
Journal of Parallel and Distributed Computing 144 (2020) 109–123

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

CScript: A distributed programming language for building
mixed-consistency applications
Kevin De Porre a,∗, Florian Myter a, Christophe Scholliers b, Elisa Gonzalez Boix a

a Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
b Ghent University, Sint Pietersnieuwstraat 33, Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 16 October 2019
Received in revised form 26 February 2020
Accepted 20 May 2020
Available online 30 May 2020

Keywords:
Distribution
Consistency models
Replicated data types

a b s t r a c t

Current programming models only provide abstractions for sharing data under a homogeneous
consistency model. It is, however, not uncommon for a distributed application to provide strong
consistency for one part of the shared data and eventual consistency for another part. Because mixing
consistency models is not supported by current programming models, writing such applications is
extremely difficult. In this paper we propose CScript, a distributed object-oriented programming
language with built-in support for data replication. At its core are consistent and available replicated
objects. CScript regulates the interactions between these objects to avoid subtle inconsistencies that
arise when mixing consistency models. Our evaluation compares a collaborative text editor built atop
CScript with a state-of-the-art implementation. The results show that our approach is flexible and
more memory efficient.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

According to the CAP theorem [6] a distributed system cannot
remain both available and consistent under network partitions.
This forces programmers to choose between availability (AP)
and consistency (CP) in the event of a partition. This choice
can be made for each piece of shared data [7]. We call applica-
tions that share multiple pieces of data with different guarantees
mixed-consistency applications. When developing such applica-
tions, programmers face two major problems. First, distributed
programming languages lack abstractions to share data under
AP/CP guarantees. This forces programmers to manually syn-
chronise replicas. As a result, programmers often make mistakes
against consistency models [20]. Second, many AP approaches
such as [8,25,26] develop common data types with hardcoded
conflict resolution semantics. Unfortunately, programmers can-
not compose these data types to design custom ones. Going
beyond the current portfolio of available replicated data types
(RDTs) requires programmers to manually engineer the RDT us-
ing ad hoc conflict resolution strategies. This has shown to be
error-prone and results in brittle systems [1,15,25].

To help programmers develop mixed-consistency applications,
we argue that distributed programming languages should have
(1) built-in RDTs for writing AP and CP functionality and (2)
built-in defence mechanisms that prevent programmers from

∗ Corresponding author.
E-mail address: kdeporre@vub.be (K. De Porre).

making mistakes when mixing data with different consistency
guarantees. In this paper, we propose CScript, a novel distributed
programming language with native support for availability and
consistency. CScript extends JavaScript with first-class replicas
and services. Replicas are objects that encode their availability
and consistency guarantees, and can be composed into services
which are distributed over the network. CScript supports two
families of AP replicated data types guaranteeing strong eventual
consistency [25] (SEC): conflict-free replicated data types [25]
(CRDTs) and strong eventually consistent replicated objects [10]
(SECROs). CRDTs are a subset of the RDTs for which all opera-
tions commute. SECROs use semantic information provided by
the programmer to reorder conflicting operations such that they
do not need to commute. This approach is based on the idea
that conflict detection and resolution naturally depend on the
semantics of the application [29]. When the operations of an
RDT do not commute and conflicts can be solved by reordering
operations, CScript programmers can use SECROs to build the
RDT. All replicas of this RDT are guaranteed to converge to the
same state.

This paper complements our previous exposition of SECROs
in [10] by proving convergence and showing that progress de-
pends on the data type itself. Hence, we formulate a necessary
condition for SECRO data types which enables us to give a general
proof of progress.

The remainder of this paper is organised as follows.
Section 2 discusses related work that is necessary to under-
stand this paper. Section 3 introduces our motivating example

https://doi.org/10.1016/j.jpdc.2020.05.010
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.05.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.010&domain=pdf
mailto:kdeporre@vub.be
https://doi.org/10.1016/j.jpdc.2020.05.010

110 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

for mixed-consistency. Section 4 describes CScript’s architecture
and programming model. Section 5 describes our novel SECRO
data type which is part of CScript. We then work out our mo-
tivating example in Section 6 using CScript. Section 8 evaluates
CScript by benchmarking a collaborative text editing application.
Finally, we discuss related work in Section 10 and close with final
conclusions in Section 11.

2. Background

In this section we introduce background knowledge on the
CAP theorem, its implications, and the consistency models on
which the paper builds.

The CAP theorem [6,12] describes the interactions between
consistency (C), availability (A) and partition tolerance (P) in a
distributed system consisting of nodes that can write to a con-
ceptually shared memory. A system is consistent if all reads return
the latest write. A system is available when all nodes are able to
read from and write to the shared memory at any point in time.
The system is partition tolerant if it is able to maintain its consis-
tency or availability guarantees in the face of network partitions.
The CAP theorem proves that a distributed system cannot remain
both available and consistent under network partitions. This led
to a multitude of consistency models (mainly weak consistency
models1) being developed [31]. Eventual consistency [32] for in-
stance, states that when updates stop, all replicas will eventually
converge to the same state.

Strong eventual consistency (SEC) [25] is a variation on even-
tual consistency [32] that imposes an additional strong con-
vergence requirement: correct replicas that received the same
updates (possibly in a different order) must be in the same state.
Strong convergence thus defines when replicas converge, some-
thing that is not specified by traditional eventual consistency.

Today’s only implementation of the SEC model is the conflict-
free replicated data type (CRDT) [25]. CRDTs come in two flavours
which have been proven equivalent: state-based CRDTs (abbrevi-
ated CvRDTs) and operation-based CRDTs (abbreviated CmRDTs).
CvRDTs require replicated state to form a join-semilattice. As
such, two states can always be merged deterministically by com-
puting their least upper bound. On the other hand, CmRDTs
require all operations to commute and as such guarantee strong
convergence by design.

Imposing all operations to commute (or the equivalent re-
quirement for state to form a join-semilattice) hurts the appli-
cability of CRDTs. For this reason the literature describes only a
limited portfolio of CRDTs. Furthermore, CRDTs cannot be com-
posed out of the box. Some research [15,19] seeks to improve
the composability of CRDTs, however, none of these composition
mechanisms is general enough to allow arbitrary compositions
for all CRDTs. JSON CRDTs [15] for instance only let programmers
compose linked lists and maps. Hence, programmers often need
to engineer their own CRDTs from scratch (if possible) or rely
on manual conflict resolution which is error-prone and results in
brittle systems [1,15,25].

3. Motivation: A mixed-consistency application

This section introduces a grocery list application which acts
as a motivating example of mixed-consistency throughout this
paper. Users of the application can create shared grocery lists to
which they can add and delete items. Users can also request more
pieces of an item or mark a certain quantity of an item as bought.

The application must meet the following consistency require-
ments:

1 Consistency models weaker than sequential consistency.

Fig. 1. Architecture of a typical CScript application with three users. Each user
runs an instance of the application which consists of a CScript instance and a
user interface.

Automatic Sharing Grocery lists are shared between all users.
When a user creates a new grocery list, other users must
automatically see that list.

Consistent Purchases Users should not be able to concurrently
mark the same item as bought, i.e. purchases must happen
consistently.

Offline Availability Users should be able to add, delete or update
items of a grocery list, even while being offline. Updating
a shared grocery list while being offline causes the list to
diverge from the other replicas. The system must solve
state inconsistencies when the user comes back online.

Note that the application requires multiple consistency levels.
The grocery list itself is eventually consistent but marking items
as bought is strongly consistent. Sometimes both levels interact,
e.g. when purchasing an item we first try to mark it as bought
and then update the grocery list.

Implementing this application is difficult because it not only
requires programmers to implement the application logic but
also to deal with aspects of distribution such as implementing
service discovery, serialising objects, and implementing different
consistency models to keep copies consistent. We argue that
a language with appropriate replication mechanisms and built-
in consistency models, can avoid this accidental complexity by
hiding it in the language. As a result, programmers can focus on
the application logic.

4. CScript

We now introduce CScript, our JavaScript extension for mixed-
consistency applications. First, we provide a high-level descrip-
tion of CScript and describe the typical architecture of CScript
applications. Afterwards, we introduce the building blocks of
CScript’s programming model.

4.1. Architecture

CScript is designed as a JavaScript library with dedicated syn-
tax by means of macros [27]. When using the dedicated syntax
an additional transpilation step is required to transform CScript
into JavaScript (ECMAScript 6). The resulting application runs on
top of NodeJS [23].

Fig. 1 shows the typical architecture of CScript applications.
Users of the application run a CScript instance and possibly a
user interface displaying the application’s state. CScript instances
running on the same local network are interconnected and form
a full-mesh peer-to-peer network (dotted lines). Apart from the
CScript instances there is no additional infrastructure, i.e. no
centralised servers. All network communication is managed by
the CScript runtime.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 111

4.2. Programming model

We now describe CScript’s programming model which is cen-
tred around the concepts of replicas and services. We then
illustrate how these concepts facilitate the development of col-
laborative mixed-consistency applications.

4.2.1. Replicas
CScript introduces first-class replicated objects, called replicas.

Like regular objects, replicas contain state in the form of fields
and behaviour in the form of methods. State can be primitive
data or JavaScript objects. Programmers can invoke methods of
a replica but cannot access state directly. The state of a replica is
automatically kept consistent by its consistency model.

CScript supports two types of replicas: available and consis-
tent replicas. The former guarantee SEC [25] and thus favour
availability over consistency. The latter guarantee sequential con-
sistency [28] and thus favour correctness over availability.

4.2.2. Services
When building mixed-consistency applications, replicas alone

are not enough. Programmers need a way to compose replicas –
possibly with different consistency guarantees – into a bigger unit
that provides specific functionality. To this end, CScript provides
first-class services.

Services encapsulate state (primitive data, objects, and repli-
cas) and implement some methods which form the service’s API.
The methods use the state and coordinate between the repli-
cas to provide specific functionality. Programmers must use the
service’s API as they cannot access a service’s state directly.

4.2.3. Publications and subscriptions
CScript lets programmers implement replicas and bundle them

into services. To share services between instances of an applica-
tion running of different devices, CScript features a topic-based
publish–subscribe mechanism [11]. This mechanism lets applica-
tion instances share services with one another without knowing
each other beforehand, making the underlying network transpar-
ent to the application. Fig. 2 shows how CScript instances can
publish services on the network and discover published services.
When one instance discovers a service published by another in-
stance, it acquires a copy of the service. The replicas encapsulated
by the service are automatically managed by the CScript runtime
such that they uphold their consistency guarantees.

4.2.4. The interplay between consistent and available replicas
Mixed-consistency applications share several pieces of data

with different consistency guarantees. When building such appli-
cations, programmers must be careful not to break these guar-
antees. Ideally, the programming model enforces consistency
models using a strict set of rules:

1. Each replica implements one specific consistency model.
2. Programmers can only interact with replicas through their

public interface, i.e. programmers cannot access or modify
a replica’s internal state directly.

3. Replicas are self-contained since they are replicated over
the network.

4. Replicas may not leak references to their internal state
as this would allow programmers to access internal state
directly, thereby breaking rule 2.

5. Data that is replicated under a certain consistency model
should not flow to replicas that enforce a stronger consis-
tency model as it would break the stronger guarantees.

We now discuss how CScript enforces the aforementioned
rules. Even though CScript provides consistent and available repli-
cas, programmers can only nest replicas that guarantee the same
level of consistency. Otherwise, one replica could provide differ-
ent (possibly conflicting) consistency levels, thereby breaking rule
1. Hence, consistent replicas may embed other consistent replicas
but not available replicas, and vice-versa. Replicas are black boxes
and do not allow programmers to access or modify internal state
directly (rule 2).

CScript deep copies the arguments that are passed to the
methods of replicas as well as the return values. Deep copying the
arguments ensures that the replica remains self-contained (rule
3). Deep copying the return value avoids leaking references to
internal state (rule 4).

Regarding data flows (rule 5), CScript does not yet prohibit
data obtained from available replicas to be passed as argument
to a method of a consistent replica. We foresee a statically typed
version of the CScript language that encodes the consistency
model of data as part of its type and rejects illegal information
flows at compile time.

5. Strong Eventually Consistent Replicated Objects (SECROs)

We now focus on CScript’s support for available replicas:
strong eventually consistent replicated objects (SECROs), a novel
RDT that addresses the applicability issues of CRDTs discussed
in Section 2. SECROs use semantic information provided by the
programmer to guarantee SEC without requiring operations to
commute. This makes SECROs generally applicable.

5.1. SECRO data type

Like regular objects, SECROs contain state in the form of fields,
and behaviour in the form of methods. The methods define the
SECRO’s public interface which cannot be circumvented. Methods
can be further categorised in accessors (i.e. methods querying
internal state) and mutators (i.e. methods updating the internal
state).

SECROs differ from regular objects in that programmers can
enforce application-specific invariants by associating concurrent
preconditions and postconditions to the mutators. We say that
pre and postconditions are state validators. State validators are
used by the SECRO to order concurrent operations in a way that
does not violate any invariant.

5.2. State validators

State validators associate rules to mutators. Those rules ex-
press invariants over the state of the object which need to uphold
in the presence of concurrent operations.2 Behind the scenes, SE-
CRO’s replication protocol may interleave concurrent operations.
From the programmer’s perspective the only guarantee is that
these invariants are upheld. State validators come in two forms:

Preconditions specify invariants that must hold prior to the
execution of their associated operation. As such, precondi-
tions approve or reject the state before applying the actual
update. In case of a rejection, the operation is aborted and
a different ordering of the operations will be tried.

2 From now on, we use the terms operation and mutator interchangeably, as
well as the terms update and mutation.

112 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

Fig. 2. Exchanging a GroceryService containing two replicas (list and inventory) between CScript instances.

Postconditions specify invariants that must hold after the exe-
cution of their associated operation. A postcondition does
not execute immediately after applying an operation. In-
stead, it executes after all concurrent operations complete.
As such, postconditions approve or reject the state that
results from a group of concurrent, potentially conflicting
operations. In case of a rejection a different ordering of the
operations is tried.

5.3. SECRO’s replication protocol in a Nutshell

Recall that SECROs guarantee SEC (eventual consistency and
strong convergence). To provide this guarantee SECROs imple-
ment a dedicated optimistic replication protocol. We now briefly
discuss this protocol, a detailed explanation including pseudo
code is given in Section 7.

SECRO’s replication protocol asynchronously propagates up-
date operations to all replicas. In contrast to CRDTs, the oper-
ations of a SECRO do not necessarily commute. Therefore, the
replication protocol totally orders the operations at all replicas.
This order respects causality and all pre and postconditions.

Replicas maintain their initial state and a sequence of oper-
ations called the operation history. Each time a replica receives
an operation, it is added to the replica’s history, which may
require reordering parts of the history. Reordering the history
boils down to finding an ordering of the operations that fulfils
two requirements. First, the order must respect the causality of
operations. Second, applying all the operations in the given order
may not violate any of the concurrent pre or postconditions. An
ordering which adheres to these requirements is called a valid
execution. As soon as a valid execution is found each replica resets
its state to the initial one and executes the operations in-order.
Reordering the history is a deterministic process, hence, replicas
that received the same operations find the same valid execution.

Note that the existence of a valid execution cannot be guaran-
teed for arbitrary pre and postconditions. It is the programmer’s
responsibility to define correct ones. However, the replication
protocol guarantees that:

1. Eventually, all replicas converge towards the same valid
execution (i.e. eventual consistency).

2. Replicas that received the same updates have identical
operation histories (i.e. strong convergence).

3. Replicas eventually perform the operations of a valid
execution if one exists, or issue an error if none exists.

As users perform operations, the operation histories of repli-
cas may grow unboundedly. To alleviate this issue we allow a
replica’s state to be committed periodically. Concretely, replicas
maintain a version number. Whenever a replica is committed, it

clears its operation history and increments its version number.
The replication protocol then notifies all other replicas of this
commit, which adopt the committed state and also empty their
operation history. As we explain in Section 7.1, the commit oper-
ation does not require synchronising the replicas and thus does
not affect the system’s availability.

6. CScript from the programmer’s perspective

We now illustrate CScript’s programming model by imple-
menting a grocery application that fulfils the requirements
outlined in Section 3.

6.1. The grocery service

We model the grocery application as a CScript service, which
is shown in Listing 1. On Line 1 we define the GroceryService
using the service keyword. Similarly to class definitions in ES6,3
services have a constructor method to initialise the service (Lines
4 to 7). The GroceryService’s constructor defines two fields:
the grocery list’s name and author (Lines 5 and 6). Additionally,
the service encapsulates two replicas, groceryList and inven-
tory, which are defined using the rep keyword (Lines 2 and
3). The former is the grocery list (an available replica) whereas
the latter is the inventory containing all the items marked as
bought (a consistent replica). Syntactically there is no difference
between the eventually consistent groceryList replica and the
sequentially consistent inventory replica because the consis-
tency guarantees depend on the type of the replica. Finally, the
service defines functionality to add, delete, and buy grocery items.
This functionality is exposed through the GroceryService’s API
which consists of the add, delete, and buy methods (Lines
8 to 14). The implementation of the buy method is discussed
in Section 6.2.
1 service GroceryService {
2 rep groceryList = new GroceryList();
3 rep inventory = new Inventory();
4 constructor(name, author)
5 this.name = name;
6 this.author = author;
7 }
8 add(item) {
9 return this.groceryList.add(item);

10 }
11 delete(itemName) {
12 return this.groceryList.delete(itemName);
13 }
14 buy(itemName, buyingQuantity) { /* ... */ }
15 }

Listing 1: Implementation of the grocery service.

3 ECMAScript 6.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 113

Fig. 3. How to exchange consistent replicas and interact with them.

1 class Inventory {
2 constructor(stock = []) {
3 this.stock = new Map(stock);
4 }
5 approve(itemName , stockQuantity , buyingQuantity) {
6 if (buyingQuantity <= 0)
7 return false;
8 const trueStock = this.stock.getOrElse(itemName, 0);
9 if (trueStock === stockQuantity) {

10 this.stock.set(itemName, trueStock + buyingQuantity);
11 return true;
12 }
13 else {
14 return false;
15 } } }

Listing 2: Implementation of the grocery service’s inventory.

1 buy(itemName, buyingQuantity) {
2 return new Promise((resolve, reject) => {
3 const stockQuantity = this.groceryList.get(itemName).bought;
4 this.inventory
5 .then(inventory => {
6 return inventory.approve(itemName, stockQuantity , buyingQuantity)
7 }).then(accepted => {
8 if (accepted) {
9 this.groceryList.bought(itemName, buyingQuantity);

10 resolve();
11 }
12 else { reject(" Buy request rejected. "); }
13 });
14 });
15 }

Listing 3: Buying a certain quantity of a grocery item.

6.2. The sequentially consistent inventory of purchases

Listing 2 shows the implementation of the Inventory class,
which keeps a map to track how many pieces of each item were
marked as bought (Line 3), this is called the ‘‘stock’’. The inventory
defines an approve method which is called before marking a
certain quantity of an item as bought (Lines 5 to 15). This method
first checks that the user’s view on the stock is equal to the actual
stock for that item (Lines 8 and 9), thereby rejecting concurrent
purchases of the same item. If the check succeeds, the inventory
approves the buy request and updates its stock for that item
(Lines 10 and 11).

By default, CScript replicas are sequentially consistent unless
the data type implements SEC. CScript guarantees sequential
consistency by serialising all operations on a single (remote)
copy of the replica which resides at the creator of the (grocery)
service, as depicted in Fig. 3. This means that there is no central
server hosting the inventory, instead, the inventory is hosted by
the device that created it. Interactions with consistent replicas

may therefore involve network communication. For this reason,
property accesses and method invocations on consistent replicas
are asynchronous and return a promise.

Listing 3 shows the implementation of the grocery service’s
buy method. The method first fetches the user’s local view on
the stock from the eventually consistent grocery list, which may
thus be outdated (Line 3). Then, it asynchronously sends a request
to the inventory by calling the approve method (Line 6). If the
request is approved, it informs the local grocery list replica (Line
9) which then marks the given quantity of that item as bought in
the UI. This method shows that services may have to interact with
replicas that exhibit different consistency guarantees in order to
provide the required functionality.

6.3. The eventually consistent grocery list

We now discuss the implementation of the GroceryList,
which is an available replica providing functionality to fetch the
items of a list, add items to a list, and mark (a certain quantity

114 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

of) items as bought. To this end, we implemented the grocery list
using our SECRO data type, presented in Section 5.

Listing 4 shows the implementation of the GroceryList
which extends the SECRO interface. Its public interface consists
of one accessor (get) and three mutators: add, bought, and
delete. It also associates a precondition to the bought method
and a postcondition to the add method, using the pre and post
keywords respectively (Lines 15 and 16). The side-effect free
method get is annotated with @accessor, otherwise, CScript
treats it as a mutator.4 The tojson and fromjsonmethods serve
to (de)serialise the object as it will be replicated over the network.
In order for the receiver to know the GroceryList class, this
SECRO must be registered at the CScript factory (Line 21).
1 class GroceryList extends SECRO {
2 constructor(items = []) {
3 super();
4 this.items = new Map();
5 items.forEach(this.add.bind(this));
6 }
7 @accessor
8 get() { /* ... */ }
9 // operations to manipulate the list

10 add(item) { /* ... */ }
11 bought(itemName, quantity) { /* ... */ }
12 delete(itemName) { /* ... */ }
13 // SECRO’s state validators
14 post add(originalState , state, args, res)
15 { /* ... */ }
16 pre bought(state, args) { /* ... */ }
17 // serialisation methods
18 tojson() { /* ... */ }
19 static fromjson(items) { /* ... */ }
20 }
21 Factory.registerAvailableType(GroceryList);

Listing 4: Structure of the grocery list.

Let us now take a look at the implementation of the add,
bought, and delete mutators and their associated pre and
postconditions.
1 add(item) {
2 const description =
3 this.items.getOrElse(
4 item.name, {requested: 0, bought: 0});
5 description.requested += item.requested;
6 this.items.set(item.name, description);
7 }
8 post add(originalState , state, args, res) {
9 const [item] = args,

10 addedQuantity = item.requested ,
11 resultingQuantity =
12 state.items
13 .getOrElse(item.name, 0)
14 .requested;
15 return resultingQuantity >= addedQuantity;
16 }

Listing 5: Adding items to a grocery list.

Listing 5 shows the implementation of the addmethod (which
adds a certain quantity of an item to the grocery list) and its asso-
ciated postcondition. First, add fetches the item from the grocery
list in case it already exists, or, creates a new item description
otherwise (Line 4). Then, it increments the requested quantity
(Line 5) and updates the item’s description in the underlying map
(Line 6). add’s postcondition5 states that the resulting state must
reflect at least the quantity requested by the operation. While this

4 When a mutator is invoked, the operation is propagated to all replicas.
5 Postconditions receive four arguments: the state before applying the opera-

tion, the state after applying all concurrent operations, the operation’s arguments
and return value.

invariant always holds in a sequential system, it may be violated
when operations run concurrently, e.g. due to a concurrent delete
of the same item. By stating this invariant explicitly, the SECRO
will ensure add-wins semantics.
1 bought(itemName, quantity) {
2 const quantities = this.items.get(itemName);
3 quantities.bought += quantity;
4 }
5 delete(itemName) {
6 this.items.delete(itemName);
7 }
8 pre bought(state, args) {
9 const [itemName, quantity] = args;

10 return this.items.has(itemName);
11 }

Listing 6: Marking items as bought and deleting items from the
grocery list.

Listing 6 shows the bought and delete methods. bought
fetches the item’s description (Line 2) and increments it with
the bought quantity (Line 3). delete removes the item from
the underlying list (Line 6). On Lines 8 to 11 we associate a
precondition6 to the bought method which checks that the item
exists. We associate no postcondition to delete (only to add)
because we expect adds to win over deletes, as shown in
Fig. 4.

Having discussed the implementation of the add, bought, and
delete operations, we now describe which operations can be
generated by the users in a given state s. We call this the set of
valid updates and denote it Vs.
item = ⟨name, req, bought⟩ name ∈ String req ∈ N+ bought ∈ N0

add(item) ∈ Vs
(1)

⟨name, _, _⟩ ∈ s qty ∈ N+

bought(name, qty) ∈ Vs
(2)

⟨name, _, _⟩ ∈ s
delete(name) ∈ Vs

(3)

The first rule states that users can always add well-formed items
to the grocery list, independent of the application’s state. The
second rule states that users can only buy a positive quantity of
an existing item. The third rule states that users can only delete
existing items.

6.4. Sharing grocery services between users

Users of our grocery application can create new grocery lists
at will. Each grocery list must be shared between all instances
(users) of the grocery application. To this end, we use CScript’s
publish–subscribe mechanism.

Every time the user creates a new grocery list the create-
Grocery function from Listing 7 is invoked. This function first
creates a grocery service representing the list (Line 4), then
publishes the newly created service under the Grocery type
tag using the publish <service> as <typetag> construct
(Line 5). The typetag is the topic of publication and is defined
using the deftype keyword on Line 1. Afterwards, the function
calls processService which installs the necessary callbacks
on the service, such that the application can react to incoming
updates, e.g. when another user adds an item to the shared
grocery list. Reacting to updates will be discussed further in this
section.

Listing 8 shows how to subscribe to services of the Grocery
type using the subscribe <typetag> with <callback> con-
struct (Line 2). The provided callback is parametrised with the

6 Preconditions receive the state before applying the operation and the
arguments.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 115

Fig. 4. Alice adds one lasagna while concurrently Bob deletes the lasagnas from the grocery list. After propagating the operations the resulting list contains one
lasagna because Bob was not aware of Alice’s addition at the time of his deletion.

1 deftype Grocery
2 function createGrocery(name, author) {
3 const gservice =
4 new GroceryService(name, author);
5 publish gservice as Grocery;
6 processService(gservice);
7 return gservice;
8 }

Listing 7: Exporting grocery services on the network.

discovered service. Upon discovering a service, CScript invokes
the callback, which in this case fetches the service’s name and au-
thor (Lines 3 and 4) and creates a unique identifier for the service
(Line 5). The callback then stores the discovered service in a map,
on Line 6. Note that the name and author fields contain regular
objects. When discovering the service the application acquires a
deep-copy of those fields (which contrary to replicas are not kept
consistent).
1 const services = new Map();
2 subscribe Grocery with gservice => {
3 const name = gservice.name,
4 author = gservice.author,
5 id = ‘${name} by ${author}‘;
6 services.set(id, gservice);
7 processService(gservice);
8 }

Listing 8: Subscribing to grocery services.

In order to make services self-contained, they do not
have access to enclosing lexical scopes, much like isolates in
AmbientTalk [30] or spores in Scala [21].

6.4.1. Reacting to updates of the grocery list
When a user modifies a shared grocery list all replicas will

eventually observe the update and in turn update the user in-
terface. To this end, CScript replicas emit two events to which
applications can react: RemoteUpdate and Update. The former
is triggered when a replica receives an update from a remote
replica. The latter is triggered when a replica applies an update.

Fig. 5 shows how updates are propagated between two users.
Alice adds an item to her grocery list (m1) and the operation is
sent to bob (m2). Update events are triggered on both devices (m3
and m7) which causes the user interfaces to be refreshed (m4, m5
and m8, m9).

7. SECRO’s replication protocol

Having introduced the CScript language and our SECRO data
type, we now turn our attention to the replication algorithm
behind SECROs. The detailed algorithm is explained in [10]. This
paper provides the correctness proofs and presents only the parts
of the algorithm that are relevant to the proofs.

7.1. Algorithm

The algorithm described in this section assumes a reliable
causal order broadcasting mechanism without loss of generality,

i.e. a communication medium in which messages arrive in an
order that is consistent with the happened-before relation [16].
It also assumes that reading the state of a replica happens side-
effect free and that mutators solely affect the replica’s state
(i.e. the side effects are confined to the replica itself).

A SECRO replica r is a tuple ⟨vi, s0, si, h, idc⟩ consisting of the
replica’s version number vi, its initial state s0, its current state si,
its operation history h, and the globally unique identifier of the
latest commit operation idc . Reading the value of the replica sim-
ply returns its latest local state si. A mutator m is represented as a
tuple ⟨o, p, a⟩ consisting of the update operation o, precondition
p, and postcondition a. When a mutator is applied to a replica
a mutate message is broadcast to all replicas. Such a message is
an extension of the mutator ⟨o, args, p, a, c, id⟩ which addition-
ally contains the arguments args passed to the operation o, the
node’s logical clock time c , and a globally unique identifier id. We
denote that a mutation m1 happened before m2 using m1 ≺ m2.
Similarly, we denote that two mutations happened concurrently
using m1 ∥ m2. Both relations are based on the clocks carried by
the mutate messages [14].

Algorithm 1 governs the replicas’ behaviour to guarantee
SEC by ensuring that all replicas execute operations in the
same order. In particular, algorithm 1 delivers a list of mutate
messages l to a replica r which optionally returns the updated
replica r ′, denoted l ⇓ r = Some r ′ or l ⇓ r = None. The
algorithm consists of two parts. First, it appends the list of
mutate messages to the operation history, sorts the history
according to the ≫ total order, and generates all linear extensions
of the replica’s sorted history (see Lines 1 and 3). We say that
m1 = ⟨o1, args1, p1, a1, c1, id1⟩ ≫ m2 = ⟨o2, args2, p2, a2, c2, id2⟩
iff id1 > id2, however, this could be any total order. The generated
linear extensions are all the permutations of h′ that respect the
partial order defined by the operations’ causal relations. Since
replicas deterministically compute linear extensions and start
from the same sorted operation history, all replicas generate the
same sequence of permutations.

Second, the algorithm searches for the first valid permutation.
For each operation within such a permutation it computes the
transitive closure of concurrent operations7 and checks that their
pre (Lines 11 to 17) and postconditions (Lines 18 to 24) hold.

7 The transitive closure of a mutate message m with respect to an operation
history h is denoted TC(m, h) and is the set of all operations that are directly or
transitively concurrent with m, including m itself. A formal definition is provided
in Appendix C.

116 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

Fig. 5. Sequence diagram illustrating updates of the grocery application.

ALGORITHM 1: Handling mutate messages
arguments: A list of mutate messages l, a replica r = ⟨vi, s0, si, h, idc ⟩

1 h′
= h ++ l

2 s′i = si
3 for ops ∈ LE(sort>>(h′)) do
4 si = copy(s′i) // Restore the replica’s state
5 pre = 0
6 post = 0
7 for m ∈ ops do
8 concurrentClosure = TC(m, h′) ∪ {m}

9 ogStates = Map()
10 retVals = Map()
11 for ⟨o, args, p, a, c, id⟩ ∈ concurrentClosure do
12 if p(si , args) then
13 pre += 1
14 ogStates.put(id, copy(si)) // copy state to pass to

postcondition
15 retVals.put(id, o(args)) // o’s side-effects mutate si
16 end
17 end
18 for ⟨o, args, p, a, c, id⟩ ∈ concurrentClosure do
19 ogState = ogStates.get(id)
20 retVal = retVals.get(id)
21 if a(ogState, si , args, retVal) then
22 post += 1
23 end
24 end
25 ops = ops \ concurrentClosure
26 end
27 if pre == |ops| ∧ post == |ops| then
28 return Some ⟨vi, s0, si, ops, idc ⟩
29 else
30 return None
31 end
32 end

Postconditions are checked only after all concurrent operations
of the transitive closure executed since they happened indepen-
dently and may thus conflict. The algorithm returns the replica’s
updated state as soon as a valid execution is found, l ⇓ r =

Some ⟨vi, s0, s′i, h
′, idc⟩. If no valid execution exists the algorithm

fails, l ⇓ r = None.
Besides reading and mutating replicas, it is possible to com-

mit a replica. Commit clears the replica’s operation history h,
increments the replica’s version and replaces the initial state
s0 by the current state si. This avoids unbounded growth of
operation histories, but operations concurrent with the commit
will be discarded.8 Commit operations commute in order not to

8 Since commit may drop operations, one can argue that SECROs are similar
to last-writer-wins (LWW) strategies. However, SECROs guarantee invariant
preservation, which is not the case with CRDTs.

compromise availability. The detailed commit algorithm and its
explanation can be found in [10].

7.2. Convergence and progress properties

As mentioned before, SECROs guarantee strong eventual con-
sistency (SEC). This means that the replication algorithm ensures
two properties: strong convergence and progress [25]. The former
states that replicas which received the same operations must
be in equivalent states. The latter states that if some replica
generates a valid operation, applying that operation on another
replica may not lead to an error state [13].

The SECRO algorithm guarantees strong convergence by deter-
ministically reordering the operations at all replicas. Recall from
the previous section that all replicas execute all operations in
the same order and thus converge to the same state. Appendix A
provides the complete proof of convergence.

The main advantage of SECROs over CRDTs lies in the fact
that it is a general-purpose RDT. Programmers explicitly specify
preconditions and postconditions that constrain the data type’s
behaviour under concurrent operations. Depending on these pre
and postconditions a replica may or may not end up in an error
state. Hence, we cannot provide a general proof of progress that
holds for all SECROs. Instead, we require the SECRO’s pre and
postconditions to accept at least one causal serialisation9 of the
operations (see Lemma 1).

Lemma 1. Given an initial state s and a set of valid updates Vs,10
there exists an ordering of the updates that respects causality and all
pre and postconditions.

Appendix B provides a proof that SECROs whose pre and
postconditions meet Lemma 1 guarantee progress. It is up to the
programmer to prove Lemma 1 when designing custom SECROs.

8. Evaluation

To evaluate CScript we built several applications, including the
grocery list application and a collaborative text editing applica-
tion. The text editor is built on top of SECROs, one of CScript’s core
abstractions, which makes the application highly available and
partition tolerant (AP). We compare the application to a state-
of-the-art implementation on top of JSON CRDTs [15]. To this
end, we perform various experiments which quantify the memory
usage and execution time of both implementations.

9 An ordering of the operations that respects the causality of the operations.
10 The set of valid updates Vs is defined as the set of all updates that can be
generated by the application while being in state s.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 117

JSON CRDTs are closely related to SECROs because they allow
programmers to build custom CRDTs by nesting linked lists and
maps, without having to worry about conflicts. However, the
extensibility of JSON CRDTs is limited to the composition of lists
and maps, and conflict resolution cannot be customised because
it is hardcoded by the implementation of lists and maps.

Note that SECROs are designed to ease the development of
custom RDTs guaranteeing SEC. Hence, our goal is not to outper-
form JSON CRDTs, but rather to evaluate the practical feasibility of
SECROs. The results show that SECROs are memory efficient but
induce a linear time overhead on top of the operations. Overall,
SECROs can be made practical by committing regularly.

8.1. A text editing application

The collaborative text editor lets users share text documents
and work on them simultaneously. A naive version of this ap-
plication stores text documents as a linked list of characters. An
improvement would be to store documents as a balanced tree of
characters, allowing for logarithmic time lookups, insertions, and
deletions. We implemented both versions of the text editor using
SECROs in CScript. The tree version uses a third party AVL tree and
extends it with pre and postconditions to turn it into a SECRO that
can freely be replicated. The implementation is publicly available
at [9] and is detailed in [10].

Since JSON CRDTs only let programmers nest linked lists and
maps, it is not possible to implement a balanced tree data struc-
ture. Hence, using JSON CRDTs we were only able to implement
the naive version of the text editor.

We compare to JSON CRDTs because they are designed to
build custom CRDTs and are thus similar to SECROs which are
meant to build custom RDTs. We did not compare CScript to other
languages because performance benchmarks would be biased by
the language.

8.2. Methodology

All experiments presented in this section were performed on
a cluster consisting of 10 worker nodes which are interconnected
through a 10 Gbit twinax connection. Each worker node has an
Intel Xeon E3-1240 processor at 3.50 GHz and 32 GB of RAM.
Depending on the experiment, the benchmark is either run on
a single worker node or on all ten nodes. We specify this for each
benchmark.

To get statistically sound results we repeat each benchmark at
least 30 times, yielding a minimum of 30 samples per measure-
ment. Each benchmark starts with a number of warmup rounds
to minimise the effects of program initialisation. We also disable
NodeJS’ just-in-time compiler optimisations.

We perform statistical analysis over our measurements as fol-
lows. We discard samples that are affected by garbage collection
(e.g. the execution time benchmarks). For each measurement
comprising at least 30 samples we compute the average value and
the corresponding 95% confidence interval.

8.3. Memory usage

To compare the memory usage of the SECRO and JSON CRDT
text editors, we perform an experiment in which 1000 operations
are executed on each text editor. We continuously alternate be-
tween 100 character insertions followed by deletions of those 100
characters. We force garbage collection after each operation,11

11 Forcing garbage collection is needed to get the real-time memory us-
age. Otherwise, the memory usage keeps growing until garbage collection is
triggered.

and measure the heap usage. Fig. 6 shows the results. Green
and red columns indicate character insertions and deletions
respectively.

Fig. 6a confirms our expectation that the SECRO implemen-
tations are more memory efficient than the JSON CRDT one.
The memory usage of the JSON CRDT text editor grows un-
bounded since CRDTs cannot delete characters but merely mark
them as deleted using tombstones.12 Conversely, SECROs sup-
port true deletions by reorganising concurrent operations in a
non-conflicting order. This results in lower memory usage, since
all 100 inserted characters are deleted by the following 100
deletions.

Fig. 6b compares the memory usage of the list and tree-based
implementations using SECROs. We conclude that the tree-based
implementation consumes more memory than the list implemen-
tation because nodes of a tree maintain pointers to their children,
whereas nodes of a singly linked list only maintain a single
pointer to the next node. Interestingly, we observe a staircase
pattern. This pattern indicates that memory usage grows when
characters are inserted (green columns) and shrinks when char-
acters are deleted (red columns). Overall, memory usage increases
linearly with the number of executed operations, even though
we delete the inserted characters and commit the replica after
each operation. Hence, SECROs cause a small memory overhead
for each executed operation, as shown by the dashed regression
lines.

8.4. Execution time

In this section we discuss several aspects of the execution time
of SECROs. First, we analyse the effect of committing the SECRO’s
operation history on the execution time of operations. Then, we
compare the SECRO list implementation of the text editor to a
state-of-the-art implementation with JSON CRDTs.

8.4.1. The effect of commit on the execution time
We now present two benchmarks related to the commit

operation. The first quantifies the performance overhead of SE-
CROs that results from reordering the operation history. The
second illustrates the effect of commit on the execution time
of the collaborative text editor and how commit improves its
performance.

To quantify the performance overhead of SECROs we measure
the execution times of 500 constant time operations, for different
commit intervals. Each operation computes 10 000 tangents and
has no associated pre or postcondition. Hence, the results reflect
the best-case performance of SECROs.

Fig. 7a depicts the execution time of the aforementioned
constant time operation. If we do not commit the replica (red
curve), the operation’s execution time increases linearly with the
number of operations. Hence, SECROs induce a linear overhead.
This results from the fact that the replica’s operation history
grows with every operation. Each operation requires the replica
to reorganise the history. To this end, the replica generates linear
extensions of the history until a valid ordering of the operations
is found (see Algorithm 1 in Section 7.1). Since we defined no
preconditions or postconditions, every order is valid and the
replica generates exactly one linear extension and validates it.
To validate the ordering, the replica executes each operation.
Therefore, the operation’s execution time is linear to the size of
the operation history.

Note that commit implies a trade-off between concurrency
and performance. Small commit intervals lead to better per-
formance but less concurrency, whereas large commit intervals

12 Tombstones are a trick to make the insert and delete operations commute.

118 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

Fig. 6. Memory usage benchmarks. Error bars represent the 95% confidence interval for the average taken from 30 samples. The experiments are performed on a
single worker node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Execution time of SECROs for different commit intervals, performed on a single worker node of the cluster. Error bands represent the 95% confidence interval
for the average taken from a minimum of 30 samples. Samples affected by garbage collection were discarded. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

support more concurrent operations at the cost of performance.
Fig. 7a illustrates this trade-off. For a commit interval of 50 (blue
curve), we observe a sawtooth pattern. The operation’s execution
time increases until the replica is committed, whereafter it falls
back to its initial execution time. This is because commit clears
the operation history. When choosing a commit interval of 1
(green curve), the replica is committed after every operation.
Hence, the history contains a single operation and does not need
to be reorganised. This results in a constant execution time.

We now analyse the execution time of insert operations on the
collaborative text editor. Fig. 7b shows the time it takes to append
a character to a text document in function of the document’s
length, for various commit intervals. If we do not commit the
replica (red curve), append exhibits a quadratic execution time.
This is because the SECRO induces a linear overhead and append
is a linear operation. Hence, append’s execution time becomes
quadratic. For a commit interval of 100 (blue curve) we again

observe a sawtooth pattern. In contrast to Fig. 7a the peaks
increase linearly with the size of the document because append
is a linear operation. For a commit interval of 1 (green curve) we
get a linear execution time. This results from the fact that we do
not need to reorganise the replica’s history. Hence, we execute a
single append operation.

From these results, we draw two conclusions. First, SECROs
induce a linear overhead on the execution time of operations.
Second, commit is a practical solution to keep the performance
of SECROs within acceptable bounds.

8.4.2. SECRO vs. JSON CRDT text editor
We now compare the naive list implementation and the ad-

vanced tree implementation of the text editor to the JSON CRDT
implementation. To this end, we measure the time it takes to
append characters to a text document. Although this is not a
realistic edition pattern, it showcases the worst case performance.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 119

From Fig. 8a we notice that the SECRO versions exhibit quadratic
performance, whereas the JSON CRDT version exhibits linear
performance. The reason for this is that reordering the SECRO’s
history induces a linear overhead on top of the operations them-
selves (as explained in Section 8.4.1). Since insert is also a linear
operation, the overall performance of the text editor’s insert
operation is quadratic. To address this performance overhead the
replica needs to be committed periodically.

Fig. 8a also shows that the SECRO implementation that uses
a linked list is faster than its tree-based counterpart. To deter-
mine the cause of this counterintuitive observation, we measured
the different parts that make up the total execution time in
Appendix D. We found that the time overhead incurred by copy-
ing the document13 kills the speedup we gain from organising the
document as a tree. This is because each insertion inserts only a
single character but requires the entire document to be copied.

To validate this hypothesis, we re-execute the benchmark
shown in Fig. 8a but insert 100 characters per operation.
Fig. 8b shows the resulting execution times. As expected, the
tree implementation now outperforms the list implementation.
This means that the speedup obtained from 100 logarithmic
insertions exceeds the copying overhead induced by the tree.
In practice, this means that single character manipulations are
too fine-grained. Manipulating entire words, sentences or even
paragraphs is more beneficial for performance.

Overall, the execution time benchmarks show that deep
copying the document induces a considerable overhead. We be-
lieve that this overhead is not inherent to SECROs, but to its
implementation on top of mutable objects.

9. Guidelines for designing Replicated Data Types (RDTs)

We now provide some guidelines for designing replicated
data types under (strong) eventual consistency. When designing
available systems, programmers need to use existing RDTs or
design their own. If a data type’s operations naturally commute
then replicating it will guarantee strong eventual consistency out
of the box, given that updates are eventually propagated to all
replicas. This is for instance the case of a counter data type, whose
increment and decrement operations commute.

When the data type’s operations do not naturally commute,
one can browse the literature for an equivalent CRDT. A CRDT
may exist that applies some clever tricks to make the operations
commute (e.g. OR-Sets [24]).

If none of the above applies one can resort to SECROs to build
their replicated data type without worrying about commutativ-
ity. SECROs are able to omit the commutativity requirement by
(re)ordering operations deterministically. This naturally entails
some performance cost, as shown in Section 8. Note that some
conflicts may not be solvable solely by reordering operations and
can thus not be tackled using SECROs. This is the case for mutually
exclusive operations. When two mutually exclusive operations
execute concurrently, a conflict will arise that can only be solved
by discarding at least one of the operations. In those cases, the
programmer may resort to synchronising the mutually exclusive
operations, similarly to [3,4], or implement an ad-hoc conflict
resolution scheme.

Finally, we draw the relation between CmRDTs (operation-
based CRDTs, see Section 2) and SECROs. Both data types ensure
SEC, but CmRDTs require all concurrent operations to commute.
As such, all valid serialisations of the operations – those re-
specting causality – yield the same valid state. Interestingly,
SECROs guarantee that all replicas agree on one valid serialisation

13 Since JavaScript objects are mutable, our prototype implementation of
SECROs needs to copy the state before tentatively executing its operation history.

(without having to synchronise with one another). Pre and post-
conditions are used to confine the set of serialisations from which
to pick one, e.g. to ensure that the given serialisation guarantees
a certain conflict resolution strategy. Since all serialisations of
a CmRDT are equivalent, any CmRDT can be implemented as a
SECRO that associates no pre or postconditions to the operations.
We thus conclude that CmRDTs are a subset of SECROs.

10. Related work

We now describe work that is closely related to the ideas
presented in this paper. We distinguish between two research
areas. First, we discuss programming languages and abstractions
that like CScript help programmers trade off consistency for avail-
ability and vice-versa. Second, we discuss research on (strong)
eventual consistency that is related to the SECRO data type.

Programming languages. CAPtain [22] is a programming
model with two types of replicated objects: consistents and avail-
ables. The former guarantee strong consistency whereas the latter
guarantee availability but only eventual consistency. These two
types of objects are completely separated and form CAPtain’s unit
of distribution. In contrast to CAPtain, CScript bundles replicas
into services which can be partly consistent and partly available,
and distributes those services over the network. Each service
exposes specific functionality through its API by coordinating
between consistent and available replicas.

Geo [5] is an actor system for geo-replication that combines
caching with replication techniques to hide latency and benefit
from data locality where possible. Geo supports ‘‘single-instance’’
and ‘‘multi-instance’’ caching policies for actors across clusters.
The single-instance caching policy is similar to consistent replicas
in CScript, as it ensures a single instance of the actor that seri-
alises all updates. The multi-instance caching policy replicates the
actor to every cluster. These actors can be kept strongly consistent
using Geo’s distributed cache coherence protocol, or eventually
consistent using Geo’s Versioned API.

The MixT programming language [20] proposes mixed-
consistency transactions to manipulate data with different
consistency levels within a single database transaction. Using
information flow analysis, MixT can break down mixed-
consistency transactions into subtransactions for each
consistency level and still guarantee atomicity. MixT works
on top of existing databases whereas CScript’s programming
model integrates replication at the object-level.

Lasp [19] is the first programming language where CRDTs are
first-class citizens. New CRDTs are defined through functional
transformations over existing ones. In contrast, CScript provides
SECROs, general-purpose RDTs which are not limited to a port-
folio of builtin data types. Existing data structures can be turned
into SECROs by associating state validators to the operations.

Eventual consistency. Central to SECROs is the idea of using
application-specific information to reorder conflicting operations.
Bayou [29] was the first system to use application-level se-
mantics for conflict resolution by means of user-defined merge
procedures. However, our work does not require manual conflict
resolution; programmers instead specify the invariants the appli-
cation must uphold in the face of concurrent updates, and the
underlying update algorithm deterministically orders operations
as to respect these invariants.

IPA [2] is closely related to SECROs as it preserves appli-
cation invariants without coordinating operations. IPA extends
the operations of traditional CRDTs with effects that guarantee
the preservation of invariants in the face of concurrent updates.
IPA differs from SECROs in that they modify operations whereas
SECROs reorder concurrent operations.

120 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

Fig. 8. Execution time of character insertions in the collaborative text editors. Replicas are never committed. Error bars represent the 95% confidence interval for
the average taken from a minimum of 30 samples. Samples affected by garbage collection are discarded.

JSON CRDTs [15] ease the construction of CRDTs by hiding the
commutativity restriction that traditionally applies to the oper-
ations. Programmers can build new CRDTs by nesting lists and
maps in arbitrary ways. The major shortcoming is that nesting
lists and maps does not suffice to implement arbitrary RDTs.
Moreover, programmers cannot customise conflict resolution be-
cause it is hardcoded by the implementation of lists and maps.
Hence, JSON CRDTs are not truly general-purpose as opposed to
SECROs.

Cloud types [8] are RDTs that like SECROs do not impose
restrictions on the operations of the data type. However, cloud
types hardcode how to merge updates coming from different
replicas of the same type. As such, programmers have no means
to customise the merge procedure of cloud types to fit the appli-
cation’s semantics. Instead, they are bound to implement a new
cloud type and the accompanying merge procedure that fits the
application. Hence, conflict resolution needs to be manually dealt
with.

Some work has considered a hybrid approach offering SEC
for commutative operations, and requiring strong consistency
for non-commutative ones [3,4]. There are some similarities to
SECROs as they employ application-specific invariants to classify
operations as safe or unsafe under concurrent execution. These
hybrid approaches synchronise unsafe operations, whereas SE-
CROs reorder them as to avoid conflicts without giving up on
availability. Partial Order-Restrictions (PoR) consistency [18] uses
application-specific restrictions over operations but cannot guar-
antee convergence nor invariant preservation since these proper-
ties depend on the restrictions over the operations specified by
the programmer.

11. Conclusion

In this work we propose CScript, a distributed programming
language featuring consistent and available replicas. Consistent
replicas guarantee strong consistency but are not available un-
der network partitions. On the other hand, programmers can
always execute operations on available replicas but they only
guarantee strong eventual consistency (SEC) [25]. CScript lets pro-
grammers bundle replicas into larger components called services.
Services can mix available and consistent replicas which eases
the development of mixed-consistency applications. The CScript

runtime manages all replicas automatically, thereby freeing the
programmer from manually synchronising them.

CScript supports two types of available replicas: conflict-free
replicated data types (CRDTs) [25] and strong eventually consis-
tent replicated objects (SECROs). Several CRDTs are built-in and
programmers can implement custom ones. When CRDTs are not
applicable, programmers can use our general-purpose SECRO data
type. A SECRO is an RDT that guarantees SEC without imposing
restrictions on the data type’s operations. Upon concurrent oper-
ations, SECROs compute a global total order of the operations that
is conflict-free, without synchronising the replicas. To this end,
SECROs use state validators: application-specific invariants that
determine the object’s behaviour in the face of concurrency. By
specifying state validators arbitrary data types can thus be turned
into available replicas.

To the best of our knowledge, SECROs are the first approach to
support truly general-purpose RDTs while still guaranteeing SEC.
In this paper, we prove that SECROs guarantee convergence and
we formulate a necessary condition for SECRO data types which
is sufficient to then prove progress.

To evaluate our work, we implemented a collaborative text
editing application using SECROs in CScript and compared it to
a state-of-the-art implementation that uses JSON CRDTs. The
memory usage benchmarks reveal that SECROs are more memory
efficient than JSON CRDTs. Time complexity benchmarks reveal
that SECROs induce a linear time overhead which is proportional
to the size of the operation history. Performance wise, SECROs
can be competitive to state-of-the-art solutions if committed
regularly.

CRediT authorship contribution statement

Kevin De Porre: Conceptualization, Formal analysis, Funding
acquisition, Investigation, Methodology, Software, Supervision,
Writing - original draft, Writing - review & editing. Florian Myter:
Formal analysis, Funding acquisition, Methodology, Writing -
original draft. Christophe Scholliers: Formal analysis, Method-
ology, Supervision, Writing - original draft, Writing - review &
editing. Elisa Gonzalez Boix: Conceptualization, Funding acquisi-
tion, Methodology, Supervision, Writing - original draft, Writing
- review & editing.

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 121

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

Kevin De Porre is funded by an SB Fellowship of the Research
Foundation - Flanders, Belgium. Project number: 1S98519N.

Appendix A. General proof of convergence for SECROs

In this appendix we prove that the SECRO data type guarantees
strong convergence. In other words, we prove that SECRO replicas
which received the same updates are in equivalent states.

In what follows we consider the SECRO implementation with-
out commits and can therefore simplify the representation of
SECRO replicas to a tuple r = ⟨s, h⟩ consisting of the replica’s
initial state s and its history h.

Definition A.1. Assume a replica r1 with initial state s1 and
history h1, and a replica r2 with initial state s2 and history h2.
We say that r1 is equivalent to r2 iff they have the same initial
state and the same operation history: ∀r1∀r2 : r1 ≡ r2 ⇐⇒ s1 =

s2 ∧ h1 = h2.

We now prove convergence for the SECRO implementation
without commits. We use the notation l ⇓ r to deliver a list
of updates l to a replica r which optionally yields the updated
replica. We denote the set of permutations of a list l by Perm(l).

Theorem A.1. Replicas that received the same updates (possibly in
a different order) are in equivalent states:

∀r1, r2 ∀l1, l2 : r1 = ⟨s1, h1⟩ ∧ r2 = ⟨s2, h2⟩ ∧ s1 = s2 ∧

h1 ++ l1 ∈ Perm(h2 ++ l2) H⇒ l1 ⇓ r1 ≡ l2 ⇓ r2

Proof. When we deliver the updates l1 to the replica r1, Algo-
rithm 1 appends the incoming updates to the history on Line 1:
h′

1 = h1 ++ l1. Similarly, when we deliver the updates l2 to
replica r2, we add the updates to the history: h′

2 = h2 ++ l2.
Since h′

1 and h′

2 are permutations of one another, sorting them
according to a total order ≫ yields the same list of updates:
l = sort≫(h′

1) = sort≫(h′

2). Both replicas then deterministically
generate the linear extensions of l on Line 3: LE(l) and search
for the first extension that is valid (i.e. respects all pre and
postconditions). Given that the pre and postconditions are de-
terministic, finding the first valid extension is also deterministic.
Hence, either both replicas find the same ordering of operations h′

and end up in equivalent states ⟨s1, h′
⟩ ≡ ⟨s2, h′

⟩, or, both replicas
end up in an error state because no valid extension exists. □

Appendix B. Proof of progress for SECROs

As argued in Section 7.2, we cannot provide a general proof
of progress for SECROs because the pre and postconditions are
defined by the programmers. Instead, we require the SECRO’s pre
and postconditions to meet Lemma 1.

Lemma 1. Given an initial state s and a set of valid updates Vs,
there exists an ordering of the updates that respects causality and
all pre and postconditions.

Using Lemma 1 we define correctness of replicas.

Definition B.1. A replica r = ⟨s, h⟩ is correct iff the replica is an
instance of a SECRO whose pre and postconditions meet Lemma 1
and all updates from its history h are valid.

Given a replica r = ⟨s, h⟩ we can compute the replica’s current
state by successive applications of the updates from its history,
denoted s ◁ h. Listing 9 defines the generic ◁ operator which
applies a list of updates on some state, in Haskell. Updates are
functions from state to state.
1 type Update s ta te = s ta te −> state
2 (◁) : : s ta te −> [Update s ta te] −> state
3 s ◁ h = fo ldl (\ s ta te update −> update s ta te) s h

Listing 9: Definition of the ◁ operator to compute a replica’s
current state given its initial state and update history.

We now prove that correct replicas guarantee progress.

Theorem B.1. For any correct replica r1 = ⟨s, h1⟩ and any valid
update u issued by some other correct replica r2 = ⟨s, h2⟩ while
being in state t = s ◁ h2, delivering the update u at replica r1 does
not fail:

∀r1, r2, u : r1 = ⟨s, h1⟩ ∧ r2 = ⟨s, h2⟩ ∧ t = s ◁ h2 ∧

u ∈ Vt H⇒ [u] ⇓ r1 ̸= None

Proof. Let V be the set of valid updates observed by replica
r1, i.e. V contains all (and only those) updates from its history
h1. Upon delivering the update u at replica r1, [u] ⇓ r1, the
algorithm generates all linear extensions of the updates in V ′

=

V ∪ {u} (Line 3 in Algorithm 1). Those linear extensions are all
the serialisations of the updates that respect the causality of the
updates. The algorithm then continues by searching for the first
valid extension (Lines 7 to 32). Since r1 is a correct replica, at
least one linear extension is valid (cf. Lemma 1). The algorithm
will find that linear extension and return the updated replica on
Line 28, [u] ⇓ r1 = Some r ′

1. Hence, delivering a valid update at a
correct replica cannot fail. □

Appendix C. Transitive closure of concurrent operations

Recall from Algorithm 1 in Section 7.1 that checking pre-
conditions and postconditions requires computing the transitive
closure of concurrent operations. We now formally define the
transitive closure of concurrent operations.

Definition C.1. An operation m1 = (o1, p1, a1, c1, id1) happened
before an operation m2 = (o2, p2, a2, c2, id2) iff the logical times-
tamp of m1 happened before the logical timestamp of m2: m1 ≺

m2 ⇐⇒ c1 ≺ c2.

Definition C.2. Two operations m1 and m2 are concurrent iff
neither one happened before the other [17]: m1 ∥ m2 ⇐⇒

m1 ⊀ m2 ∧ m2 ⊀ m1.

Definition C.3. We define ∥
+ as the transitive closure of ∥.

Definition C.4. The set of all operations that are transitively
concurrent to an operationmwith respect to a history h is defined
as: TC(m, h) = {m′

|m′
∈ h ∧ m′

∥
+ m}.

Appendix D. Detailed execution time of the text editor

In Section 8.4.2 we found that the SECRO implementation
that uses a linked list is faster than its tree-based counterpart.
To determine the cause of this counterintuitive observation, we
measure the different parts that make up the total execution
time:

122 K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123

Fig. D.9. Detailed execution time for appending characters to the SECRO text
editor. The replica is never committed. The plotted execution time is the average
taken from a minimum of 30 samples. Samples affected by garbage collection
are discarded.

Execution time of operations Total time spent on append oper-
ations.

Execution time of preconditions Total time spent on precondi-
tions.

Execution time of postconditions Total time spent on postcon-
ditions.

Copy time Due to the mutability of JavaScript objects our pro-
totype implementation in CScript needs to copy the state
before validating the potential history. The total time spent
on copying objects (i.e. the document state) is the copy
time.

Figs. D.9a and D.9b depict the detailed execution time for
the list and tree implementations respectively. The results show
that the total execution time is dominated by the copy time.
We observe that the tree implementation spends more time on
copying the document than the list implementation. The reason
being that copying a tree entails a higher overhead than copying

Fig. E.10. Throughput of the list-based SECRO and JSON CRDT text editors, in
function of the number of concurrent operations. The SECRO version committed
the document replica at a commit interval of 100. Error bars represent the 95%
confidence interval for the average of 30 samples.

a linked list as more pointers need to be copied. Furthermore,
the tree implementation spends considerably less time executing
operations, preconditions and postconditions, than the list im-
plementation. This results from the fact that the balanced tree
provides logarithmic time operations.

Unfortunately, the time overhead incurred by copying the doc-
ument kills the speedup we gain from organising the document
as a tree. This is because each insertion inserts only a single
character but requires the entire document to be copied.

Appendix E. Throughput of the text editor

The experiments presented in Section 8 focused on the execu-
tion time of sequential operations on a single replica. To measure
the throughput of the text editors under high computational loads
we also perform distributed benchmarks. To this end, we use 10
replicas (one on each node of the cluster) and let them simul-
taneously perform operations on the text editor. The operations
are equally spread over the replicas. We measure the time to
convergence, i.e. the time that is needed for all replicas to process
all operations and reach a consistent state. Note that replicas
reorder operations locally, hence, the throughput depends on
the number of operations and is independent of the number of
replicas.

Fig. E.10 depicts how the throughput of the list-based text
editor varies in function of the load. We observe that the SECRO
text editor scales up to 50 concurrent operations, at which point
it reaches its maximal throughput. Afterwards, the throughput
quickly degrades. On the other hand, the JSON CRDT implementa-
tion achieves a higher throughput than the SECRO version under
high loads (100 concurrent operations and more). Hence, the
JSON CRDT text editor scales better than the SECRO text editor.
However, SECROs are truly general-purpose which allowed us to
organise documents as balanced trees of characters, which is not
possible using JSON CRDTs.

References

[1] P.S. Almeida, A. Shoker, C. Baquero, Efficient state-based CRDTs by
delta-mutation, in: A. Bouajjani, H. Fauconnier (Eds.), Int. Confer-
ence on Networked Systems, Springer-Verslag, Agadir, Morocco, 2015,
pp. 62–76.

http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb1

K. De Porre, F. Myter, C. Scholliers et al. / Journal of Parallel and Distributed Computing 144 (2020) 109–123 123

[2] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, IPA: Invariant-
preserving applications for weakly consistent replicated databases, Proc.
VLDB Endow. 12 (4) (2018) 404–418.

[3] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-
jafzadeh, M. Shapiro, Putting consistency back into eventual consistency,
in: 10th European Conference on Computer Systems, in: EuroSys ’15, 2015,
6:1–6:16.

[4] V. Balegas, C. Li, M. Najafzadeh, D. Porto, A. Clement, S. Duarte, C. Ferreira,
J. Gehrke, J. Leitao, N. Preguiça, et al., Geo-replication: Fast if possible,
consistent if necessary, IEEE Data Eng. Bull. 39 (1) (2016) 12.

[5] P.A. Bernstein, S. Burckhardt, S. Bykov, N. Crooks, J.M. Faleiro, G. Kliot, A.
Kumbhare, M.R. Rahman, V. Shah, A. Szekeres, J. Thelin, Geo-distribution
of actor-based services, Proc. ACM Program. Lang. 1 (OOPSLA) (2017)
107:1–107:26.

[6] E. Brewer, Towards robust distributed systems, in: 19th Annual ACM Symp.
on Principles of Distributed Computing, in: PODC ’00, 2000, p. 7.

[7] E. Brewer, CAP twelve years later: How the ‘‘Rules’’ have changed,
Computer 45 (2012) 23–29.

[8] S. Burckhardt, M. Fähndrich, D. Leijen, B.P. Wood, Cloud types for
eventual consistency, in: 26th European Conference on Object-Oriented
Programming, in: ECOOP’12, Springer-Verlag, Berlin, Heidelberg, 2012,
pp. 283–307.

[9] K. De Porre, Cscript repository, 2018, https://gitlab.com/iot-thesis/
framework/tree/master (Accessed: 09-10-2019).

[10] K. De Porre, F. Myter, C. De Troyer, C. Scholliers, W. De Meuter, E.
Gonzalez Boix, Putting order in strong eventual consistency, in: J. Pereira,
L. Ricci (Eds.), Distributed Applications and Interoperable Systems, Springer
International Publishing, Cham, 2019, pp. 36–56.

[11] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces
of publish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131, http:
//dx.doi.org/10.1145/857076.857078.

[12] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services, SIGACT News 33 (2) (2002)
51–59.

[13] V.B.F. Gomes, M. Kleppmann, D.P. Mulligan, A.R. Beresford, Verifying strong
eventual consistency in distributed systems, Proc. ACM Program. Lang. 1
(OOPSLA) (2017) 109:1–109:28.

[14] R. de Juan-Marín, H. Decker, J.E. Armendáriz-Íñigo, J.M. Bernabéu-Aubán,
F.D. Muñoz-Escoí, Scalability approaches for causal multicast: a survey,
Computing 98 (9) (2016) 923–947.

[15] M. Kleppmann, A.R. Beresford, A conflict-free replicated JSON datatype,
IEEE Trans. Parallel Distrib. Syst. 28 (10) (2017) 2733–2746.

[16] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[17] L. Lamport, The temporal logic of actions, ACM Trans. Program. Lang. Syst.
16 (3) (1994) 872–923.

[18] C. Li, N. Preguiça, R. Rodrigues, Fine-grained consistency for geo-replicated
systems, in: 2018 USENIX Annual Technical Conference (USENIX ATC 18),
USENIX Association, Boston, MA, 2018, pp. 359–372.

[19] C. Meiklejohn, P. Van Roy, Lasp: A language for distributed, coordination-
free programming, in: 17th Int. Symp. on Principles and Practice of
Declarative Programming, in: PPDP ’15, 2015, pp. 184–195.

[20] M. Milano, A.C. Myers, MixT: A language for mixing consistency in
geodistributed transactions, in: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, in:
PLDI 2018, ACM, New York, NY, USA, 2018, pp. 226–241.

[21] H. Miller, P. Haller, M. Odersky, Spores: A type-based foundation for
closures in the age of concurrency and distribution, in: R. Jones (Ed.),
ECOOP 2014, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp.
308–333.

[22] F. Myter, C. Scholliers, W. De Meuter, A capable distributed programming
model, in: Proceedings of the 2018 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software, in: Onward! 2018, ACM, New York, NY, USA, 2018, pp. 88–98.

[23] Node.js: a javascript runtime built on chrome’s v8 javascript engine, 2020,
https://nodejs.org (Accessed: 15-01-2020).

[24] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, A comprehensive study
of Convergent and Commutative Replicated Data Types, Research Report
RR-7506, Inria – Centre Paris-Rocquencourt ; INRIA, 2011, p. 50.

[25] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, Conflict-free replicated
data types, in: X. Défago, F. Petit, V. Villain (Eds.), 13th Int. Symp.
on Stabilization, Safety, and Security of Distributed Systems, in: SSS’11,
Springer-Verslag, Grenoble, France, 2011, pp. 386–400.

[26] C. Sun, C. Ellis, Operational Transformation in Real-time Group Editors: Is-
sues, Algorithms, and Achievements, in: Proc. of the 1998 ACM Conference
on Computer Supported Cooperative Work, CSCW ’98, 1998, pp. 59–68.

[27] Sweet.js - hygienic macros for javascript, 2020, https://www.sweetjs.org
(Accessed: 15-01-2020).

[28] A.S. Tanenbaum, M. Van Steen, Distributed Systems: Principles and
Paradigms, second ed., Prentice-Hall, Upper Saddle River, New Jersey, USA,
2007.

[29] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer, C.H.
Hauser, Managing update conflicts in bayou, a weakly connected replicated
storage system, in: M.B. Jones (Ed.), 15th ACM Symp. on Operating Systems
Principles, in: SOSP ’95, 1995, pp. 172–182.

[30] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, W. De Meuter,
Ambienttalk: Object-oriented event-driven programming in mobile ad hoc
networks, in: Proceedings of the XXVI International Conference of the
Chilean Society of Computer Science, in: SCCC ’07, Iquique, Chile, 2007,
pp. 3–12, http://dx.doi.org/10.1109/SCCC.2007.4.

[31] P. Viotti, M. Vukoliundefined, Consistency in non-transactional distributed
storage systems, ACM Comput. Surv. 49 (1) (2016).

[32] W. Vogels, Eventually consistent, Commun. ACM 52 (1) (2009) 40–44.

Kevin De Porre is a PhD student at the Software
Languages Lab (SOFT) of the Vrije Universiteit Brussel
(VUB) in Belgium. His research focuses on distributed
systems, more specifically on language abstractions
for data replication in peer-to-peer systems and con-
sistency models for replicated data. Contact him at
kdeporre@vub.be.

Florian Myter is a PhD student at the Software Lan-
guages Lab (SOFT) of the Vrije Universiteit Brussel
(VUB) in Belgium. His main research area is distributed
programming and more concretely the design and im-
plementation of programming techniques to deal with
distributed state. Contact him at fmyter@vub.be.

Christophe Scholliers is professor in foundations of
programming languages at Ghent University. His cur-
rent research is mainly situated in the field of parallel
and distributed programming language abstractions.
Contact him at christophe.scholliers@ugent.be.

Elisa Gonzalez Boix is an Associate Professor at the
Software Languages Lab (SOFT) of the Vrije Univer-
siteit Brussel (VUB) in Belgium. She obtained her
Master in Informatics Engineering in 2004 from the
Universitat Politecnica de Catalunya (Spain) and her
PhD in Sciences in 2012 from VUB on programming
language abstractions and tools for handling partial
failures in distributed applications running on mobile
ad hoc networks. Her PhD heavily relied on reflection
and meta-level programming. Since 2014, she leads a
group on concurrent and distributed systems, studying

programming abstractions and dynamic software tools like debuggers. You can
contact her at egonzale@vub.be.

http://refhub.elsevier.com/S0743-7315(20)30289-6/sb2
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb2
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb2
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb2
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb2
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb3
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb5
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb6
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb6
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb6
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb7
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb7
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb7
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb8
https://gitlab.com/iot-thesis/framework/tree/master
https://gitlab.com/iot-thesis/framework/tree/master
https://gitlab.com/iot-thesis/framework/tree/master
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb10
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb12
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb12
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb12
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb12
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb12
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb13
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb13
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb13
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb13
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb13
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb14
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb14
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb14
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb14
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb14
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb15
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb15
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb15
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb16
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb16
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb16
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb17
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb17
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb17
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb18
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb18
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb18
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb18
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb18
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb19
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb19
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb19
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb19
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb19
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb20
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb21
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb22
https://nodejs.org
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb24
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb24
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb24
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb24
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb24
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb25
https://www.sweetjs.org
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb28
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb28
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb28
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb28
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb28
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb29
http://dx.doi.org/10.1109/SCCC.2007.4
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb31
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb31
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb31
http://refhub.elsevier.com/S0743-7315(20)30289-6/sb32
mailto:kdeporre@vub.be
mailto:fmyter@vub.be
mailto:christophe.scholliers@ugent.be
mailto:egonzale@vub.be

	CScript: A distributed programming language for building mixed-consistency applications
	Introduction
	Background
	Motivation: A mixed-consistency application
	CScript
	Architecture
	Programming model
	Replicas
	Services
	Publications and subscriptions
	The interplay between consistent and available replicas

	Strong Eventually Consistent Replicated Objects (SECROs)
	SECRO data type
	State validators
	SECRO's replication protocol in a Nutshell

	CScript from the programmer's perspective
	The grocery service
	The sequentially consistent inventory of purchases
	The eventually consistent grocery list
	Sharing grocery services between users
	Reacting to updates of the grocery list

	SECRO's replication protocol
	Algorithm
	Convergence and progress properties

	Evaluation
	A text editing application
	Methodology
	Memory usage
	Execution time
	The effect of commit on the execution time
	SECRO vs. JSON CRDT text editor

	Guidelines for designing Replicated Data Types (RDTs)
	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. General Proof of Convergence for SECROs
	Appendix B. Proof of Progress for SECROs
	Appendix C. Transitive Closure of Concurrent Operations
	Appendix D. Detailed Execution Time of the Text Editor
	Appendix E. Throughput of the Text Editor
	References

