generated and the
seeded resilience defects that we implemented. Further evaluation requires rep-
resentative systems and is left for a future avenue.

2https://github.com/xemul/criu
3https://www.jfokus.se/jfokus19-preso/Checkpointing-Java.pdf

https://github.com/xemul/criu
https://www.jfokus.se/jfokus19-preso/Checkpointing-Java.pdf

7.5. CONCLUSION 171

7.5 Conclusion
This chapter presented an evaluation of our approach to resilience testing. The
first study assessed the performance of different resilience analyses. The results
indicate that our exploration strategy based on delta debugging with causality-
based pruning is able to detect resilience defects about 5 times faster than a naive
exploration strategy. The results of the second study indicate that the overhead
of restarting actors is a significantly larger than the overhead of duplicating mes-
sages, but this overhead is caused by the Akka framework itself. The third study
investigated the impact of prioritization strategies on performance. The results
show that the effect of prioritization strategies is limited when combined with
dd, but can deteriorate the performance when combined with naive. Addition-
ally, the results show that the difference in performance between ascending and
descending prioritization is larger when combined with naive instead of dd. The
results therefore indicate that our approach to resilience testing is an improve-
ment to the state of the art as it lowers the amount of time it takes to detect
resilience defects. Additionally, we show that our approach can be integrated
with existing actor model frameworks (i.e., Akka) and testing frameworks (i.e.,
ScalaTest) which should facilitate adoption and tool support. The next and
final chapter concludes this dissertation by summarizing our discourse and dis-
cussing avenues of future work.

172 CHAPTER 7. EXPERIMENTAL EVALUATION

Chapter 8

Conclusion and Future
Work

We discussed our vision of intelligent testing platforms that improve test effi-
ciency throughout this dissertation. This vision originated from the fact that
extensive test suites are available, but remain largely unexploited at current
times. These tests have become available nowadays because testing frameworks
have been widely integrated into the development process and software test-
ing remains the go-to approach for developers to validate their implementation.
However, contemporary testing frameworks do not provide support for amplifying
these tests which leads to many of the developer’s efforts to go to waste.

In this dissertation, we therefore propose two approaches that apply test
amplification to exploit the full potential of tests. In particular, we presented
Socrates as a static analysis approach to improving test quality and Chaokka
as a dynamic analysis approach to improving resilience. Both approaches demon-
strated the feasibility of our vision of intelligent testing platforms and are imple-
mented for the Scala ecosystem to show its applicability to the industry.

This final chapter recapitulates the contents of this dissertation. Section 8.1
provides a summary of this dissertation by briefly highlighting the core of each
chapter. Next, Section 8.2 restates our contributions related to our two ap-
proaches Socrates and Chaokka. Section 8.3 then discusses avenues for future
work, while Section 8.4 concludes this dissertation.

173

174 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Summary
Chapter 1 explained the concepts of test automation, testing frameworks, au-
tomated testing, and test amplification. Additionally, we discussed the shift
towards systems with a distributed architecture and the fact that these systems
are typically only tested under normal conditions. This is understandable as the
increasingly complex systems and short development cycles make it infeasible
for developers to always write optimal tests in terms of quality or coverage. We
therefore indicated that existing test suites could be amplified to further improve
the test efficiency automatically. For example, tests can be amplified to improve
test quality (e.g., achieving maintainable tests) or to cover additional behaviour
(e.g., testing the system under abnormal network conditions).

We therefore proposed our vision of intelligent testing platforms that provide
support for test amplification. This dissertation therefore aimed to demonstrate
that test amplification approaches can improve current testing practices. In par-
ticular, we proposed Socrates and Chaokka to demonstrate the feasibility of
our vision and implemented them for the Scala ecosystem to show their appli-
cability to the industry.

Chapter 2 presented the Scala ecosystem and two of its frameworks. We
started by presenting the programming language Scala and its features. Next,
we formally presented a testing system to understand the concepts of software
testing and discussed these concepts in Scala’s most popular testing framework
ScalaTest. Finally, we introduced the actor model and its implementation in
Scala’s most popular actor model framework Akka, along with a discussion
about the current testing practices for actor systems with the library TestKit.

Chapter 3 presented the concept of a test smell and its purpose as an indica-
tor for test quality. Our research on this topic was motivated by the result of our
extensive literature study. In particular, we observed that the majority of studies
on test smells are conducted in the context of the Java ecosystem and that their
corresponding tools are mostly not available. Moreover, several studies observed
a negative impact of test smells on software aspects such as maintainability and
defect proneness.

Therefore, we proposed Socrates — our automated and static analysis ap-
proach to detect test smells in the Scala ecosystem. Our approach is built on
top of ScalaTest to show its applicability to the industry. We described that
our approach is unique in its detection method because it uses both syntactic and
semantic information. Additionally, we adapted 6 test smell definitions defined
by Van Deursen et al. [VRDBDR07] and their corresponding refactoring meth-
ods to the specifics of ScalaTest. Finally, we discussed the implementation of
Socrates including its usage and its extension possibilities.

8.1. SUMMARY 175

Chapter 4 presented two empirical studies about test smells. First, we con-
ducted a survey to investigate the perception of test smells by Scala developers
and used Socrates to determine the diffusion of test smells in Scala systems
found on Github. Our results show that developers have limited awareness of
test smells, similar to what was found in existing surveys among Java developers.
We also observed a lower diffusion of test smells in the Scala ecosystem than in
the Java ecosystem. These results indicate that the current knowledge about test
smells might not be generalizable across different ecosystems. Additionally, the
results indicate that existing test suites in the Scala ecosystem have acceptable
quality and could therefore be more suitable for test amplification.

Chapter 5 then presented the concepts of resilience and briefly highlighted
the difficulties in implementing and testing resilience. In particular, resilience is
increasingly important for systems with a distributed architecture as it exposes
them to external conditions under which they may no longer remain operational.
Systems that are resilient detect these conditions and recover from them through
resilience mechanisms.

Next, we provided background information about techniques and approaches
related to resilience testing. First, we explained Fault Injection [AALC96] as
it is the foundation of most resilience testing approaches. It provides the nec-
essary architecture to inject faults during the execution of the system in order
to simulate certain conditions and events. Next, we discussed Chaos Engineer-
ing [BBDR+16] as an approach to test the resilience of systems in production.
Subsequently, we explained two techniques that can efficiently explore the fault
space: Lineage-Driven Fault Injection [ARH15] and Delta Debugging [ZH02].

We then presented an extensive study of the state of the art to understand
the current approaches to resilience testing. This study enabled us to identify
their similarities and shortcomings of current approaches and categorize them
accordingly. A key observation is that these approaches typically incorporate a
spectrum of exploration, pruning, and prioritization strategies. We integrated
these observations into our resilience testing approach.

Chapter 6 presented the difficulties of implementing and testing resilience
mechanisms in the context of Akka as these resilience mechanisms are prone to
several subtle implementation defects. First, developers could forget that mes-
sages could arrive multiple times because of guaranteed message delivery mecha-
nisms. Second, developers could incorrectly persist or rehydrate the internal state
of actors. Our motivation for this research results from the fact that developers
currently have limited means to test the resilience of their actor systems.

Therefore, we proposed Chaokka — our automated and dynamic analysis
approach to resilience testing of actor systems in the Scala ecosystem. Our
approach is built on top of ScalaTest and Akka to show its applicability to
the industry. Next, we provided an overview of our approach and explained
our adoption of the fault injection architecture. In particular, our approach
systematically injects faults during test execution to uncover resilience defects.
Changes in test outcomes indicate resilience defects.

176 CHAPTER 8. CONCLUSION AND FUTURE WORK

We then detailed the concepts of the trace analysis and resilience analysis.
To recap, an execution trace of the test under normal conditions is captured for
each test case. Next, the fault space is automatically generated by collecting the
fault targets from the trace and combining them with their corresponding fault
types. The resilience analysis then systematically explores this fault space by
testing different fault scenarios in isolation. Each resilience analysis is composed
of an exploration, a pruning, and a prioritization strategy.

To the best of our knowledge, we are the first to propose the use of delta
debugging as an efficient exploration strategy in the context of actor systems
and resilience testing. Additionally, we also proposed a pruning strategy based
on the causality of actor events, as well as multiple prioritization strategies that
use actor-specific characteristics. These strategies can further reduce the time
to find resilience defects. Finally, we discussed the implementation of Chaokka
including its usage and its extension possibilities.

Chapter 7 finally presented an experimental evaluation of our resilience test-
ing approach. In particular, we execute resilience analyses with different combi-
nations of strategies on a set of generated actor systems seeded with resilience
defects. The studies indicate that resilience analyses with our exploration strat-
egy based on delta debugging and our causality-based pruning strategy are about
5 times faster than analyses with a naive exploration strategy. Furthermore, the
studies indicate that prioritization strategies have limited effect on the perfor-
mance of analyses that use our exploration strategy based on delta debugging.
However, it can have a detrimental effect on analyses with a naive exploration
strategy resulting in uncovered resilience defects.

8.2 Contributions
This dissertation presents two key contributions: Socrates and Chaokka. We
situated these approaches in the context of the Scala ecosystem (Chapter 2).

8.2.1 Socrates: Statically Detecting Test Smells
First, we identified the need for automated, efficient, and integrable approaches
to detect test smells in order to improve test quality (Chapter 1). Our motivation
behind this work was that current studies are limited to the context of the Java
ecosystem and tools are not widely available. Our first contribution is therefore
our static analysis approach to detecting test smells (Chapter 3 and Chapter 4):

• An automated and static analysis approach to find test smells.

• The implementation of our approach for the testing framework ScalaTest
in the open-source tool Socrates.

• An empirical study of test smells in 164 open-source Scala systems.

• A survey on the awareness of 14 Scala developers about test smells.

8.3. FUTURE WORK 177

8.2.2 Chaokka: Dynamically Testing Resilience
Second, we identified the need for automated, efficient, and integrable approaches
to test the resilience of actor systems (Chapter 1). Our motivation behind this
work is that state-of-the-art approaches to resilience testing are limited (Chap-
ter 5) and do not exist for distributed actor systems. Our second contribution
is therefore our dynamic analysis approach to resilience testing (Chapter 6 and
Chapter 7).

• An automated and dynamic analysis approach to finding resilience defects
in actor systems.

• The implementation of our approach for the actor framework Akka and
the testing framework ScalaTest in the open-source tool Chaokka.

• An evaluation that demonstrates the impact and efficiency of our proposed
exploration, pruning, and prioritization strategies.

We refer the reader back to the detailed conclusions about test smells and
resilience testing in Chapter 4 and Chapter 7 respectively.

8.3 Future Work
We envision future research in both aspects of this dissertation and discuss several
of these avenues in more detail below. With respect to test smells, we envision 5
avenues for future work:

1. Different Ecosystems. Our study indicated that the diffusion of test
smells is lower compared to studies in the context of the Java ecosystem.
However, it remains to be seen whether this is also true for other ecosys-
tems. We therefore envision replications of these studies to get a broader
view of how test smells are diffused across different ecosystems. While the
implementation of Socrates is specific to the Scala ecosystem, it pro-
vides a solid foundation and architecture that can be adapted to detect
test smells in other ecosystems. Additionally, we only transposed existing
test smell definitions to the Scala ecosystem, but did not propose any new
ones. We leave test smells specific to ScalaTest or Akka for future work.

2. Dynamic Detection. Some of the test smells were not detected because
they require a dynamic analysis. For example, Resource Optimism would
require the execution of the system to determine whether the resource ex-
ists. Similarly, Test Run War would require the tests to be executed in
every possible order. While this smell could indeed be determined stati-
cally, it would require the computation of complex control and data flows.
Therefore, a dynamic analysis is preferred. Ideally, Socrates would be
extended with such support to enlarge the set of test smells it can detect.

178 CHAPTER 8. CONCLUSION AND FUTURE WORK

3. Test Smells and Metrics. Several studies have observed a relationship
between test smells and software aspects such as maintainability, defect
proneness, and code smells. We believe that these are also present in differ-
ent ecosystems. We therefore envision a replication of these studies for the
Scala ecosystem. These studies might also provide insights about which
tests are the most suitable input for test amplification approaches.

4. Severity of Test Smells. Existing surveys show that developers are not
always aware of test smells in their tests. However, this might also be
because developers do not consider test smells as a severe issue. Unfor-
tunately, the actual reason for the lack of awareness is typically neglected
in surveys and thus might require more investigation in the future. For
example, [SSO+20] proposed severity thresholds for test smells in order to
urge developers to take action.

5. Automated Refactoring. Socrates only indicates test smells in the
code, but does not provide support for automated refactorings that elimi-
nate the smell from their test. We therefore envision such a feature so that
developers no longer need to modify the test code themselves.

With respect to resilience testing, we envision 4 avenues for future work:

1. Non-deterministic Actor Systems. Chaokka only supports systems
and tests that are deterministic in nature. Non-determinism can occur
due to non-deterministic scheduling, non-deterministic data, or both. This
might give different outcomes for subsequent runs and cause the delta de-
bugging algorithm to produce incorrect fault scenarios as it expects the
test function to be deterministic. Nevertheless, we identified several ap-
proaches [AMB+18,LPV19] in the work of Lopez et al. [LMBM18] that can
be used to deterministically record and replay the scheduling so that ac-
tor systems have the same behaviour across multiple executions. Chaokka
could additionally detect differences in subsequent execution traces to warn
developers. Other sources of non-determinism (e.g., random message pay-
loads) could also be controlled by the tester which is commonly needed in
dynamic symbolic execution [GKS05].

2. Additional Resilience Defects. While Chaokka supports the detection
of two types of resilience defects, there might be other resilience mechanisms
with their corresponding defects. For example, circuit breakers1 provide
a default response when they are in an open state. Such an open state
only occurs under abnormal conditions and might not be understood by
requesting services. Similarly, actors with supervision strategies2 execute
a certain recovery strategy upon abnormal conditions that occurred in an
actor that they are supervising. Of course, developers might implement
such an system-specific recovery strategy incorrectly.

1https://doc.akka.io/docs/akka/current/common/circuitbreaker.html
2https://doc.akka.io/docs/akka/current/typed/fault-tolerance.html

https://doc.akka.io/docs/akka/current/common/circuitbreaker.html
https://doc.akka.io/docs/akka/current/typed/fault-tolerance.html

8.4. CONCLUDING REMARKS 179

3. Feedback-directed Resilience Testing. Chaokka determines fault
targets solely through the first test execution trace which is obtained by
running the test under normal conditions. However, actor systems might
change their execution when certain faults are injected. Therefore, we
could incrementally build a model during the actual test execution that
represents the system’s execution so far (e.g., which faults are injected into
which actors). Additionally, we could track the effect of faults on certain
fault targets by combining information from multiple tests. The resulting
model could improve the efficiency of our approach to resilience testing. For
example, certain fault tuples could be pruned from the fault space when
they have already been thoroughly injected into other tests.

4. Extended Evaluation. While we invested significant effort in identifying
open-source Akka systems available on Github, we were not able to find
representative systems that extensively use persistent actors and at-least-
once message delivery. Moreover, even if we did find such systems, they may
not contain resilience defects and would still require manual effort to seed
them with defects. Correspondingly, we evaluated our approach on a set of
generated actor systems seeded with resilience defects. It therefore remains
to be seen how our approach can detect resilience defects in open-source or
proprietary Akka systems.

8.4 Concluding Remarks
We believe that this dissertation and its proposed approaches demonstrate the
feasibility of our vision of intelligent testing platforms. These platforms support
current software testing practices and aim to improve test efficiency by leveraging
existing test suites. To conclude, we summarize our two approaches.

First, we proposed Socrates as a static analysis approach to improving
the quality of existing test suites. Our motivation behind this approach is the
presence of test smells in the Java ecosystem, their negative impact of test smells
on multiple software aspects, and the limited tool support for detecting smells in
other ecosystems. Our automated approach therefore detects 6 test smells in an
automated way for tests written with ScalaTest. Our empirical study of 164
Scala systems indicated a low diffusion of test smells which shows that tests in
Scala have an acceptable quality. Socrates is one demonstrator of our vision
and shows the possibilities of test amplification.

Second, we proposed Chaokka as a dynamic analysis approach to improve
the resilience of actor systems. Our motivation behind this work is the increas-
ing importance of resilience for systems with a distributed architecture and the
limited tool support for finding resilience defects in an efficient manner. Our au-
tomated approach therefore leverages fault injection to find 2 types of resilience
defects in actor systems written with Akka. Moreover, our strategies based on
delta debugging and causality are able to explore the fault space more efficiently.

180 CHAPTER 8. CONCLUSION AND FUTURE WORK

Our experimental study of generated actor systems demonstrated that an anal-
ysis with our exploration and pruning strategy can find resilience defects up to
5 times faster compared to a naive analysis. Again, Chaokka supports the fea-
sibility of our vision of testing platforms that amplify existing test suites and
hereby increase test efficiency.

Bibliography

[AALC96] Dimiter Avresky, Jean Arlat, Jean-Claude Laprie, and Yves
Crouzet. Fault injection for formal testing of fault tolerance.
Transactions on Reliability, 1996.

[AAS+16] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal,
Ali Basiri, and Lorin Hochstein. Automating failure testing re-
search at internet scale. In Proceedings of the 7th ACM Sympo-
sium on Cloud Computing, 2016.

[Agh85] Gul A Agha. Actors: A model of concurrent computation in
distributed systems. Technical report, 1985.

[ALR+01] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al.
Fundamental concepts of dependability. 2001.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and se-
cure computing. Transactions on Dependable and Secure Com-
puting, 2004.

[AMB+18] Dominik Aumayr, Stefan Marr, Clément Béra, Elisa Gonzalez
Boix, and Hanspeter Mössenböck. Efficient and deterministic
record & replay for actor languages. In Proceedings of the 15th
International Conference on Managed Languages & Runtimes,
2018.

[AMC+10] Peter Alvaro, William R Marczak, Neil Conway, Joseph M
Hellerstein, David Maier, and Russell Sears. Dedalus: Data-
log in time and space. In International Datalog 2.0 Workshop,
2010.

[AMM15] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders
Møller. Systematic execution of android test suites in adverse
conditions. In Proceedings of the 24th International Symposium
on Software Testing and Analysis, 2015.

181

182 BIBLIOGRAPHY

[ARD19] Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. Test am-
plification in the pharo smalltalk ecosystem. In Proceedings of the
14th International Workshop on Smalltalk Technologies, 2019.

[ARH15] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-
driven fault injection. In Proceedings of the International Con-
ference on Management of Data, 2015.

[BBDR+16] Ali Basiri, Niosha Behnam, Ruud De Rooij, Lorin Hochstein,
Luke Kosewski, Justin Reynolds, and Casey Rosenthal. Chaos
engineering. IEEE Software, 2016.

[Bec03] Kent Beck. Test-driven Development: By Example. Addison-
Wesley Professional, 2003.

[Bei03] Boris Beizer. Software Testing Techniques. 2003.

[BFLT06] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving
test suites for efficient fault localization. In Proceedings of the
28th International Conference on Software Engineering, 2006.

[BGP+17] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian
Proksch, Sven Amann, and Andy Zaidman. Developer testing in
the ide: Patterns, beliefs, and behavior. Transactions on Soft-
ware Engineering, 2017.

[BHM+14] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz,
and Shin Yoo. The oracle problem in software testing: A survey.
Transactions on Software Engineering, 2014.

[BHP+17] David Bowes, Tracy Hall, Jean Petric, Thomas Shippey, and
Burak Turhan. How good are my tests? In Proceedings of the
8th Workshop on Emerging Trends in Software Metrics, 2017.

[BK14] Peter Bailis and Kyle Kingsbury. The network is reliable. Queue,
2014.

[BKWC01] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why
and where: A characterization of data provenance. In Interna-
tional conference on database theory. Springer, 2001.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Auto-
mated testing and debugging of SAT and QBF solvers. In Inter-
national Conference on Theory and Applications of Satisfiability
Testing, 2010.

[BLS94] Niels Boyen, Carine Lucas, and Patrick Steyaert. Generalized
mixin-based inheritance to support multiple inheritance. Tech-
nical report, vub-prog-tr-94-12, Vrije Universiteit Brussel, 1994.

BIBLIOGRAPHY 183

[BQO+12] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lu-
cia, and David Binkley. An empirical analysis of the distribution
of unit test smells and their impact on software maintenance.
In Proceedings of the 28th International Conference on Software
Maintenance, 2012.

[BQO+15] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lu-
cia, and Dave Binkley. Are test smells really harmful? an em-
pirical study. Empirical Software Engineering, 2015.

[CDSL+19] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto
Natella, and Nematollah Bidokhti. How bad can a bug get?
an empirical analysis of software failures in the openstack cloud
computing platform. In Proceedings of the 27th ACM Joint Meet-
ing on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, 2019.

[CSM15] Benoit Cornu, Lionel Seinturier, and Martin Monperrus. Excep-
tion handling analysis and transformation using fault injection:
Study of resilience against unanticipated exceptions. Information
and Software Technology, 2015.

[CTBV15] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and
Laurent Vanbever. Chaos monkey: Increasing SDN reliability
through systematic network destruction. In ACM Computer
Communication Review, 2015.

[CWC+19] Chengxu Cui, Guoquan Wu, Wei Chen, Jiaxing Zhu, and Jun
Wei. Feedback-based, automated failure testing of microservice-
based applications. Preprint arXiv:1908.06466, 2019.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L Wiener. Tracing the
lineage of view data in a warehousing environment. Transactions
on Database Systems, 2000.

[DBDNDR19a] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. As-
sessing diffusion and perception of test smells in scala projects.
In Proceedings of the 16th International Conference on Mining
Software Repositories, 2019.

[DBDNDR19b] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. Socrates:
Scala radar for test smells. In Proceedings of the 10th Symposium
on Scala, 2019.

[DBDNDR20] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. A delta-
debugging approach to assessing the resilience of actor programs
through run-time test perturbations. In Proceedings of the 1st
International Conference on Automation of Software Test, 2020.

184 BIBLIOGRAPHY

[DBSNDR17] Jonas De Bleser, Quentin Stiévenart, Jens Nicolay, and Coen
De Roover. Static taint analysis of event-driven scheme pro-
grams. In 10th European Lisp Symposium, 2017.

[Dij78] Edsger W Dijkstra. Two starvation free solutions to a general
exclusion problem. Note EWD, 1978.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms for
the Construction and Analysis of Systems, 2008.

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo
theories: introduction and applications. Communications of the
ACM, 2011.

[DVPY+19] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaid-
man, Martin Monperrus, and Benoit Baudry. A snowballing
literature study on test amplification. Journal of Systems and
Software, 2019.

[ECS15] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. An
exploratory study on exception handling bugs in java programs.
Journal of Systems and Software, 2015.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive
datalog. Transactions on Database Systems, 1997.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test
suite generation for object-oriented software. In Proceedings of
the 13th European Conference on Foundations of Software Engi-
neering, 2011.

[Fid88] Colin J Fidge. Partial orders for parallel debugging. In ACM
Sigplan Notices, 1988.

[Fow05] Martin Fowler. Event sourcing. 2005.

[Fow18] Martin Fowler. Refactoring: improving the design of existing
code. 2018.

[GBJG15] Malay Ganai, Gogul Balakrishnan, Pallavi Joshi, and Aarti
Gupta. Setsudo: Pertubation-based testing framework for scal-
able distributed systems, 2015. US Patent App. 14/217,566.

[GDJ+11] Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro,
Joseph M Hellerstein, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. Fate and
destini: A framework for cloud recovery testing. In Proceedings
of the 8th Symposium on Networked Systems Design and Imple-
mentation, 2011.

BIBLIOGRAPHY 185

[Ghi19] Yonas Ghidei. Lineage-driven fault injection for actor-based pro-
grams, 2019.

[GK18] Vahid Garousi and Barış Küçük. Smells in software test code:
A survey of knowledge in industry and academia. Journal of
systems and software, 138:52–81, 2018.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Di-
rected automated random testing. In Proceedings of the Con-
ference on Programming Language Design and Implementation,
2005.

[GvS13] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey.
Automated detection of test fixture strategies and smells. In
Proceedings of the International Conference on Software Testing,
Verification and Validation, 2013.

[GZ13] Vahid Garousi and Junji Zhi. A survey of software testing prac-
tices in canada. Journal of Systems and Software, 2013.

[GZvS13] Michaela Greiler, Andy Zaidman, Arie van Deursen, and
Margaret-Anne Storey. Strategies for avoiding text fixture smells
during software evolution. In Proceedings of the 10th Conference
on Mining Software Repositories, 2013.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal
modular actor formalism for artificial intelligence. In Proceed-
ings of the 3rd International Conference on Artificial Intelli-
gence, 1973.

[Hel07] Pat Helland. Life beyond distributed transactions: an apos-
tate’s opinion. In Proceedings of the 3rd Conference on Innova-
tive DataSystems Research, 2007.

[Hel12] Pat Helland. Idempotence is not a medical condition. Queue,
2012.

[HH02] James A Highsmith and Jim Highsmith. Agile software develop-
ment ecosystems. 2002.

[HJ01] Mark Harman and Bryan F Jones. Search-based software engi-
neering. Information and software Technology, 2001.

[HJZ15] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements,
open problems and challenges for search based software testing.
In Proceedings of the 8th International Conference on Software
Testing, Verification and Validation, 2015.

186 BIBLIOGRAPHY

[HK16] Renáta Hodován and Ákos Kiss. Practical improvements to the
minimizing delta debugging algorithm. In Proceedings of the 11th
International Conference on Software Engineering and Applica-
tions, 2016.

[HRJ+16] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom,
Michael K Reiter, and Vyas Sekar. Gremlin: Systematic re-
silience testing of microservices. In Proceedings of the 36th In-
ternational Conference on Distributed Computing Systems, 2016.

[HROE13] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and
Tamar Eilam. Testing idempotence for infrastructure as code. In
International Conference on Distributed Systems Platforms and
Open Distributed Processing, 2013.

[IS14] Shams M Imam and Vivek Sarkar. Savina-an actor bench-
mark suite: Enabling empirical evaluation of actor libraries. In
Proceedings of the 4th International Workshop on Programming
based on Actors Agents & Decentralized Control, 2014.

[JGS11] Pallavi Joshi, Haryadi S Gunawi, and Koushik Sen. Prefail: A
programmable tool for multiple-failure injection. In Proceedings
of the International Conference on Object-oriented Programming
Systems, Languages, and Applications, 2011.

[KBLJ13] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and
Lingxiao Jiang. Adoption of software testing in open source
projects–a preliminary study on 50,000 projects. In Proceedings
of the 17th European Conference on Software Maintenance and
Reengineering, 2013.

[KHA17] Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive design
patterns. 2017.

[Knu71] Donald E. Knuth. Optimum binary search trees. Acta informat-
ica, 1971.

[Lam19] Leslie Lamport. The part-time parliament. In Concurrency: the
Works of Leslie Lamport. 2019.

[Lap08] Jean-Claude Laprie. From dependability to resilience. In Pro-
ceedings of the 38th International Conference On Dependable
Systems and Networks, 2008.

[LF14] James Lewis and Martin Fowler. Microservices. 2014.

[LKMA10] Steven Lauterburg, Rajesh K Karmani, Darko Marinov, and Gul
Agha. Evaluating ordering heuristics for dynamic partial-order
reduction techniques. In Proceedings of the 12th International

BIBLIOGRAPHY 187

Conference on Fundamental Approaches to Software Engineer-
ing, 2010.

[LLLG16] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and
Haryadi S Gunawi. Taxdc: A taxonomy of non-deterministic
concurrency bugs in datacenter distributed systems. ACM SIG-
PLAN Notices, 2016.

[LMBM18] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and
Hanspeter Mössenböck. A study of concurrency bugs and ad-
vanced development support for actor-based programs. In Pro-
gramming with Actors. 2018.

[LPV19] Ivan Lanese, Adrián Palacios, and Germán Vidal. Causal-
consistent replay debugging for message passing programs. In
Proceedings of the 39th International Conference on Formal
Techniques for Distributed Objects, Components, and Systems,
2019.

[Mes07] Gerard Meszaros. xUnit test patterns: Refactoring test code.
2007.

[MLA+17] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr,
Elisa Gonzalez Boix, and Hanspeter Mössenböck. Kóµπoς: A
platform for debugging complex concurrent applications. In Pro-
ceedings of the 1st International Conference on the Art, Science
and Engineering of Programming, 2017.

[Mor16] Kief Morris. Infrastructure as code: managing servers in the
cloud. 2016.

[MS06] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta
debugging. In Proceedings of the 28th international conference
on Software engineering, 2006.

[MS20] Roger Magoulas and Steve Swoyer. Cloud adoption in 2020,
2020.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of
software testing. 2011.

[Nak15] Heather Nakama. Inside Azure Search: Chaos engineering. 2015.

[Nat11] Roberto Natella. Achieving Representative Faultloads in Soft-
ware Fault Injection. PhD thesis, 2011.

[NCM16] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira.
Assessing dependability with software fault injection: A survey.
ACM Computing Surveys, 2016.

188 BIBLIOGRAPHY

[NW16] Michael Nash and Wade Waldron. Applied Akka Patterns: A
Hands-On Guide to Designing Distributed Applications. 2016.

[OAC+07] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, and Matthias Zenger. The Scala language specification,
2007.

[OZRA19] Lennart Oldenburg, Xiangfeng Zhu, Kamala Ramasubramanian,
and Peter Alvaro. Fixed it for you: Protocol repair using lineage
graphs. In The 9th Biennial Conference on Innovative Data Sys-
tems Research, 2019.

[PBKL94] James S Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt:
Transparent checkpointing under unix. 1994.

[PDBM+19] Yunior Pacheco, Jonas De Bleser, Tim Molderez, Dario Di Nucci,
Wolfgang De Meuter, and Coen De Roover. Mining scala frame-
work extensions for recommendation patterns. In Proceedings of
the 26th International Conference on Software Analysis, Evolu-
tion and Reengineering, 2019.

[PDNP+16] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco
Oliveto, and Andrea De Lucia. On the diffusion of test smells
in automatically generated test code: An empirical study. In
Proceedings of the 9th International Workshop on Search-Based
Software Testing, 2016.

[Per18] Anthony Shehan Ayam Peruma. What the smell? an empirical
investigation on the distribution and severity of test smells in
open source android applications. 2018.

[PZ17] Fabio Palomba and Andy Zaidman. Does refactoring of test
smells induce fixing flaky tests? In Proceedings of the 11th In-
ternational Conference on Software Maintenance and Evolution,
2017.

[PZ19] Fabio Palomba and Andy Zaidman. The smell of fear: On the
relation between test smells and flaky tests. Empirical Software
Engineering, 2019.

[QR11] Xiao Qu and Brian Robinson. A case study of concolic testing
tools and their limitations. In 2011 International Symposium on
Empirical Software Engineering and Measurement, 2011.

[RCD+04] Martin C Rinard, Cristian Cadar, Daniel Dumitran, Daniel M
Roy, Tudor Leu, and William S Beebee. Enhancing server avail-
ability and security through failure-oblivious computing. In Pro-
ceedings of the Symposium on Operating Systems Design and Im-
plementation, 2004.

BIBLIOGRAPHY 189

[RE19] Ashutosh Raina and Ramprasad Ellupuru. Madaari: Ordering
for the monkeys. 2019.

[RKAL12] Jesse Robbins, Kripa Krishnan, John Allspaw, and Thomas A
Limoncelli. Resilience engineering: learning to embrace failure.
Queue, 2012.

[RV13] Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via
idempotence. In Proceedings of the 40th Symposium on Princi-
ples of Programming Languages, 2013.

[SBN+16] Colin Scott, Vjekoslav Brajkovic, George Necula, Arvind Krish-
namurthy, and Scott Shenker. Minimizing faulty executions of
distributed systems. In Proceedings of the 13th Symposium on
Networked Systems Design and Implementation, 2016.

[Sch05] Rainer Schuler. An algorithm for the satisfiability problem of
formulas in conjunctive normal form. Journal of Algorithms,
2005.

[SG03] Alper Sen and Vijay K Garg. Detecting temporal logic predicates
in distributed programs using computation slicing. In Interna-
tional Conference On Principles Of Distributed Systems, 2003.

[SGA07] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing:
brute force vulnerability discovery. 2007.

[SPH15] Gianluca Stivan, Andrea Peruffo, and Philipp Haller. Akka.js:
towards a portable actor runtime environment. In Proceedings
of the 5th International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, 2015.

[SPZ+18] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel
Bruntink, and Alberto Bacchelli. On the relation of test smells to
software code quality. In Proceedings of the International Con-
ference on Software Maintenance and Evolution, 2018.

[SRA03] Koushik Sen, Grigore Rosu, and Gul Agha. Runtime safety anal-
ysis of multithreaded programs. ACM SIGSOFT Software En-
gineering Notes, 2003.

[SSO+20] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu,
Magiel Bruntink, and Alberto Bacchelli. Investigating sever-
ity thresholds for test smells. In Proceedings of the 17th In-
ternational Conference on Mining Software Repositories, MSR
âĂŹ20, 2020.

[Sve14] Yevgeniy Sverdlik. Facebook turned off entire data center to test
resiliency. Data Center Knowledge, 2014.

190 BIBLIOGRAPHY

[SW17] Kazuhiro Shibanai and Takuo Watanabe. Actoverse: a reversible
debugger for actors. In Proceedings of the 7th International
Workshop on Programming Based on Actors, Agents, and De-
centralized Control, 2017.

[SWH11] Matt Staats, Michael W Whalen, and Mats PE Heimdahl. Pro-
grams, tests, and oracles: the foundations of testing revisited.
In Proceedings of the 33rd International Conference on Software
Engineering, 2011.

[SZM+19] Jesper Simonsson, Long Zhang, Brice Morin, Benoit Baudry,
and Martin Monperrus. Observability and chaos engineering on
system calls for containerized applications in docker. Preprint
arXiv:1907.13039, 2019.

[TDJ13] Samira Tasharofi, Peter Dinges, and Ralph E Johnson. Why
do scala developers mix the actor model with other concurrency
models? In Proceedings of the European Conference on Object-
Oriented Programming, 2013.

[TKG09] Kishor S Trivedi, Dong Seong Kim, and Rahul Ghosh. Resilience
in computer systems and networks. In 2009 IEEE/ACM Inter-
national Conference on Computer-Aided Design-Digest of Tech-
nical Papers, pages 74–77. IEEE, 2009.

[TMX+11] Suresh Thummalapenta, Madhuri R Marri, Tao Xie, Nikolai Till-
mann, and Jonathan De Halleux. Retrofitting unit tests for pa-
rameterized unit testing. In International Conference on Funda-
mental Approaches to Software Engineering, 2011.

[TPB+16] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano
Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshy-
vanyk. An empirical investigation into the nature of test smells.
In Proceedings of the 31st International Conference on Auto-
mated Software Engineering, 2016.

[TPLJ13] Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson.
Bita: Coverage-guided, automatic testing of actor programs. In
Proceedings of the 28th International Conference on Automated
Software Engineering, 2013.

[Ver15] Vaughn Vernon. Reactive Messaging Patterns with the Actor
Model: Applications and Integration in Scala and Akka. 2015.

[vMBK01] Arie van Deursen, Leon Moonen, Alex Bergh, and Gerard Kok.
Refactoring test code. In Proceedings of the 2nd International
Conference on Extreme Programming and Flexible Processes in
Software Engineering, 2001.

BIBLIOGRAPHY 191

[VRDBDR07] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias
Rieger. On the detection of test smells: A metrics-based ap-
proach for general fixture and eager test. Transactions on Soft-
ware Engineering, 2007.

[Wei84] Mark Weiser. Program slicing. Transactions on Software Engi-
neering, 1984.

[Xie06] Tao Xie. Augmenting automatically generated unit-test suites
with regression oracle checking. In European Conference on
Object-Oriented Programming, 2006.

[XR09] Zhihong Xu and Gregg Rothermel. Directed test suite augmen-
tation. In Proceedings of the 16th Asia-Pacific Software Engi-
neering Conference, 2009.

[YH12] Shin Yoo and Mark Harman. Regression testing minimization,
selection and prioritization: a survey. Software testing, Verifica-
tion and Reliability, 2012.

[ZAV+04] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey
on fault injection techniques. The International Arab Journal of
Information Technology, 2004.

[ZE14] Pingyu Zhang and Sebastian Elbaum. Amplifying tests to vali-
date exception handling code: An extended study in the mobile
application domain. Transactions on Software Engineering and
Methodology, 2014.

[Zel99] Andreas Zeller. Yesterday, my program worked. today, it does
not. why? In Software Engineering Notes, 1999.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. Transactions on Software Engineering,
2002.

[ZH18] Xin Zhao and Philipp Haller. Observable atomic consistency for
CvRDTs. Journal of Computer Documentation, 2018.

[ZM19] Long Zhang and Martin Monperrus. Tripleagent: Monitoring,
perturbation and failure-obliviousness for automated resilience
improvement in java applications. In International Symposium
on Software Reliability Engineering, 2019.

[ZMH+19] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and
Martin Monperrus. A chaos engineering system for live analysis
and falsification of exception-handling in the JVM. Transactions
on Software Engineering, 2019.

192 BIBLIOGRAPHY

[ZPX+18] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao
Ji, and Dan Ding. Delta debugging microservice systems. In
Proceedings of the 33rd International Conference on Automated
Software Engineering, 2018.

[ZPX+19] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li,
and Dan Ding. Delta debugging microservice systems with par-
allel optimization. Transactions on Services Computing, 2019.

	Abstract
	Samenvatting
	Acknowledgements
	Introduction
	Context
	Problem Statement
	Approach
	Socrates: Test Smell Detection
	Chaokka: Resilience Testing

	Publications
	Contributions
	Outline

	The Scala Ecosystem
	The Programming Language Scala
	The Testing Framework ScalaTest
	Writing Tests in Theory
	Writing Tests in Practice

	The Actor Model Framework Akka
	Actors
	Persistent Actors
	Guaranteed Message Delivery
	The TestKit Library

	Conclusion

	Socrates: A Static Analysis Approach to Detecting Test Smells
	Motivation
	Limited Context Diversity and Tool Support
	Negative Impact on Software Aspects

	Literature Study
	Summary

	Overview of the Approach
	Syntactic and Semantic Information
	Information Extraction
	Identification of Test Classes
	Linking Test Classes to Production Classes

	Static Detection Methods for Test Smells
	Assertion Roulette
	Eager Test
	General Fixture
	Lazy Test
	Mystery Guest
	Sensitive Equality

	Implementation
	Usage
	Extension

	Conclusion

	Empirical Study on Test Smells in the Scala Ecosystem
	Perception of Test Smells
	Motivations
	Design
	Results
	Threats to Validity

	Diffusion of Test Smells
	Design
	Results
	Threats to Validity

	Conclusion

	State of The Art in Resilience Testing
	Resilience and Its Meaning
	The Concepts of a Resilient System
	Incorporating Resilience Mechanisms is Difficult

	Fault Injection
	Terminology
	Architecture

	Chaos Engineering
	Interest of Industry
	Observations

	Lineage-driven Fault Injection (LDFI)
	Delta Debugging (DD)
	Terminology
	The Minimizing Delta Debugging Algorithm
	Properties
	Partitioning Strategy
	The General Delta Debugging Algorithm
	Complexity

	Overview of Resilience Testing Approaches
	Developer-specified Exploration of Fault Scenarios
	Exhaustive Exploration of Fault Scenarios
	LDFI-driven Exploration of Fault Scenarios
	DD-driven Exploration of Fault Scenarios

	Observations
	Conclusion

	Chaokka: A Dynamic Analysis Approach to Resilience Testing
	Motivation
	Difficulties of Implementing Resilience Mechanisms
	Difficulties of Testing Resilience Mechanisms

	Overview of the Approach
	Fault Injection as Foundation

	Trace Analysis
	Execution Trace
	The Causality Relation
	Actor-based Fault Scenarios

	Exploration Strategies
	Developer-specified Exploration
	Exhaustive Exploration
	Delta Debugging Exploration

	Pruning Strategies
	Developer-specified Pruning
	Causality-based Pruning

	Prioritization Strategies
	Shuffle
	Registration Time
	Message Time
	Actor Fan-In
	Actor Fan-Out
	Actor Fan-In/Fan-Out
	Summary

	Implementation
	Usage
	Extension
	Limitations

	Application Domains
	Conclusion

	Experimental Evaluation of Resilience Testing
	Detection of Resilience Defects
	Design
	Results

	Prioritization of Faults
	Design
	Results

	Discussion and Observations
	Threats to Validity
	Conclusion

	Conclusion and Future Work
	Summary
	Contributions
	Socrates: Statically Detecting Test Smells
	Chaokka: Dynamically Testing Resilience

	Future Work
	Concluding Remarks

