
Incremental Flow Analysis through Computational
Dependency Reification

Jens Van der Plas, Quentin Stiévenart, Noah Van Es, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

{jens.van.der.plas,quentin.stievenart,noah.van.es,coen.de.roover}@vub.be

Abstract—Static analyses are used to gain more confidence in
changes made by developers. To be of most use, such analyses
must deliver feedback fast. Therefore, incremental static analyses
update previous results rather than entirely recompute them.
This reduces the analysis time upon a program change, and
makes the analysis well-suited for environments where the code
base is frequently updated, such as in IDEs and CI pipelines.

In this work, we present a general approach to render a
modular static analysis for highly dynamic programs incremen-
tal, by exploiting dependencies between intermediate analysis
results. Modular analyses divide a program in interdependent
parts that are analysed in isolation. The dependencies between
these parts stem, for example, from the use of shared variables
within the program. Our incrementalisation approach leverages
the modularity of the analysis together with the dependencies
that it reifies to compute and bound the impact of changes. This
way, only the affected parts of the result need to be reanalysed,
and unnecessary recomputations are avoided.

We apply our approach to both a function-modular and
a thread-modular analysis and evaluate it by comparing an
incremental update of an existing result to a full reanalysis. We
find reductions of the analysis time from 6% to 99% on 14 out
of 16 benchmark programs, and on most programs the impact
on precision is limited. On 7 of the programs, reanalysis time is
reduced by more than 75%, showing that our approach results
in fast incremental updates.

Index Terms—Static Program Analysis, Incremental Analysis,
Modular Analysis, Dynamic Languages

I. INTRODUCTION

As software is developed, often, multiple small changes
are made. Such changes usually impact only a limited part
of the program [1]–[3]. Organisations use static analyses to
gain more confidence in changes made by developers. Such
analyses help developers review their code by reasoning about
the program’s behaviour to verify program properties and to
detect potential bugs. Recent literature has shown that timely
feedback of static analysis results is crucial and significantly
impacts developer response [4]. Moreover, an analysis that
produces results fast can be integrated into the software
development process, by deploying it as part of a continuous
integration system or within a development environment.

To deliver results fast upon a program change, incremental
static analyses reuse and update results obtained from the
analysis of a prior version of the program, which takes less
time than a full reanalysis. To do so, incremental analyses must
efficiently link code changes to the analysis results impacted
by the change, and update these results accordingly while
guaranteeing a correct result.

Although incremental analyses are not novel, previously
presented techniques are often tailored to specific analyses [5],
or require a statically known call graph [6]–[15], making them
unable to support highly dynamic languages. Moreover, even
for languages where the call graph can be known statically,
the code changes may affect the structure of the call graph,
which is often not accounted for by incremental analyses [16].
As the call graph is modified upon the introduction of a new
function (call) or when code is inlined, for example, changes
to a program can easily lead to an altered call graph.

In this work, we introduce a novel approach for rendering
modular static analyses incremental. Our incrementalisation
approach can be used to construct incremental modular anal-
yses that support dynamic, higher-order languages as well
as changes to the call graph, independently of the specific
analysis. The approach is instantiated with a modular static
analysis, which divides a program into parts that are anal-
ysed in isolation and reifies the dependencies between these
parts [17]–[19]. We observe that these dependencies can be
exploited to track the parts of the result impacted by a change,
and to bound the impact of this change to only those parts of
the result that are directly or indirectly affected (a possible
dependency is, for example, the use of a shared variable–see
Sections II-A2 and II-A3).

This paper makes the following contributions:

• We present a novel approach to incrementalise modular
analyses. Our approach makes use of the intra-program
dependencies reified by the analysis, and takes advantage
of the division into modules to bound the impact of
changes (Section III).

• To demonstrate the generality of our approach, we instan-
tiate it for two context-insensitive modular analyses: a
function-modular analysis and a thread-modular analysis.

• We perform a thorough evaluation of analysis time and
precision using the two instantiations described previ-
ously (Section IV). We find that our approach leads to a
reduction of the analysis time from 6% to 99% on all but
2 benchmark programs, and that the impact on precision
is limited on most programs.

Without loss of generality, we present our approach from the
viewpoint of a static analysis for Scheme programs. We claim
that our approach is applicable to other languages too. Even
though we only use context-insensitive instantiations for the
evaluation, the approach is also applicable to context-sensitive



analyses, as is shown by the example in Section II-A2.

II. BACKGROUND

In this section, we cover background material on modular
static analysis and on how we represent changes to a program.

A. Modular Static Analysis

Modular static analysis [20] is an approach to static analysis
that scales well, and that can achieve good precision with low
memory consumption [17], [19], [21]–[23]. Our incrementali-
sation approach is enabled by the design of modular analyses.

In a modular static analysis, the analysis of a program
is decomposed into the analysis of elements of the program
called modules. These modules can for example be function
definitions [17], classes, or thread definitions [19], [22]. The
analysis approximates the run-time equivalent of these mod-
ules as components. For example, a component corresponding
to a function definition is a function invocation, containing
not only the function definition but also its arguments and
lexical environment. Other examples of components are class
instances and threads. Hence, one module can correspond to
multiple components created by the analysis.

Each component is analysed in isolation from every other. In
the ideal case, the analysis result is obtained by composing the
analysis results of all components. Since modules are usually a
fraction of the program size, the analysis of each component is
performed quickly and can be tuned to have a high precision.

In practice, however, components may interfere with each
other: functions can call each other, classes interact, and
threads may spawn other threads or read from shared vari-
ables. In a modular analysis, these interferences are reified as
dependencies between components. When a new dependency
is found or an existing dependency is updated, the analysis
schedules the affected components for reanalysis, possibly
triggering more dependencies until a fixed point is reached.

1) Algorithm for a Modular Analysis: We now briefly
present a general approach to modular program analysis more
formally, independently of the actual definitions of module and
component. A modular analysis consists of two alternating
phases: an intra-component analysis that analyses a single
component while inferring its dependencies, and an inter-
component analysis that schedules intra-component analyses
based on their dependencies until a fixed point is reached.

The inter-component analysis keeps track of:
1) the analysis state, σ, which we detail shortly;
2) a set of visited components V ;
3) a mapping of dependencies to components Deps;
4) a work list of components to visit Work.

The first three items constitute the analysis result (the work
list will always be empty at the end of an analysis). The
goal of the analysis is to compute the analysis state so that it
over-approximates its concrete counterpart. More specifically,
the analysis over-approximates all possible values for each
variable in the program. To that end, the analysis state is a
global store σ, which maps abstract addresses to abstract
values. Each program variable will be associated to an abstract

Algorithm 1: Inter-component analysis.
1 Function interComponentAnalysis() is

// Work, V, Deps, and σ are globally
available.

2 Work := {Main}, V := ∅, Deps := λd.∅, σ := λx.⊥;
3 computeFixedpoint();
4 end
5 Function computeFixedPoint() is
6 while Work 6= ∅ do
7 cmp ∈ Work;
8 Work := Work \ {cmp};
9 (σ′, C, U, T ) = intra(cmp, σ);

10 σ := σ′;
11 foreach d ∈ U do

Deps := Deps[d 7→ Deps(d) ∪ {cmp}];
12 foreach d ∈ T do Work := Work ∪ Deps(d);
13 V := V ∪ {cmp};
14 Work := Work ∪ (C \ V );
15 end
16 end

address, which will in turn be mapped (by σ) to an abstract
value approximating the variable’s possible concrete values.

Function interComponentAnalysis in Algorithm 1
shows the inter-component analysis. Initially, the work list
contains a special component Main, representing the entry
point of the program under analysis (e.g., the top-level expres-
sion, the Main class, or the initial thread of the program). The
initial visited set, store and dependency map are empty (line
2). Then, a fixed-point computation is started (line 3), which
finishes when the work list is empty (line 6).

Each iteration, a component is selected from the work
list and analysed by the intra-component analysis (lines 7–
9). The intra-component analysis is performed by a function
intra and depends on the programming language considered
and on the definitions of module and component. The intra-
component analysis returns the updated analysis state σ′, a set
of discovered components C, a set of inferred dependencies for
the current component U , and a set of dependencies triggered
T . A triggered dependency indicates that a specific part of
the analysis state has been updated by the intra-component
analysis. As other components may depend on this part of
the analysis state, a dependency in T indicates to the inter-
component analysis that the dependent components must be
reanalysed to take this update into account.

Next, the state of the analysis is updated (line 10) and the
dependencies are registered in the dependency map Deps (line
11). Components are then added to the work list as follows: all
components that depend on a dependency that was triggered by
the analysis of the current component need to be reanalysed
(line 12). The current component is marked as visited (line
13), and all new components, i.e., the components discovered
except the ones that have been visited already, are added to
the work list as well (line 14). Then, the algorithm proceeds
with the next component in the work list.

Algorithm 1 illustrates how a modular analysis reifies intra-
program dependencies as inter-component dependencies, and



Fig. 1. ModF components for the (incorrect) sequential computation of the nth

Fibonacci number. An arrow from c1 to c2 indicates that c2 was discovered
during the intra-component analysis of c1. Component contexts consist of the
call expression, which is used to denote the components in the figure. No
components are created for calls to built-in functions such as +.

how these dependencies are used to drive the analysis: a com-
ponent is only reanalysed when another component updates a
part of the analysis state upon which the former component
depends. This way, the analysis of one component takes into
account the analysis results of all other components it depends
on. To demonstrate the generality of our incrementalisation
approach, we will apply it to two types of modular analyses,
each with different definitions for module and component.

2) Function-modular Analyses: In the function-modular
analysis we consider, modules correspond to function defi-
nitions, and components correspond to function calls. Such an
analysis is referred to as a ModF analysis in the literature [17].

In a ModF analysis, when a function is called, this function
is not directly analysed. Rather, a component corresponding
to the function call is created and scheduled for analysis if the
component has not been analysed before. A new dependency is
registered from the caller to a specific address in the store that
will contain the return value of the callee. When the analysis
of a component terminates, this specific address is written
to and the corresponding dependencies are triggered. For the
analysis of programs in a language with first-class functions
such as Scheme, a component consists of a function definition,
its defining environment, and an optional component context
that can be used to tune the precision of the analysis.

A ModF analysis knows two types of inter-component
dependencies: read and write. Using these dependencies, the
inter-component analysis is made aware of how addresses
in the store are used by components, and can schedule the
reanalysis of components accordingly.

Figure 1 illustrates a ModF analysis. The figure shows the
components created by the analysis of a program computing
the nth Fibonacci number, and indicates how components are
discovered. In the example, the call expression is used as

Fig. 2. ModConc components for the concurrent computation of the nth

Fibonacci number using empty component contexts. An arrow from c1 to c2
indicates that c2 was discovered during the intra-component analysis of c1.

the component context. The analysis starts with the top-level
expression of the program, which is represented by the Main
component. When fib is called, a new component is created.
The analysis of this new component will itself create two
new ModF components. As components are only distinguished
by a closure (fib in all cases) and a context (the calling
expression), no other components are created.

3) Thread-modular Analyses: In the thread-modular analy-
sis we consider, a module corresponds to a thread definition,
and a component corresponds to a spawned thread. These are
referred to as ModConc analyses in the literature [18], [19].

In a ModConc analysis, a component is created when a new
thread is spawned. For a concurrent extension of Scheme, a
component consists of the expression to be evaluated con-
currently, the lexical environment of this expression, and an
optional context. As in the case of ModF, ModConc knows
two types of dependencies: read and write.

Figure 2 illustrates a ModConc analysis for a program that
computes the nth Fibonacci number in parallel. The figure
shows the components and indicates how components are
discovered. In the example, component contexts are empty.
The analysis starts with the Main component, and a second
component is created upon the analysis of fork. This compo-
nent encounters the fork expression again during its analysis,
but since component contexts are empty, the same component
is encountered and no new component is created. Therefore,
the analysis result only contains two components.

B. Change Representation

To represent changes in a program, we take inspiration
from Palikareva et al.’s patch annotations [24], and annotate
programs with change expressions. As such, both the original
and updated version of a program are represented by a single
annotated program. The use of these change expressions avoids
the trouble of unifying different program versions, allowing
us to focus on the core problem of incrementalisation, rather
than on the difficult tasks of change distilling [25] and change
analysis [26], [27]. We assume that, upon a program change
or from a version control system, a change distiller inserts
the required annotations in the program AST. To facilitate



(define (fib n)
(if (<change> (= n 0) (< n 2))

n
(let ((fib-n-1 (fib (- n 1)))

(fib-n-2 (fib (- n 2))))
(+ fib-n-1 fib-n-2))))

Listing 1: An annotated Fibonacci, fixing a bug in the end
condition.

(define (fib n)
(if ((<change> = <) n (<change> 0 2))

n
(let ((fib-n-1 (fib (- n 1)))

(fib-n-2 (fib (- n 2))))
(+ fib-n-1 fib-n-2))))

Listing 2: A Fibonacci with fine-grained annotations.

the evaluation of our approach, we currently insert change
expressions manually in the program text.

As an example, consider the annotated program in Listing
1, fixing a bug in the program of Figure 1. In this program,
the annotation denotes a change to the condition of the if-
expression: the condition has changed from (= n 0) in the
original program to (< n 2) in the updated version.

In contrast to Palikareva et al., our change expressions really
are expressions and not annotations. This way, no invasive
changes to the parser of the analysis are needed. However,
some parts of the program cannot be edited as freely as
with annotations: the entire program –including the change
expressions– must still be a valid expression. It is therefore
sometimes necessary to use more coarse-grained changes than
with annotations. For example, to change the parameter list of
a function, the entire function definition needs to be put inside
a change expression, and to change a let special form into
a let* special form, the entire let-expression must be put
inside a change expression.

In general, change expressions may be applied at several
levels of granularity. Consider for example the program in
Listing 2. Here, the two annotations together represent the
same change as the single one in Listing 1.

III. APPROACH

In this section, we describe our approach to incrementalise
a modular analysis. Our approach is applicable to modular
analyses of which the intra-component analysis infers depen-
dencies, such as in Algorithm 1 for example.

To analyse the original program, a modular analysis as
explained in Section II-A1 is performed. As a matter of conve-
nience, our initial analysis already takes an annotated program,
but ignores the annotations and treats the program as if it
does not contain changes. We first give some additional details
about how we denote program changes, before outlining how
the analysis is incrementalised using our approach. For our
ModF analysis, we assume function calls to be consistently
updated when the arity of a function changes.

A. Change Categories

There are three categories of changes that can appear in a
Scheme program:

i. Adding an expression to a sequence of expressions.
ii. Removing an expression from a sequence of expressions.

iii. Modifying the lexical environment of expressions.
Changes of this type include moving an expression to a
different scope and adding or removing bindings to/from
an existing scope.

Any change can be regarded as a combination of changes in
these categories. For example, modifying an expression is a
combination of removing and adding an expression. Note that
some changes, such as inlining a function call in a ModF
analysis, may impact the creation of components. Also note
that changes of type iii. may sometimes coincide with types i.
and ii., e.g., when an expression is moved to a different scope.

The change expressions we use can represent all type of
changes. Adding an expression is represented as (<change>
#f new-exp), where #f indicates the absence of an
expression, and removing an expression is represented as
(<change> old-exp #f).

Changes of type iii. can be represented by enclosing all
expressions affected by the change in the lexical environ-
ment inside the change expression. For example, defining a
new variable may be represented as (<change> (+ x 1)
(let ((y 1)) (+ x y))). This however may lead to
changes that are too coarse-grained. For example, adding a
new definition at the beginning of a program will affect the
entire program, and the incremental analysis will degenerate
into a full reanalysis.

Using this kind of coarse-grained changes can be avoided by
updating the internal data structures of the analyser to account
for the changes to the environment of expressions. These
updates are difficult as environments may be stored in several
of the internal data structures of the analyser. For example,
in lexically-scoped languages such as Scheme, environments
are stored in closures. As closures are (abstract) values within
the analysis, they are present in the store σ of the analysis.
The complexity of these updates depends, for example, on
the parameters used to tune the precision of the analysis. For
example, if component contexts need to be updated, this may
affect the number of components, and hence the dependency
map Deps, as well as the addresses in the store. Hence, dealing
with this kind of updates to the internal data structures of the
analyser may not be trivial.

Instead, we avoid this complexity by introducing new
bindings in the original program or the updated program as
follows. In case a new variable is defined in the change,
we represent this as (let ((y (<change> #f 1)))
(+ x (<change> 1 y))). When a variable is removed,
we similarly replace the value it is bound to by #f. The
environments therefore remain unchanged, but the binding is
updated. Hence, the analyser’s data structures do not need to
be updated upon a program change, and changes of type iii.
can be fine-grained as well.



Algorithm 2: The analyze function of the intra-
component analysis.

1 Function analyze(e: Expr, ρ: Env, cmp: Comp) is
// cmp is the current component.
// trackMap is globally available.
// trackMap ::Map[Expr → Set[Comp]]

2 trackMap := trackMap[e 7→ trackMap(e) ∪ {cmp}];
3 switch type of e do
4 case variable(id) do return lookup(id, env);
5 case fnCall(f , args) do
6 return analyzeCall(f , args, ρ);
7 end
8 case if(pred, then, else) do
9 return analyzeIf(pred, then, else, ρ);

10 end
11 case . . . do . . . ;
12 end
13 end

B. Change Impact Calculation

Upon a change to the program, the analysis result needs to
be updated. The result of a modular analysis consists of the
analysis state, the set of visited components, and a mapping
of dependencies to components. Hence, upon a change within
the program, the analysis has to infer which components
are impacted by the change and reanalyse them. Due to the
modular design of the analysis, only the components that are
directly impacted by the change must be explicitly scheduled
for reanalysis. Components that are transitively impacted by a
change need to be reanalysed as well. These, however, will be
scheduled for reanalysis by the modular analysis itself when
a dependency on which the components depend is triggered.
This step in our approach already demonstrates how our
incremental analysis benefits from modularity: the modular
analysis will not only ensure that all components that are
impacted directly or indirectly are reanalysed, but also that
only those components are reanalysed.

To infer the components that are directly impacted by
program changes, different approaches are possible depending
on the type of modular analysis. For example, when using a
ModF analysis, the components directly impacted by a change
can be inferred lexically from the source code, by inspecting
which function definitions are impacted. This is however not
possible for a ModConc analysis, for example, as threads may
execute code from multiple functions and it cannot always be
inferred lexically which parts of the program a thread executes.
We therefore propose a tracking approach, which is applicable
to every type of modular analysis.

Our tracking approach works as follows. An intra-
component analysis performs a fixed-point computation during
which it steps through the code corresponding to the com-
ponent. The analysis steps through the expressions one by
one. Typically, an analyze function that checks the type
of the expression and acts accordingly is used, as shown in
Algorithm 2. Note that neither this analyze function nor the
case splitting are needed by our approach, but we use them

Algorithm 3: The findAffected function.
1 Function findUpdated(e: Expr): Set[Expr] is
2 switch type of e do
3 case change(old, new) do return {old};
4 otherwise do
5 return subExpressions(e).flatMap(findUpdated);
6 end
7 end
8 end
9 Function findAffected() is

// program is globally available.
10 affectedExpr := findUpdated(program);
11 affectedComp := ∅;
12 foreach e ∈ affectedExpr do

affectedComp := affectedComp ∪ trackMap.get(e);
13 return affectedComp;
14 end

Fig. 3. Fix for the incorrect program of Figure 1. Only the Main component
is not directly affected.

to illustrate how tracking should be incorporated. During the
intra-component analysis, every expression that is encountered
is registered (line 2). To this end, a mapping of expressions to
sets of components is created (trackMap), which links an ex-
pression to all components during the analysis of which it was
encountered. Hence, an expression that is never encountered
during an analysis will be mapped to an empty set.

After the annotation of the AST with changes by the change
distiller, the updated AST is traversed to collect all expressions
that change (function findUpdated in Algorithm 3). Given
these expressions, trackMap can be used to infer which com-
ponents have been impacted directly by the change (function
findAffected in Algorithm 3).

Consider the change made to the Fibonacci program in
Figure 3. Our change tracking algorithm will infer that three
out of the four components are directly impacted, only the
component corresponding to Main is not.

Due to the way the directly impacted components are com-
puted, we expect that the granularity of change expressions



Algorithm 4: Incremental update.
1 Function incrementalUpdate() is

// V, Deps, and σ remain unchanged.
2 Work := findAffected();
3 computeFixedpoint();
4 end

can have an influence on the number of components that
are inferred to be impacted directly. The reason for this lies
in the points of the program where the control flow may
follow one of several branches, as is the case for an if-
expression for example. If the initial analysis for a component
is precise enough to infer that only a specific branch is taken,
the expressions of the other branches will not be related to
the component by trackMap. Hence, if a change only spans a
branch that was not taken, the corresponding component will
not be inferred as being directly impacted. Therefore, changes
spanning fewer branches may lead to fewer components being
reanalysed.

C. Update of Analysis Results

After the set of directly impacted components has been
computed, the analysis results can be updated, so as to obtain
an over-approximation of the behaviour of the new program
version.

To update the results, the set of directly impacted compo-
nents is added to the work list of the modular analysis and the
analysis is restarted, as shown in Algorithm 4. In the example
of Figure 3, these are the components corresponding to (fib
5), (fib (- n 1)) and (fib (- n 2)). Remember
that no other components need to be added to the work list,
as components that are indirectly impacted by the changes
will be scheduled for reanalysis by the modular analysis itself.
For this, the analysis uses the inter-component dependencies
that were reified in Deps during the initial program analysis.
Consider the previous example. If the return value of the
component (fib 5) changes, this will trigger a dependency
causing Main to be reanalysed as well. However, when this
value does not change, Main is not impacted by the change
and is not reanalysed. Note that even though a value within the
program may change, the corresponding abstract value used by
the analysis may remain the same. For example, if a value is
represented by its type in the abstract, Main does not need to
be reanalysed.

During reanalysis, more dependencies can be inferred and
new components can be discovered, as a regular modular anal-
ysis is performed. The results of the analysis are monotonically
updated until a new fixed point is reached, i.e., no analysis
results are “cleared” by the incremental update. Therefore,
values can never be more precise than the values computed
by a full reanalysis: the incrementally updated results over-
approximate both the old and new program version, whereas
a full reanalysis only has to over-approximate the new ver-
sion. Because incremental analyses are run on small program
changes, this is not expected to significantly deteriorate the

precision of the analysis. However, throughout a series of
incremental reanalyses, this can result in a more significant
loss of precision. We consider the invalidation of analysis
results as future work.

IV. EVALUATION

To evaluate our approach, we have applied our incremental
analysis to two different modular analyses for Scheme, a
function-modular and a thread-modular analysis. Using these
instantiations, we aim to answer the following questions:
RQ1 Does an incrementalised modular analysis result in a re-

duction of analysis time in comparison to a full reanalysis
of the modified program?

RQ2 How precise is an incremental update compared to a full
reanalysis of the modified program?

RQ3 What is the impact of the granularity of the components
on the effectiveness of our approach?

A. Set-up and Benchmark Programs

Our approach, including the change expressions and two
instantiations described above, has been implemented in
MAF [28], a research framework for modular static analysis.
We now describe the two instantiations of the incremental
analysis used for evaluation in more detail, together with
the benchmark programs used for each instantiation. Both
instantiations approximate values by their type, except for
functions that are approximated as sets of abstract closures,
and use empty component contexts.

1) ModF Analysis for Scheme: The first instantiation used
to evaluate our approach is a ModF analysis for Scheme [17].
The implementation of the intra-component analysis follows
a big-step semantics. With this instantiation, we use a set of
seven benchmarks programs to which change expressions have
been added. These are listed in Table I, which also explains
the changes made to the programs1.

2) ModConc Analysis for Scheme: The second instantiation
used to evaluate our approach is a ModConc analysis for
Scheme [18], [19]. The ModConc benchmark programs use a
version of Scheme that contains threads and locks, which are
the concurrency constructs used in the ModConc literature.
The implementation of the intra-component analysis follows a
small-step semantics. With this instantiation, we use a set of
nine benchmarks programs to which change expressions have
been added. These are listed in Table II, which also explains
the changes made to the programs1.

B. Evaluation Method

To answer the research questions posed above, we use the
following metrics:

1) The analysis time: we measure the time needed by (1) the
initial analysis of the program, (2) an incremental update
of the analysis results and (3) a full reanalysis of the
updated program. To gain certainty in our measurements,

1The benchmark programs for ModF and ModConc are available at https:
//github.com/jevdplas/SCAM2020-Benchmarks.



TABLE I
THE BENCHMARK PROGRAMS FOR THE MODF EVALUATION, RETRIEVED FROM VARIOUS SOURCES. LINES OF CODE AS COUNTED WITH CLOC .

Benchmark LOC Description of the Sequential Program Changes #Changes

mceval-dynamic 246 Meta-circular evaluator for Scheme, executing a
small Scheme program.

Changed the evaluator so procedures
become dynamically scoped. 4

leval 378 Lazy Scheme evaluator,
used to perform some list computations.

Changes to the evaluator so that only
specific arguments are evaluated lazily. 11

multiple-dwelling (fine) 404 Evaluator for a non-deterministic Scheme,
used to solve an allocation problem.

Fine-grained changes to the
input for the evaluator. 3

multiple-dwelling (coarse) 434 Evaluator for a non-deterministic Scheme,
used to solve an allocation problem. Changed the input for the evaluator. 1

peval 507 Partial evaluator for Scheme, used to evaluate
multiple small programs on given input.

Abstracted repeated code to a function and
replaced all occurrences by a call to this function. 38

nboyer 636 Version of the Boyer benchmark. Evaluator for
logic programs, applied to a small logic program.

Rewrote conditionals with
two branches to if-statements. 2

machine-simulator 1116 Compiles a factorial into machine code,
then uses a simulator to execute this code.

Modified the compiler to generate faster
code for some primitive functions. 7

TABLE II
THE BENCHMARK PROGRAMS FOR THE MODCONC EVALUATION, ADAPTED FROM VARIOUS SOURCES. LINES OF CODE AS COUNTED WITH CLOC .

Benchmark LOC Description of the Concurrent Program Changes #Changes

mcarlo2 28 Monte Carlo simulation. Now creates less threads, to avoid waiting on a thread just created. 2

pc 43 Producer-Consumer problem. Converted a variable into a function, and
replaced variable references with function calls. 2

msort 44 Merge sort. Updated implementation of sorted?
to avoid creating useless threads. 3

pps 71 Parallel-Prefix Sum. Swapped around the statements in the body of a procedure. 1
sudoku 84 Sudoku checker. Changed the sudoku board by replacing a number by ’oops. 1
actors 103 An implementation of actors using threads. Replaced begin-expressions with a single expression in their body. 2

stm 138 Implementation of
Software-Transactional Memory.

Updated definitions of every? and
map-contains? to improve code style. 2

crypt 170 Implementation of Vigenère cipher cryptanalysis. Changed the implementation of fold. 1
crypt2 174 Implementation of Vigenère cipher cryptanalysis. Changed the implementation of argmin to use foldl. 1

every measurement is repeated 35 times, of which the
first 5 repetitions are considered warm-up and discarded.

2) The precision of values in the store: for every address
mapped in the store, we compare the abstract values
computed by the incremental update and full reanalysis.

3) The size of the store.
4) The number of components discovered by the analysis.
5) The number of dependencies inferred by the analysis.
6) The number of intra-component analyses performed.

Using the above metrics, we compare the analysis time and
result obtained after an incremental update to those of a full
analysis of the updated program. The lower the number of
components and dependencies, and the smaller the size of
the store, the more precise the analysis results are. We also
compare all abstract values mapped to in the store. As they
are part of a lattice, the partial order relation of the lattice is
used to see which values are more precise. All experiments
were run on a 2015 Dell PowerEdge R730 with 2 Intel Xeon
2637 processors. We used OpenJDK 1.8.0 265, Scala 2.13.3
and a maximal heap size of 4GB.

C. Experimental Results

Tables III, IV and V contain our experimental results.
Table III contains the results for our evaluation of the

analysis time. For ModF, we note a reduction of the anal-
ysis time from 40% up to 99% for all but one benchmark,

multiple-dwelling (coarse), for which the incre-
mental update is a lot slower than a full reanalysis. For
ModConc, we see reductions of the analysis time ranging
between 6% and 99% on all but one benchmark, msort, for
which the incremental update is slightly slower than a full
reanalysis. These numbers indicate that our approach overall
results in reduced analysis times.

There are two versions of multiple-dwelling, as, for
this program, the same changes were easily applied using
different granularities of change expressions. Hence, the differ-
ence between the two versions is striking as they both represent
the same program with the same code changes, though the
granularity of the expressions used to encode the changes
differs. In both versions, an input list is changed; in the coarse-
grained version, the entire list is updated, whereas in the fine-
grained version, the change expressions are put around the
elements of the list that change. We find that this difference
might be explained by the fact that our analysis cannot
invalidate outdated results, which is exacerbated by the exact
change: the change to multiple-dwelling (coarse)
causes an entire new list to be allocated by the analyser,
thereby creating a vast amount of pointers. We find that,
after the incremental update, the store of the analysis contains
almost 60% more pointers for the coarse-grained version than
for the fine-grained program version. As pointers cannot be
efficiently joined by our implementation, this possibly causes
the slowdown.



TABLE III
TIMING RESULTS USING A TIMEOUT. EVERY MEASUREMENT IS REPEATED 30 TIMES, OF WHICH THE AVERAGE IS SHOWN. THE DELTA SHOWS HOW THE

TIME NEEDED BY THE INCREMENTAL UPDATE COMPARES TO THE TIME NEEDED BY A FULL REANALYSIS.

ModF ModConc

Benchmark Initial
Analysis [ms]

Full
Reanalysis [ms]

Incremental
Update [ms] ∆ Benchmark Initial

Analysis [ms]
Full

Reanalysis [ms]
Incremental
Update [ms] ∆

mceval-dynamic 226 124 72 -41.94% mcarlo2 9 29 27 -6.90%
leval 1407 1971 489 -75.19% pc 21 16 11 -31.25%
multiple-dwelling (fine) 8466 8822 2126 -75.90% msort 117 151 194 +28.48%
multiple-dwelling (coarse) 3527 3533 15694 +344.21% pps 421 423 1 -99.76%
peval 19753 17644 103 -99.42% sudoku 86 90 62 -31.11%
nboyer 1397 1271 98 -92.29% actors 1601 1595 354 -77.81%
machine-simulator 54124 57043 24093 -57.76% stm 5384 5597 745 -86.69%

crypt 7568 7351 2812 -61.75%
crypt2 9315 10277 8340 -18.85%

TABLE IV
PRECISION RESULTS. THE TABLE INDICATES HOW MANY ADDRESSES IN THE STORE AFTER AN INCREMENTAL UPDATE CONTAIN A VALUE THAT IS

EQUAL OR LESS PRECISE COMPARED TO A FULL REANALYSIS OF THE UPDATED PROGRAM. 66 ADDRESSES CORRESPONDING TO BUILT-IN FUNCTIONS
ARE IGNORED AS THEY ARE NEVER ASSIGNED AND HENCE OF EQUAL PRECISION IN ALL CASES. A FOURTH COLUMN INDICATES THE NUMBER OF
ADDRESSES PRESENT IN THE INCREMENTALLY UPDATED STORE MINUS THE NUMBER OF ADDRESSES IN THE STORE AFTER A FULL REANALYSIS.

ModF ModConc

Benchmark Equally
Precise

Less
Precise

Less
Precise [%]

Address
Count (∆) Benchmark Equally

Precise
Less

Precise
Less

Precise [%]
Address

Count (∆)

mceval-dynamic 158 220 58.20% 10 mcarlo2 28 2 6.67% 1
leval 187 389 67.53% 10 pc 35 4 10.26% 1
multiple-dwelling (fine) 851 0 0.00% 0 msort 27 9 25.00% 1
multiple-dwelling (coarse) 231 817 77.96% 198 pps 99 0 0.00% 0
peval 919 2 0.22% 0 sudoku 101 0 0.00% 0
nboyer 2115 17 0.80% 1 actors 136 0 0.00% 0
machine-simulator 1676 14 0.83% 7 stm 156 0 0.00% 0

crypt 141 3 2.08% 3
crypt2 140 6 4.11% 6

TABLE V
NUMBER OF COMPONENTS CREATED, NUMBER OF DEPENDENCIES INFERRED AND NUMBER OF INTRA-ANALYSES PERFORMED BY THE INTIAL ANALYSIS
OF THE ORIGINAL PROGRAM (I), THE FULL REANALYSIS OF THE UPDATED PROGRAM (R) AND THE INCREMENTAL UPDATE TO THE INITIAL RESULT (U).

ModF ModConc

Components Dependencies Intra-Component
Analyses Components Dependencies Intra-Component

Analyses

Benchmark I R U I R U I R U Benchmark I R U I R U I R U

mceval-dynamic 86 85 87 2647 2057 2742 1722 1529 273 mcarlo2 3 2 3 90 62 91 7 4 4
leval 101 107 109 4999 6683 6840 4155 4413 971 pc 3 3 4 66 67 85 8 7 6
multiple-dwelling (fine) 139 139 139 14138 14538 14538 7442 7442 1245 msort 3 2 3 105 77 112 11 6 9
multiple-dwelling (coarse) 139 139 139 14138 14498 22418 5063 5115 7982 pps 3 3 3 138 138 138 6 6 1
peval 90 91 91 23564 23570 24056 4816 5222 20 sudoku 30 30 30 1051 1051 1051 63 63 35
nboyer 45 45 45 20366 20364 20376 1360 1310 33 actors 2 2 2 233 233 233 4 4 1
machine-simulator 282 289 289 55452 56166 56173 43460 48502 7633 stm 2 2 2 268 268 268 7 7 1

crypt 2 2 2 293 293 299 8 8 3
crypt2 2 2 2 293 291 303 8 8 6

Table IV shows the results of our precision evaluation,
obtained by comparing the abstract values at each address in
the store. Recall that the incremental analysis can never be
more precise than a full reanalysis. We see however that on
a majority of benchmarks, the precision loss is very small to
none. On some benchmarks, however, the loss in precision
is more important. For example, multiple-dwelling
(coarse) sees a huge loss in precision, as more than 75%
of the values in the store is less precise. This can again be
linked to the fact that the incremental update creates a lot
of pointers while being unable to remove outdated results, as

can be seen in the fourth column of the table. For the msort
benchmark, we find that the imprecision arises due to the fact
that the incremental update does not remove components: after
the incremental update, the store contains abstract values at 9
addresses related to components that are not created by the full
reanalysis. Hence, the values at these addresses computed by
the incremental update are less precise than those computed
by a full reanalysis.

Finally, we consider the results in Table V, which shows
the number of components and dependencies discovered by
the analysis, as well as the number of intra-component anal-



yses performed for the initial analysis, full reanalysis, and
incremental update of the initial analysis results. On all but
three benchmarks, the incremental update requires less intra-
component analyses than a full reanalysis, and hence overall
our approach reduces the work required to reach an updated
fixed point. The results of an incremental update are less
precise than those of a full reanalysis as more components
and/or dependencies are inferred for most benchmarks. How-
ever as discussed before, the impact on the abstract values in
the store is limited. The loss of precision can be mitigated by
performing a full reanalysis, e.g., at regular intervals. The point
where a full reanalysis is needed may be depend on the actual
analysis performed, and should be determined accordingly.

D. Discussion

Our results show that, in general, our approach leads to a
reduction of the analysis time, compared to a full reanalysis
of the program (RQ1). This is also visible when comparing
the number of intra-component analyses required to reach the
fixed point. On two programs, a slowdown is seen, which is
caused by an increased imprecision due to the incremental
update. However, in general, the precision of an incremental
update seems to be comparable to that of a full reanalysis
(RQ2). We see that for ModF, on average, our approach results
in higher reductions of the analysis time than for ModConc
(RQ3). This is most likely caused by the fact that the ModF
analyses create more components than the ModConc analyses,
given our evaluation set-up. Also, the components created by
ModConc, that correspond to spawned threads, are generally
bigger than the ones created by ModF, which correspond to
function calls. Hence, ModConc leads to more coarse-grained
incrementality for which the reduction of the analysis time
may be smaller.

Our experiments show that our approach leads to a reduction
of the reanalysis time when applied on context-insensitive
analyses for Scheme, a highly dynamic, higher-order language.
We find that our approach is sufficiently general to be applied
on different types of modular analyses, as we have demon-
strated using our experiments. Hence, our approach improves
upon current incremental analyses that require a statically
known call graph or are tailored to specific analyses.

As is shown in the example of Section II-A2, which uses
call expressions as component contexts, our approach can also
be instantiated with context-sensitive analyses. We restricted
our evaluation to two context-insensitive analyses, where all
components contain empty contexts. If more information is
stored in a context, the analysis may create more compo-
nents, which both impacts the incremental update and full
reanalysis. This may also depend on the abstract domain used,
as a component context can contain abstract values. Hence,
extending the evaluation to context-sensitive analyses would
require investigating other abstract domains. However, the
abstract domain only impacts the creation of components via
the component contexts, hence we do not expect changes in the
results for context-insensitive analyses when using different
abstract domains.

E. Threats to Validity

We now briefly identify possible threats to the validity of
our results, following the classification of Wohlin et al. [29].

1) Analysis Framework: A threat to the external validity
comes from the framework in which our approach has been
implemented. This framework is based on ModF [17] and
ModConc [18], [19], both inspired by the work of Cousot and
Cousot [20]. Various precision-improving optimisations, such
as abstract garbage collection [30], [31], exist, but are not
incorporated in our framework. We do not expect detrimental
changes to our results should they be integrated. Also, our
approach has only been incorporated in a research-oriented
framework. An incorporation in a production quality tool may
be required to show how our approach performs in practice.
We are however unaware of any industry-standard analysis
frameworks for dynamic languages that offer heavyweight
analyses and follow a modular design.

2) Evaluation: A threat to the conclusion validity of our
experiments stems from the low number of benchmark pro-
grams used. In the literature, there is no standard set of bench-
marks used to evaluate incremental static analyses of dynamic
languages, for which we had to compose a benchmark suite
ourselves. To compose this benchmark suite, we added change
expressions to the benchmark programs manually. Another
approach would be to add such expressions programmatically,
enabling more benchmark programs, but such changes might
not reflect real changes made by developers.

To each program, we have manually added changes. We did
not possess change histories for the programs. We however
made sensible and varied changes that could reflect actual
developer edits. For example, some of the ModF benchmark
programs have been used during university classes. To these
programs, the changes correspond to solving a course assign-
ment. For ModConc, the changes could correspond to refac-
torings. We therefore believe that our changes are sufficiently
varied and realistic to validate our approach, even though the
number of changes to some programs is limited.

V. RELATED WORK

We now review related work on incremental static analysis.

A. Incremental Analyses with Static Call Graphs

Many approaches to incremental analysis rely on a stat-
ically available call graph that is not impacted by code
changes. There have been such incremental adaptations of CFL
reachability analyses [13], [14], IDE/DFS analyses [15], alias
analyses [10], logic-based analyses [11], classical dataflow
problems [6]–[8], interval analyses [9], model checking [12],
and incremental analyses through novel analysis mechanisms
such as diff-graphs [32], or for specific client analyses such as
race detection [5]. Our approach is designed with at its core
the ability to support call graphs that are discovered during the
modular analysis and that are updated when the code changes.

McPeak et al. [33] propose an incremental and parallel static
analysis for C programs. The analysis is split into deterministic
work units of which the results are cached. Upon a code



change, the cache is updated so that stale results are removed.
Special care is taken to avoid including in the cache results
that may need to be updated upon code changes, by relying
on stable anchor points in the source code. To avoid dealing
with this consideration, we use change expressions.

B. Incremental Analyses without Static Call Graphs

Liu et al. [16] propose an alternative to incremental points-
to analysis that does not require expensive graph reachability
computations. Like ours, this approach does not require to
know the call graph of program before the incremental run –
as it may be modified by the program change– and unlike
ours, they achieve the same precision as a full reanalysis
of the program. This approach remains however limited to
flow-insensitive analyses, while our approach does not pose
any restriction on the flow sensitivity of the intra-component
analysis. As discussed in Section IV-D, our approach can be
extended to context-sensitive analyses.

Seidl et al. [34] propose to use generic local solvers to
provide incrementalisation in an analysis infrastructure without
restricting the design of the analysis (modular, IDE, IFDS).
Similar to our approach, this is achieved by modifying a top-
down solver to leverage dependencies for incrementality. To
reuse results from the previous run of the analysis, functions
are matched to functions with the same name in the previous
version of the program. For every modified function, results
corresponding to any of the program points of the function
are invalidated. We avoid matching functions by the use of
change expressions which can encode finer-grained changes,
and we do not invalidate program results, but update them in
a monotone way. As a result, our approach may result in a
loss of precision across incremental runs.

Nichols et al. [35] provide an incremental analysis for
JavaScript. The analysis creates a mapping of analysis results
from the old program points to the new program points. The
fixed-point computation can then be restarted and makes use of
this mapping to reuse analysis results, thereby accelerating the
convergence of the analysis. Because the impact of changes
cannot be bounded, all program points need to be reanalysed at
least once. In contrast, our analysis bounds program changes
to the affected analysis components, and many components
can therefore be skipped during the reanalysis.

IncA [36]–[38] is an analysis framework that provides a
DSL to specify analyses. Using a projectional editor, programs
are represented using graph patterns that are constructed on
top of the program’s AST. An analysis is constructed by
specifying graph patterns of interest, and using an algorithm
for incremental graph pattern matching, IncA keeps analysis
results up to date with code changes. In contrast, our approach
can be applied to existing modular analyses and does not re-
quire analyses to be respecified as so called pattern functions,
which is the case for IncA. Finally, to represent changes, our
approach makes use of change expressions, whereas IncA is
implemented on top of a projectional editor.

Andromeda [39] is a framework used to perform taint anal-
yses incrementally, in a demand-driven way. Upon changes to

the program, Andromeda performs a change impact analysis
that computes the part of the analysis result to be invalidated,
and the parts that need to be updated. The change impact
analysis determines the affected data structures, and uses an
auxiliary support graph to find outdated taint facts, which are
then removed. Hence, unlike our approach, which may lose
precision over incremental runs, Andromeda removes outdated
facts causing the results to remain precise. Our change impact
analysis is more lightweight, as intra-program dependencies
are already reified by the modular analysis, and we only need
to identify components directly affected by a change. Also,
the approach we present merely requires a mapping from
expressions to sets of components, no complex auxiliary data
structures are involved. Finally, Andromeda is specialised to
a taint analysis, while our approach can be applied to any
modular analysis as long as dependencies are inferred by the
intra-component analysis.

C. Summary
In comparison to the related work presented in this section,

our approach results in general incremental modular analyses
that can support highly dynamic, higher-order languages and
program changes that modify the program’s call graph. Our
approach is not specific to any particular analysis, and allows
the impact of changes to be bounded to the parts of the analysis
results that are affected by program changes. Additionally,
the analyses must not be reformulated, and only a single
lightweight auxiliary data structure is required.

VI. CONCLUSION

We introduced an approach to incrementalise modular anal-
yses based on reified inter-component dependencies. A change
impact calculation infers the components directly affected by a
change, which are then reanalysed. The reified dependencies
ensure that transitively affected components are also reanal-
ysed. Hence, the modularity of the analysis leads to a relatively
straightforward incrementalisation, where only the analysis
results for the components directly or indirectly affected by
the changes are updated.

We applied our approach to both a function-modular and
thread-modular analysis for Scheme, a dynamic, higher-order
language. We found that an incremental update is faster than
a full recomputation of the result on 14 out of 16 benchmark
programs, reducing the analysis time by up to 99%. A high
precision is retained for most benchmark programs.

We envision several possible improvements to this approach.
First, we want to investigate changes that affect the lexical
environment of expressions. Processing such changes requires
an update of the internal data structures of the analysis,
e.g., to update the lexical environments stored in closures. A
second path to follow would be investigating the invalidation
of outdated results, to improve the precision of updated results.

ACKNOWLEDGEMENTS

This work was partially supported by Research Foundation
– Flanders (FWO) (grant numbers 11F4820N and 11D5718N),
and by “Cybersecurity Initiative Flanders”.



REFERENCES

[1] R. Purushothaman and D. E. Perry, “Toward Understanding the Rhetoric
of Small Source Code Changes,” IEEE Trans. Software Eng., vol. 31,
no. 6, pp. 511–526, 2005.

[2] A. Alali, H. H. Kagdi, and J. I. Maletic, “What’s a Typical Commit?
A Characterization of Open Source Software Repositories,” in The
16th IEEE International Conference on Program Comprehension, ICPC
2008, Amsterdam, The Netherlands, June 10-13, 2008, R. L. Krikhaar,
R. Lämmel, and C. Verhoef, Eds. IEEE Computer Society, 2008, pp.
182–191.

[3] L. Hattori and M. Lanza, “On the Nature of Commits,” in 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing - Workshop Proceedings (ASE Workshops 2008), 15-16 September
2008, L’Aquila, Italy. IEEE, 2008, pp. 63–71.

[4] M. Harman and P. W. O’Hearn, “From Start-ups to Scale-ups: Opportu-
nities and Open Problems for Static and Dynamic Program Analysis,” in
18th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2018, Madrid, Spain, September 23-24, 2018.
IEEE Computer Society, 2018, pp. 1–23.

[5] S. Zhan and J. Huang, “ECHO: instantaneous in situ race detection
in the IDE,” in Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 13-18, 2016, 2016, pp. 775–786. [Online].
Available: https://doi.org/10.1145/2950290.2950332

[6] F. K. Zadeck, “Incremental data flow analysis in a structured program
editor,” in Proceedings of the 1984 SIGPLAN Symposium on Compiler
Construction, Montreal, Canada, June 17-22, 1984, M. S. V. Deusen
and S. L. Graham, Eds. ACM, 1984, pp. 132–143. [Online]. Available:
https://doi.org/10.1145/502874.502888

[7] M. D. Carroll and B. G. Ryder, “Incremental data flow analysis via
dominator and attribute updates,” in Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages,
San Diego, California, USA, January 10-13, 1988, J. Ferrante and
P. Mager, Eds. ACM Press, 1988, pp. 274–284. [Online]. Available:
https://doi.org/10.1145/73560.73584

[8] L. L. Pollock and M. L. Soffa, “An incremental version of iterative
data flow analysis,” IEEE Trans. Software Eng., vol. 15, no. 12, pp.
1537–1549, 1989. [Online]. Available: https://doi.org/10.1109/32.58766

[9] M. G. Burke, “An interval-based approach to exhaustive and
incremental interprocedural data-flow analysis,” ACM Trans. Program.
Lang. Syst., vol. 12, no. 3, pp. 341–395, 1990. [Online]. Available:
https://doi.org/10.1145/78969.78963

[10] J. Yur, B. G. Ryder, and W. Landi, “An incremental flow- and
context-sensitive pointer aliasing analysis,” in Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los
Angeles, CA, USA, May 16-22, 1999, B. W. Boehm, D. Garlan,
and J. Kramer, Eds. ACM, 1999, pp. 442–451. [Online]. Available:
https://doi.org/10.1145/302405.302676

[11] D. Saha and C. R. Ramakrishnan, “Incremental and Demand-driven
Points-To Analysis Using Logic Programming,” in Proceedings of the
7th International ACM SIGPLAN Conference on Principles and Prac-
tice of Declarative Programming, July 11-13 2005, Lisbon, Portugal,
P. Barahona and A. P. Felty, Eds. ACM, 2005, pp. 117–128.

[12] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards,
“Incremental algorithms for inter-procedural analysis of safety
properties,” in Computer Aided Verification, 17th International
Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, ser. Lecture Notes in Computer Science, K. Etessami
and S. K. Rajamani, Eds., vol. 3576. Springer, 2005, pp. 449–461.
[Online]. Available: https://doi.org/10.1007/11513988\ 45

[13] L. Shang, Y. Lu, and J. Xue, “Fast and precise points-to analysis with
incremental cfl-reachability summarisation: preliminary experience,”
in IEEE/ACM International Conference on Automated Software
Engineering, ASE’12, Essen, Germany, September 3-7, 2012, 2012, pp.
270–273. [Online]. Available: https://doi.org/10.1145/2351676.2351720

[14] Y. Lu, L. Shang, X. Xie, and J. Xue, “An incremental points-to analysis
with cfl-reachability,” in Compiler Construction - 22nd International
Conference, CC 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, 2013, pp. 61–81. [Online]. Available:
https://doi.org/10.1007/978-3-642-37051-9\ 4

[15] S. Arzt and E. Bodden, “Reviser: Efficiently Updating IDE-/IFDS-Based
Data-Flow Analyses in Response to Incremental Program Changes,” in

Proceedings of the 36th International Conference on Software Engineer-
ing, ICSE 2014, Hyderabad, India, May 31 - June 07, 2014, P. Jalote,
L. C. Briand, and A. van der Hoek, Eds. New York, NY, USA: ACM
Press, 2014, pp. 288–298.

[16] B. Liu, J. Huang, and L. Rauchwerger, “Rethinking incremental
and parallel pointer analysis,” ACM Trans. Program. Lang. Syst.,
vol. 41, no. 1, pp. 6:1–6:31, 2019. [Online]. Available: https:
//doi.org/10.1145/3293606

[17] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover, “Effect-
Driven Flow Analysis,” in Proceedings of the 20th International Con-
ference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 2019, Cascais, Portugal, January 13-15, 2019, C. Enea and
R. Piskac, Eds. Cham, Switzerland: Springer International Publishing,
2019, pp. 247–274.

[18] Q. Stiévenart, “Scalable Designs for Abstract Interpretation of Con-
current Programs: Application to Actors and Shared-Memory Multi-
Threading,” Doctoral dissertation, Vrije Universiteit Brussel, Brussels,
Belgium, 2018.

[19] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover, “A General
Method for Rendering Static Analyses for Diverse Concurrency Models
Modular,” Journal of Systems and Software, vol. 147, pp. 17–45, 2019.

[20] P. Cousot and R. Cousot, “Modular Static Program Analysis,” in
Proceedings of the 11th International Conference on Compiler Con-
struction, CC 2002, Grenoble, France, April 8-12, 2002, R. N. Horspool,
Ed. Berlin, Heidelberg, Germany: Springer, 2002, pp. 159–178.

[21] E. Goubault, S. Putot, and F. Védrine, “Modular static analysis with
zonotopes,” in Static Analysis - 19th International Symposium, SAS
2012, Deauville, France, September 11-13, 2012. Proceedings, 2012,
pp. 24–40.

[22] A. Miné, “Relational thread-modular static value analysis by abstract
interpretation,” in Verification, Model Checking, and Abstract Interpre-
tation - 15th International Conference, VMCAI 2014, San Diego, CA,
USA, January 19-21, 2014, Proceedings, 2014, pp. 39–58.

[23] M. Journault, A. Miné, and A. Ouadjaout, “Modular static analysis
of string manipulations in C programs,” in Static Analysis - 25th
International Symposium, SAS 2018, Freiburg, Germany, August 29-31,
2018, Proceedings, 2018, pp. 243–262.

[24] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a Doubt: Testing
for Divergences Between Software Versions,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and L. Williams,
Eds. New York, NY, USA: ACM, 2016, pp. 1181–1192.

[25] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and Accurate Source Code Differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic, M. Chechik,
and P. Grünbacher, Eds. New York, NY, USA: ACM, 2014, pp. 313–
324.

[26] W. Muylaert and C. De Roover, “Untangling Composite Commits Using
Program Slicing,” in 18th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2018, Madrid, Spain,
September 23-24, 2018. IEEE Computer Society, 2018, pp. 193–202.

[27] R. Stevens, T. Molderez, and C. De Roover, “Querying distilled code
changes to extract executable transformations,” Empirical Software
Engineering, vol. 24, no. 1, pp. 491–535, 2019.

[28] N. Van Es, J. Van der Plas, Q. Stiévenart, and C. De Roover, “MAF: A
Framework for Modular Static Analysis of Higher-Order Languages,” in
20th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2020, Adelaide, Australia, September 27-28,
2020. IEEE Computer Society, 2020.

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering - An Introduction, ser. The
Kluwer International Series in Software Engineering. Kluwer, 2000,
vol. 6.

[30] M. Might and O. Shivers, “Improving Flow Analyses via ΓCFA:
Abstract Garbage Collection and Counting,” in Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming,
ICFP 2006, Portland, OR, USA, September 16-21, 2006, J. H. Reppy
and J. L. Lawall, Eds. New York, NY, USA: ACM, 2006, pp. 13–25.

[31] N. Van Es, Q. Stiévenart, and C. De Roover, “Garbage-free abstract
interpretation through abstract reference counting,” in 33rd European
Conference on Object-Oriented Programming, ECOOP 2019, July
15-19, 2019, London, United Kingdom, 2019, pp. 10:1–10:33. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECOOP.2019.10



[32] J. Krainz and M. Philippsen, “Diff graphs for a fast incremental pointer
analysis,” in Proceedings of the 12th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs
and Systems, ICOOOLPS@ECOOP 2017, Barcelona, Spain, June
19, 2017. ACM, 2017, pp. 4:1–4:10. [Online]. Available: https:
//doi.org/10.1145/3098572.3098578

[33] S. McPeak, C. Gros, and M. K. Ramanathan, “Scalable and incremental
software bug detection,” in Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013, 2013, pp. 554–564. [Online].
Available: https://doi.org/10.1145/2491411.2501854

[34] H. Seidl, J. Erhard, and R. Vogler, “Incremental Abstract Interpretation,”
in From Lambda Calculus to Cybersecurity Through Program Analysis
- Essays Dedicated to Chris Hankin on the Occasion of His Retirement,
A. D. Pierro, P. Malacaria, and R. Nagarajan, Eds. Cham, Switzerland:
Springer International Publishing, 2020, pp. 132–148.

[35] L. Nichols, M. Emre, and B. Hardekopf, “Fixpoint reuse for
incremental javascript analysis,” in Proceedings of the 8th ACM
SIGPLAN International Workshop on State Of the Art in Program
Analysis, SOAP@PLDI 2019, Phoenix, AZ, USA, June 22, 2019,
N. Grech and T. Lavoie, Eds. ACM, 2019, pp. 2–7. [Online].
Available: https://doi.org/10.1145/3315568.3329964

[36] T. Szabó, S. Erdweg, and M. Voelter, “IncA: A DSL for the Definition of
Incremental Program Analyses,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE
2016, D. Lo, S. Apel, and S. Khurshid, Eds. New York, NY, USA:
ACM, 2016, pp. 320–331.

[37] T. Szabó, G. Bergmann, S. Erdweg, and M. Voelter, “Incrementalizing
lattice-based program analyses in Datalog,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

[38] T. Szabó, G. Bergmann, and S. Erdweg, “Incrementalizing inter-
procedural program analyses with recursive aggregation in Datalog,”
p. 3, Presented at the Second Workshop on Incremental Computing, IC
2019, Athens, Greece, October 21, 2019.

[39] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “An-
dromeda: Accurate and Scalable Security Analysis of Web Applica-
tions,” in Proceedings of the 16th International Conference on Fun-
damental Approaches to Software Engineering, FASE 2013, Rome,
Italy, March 16-24, 2013, V. Cortellessa and D. Varró, Eds. Berlin,
Heidelberg, Germany: Springer, 2013, pp. 210–225.


