
A Large Empirical Assessment of the Role of Data Balancing in
Machine-Learning-based Code Smell Detection

Fabiano Pecorellia, Dario Di Nuccib, Coen De Rooverc, Andrea De Luciaa

aSeSa Lab - University of Salerno, Fisciano, Italy
bTilburg University - Jheronimus Academy of Data Science, ’s-Hertogenbosch, The Netherlands

cVrije Universiteit Brussel, Brussels, Belgium

Abstract

Code smells can compromise software quality in the long term by inducing technical debt. For this reason, many
approaches aimed at identifying these design flaws have been proposed in the last decade. Most of them are based
on heuristics in which a set of metrics is used to detect smelly code components. However, these techniques suffer
from subjective interpretations, a low agreement between detectors, and threshold dependability. To overcome these
limitations, previous work applied Machine-Learning that can learn from previous datasets without needing any threshold
definition. However, more recent work has shown that Machine-Learning is not always suitable for code smell detection
due to the highly imbalanced nature of the problem. In this study, we investigate five approaches to mitigate data
imbalance issues to understand their impact on Machine Learning-based approaches for code smell detection in Object-
Oriented systems and those implementing the Model-View-Controller pattern. Our findings show that avoiding balancing
does not dramatically impact accuracy. Existing data balancing techniques are inadequate for code smell detection
leading to poor accuracy for Machine-Learning-based approaches. Therefore, new metrics to exploit different software
characteristics and new techniques to effectively combine them are needed.

Keywords: Code Smells, Machine Learning, Data Balancing, Object Oriented, Model View Controller

1. Introduction

During software development, strict deadlines and new
requirements could lead to the introduction of technical
debt [1], namely a set of design issues that may negatively
affect the system’s maintainability in the future. Code
smells [2] are one of the first indications of code techni-
cal debt, i.e., sub-optimal design solutions that developers
apply to a software system.

Code smells have been investigated from several per-
spectives [3, 4]: their introduction [5, 6] and evolution [7–
9], their impact on reliability [10, 11] and maintain-
ability [12, 13], as well as the way developers perceive
them [14–16] have been deeply analysed in literature and
have revealed that code smells represent serious threats to
source code maintenance and evolution.

For all these reasons, several techniques to automat-
ically identify code smells in source code have been in-
vestigated [17–19]. These techniques rely on heuristics
and discriminate code artefacts affected (or not) by a spe-
cific type of smell through the application of detection
rules that compare the values of relevant metrics extracted
from source code against empirically identified thresholds.
The accuracy of such approaches has been empirically as-
sessed and was found to be reasonably high. Nevertheless,
they share limitations that hinder their adoption in prac-
tice [17, 20]. First, they might return code smell candi-

dates that are not considered as actual problems by de-
velopers [21, 22]. Furthermore, the agreement between
detectors is very low [23], which means that different de-
tectors are required to detect the smelliness of various code
components. Finally, the accuracy of most of the current
detectors is strongly influenced by the thresholds needed
to identify instances of the smells. [17].

To overcome these limitations, researchers recently
adopted Machine-Learning (ML) to avoid thresholds and
decrease the false positive rate [24]. In this approach, a
classifier is trained on previous releases of the source code
by exploiting a set of independent variables (e.g., struc-
tural, historical, or textual metrics). The resulting model
is employed to determine the presence of smells or the de-
gree of smelliness of a code element. Although the use
of Machine-Learning looks promising, previous work has
observed contradicting results [24–26]. Heuristics-based
approaches perform slightly better than machine learning
approaches, thus indicating that Machine-Learning is still
unsuitable for code smell detection [26]. As code smell
detection is a problem in which training datasets usu-
ally have skewed class proportions (i.e., highly data imbal-
anced) [25, 26], data balancing is a key factor to improve
the reliability of such models. Data balancing can be in-
troduced in several ways by transforming the training set
or by using cost-sensitive classifiers.

In this paper, we extend our previous work [27] whose

Preprint submitted to Journal of Systems and Software, licensed under CC BY-NC-ND. May 29, 2020

results suggested several advantages and disadvantages in
applying data balancing techniques that eventually do not
dramatically improve the accuracy of the models. We
make a step further by proposing a more extensive em-
pirical study in which we compare the performance of five
data-balancing techniques for code smell detection with
respect to a no-balancing baseline. To increase the gen-
eralisability of the results, we analyse two subsets of code
smells extracted from two catalogues: (i) the catalogue
proposed by Fowler et al. [2] for Object-Oriented code,
and (ii) the catalogue proposed by Aniche et al. [28] for
systems implementing the Model-View-Controller pattern.
Our goal is understanding to what extent data balancing
techniques can improve the accuracy of Machine-Learning
for code smell detection and which algorithms practition-
ers should use. This paper extends our previous conference
publication [27] by adding the following contributions:

1. We expand the study on code smells for Object-
Oriented systems by considering six additional code
smells (i.e., Feature Envy, Inappropriate Intimacy,
Middle Man, Refused Bequest, Speculative Gen-
erality, Long Parameter List). Thus, overall, we
use Machine-Learning-based techniques to detect 11
code smell types on 125 releases of 13 software sys-
tems.

2. We report a new empirical study that includes four
code smells to detect maintainability issues in Model-
View-Controller systems [28]. Specifically, we anal-
yse 120 projects relying on the Spring framework to
answer two additional research questions.

3. We further analyse the role of balancing techniques
and the impact of metrics selection.

4. We inspect the overhead in terms of efficiency caused
by data balancing.

5. We provide a comprehensive replication package con-
taining the raw data and scripts used to carry out
the empirical study [29].

The results suggest that balancing does not sensibly
improve performance. Techniques which perform train-
ing only on the minority class (i.e., Cost-Sensitive Classi-
fier and One-Class Classifier), and resampling techniques
(i.e., Oversampling and Undersampling) are both not ef-
fective. Creating synthetic instances (i.e., SMOTE) is ef-
fective but not applicable in some cases due to the low
number of smelly instances. Therefore, existing data bal-
ancing techniques are inadequate for code smell detection.
This consideration hinders the feasibility of the current
Machine-Learning-based approaches and shows that fur-
ther work is needed to achieve automated code smell de-
tection. In particular, new metrics [30, 31] and techniques
able to effectively combine them with structural metrics
are needed.

Structure of the paper. In Section 2, we discuss the liter-
ature related to Machine-Learning-based code smell de-
tection, and data balancing techniques. In Section 3,
we replicate the empirical study presented in [27] on an
extended set of code smells proposed by Fowler [2] for
Object-Oriented systems.

In Section 4, we present the new empirical study on
code smells specific for systems implementing the Model-
View-Control pattern [28]. Section 5 discusses the results
of the two, while in Section 6 we sketch possible threats to
validity. Finally, Section 7 concludes the paper.

2. Related Work

In this section, we describe the related work concerning
Machine-Learning for code smell detection and the impact
of data balancing techniques.

2.1. Machine-Learning for Code Smell Detection

Machine-Learning (ML) has been used in several recent
works on code smell detection [4]. Kreimer [34] proposed
a prediction model based on Decision Trees and code met-
rics to detect two code smells (i.e., Blob and Long Method).
This model can lead to high values of accuracy. Later on,
Amorim et al. [35] confirmed the previous findings on four
medium-scale open-source projects. Vaucher et al. [36]
studied Blob’s evolution relying on a Naive Bayes classi-
fier, whereas Maiga et al. [37] proposed the use of Sup-
port Vector Machine (SVM). The use of Bayesian Belief
Networks to detect Blob, Functional Decomposition, and
Spaghetti Code instances on open-source programs, pro-
posed by Khomh et al. [38] lead to an overall F-Measure
close to 60%. Similarly, Hassaine et al. [39] defined an
immune-inspired approach for the detection of Blob smells,
while Oliveto et al. [40] used B-Splines to detect them. Ar-
celli Fontana et al. made the most relevant progress in this
field [24, 41, 42]. In their work, they (i) theorised that ML
might lead to a more objective evaluation of the smells’
hazardousness [41], (ii) provided a ML method to assess
code smell intensity [42], and (iii) compared 16 ML tech-
niques for the detection of four code smell types [24] show-
ing that ML can lead to F-Measure values close to 100%.
Nevertheless, recently Di Nucci et al. [25] demonstrated
that, in a real use-case scenario, the results achieved by Ar-
celli Fontana et al. [24] could not be generalised, thus cast-
ing doubt on the actual effectiveness of machine learning
for code smell detection. Finally, Pecorelli et al. [26] com-
pared ML-based and heuristic metric-based approaches to
assess the real capabilities of ML in the context of code
smell detection showing that heuristic techniques for code
smell detection still perform slightly better.

2.2. The Impact of Data Balancing Techniques

Imbalanced learning concerns learning from datasets
where some classes are underrepresented. Despite many
real-world Machine-Learning applications, learning from

2

Code Smell Short Description Detection Rule ML Model Features

God Class This smell characterises classes having a large size, poor cohesion,
and several dependencies on other data classes of the system [2]

ELOC > α ∧ (WMC +NOA) > β ∧ LCOM > γ ELOC, WMC, NOA, LCOM

Spaghetti Code Classes affected by this smell declare several long methods without
parameters [2]

ELOC > α ∧NMNOPARAM > β ELOC, NMNOPARAM

Class Data Should Be Private This smell appears in cases where a class exposes its attributes,
thus violating the information hiding principle [2]

NOPA > α NOPA

Complex Class Classes presenting an overly high cyclomatic complexity [32] are
affected by this design flaw

McCabe > α McCabe

Long Method Methods implementing more than one functionality are affected
by this smell [2]

LOC METHOD > α ∧NP ≥ β LOC METHOD, NP

Feature Envy This smell arises when a method communicates more with meth-
ods that are inside another class than the ones in its class [2]

MC > α ∧ATFD > β MC, ATFD

Inappropriate Intimacy This smell occurs when two classes are highly coupled [18, 33] (FanIn+ FanOut) > α FanIn, FanOut

Middle Man This smell arises when a class delegates to other classes most of
the methods it implements [2]

PDM > α PDM

Refused Bequest A class which redefines most of its inherited methods, then making
the hierarchy wrong [2]

PRM > α PRM

Speculative Generality This smell shows up when a class declared as abstract has very
few children using its methods [2]

NOC > α NOC

Long Parameter List A method having a long list of parameters is harder to use [2] NP > α NP

Table 1: Descriptions of Object-Oriented code smells along with the heuristics used to detect them and the features used by the ML models

Acronym Full Name Smells

ATFD Access To Foreign Data Feature Envy

ELOC Effective Lines Of Code God Class, Spaghetti Code

FanIn Max number of references to the subject class from another class
in the system

Inappropriate Intimacy

FanOut Max number of references from the subject class to another class
in the system

Inappropriate Intimacy

LCOM Lack of COhesion in Methods God Class

LOC METHOD Lines Of Code of METHOD Long Method

McCabe McCabe’s Cyclomatic Complexity Complex Class

MC Method Calls Feature Envy

NOA Number Of Attributes God Class

NOC Number Of Children Speculative Generality

NOM Number Of Methods God Class

NOPA Number Of Public Attributes Class Data Should Be Private

NP Number of Parameters Long Method, Long Parameter List

NMNOPARAM Number of Methods with NO PARAMeters Spaghetti Code

PDM Percentage of Delegated Methods Middle Man

PRM Percentage of Refused Methods Refused Bequest

WMC Weighted Methods Count God Class, Complex Class

Table 2: Complete list of the considered metrics for the detection of Object-Oriented code smells.

imbalanced data is still not trivial. Unfortunately, in
many applications, these minority classes are usually also
the ones of interest [25, 43–45]. Batista et al. [46] pro-
vide evidence that data sampling can be used to avoid
the side-effects of data imbalance. In particular, over-
sampling methods are more effective than under-sampling
methods in terms of prediction accuracy. Chawla [47] and
He et al. [48] discussed and compared several sampling
techniques used for data balancing, whereas Dittman et
al. [49, 50] exploited the combination of future selection
and data sampling on bioinformatics datasets. The lat-
ter found random undersampling is more computationally
efficient than other sampling algorithms, including “no-
sampling”, although not more effective. Generally, two of
the most compelling questions when dealing with data im-
balance are class distribution [51] and data sparsity within
each class [52]. Indeed, although this assumption does

not hold for some problems [53], many classifiers assume
normality in the data distribution. To solve the afore-
mentioned issues, one-class learners, wherein the classifier
learns on the target class alone, are an interesting alterna-
tive to traditional discriminative approaches [54]. Another
possible solution is combining data sampling and ensemble
techniques. Galar et al. [55] analysed the performance of
ensemble classifiers on imbalanced datasets. Their com-
parison has shown that approaches combining undersam-
pling techniques with boosting [56] or bagging [57] per-
form better, therefore justifying the increasing complexity
through significant enhancements. A similar study was
conducted by Khoshgoftaar et al. [58] who experimented
boosting with three weak learners on six high-dimensional
imbalanced bioinformatics datasets. Their results report
that the combination of data sampling and boosting tech-
nique can lead to statistically significant results with re-

3

spect to only data sampling. Finally, Ditman et al. [59, 60]
experimented the combination of data sampling and Ran-
dom Forest [61]. Their results show that this ensemble
technique is fairly robust on imbalanced data and adding
data balancing does not positively contribute to the per-
formance in a statistically significant manner.

3. Detection of Object-Oriented Code Smells

The purpose of this study is to understand the impact
of data balancing techniques on the accuracy of Machine-
Learning algorithms in detecting the design flaws from the
catalogue designed by Fowler [2] who introduced the term
code smell and adopted it for Object-Oriented systems.
We aim to address the following research questions:

RQ1. Do data balancing techniques improve the effec-
tiveness of Machine-Learning-based detectors of code
smell defined for Object-Oriented systems?

RQ2. Which data balancing technique is the most ef-
fective at improving the effectiveness of Machine-
Learning-based code smell detectors for Object-
Oriented systems?

3.1. Code Smells for Object-Oriented systems

Code smells are “symptoms of poor design and imple-
mentation choices” [2] that have been widely observed to
both analyse their characteristics [5, 6, 62–65] and assess
their impact on software maintainability [14, 16, 66–70].
For many of these code smells heuristic detection rules
have been defined [2, 18, 32, 33] based on metrics and
thresholds to discriminate whether a component is smelly
or not. We use the same metrics used by these heuristic
detection rules to build machine learning models for code
smell detection. In particular, we consider 11 code smells
defined by Fowler [2] that are reported in Table 1 along
with their descriptions, detection rules, and lists of the
metrics used in the Machine Learning models. The full de-
scription of such metrics is shown in Table 2. With respect
to our previous submission [27], we analyse six new code
smells (i.e., Feature Envy, Inappropriate Intimacy, Mid-
dle Man, Refused Bequest, Speculative Generality, Long
Parameter List).

Figure 1: An example of unbalanced dataset

3.2. Data Balancing Techniques for Machine Learning

The goal of the experiment is to compare the accu-
racy of different data balancing techniques. To this aim,
we configure five different model variants based on the
Naive Bayes classifier [71] which in our previous study [26]
showed to be the most effective in code smell detection.
Our baseline consists of models trained without applying
any data balancing technique (No-balancing). A dataset
is imbalanced when its classes are not equally represented.
Figure 1 plots a simplified representation of an imbalanced
dataset in which most of the instances belong to the green
majority class.

Data balancing can be introduced by resampling/-
transforming the training set or by using meta-classifiers
(e.g., cost-sensitive classifiers):

Figure 2: Example of application of Oversampling

Oversampling [72]. This algorithm randomly adds sam-
ples of the minority class. Figure 2 shows a representation
of the effects of the algorithm. In our experiment, we
rely on ClassBalancer, an oversampling implementa-
tion provided in Weka [73]: the instances in the training
set are re-weighted so that the sum of the weights for each
class is equal. In other words, instances are not added or
removed, but their weights are modified in such a way that
more importance is given to the instances belonging to the
minority class.

Figure 3: Example of application of Undersampling

Undersampling. This algorithm randomly removes sam-
ples of the majority class using either sampling with or
without replacement. In our experiment, we replace in-
stances of the majority class (i.e., clean classes) with in-
stances from the minority class (i.e., smelly classes) until

4

obtaining an even number of instances for both classes as
shown in Figure 3. Please notice that in the figure, the size
of a point represents its frequency. In other words, as sug-
gested by several studies from the state-of-the-art [50, 55],
we undersampled the majority class with replacement.
We rely on ReSample, an implementation provided in
Weka [73].

Figure 4: Example of application of SMOTE

Synthetic Minority Oversampling TEchnique [74]. This
technique increases the number of instances from the mi-
nority class by generating new synthetic instances based on
the nearest neighbours belonging to that class. As shown
in Figure 4, to create a new synthetic instance, SMOTE
randomly selects an element from the minority class and
identifies its nearest neighbours: the new instance is cre-
ated between them. The number of nearest neighbours to
use is a parameter of the algorithm. Lack of such instances
causes the algorithm to fail, as explained in Section 5. To
experiment with this technique, we rely on the implemen-
tation provided by Weka [73]. To reduce the algorithm
failures, we set the number of neighbours to the minimum
allowed value (i.e., two).

Cost-Sensitive Classifier [75]. A Cost-Sensitive Classifier
is a meta-classifier that renders a cost-sensitive version
of the base classifier. The training instances can be re-
weighted according to the total cost assigned to each class,
i.e., the cost-sensitivity is considered during the training
phase. Considering that ML-based code smell detection
exhibits many false negatives, we configure the CostSen-
sitiveClassifier provided by Weka [73] in such a way
that the cost of false negatives is twice the cost of false
positives.

Figure 5: Example of application of One-Class Classifier

One-Class Classifier [54]. As shown in Figure 5, a One-
Class Classifier is trained only on the samples belonging
to the minority class to learn the unique features of this
class and accurately identify an unseen sample of this class
as distinct from a sample of any other class. All instances
belonging to other classes are identified as outliers. For
this technique we rely on OneClassClassifier, an im-
plementation provided by Weka [73].

Code Smell Min Mean Median Max Total

God Class 0 5.5 4 24 509

Spaghetti Code 0 12.7 11 31 1443

Class Data Should Be Private 0 11.4 11 37 1150

Complex Class 0 6.4 4 20 669

Long Method 3 48.3 26 147 4763

Feature Envy 0 1.3 0 12 148

Inappropriate Intimacy 0 15.4 2 774 1788

Middle Man 0 0.9 0 6 107

Refused Bequest 0 6.5 4 22 750

Speculative Generality 0 9.5 7 38 1106

Long Parameter List 0 5 1 29 578

Table 3: Distribution statistics for Object-Oriented code smells

3.3. Subject Systems

We select software systems for which a validated
dataset of code smells exists. Specifically, we relied on
125 releases of 13 open-source software systems [33]. We
employed the same dataset and the same list of code smells
that we used in our previous study [26] where we compare
heuristics-based and Machine-Learning-based techniques
for code smell detection. The dataset is available in our
online appendix [29]. The systems are heterogeneous since
they have different sizes, lifetimes, and belong to different
application domains. The main characteristics of the con-
sidered systems are reported in the online appendix [29],
as well as in the previous study [26]. Note that the dataset
consists of manually validated code smells instances (i.e.,
8, 534). The distribution of code smells in the dataset is re-
ported in Table 3. The low median number of code smells
in each considered release demonstrates that code smell
detection is a highly imbalanced problem.

3.4. Model Building and Evaluation

For each model we apply a Feature Selection step
by using Correlation-based Feature Selection
(CFS) [76] to remove highly correlated independent vari-
ables. Then, we tune the hyper-parameters of the classifier
by applying the Grid Search algorithm [77], therefore re-
sulting in five models that only differ for the choice of the
data balancing technique to adopt.

As independent variables we consider the code met-
rics related to the structural characteristics of the soft-
ware instances (e.g., size, complexity). We exploit the set
of metrics originally adopted by Moha et al. [18]. In par-
ticular, given the smell detection rule, we design a model

5

where we employ as independent variables only the met-
rics used in the detection rule. For example, for God Class
the detection rule is ELOC > 500 ∧ (WMC + NOA) >
20 ∧ LCOM > 350. Therefore, we train the model on
the effective number of lines of code (i.e., ELOC), the
weighted methods per class (i.e., WMC), the number of
attributes (i.e., NOA), and the lack of cohesion per class
(i.e., LCOM). Table 1 reports the features used to detect
each smell, while the complete list, including the full name
of the metrics, is depicted in Table 2.

Since we are interested in detecting code smells, we set
the presence/absence of a specific code smell as dependent
variable of the Machine-Learning model. This information
was already available in the considered dataset.

To assess the capabilities of each of the five resulting
Machine-Learning models, we adopt 10-Fold Cross Valida-
tion [78]. This methodology randomly partitions the data
into 10 folds of equal size, applying a stratified sampling
(e.g., each fold has the same proportion of code smell in-
stances). A single fold is used as the test set, while the
remaining ones are used as the training set. The process
is repeated 10 times, using each time a different fold as
the test set. For each software system and data balancing
technique, we build a machine-learning model (i.e., within-
project classification). The result consists of a confusion
matrix for each code smell type, for each of the 125 project
releases and each experimented classifier. Later, these ma-
trices have been analysed to measure the evaluation met-
rics described in the following parts of the section.

To assess the effectiveness of the experimented detec-
tion techniques we compute four well-known metrics [79,
80], namely, precision, recall, F-Measure, and Matthews
Correlation Coefficient (MCC). We chose to discuss re-
sults only in terms of MCC because this metric provides a
better overview with respect to the other metrics by con-
sidering all the confusion matrix [81]. The results for all
the other metrics are reported in our online appendix [29].

Since we consider several datasets, we need to aggre-
gate the results achieved to have a more precise overview
of the quality of results [82]. This step has been performed
in a two-fold manner (i) by aggregating the confusion ma-
trices and (ii) by plotting the results as boxplots. Boxplots
are very useful to describe the distribution of the results
and provide preliminary outcomes on the comparison of
different techniques. However, to draw more reliable con-
clusions, they need to be complemented with statistical
tests. Therefore, we use the Nemenyi test [83] for statis-
tical significance and report its results by mean of MCB
(Multiple comparisons with the best) plots [84]. The ele-
ments plotted above the gray band are statistically larger
than the others.

3.5. Results of the Study

For each code smell, we first discuss the results by dis-
playing boxplots, and then we evaluate their statistical sig-
nificance relying on the results provided by the Nemenyi
test. Note that we discarded all the cases in which at least

one technique fails. The reasons behind these failures are
discussed in Section 5.

Figure 6 reports the boxplots for the MCC values ob-
tained by applying different balancing techniques. The
results of the Nemenyi test, for the statistical significance,
are shown in Figure 7.

The first aspect we can observe is that, regardless of
the balancing technique and the code smell under anal-
ysis, MCC values are between 0 and 0,5 which indicates
that Machine Learning has limited accuracy for Object-
Oriented code smell detection.

The results show that SMOTE is the most effective
technique. However, in 7 out of 11 cases, none of the bal-
ancing techniques is significantly better in terms of MCC.
No-balancing provides good accuracy as well, since it ap-
pears six times in the group containing the most effective
techniques.

An important aspect to remark is that for 4 out of
11 object-oriented code smells, SMOTE and No-balancing
MCCs are significantly higher than all the other balanc-
ing techniques. This is the case of two class-level code
smells (God Class, and Complex Class) and two method-
level code smells (Long Method, and Feature Envy). God
Class and Complex Class are the easiest class-level code
smells to identify. Their detection rules are straightfor-
ward and based on easy-to-calculate metrics (e.g., size,
complexity), leading to a median MCC close to 0.5 regard-
less of the data balancing applied. As for Long Method
and Feature Envy, these are method-level smells; hence,
the total number of instances to predict is much higher.
We could deem SMOTE and No-balancing to have higher
effectiveness where the detection metrics are simple or a
large number of instances is available. However, Long-
ParameterList is an exception. Indeed, although it is a
method-level smell, the best MCC values are achieved by
One-Class Classifier. In this specific case, SMOTE and
No-balancing accuracy is slightly lower than One-Class
Classifier but still better than all the other techniques.

Two unusual cases for which a specific discussion is re-
quired are Middle Man and Speculative Generality. Mid-
dle Man represents one of the rare cases in which data
balancing techniques improve ML effectiveness. Indeed,
No Balancing is the least accurate technique, with a quite
clear difference to the others. As for Speculative General-
ity, results show that, regardless of the adopted data bal-
ancing technique, MCC values are very low proving that
Machine-Learning is still not applicable for the detection
of this smell with the set of metrics used in our study.

By and large, results suggest that there is no balancing
technique which is better than the others. Indeed, different
balancing techniques could be more suitable for different
types of code smells. However, the highest accuracy is
achieved by No-balancing and SMOTE, except for some
code smells in which One-Class Classifier shows a higher
MCC.

6

0.00

0.25

0.50

0.75

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

0.6

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.3

0.6

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.00

0.25

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.1

0.2

0.3

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.25

0.50

0.75

1.00

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 6: Boxplots representing the MCC values obtained by Naive Bayesian trained applying different balancing strategies for Object-
Oriented code smells detection.

7

M
C

C
 −

 G
od

 C
la

ss

●

●

●

●

●
●

O
C

C
 −

 2
.2

1

U
nd

er
sa

m
pl

in
g

−
 2

.3
6

C
S

C
 −

 3
.0

1

O
ve

rs
am

pl
in

g
−

 3
.2

3

N
o

B
al

an
ci

ng
 −

 5
.0

5

S
M

O
T

E
 −

 5
.1

4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 C
om

pl
ex

 C
la

ss

●

●

●

●

●

●

O
C

C
 −

 1
.5

6

C
S

C
 −

 2
.7

7

U
nd

er
sa

m
pl

in
g

−
 3

.5
5

O
ve

rs
am

pl
in

g
−

 3
.8

4

S
M

O
T

E
 −

 4
.4

9

N
o

B
al

an
ci

ng
 −

 4
.7

8

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 C
la

ss
 D

at
a

S
ho

ul
d

B
e

P
riv

at
e

●

●

●

●

●

●

O
C

C
 −

 1
.3

4

C
S

C
 −

 2
.6

5

S
M

O
T

E
 −

 3
.4

6

N
o

B
al

an
ci

ng
 −

 3
.7

1

U
nd

er
sa

m
pl

in
g

−
 4

.7
1

O
ve

rs
am

pl
in

g
−

 5
.1

3

1
2

3
4

5

●

●

●

● ●

●

●

●

●

●

●

●

●

M
C

C
 −

 S
pa

gh
et

ti
C

od
e

●

●

●

● ●

●

O
C

C
 −

 1
.2

3

C
S

C
 −

 2
.5

9

S
M

O
T

E
 −

 4
.0

8

U
nd

er
sa

m
pl

in
g

−
 4

.2
4

N
o

B
al

an
ci

ng
 −

 4
.2

7

O
ve

rs
am

pl
in

g
−

 4
.5

9

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 L
on

g
M

et
ho

d

●

● ●
●

●

●

O
C

C
 −

 1
.0

2

O
ve

rs
am

pl
in

g
−

 3
.0

9

U
nd

er
sa

m
pl

in
g

−
 3

.1
2

C
S

C
 −

 3
.2

2

S
M

O
T

E
 −

 4
.9

0

N
o

B
al

an
ci

ng
 −

 5
.6

4

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

● ●

●

●

M
C

C
 −

 F
ea

tu
re

 E
nv

y

●

●

●

●

●

●

O
C

C
 −

 1
.1

7

U
nd

er
sa

m
pl

in
g

−
 2

.9
2

O
ve

rs
am

pl
in

g
−

 3
.4

2

C
S

C
 −

 3
.5

8

S
M

O
T

E
 −

 4
.5

0

N
o

B
al

an
ci

ng
 −

 5
.4

2

0
1

2
3

4
5

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 I
na

pp
ro

pr
ia

te
 In

tim
ac

y

●

●

●

●

●

●

O
C

C
 −

 2
.0

7

C
S

C
 −

 3
.0

7

S
M

O
T

E
 −

 3
.2

8

N
o

B
al

an
ci

ng
 −

 3
.3

8

U
nd

er
sa

m
pl

in
g

−
 4

.4
8

O
ve

rs
am

pl
in

g
−

 4
.7

2

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 R
ef

us
ed

 B
eq

ue
st

●

●

●

●

●
●

C
S

C
 −

 2
.9

5

O
C

C
 −

 3
.1

4

N
o

B
al

an
ci

ng
 −

 3
.2

1

S
M

O
T

E
 −

 3
.3

9

O
ve

rs
am

pl
in

g
−

 4
.1

3

U
nd

er
sa

m
pl

in
g

−
 4

.1
7

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 M
id

dl
e

M
an

●

●

●

● ●

●

N
o

B
al

an
ci

ng
 −

 2
.0

0

S
M

O
T

E
 −

 3
.2

9

O
C

C
 −

 3
.5

7

O
ve

rs
am

pl
in

g
−

 3
.8

6

C
S

C
 −

 3
.8

6

U
nd

er
sa

m
pl

in
g

−
 4

.4
3

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 S
pe

cu
la

tiv
e

G
en

er
al

ity

● ●

●

●

●
●

S
M

O
T

E
 −

 2
.6

4

N
o

B
al

an
ci

ng
 −

 2
.6

5

C
S

C
 −

 3
.0

1

O
C

C
 −

 3
.8

9

O
ve

rs
am

pl
in

g
−

 4
.3

8

U
nd

er
sa

m
pl

in
g

−
 4

.4
4

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 L
on

g
P

ar
am

et
er

Li
st

●

●

●

●

●

●

U
nd

er
sa

m
pl

in
g

−
 1

.8
9

O
ve

rs
am

pl
in

g
−

 2
.2

2

C
S

C
 −

 2
.8

6

S
M

O
T

E
 −

 4
.2

4

N
o

B
al

an
ci

ng
 −

 4
.7

5

O
C

C
 −

 5
.0

4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Plots representing the results of Nemenyi test for statistical significance between the MCC values obtained by Naive Bayesian
trained applying different balancing strategies for Object-Oriented code smells detection.

8

Object-Oriented Code Smell Detection

The results show that the performance of cur-
rent Machine-Learning-based approaches for detect-
ing Object-Oriented code smells is quite limited, re-
gardless of the adopted balancing technique (MCC <
0.50). Overall, SMOTE and No Balancing seem to be
more effective than the other techniques.

4. Detection of Model-View-Control Code Smells

The purpose of the second study is to understand the
impact of data balancing techniques on the accuracy of
Machine-Learning algorithms in detecting the design flaws
from the catalogue designed by Aniche et al. [28] who de-
fined smells specific for systems implementing the Model-
View-Control pattern. Specifically, we aim at addressing
the same research questions as for the Object-Oriented
code smells:

RQ3. Do data balancing techniques improve the effec-
tiveness of Machine-Learning algorithms in detecting
code smells specific for systems implementing Model-
View-Controller pattern?

RQ4. Which data balancing technique is the most ef-
fective at improving the effectiveness of Machine-
Learning algorithms in detecting code smells specific
for systems implementing Model-View-Controller
pattern?

4.1. Code Smells

We analyse the code smells specific to systems adopting
the Model-View-Controller pattern [28]. Such a pattern is
popular across many well-know frameworks (e.g., Ruby
on Rails, Spring MVC, ASP.NET MVC) [28]. In par-
ticular, we consider four code smells for which we report
the heuristics needed to detect them and the metrics that
we used to build the Machine-Learning models in Table 4.
Such metrics are fully described in Table 5.

4.2. Data Balancing Techniques for Machine Learning

We experiment the same base classifier (i.e., Naive
Bayes) and the same set of data balancing techniques pre-
viously used in Section 3 and described in Section 3.2.

4.3. Subject Systems

We use the dataset developed by Aniche et al. [28], con-
sisting of 120 open-source systems. We rely on this dataset
because the approach used to detect the smells has been
validated with expert industrial developers in software
systems implemented using Spring. This widely adopted
MVC framework uses stereotypes to explicitly mark classes
playing different roles (e.g., Controller classes), thus facil-
itating identifying the role of each class. The distribution
of the smells is reported in Table 6.

4.4. Model Building and Evaluation

We build and evaluate the models by following the
same procedure described in Section 3.4 except the inde-
pendent variables that were extracted from the heuristics
derived by Aniche et al. [28]. Table 4 reports the features
used to detect each smell, while the complete list, includ-
ing the full name of the metrics, is depicted in Table 5.

As for Object-Oriented code smells, we first discuss
the results by analysing the boxplots and then verify their
statistical significance relying on the Nemenyi test [83].
Please consider that, also in this case, we discarded all the
cases in which at least one technique fails. The reasons
behind these failures are discussed in Section 5.

0.0

0.1

0.2

0.3

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

0.6

0.8

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry
0.25

0.50

0.75

1.00

SMOTE

0.0

0.2

0.4

0.6

0.8

Undersa
mpling

Oversa
mpling

Resample

SMOTE

Cost S
ensiti

ve

One Class

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.2

0.4

0.6

0.8

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 8: Boxplots representing the MCC values obtained by Naive
Bayesian trained applying different balancing strategies for MVC
code smells detection.

4.5. Results of the Study

The results for MVC code smell detection reported in
Figure 8 and Figure 9 show that ML has pretty higher ac-
curacy when detecting this type of code smells than when
detecting Object-Oriented code smells (i.e., MCC values
up to ≈ 0.70). Similarly to the Object-Oriented case,
SMOTE and No-balancing show higher accuracy with re-
spect to the other balancing techniques. As already ob-
served, these two balancing techniques seem to be more
effective where the ML algorithm has a higher predic-
tion power. Indeed SMOTE achieves significantly higher
MCCs in all cases except for Fat Repository in which MCC
values are lower. Instead, No-balancing appears in the
first group in 2 out of 4 cases. A singular case is the Fat
Repository smell, where One-Class Classifier accuracy is
significantly higher than the other balancing techniques.
A possible motivation behind this surprising result could
be found by analysing the smell distribution in Table 6.

9

Code Smell Short Description Detection Rule ML Model Features

Brain Repository Repository classes that include complex business logic or queries [28] McCabe > α ∧ SQLC > β McCabe, SQLC

Fat Repository A Repository which deals with many Entity classes [28] CTE > α CTE

Promiscuous Controller Controller classes exhibiting this smell offer too many actions [28] NSR > α ∨NSD > β NSR, NSD

Brain Controller Controller classes with a complex control flow [28] NFRFC > α NFRFC

Table 4: Descriptions of MVC code smells along with the heuristics used to detect them and the features used by the ML models

Acronym Full Name Smells

McCabe McCabe’s Cyclomatic Complexity Brain Repository

NOR Number of Routes Promiscuous Controller

NSD Number of Services as Dependencies Promiscuous Controller

NFRFC Non-Framework Response For a Class Brain Controller

SQLC SQL Complexity Brain Repository

CTE Calls to Entities Fat Repository

Table 5: Complete list of the considered metrics for the detection of Model-View-Controller code smells.

Code Smell Min Mean Median Max Total

Brain Repository 0 0.5 0 26 31

Fat Repository 0 1.2 0 28 126

Promiscuous Controller 0 6.7 0 478 682

Brain Controller 0 1.1 0 14 66

Table 6: Distribution statistics for MVC code smells

M
C

C
 −

 F
at

 R
ep

os
ito

ry

●

●

●

●

●

●

S
M

O
T

E
 −

 1
.8

9

N
o

B
al

an
ci

ng
 −

 2
.2

2

C
S

C
 −

 2
.8

6

U
nd

er
sa

m
pl

in
g

−
 4

.2
4

O
ve

rs
am

pl
in

g
−

 4
.7

5

O
C

C
 −

 5
.0

4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 B
ra

in
 R

ep
os

ito
ry

●

● ●

●

●

●

O
C

C
 −

 2
.9

8

O
ve

rs
am

pl
in

g
−

 3
.1

4

C
S

C
 −

 3
.1

5

N
o

B
al

an
ci

ng
 −

 3
.2

2

U
nd

er
sa

m
pl

in
g

−
 4

.0
6

S
M

O
T

E
 −

 4
.4

5

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 B
ra

in
 C

on
tr

ol
le

r

●

●

●

● ●

●

U
nd

er
sa

m
pl

in
g

−
 2

.1
5

O
ve

rs
am

pl
in

g
−

 2
.2

9

O
C

C
 −

 3
.9

0

C
S

C
 −

 4
.0

8

N
o

B
al

an
ci

ng
 −

 4
.1

0

S
M

O
T

E
 −

 4
.4

7

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 P
ro

m
is

cu
ou

s
C

on
tr

ol
le

r

●

●
●

●

●

●

O
C

C
 −

 1
.0

1

C
S

C
 −

 2
.5

9

U
nd

er
sa

m
pl

in
g

−
 2

.6
7

O
ve

rs
am

pl
in

g
−

 4
.1

8

S
M

O
T

E
 −

 5
.0

6

N
o

B
al

an
ci

ng
 −

 5
.4

9

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 9: Plots representing the results of Nemenyi test for statistical
significance between the MCC values obtained by Naive Bayesian
trained applying different balancing strategies for MVC code smells
detection.

Indeed, the class distribution for Fat Repository is almost
uniform (i.e., the smelly instances are well spread across
the project). Therefore, in most of the cases there are
enough instances to build a reliable training set.

A final consideration is that MVC code smells are likely
to be more system-dependent. Boxplots indicate a high

variability of results with respect to the considered system
showing very large distributions in most of the cases.

Model-View-Controller Code Smell Detection

With respect to the Object-Oriented case, Machine-
Learning-based approaches are sharply more effective
for the detection of MVC related code smells. In three
out of four cases, the results are pretty good, achieving
MCC values up to 0.67 and recall up to 1.00. Simi-
larly to Object-Oriented systems, No Balancing and
SMOTE are the most effective techniques.

5. Discussion

In this section, we discuss the results of our study. In
particular, we analyse (i) the degree to which balancing
techniques results are in overlap, (ii) the impact of the
metrics selection on the effectiveness, and (iii) the signifi-
cance of the overhead introduced by data balancing.

5.1. Understanding the Role of Data Balancing

Since we described the results in quantitative terms, we
provide a deeper discussion in qualitative terms. Specifi-
cally, we analyse the overlap between the results achieved
by the models using different balancing technique to un-
derstand which instances they predict and whether these
are complementary.

Figure 10 shows the misclassified instances obtained
by the five models using the data balancing techniques
and the No-balancing model. The axes represent the fea-
tures of the model: the x-axis is ELOC, while y-axis is
NMNOPARAM . ’+’ data points represent false nega-
tives, while ’x’ data points represent false positives. We
describe this case because it nicely explains the behaviours
of the balancing techniques. The model is built with two
features, thus making it easier to analyse than models

10

Figure 10: Scatterplots representing the misclassified instances ob-
tained by Naive Bayesian trained applying different balancing
strategies for Spaghetti Code. ’+’ data points are false negatives,
while ’x’ are false positives.

No Smells SMOTE Failures
Code Smell

% # %
Number of Systems

God Class 20 16 46 37 125

Spaghetti Code 7 6 16 13 125

Class Data Should Be Private 10 8 11 9 125

Complex Class 30 24 52 42 125

Long Method 68 54 89 71 125

Feature Envy 82 66 96 77 125

Inappropriate Intimacy 3 2 72 58 125

Middle Man 64 51 104 83 125

Refused Bequest 34 27 46 37 125

Speculative Generality 3 2 11 9 125

Long Parameter List 54 22 62 50 125

Brain Repository 90 75 95 79 120

Fat Repository 87 72 94 78 120

Promiscuous Controller 44 37 73 61 120

Brain Controller 52 43 75 62 120

Table 7: Number of software systems not exhibiting instances of each
smell (i.e., No Smells), along with the instances on which SMOTE
could not be executed because of lacking instances for that specific
smell (i.e., SMOTE Failures).

trained with many more features. We report the other
plots as part of the online appendix [29].

The results confirm what we previously reported in
Figure 6 and Figure 7. In particular, One-Class Classi-
fier exhibited a high level of recall but a very low preci-
sion. This means that for code smell detection training
only on the instances belonging to the minority class is
not effective because these few instances poorly represent
the smelly classes. A similar result is obtained for Cost-
Sensitive Classifier which had poor precision. In particu-
lar, we notice that many points were misclassified as true,
even if they were false (i.e., false negative). We can ar-

gue that giving higher weights to the instances belong-
ing to the minority class is not effective. When analysing
at the Oversampling and Undersampling, we observe that
their accuracy is similar to that obtained by No-balancing.
Therefore, we deem that these techniques are ineffective
but do not worsen the accuracy achieved by the model
trained without balancing. Finally, we note that SMOTE
can slightly improve accuracy. However, it is worth re-
marking that some balancing techniques can fail to bal-
ance the dataset when the number of smelly instances is
minimal. We tuned SMOTE to rely on the minimum num-
ber of smelly neighbour instances (i.e., two). If these are
not available, then the algorithm fails, representing a clear
disadvantage with respect to the other techniques.

Table 7 reports the number and the percentage of fail-
ures for each of the code smells under analysis. While
for some code smells, there is a minimal number of fail-
ures (e.g., Speculative Generality), there are also smells in
which the analysis fails in the majority of cases. As an
example, let us consider the case of Fat Repository. This
is one of the less frequent code smells, as also reported in
Table 6: indeed, in 72% of cases, all data balancing fails
due to the total absence of smelly instances in the consid-
ered system. As for SMOTE, it fails in 78% of cases (i.e.,
72% with no smelly instances and 6% with not enough
neighbours).

0.0

0.1

0.2

0.3

0.4

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− F
at

Re
po

sit
or

y

0.0

0.1

0.2

0.3

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 11: Boxplots representing the MCC values obtained by Naive
Bayesian trained with different balancing strategies for the detection
of Fat Repository code smell. The picture on the left includes the
cases in which not all the algorithms could be executed. These cases
are filtered out in the picture on the right.

Due to these failures, our analyses have been performed
on a smaller population for some code smells. To avoid
threatening the significance of results, we conducted a fur-
ther evaluation in which we included all the systems, re-
gardless of the failures. Figure 11 reports an example for
Fat Repository–all the other figures are part of our online
appendix [29]. The boxplot including all cases is reported
on the left of the figure, while on the right side is reported
the one excluding failures (i.e., the one already reported in
Section 4.5). Generally, there are small differences in terms
of accuracy. Indeed, for both cases, One Class Classifier is
the most effective data balancing technique. We observed
similar results for the other code smells whose boxplots are
available in our online appendix [29].

11

Overall the results obtained on the different models
show that there are no sensible differences in applying or
not balancing techniques. This result suggests that tuning
data balancing techniques could not be an adequate solu-
tion for code smell detection with respect to what achieved
in other contexts such as defect prediction [85]. This as-
pect raises several issues about the feasibility of current
Machine-Learning-based approaches. We deem that the
meagre number of instances from the minority class (i.e.,
smelly instances) is the cause of this low effectiveness.

Understanding the Role of Data Balancing

Generally, data balancing does not significantly im-
prove the effectiveness of Machine-Learning models for
code smell detection. Training only on the instances
belonging to the minority class or giving them more
weight (i.e., as done by One-Class Classifier and Cost-
Sensitive Classifier) is not effective because these few
instances poorly represent the minority class. Resam-
pling techniques such as Oversampling and Undersam-
pling are ineffective but do not worsen the accuracy
achieved by the model trained without balancing. Fi-
nally, SMOTE slightly improves the results, but in
case of extremely imbalanced datasets, the training
phase fails.

5.2. Analysing the Impact of Metric Selection

Since Machine-Learning models achieve good accu-
racy only for some code smells, regardless of the adopted
balancing technique, we assessed the effectiveness of the
heuristic-based techniques. Our main goal is to inves-
tigate whether the low accuracy is due to the Machine-
Learning techniques or caused by the reduced prediction
power of the used metrics. We hypothesise that met-
rics with low prediction power are detrimental for both
Machine Learning-based and heuristics-based approaches.
This analysis was conducted only for Object-Oriented code
smells where the accuracy of Machine-Learning techniques
is low.

Table 8 reports the aggregate results of the evaluation
metrics for (i) the Machine-Learning-based technique ex-
ecuted with the best balancing technique for each code
smell (ML); (ii) the heuristic-based approach based on the
detection rules described in Table 1 (H).

MCC values are generally low for any of the considered
code smells (lower than 0.5). Except for Long Method, re-
call is always much higher than precision for heuristics-
based approaches as well as for Machine-Learning-based
ones. In other words, they tend to produce a large num-
ber of false positives when these metrics are employed.
Therefore, such metrics might not be adequate to discrim-
inate smelly or non-smelly instances. Comparing these
results with the ones reported in Section 3.5, we note that
heuristics do not outperform Machine-Learning. On the
contrary, for six of the eleven object-oriented code smells,

Machine-Learning-based approaches have a higher MCC.
For instance, let us consider the case of Long Parameter
List in which Machine Learning shows MCC equal to 0.58
that is much higher than the one of the heuristics-based
approach (i.e., 0.12). To sum up, the results indicate that
the employed set of metrics (i.e., structural metrics) are
not adequate in most of the cases.

Analysing the Impact of Metric Selection

The results indicate that structural metrics alone are
not adequate for code smell detection. This confirms
previous work that deems as necessary textual and his-
torical metrics as well as their combination with struc-
tural metrics to achieve better accuracy.

5.3. Inspecting the Overhead caused by Data Balancing

●

●

●

●●

●

●

●

●

●

●

●

●

●

250

300

350

400

450

500

No
Bala

nc
ing

Ove
rs

am
pli

ng

Und
er

sa
m

pli
ng

SM
OTE

CSC
OCC

C
om

pu
ta

tio
na

l t
im

e
(m

ill
is

ec
on

ds
)

C
om

pu
ta

tio
na

l t
im

e
(m

ill
is

ec
on

ds
)

●

●

●

●

●

●

N
o

B
al

an
ci

ng
 −

 1
.8

2

U
nd

er
sa

m
pl

in
g

−
 2

.1
5

S
M

O
T

E
 −

 2
.9

8

O
ve

rs
am

pl
in

g
−

 3
.1

8

C
S

C
 −

 4
.9

0

O
C

C
 −

 5
.9

7

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 12: Boxplots and Nemenyi results representing the execution
time of the different data balancing techniques.

In the previous sections, we found that some data bal-
ancing techniques improve to a limited extent the qual-
ity of results provided by Machine Learning algorithms.
Given that data balancing is an additional pre-processing
step in ML classification, we conducted further analysis
to investigate the overhead in terms of time consump-
tion to apply this step. Specifically, we compared the
training time of the models configured with different bal-
ancing techniques. We performed 30 independent runs
training the models on the most extensive system in our
dataset, i.e., Eclipse 5.2.1. The selection is motivated
by a twofold reason. On the one hand, having a higher
number of instances should avoid (or at least reduce) fail-
ures. On the other hand, a higher number of instances led
to longer execution time for all the techniques, and this
may allow us to study the overhead better. We considered
only one code smell (i.e., God Class). However, we believe
that the results for the other smells should not be very
different.

The results in Figure 12 highlight that One-Class Clas-
sifier and Cost-Sensitive Classifier take much more time
than the others. This could be due to the difficulties in
carrying out the training phase using a limited number of
instances of the minority class. Also for the other tech-
niques results show an overhead, although less significant

12

Code Smells Detection Comparison

Precision Recall F-measure MCC

ML H ML H ML H ML H

God Class 0.26 0.08 0.93 1.00 0.41 0.16 0.49 0.28

Complex Class 0.26 0.23 0.65 0.72 0.37 0.35 0.40 0.37

Class Data Should Be Private 0.23 0.23 0.55 0.42 0.33 0.30 0.35 0.31

Spaghetti Code 0.16 0.11 0.34 0.47 0.22 0.18 0.22 0.22

Long Method 0.15 0.57 0.56 0.37 0.23 0.44 0.30 0.42

Feature Envy 0.03 0.05 0.44 0.46 0.05 0.10 0.11 0.15

Inappropriate Intimacy 0.27 0.04 0.15 0.43 0.19 0.07 0.19 0.12

Middle Man 0.16 0.04 0.87 0.43 0.28 0.07 0.37 0.12

Refused Bequest 0.12 0.04 0.05 0.40 0.07 0.07 0.07 0.11

Speculative Generality 0.01 0.04 0.65 0.43 0.02 0.08 0.02 0.13

Long Parameter List 0.35 0.04 0.95 0.41 0.51 0.08 0.58 0.12

Table 8: Aggregate Results for Heuristics-based and Machine-Learning-based Code Smells Detection

than the two mentioned above. In particular Undersam-
pling performance is very close to the No-balancing one.

Inspecting the Overhead of Data Balancing

Except Undersampling, all data balancing techniques
introduce significant overhead in time consumption
of ML algorithms. While the two techniques based
on meta-classification (i.e., One-Class Classifier and
Cost-Sensitive Classifier) take much more execution
time, the other ones (i.e., Oversampling, Undersam-
pling, and SMOTE) show performance pretty close to
No-balancing.

5.4. Implication of the Findings

The results have implications for both researchers and
practitioners. Both are interested in understanding quan-
titatively the effectiveness and efficiency of applying data
balancing to Machine Learning code smell detectors. Fur-
thermore, the formers are concerned about the qualitative
perspective of the results. We report the implications re-
lated to (i) effectiveness, (ii) efficiency, (iii) adopted met-
rics, (iv) relation with previous work in different contexts.

Effectiveness of Data Balancing for Code Smell Detection.
For Object-Oriented code smells, the results of RQ1 show
that the accuracy of Machine-Learning models is quite
limited (i.e., MCC ≤ 0.50). Applying data balancing
does not guarantee significantly better accuracy. Over-
all, SMOTE is the best data balancing technique among
the ones that we experimented. However, if the dataset
is exceptionally imbalanced, this technique fails, and data
balancing should be avoided. In other cases, we did not
find any statistically significant improvement in applying
this technique with respect to not applying data balancing
at all. For Model-View-Controller code smells, the accu-
racy of Machine-Learning techniques is quite good (i.e.,
MCC ≤ 0.67 and recall ≤ 1.00). However, also in this

case, we did not find any statistical difference between
models that apply data balancing (including SMOTE) and
models that do not.

Efficiency of Data Balancing for Code Smell Detection.
Introducing data balancing in a Machine Learning pipeline
for code smell detection adds significant overhead in terms
of the amount of time needed to train the models. How-
ever, this upkeep is only in the training phase, and it is
negligible in absolute terms.

On the Usage of Only Structural Metrics for Code Smell
Detection. On the one hand, the results for the detec-
tion of most Object-Oriented code smells confirm previous
work [30, 31] that deem as necessary textual and histor-
ical metrics as well as their combination with structural
metrics to achieve better accuracy. On the other hand,
for the code smells specific for Model-View-Controller ar-
chitectures, the results obtained adopting only structural
metrics are interesting. In sum, more research should be
conducted to (i) verify to what extent existing metrics for
code smell detection are suitable for Machine-Learning-
based models, and (ii) develop new metrics able to better
characterise Object-Oriented code smells.

Understanding the Role of Data Balancing. Our work con-
firms the results obtained in bioinformatics by Dittman et
al. [49] who showed that the improvements in terms of ac-
curacy achieved by data balancing techniques are in most
of the cases not statistically significant. For code smell
detection, we observed that although SMOTE allows the
model to be more accurate, in many cases, it is not applica-
ble because of the few instances belonging to the minority
class. Surprisingly but for the same reason, poor accuracy
was obtained when training the models with One-Class
Classifier [54], a technique that was designed for scenarios,
such as code smell detection, where not enough counter-
examples are available.

13

6. Threats to Validity

Possible threats to validity could affect the relationship
between theory and observation (i.e., Construct Validity),
the relationship between cause and effect (i.e., Internal
Validity), the generalisability of the findings (i.e., Exter-
nal Validity), and the relationship between treatment and
outcome (i.e., Conclusion Validity).

Construct Validity. The dataset choice is a threat. To
analyse code smells for Object-Oriented systems, we re-
lied on a dataset from a previous study [26] that was cre-
ated considering several factors such as heterogeneity. Al-
though the dataset has been manually-validated, we have
to consider that it may be incomplete as well as imprecise.
When analysing code smells for Model-View-Controller
systems, we adopted a publicly available dataset [28] that
was validated as well. Another threat is the construction
of the machine-learning models, for which we took several
aspects into account that could have possibly influenced
the study, i.e., which features to consider, how to train the
classifier, etc. However, the procedures followed in this
respect are precise enough to ensure the validity of the
study.

Internal Validity. The results we discussed are charac-
terised by a great variability with respect to the smell un-
der analysis. A possible reason could be the metric selec-
tion for code smell detection. Indeed, some of the selected
metrics could represent a confounding factor threatening
the internal validity of the study. To mitigate this threat,
we relied on previously defined and validated metrics.

External Validity. For Object-Oriented systems, we con-
sidered a large dataset consisting of 125 releases of 13
open source systems belonging to different application do-
mains and having different characteristics. A similarly het-
erogeneous dataset composed of 120 open-source Spring
projects has been used when detecting code smells for
Model-View-Controller systems. We selected Spring, a
widely adopted MVC framework, because it uses stereo-
types to explicitly mark classes playing the different roles
(e.g., Controllers), thus making easier identifying the role
of each class. As for the code smells, we selected 11 smells
for Object-Oriented systems and four code smells for MVC
systems that represent a large variety of design issues (e.g.,
smells related to complexity or excessive coupling between
objects). Having a look at the ML-based algorithms, we
selected Naive Bayes because in our previous study [26] it
outperformed the other algorithms. Overall, the choice of
this technique could be a possible threat to validity. How-
ever, this classifier was adopted in a previous study [49]
that analysed the role of data balancing in bioinformat-
ics. In that experiment, although several classifiers were
adopted, the results in terms of data balancing technique
to apply remained uniform across the classifiers.

Although this study shows that the choice of the classi-
fier does not sensibly affect the results when applying data

balancing techniques, further experiments with other clas-
sifiers in the context of code smell detection are needed to
corroborate these findings.

Conclusion Validity. We exploited a set of widely-used
metrics to evaluate the experimented techniques (i.e., pre-
cision, recall, F-measure, MCC). As for the machine learn-
ing model, a possible bias might have been due to the usage
of 10-fold cross-validation. This strategy randomly parti-
tions the set of data to create training and test sets: such
randomness might have possibly led to the creation of bi-
ased training/test sets that have the consequence of under-
or over-estimating the model accuracy.

7. Conclusion

In this paper, we have reported on a large-scale empir-
ical comparison between six different balancing techniques
for Machine-Learning-based code smell detection. The
study considered eleven code smells for Object-Oriented
systems and four code smells for systems implementing
the Model-View-Controller pattern. For the former, we
relied on a manually-validated dataset comprising 125 re-
leases belonging to 13 open source systems. In contrast,
for the latter, our dataset consisted of 120 Spring Model-
View-Controller Open Source Systems.

The results suggest that Machine-Learning models re-
lying on SMOTE achieve the best accuracy. However, its
training phase is not always feasible in practice. Further-
more, avoiding balancing does not dramatically impact ef-
fectiveness. Techniques which perform training only on
the minority class (i.e., Cost-Sensitive Classifier and One
Class Classifier), and resampling techniques (i.e., Class
Balancer and Resample) are both not effective. Existing
data balancing techniques are therefore, inadequate for
code smell detection. Furthermore, the results indicate
that structural metrics alone are not adequate for code
smell detection, confirming the previous work [30, 31] on
the necessity of textual and historical metrics as well as
their combination with structural metrics to achieve bet-
ter accuracy. This hinders the feasibility of the current
Machine-Learning-based approaches.

Our future work includes devising new techniques for
handling data balancing as well as understanding whether
textual and historical metrics can improve the accuracy of
Machine-Learning-based detectors. Furthermore, we aim
at assessing the combination of data balancing techniques
and ensemble classifiers (i.e., Voting [86], Stacking [87],
and ASCI [88]) to avoid the issues related to classifier se-
lection.

Acknowledgements

This project was partially supported by the Excel-
lence of Science Project SECO-Assist (0015718F, FWO
- Vlaanderen and F.R.S.-FNRS). Di Nucci acknowledges

14

the support of the European Commission grant no. 825040
(H2020 - RADON).

References

[1] W. Cunningham, The wycash portfolio management system,
ACM SIGPLAN OOPS Messenger 4 (2) (1993) 29–30.

[2] M. Fowler, Refactoring: improving the design of existing code,
Addison-Wesley Professional, 2018.

[3] E. V. de Paulo Sobrinho, A. De Lucia, M. de Almeida Maia, A
systematic literature review on bad smells—5 w’s: which, when,
what, who, where, IEEE Transactions on Software Engineering.

[4] M. I. Azeem, F. Palomba, L. Shi, Q. Wang, Machine learning
techniques for code smell detection: A systematic literature re-
view and meta-analysis, Information and Software Technology
(2019) in press.

[5] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, D. Poshyvanyk, When and why your code starts to
smell bad (and whether the smells go away), IEEE Transactions
on Software Engineering.

[6] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, D. Poshyvanyk, An empirical investigation into the
nature of test smells, in: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,
ACM, 2016, pp. 4–15.

[7] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of
bad smells in object-oriented code, in: Quality of Information
and Communications Technology (QUATIC), 2010 Seventh In-
ternational Conference on the, IEEE, 2010, pp. 106–115.

[8] S. Olbrich, D. S. Cruzes, V. Basili, N. Zazworka, The evo-
lution and impact of code smells: A case study of two open
source systems, in: Empirical Software Engineering and Mea-
surement, 2009. ESEM 2009. 3rd International Symposium on,
IEEE, 2009, pp. 390–400.

[9] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, A large-scale empirical study on the lifecycle of
code smell co-occurrences, Information and Software Technol-
ogy 99 (2018) 1–10.

[10] F. Palomba, A. Zaidman, Does refactoring of test smells induce
fixing flaky tests?, in: Software Maintenance and Evolution (IC-
SME), 2017 IEEE International Conference on, IEEE, 2017, pp.
1–12.

[11] F. Palomba, A. Zaidman, The smell of fear: On the relation
between test smells and flaky tests, Empirical Software Engi-
neering Journal (2019) in press.

[12] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An
exploratory study of the impact of antipatterns on class change-
and fault-proneness, Empirical Software Engineering 17 (3)
(2012) 243–275.

[13] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, On the diffuseness and the impact on maintain-
ability of code smells: a large scale empirical investigation, Em-
pirical Software Engineering 23 (3) (2018) 1188–1221.

[14] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
Do they really smell bad? a study on developers’ perception
of bad code smells, in: Software maintenance and evolution
(ICSME), 2014 IEEE international conference on, IEEE, 2014,
pp. 101–110.

[15] A. Yamashita, L. Moonen, Do code smells reflect important
maintainability aspects?, in: 2012 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 306–
315.

[16] D. Taibi, A. Janes, V. Lenarduzzi, How developers perceive
smells in source code: A replicated study, Information and Soft-
ware Technology 92 (2017) 223–235.

[17] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, E. Figueiredo, A
review-based comparative study of bad smell detection tools, in:
Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, ACM, 2016, p. 18.

[18] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor:
A method for the specification and detection of code and design
smells, IEEE Trans. on Software Engineering 36 (1) (2010) 20–
36.

[19] F. Palomba, A. De Lucia, G. Bavota, R. Oliveto, Anti-pattern
detection: Methods, challenges, and open issues, in: Advances
in Computers, Vol. 95, Elsevier, 2014, pp. 201–238.

[20] M. Zhang, T. Hall, N. Baddoo, Code bad smells: a review of
current knowledge, Journal of Software Maintenance and Evo-
lution: research and practice 23 (3) (2011) 179–202.

[21] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, M. Zanoni,
Antipattern and code smell false positives: Preliminary con-
ceptualization and classification, in: Software Analysis, Evo-
lution, and Reengineering (SANER), 2016 IEEE 23rd Interna-
tional Conference on, Vol. 1, IEEE, 2016, pp. 609–613.

[22] M. V. Mäntylä, C. Lassenius, Subjective evaluation of software
evolvability using code smells: An empirical study, Empirical
Software Engineering 11 (3) (2006) 395–431.

[23] F. A. Fontana, P. Braione, M. Zanoni, Automatic detection of
bad smells in code: An experimental assessment., Journal of
Object Technology 11 (2) (2012) 5–1.

[24] F. A. Fontana, M. V. Mäntylä, M. Zanoni, A. Marino, Com-
paring and experimenting machine learning techniques for code
smell detection, Empirical Software Engineering 21 (3) (2016)
1143–1191.

[25] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik,
A. De Lucia, Detecting code smells using machine learning
techniques: are we there yet?, in: 25th IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER2018): REproducibility Studies and NEgative Results
(RENE) Track, Institute of Electrical and Electronics Engineers
(IEEE), 2018, pp. 612–621.

[26] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, Compar-
ing heuristic and machine learning approaches for metric-based
code smell detection, in: Proceedings of the 27th International
Conference on Program Comprehension, IEEE Press, 2019, pp.
93–104.

[27] F. Pecorelli, D. Di Nucci, C. De Roover, A. De Lucia, On the
role of data balancing for machine learning-based code smell
detection, in: Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on Machine Learning Techniques for Software
Quality Evaluation, ACM, 2019, pp. 19–24.

[28] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, A. van
Deursen, Code smells for model-view-controller architectures,
Empirical Software Engineering 23 (4) (2018) 2121–2157.

[29] F. Pecorelli, D. Di Nucci, C. De Roover, A. De Lucia, A large
empirical assessment on the role of data balancing in machine-
learning-based code smell detection - online appendix https:

//figshare.com/s/5da162e21b8d54fbfce8 (2019).
[30] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshy-

vanyk, A. De Lucia, Mining version histories for detecting
code smells, IEEE Transactions on Software Engineering 41 (5)
(2015) 462–489.

[31] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, A. Zaid-
man, A textual-based technique for smell detection, in: Pro-
gram Comprehension (ICPC), 2016 IEEE 24th International
Conference on, IEEE, 2016, pp. 1–10.

[32] T. J. McCabe, A complexity measure, IEEE Transactions on
software Engineering (4) (1976) 308–320.

[33] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, On the diffuseness and the impact on maintain-
ability of code smells: a large scale empirical investigation, Em-
pirical Software Engineering (2017) 1–34.

[34] J. Kreimer, Adaptive detection of design flaws, Electronic Notes
in Theoretical Computer Science 141 (4) (2005) 117–136.

[35] L. Amorim, E. Costa, N. Antunes, B. Fonseca, M. Ribeiro, Ex-
perience report: Evaluating the effectiveness of decision trees
for detecting code smells, in: Software Reliability Engineering
(ISSRE), 2015 IEEE 26th International Symposium on, IEEE,
2015, pp. 261–269.

15

https://figshare.com/s/5da162e21b8d54fbfce8
https://figshare.com/s/5da162e21b8d54fbfce8

[36] S. Vaucher, F. Khomh, N. Moha, Y.-G. Guéhéneuc, Tracking
design smells: Lessons from a study of god classes, in: Re-
verse Engineering, 2009. WCRE’09. 16th Working Conference
on, IEEE, 2009, pp. 145–154.

[37] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Gue-
heneuc, E. Aimeur, Smurf: A svm-based incremental anti-
pattern detection approach, in: Reverse engineering (WCRE),
2012 19th working conference on, IEEE, 2012, pp. 466–475.

[38] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. Sahraoui, Bdtex:
A gqm-based bayesian approach for the detection of antipat-
terns, Journal of Systems and Software 84 (4) (2011) 559–572.

[39] S. Hassaine, F. Khomh, Y.-G. Guéhéneuc, S. Hamel, Ids: An
immune-inspired approach for the detection of software design
smells, in: Quality of Information and Communications Tech-
nology (QUATIC), 2010 Seventh International Conference on
the, IEEE, 2010, pp. 343–348.

[40] R. Oliveto, F. Khomh, G. Antoniol, Y.-G. Guéhéneuc, Numeri-
cal signatures of antipatterns: An approach based on b-splines,
in: Software maintenance and reengineering (CSMR), 2010 14th
European Conference on, IEEE, 2010, pp. 248–251.

[41] F. A. Fontana, M. Zanoni, A. Marino, M. V. Mantyla, Code
smell detection: Towards a machine learning-based approach,
in: Software Maintenance (ICSM), 2013 29th IEEE Interna-
tional Conference on, IEEE, 2013, pp. 396–399.

[42] F. A. Fontana, M. Zanoni, Code smell severity classification
using machine learning techniques, Knowledge-Based Systems
128 (2017) 43–58.

[43] S. Maes, K. Tuyls, B. Vanschoenwinkel, B. Manderick, Credit
card fraud detection using bayesian and neural networks, in:
Proceedings of the 1st international naiso congress on neuro
fuzzy technologies, 2002, pp. 261–270.

[44] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A system-
atic literature review on fault prediction performance in soft-
ware engineering, IEEE Transactions on Software Engineering
38 (6) (2012) 1276–1304.

[45] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis,
D. I. Fotiadis, Machine learning applications in cancer progno-
sis and prediction, Computational and structural biotechnology
journal 13 (2015) 8–17.

[46] G. E. Batista, R. C. Prati, M. C. Monard, A study of the behav-
ior of several methods for balancing machine learning training
data, ACM SIGKDD explorations newsletter 6 (1) (2004) 20–
29.

[47] N. V. Chawla, Data mining for imbalanced datasets: An
overview, in: Data mining and knowledge discovery handbook,
Springer, 2009, pp. 875–886.

[48] H. He, E. A. Garcia, Learning from imbalanced data, IEEE
Transactions on knowledge and data engineering 21 (9) (2009)
1263–1284.

[49] D. J. Dittman, T. M. Khoshgoftaar, A. Napolitano, Selecting
the appropriate data sampling approach for imbalanced and
high-dimensional bioinformatics datasets, in: 2014 IEEE In-
ternational Conference on Bioinformatics and Bioengineering,
IEEE, 2014, pp. 304–310.

[50] D. J. Dittman, T. M. Khoshgoftaar, R. Wald, A. Napolitano,
Comparison of data sampling approaches for imbalanced bioin-
formatics data, in: The twenty-seventh international FLAIRS
conference, 2014.

[51] G. M. Weiss, F. Provost, Learning when training data are costly:
The effect of class distribution on tree induction, Journal of
artificial intelligence research 19 (2003) 315–354.

[52] N. Japkowicz, Concept-learning in the presence of between-class
and within-class imbalances, in: Conference of the Canadian
society for computational studies of intelligence, Springer, 2001,
pp. 67–77.

[53] N. V. Chawla, C4. 5 and imbalanced data sets: investigating the
effect of sampling method, probabilistic estimate, and decision
tree structure, in: Proceedings of the ICML, Vol. 3, 2003, p. 66.

[54] D. M. J. Tax, One-class classification: Concept learning in the
absence of counter-examples.

[55] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Her-

rera, A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) 42 (4) (2011) 463–484.

[56] R. E. Schapire, The strength of weak learnability, Machine
learning 5 (2) (1990) 197–227.

[57] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996)
123–140.

[58] T. M. Khoshgoftaar, A. Fazelpour, D. J. Dittman, A. Napoli-
tano, Effects of the use of boosting on classification performance
of imbalanced bioinformatics datasets, in: 2014 IEEE Interna-
tional Conference on Bioinformatics and Bioengineering, IEEE,
2014, pp. 420–426.

[59] D. J. Dittman, T. M. Khoshgoftaar, A. Napolitano, The ef-
fect of data sampling when using random forest on imbalanced
bioinformatics data, in: 2015 IEEE international conference on
information reuse and integration, IEEE, 2015, pp. 457–463.

[60] D. J. Dittman, T. M. Khoshgoftaar, A. Napolitano, Is data
sampling required when using random forest for classification on
imbalanced bioinformatics data?, in: Theoretical Information
Reuse and Integration, Springer, 2016, pp. 157–171.

[61] L. Breiman, Random forests, Machine learning 45 (1) (2001)
5–32.

[62] R. Arcoverde, A. Garcia, E. Figueiredo, Understanding the
longevity of code smells: preliminary results of an explanatory
survey, in: Proceedings of the International Workshop on Refac-
toring Tools, ACM, 2011, pp. 33–36.

[63] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of
bad smells in object-oriented code, in: Proceedings of the 2010
Seventh International Conference on the Quality of Information
and Communications Technology, QUATIC ’10, IEEE Com-
puter Society, 2010, pp. 106–115.

[64] R. Peters, A. Zaidman, Evaluating the lifespan of code smells
using software repository mining, in: European Conference on
Software Maintenance and ReEngineering, IEEE, 2012, pp. 411–
416.

[65] S. Olbrich, D. S. Cruzes, V. Basili, N. Zazworka, The evolution
and impact of code smells: A case study of two open source sys-
tems, in: Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, ESEM
’09, 2009, pp. 390–400.

[66] M. Abbes, F. Khomh, Y.-G. Gueheneuc, G. Antoniol, An
empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension, in: Proceedings of
the 2011 15th European Conference on Software Maintenance
and Reengineering, CSMR ’11, IEEE Computer Society, 2011,
pp. 181–190.

[67] A. Yamashita, L. Moonen, Exploring the impact of inter-
smell relations on software maintainability: An empirical study,
in: International Conference on Software Engineering (ICSE),
IEEE, 2013, pp. 682–691.

[68] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An ex-
ploratory study of the impact of antipatterns on class change-
and fault-proneness, Empirical Software Engineering 17 (3)
(2012) 243–275.

[69] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, On the diffuseness and the impact on maintain-
ability of code smells: A large scale empirical study, Empirical
Software Engineering (2017) to appear.

[70] A. Yamashita, L. Moonen, Do code smells reflect important
maintainability aspects?, in: International Conference on Soft-
ware Maintenance (ICSM), IEEE, 2012, pp. 306–315.

[71] G. H. John, P. Langley, Estimating continuous distributions
in bayesian classifiers, in: Proceedings of the Eleventh confer-
ence on Uncertainty in artificial intelligence, Morgan Kaufmann
Publishers Inc., 1995, pp. 338–345.

[72] C. X. Ling, C. Li, Data mining for direct marketing: Problems
and solutions., in: Kdd, Vol. 98, 1998, pp. 73–79.

[73] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I. H. Witten, The weka data mining software: an update, ACM
SIGKDD explorations newsletter 11 (1) (2009) 10–18.

16

[74] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer,
Smote: synthetic minority over-sampling technique, Journal of
artificial intelligence research 16 (2002) 321–357.

[75] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al., Handling
imbalanced datasets: A review, GESTS International Transac-
tions on Computer Science and Engineering 30 (1) (2006) 25–36.

[76] M. A. Hall, Correlation-based feature selection for machine
learning, Tech. rep. (1998).

[77] J. Bergstra, Y. Bengio, Random search for hyper-parameter
optimization, Journal of Machine Learning Research 13 (Feb)
(2012) 281–305.

[78] M. Stone, Cross-validatory choice and assessment of statisti-
cal predictions, Journal of the royal statistical society. Series B
(Methodological) (1974) 111–147.

[79] R. Baeza-Yates, B. d. A. N. Ribeiro, et al., Modern information
retrieval, New York: ACM Press; Harlow, England: Addison-
Wesley,, 2011.

[80] D. M. Powers, Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation.

[81] M. Shepperd, D. Bowes, T. Hall, Researcher bias: The use of
machine learning in software defect prediction, IEEE Transac-
tions on Software Engineering 40 (6) (2014) 603–616.

[82] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo,

Recovering traceability links between code and documentation,
IEEE transactions on software engineering 28 (10) (2002) 970–
983.

[83] P. Nemenyi, Distribution-free multiple comparisons, in: Bio-
metrics, Vol. 18, International Biometric Soc 1441 I ST, NW,
SUITE 700, WASHINGTON, DC 20005-2210, 1962, p. 263.

[84] A. J. Koning, P. H. Franses, M. Hibon, H. O. Stekler, The
m3 competition: Statistical tests of the results, International
Journal of Forecasting 21 (3) (2005) 397–409.

[85] A. Agrawal, T. Menzies, Is better data better than better data
miners?: on the benefits of tuning smote for defect prediction,
in: Proceedings of the 40th International Conference on Soft-
ware engineering, ACM, 2018, pp. 1050–1061.

[86] J. Kittler, M. Hatef, R. P. Duin, J. Matas, On combining clas-
sifiers, IEEE transactions on pattern analysis and machine in-
telligence 20 (3) (1998) 226–239.

[87] D. H. Wolpert, Stacked generalization, Neural networks 5 (2)
(1992) 241–259.

[88] D. Di Nucci, F. Palomba, R. Oliveto, A. De Lucia, Dynamic
selection of classifiers in bug prediction: An adaptive method,
IEEE Transactions on Emerging Topics in Computational In-
telligence 1 (3) (2017) 202–212.

17

	Introduction
	Related Work
	Machine-Learning for Code Smell Detection
	The Impact of Data Balancing Techniques

	Detection of Object-Oriented Code Smells
	Code Smells for Object-Oriented systems
	Data Balancing Techniques for Machine Learning
	Subject Systems
	Model Building and Evaluation
	Results of the Study

	Detection of Model-View-Control Code Smells
	Code Smells
	Data Balancing Techniques for Machine Learning
	Subject Systems
	Model Building and Evaluation
	Results of the Study

	Discussion
	Understanding the Role of Data Balancing
	Analysing the Impact of Metric Selection
	Inspecting the Overhead caused by Data Balancing
	Implication of the Findings

	Threats to Validity
	Conclusion

