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Fuzzing Channel-Based Concurrency Runtimes
using Types and Effects
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Modern programming languages support concurrent programming based on channels and processes. Channels

enable synchronous and asynchronous message-passing between independent light-weight processes making

it easy to express common concurrency patterns.

The implementation of channels and processes in compilers and language runtimes is a difficult task

that relies heavily on traditional and error-prone low-level concurrency primitives, raising concerns about

correctness and reliability.

In this paper, we present an automatic program generation technique to test such programming language

implementations. We define a type and effect system for programs that communicate over channels and where

every execution is guaranteed to eventually terminate. We can generate and run such programs, and if a

program fails to terminate, we have found a bug in the programming language implementation.

We implement such an automatic program generator and apply it to Go, Kotlin, Crystal, and Flix. We find

two new bugs in Flix, and reproduce two bugs; one in Crystal and one in Kotlin.
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1 INTRODUCTION
Modern programming languages, such as Go, Kotlin, Crystal, and Flix, support concurrent program-

ming with channels and processes. In these languages, processes are independent units of execution

that are light-weight, requiring significantly less memory than operating system threads. Channels

enable processes to communicate synchronously and asynchronously by message-passing without

the use of explicit locks. Processes can spawn sub-processes, create channels, receive and send

messages on channels, and select on a set of channels. For un-buffered channels, when a process

performs a send (put) operation, it must wait until another process is ready to receive (get) the

message. Similarly, if a process performs a get, it must wait until another process performs a put.

For buffered channels, the situation is similar, except that each channel has an internal capacity,

and put operations do not block until the capacity has been reached. The select operation allows a

process to receive from (or send to) a single channel in a set of channels, selecting the first channel

that is ready to send or receive. The select operation is strictly more expressive than a get (or

Authors’ addresses: Quentin Stiévenart, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium, quentin.stievenart@vub.be;

Magnus Madsen, Aarhus University, Åbogade 34, Aarhus, Denmark, magnusm@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART186

https://doi.org/10.1145/3428254

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.

https://doi.org/10.1145/3428254
https://doi.org/10.1145/3428254
https://doi.org/10.1145/3428254


186:2 Quentin Stiévenart and Magnus Madsen

put) operation since it allows waiting on multiple channels simultaneously. These concurrency

primitives make it easy to express common concurrency patterns, such as producer-consumer,

fork-join, and load balancers.

While channels and processes simplify concurrent programming for users of languages that

support them, their implementation in compilers and runtimes is a difficult task. Such implemen-

tations typically rely on shared memory concurrency protected by locks. Thus, race conditions

and deadlocks lurk in the shadows. The select operation significantly complicates implementations

since it must be able to operate on multiple channels simultaneously while still ensuring proper

mutual exclusion. For example, locks taken on multiple channels must always be acquired in the

same global order to prevent a deadlock between multiple select operations.

We want to automatically test implementations of channel and process-based concurrency

primitives in compilers and runtimes. Our key idea is to automatically generate communicating

programs where every execution must terminate. If such a program fails to terminate, we have

found a bug in the implementation. We can now state the problem we address in this paper:

How to generate interesting and terminating programs that use channels and processes?

By interesting, we mean programs that spawn processes and communicate on channels, and are

likely to expose bugs in the language implementation of the channel and process primitives.

Inspired by Pałka et al. [2011] and Midtgaard et al. [2017], we take the following approach:

We define a type and effect system for a calculus with channels and processes. We then design

a sub-language of effects whose programs are guaranteed to terminate. To generate interesting

programs, we define a collection of heuristics that capture communication behavior which must

terminate. The heuristics try to cause contention on channels, i.e. to overlap communication on

the same channels from multiple processes, with the hope that such behavior will expose races or

deadlocks in the programming language runtime.

The result of this work is an automatic and sound technique for the generation of interesting and

terminating concurrent programs that communicate over channels. As we will see, such programs

can be used to find bugs in programming language implementations. These bugs are potentially very

serious since they affect all users of the language. We believe that our work is the first that attempts

to find such semantically deep bugs in compilers and runtimes for programming languages.

In summary, the paper makes the following contributions:

• (Terminating Effects) We define a sub-language of effects for a calculus with channels and

processes, and prove that programs with these effects always terminate.

• (Implementation & Evaluation) We implement an automatic program generator, based

on the effect language, and use it to generate communicating Flix, Crystal, Kotlin, and Go

programs that always terminate. We run the program generator and we find two previously

unknown bugs in Flix, and we reproduce two bugs; one in Crystal and one in Kotlin.

2 MOTIVATION
We begin with a brief introduction to channels and processes before we present our automatic

program generation technique. We will use the Flix programming language for the examples, but the

ideas are equally applicable to other languages. In fact, a key observation is that Go, Kotlin, Crystal,

and Flix all share the same semantics for channels and processes. Consequently, our technique is

applicable to all of these languages.

2.1 Channel and Process-based Concurrency
We can create a new process with the spawn expression:

def main (): Unit = spawn (1 + 2)
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The new process computes 1 + 2 and discards the result. Meanwhile, the main process continues

execution. The spawn expression returns Unit and does not provide any means for communication

between the original process and the spawned process.

We use channels to communicate between processes. A channel comes in one of two variants:

buffered or un-buffered. A buffered channel has a capacity set at creation time. The capacity specifies

the number of messages that the channel can hold. If a process attempts to put a message into a

buffered channel that is full, then the process is blocked until space becomes available. If, on the

other hand, a process attempts to get a message from an empty channel, the process is blocked

until a message is put into the channel. An un-buffered channel works like a buffered channel of

size zero; for a get and a put to happen both processes must rendezvous (synchronize) such that

the message can be passed directly from the sender to the receiver. Consider the program:

def plus(c: Channel[Int]): Unit = c <- (21 + 21); ()

def main (): Int =

let c = chan Int 0;

spawn plus(c);

<- c

Here main constructs a new channel 𝑐 , spawns a process to run plus, and waits for a message on 𝑐

with the get expression <- c. In the spawned process, plus computes 21 + 21 and sends the result

on the channel 𝑐 with the put expression c <- (21 + 21). Hence main returns 42.
We can use the select expression to receive a message from one ready channel out of a set of

channels. Consider the program:

def meow(c: Channel[String ]): Unit = c <- "Meow !"; ()

def woof(c: Channel[String ]): Unit = c <- "Woof !"; ()

def main (): String =

let c1 = chan 1;

let c2 = chan 1;

spawn meow(c1);

spawn woof(c2);

select {

case m <- c1 => m

case m <- c2 => m

}

Here main constructs two channels, spawns two processes to run the meow and woof functions, and
then selects on both channels. The result is that main returns “Meow!” or “Woof!” depending on

which of the two processes is first able to send its message. The select expression is strictly more

powerful than the get and put primitives since it is able to wait on multiple channels simultaneously.

2.2 Technique in Action
Figure 1 shows a legal Flix program generated by our technique. The program begins by creating

three un-buffered channels 𝑐1, 𝑐2, and 𝑐3. Next, it spawns three new processes that each perform a

single put operation on one of the three channels. Meanwhile, the main process performs a select. In

the first case, the select receives an element from 𝑐2 and then the body waits for an element from 𝑐1
and then from 𝑐3. Thus, if this case is taken, an element is received from each of the three channels

and all processes terminate. The second case is conceptually similar, except that to receive an

element from 𝑐3 another select is used with a duplicate case. Finally, the third case is a combination

of the two previous cases, but it also receives exactly one value from each of the channels 𝑐1, 𝑐2,

and 𝑐3. Thus, all processes must always terminate.
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Flix
1 def main (): Unit = {

2 let c1 = chan Unit 0;

3 let c2 = chan Unit 0;

4 let c3 = chan Unit 0;

5 spawn { c1 <- () };

6 spawn { c3 <- () };

7 spawn { c2 <- () };

8 select {

9 case _ <- c2 => <- c1 ; <- c3

10 case _ <- c2 => <- c1;

11 select {

12 case _ <- c3 => ()

13 case _ <- c3 => ()

14 }

15 case _ <- c1 => <- c2;

16 select {

17 case _ <- c3 => ()

18 case _ <- c3 => ()

19 }

20 }

21 }

Fig. 1. A Generated Program that Deadlocks in Flix.

However, if we compile and run this program with Flix (version 0.5.0) it sometimes fails to

terminate! The JVM reports:

Found one Java -level deadlock:

=============================

"main":

waiting for ownable synchronizer ..., (...),

which is held by "Thread -59"

"Thread -59":

waiting for ownable synchronizer ..., (...),

which is held by "main"

The program has deadlocked! We have discovered a bug in the runtime implementation of channels

and processes in Flix.

2.3 Automatic Program Generation
How can we automatically generate programs such as the one in Figure 1? We could use the

grammar of the language to generate random, but syntactically correct programs, as done with

grammar-based fuzzing [Godefroid et al. 2008] or parser-directed fuzzing [Mathis et al. 2019]. But

such programs might fail to type check, and even if they can be compiled, how do we know whether

they are executed correctly?

Instead, relying on the established techniques of Pałka et al. [2011] and Midtgaard et al. [2017],

we take the following approach: We define a type and effect system for a language with channels

and processes. A backwards reading of the type rules allows us to generate expressions that are

typeable. The effect system captures the communication behavior of an expression. Our idea is

to generate programs that always terminate. Hence, if a generated program fails to terminate

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.



Fuzzing Channel-Based Concurrency Runtimes using Types and Effects 186:5

(or crashes), we have found a bug. However, not all well-typed and well-effected expressions are

guaranteed to terminate. Thus, we define a sub-language of effects whose corresponding programs

are guaranteed to terminate. The definition of the sub-language is inspired by common concurrency

patterns and is conservative, but not exhaustive: there are many terminating programs which

are not captured by this sub-language. Even so, we shall argue that the sub-language contains

many interesting programs. The sub-language tries to capture programs whose execution cause

contention on channels, i.e. causes multiple simultaneous operations on the same channels, with

the hope of discovering races or deadlocks.

In order to reason about program termination, we need an operational semantics. Given this

semantics, we can prove that a class of program terminates. Once we have defined termination of

programs, we can reason about termination of effects: given a type and an effect, we can prove that

all programs with this type and effect terminate. The problem of generating terminating programs

is therefore reduced to the problem of generating terminating effects.

By working at the effect-level, following the approach of Pałka et al. [2011] and Midtgaard et al.

[2017], we can reason at a higher-level than the language syntax which has two benefits:

• We can generate terminating programs for multiple target languages.

• We can generate a wider range of programs, which are semantically different, but are guar-

anteed to terminate.

To understand why the type and effect system is useful, let us consider some examples.

The following is a syntactically valid Flix program:

let c = chan 0; spawn { c <- "Hello World" }; if (<- c) 1 else 2

While such a program is straightforward to generate from the grammar of the Flix programming

language, it is ill-typed and hence it cannot be compiled with the Flix compiler. An approach that

generates programs solely based on the grammar of a programming language is likely to produce

many ill-typed programs which cannot be compiled nor executed, and hence are not useful for

uncovering bugs. By using not only the grammar of the language, but also a backwards reading of

its type system, we can ensure that we only generate well-typed programs.

For example, the following is a syntactically and well-typed Flix program:

let c = chan 0; <- c;

While this program compiles and can be executed, it does not terminate. The problem is that the

program tries to receive a value from the channel 𝑐 , but a value is never sent on 𝑐 . We can generate

such programs, compile them, and execute them, but we cannot know whether they are supposed

to terminate or not. If we do not know what the result of an execution should be, we cannot

determine if the execution was correct. To resolve this, we can use an effect system to describe the

communication behavior of a program.

For example, the effect Chan(𝑐); Spawn(Put(𝑐)) ; Get(𝑐) describes the program:

let c = chan 0; spawn { c <- 1 }; <- c

But it also describes many other programs, for example:

let c = chan 0; spawn { c <- 2 }; <- c

let c = chan 0; spawn { c <- 1 + 2 }; <- c

let c = chan 0; spawn { c <- "Hello World" }; <- c; 1 + 2

let c = chan 0; let f = () -> { c <- "Hello World" }; spawn f(); <- c

...

Working at the type and effect level, we can abstract over all such programs, and prove once and

for all that they terminate.
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𝑣 ∈ Val F () | true | false | 𝑐

𝑒 ∈ Exp F 𝑥 [Var]

| 𝑣 [Val]

| let𝑥 B 𝑒1 in 𝑒2 [Let]

| if 𝑒1 then 𝑒2 else 𝑒3 [IfThenElse]

| 𝑒1; 𝑒2 [Seqence]

| channel𝑐 𝑡 [NewChannel]

| ← 𝑒 [GetChannel]

| 𝑒1 ← 𝑒2 [PutChannel]

| select { −→𝑠𝑟 } [Select]

| spawn𝑝 { 𝑒 } [Spawn]

sr ∈ SelectRule F case𝑥 B ← 𝑦 ⇒ 𝑒 [SelectGet]

| case𝑥 ← 𝑦 ⇒ 𝑒 [SelectPut]

𝑥,𝑦 ∈ Variables is a set of variable names.

𝑐 ∈ Channels is a set of channel names.

𝑝 ∈ Processes is a set of process names.

Fig. 2. Syntax of 𝜆chan.

3 A CHANNEL AND PROCESS CALCULUS
To present our approach, we introduce 𝜆chan, a minimal calculus with support for channels and

processes. The calculus is based on Nielson and Nielson [1999] extended with the select construct.

We have deliberately kept the calculus simple; it has no recursion and no functions.We are interested

in the communication behavior of programs that terminate, and hence the lack of recursion is not

a concern. The design of 𝜆chan has been chosen such that all programs in 𝜆chan are straightforward

to translate into equivalent Go, Kotlin, Crystal, and Flix programs. A reader who is already familiar

with these types of calculi and their type and effect systems may safely skip to Section 4.

3.1 Syntax of 𝜆chan
Figure 2 shows the syntax of 𝜆chan. The values of the language are unit, booleans, and channels.

The language consists of sequential and parallel expressions. The sequential expressions include

the usual constructs: variables, values, let-bindings, if-then-elses, and sequence expressions. The

parallel expressions allow channel and process creation, and include communication primitives:

The new channel expression channel𝑐 𝑡 creates a channel named 𝑐 with elements of type 𝑡 . In 𝜆chan,

all channels can be given a static name since there is no recursion, looping, or functions. We restrict

ourselves to un-buffered channels for 𝜆chan. The get channel expression← 𝑒 receives a value from

the channel 𝑒 . Similarly, the put channel expression 𝑒1 ← 𝑒2 sends the value of 𝑒2 to the channel 𝑒1.

The select expression performs a non-deterministic choice between multiple get and put operations
on multiple channels: a single branch of the select expression will be executed, depending on which

channel is ready for sending or receiving values. The spawn𝑝 expression creates a process named

𝑝 . Similarly to channels, processes can also be given a static name.

We use
−→𝑎 as a short hand for 𝑎1, · · · , 𝑎𝑛 and we use 𝑎𝑖 to refer to the i’th element of

−→𝑎 .
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𝐸 ∈ Contexts F •
| let𝑥 B 𝐸 in 𝑒
| if E then 𝑒 else 𝑒 | 𝐸; 𝑒
| ← 𝐸 | 𝐸 ← 𝑒 | 𝑣 ← 𝐸

Fig. 3. Evaluation Contexts of 𝜆chan.

let𝑥 B 𝑣 in 𝑒 → 𝑒 [𝑥 ↦→ 𝑣] 𝑣 ; 𝑒2 → 𝑒2 if true then 𝑒2 else 𝑒3 → 𝑒2

if false then 𝑒2 else 𝑒3 → 𝑒3

Fig. 4. Sequential Evaluation Rules of 𝜆chan.

𝑃 ∈ Configuration F Processes→ Exp

Fig. 5. Configuration of 𝜆chan.

Absence of Functions, Looping, and Recursion. The calculus does not include any constructs for

defining or calling functions, nor for recursion, or any other looping construct. This is a deliberate

design choice motivated by the following observation: If there exists a program that can crash or

deadlock due to a bug in the concurrency runtime then it implies that there exists a finite execution

of that program leading to the crash or deadlock. This execution can be written as a finite sequence

of channel operations (creating, sending, receiving, and selecting).

While it is not impossible that a concurrency bug could arise through a unique combination of

channel operations and e.g., recursion, we think that such a situation is unlikely. We leave it as

interesting future work to explore richer calculi to determine if such bugs occur in practice.

3.2 Semantics
The semantics of 𝜆chan is defined in two parts: sequential evaluation is concerned with the sequential

constructs of the languages (conditionals, bindings, and sequences) and parallel evaluation is

concerned with the constructs that act over multiple processes (communications and creation of

channels and processes).

3.2.1 Sequential Evaluation. The evaluation rules for the sequential part of the language are defined
in terms of the evaluation contexts shown in Figure 3 together with the reduction rules shown in

Figure 4. The evaluation contexts are only used for sequential evaluation. The parallel evaluation

rules are defined using the sequential evaluation rules, as we shall see shortly. A sequential

evaluation step from an expression 𝑒 to an expression 𝑒 ′ is denoted 𝑒 → 𝑒 ′. The rules are standard.

3.2.2 Parallel Evaluation. For parallel evaluation, we define a configuration, shown in Figure 5, as a

(partial) map from process names to expressions. Intuitively, the map tracks the current processes

and their expressions. We write 𝑃 [𝑝 : 𝑒] to denote the process map 𝑃 extended with a process 𝑝 that

evaluates expression 𝑒 . The parallel evaluation rules act on such configurations and are defined in

Figure 6. A parallel evaluation step from configuration 𝑃 to configuration 𝑃 ′ is denoted 𝑃 ⇒ 𝑃 ′. The
transitive closure of⇒ is denoted⇒★

. The (E-Process) rule states that if a sequential evaluation
rule can be applied to an existing process then the whole configuration can take the corresponding

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.



186:8 Quentin Stiévenart and Magnus Madsen

(E-Process)

𝑒1 → 𝑒2

𝑃 [𝑝 : 𝐸 [𝑒1]] ⇒ 𝑃 [𝑝 : 𝐸 [𝑒2]]

(E-Channel)

𝑃 [𝑝 : 𝐸 [channel𝑐𝑡]] ⇒ 𝑃 [𝑝 : 𝐸 [𝑐]]

(E-Sync)

𝑃 [𝑝1 : 𝐸1 [← 𝑐]] [𝑝2 : 𝐸2 [𝑐 ← 𝑣]] ⇒ 𝑃 [𝑝1 : 𝐸1 [𝑣]] [𝑝2 : 𝐸2 [()]]

(E-Spawn)

𝑃 [𝑝 : 𝐸 [spawn𝑝0 {𝑒0}]] ⇒ 𝑃 [𝑝 : 𝐸 [()]] [𝑝0 : 𝑒0]

(E-Select-Select)

𝑖, 𝑗 ∈ N sr𝑖 = case𝑥 B ← 𝑐 ⇒ 𝑒𝑖 sr
′
𝑗 = case 𝑐 ← 𝑣 ⇒ 𝑒 𝑗

𝑃 [𝑝1 : 𝐸1 [select {−→sr }]] [𝑝2 : 𝐸2 [select {
−→
sr’ }]] ⇒ 𝑃 [𝑝1 : 𝐸1 [𝑒𝑖 [𝑥 ↦→ 𝑣]]] [𝑝2 : 𝐸2 [𝑒 𝑗 ]]

(E-Select-Get)

𝑖 ∈ N sr𝑖 = case𝑥 B ← 𝑐 ⇒ 𝑒𝑖

𝑃 [𝑝1 : 𝐸1 [select {−→sr }]] [𝑝2 : 𝐸2 [𝑐 ← 𝑣]] ⇒ 𝑃 [𝑝1 : 𝐸1 [𝑒𝑖 [𝑥 ↦→ 𝑣]]] [𝑝2 : 𝐸2 [()]]

(E-Select-Put)

𝑖 ∈ N sr𝑖 = case 𝑐 ← 𝑣 ⇒ 𝑒𝑖

𝑃 [𝑝1 : 𝐸1 [select {−→sr }]] [𝑝2 : 𝐸2 [← 𝑐]] ⇒ 𝑃 [𝑝1 : 𝐸1 [𝑒𝑖 ]] [𝑝2 : 𝐸2 [𝑣]]

Fig. 6. Parallel Evaluation Rules of 𝜆chan.

step where the sequential rule has been applied to that process. The (E-Channel) rule creates a
new channel using the static channel name. The (E-Spawn) rule creates a new process with the

static process name 𝑝 and adds it to the process map. The (E-Sync) rule synchronizes two processes,
where process 𝑝1 is performing a get operation on a channel 𝑐 , and process 𝑝2 is performing a put

operation on the same channel. Note that this rule is non-deterministic: more than two processes

may be trying to synchronize on the same channel. The (E-Select-Get) (resp. (E-Select-Put))
rules synchronize a process 𝑝1 that is selecting over multiple channels with a process 𝑝2 getting

(resp. putting) a value on one of the channels on which 𝑝1 is selecting. The process 𝑝1 then proceeds

to evaluate the body of the select branch that has been selected. The (E-Select-Select) proceeds
similarly when two processes are selecting on the same channel, where a process 𝑝1 is trying to

receive from the channel 𝑐 and process 𝑝2 is trying to send over the channel.

3.3 Types
The types of 𝜆chan are shown in Figure 7. The types are very simple. The language has the unit type
for the unit value, the bool type for the booleans true and false, and the channel type channel(t, c)
for the channel with elements of type 𝑡 and channel name 𝑐 .

3.4 Effects
The effects of 𝜆chan are shown in Figure 8. An effect describes the communication behavior of

an expression. The empty effect 𝜖 denotes the absence of communication over any channel and

the absence of channel or process creation. The Chan(𝑐) effect denotes the creation of a channel

with name 𝑐 . The Get(𝑐) effect denotes receiving a value from the channel 𝑐 , and Put(𝑐) denotes
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𝑡 ∈ Types F unit | bool | channel(𝑡, 𝑐)

Fig. 7. Types of 𝜆chan.

𝜑 ∈ Effects F 𝜖 | Chan(𝑐)
| Get(𝑐) | Put(𝑐)
| Spawn

𝑝 (𝜑) | 𝜑1 ; 𝜑2

| 𝜑1 + 𝜑2 | 𝜑 sr

1 ⊕ 𝜑 sr

2

𝜑 sr ∈ SelectEffect F SelGet(𝑐, 𝜑) | SelPut(𝑐, 𝜑)

Fig. 8. Effects of 𝜆chan.

sending a value on the channel 𝑐 . The Spawn
𝑝 (𝜑) effects denotes the creation of a process with

name 𝑝 that itself has the effect 𝜑 . The sequence effect 𝜑1 ; 𝜑2 denotes that the 𝜑1 effect happens

first, followed by the 𝜑2 effect. The choice effect 𝜑1 + 𝜑2 denotes that one of the 𝜑1 and 𝜑2 effects

must happen. The choice does not have to be “fair”. The effect may always be 𝜑1 or 𝜑2. For example,

the expression← c1may be given the effect Get(𝑐1) + Put(𝑐2) despite the fact that the expression
will never perform a put on channel 𝑐2. The select effect 𝜑

𝑠𝑟
1 ⊕ 𝜑 sr

2 denotes a compound effect

where each 𝜑𝑠𝑟
𝑖 is of the form SelGet(𝑐𝑖 , 𝜑𝑖 ) or SelPut(𝑐𝑖 , 𝜑𝑖 ) for some effects 𝜑𝑖 . The select effect

describes a non-deterministic choice between expressions with effect 𝜑𝑠𝑟
1 and 𝜑𝑠𝑟

2 . The difference

between the choice effect and the select effect is the following: An expression with the choice effect

Get(𝑐1) + Get(𝑐2) may be stuck even if there is another process ready to put on the channel 𝑐1. On

the other hand, an expression with the select effect SelGet(𝑐1, 𝜖) ⊕ SelGet(𝑐2, 𝜖) cannot be stuck
if there is a process ready to put on channel 𝑐1.

We define the dual effect of a get or put effect as:

Get(𝑐) = Put(𝑐) Put(𝑐) = Get(𝑐)

3.5 Type and Effect System
The type and effect rules for 𝜆chan are shown in Figure 9. A typing judgment is of the form

Γ ⊢ 𝑒 : 𝑡 &𝜑 , meaning that under environment Γ expression 𝑒 has type 𝑡 and produces effect 𝜑 .

The (T-Var), (T-Unit), (T-True), and (T-False) rules are straightforward. The (T-Let) rule types

variable bindings, sequencing the effects of its two sub-expressions. The (T-Seq) rule is similar. The

(T-If) rule types if-then-else expressions, producing first the effect generated by the condition (𝜑1),

followed by a choice between the effects of both branches (𝜑2 + 𝜑3). The (T-Chan) rule types the

creation of a channel with name 𝑐 , producing a Chan(𝑐) effect. The (T-Get) (resp. (T-Put)) rule
types the receiving of a value from a channel (resp. the sending of a value over a channel) with

name 𝑐 , generating a Get(𝑐) (resp. Put(𝑐)) effect. The (T-Select) rule types a select statement,

using rules (TSelect-Get) and (T-Select-Put) to type each select rule. The type of each select

case has to match, and their effects are combined with the ⊕ operator. The (T-Spawn) rule types a

spawn statement, wrapping the effect of the spawned expression inside a spawn effect.

Unlike the calculus of Nielson and Nielson [1999], our calculus does not include type and effect

sub-typing. The type and effect sub-typing of Nielson and Nielson [1999] introduces sub-types and

sub-effects for functions and for conditionals, while other sub-typing and sub-effecting rules are

classical reflexive, transitive, and distributive rules. In the case of functions, this is not relevant

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.



186:10 Quentin Stiévenart and Magnus Madsen

Γ ⊢ 𝑥 : Γ(𝑥)& 𝜖 (T-Var) Γ ⊢ () : unit& 𝜖 (T-Unit) Γ ⊢ true : bool& 𝜖 (T-True)

Γ ⊢ false : bool& 𝜖 (T-False)

Γ ⊢ 𝑒1 : 𝑡1&𝜑1 Γ [𝑥 ↦→ 𝑡1] ⊢ 𝑒2 : 𝑡2&𝜑2

Γ ⊢ let𝑥 := 𝑒1 in 𝑒2 : 𝑡2&𝜑1 ; 𝜑2
(T-Let)

Γ ⊢ 𝑒1 : bool&𝜑1 Γ ⊢ 𝑒2 : 𝑡 &𝜑2 Γ ⊢ 𝑒3 : 𝑡 &𝜑3

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝑡 &𝜑1 ; (𝜑2 + 𝜑3)
(T-If)

Γ ⊢ 𝑒1 : 𝑡1&𝜑1 Γ ⊢ 𝑒2 : 𝑡2&𝜑2

Γ ⊢ 𝑒1; 𝑒2 : 𝑡2&𝜑1 ; 𝜑2
(T-Seq)

Γ ⊢ 𝑒 : 𝑡 &𝜑

Γ ⊢ spawn { 𝑒 } : unit& Spawn(𝜑)
(T-Spawn)

Γ ⊢ channel𝑐 𝑡 : channel(𝑡, 𝑐)& chan(𝑐) (T-Chan)
Γ ⊢ 𝑒 : channel(𝑡, 𝑐)&𝜑

Γ ⊢← 𝑒 : 𝑡 &𝜑 ; Get(𝑐)
(T-Get)

Γ ⊢ 𝑒1 : channel(𝑡, 𝑐)&𝜑1 Γ ⊢ 𝑒2 : 𝑡 &𝜑2

Γ ⊢ 𝑒1 ← 𝑒2 : unit&𝜑1 ; 𝜑2 ; Put(𝑐)
(T-Put)

∀𝑖 . Γ ⊢ 𝑠𝑟𝑖 : 𝑡 &𝜑sr𝑖

Γ ⊢ select{ −→sr } : 𝑡 &𝜑sr1 ⊕ · · · ⊕ 𝜑
sr

𝑛

(T-Select)

Γ(𝑦) = channel(𝑡 ′, 𝑐) Γ [𝑥 ↦→ 𝑡 ′] ⊢ 𝑒 : 𝑡 &𝜑

Γ ⊢ case𝑥 :=← 𝑦 ⇒ 𝑒 : 𝑡 & SelGet(𝑐, 𝜑)
(T-Select-Get)

Γ(𝑥) = channel(𝑡 ′, 𝑐) Γ(𝑦) = 𝑡 ′ Γ ⊢ 𝑒 : 𝑡 &𝜑

Γ ⊢ case𝑥 ← 𝑦 ⇒ 𝑒 : 𝑡 & SelPut(𝑐, 𝜑)
(T-Select-Put)

Fig. 9. Type and effect system for 𝜆chan.

to our setting as we do not model functions in the calculus. In the case of conditionals, one could

extend the calculus presented here to have e.g., effect 𝑏1 be a sub-effect of 𝑏1+𝑏2. Instead of doing so,
we will present a more general approach in our effect generation rules of Section 4 that care about

preserving the termination of the effects. If one wishes to support sub-typing and sub-effecting in

the generation of programs, the rules of Nielson and Nielson [1999] could be added in the rules

defined in Section 4.

4 TERMINATING EFFECTS
The type and effect system captures the communication behavior of 𝜆chan programs and can be

used to generate valid programs given a type and an effect. However, how can we predict what the

result of executing such programs should be? It is insufficient to know the effect of a program: we

need a stronger property that can be automatically checked. In this paper, we focus on termination.

That is, we want to generate effects (and ultimately programs) that terminate for any execution. If

such a program fails to terminate (or crashes) we will have found a bug.

We are now left with the question of: how do we generate an interesting terminating effect? Not

all effects correspond to terminating programs. Take, for example, the effect Chan(𝑐);Get(𝑐)
which fails to terminate since there is no put operation on the channel 𝑐 , and the get operation

hangs forever. Conversely, not all terminating programs are interesting. The effect 𝜖; Spawn(𝜖)
terminates, but such effects are probably uninteresting for testing an implementation of channels

and processes. To overcome these issues, we generate a terminating effect 𝜑 in three steps:
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(1) (Generation) We define a context-free grammar of terminating effects that cause a lot of

channel contention, i.e. communication over the same channels by multiple processes. We

prove that the programs that are in the language of effects must terminate.

(2) (Expansion) We duplicate fragments of the effect, to make it more interesting, while pre-

serving termination.

(3) (Reordering) We reorder fragments of the effect while preserving termination.

We focus on termination as our correctness oracle and hence we shall not concerned with the

particular values that flow over channels, only the communication itself. Thus, and for simplicity,

we only consider channels of unit type. We leave it as interesting future work to determine if

sending or receiving more elaborate values can reveal additional buggy behavior.

We shall use these important definitions in the proofs:

Definition 4.1 (Final). A configuration 𝑃 is final if there is no other configuration 𝑃 ′ such that

𝑃 ⇒ 𝑃 ′, i.e. the configuration cannot take a step according to the evaluation relation⇒.

Definition 4.2 (Terminated). A process 𝑝 in a configuration 𝑃 where 𝑝 ∈ dom(𝑃) is terminated if

the expression of 𝑝 is a value, i.e., 𝑃 (𝑝) ∈ Value. A configuration is terminated if all its processes

are terminated.

Definition 4.3 (Terminating). A configuration 𝑃 is said to be terminating if all its executions

reach a terminated configuration, i.e. for all 𝑃 ′ that are final and such that 𝑃 ⇒★ 𝑃 ′, then 𝑃 ′ is
terminated. An expression 𝑒 is said to be terminating if the configuration [𝑝 : 𝑒] is terminating. An

effect 𝜑 is said to be terminating if all expressions 𝑒 that have this effect (i.e., 𝑒 : 𝑡 & 𝜑 for some 𝑡 )

are terminating.

4.1 Effect Generation
The first step is to generate a terminating effect. Figure 10 shows an inductive definition of a

sub-language of effects. This sub-language is inspired by common concurrency patterns and aims to

capture programs whose execution cause contention on channels, i.e. causes multiple simultaneous

operations on the same channels, with the hope of discovering races or deadlocks. We shall discuss

each rule in detail shortly. An important property is that each rule is compositional in the sense that

the channels are always fresh. That is, each rule may introduce a set of channels, but no sub-effect

can refer to the same channels.

The (G-Final), (G-Seq), (G-Choice) and (G-Spawn) rules are straightforward. For (G-Final), the

empty effect is always terminating. For (G-Seq), if we have two terminating effects and they do not

reference the same channels then their sequence must be terminating. For (G-Choice), if we have

two terminating effects then choosing one of them is terminating. For (G-Spawn) if an effect is

terminating then running it in a fresh process is terminating.

We now discuss the rest of the rules in turn.

(G-PingPong). It is easy to see that the effect:

Spawn(Put(𝑐));Get(𝑐)
where 𝑐 is a fresh channel is a terminating effect. The effect has exactly one get and one put

operation on 𝑐 and each operation happens in different processes; one in a fresh process and the

other in the original process. We can generalize the effect to a sequence of get and put operations:

Spawn( [Put(𝑐)]𝑛0); [Get(𝑐)]𝑛0
where [𝜑]𝑛0 means that 𝜑 is repeated 𝑛 + 1 times. This effect is also terminating, since we assume

(and we will continue to assume) that the channel 𝑐 is fresh and because each get operation is
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𝜖 ∈ Generation (G-Final)

𝜑1 ∈ Generation 𝜑2 ∈ Generation
𝜑1;𝜑2 ∈ Generation

(G-Seq)

𝜑1 ∈ Generation 𝜑2 ∈ Generation
𝜑1 + 𝜑2 ∈ Generation

(G-Choice)

𝜑 ∈ Generation
Spawn(𝜑) ∈ Generation

(G-Spawn)

𝑐 is fresh 𝜑𝑖 ∈ {Get(𝑐), Put(𝑐)} 𝑛 > 0

Spawn(□; [𝜑𝑖 ;□]𝑛0); [□;𝜑𝑖 ]
𝑛
0 ∈ Generation

(G-PingPong)

∀𝑖 .𝑐𝑖 is fresh 𝜑𝑖 ∈ {Get(𝑐𝑖 ), Put(𝑐𝑖 )} 𝑛 > 0

[Spawn(□;𝜑𝑖 ;□)]𝑛0; [□;𝜑𝑖 ]
𝑛
0 ∈ Generation

(G-FanOut)

∀𝑖 . 𝑐𝑖 is fresh 𝑛 > 0

[Spawn(□;Get(𝑐𝑖−1);□; Put(𝑐𝑖 );□);□]𝑛1; Put(𝑐0);□;Get(𝑐𝑛) ∈ Generation
(G-Pipeline)

∀𝑖 .𝑐𝑖 is fresh 𝜑𝑖 ∈ {Get(𝑐𝑖 ), Put(𝑐𝑖 )} 𝑚,𝑛 > 0

[[Spawn(□;𝜑𝑖 ;□)]𝑛0;□]
𝑚
0 ; [□; branch(shuffle( [𝜑𝑖 ]𝑛0)) ⊕ . . . ⊕ branch(shuffle( [𝜑𝑖 ]𝑛0))︸                                                                     ︷︷                                                                     ︸

arbitrary number of branches (>0)

]𝑚0

∈ Generation

(G-Select)

branch(Get(𝑐);𝜑1; . . . ;𝜑𝑛) = SelGet(𝑐,□;𝜑1;□; . . . ;□;𝜑𝑛) (Branch-Put)

branch(Put(𝑐);𝜑1; . . . ;𝜑𝑛) = SelPut(𝑐,□;𝜑1;□; . . . ;□;𝜑𝑛) (Branch-Get)

Fig. 10. Deadlock-Free Effects. [𝑥𝑖 ]𝑏𝑎 is defined as 𝑥𝑎;𝑥𝑎+1; · · · ;𝑥𝑏−1;𝑥𝑏 . shuffle(𝜑0; . . . ;𝜑𝑛) is a random
permutation of the sequence of effects 𝜑0; . . . ;𝜑𝑛 .

matched by a corresponding put operation. We can further generalize the effect by observing

that there is no reason for all the put operations to happen in the spawned process and all the

get operations to happen in the original process. Instead, we simply need to make sure that the

operations are pairwise matched:

Spawn( [𝜑𝑖 ]𝑛0); [𝜑𝑖 ]𝑛0
where 𝜑𝑖 = {Get(𝑐), Put(𝑐)} and 𝜑𝑖 denotes the dual effect of 𝜑𝑖 . We can make one final general-

ization. If □, □′𝑖 , and □
′′
𝑖 are terminating effects then we can interleave these effects to get:

Spawn(□; [𝜑𝑖 ;□′𝑖 ]𝑛0); [□′′𝑖 ;𝜑𝑖 ]𝑛0
where, as before, 𝜑𝑖 = {Get(𝑐), Put(𝑐)}. For simplicity, we will abuse notation and write simply □
without subscripts with the understanding that each occurrence of □ corresponds to a terminating

effect not necessarily equal to any other □ occurrence. Hence the above rule is equivalent to the

shorter and more readable rule:

Spawn(□; [𝜑𝑖 ;□]𝑛0); [□;𝜑𝑖 ]𝑛0
where, as before, 𝜑𝑖 = {Get(𝑐), Put(𝑐)}. We call this generation rule (G-PingPong) because it

subsumes two processes exchanging messages, while possibly participating in other interleaved

communication patterns.
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(G-FanOut). In the previous rule, we started with:

Spawn(Put(𝑐));Get(𝑐)

which is terminating if 𝑐 is a fresh channel. We can generalize this in a different direction by

introducing another channel and process:

Spawn(Put(𝑐1)); Spawn(Put(𝑐2));Get(𝑐1);Get(𝑐2)

This effect is terminating because there is exactly one get and one put on each of the channels 𝑐1 and

𝑐2, and the operations on 𝑐1 can synchronize and afterwards the operations on 𝑐2 can synchronize.

We can generalize this to any number of channels and processes:

[Spawn(Put(𝑐𝑖 ))]𝑛0; [Get(𝑐𝑖 )]𝑛0

This effect is terminating by the same argument as above. As before, we can use the notion of dual

effect to abstract over where the get and put operations happen:

[Spawn(𝜑𝑖 )]𝑛0; [𝜑𝑖 ]𝑛0

where 𝜑𝑖 = {Get(𝑐𝑖 ); Put(𝑐𝑖 )} and each channel 𝑐𝑖 is fresh. Finally, we can interleave the effect

with other terminating effects:

[Spawn(□;𝜑𝑖 ;□)]𝑛0; [□;𝜑𝑖 ]𝑛0

where, as before, 𝜑𝑖 = {Get(𝑐𝑖 ); Put(𝑐𝑖 )} and each channel 𝑐𝑖 is fresh. We call this generation

rule (G-FanOut) since it subsumes a process that spawns several sub-processes to do work before

collecting all their results. The (G-PingPong) and (G-FanOut) rules look strikingly similar, but yet

they are different: The (G-PingPong) rule has 1 channel and 2 processes whereas the (G-FanOut)

rule has 𝑛 channels and 𝑛 + 1 processes.

(G-Pipeline). It is easy to see that the effect:

Spawn(Get(𝑐0); Put(𝑐1)); Put(𝑐0);Get(𝑐1)

is terminating if 𝑐0 and 𝑐1 are fresh channels. The put operation, on 𝑐0, in the original process

causes the get operation, on 𝑐0, in the spawned process to proceed. This in turn causes the put

operation on 𝑐1 in the spawned process to trigger which finally can synchronize with the original

process. We can generalize this to a pattern where a message is sent from the original process

through a pipeline of other processes before finally being returned to the original process:

[Spawn(Get(𝑐𝑖−1); Put(𝑐𝑖 ))]𝑛1; Put(𝑐0);Get(𝑐𝑛)

Here each spawned process 𝑖 waits to a receive a message on channel 𝑖 and once it does it sends it

along on channel 𝑖 + 1. The original process starts the pipeline with a put on 𝑐0 and receives the

final result on 𝑐𝑛 . As before, we can interleave terminating effects:

[Spawn(□;Get(𝑐𝑖−1);□; Put(𝑐𝑖 );□)]𝑛1; Put(𝑐0);□;Get(𝑐𝑛)

We call this rule (G-Pipeline) as it models a pipeline of processes where each process hands of its

message to the next in the pipeline.
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(E-Choice-Dup)

𝜑 →𝐸 𝜑 + 𝜑

(E-Get-Select)

Get(𝑐) →𝐸 (SelGet(𝑐, 𝜖)) ⊕ (SelGet(𝑐, 𝜖))

(E-Put-Select)

Put(𝑐) →𝐸 (SelPut(𝑐, 𝜖)) ⊕ (SelPut(𝑐, 𝜖))

(E-Seq)

𝜑1, 𝜑2 ∈ Generation
𝜑 →𝐸 𝜑1;𝜑;𝜑2

(E-Select-Dup)

𝑖 ∈ {1, 2}
𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

2 →𝐸 𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

𝑖 ⊕ 𝜑𝑠𝑟
2

Fig. 11. Effect Expansion Rules.

(G-Select). Consider the following effect:

𝜑0 = Spawn(Put(𝑐1)); Spawn(Put(𝑐2))

This effect can be safely combined with a process that will read exactly once on channel 𝑐1 and

once on channel 𝑐2, in any order. The effect of such a process could for example be the following:

𝜑1 = (SelGet(𝑐1,Get(𝑐2))) ⊕ (SelGet(𝑐2,Get(𝑐1)))

The combined effect 𝜑0;𝜑1 is a terminating effect. The same reasoning can be applied to more

channels. For example, consider the following effect:

𝜑 ′0 = Spawn(Put(𝑐1)); Spawn(Put(𝑐2)); Spawn(Put(𝑐3))

This can safely be combined with:

𝜑 ′1 = (SelGet(𝑐1,Get(𝑐2);Get(𝑐3)))
⊕ (SelGet(𝑐1,Get(𝑐3);Get(𝑐2)))
⊕ (SelGet(𝑐2,Get(𝑐1);Get(𝑐3)))
⊕ (SelGet(𝑐2,Get(𝑐3);Get(𝑐1)))
⊕ (SelGet(𝑐3,Get(𝑐1);Get(𝑐2)))
⊕ (SelGet(𝑐3,Get(𝑐2);Get(𝑐1)))

Or with any select composed of a subset of these branches. This is exactly what the (G-Select) rule

generalizes: it communicates𝑚 times over 𝑛 channels, and generates𝑚 select constructs composed

of an arbitrary number of branches. Each select will communicate exactly once over each channel.

4.2 Effect Expansion
The second step is to expand the terminating effect to make it more interesting. Figure 11 shows

the expansion rules. These rules are given as a term rewriting system and can be applied to any

sub-effect of a given effect. The expansion rules preserve termination, but not necessarily semantics.

This makes sense since our goal is to generate terminating programs. Not all rules are in themselves

interesting, but they may enable further rules.

(E-Choice-Dup). The rule simply copies an effect 𝜑 into a choice effect 𝜑 + 𝜑 . Clearly if 𝜑 is

terminating then so is the 𝜑 + 𝜑 .
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(R-Select)

𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

2 →𝑅 𝜑𝑠𝑟
2 ⊕ 𝜑𝑠𝑟

1

(R-ChoiceSelectGetGet)

(Get(𝑐1);𝜑1) + (Get(𝑐2);𝜑2) →𝑅 (SelGet(𝑐1, 𝜑1)) ⊕ (SelGet(𝑐2, 𝜑2))

(R-Spawn-1)

Spawn(𝜑1); Spawn(𝜑2) →𝑅 Spawn(𝜑2); Spawn(𝜑1)

(R-Spawn-2)

Spawn(𝜑1); Spawn(𝜑2) →𝑅 Spawn(Spawn(𝜑2);𝜑1)

Fig. 12. Effect Reordering Rules.

(E-Select-Dup). The rule duplicates a case of a select effect. This has no semantic effect, but

allows us to generate programs such as:

select {

case x <- c1 => ...

case x <- c2 => ...

case x <- c2 => ...

}

where the same channel is selected from multiple times.

(E-Get-Select) and (E-Put-Select). The rule replaces a get (resp. put) operation Get(𝑐) (resp.
Put(𝑐)) by a select operation with two identical cases that have empty bodies. This is semantically

equivalent to an ordinary get (resp. put) operation.

(E-Seq). The rule expands a terminating effect to a sequence of terminating effects.

4.3 Effect Reordering
The third step is to reorder the terminating effect. Figure 12 shows the reordering rules. Similar to

the expansion rules, these are rewrite rules that can be applied inside any generated effect and do

not influence termination.

(R-Select). The rule states that in a select effect, the order of the two cases can be swapped

without affecting termination. This rule is interesting, because if we have two select expressions:

select {

case x <- c1 => ...

case y <- c2 => ...

}

select {

case x <- c1 => ...

case y <- c2 => ...

}

then reordering the last select expressions means that if any locks are taken on the channels 𝑐1 and

𝑐2 the implementation has to be very careful about the order in which they are acquired, so as to

not cause a deadlock between the two select expressions.

(R-Choice-SelectGetGet). The rule states that if we have a choice between two effects of the

shape (Get(𝑐1);𝜑1) and (Get(𝑐2);𝜑2), then it can be replaced by the form (SelGet(𝑐1, 𝜑1)) ⊕
(SelGet(𝑐2, 𝜑2)). This is because a choice provides a stronger guarantee than a select: for a choice

to terminate, both branches should terminate, whereas for a select to terminate only the branch

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.



186:16 Quentin Stiévenart and Magnus Madsen

selected based on which channel is ready to synchronize need to terminate. It is then safe to

transform a choice into a selection. The opposite is not true: To preserve termination, a select can

not be replaced by a choice.

(R-Spawn-1). The rule states that a sequence of two spawns Spawn(𝜑1) ; Spawn(𝜑2) can be

replaced by an effect where the order of spawns are swapped: Spawn(𝜑2) ; Spawn(𝜑1).

(R-Spawn-2). The rule states that a sequence of two spawns: Spawn(𝜑1) ; Spawn(𝜑2) can be

replaced by an effect where one spawn is nested inside the other: Spawn(Spawn(𝜑2) ; 𝜑1).

4.4 Termination Theorems
Theorem 4.4 (Generated Effect Terminates). If 𝜑 ∈ Generation, then 𝜑 is a terminating effect.

Theorem 4.5 (Rewrite Rules Preserves Termination). If 𝜑 is terminating, applying any rewrite

rule of Figure 11 (expansion), or Figure 12 (reordering) to 𝜑 preserves termination.

The detailed proofs are available in the technical report
1
.

5 IMPLEMENTATION
To evaluate our approach, we have implemented program generators for the Go, Kotlin, Crystal,

and Flix programming languages. The tool generates an effect using the rules described in Section 4.

The effect is translated into a 𝜆chan expression which is then translated into a program in each of

the target languages.

5.1 Effect Generation
The implementation closely mirrors the rules outlined in Section 4. We assign a weight to each

rule. The weight determines how likely the rule is to be applied: the heavier the weight, the more

often the rule is chosen. We discuss the choice of weights in Section 6.2.

5.2 Program Generation
Given a terminating effect 𝜑 , we generate an expression 𝑒 : unit&𝜑 by following the type and

effect system of Section 3. Each type and effect describes a set of expressions. We randomly generate

a specific program for the target programming language from a type and effect as follows:

(1) We recursively translate the type and effect into expressions (or statements) of the target

language corresponding to the appropriate channel operations. Whenever a type and effect

maps to multiple possible expressions or statements, we choose one at random (see below).

(2) We collect all channels that occur in the effect and let-bind them such that they are visible in

the generated expression (or statement) from Step 1. It is safe to do so, since channels are

given static names, as discussed in Section 3.

(3) We wrap the entire generated expression (or statement) from Step 2 in an appropriate main

method with appropriate imports and so forth for the target language.

Example I. Given the (non-terminating) effect:

Spawn(Put(𝑐1) + Put(𝑐2)) ; Get(𝑐1)
we non-deterministically translate it into the Flix expression:

spawn { if (true) c1 <- () else c2 <- () }; <- c1

or

1
Available at https://soft.vub.ac.be/Publications/2020/vub-tr-soft-20-15.pdf
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spawn { if (false) c1 <- () else c2 <- () }; <- c1

The entire generated Flix program, in the first case, is then:

def main (): Unit =

let c1 = chan 0;

let c2 = chan 0;

spawn { if (true) c1 <- () else c2 <- () };

<- c1

Given the terminating effect Spawn(Put(𝑐) + Put(𝑐)) ; Get(𝑐) it is equally valid to generate

expressions such as:

spawn { if (true) c <- () else c <- () }; <- c

spawn { if (false) c <- () else c <- () }; <- c

spawn { if (1 == 1) c <- () else c <- () }; <- c

spawn { if (1 != 1) c <- () else c <- () }; <- c

spawn { if (true) c <- 123 else c2 <- 456 }; <- c

spawn { if (Random.nextBool ()) c <- 123 else c <- 456 }; <- c

And so forth. The type and effect system, together with the proofs, guarantees that such programs

must terminate.

Example II. Given the terminating effect:

Spawn(Get(𝑐1)); Spawn(Put(𝑐2)); ((Put(𝑐1);Get(𝑐2)) + (Get(𝑐2); Put(𝑐1)))
we non-deterministically translate it into Crystal as:

spawn do c1.receive end;

spawn do c2.send(nil) end;

if b

c1.send(nil); c2.receive

else

c2.receive; c1.send(nil)

end

or with a different ordering on the conditional branches:

spawn do c1.receive end;

spawn do c2.send(nil) end;

if b

c2.receive; c1.send(nil)

else

c1.send(nil); c2.receive

end

The entire generated program, in the first case, can then be:

def main ():

c1 = Channel(Nil).new

c2 = Channel(Nil).new

spawn do c1.receive end;

spawn do c2.send(nil) end;

if true

c2.receive; c1.send(nil)

else

c1.send(nil); c2.receive

end
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Example III. Given the terminating effect:

Spawn(Put(𝑐1);Get(𝑐2));Get(𝑐1); Put(𝑐2) ⊕ Put(𝑐1);Get(𝑐2)

we non-deterministically translate it into Kotlin as:

launch { c1.send(Unit); c2.receive () } };

select <Unit > {

c1.onReceive { _ -> c2.send(Unit) }

c1.onSend { _ -> c2.receive () }

}

or with a different ordering on the select clauses:

launch { c1.send(Unit); c2.receive () } };

select <Unit > {

c1.onSend { _ -> c2.receive () }

c1.onReceive { _ -> c2.send(Unit) }

}

The entire generated program, in the first case, is then:

object Main {

fun main (...): Unit = runBlocking <Unit > {

val c1 = Channel <Unit >();

val c2 = Channel <Unit >();

launch { c1.send(Unit); c2.receive () } };

select <Unit > {

c1.onReceive { _ -> c2.send(Unit) }

c1.onSend { _ -> c2.receive () }

}

}

5.3 Detecting Bugs
Each generated program is executed with a timeout of 30 seconds. If the program crashes, we have

found a bug in the programming language implementation. If the program times out, we flag it for

manual inspection to determine if it has deadlocked.

Manual inspection was performed by the two authors, and entailed the following:

(1) We rerun the programmultiple times with a higher timeout: if any execution fails to terminate,

it is likely that the program contains a deadlock. A small-sized program rarely takes several

minutes to terminate (unless something is wrong).

(2) When available, we use language tools such as the JVM runtime deadlock detection tool and

manual inspection of threads and locks to assess whether the program language runtime

deadlocked. When not available (in the case of Crystal), we rely solely on manual inspection.

(3) In addition to proving the correctness of the generation rules, we manually inspect the

generated program to convince ourselves that all of its executions must terminate. A sample

of the programs are included, so the reader is free to verify this for him or herself.

We experimentally choose a timeout of 30 seconds. A low timeout may result in many programs

being flagged for manual inspection, as the timeout includes the time to compile and execute the

program. A high timeout, on the other hand, will reduce the throughput of the program generator.
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6 EVALUATION
We have proved the soundness of our technique. A program with an effect generated by the rules

must always terminate. Our primary experimental research question is then whether the technique

is useful for finding bugs in real-world programming languages.

To evaluate the technique, we consider three experimental research questions:

• RQ1: is the technique able to find bugs in real-world programming languages?

• RQ2: are the generation, expansion, and reordering rules useful?

• RQ3: what weight heuristics increase the chance of finding bugs?

We ran our technique on the four languages listed in Table 1. The table also shows the number

of GitHub stars and the rank of each programming language in the TIOBE index as of August

2020 [TIOBE 2020]. The maturity of the channel and process implementation is also indicated

by the number of years since it was integrated into the language. In total we tested 164 different

compiler versions.

All experiments were run on a docker environment set up with 16GB of RAM, on a 2015 Dell

PowerEdge R730 with 2 Intel Xeon 2637 processors with a frequency of 3GHz.

Table 1. Tested Programming Languages.

Language / Library Versions Total Versions Channels Since GitHub Stars TIOBE

Flix 0.5.0 – 0.8.1 7 Feb. 26, 2019 530 n/a

kotlinx-coroutine 0.19 – 1.3.3 39 Feb. 7, 2017 8,000 29

Crystal 0.19.0 – 0.32.1 33 Apr. 30, 2015 15,100 51-100

Go 1 – 1.13.6 85 Nov. 10, 2009 75,700 11

6.1 RQ1: Finding Bugs
We ran our technique on every version of Go, Kotlin, Crystal, and Flix listed in Table 1. As explained

earlier, we execute each generated program with a timeout of 30 seconds. If the program crashes,

we have found a bug in the programming language implementation. If the program times out, we

flag it for manual inspection to determine if it has deadlocked. Each bug we found was discovered

in a few minutes by our tool, after generating a couple of hundred programs. In every single case we

observed, when a program timed out it was due to a bug in the programming language implementation.

We have looked through the GitHub issue trackers for the respective languages to discover if our

tool missed in any known concurrency bugs within the scope of our paper. At the time of writing,

we did not discover any such bugs.

We now report on the results for each programming language.

Flix
We ran our implementation on Flix from version 0.5.0 (the first version to support channels) until

version 0.8.1. In total, we tested 7 versions of Flix.

We found two bugs in the channel and process implementation, which have been confirmed

and fixed in version 0.8.1. The first bug, which we refer to as Flix I, was discussed in Section 2 and

causes a deadlock. Figure 13 shows a program that demonstrates the second bug, which we call

Flix II. When this program is compiled with Flix 0.5.0 and 0.6.0, the compiler emits illegal JVM

bytecode which causes the program to crash. Neither of these bugs were previously discovered,

despite an extensive test suite for channel and processes with more than 345 unit tests spanning

more than 3,500 lines of code.
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Flix
1 def main (): Unit = {

2 let c1 = chan Unit 0;

3 // ... channels c2 to c4 ...

4 spawn {

5 select {

6 case _ <- c3 => c4 <- ()

7 case _ <- c3 => c4 <- ()

8 }; ()

9 };

10 spawn { <- c2; c3 <- () };

11 spawn { <- c1; c2 <- () };

12 c1 <- ();

13 <- c4

14 }

Fig. 13. A Generated Program that Crashes in Flix.

Crystal
We ran our implementation on all available versions of Crystal between version 0.19.0 (the first

version to have the channels API), and version 0.32.1. In total, we tested 33 versions of Crystal.

We found a bug that results in a deadlock with Crystal starting at version 0.19.0 (released on

September 2, 2016), until it was fixed in version 0.23.0 (released on July 27, 2017). This bug remained

in the official releases of Crystal for almost a year (330 days), and impacted 13 releases. The bug

was reported on the Crystal issue tracker on January 8, 2017
2
.

Figure 14 shows a program that triggers the bug. The program contains three channels, c1, c2,
and c3, and spawns three threads (that we number 1 to 3), in addition to the main thread (that we

number 0). The situation before the select of thread 0 is executed is the following, assuming other

threads have progressed as much as they can: thread 1 is trying to receive on channel c1, thread 2

is trying to receive on channel c3, and thread 3 is trying to send on channel c2. When executing

the select of thread 0, all communications can be fulfilled: a value is sent to c3, allowing thread 2

to finish its execution, a value is then sent to c1, allowing thread 1 to finish its execution, and a

value is read from c2, allowing thread 3 to finish its execution. Thread 0 can then also finish its

execution. Hence, no deadlock is present in the code.

However, running this with a version of Crystal between 0.19.0 and 0.22.0 results in a deadlock.

The fix for this bug consists of a single line, changing the definition of an empty channel in Crystal,

from being a channel with no value, to being a channel with no value and no senders.

We believe our work is the first that tries to fuzz concurrency runtimes. We did, however, run

the popular state-of-the-art C fuzzer AFL
3
on a buggy version of Crystal. We ran AFL for 72 hours,

generating more than 2 million programs, without discovering the bug we found or any other bugs.

If AFL had managed to generate a non-terminating program that, however, would not by itself

tell us anything. Either the program does not terminate because it exposes a bug in the language

runtime or it does not terminate because the program itself contains a deadlock.

Our work has the critical property that every generated program must terminate. Hence we can

use termination as an oracle for correctness. This is simply not possible with generic fuzzers: A

generic fuzzer cannot automatically find the deadlock bugs found by our work.

2
https://github.com/crystal-lang/crystal/issues/3862

3
http://lcamtuf.coredump.cx/afl
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Crystal
1 def main()

2 c1 = Channel(Nil).new

3 c2 = Channel(Nil).new

4 c3 = Channel(Nil).new

5 # Thread 1

6 spawn do c1.receive end

7 spawn do # Thread 2

8 select

9 when _ = c3.receive

10 nil

11 when _ = c3.receive

12 nil

13 end

14 end

15 # Thread 3

16 spawn do c2.send(nil) end

17 select # Thread 0

18 when _ = c3.send(nil)

19 c1.send(nil)

20 c2.receive

21 when _ = c3.send(nil)

22 c1.send(nil)

23 c2.receive

24 end

25 end

Fig. 14. A Generated Program that Deadlocks in Crystal.

Kotlin
We ran our implementation on all versions of the kotlinx-coroutine library available on Maven

between version 0.19 (the first version of the library available on Maven) and version 1.3.3. This

makes a total of 39 versions of the library that were tested
4
.

We found a bug that result in a crash with the kotlinx-coroutine library starting at version 0.19

(released in September 2017), until it was fixed in version 0.26.0 (released in September 2018). The

bug causes the program to crash with a stack overflow exception. This bug remained in the official

releases of the kotlinx-coroutine for a year, and impacted 20 releases. The bug was reported on the

Kotlin issue tracker on August, 21, 2018
5
. Notably, the bug report speculates that there could be a

bug, but does not include a program fragment that reproduces the problem.

Figure 15 shows a program that triggers the bug. The program has five channels (c1 to c5), along
with five created processes that each perform an operation on one of the channel, either a receive or

a send. The main thread performs the dual operation on all five channels using a select expression.
The select expression contains multiple branches, but all branches will correctly perform the dual

operations that is performed by the other threads for each channel, as discussed in Section 4. Hence,

the program must terminate. However, it results in a crash with kotlinx-coroutine version 0.19

until 0.26.0. This bug was indirectly fixed as part of a major rework of the concurrency model
6
.

4
In Kotlin, channels are implemented as part of the standard library using coroutines.

5
https://github.com/Kotlin/kotlinx.coroutines/issues/504

6
https://github.com/Kotlin/kotlinx.coroutines/releases/tag/0.26.0
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Kotlin
1 object Main {

2 fun main (...): Unit = runBlocking <Unit > {

3 val c1 = Channel <Unit >();

4 // ... channels c2 to c5 ...

5 launch { // Thread 1

6 select <Unit > {

7 c5.onReceive { _ -> Unit }

8 c5.onReceive { _ -> Unit }

9 c5.onReceive { _ -> Unit }

10 }

11 };

12 launch { c4.receive () }; // Thread 2

13 launch { c3.receive () }; // Thread 3

14 launch { c2.send(Unit) }; // Thread 4

15 launch { c1.send(Unit) }; // Thread 5

16 select <Unit > { // Thread 0

17 c2.onReceive { _ ->

18 c4.send(Unit); c1.receive (); c5.send(Unit); c3.send(Unit)

19 }

20 c5.onSend(Unit) {

21 c2.receive (); c3.send(Unit); c1.receive (); c4.send(Unit)

22 }

23 c3.onSend(Unit) {

24 c1.receive (); c2.receive (); c4.send(Unit); c5.send(Unit)

25 }

26 }

27 }

28 }

Fig. 15. A Generated Program that Crashes in Kotlin.

Go
We ran our technique on Go ranging from Go 1 to Go 1.13.6, without finding any bugs. We looked

through the GitHub issue tracker for Go and we were not able to find any bug report of a defect

in its concurrency runtime. It seems that the concurrency runtime was developed “in-house”

before being open-sourced, i.e., the first relevant commit seems to contain a complete and finished

implementation. It is possible that the implementation was already battle-tested internally before

being made publicly available. Thus, to the best of our knowledge, there is no relevant bug in the

Go concurrency runtime for us to reproduce.

Summary for RQ1. We found two previously unknown bugs in Flix, and reproduced two bugs;

one in Crystal and one in Kotlin. While such a number may seem low compared to other fuzzing

approaches, we should remember that these bugs are:

• Critical because they may impact every user of the programming language that relies on

channel- and process-based concurrency,

• Difficult to discover because they involve non-determinism, and

• Semantically deep because they involve complicated implementations (e.g., concurrency,

shared mutable memory, complex locking, etc.).
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Table 2. Experimental Results with Different Heuristics for the Rule Weights.
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Flix I Flix II Crystal Kotlin

Heuristic A 1 1 1 1 1 1 1 1 1 99 32 28 48

Heuristic B 1 1 1 1 1 1 1 1 0 98 0 13 149

Heuristic C 1 1 1 1 1 1 1 0 1 47 0 0 0

Heuristic D 1 1 1 1 1 1 0 1 1 0 36 0 0

Heuristic E 0 0 0 0 0 0 1 1 1 600 0 86 148

Heuristic F 1 1 1 2 2 2 15 1 1 400 12 63 155

Moreover, these bugs were found across multiple languages in trusted components that we expect

to be well-tested. We are not aware, at the time of writing, of any bug report for Flix, Crystal, Kotlin,

and Go that fits within the scope of our tool and which was not found by it. Of course there could

still be bugs unknown to anyone. We answer Q1 by concluding that our technique is useful for

fuzzing channel- and process based concurrency runtimes.

6.2 RQ2: Usefulness of Rules
We have found four bugs in the Kotlin, Crystal, and Flix programming languages using all the

generation, expansion, and reordering rules described in Section 4. We now want to determine

whether all of these rules are useful.

We choose a buggy version of each compiler/runtime (Kotlin with kotlinx-coroutine 0.19, Crystal

0.19, Flix 0.5.0). We then choose a subset of the rules and generate and execute 5,000 programs.

We measure the number of programs that reveal the bug in the compiler/runtime. Our goal is to

understand whether selectively enabling (or disabling) a rule increases (or decreases) the chance of

discovering a bug.

We use individual weights for the generation rules, but group the expansion and reordering rules

into one category since they are fairly uniform. A weight of 0 means that the rule is excluded.

Table 2 shows the result of this experiment. The table shows the weights assigned to every rule

or rule group. The table also shows the number of programs generated, out of 5,000, that reveal a

bug for each of the programming languages. For example, Heuristic A assigns every rule a weight of

one. The results show that Heuristic A generates 99/5,000 Flix programs that reveal bug I, 32/5,000

Flix programs that reveal bug II, 28/5,000 Crystal programs that reveal a bug, and 48/5,000 Kotlin

programs that reveal a bug. We can see that a significant number of programs are required to

discover a bug. For example, for Crystal the ratio 28/5,000 is less than 1%.

Based on the experiments, we observe that:

• Heuristic A, which has all rules with a weight of one, is able to discover 4/4 bugs.

• Heuristic B, which omits the reordering rules, is able to discover 3/4 bugs, but not the Flix II

bug. This suggests that the reordering rules are useful.

• Heuristic C, which omits the expansion rules, is only able to discover 1/4 bugs. This suggests

that the expansion rules are useful.

• Heuristic D, which omits the (G-Select) generation rule, is only able to discover 1/4 bugs.

• Heuristic E, which omits all generation rules except for the (G-Select) rule, is able to find

3/4 bugs. This, together with Heuristic D, supports our claim that the select construct is the
source of significant complexity and is where implementations are often incorrect.
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Summary for RQ2. The experiments suggest that the generation, expansion, and reordering

rules are all useful for discovering bugs. We cannot exclude expansion or reordering rules without

missing bugs. We also cannot limit ourselves to the (G-Select) rule without missing at least one

bug. We did not try all combinations of the rules, since there are exponentially many, but the

experimental results suggests that as a whole the rules are useful. It may be that some specific rule

could be omitted and we would still be able to obtain the same results. But of course there is the

danger of over fitting the rules to the results. We recommend that future implementations begin

with all rules and then work from there. In summary, we answer Q2 by concluding that all rules or

rule groups appear useful.

6.3 RQ3: Weight Heuristics
We now consider the question of how the individual weights assigned to each rule influence the

chance to a find a bug. We use the same experiment and data from Table 2.

Heuristic F has not been mentioned before. It assigns a weight of 1 to most rules, a weight of

2 to the (G-PingPong), (G-FanOut), (G-Pipeline) rules, and a weight of 15 to the (G-Select) rule.
Heuristic F is the rule we used while developing the tool before we considered any of the other

heuristics from Table 2. We choose the weights based on “eye-balling” the generated programs, i.e.

some subjective measure of “does this program look interesting”.

In the following, we shall use the term “success rate” to refer to the ratio of programs that reveal

a bug to those that do not. Based on the experiments, we observe that:

• Heuristic E has the highest success rate for Flix I.

• Heuristic D has the highest success rate for Flix II, followed by Heuristic A.
• Heuristic E has the highest success rate for Crystal, followed by Heuristic F
• Heuristic F has the highest success rate for Kotlin, followed by Heuristic B and F.

The results suggest that there is no unequivocally best heuristic. The results also show that changing

the weights may significantly increase or decrease the success rate. Based onHeuristic A,Heuristic E,
and Heuristic F it seems that, except for Flix II, increasing the weight of the (G-Select) rule does
improve the success rate across the board. If we compare Heuristic A (every rule has weight one)

and Heuristic E (our eye-balled weights), it appears that there is no strong reason to try “guess”

good weights from the outset. WhileHeuristic F has a high success rate for Flix I, Crystal, and Kotlin
the major worry is that it might miss Flix II. It is important that the success rate is balanced so that

we are most likely to discover all bugs. Consequently, we recommend that future implementations

start by giving every rule equal weight.

Summary for RQ3. The experiments suggest that there is no unequivocally best heuristic. Tuning

the weights may significantly increase or decrease the chance to discover one bug, but may be to

the detriment of discovering another bug.

7 RELATEDWORK
Concurrency. Hoare introduced the communicating sequential process calculus (CSP) which is

used as the foundation for the concurrency features of Go, Kotlin, Crystal, and Flix [Hoare 1978].

Type and Effect Systems. Nielson et al. present a type and effect system for a calculus with

channels and processes [Nielson et al. 2015]. We build on their work and extend it with the select
construct which is strictly more powerful than ordinary get and put operations, since it is able to

wait on multiple channels simultaneously.

Compiler Testing. Yang et al. present Csmith, a program generation technique to discover bugs in

C compilers [Yang et al. 2011]. Csmith generates a C program, compiles it using several compilers,
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runs the executables, and compares their results. If the results differ there is likely a bug. In our

work, we use termination as the criteria to determine if an execution was correct, but given that Go,

Kotlin, Crystal, and Flix have similar semantics, it would be interesting to investigate if differential

testing can be applied to these languages.

Le et al. present the idea of equivalence modulo inputs (EMI), a technique to transform a program

while keeping it semantically equivalent to the original program when given the same input [Le

et al. 2014]. This is done by modifying unreachable parts of the program, and if the execution of

the mutated program changes, there is likely a bug in the compiler. We speculate that applying the

EMI technique to our setting will be difficult due to non-determinism.

Pałka et al. present a technique to generate random programs that are type correct by construc-

tion [Pałka et al. 2011]. The key idea is to read the type rules “backwards” to iteratively construct a

type correct program in a goal-directed, bottom-up fashion.

Midtgaard et al., building on the work of Pałka et al., present a type and effect system for OCaml

that captures evaluation order dependence of function arguments [Midtgaard et al. 2017]. Using the

type and effect system, Midtgaard et al. implement a program generator that constructs programs

where argument evaluation order is immaterial. The authors apply the technique to two OCaml

backends finding several bugs in the process. Our work is inspired by Midtgaard et al., but our

calculus and effect system are significantly richer.

Felleisen et al. present PLT Redex, a domain-specific language designed for specifying and

debugging operational semantics [Felleisen et al. 2009]. PLT Redex can generate expressions that

satisfy the grammar of a language, but this generation is not driven by the type and effect system of

the language, and can generate many ill-typed terms. Fetscher et al. improve on this by generating

well-typed terms from the typing judgments of a Redex specification [Fetscher et al. 2015].

Program Fuzzing. Miller et al. introduced blackbox fuzzing to automatically find bugs in pro-

grams, but in a way that is typically limited to shallow bugs [Miller et al. 1990]. Since then, fuzzing

has become a popular technique for automatic test generation, and has been used to test compil-

ers [Cummins et al. 2018; Dewey et al. 2014, 2015; Holler et al. 2012; Köroglu and Wotawa 2019;

Lidbury et al. 2015].

Godefroid et al. introduced grammar-based whitebox fuzzing to overcome the limitations of

fuzzing for programs that operate in multiple phases [Godefroid et al. 2008]. Our technique also

relies on a grammar of valid programs. However, a whitebox approach is not a good fit for programs

using channels, as the input of a whitebox fuzzer is a “sequential deterministic program under

test” [Godefroid et al. 2008].

Zalewski introduced American Fuzzy Lop
7
, a popular coverage-guided mutation-based fuzzer

that has been used to implement multiple other fuzzers [Böhme et al. 2016; Lemieux et al. 2018;

Stephens et al. 2016]. In contrast to these tools, our approach does not aim to maximize a property

of the program under test such as coverage or time, but rather to generate non-deterministic, but

terminating programs.

Mathis et al. introduced parser-directed fuzzing, a lightweight whitebox fuzzing approach that

targets input parsers [Mathis et al. 2019]. In our work, we require not just a syntactically valid

program, but a one that is type-correct and always terminates.

8 CONCLUSION
We have presented an automatic program generation technique to test programming language

implementations of channel and process-based concurrency. The key idea is a type and effect

system that describes programs composed of processes that communicate over channels, but

7
http://lcamtuf.coredump.cx/afl
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always terminate. The type and effect system can be used to drive random program generation to

fuzz the implementation of concurrency runtimes. Using the effect language, we have implemented

a program generator and applied it to Flix, Kotlin, Crystal, and Go. We discovered two previously

unknown bugs in Flix, and reproduced two bugs; one in Crystal and one in Kotlin.

This paper has three important lessons: First, programming language implementors can use

our fuzzing technique to test their concurrency runtimes during development and maintenance.

We think such testing techniques are important since channel and process-based programming

models seem to be gaining traction and are being implemented in many languages. Yet, such

implementations are often tricky to get right. Second, type and effect systems can be used to drive

program generation especially when the semantics of the program we wish to generate are complex.

Third, We think that concurrency runtimes and programming language runtimes in general is an

interesting domain for future fuzzing techniques.

REFERENCES
Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing as Markov Chain. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October

24-28, 2016. 1032–1043. https://doi.org/10.1145/2976749.2978428

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler fuzzing through deep learning. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,

The Netherlands, July 16-21, 2018. 95–105. https://doi.org/10.1145/3213846.3213848

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language fuzzing using constraint logic programming. In ACM/IEEE

International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. 725–730.

https://doi.org/10.1145/2642937.2642963

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP (T). In 30th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 482–493.

https://doi.org/10.1109/ASE.2015.65

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics engineering with PLT Redex. Mit Press.

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments:

Automatically Generating Well-Typed Terms from the Definition of a Type-System. In Programming Languages and

Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 383–405. https://doi.org/10.1007/978-3-

662-46669-8_16

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based whitebox fuzzing. In Proceedings of the

ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.

206–215. https://doi.org/10.1145/1375581.1375607

Charles Antony Richard Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666–677.

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In Proceedings of the 21th USENIX

Security Symposium, Bellevue, WA, USA, August 8-10, 2012. 445–458.

Yavuz Köroglu and Franz Wotawa. 2019. Fully automated compiler testing of a reasoning engine via mutated grammar

fuzzing. In Proceedings of the 14th International Workshop on Automation of Software Test, AST@ICSE 2019, May 27, 2019,

Montreal, QC, Canada. 28–34. https://doi.org/10.1109/AST.2019.00010

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In ACM SIGPLAN

Notices, Vol. 49. ACM, 216–226.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz: automatically generating pathological

inputs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,

Amsterdam, The Netherlands, July 16-21, 2018. 254–265. https://doi.org/10.1145/3213846.3213874

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-core compiler fuzzing. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,

USA, June 15-17, 2015. 65–76. https://doi.org/10.1145/2737924.2737986

Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias Höschele, and Andreas Zeller. 2019. Parser-

directed fuzzing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. 548–560. https://doi.org/10.1145/3314221.3314651

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson, and Hanne Riis Nielson. 2017. Effect-driven

quickchecking of compilers. Proceedings of the ACM on Programming Languages 1, ICFP (2017), 15.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.

https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1109/AST.2019.00010
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3314221.3314651


Fuzzing Channel-Based Concurrency Runtimes using Types and Effects 186:27

Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the Reliability of UNIX Utilities. Commun.

ACM 33, 12 (1990), 32–44. https://doi.org/10.1145/96267.96279

Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. In Correct System Design, Recent Insight

and Advances, (to Hans Langmaack on the occasion of his retirement from his professorship at the University of Kiel)

(Lecture Notes in Computer Science), Ernst-Rüdiger Olderog and Bernhard Steffen (Eds.), Vol. 1710. Springer, 114–136.

https://doi.org/10.1007/3-540-48092-7_6

Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of program analysis. Springer.

Michał H Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an optimising compiler by generating

random lambda terms. In Proceedings of the 6th International Workshop on Automation of Software Test. ACM, 91–97.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In

23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24,

2016.

TIOBE. 2020. TIOBE Index for August 2020. https://www.tiobe.com/tiobe-index//.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In ACM

SIGPLAN Notices, Vol. 46. ACM, 283–294.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 186. Publication date: November 2020.

https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/3-540-48092-7_6
https://www.tiobe.com/tiobe-index//

	Abstract
	1 Introduction
	2 Motivation
	2.1 Channel and Process-based Concurrency
	2.2 Technique in Action
	2.3 Automatic Program Generation

	3 A Channel and Process Calculus
	3.1 Syntax of chan
	3.2 Semantics
	3.3 Types
	3.4 Effects
	3.5 Type and Effect System

	4 Terminating Effects
	4.1 Effect Generation
	4.2 Effect Expansion
	4.3 Effect Reordering
	4.4 Termination Theorems

	5 Implementation
	5.1 Effect Generation
	5.2 Program Generation
	5.3 Detecting Bugs

	6 Evaluation
	6.1 RQ1: Finding Bugs
	6.2 RQ2: Usefulness of Rules
	6.3 RQ3: Weight Heuristics

	7 Related Work
	8 Conclusion
	References

