
MUTAMA: An Automated Multi-label Tagging
Approach for Software Libraries on Maven

Camilo Velázquez-Rodrı́guez, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
{camilo.ernesto.velazquez.rodriguez, coen.de.roover}@vub.ac.be

Abstract—Recent studies show that the Maven ecosystem alone
already contains over 2 million library artefacts including their
source code, byte code, and documentation. To help developers
cope with this information, several websites overlay configurable
views on the ecosystem. For instance, views in which similar
libraries are grouped into categories or views showing all libraries
that have been tagged with tags corresponding to coarse-grained
library features. The MVNRepository overlay website offers
both category-based and tag-based views. Unfortunately, several
libraries have not been categorised or are missing relevant
tags. Some initial approaches to the automated categorisation
of Maven libraries have already been proposed. However, no
such approach exists for the problem of tagging of libraries in a
multi-label setting.

This paper proposes MUTAMA, a multi-label classification
approach to the Maven library tagging problem based on
information extracted from the byte code of each library. We
analysed 4 088 randomly selected libraries from the Maven
software ecosystem. MUTAMA trains and deploys five multi-label
classifiers using feature vectors obtained from class and method
names of the tagged libraries. Our results indicate that classifiers
based on ensemble methods achieve the best performances.
Finally, we propose directions to follow in this area.

Index Terms—multi-label; libraries; software ecosystem; clas-
sification

I. INTRODUCTION

Software products that evolve together in the same envi-
ronment form a software ecosystem [1]. Examples include
Maven1, NPM2 and CTAN3, in which the co-evolving products
are software libraries intended for reuse. The Maven ecosys-
tem alone, intended for JVM-based libraries, is home to more
than 2 million software products [2]. It can be challenging to
find a suitable library to reuse in such a vast ecosystem.

To support the users of the Maven ecosystem, indexing
platforms such as Sonatype4 and MVNRepository1 have been
created. Sonatype supports searching for libraries based on the
library’s GroupID, ArtifactID or Version. MVNRepos-
itory in addition supports searching based on library categories
and on library tags. Categories such as Collections group sim-
ilar libraries from the same domain. Tags on MVNRepository,
in contrast, are intended to correspond to the coarse-grained
and possibly unique features of a library. Apache library
Commons-CLI5, for instance, has been tagged with the tags

1https://mvnrepository.com/
2https://www.npmjs.com
3https://www.ctan.org
4https://search.maven.org/
5https://mvnrepository.com/artifact/commons-cli/commons-cli

command-line, cli and parser. The library does indeed provide
reusable functionality for parsing command line arguments.
Unfortunately, not all libraries indexed by MVNRepository
have been categorised and tagged this precisely. This is often
the case for libraries that have only recently been contributed
to the ecosystem or libraries that aren’t enjoying widespread
use. An automated approach to suggesting domain categories
or feature tags for a software library could overcome this
problem and thereby facilitate ecosystem search.

Linares-Vásquez et al. [3] have used single-label machine
learning algorithms to predict which SourceForge6 category
a software product belongs to. While the approach could
be transposed to libraries and software ecosystem indexing
platforms, the single-label algorithms can only assign a single
category which precludes their use for automated tagging.

Vargas-Baldrich et al. [4] approach library categorisation as
multi-label problem instead. However, the approach uses TF-
IDF instead of machine learning to automatically generate tags
from code, rather than to learn and later predict human-defined
tags.

In this paper, we propose MUTAMA, a multi-label machine
learning approach for tagging Maven libraries. Like the two
other approaches [3], [4], it analyses the byte code of the
libraries that are to be tagged. The approach can be instantiated
with any of five multi-label classifiers. We train and evaluate
the performance of five such instantiations in this paper.

II. BACKGROUND

Before sketching the design space for the multi-label clas-
sifiers with which MUTAMA has to be instantiated, we first
describe the different types of datasets these classifiers can be
trained on.

In general, classifiers can be trained on three types of
datasets. The first type of dataset is called a binary dataset
as it contains only two classes to predict. This explains why
classifiers trained on binary datasets can be very effective. The
second, more complex, type is called a multi-class dataset as it
includes more than two classes to predict. Classifiers trained
on multi-class datasets can still achieve good performance.
For both types of datasets, classifiers only need to predict
one class per instance in the dataset. The third, and most
complex, type of dataset is called a multi-label datasets as
it includes more than one class to predict per data instance.

6https://sourceforge.net
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In order to perform well, classifiers on a multi-label dataset
need to fit several distinct data distributions which increases
the complexity of both training and evaluation. Multi-label
classifiers predict whether a class is present for a specific
instance. Multi-target classifiers predict weights in addition for
each of the classes, representing the relevance of each class
for an instance.

A multi-label classifier suffices for our approach. Several
multi-label classifiers have been proposed. Below we discuss
the multi-label classifiers that performed best in an extensive
survey and empirical comparison by Madjarov et al. [5].
Note that multi-label classifiers need to be instantiated with
a base classifier. That is, a multi-label classifier cannot make
predictions on its own without consulting a base classifier.
The Support Vector Machine algorithm has, for instance, been
used as a base classifier for multi-label classifiers. Sequential
Minimal Optimization (SMO) [6] can be used to speed up the
training of SVMs used to this end.

A. Binary Relevance Classifiers

The Binary Relevance (BR) classifier [7] trains one classifier
per label to predict. It assigns one class for a label and another
class for the rest of the labels. In other words, it simplifies the
multi-label problem to a single-label one by binarising the
dataset.

Like BR, Classifier Chaining (CC) [8] also uses n binary
classifiers. The algorithm “chains” these classifiers together.
Each binary classifier is assigned a label j the relevance of
which will be learned. The compute the remaining relevance
of the j + q | q > 0 labels, prior knowledge will be used.

B. Ensemble Method Classifiers

The RAndom k-LabELsets (RAkEL) ensemble classifier [9]
forms small groups of labels and trains a single classifier for
each group. It does consider relations among the labels within
a group. Being an ensemble algorithm, predictions are made
by majority vote from the classifiers for each group.

The Ensemble Multi-label (EML) classifier proposed by
Read [10] combines several multi-label classifiers in an ensem-
ble way. It can, for instance, be instantiated with the aforemen-
tioned Binary Relevance (BR) and Classifier Chaining (CC)
classifiers.

III. MUTAMA APPROACH

We now describe the details of our approach to assigning
tags for libraries in a software ecosystem. The approach is
trained on a dataset of libraries that have already been tagged
with two or more tags, corresponding to the coarse-grained
functionality offered by the library. Section IV-A gathers such
a dataset from the MVNRepository indexing platform for the
Maven ecosystem.

Figure 1 depicts the steps comprising the training phase of
the approach. The Main Pipeline box at the top of the figure
depicts how a trained model is obtained by training a multi-
label classifier on the corpus of tagged libraries. The first step
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Fig. 1. The steps followed by tools following the MUTAMA approach.

entails transforming this group into a format that is suitable
for such a classifier.

The Data Transformation step is depicted in the middle of
the figure. For each library version, it takes as input a pair of a
triplet GroupID - ArtifactID - Version and the set of
associated tags. It then downloads the binary corresponding to
each library version triplet. Next, the downloaded binaries are
processed using the Byte Code Engineering Library (BCEL)7

to extract the class and method names of their public APIs.
This ensures that the machine learning classifier will learn
patterns in the public interface of the libraries that have been
tagged similarly, which is the same interface clients have
access to. To help generalise the data, we split camel cased
names into their constituent tokens. The resulting pieces of
texts are appended into a single line per library version triplet.

Next, the extracted lines with textual information for all li-
braries are vectorised. Natural language processing approaches
extract features from text using techniques such as Bag-of-
Words [11], TF-IDF [12] and Word2Vec [13]. We use the latter
due to its ability to recognise words that are semantically simi-
lar because they often occur in close contexts. Two neural net-
work architectures can be used for WordVec. The Continuous-
Bag-of-Words (CBOW) architecture predicts a target token
from the context, whereas Skip-gram predicts context from a
token. We selected the Skip-gram architecture for our approach
as it has more learning capabilities than CBOW [14]. The
vectorisation itself requires two steps, depicted at the bottom
of Figure 1. The first training step takes a corpus of documents
(i.e., the lines extracted for each of the libraries) and iterates

7https://commons.apache.org/proper/commons-bcel/
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over a shallow neural network until a threshold or convergence
is reached. The learned weights correspond to vectors for
each of the unique tokens in the corpus. As a second step,
we transform each document in the corpus by mapping the
tokens at each line to their corresponding vectors. All vectors
corresponding to tokens in a line are then averaged into a
single vector per line.

Concurrently, in the middle of Figure 1, the set of tags
associated with each line of library text is transformed into a
binary array. For each library, MUTAMA constructs a zero-
vector (i.e., a vector that only contain zeros) with a length
equal to the total number of tags in the dataset. It then replaces
zeros with ones at those positions corresponding to a tag of
the library. In this way, the transformed dataset is ready to be
used by multi-label machine learning classifiers.

Tying everything together, at the top of Figure 1, the
Word2Vec vectors stemming from each library’s byte code
represent the input to a multi-label machine learning classifier.
The binary arrays stemming from each library’s tags on MVN-
Repository represent the classes to predict by the classifier. The
result is a trained model which can be used to automatically
tag untagged libraries in the Maven software ecosystem.

IV. INSTANTIATION AND EVALUATION OF MUTAMA

This section describes the evaluation of MUTAMA. The per-
formance of MUTAMA depends on the multi-label classifier it
is instantiated with, and on the quality of the dataset of tagged
libraries this classifier is trained on. We will therefore first
describe how we collected such a dataset from the MVNRepos-
itory website, before training several candidate classifiers on
this dataset and comparing their performance.

A. Collecting a Corpus of Tagged Libraries

To collect a dataset of tagged libraries, we implemented one
crawler to obtain their binaries and one crawler to obtain their
tags.

The first crawler operates on the Maven ecosystem8. From
this source we gathered the GroupID - ArtifactID -
Version triplet for each library and its associated bytecode.
We only consider the latest version of each library in this NIER
paper. In total, we collected 235 011 Java and Scala libraries
in this way. More versions could be collected, but this would
increase the time for data extraction. For the remainder of the
evaluation, we extracted statistically significant sample from
this data. A confidence level of 99% and a confidence interval
of ± 2 were used as parameters for the online Sample Size
Calculator tool9. The result is a recommended sample size of
4 088 libraries.

The second crawler operates on the MVNRepository index-
ing platform1. Besides tags, categories and usage statistics
are collected on this platform. Our crawler retrieves the tags
for each of the 4 088 libraries in our aforementioned random
sample. As expected, not all sampled libraries are tagged.
Figure 2 depicts the distribution of the number of tags in

8https://repo1.maven.org/maven2/
9https://www.surveysystem.com/sscalc.htm
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Fig. 2. Distribution of the number of tags for the 4 088 sampled libraries.

our library sample. Only 3 137 libraries have been tagged
with one or more tags, representing 77% of the sample. In
the remainder of the evaluation, we will restrict the data to
libraries carrying two or more tags, corresponding to the 59%
of libraries with at least one tag. As we will illustrate below,
we do not deem a single tag sufficient to facilitate searching
through an ecosystem nor for training an automated classifier.

B. Scarcity of Tags as a Motivation for Automated Tagging

We discuss two example libraries tagged with the tag scala.
Library Tokenizers10 only carries the scala, and does not carry
a tag corresponding to its code analysis functionality nor a tag
corresponding to its tokenisation functionality. Although this
kind of information could be inferred from its GroupID or
ArtifactID, the library will only appear in the results of
ecosystem searches for the tag scala. Library RL Expander11

carries the tag web-framework in addition to scala. The library
expands URLs that appear shortened. Additional tags could
be added to enrich the knowledge about this library within
the software ecosystem. Examples of libraries with a good
number of tags are Mockito Scala12 and Util Module for SBT13

which carry the tags <scala mock scalaz> and <scala sbt
build build-system> respectively.

C. Instantiating MUTAMA with Multi-label Classifiers

We use the open source MEKA14 tool to instantiate our
MUTAMA approach with a multi-label classifier and its base
classifier as explained in Section III. The MEKA tool provides
all multi-label classifiers and base classifiers discussed in
Section II.

Table I depicts the results for the different instantiations of
MUTAMA on our dataset. Results were obtained using 10-fold
cross-validation, where nine folds are considered for training
and one for evaluation. The metrics for each of the folds are

10https://mvnrepository.com/artifact/org.scalameta/tokenizers 2.12
11https://mvnrepository.com/artifact/org.scalatra.rl/rl-expander 2.9.0
12https://mvnrepository.com/artifact/org.mockito/mockito-scala-

scalaz 2.13.0-RC3
13https://mvnrepository.com/artifact/org.scala-sbt/util-collection 2.10
14https://sourceforge.net/projects/meka/
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TABLE I
PERFORMANCE METRICS OF MUTAMA INSTANTIATED WITH DIFFERENT MULTI-LABEL CLASSIFIERS. THE BEST RESULTS FOR EACH METRIC ARE

HIGHLIGHTED IN BOLD.

Classifier 2 Tags 3 Tags >3 Tags
A F1-M F1-m HL A F1-M F1-m HL A F1-M F1-m HL

BR 0.01 0.01 0.03 0.05 0.07 0.08 0.16 0.08 0.19 0.21 0.42 0.06
CC 0.02 0.03 0.06 0.05 0.1 0.11 0.18 0.09 0.21 0.23 0.45 0.06
RaKel 0.01 0.01 0.03 0.05 0.08 0.1 0.16 0.09 0.15 0.18 0.35 0.07
EML(BR) 0.04 0.05 0.08 0.05 0.12 0.13 0.24 0.09 0.24 0.24 0.47 0.07
EML(CC) 0.24 0.29 0.32 0.09 0.17 0.21 0.29 0.12 0.27 0.31 0.46 0.09

later averaged to get the numbers depicted in the table. The
table is divided into three regions for the analysis of libraries
which carry two, three and more than three tags. As can be
seen from the table, the results differ between the regions.

The metrics considered in the evaluation are Accuracy (A),
F1-score macro (F1-M), F1-score micro(F1-m) and Hamming
loss (HL). F1-score macro refers to the average of the F1
scores per predicted tag, that is, it reflects the quality of the
individual predicted tags. F1-score micro score is computed by
considering all tags in the dataset. Hamming Loss is the ratio
of incorrectly predicted tags to the total number of tags. This
loss function should be optimised by classifiers, zero being its
optimal value.

The results for libraries with only two tags are low for all
classifiers but EML in combination with base classifier CC.
There is, moreover, a noticeable gap between the F1 micro
score for the best (0.32) and the second-best classifier (0.08).
The same can be said about the results for the F1 macro metric.
This reflects the effectiveness of ensemble algorithms in gen-
eral, and the classifier chain ones in particular. Surprisingly,
the classifier scoring best on accuracy, F1 micro, and F1 macro
scores the lowest on the Hamming loss metric. However, the
difference of 0.04 can be considered negligible.

The results for the libraries that carry exactly three tags are
similar. The ensemble classifier EML(CC) once more obtains
the best scores for the accuracy, F1 micro, and F1 macro
metrics but the worst score for the Hamming loss metric. The
gap between this classifier and the others is again noticeable.
The other ensemble classifier EML(BR) consistently ranks as
the second best. Interestingly, the Binary Relevance classifier
achieves the worst accuracy but scores the best on the Ham-
ming loss metric.

The results for libraries that carry more than three tags in the
ground truth are interesting. We had expected the classifiers
to score lower than before as more tags need to be predicted.
In reality, their performance is better than before. The two
ensemble classifiers once again achieve the best scores.

D. Discussion of Results

The differences in performance of the classifiers on libraries
with 2, 3, or more than three tags could stem from differences
in their respective distribution in the dataset. These differences
are apparent from Figure 2, which depicts the number of
libraries in each group in a lighter shade of blue. More
importantly, each group is imbalanced as some tags are simply
more prevalent on the MVNRepository indexing platform. The

TABLE II
PREDICTIONS MADE BY THE BEST MODEL.

Library True tags Predicted tags
Akka HTTP distributed, actor, akka distributed, actor, akka
Backend concurrency, client, http concurrency, http
AWS SDK Scala.js scala, aws, amazon scala, aws, amazon
Facade QuickSight scalajs, sdk scalajs, sdk
TestNG Interface io, testing testing
Camel Labs IoT github, io -
Components Device IO
Gradle Code Quality tools, build, build-system -Tools Plugin plugin, groovy, gradle

use of traditional cross-validation in our evaluation does not
help in this case, as it does not consider data distributions in its
assignment of instances to folds. Although some stratification
techniques have been proposed to address imbalanced datasets
for multi-label problems [15], they are not yet available in the
MEKA tool suite which we used to instantiate MUTAMA. We
therefore consider the use of stratified cross-validation for the
training and evaluation of the MUTAMA classifiers as future
work.

For five randomly selected libraries, Table II depicts the
ground truth and the predictions made by the best performing
EML(CC) classifier. The prediction for library Akka HTTP
Backend in the first row is only missing the client tag. As this
library focuses on the back end, a server tag might have been
more appropriate both in the ground truth and in the prediction.
In the second row, all tags in the ground truth for library
AWS SDK Scala.js have been predicted. For the third row,
the classifier failed to predict that library TestNG is somehow
linked to io operations. Again, this failure might as well be
attributed to mistakes or unexpected tags in the data on the
MVNRepository indexing platform. The tags on the platform
are, after all, maintained by volunteers who might wrongly
assign a tag or miss appropriate ones. Finally, for the libraries
on the last two rows, the classifier was unable to predict a
single tag.

We believe that such failures could be caused by several
reasons. First, the number of libraries for each combination
of tags is small. Machine learning classifiers train better
with a higher number of instances from which they can
extract patterns. Relevant patterns between library APIs and
combinations of tags may therefore remain unlearned. Second,
the API information extracted from the binaries might not be
representative enough. Although hidden from users, informa-
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tion that is relevant for tagging purposes might be hiding in
the implementation of that API. Finally, word embeddings of
class and method names might not sufficiently capture the
functionality of a library. Alternatives such as the ASTs of
their source code, traces of their static symbolic execution, or
execution logs on Travis CI15 could be explored as comple-
mentary sources of information in the future.

V. RELATED WORK

We discuss prior work on multi-label classification and
software categorization.

A. Applications of Multi-label Classifiers

Madjarov et al. [5] empirically compare several multi-label
classifiers implemented in MEKA, MULAN16 and CLUS17.
Their comparison on 16 metrics includes 12 multi-label clas-
sifiers combined with the SVM, Decision Tree and Nearest
Neighbor base classifiers on 11 datasets from different do-
mains. Ensemble classifiers performed best overall, in partic-
ular when combined with the SVM base classifier. We based
our initial selection of classifiers on this empirical comparison.
However, we limited our scope to those algorithms provided
by the MEKA tool and used SMO to speed up the training of
SVMs.

Liu and Chen [16] propose a multi-label approach for
sentiment analysis of microblogs. They use most of the
classifiers described in Section II. In this application too,
ensemble algorithms outperform the other multi-label classi-
fiers. Like MUTAMA, the approach uses text segmentation,
feature extraction, and multi-label classification. Besides these
similarities do exist, the features used by MUTAMA are
different as it was not intended for sentiment analysis.

B. Software Categorisation

Linares-Vásquez et al. [3] employ machine learning tech-
niques to classify software into given categories. They extract
the public API of third-party libraries and the SourceForge
category to which they have been classified. This information
is used to train five machine learning algorithms: SVM,
Naive Bayes, Decision Trees, RIPPER and IBK. Here too,
SVM achieved the best results. Our approach use multi-label
instead of single-label classifiers, and uses different word
embeddings.

VI. CONCLUSION AND FUTURE WORK

Categories and tags facilitate the search through vast soft-
ware ecosystems such as Maven. We have shown that a
statistically significant sample of Maven libraries misses such
tags on the accompanying MVNRepository indexing platform.
Their usefulness to ecosystem users may be limited as many
tagged libraries only carry a single tag.

We propose MUTAMA, an automated multi-label classifica-
tion approach that suggests MVNRepository tags for libraries

15https://travis-ci.org/
16http://mulan.sourceforge.net/
17http://clus.sourceforge.net

in the Maven software ecosystem. The approach operates on
the binary of a library, from which it extracts the class and
method names in the public API. MUTAMA needs to be
instantiated with a multi-label classifier, which is trained on
embeddings of the extracted API names. The results show that
two ensemble classifiers outperform the three other classifiers,
aligning with the findings of previous work on multi-label
classification problems.

For future work, we consider a more extensive evalua-
tion with multi-label classification algorithms beyond those
included in the MEKA toolkit used in our implementation.
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