
Supplementary Material to: Fuzzing Channel-based
Concurrency Runtimes Using Types and Effects

QUENTIN STIÉVENART, Vrije Universiteit Brussel, Belgium
MAGNUS MADSEN, Aarhus University, Denmark

1 PROOFS
1.1 Definitions
We refer the reader to Section 4 of the paper for the definition of final configurations, terminated
process, terminating configuration, and terminating effect. We do require one more definition
before we proceed:

Definition 1.1 (Spawned-By). Consider 𝑒 : 𝜏 & 𝜑 , an expression with effect 𝜑 , where each spawn
effect is assigned a unique identifier. Let us denote the set of the process identifiers that appear in
𝜑 as Δ(𝜑).

Δ(𝜖) = ∅ Δ(Put(𝑐)) = ∅ Δ(Get(𝑐)) = ∅ Δ(𝜑1 + 𝜑2) = Δ(𝜑1) ∪ Δ(𝜑2)

Δ(𝜑1;𝜑2) = Δ(𝜑1) ∪ Δ(𝜑2) Δ(Spawn𝑝 (𝜑)) = {𝑝} ∪ Δ(𝜑) Δ(𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

2) = Δ(𝜑𝑠𝑟
1) ∪ Δ(𝜑𝑠𝑟

2)

Δ(SelGet(_, 𝜑)) = Δ(𝜑) Δ(SelPut(_, 𝜑)) = Δ(𝜑)

Definition 1.2 (Partially Terminated Predicate). The predicate T is defined as follows and
holds if, when 𝑃 is final, then all processes in ps are terminated.

T : Configuration × P(ProcessId) → Bool

T (𝑃, ps) holds if Final(𝑃) =⇒ ∀𝑝 ∈ ps, 𝑃 (𝑝) ∈ Value

1.2 Main Theorems from the Paper
Theorem 1.3 (Generated Effect is Terminating). If 𝜑 ∈ Generation, then 𝜑 is terminating.

Proof. This is a direct consequence of Lemma 1.5, with 𝑃 = [].

Theorem 1.4 (Rewrite Rules Preserves Termination). If 𝜑 is terminating, applying any rewrite

rule (expansion or reordering) to a sub-effect of 𝜑 or 𝜑 itself preserves termination.

Proof. This is a direct consequence of Lemma 1.8 for expansion, Lemma 1.9 for reordering, Lemma ??
for simplification.

Authors’ addresses: Quentin Stiévenart, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium, quentin.stievenart@vub.be;
Magnus Madsen, Aarhus University, Åbogade 34, Aarhus, Denmark, magnusm@cs.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Quentin Stiévenart and Magnus Madsen

1.3 Generation Ensures Termination
Lemma 1.5 (Main Theorem, Rephrased). If 𝑒 : 𝜏 &𝜑 where 𝜑 ∈ Generation, 𝑒 is closed, 𝑃 is a set

of processes, 𝑝0 is a fresh process, and 𝑃 [𝑝0 : 𝑒] ⇒★ 𝑃 ′ then T (𝑃 ′,Δ(𝜑) ∪ 𝑝0).

Proof. By induction on the derivation of 𝜑 ∈ Generation. We make the assumption that channel

names are unique and don’t overlap when generated from different rules.

Case (G-Final). We know that the effect is 𝜖 . We must show that for all expressions 𝑒 that have

effect 𝜖 it must be the case that:

𝑃 [𝑝0 : 𝑒] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(𝜖) ∪ {𝑝0})
We know that Δ(𝜖) = ∅, hence we have to show that 𝑃 ′(𝑝0) ∈ Value. By inversion, there are four

subcases to consider.

Subcase: 𝑒 = 𝑥 . Impossible, because 𝑒 is closed.

Subcase: 𝑒 = (). Because 𝑝0 is final, it cannot progress further and 𝑃 ′(𝑝0) = (), which is a value.

Subcase: 𝑒 = true. Because 𝑝0 is final, it cannot progress further and 𝑃 ′(𝑝0) = true, which is a value.

Subcase: 𝑒 = false. Because 𝑝0 is final, it cannot progress further and 𝑃 ′(𝑝0) = false, which is a

value.

Case (G-Seq). We know that the effect is 𝜑1;𝜑2, where both 𝜑1 and 𝜑2 are known to be terminating

effects, and the channels used by 𝜑1 and 𝜑2 do not overlap. By inversion of the effect typing, we know

that expression of the effect must be of the form:

𝑒1; 𝑒2

where both 𝑒1 and 𝑒2 are known to be terminating. We must show that for all such expressions, it must

be the case that :

𝑃 [𝑝0 : 𝑒1; 𝑒2] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(𝜑1) ∪ Δ(𝜑2))
We know that 𝑒1 is terminating, hence we know that the configuration will always be reduced to a

configuration of the following shape:

𝑃 ′′[𝑝0 : 𝑣 ; 𝑒2]
where T (𝑃 ′′,Δ(𝜑1)). The evaluation rule (E-Process) and (E-Seq) can be applied, resulting in:

𝑃 ′′′[𝑝0 : 𝑒2]
We know that 𝑒2 is terminating (it has effect 𝜑2, which is terminating), and that 𝑃 ′′′ is such that

T (𝑃 ′′′,Δ(𝜑1). Hence, we know that 𝑃 ′′′[𝑝0 : 𝑒2] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(𝜑1) ∪ Δ(𝜑2)).

Case (G-Choice). We know that the effect is 𝜑1 +𝜑2, where both 𝜑1 and 𝜑2 are terminating. For the

sake of simplicity and without loss of generality, we assume the effect to actually be 𝜖; (𝜑1 + 𝜑2). By
inversion of the effect typing, we know that expressions with that effect must be of the form:

if 𝑣0 then 𝑒1 else 𝑒2

Either 𝑣0 is true and E-If-True can apply, or 𝑣0 is false and E-If-False can apply. Consider a configuration
evaluating this expression:

𝑃 [𝑝0 : if 𝑣0 then 𝑒1 else 𝑒2]
With the rule E-Process, it can therefore reach any of the two following configurations:

𝑃 [𝑝0 : 𝑒1] or 𝑃 [𝑝0 : 𝑒2]

, Vol. 1, No. 1, Article . Publication date: October 2020.

Supplementary Material to: Fuzzing Channel-based Concurrency Runtimes Using Types and Effects 3

which both terminate, as 𝑒1 has effect 𝜑1, 𝑒2 has effect 𝜑2, and both 𝜑1 and 𝜑2 are terminating by the

induction hypothesis.

Case (G-Spawn). We know that the effect is of the form Spawn(𝜑), and we know by the induction

hypothesis that 𝜑 is a terminating effect, i.e.:

𝑒 : 𝜏 &𝜑 ∧ 𝑃 [𝑝0 : 𝑒] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(𝜑) ∪ {𝑝0})

We must show that (unfolding the definition of Δ)

∀𝑒 ′.𝑒 ′ : 𝜏 & Spawn
𝑝 (𝜑) ∧ 𝑃 [𝑝0 : 𝑒 ′] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′, {𝑝, 𝑝0})

By inversion on effects we know that the only expression of effect Spawn(𝜑) is the spawn expression:

𝑃 [𝑝0 : spawn 𝑒] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(Spawn(𝜑)𝑝) ∪ {𝑝, 𝑝0})

Let us consider the configuration:

𝑃 [𝑝0 : spawn 𝑒]
for some process map 𝑃 . In order for 𝑝0 to progress, only the rule (E-Spawn) can be applied, resulting

in:

𝑃 [𝑝0 : ()] [𝑝 : 𝑒]
We see that 𝑝0 has terminated. We can apply the induction hypothesis with 𝑝0 = 𝑝 to get:

𝑃 [𝑝0 : ()] [𝑝 : 𝑒] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′,Δ(𝜑) ∪ {𝑝})

We must show that 𝑝0 is terminated in 𝑃 ′ which is true because (a) 𝑝0 was already terminated, and (b)

⇒ preserves termination by Process Never Removed Lemma.

Case (G-PingPong). Wewill prove this case for a less generic version of the rule: Spawn([Get(𝑐)]𝑛0); [Put(𝑐)]𝑛0 .
It can be generalized to dual effects using exactly the same reasoning. The interleaved effects (denoted

□ in the paper) do not influence termination of the generated effect, as they are all assumed to be

terminating. We will therefore ignore them in the proof for the sake of simplicity, and without loss of

generality.

We need to show that Spawn([Get(𝑐)]𝑛0); [Put(𝑐)]𝑛0 is terminating. By inversion on the effect

typing, and assuming – without loss of generality – that only unit values are communicated over

channels, expressions with that effects are:

spawn𝑝 (← 𝑐; . . . ;← 𝑐); 𝑐 ← (); . . . ; 𝑐 ← ()

where the number of put matches the number of get. Consider the following configuration.

𝑃 [𝑝0 : spawn𝑝 (← 𝑐; . . . ;← 𝑐); 𝑐 ← (); . . . ; 𝑐 ← ()]

By applying the evaluation rule (E-Spawn), we have

𝑃 [𝑝0 :← 𝑐; . . . ;← 𝑐] [𝑝 : 𝑐 ← (); . . . ; 𝑐 ← ()]

By induction on 𝑛, we can show that the rule (E-Sync) can be applied 𝑛 times in order to reach the

following configuration.

𝑃 [𝑝0 : ()] [𝑝 : ()]
The base case for 𝑛 = 1 is proven by directly applying (E-Sync) followed by (E-Seq) to 𝑃 [𝑝0 :←
𝑐] [𝑝 : 𝑐 ← ()] in order to reach 𝑃 [𝑝0 : ()] [𝑝 : ()]. The inductive case is proven by first applying

(E-Sync) followed by (E-Seq) to 𝑃 [𝑝0 : ← 𝑐; · · · ← 𝑐︸ ︷︷ ︸
𝑛

] [𝑝 : 𝑐 ← (); . . . ; 𝑐 ← ()︸ ︷︷ ︸
𝑛

], resulting in 𝑃 [𝑝0 :

, Vol. 1, No. 1, Article . Publication date: October 2020.

4 Quentin Stiévenart and Magnus Madsen

← 𝑐; · · · ← 𝑐︸ ︷︷ ︸
𝑛−1

] [𝑝 : 𝑐 ← (); . . . ; 𝑐 ← ()︸ ︷︷ ︸
𝑛−1

], which itself results in 𝑃 [𝑝0 : ()] [𝑝 : ()] by the induction

hypothesis. From this resulting configuration, we have:

𝑃 [𝑝0 : ()] [𝑝 : ()] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′, {𝑝, 𝑝0})

Case (G-FanOut). Again, without loss of generality, we ignore the interleaved effects (denoted □ in

the paper), and we fix a direction of communication. Hence, we reason about the following effect:

[Spawn(Get(𝑐𝑖))]𝑛0; [Put(𝑐𝑖)]𝑛0
By inversion of the effect typing, expressions with this effect are the following:

spawn(← 𝑐0); . . . ; spawn(← 𝑐𝑛); 𝑐0 ← (); . . . ; 𝑐𝑛 ← ()
Consider the following configuration:

𝑃 [𝑝0 : spawn(← 𝑐0); . . . ; spawn(← 𝑐𝑛); 𝑐0 ← (); . . . ; 𝑐𝑛 ← ()]
After 𝑛 applications of the E-Spawn rule (and E-Process applied with E-Seq), we have the following

configuration:

𝑃 [𝑝0 : 𝑐0 ← (); . . . ; 𝑐𝑛 ← ()] [𝑝1 :← 𝑐0] . . . [𝑝𝑛+1 :← 𝑐𝑛]
At this point, the E-Sync rule can also be applied 𝑛 times, in order to reach the following configuration:

𝑃 [𝑝0 : ()] [𝑝1 : ()] . . . [𝑝𝑛+1 : ()]
And it is clear that we have:

𝑃 [𝑝0 : ()] [𝑝1 : ()] . . . [𝑝𝑛+1 : ()] ⇒★ 𝑃 ′ =⇒ T (𝑃 ′, {𝑝0, 𝑝1 . . . 𝑝𝑛+1})
Because Δ([Spawn(Get(𝑐𝑖))]𝑛0; [Put(𝑐𝑖)]𝑛0) = {𝑝1 . . . 𝑝𝑛+1}, this case holds.

Case (G-Pipeline). The effect generated is the following:

Spawn(Get(𝑐0); Put(𝑐1)); . . . ; Spawn(Get(𝑐𝑛−1); Put(𝑐𝑛)); Put(𝑐0);Get(𝑐𝑛)
By inversion of the effect typing rule, an expression with that effect must be the following:

spawn← 𝑐0; 𝑐1 ← (); . . . ; spawn← 𝑐𝑛−1; 𝑐𝑛 ← (); 𝑐0 ← ();← 𝑐𝑛

Consider a configuration where 𝑝0 has this expression:

𝑃 [𝑝0 : spawn← 𝑐0; 𝑐1 ← (); . . . ; spawn← 𝑐𝑛−1; 𝑐𝑛 ← (); 𝑐0 ← ();← 𝑐𝑛]
We can apply the (E-Spawn) rule 𝑛 times to get the following configuration:

𝑃 [𝑝0 : 𝑐0 ← ();← 𝑐𝑛] [𝑝1 :← 𝑐0; 𝑐1 ← ()] . . . [𝑝𝑛−1 :← 𝑐𝑛−1; 𝑐𝑛 ← ()]
At this point, rule (E-Sync) can be applied to synchronize 𝑝0 with 𝑝1, and we get (after applying

(E-Process) with (E-Seq) on both 𝑝0 and 𝑝1):

𝑃 [𝑝0 :← 𝑐𝑛] [𝑝1 : 𝑐1 ← ()] [𝑝2 :← 𝑐1; 𝑐2 ← ()] . . . [𝑝𝑛−1 :← 𝑐𝑛−1; 𝑐𝑛 ← ()]
A similar reasoning can be applied until we reach:

𝑃 [𝑝0 :← 𝑐𝑛] [𝑝1 : ()] . . . [𝑝𝑛−1 : 𝑐𝑛 ← ()]
and a final application of (E-Sync) results in:

𝑃 [𝑝0 : ()] [𝑝1 : ()] . . . [𝑝𝑛−1 : ()]
where all processes 𝑝0 to 𝑝𝑛−1 are terminated.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Supplementary Material to: Fuzzing Channel-based Concurrency Runtimes Using Types and Effects 5

Case (G-Select). We prove this case for 𝑚 = 1. The extension to an arbitrary value for 𝑚 is

natural: because we prove that one communication over each channel is terminating, a sequence of𝑚

communications over each channel will also be terminating, because the generated pattern makes sure

that each new sequence of communication starts when the previous one is finished. Similarly, we prove

this case for a single branch in the select effect, without loss of generality: if the effect is terminating for

a single branch of the ones that can be generated, it is also terminating for multiple branches generated

in the same way. Again, we consider 𝜑𝑖 to be Get(𝑐𝑖), and 𝜑𝑖 to be Put(𝑐𝑖) for a matter of simplicity,

without loss of generality. The generated effect is the following:

Spawn(Get(𝑐0)); . . . ; Spawn(Get(𝑐𝑛)); branch(shuffle(Put(𝑐0); . . . ; Put(𝑐𝑛)))

By inversion of the effect typing, the expressions with such an effect are the following:

spawn(← 𝑐0); . . . ; spawn(← 𝑐𝑛); select { case 𝑐 ′0 ← () ⇒ 𝑐 ′1 ← (); . . . ; 𝑐 ′𝑛 ← ()}

where 𝑐 ′0 . . . 𝑐
′
𝑛 is a permutation of 𝑐0 . . . 𝑐𝑛 . Given a configuration where 𝑝0 evaluates this expression,

and after applying 𝑛 times the rule (E-Spawn), we have the following configuration.

𝑃 [𝑝0 : select { case 𝑐 ′0 ← () ⇒ 𝑐 ′1 ← (); . . . ; 𝑐 ′𝑛 ← ()}] [𝑝1 :← 𝑐0] . . . [𝑝𝑛+1 :← 𝑐𝑛]

At this point, it is clear that the rule (E-Select-Put) can apply for channel 𝑐 ′0, as all processes 𝑝1 to
𝑝𝑛+1 are trying to send over channels 𝑐0 to 𝑐𝑛 , and 𝑐 ′0 is one of these channels. Assuming, without loss

of generality, that 𝑐 ′0 is 𝑐0, we reach the following configuration:

𝑃 [𝑝0 : 𝑐 ′1 ← (); . . . ; 𝑐 ′𝑛 ← ()] [𝑝1 : ()] [𝑝2 :← 𝑐1] . . . [𝑝𝑛+1 :← 𝑐𝑛]

By the same reasoning, rule (E-Sync) can apply with channel 𝑐 ′1, followed by (E-Sync) with channel

𝑐 ′2, until channel 𝑐
′
𝑛 . The resulting configuration is then the following.

𝑃 [𝑝0 : ()] [𝑝1 : ()] . . . [𝑝𝑛+1 : ()]

For which it is clear that all processes 𝑝0 to 𝑝𝑛+1 are terminated.

Lemma 1.6 (Process Never Removed Lemma). If 𝑃 (𝑝) = 𝑣 , then ∀𝑃 ′ such that 𝑃 ⇒★ 𝑃 ′, then
𝑃 ′(𝑝) = 𝑣

Proof. Consider a configuration 𝑃 with 𝑃 (𝑝) = 𝑣 . There exists no rule that can be applied to process

𝑝 , hence this process cannot be reduced further. Moreover, there exists no rule that remove a process

from the process map. Hence, for any 𝑃 ′ such that 𝑃 ⇒★ 𝑃 ′, we have that 𝑃 ′(𝑝) = 𝑣 .

Lemma 1.7 (Process-Stays-Terminated). If 𝑃 is a configuration, 𝑝 is a process that is terminated

in 𝑃 , and 𝑃 ⇒ 𝑃 ′ then 𝑝 is terminated with the same value in 𝑃 ′.

Proof. By inversion on rules that can be applied to values in a process. (There are none).

1.4 Expansion Preserves Termination
Lemma 1.8 (Expansion Preserves Termination). If 𝜑 is a terminating effect, and 𝜑 →𝐸 𝜑 ′, then

𝜑 ′ is terminating. That is, for all 𝑒 : 𝜏 &𝜑 ′, we have that if [𝑝0 : 𝑒] ⇒★ 𝑃 where 𝑃 is final, then 𝑃 is

terminated.

Proof. We prove this by a case analysis on the rule applied. There are five cases to consider.

, Vol. 1, No. 1, Article . Publication date: October 2020.

6 Quentin Stiévenart and Magnus Madsen

Case (E-Choice-Dup). The rewrite rule is

𝜑 →𝐸 𝜑 + 𝜑
We know that for any expression 𝑒 : 𝜏 & 𝜑 , 𝑒 must terminate. By inversion of the effect typing, we

know that the expression of the rewritten effect must be of the form (for simplicity and without loss of

generality, we assume that 𝜑 + 𝜑 is equivalent to 𝜖; (𝜑 + 𝜑)):
if 𝑣0 then 𝑒1 else 𝑒2

where 𝑣0 : 𝜏 & 𝜖 , 𝑒1 : 𝜏 & 𝜑 , and 𝑒2 : 𝜏 & 𝜑 .

Given a configuration where 𝑝0:

[𝑝0 : if 𝑣0 then 𝑒1 else 𝑒2, · · ·]
It can take a step with E-Process and either E-If-True or E-If-False, resulting in one of the following

configurations

[𝑝0 : 𝑒1, · · ·], [𝑝0 : 𝑒2, · · ·]
which both terminate, as 𝑒1 and 𝑒2 have as effect 𝜑 , which is a terminating effect.

Case (E-Select-Dup). We prove this case for 𝑖 = 1. The reasoning is applicable mutatis mutandis
for 𝑖 = 2. The rewrite rule is

𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

2 →𝐸 𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

1 ⊕ 𝜑𝑠𝑟
2

By inversion of the effect typing, we know that the expression of the original effect must be of the form:

𝑒 = select { case𝑥 ← 𝑐1 ⇒ 𝑒1, case𝑦 ← 𝑐2 ⇒ 𝑒2}
Given some configuration, which eventually terminates, where the above expression appears in an

evaluation context:

[𝑝0 : 𝐸1 [𝑒], · · ·]
then for 𝑝0 to terminate, it must be the case that the (E-Select) evaluation rule is applied at some

point. The configuration at that point must be of the form:

[𝑝0 : 𝐸1 [𝑒], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [𝑐 𝑗 ← ()], · · · 𝑃𝑚]
with 𝑗 ∈ {1, 2}. Applying (E-Select) then results in the following configurations.

[𝑝0 : 𝐸1 [𝑒 𝑗], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [()], · · · 𝑃𝑚]
which must terminate.

By inversion of the effect typing, the expression of the rewritten effect must be of the form:

𝑒 ′ = select { case𝑥 ← 𝑐1 ⇒ 𝑒 ′1, case𝑦 ← 𝑐1 ⇒ 𝑒 ′2, case 𝑧 ← 𝑐2 ⇒ 𝑒 ′3}
Following the same reasoning as for 𝑒 , we have the following configuration on which (E-Select) can

be applied:

[𝑝0 : 𝐸1 [𝑒 ′], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [𝑐 𝑗 ← ()], · · · 𝑃𝑚]
with 𝑗 ∈ {1, 2}. With 𝑗 = 1, by applying (E-Select) we reach:

[𝑝0 : 𝐸1 [𝑒 ′1], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [()], · · · 𝑃𝑚]
which terminates because 𝑒 ′1 : 𝜏 & 𝜑1 where 𝜑1 is guaranteed to terminate. With 𝑗 = 2, by applying

(E-Select) we reach one of the following configurations:

[𝑝0 : 𝐸1 [𝑒 ′2], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [()], · · · 𝑃𝑚], [𝑝0 : 𝐸1 [𝑒 ′3], 𝑃1, · · · , 𝑝𝑖 : 𝐸2 [()], · · · 𝑃𝑚]
which terminates because 𝑒 ′2 : 𝜏 & 𝜑2 and 𝑒

′
3 : 𝜏 & 𝜑2 where 𝜑2 is guaranteed to terminate.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Supplementary Material to: Fuzzing Channel-based Concurrency Runtimes Using Types and Effects 7

Case (E-Get-Select). The rewrite rule is:

Get(𝑐) → (Get(𝑐); 𝜖) ⊕ (Get(𝑐); 𝜖)

By inversion of the effect typing, we know that the expression of the original effect must be of the form:

← 𝑐

for some channel 𝑐 .

Given some configuration, which eventually terminates, where the above expression appears in an

evaluation context:

[𝑝0 ↦→ 𝐸1 [← 𝑐], 𝑃 · · ·]
then for 𝑝0 to terminate, it must be the case that the (E-Sync) evaluation rule is applied at some point.

The configuration at this point must be of the form:

[𝑝0 ↦→ 𝐸1 [← 𝑐], 𝑃1, · · · , 𝑃𝑚]

where there must be a process 𝑃𝑖 whose evaluation context is performing a put operation. Once this

happens, we reach a configuration of the form:

[𝑝0 ↦→ 𝐸1 [()], 𝑃1, · · · , 𝑃𝑖 ↦→ 𝐸2 [()], · · · , 𝑃𝑛] (★)

which must terminate.

By inversion of the effect typing, the expression of the rewritten effect must be of the form:

𝑒0 = select {case𝑥 ← 𝑐 ⇒ (), case𝑥 ← 𝑐 ⇒ ()}

for some variables 𝑥 and 𝑦.

Consider the configuration the above expression appears in an evaluation context:

[𝑝0 ↦→ 𝐸1 [𝑒0], 𝑃 · · ·]

then we know that the original effect could reach the same configuration and this configuration must

be able to evaluate to another configuration where there exists a process 𝑃𝑖 performing a put on the

channel 𝑐 . Thus, by (E-Select), this configuration can take a step to another configuration of the form:

[𝑝0 ↦→ 𝐸1 [()], 𝑃1, · · · , 𝑃𝑖 ↦→ 𝐸2 [()], · · · , 𝑃𝑛] (★)

which is configuration reachable the by original overall effect, and hence the evaluation must terminate.

In the case where there exists multiple processes ready to perform a put operation on the channel

𝑐 any of them can be chosen both in the original (overall) expression and in the rewritten (overall)

expression.

Case (E-Put-Select). The reasoning of the (E-Get-Select) case is applicable mutatis mutandis to
this case.

Case (E-Seq). The rewrite rule is 𝜑 →𝐸 𝜑1;𝜑;𝜑2, where 𝜑 , 𝜑1, and 𝜑2 are terminating effects. As

shown in the proof of Lemma 1.5 for the (G-Seq) case, sequencing terminating effects results in a

terminating effect, and hence 𝜑1;𝜑;𝜑2 is itself a terminating effect.

1.5 Reordering Preserves Termination
Lemma 1.9 (Reordering Preserves Termination). If 𝜑 is a terminating effect, and 𝜑 →𝑅 𝜑 ′,

then 𝜑 ′ is terminating. That is, for all 𝑒 : 𝜏 &𝜑 ′, we have that if [𝑝0 : 𝑒] ⇒★ 𝑃 where 𝑃 is final, then

𝑃 is terminated.

Proof. We prove this by case analysis on the rule applied. There are four cases to consider.

, Vol. 1, No. 1, Article . Publication date: October 2020.

8 Quentin Stiévenart and Magnus Madsen

Case (R-Select). We have 𝜑 = 𝜑𝑠𝑟
1 ⊕ 𝜑𝑠𝑟

2 , and 𝜑 ′ = 𝜑𝑠𝑟
2 ⊕ 𝜑𝑠𝑟

1 . By inversion of the effect typing, we

know that the expression of the original effect 𝜑 must be of the form (limiting ourselves to get effects,

the reasoning is identical for put effects):

select {case𝑥 := 𝑐1 ⇒ 𝑒1, case𝑦 := 𝑐2 ⇒ 𝑒2}

for some variables 𝑥 and 𝑦 where the effects of 𝑒1 and 𝑒2 are 𝜑1 and 𝜑2, respectively. Similarly, by

inversion of the effect typing, the expression of the rewritten effect 𝜑 ′ must be of the form:

select {case𝑦 := 𝑐2 ⇒ 𝑒 ′2, case𝑥 := 𝑐1 ⇒ 𝑒 ′1}

The (E-Select) rule is the only evaluation rule applicable to each expression. But the order of cases in

(E-Select) is immaterial. Thus, if the original effect terminates, the effects 𝜑1 and 𝜑2 terminate, and

the rewritten effect must also terminate.

Case (R-ChoiceSelectGetGet). We have𝜑 = (Get(𝑐1);𝜑1)+(Get(𝑐2);𝜑2) and𝜑 ′ = (SelGet(𝑐1, 𝜑1))⊕
(SelGet(𝑐2, 𝜑2)). By inversion of the effect typing, the expression of the original effect is of the form:

if 𝑒 then (← 𝑐1; 𝑒1) else (← 𝑐2; 𝑒2)

where the expression 𝑒 has type bool (for simplicity, we ignore the effect of 𝑒 , but it must terminate),

and the expressions 𝑒1 and 𝑒2 have effects 𝜑1 and 𝜑2, respectively. For this expression to reach a

terminated configuration, it must first take a step by (E-If-True) or (E-If-False). Next, either of the

two sub-expressions:← 𝑐1; 𝑒1 or← 𝑐2; 𝑒2 must take a step. The only applicable evaluation rule is

(E-Sync), hence there must exist some other process 𝑝 which is ready to perform a put operation.

By inversion of the effect typing, the expression of the rewritten effect must be of the form:

select {case𝑥 := 𝑐1 ⇒ 𝑒1, case𝑦 := 𝑐2 ⇒ 𝑒2}

for some variables 𝑥 and 𝑦. The only applicable evaluation rule is (E-Select) which requires that

another process to perform a put operation on either 𝑐1 or 𝑐2, and we know that such a process must

exist for original effect to terminate.

Case (R-Spawn-1). We have 𝜑 = Spawn(𝜑1); Spawn(𝜑2) and 𝜑 ′ = Spawn(𝜑2); Spawn(𝜑1). By
inversion of the effect typing, we know that the expressions of the two effects are of the form:

spawn(𝑒1); spawn(𝑒1)

and

spawn(𝑒2); spawn(𝑒1)
If we consider the configuration:

[𝑝0 ↦→ spawn(𝑒2); spawn(𝑒1)]

It can take a step by (E-Spawn) to:

[𝑝0 ↦→ (); spawn(𝑒1), 𝑝1 ↦→ 𝑒2]

At this point either 𝑝0 or 𝑝1 can take a step. In either case, possibly through multiple steps, we must

reach a configuration of the form:

[𝑝0 ↦→ spawn(𝑒1), 𝑝1 ↦→ 𝑒 ′2,Δ(𝜑2)]

where 𝑒 ′2 is some reduction of 𝑒2 and Δ(𝜑2) are some processes spawned by 𝑒2. This configuration,

possibly throught multiple steps, must reach a configuration of the form:

[𝑝0 ↦→ (), 𝑝1 ↦→ 𝑒 ′′2 , 𝑝2 = 𝑒1,Δ(𝜑2) ′]

, Vol. 1, No. 1, Article . Publication date: October 2020.

Supplementary Material to: Fuzzing Channel-based Concurrency Runtimes Using Types and Effects 9

where 𝑒 ′′2 is some reduction of 𝑒 ′2 and Δ(𝜑2) ′ are some processes spawned by 𝑒2 and 𝑒 ′2. But this
configuration is reachable by the original configuration and hence must terminate! Its corresponds to

the case where 𝑒1 is spawned, 𝑒2 is spawned, and only the process 𝑒2 has taken some steps.

Case (R-Spawn-2). We have 𝜑 = Spawn(𝜑1); Spawn(𝜑2) and 𝜑 ′ = Spawn(Spawn(𝜑2);𝜑1). By
inversion of the effect typing, we know that the expressions of the two effects are of the forms:

spawn(𝑒1); spawn(𝑒2)
and

spawn(spawn(𝑒2); 𝑒1)
If we consider the configuration:

[𝑝0 ↦→ spawn(spawn(𝑒2); 𝑒1)]
It can take a step by (E-Spawn) to:

[𝑝0 ↦→ (), 𝑝1 ↦→ spawn(𝑒2); 𝑒1]
This, again by (E-Spawn), can take a step to:

[𝑝0 ↦→ (), 𝑝1 ↦→ (); 𝑒1, 𝑝2 ↦→ spawn(𝑒2)]
At this point either 𝑝1 or 𝑝2 could take a step.

If 𝑝1 takes a step, we reach:

[𝑝0 ↦→ (), 𝑝1 ↦→ 𝑒1, 𝑝2 ↦→ spawn(𝑒2)]
but this configuration is reachable by the original effect and hence must terminate!

If, on the other hand, 𝑝2 takes one or more steps, we reach:

[𝑝0 ↦→ (), 𝑝1 ↦→ (); 𝑒1, 𝑝2 ↦→ 𝑒 ′2,Δ(𝜑2)]
where 𝑒 ′2 is some reduction of 𝑒2 and Δ(𝜑2) are the processes spawned by 𝜑2. At some point 𝑝1 takes a

step to reach:

[𝑝0 ↦→ (), 𝑝1 ↦→ 𝑒1, 𝑝2 ↦→ 𝑒 ′′2 ,Δ(𝜑2) ′]
where 𝑒 ′′2 is some reduction of 𝑒 ′2 and Δ(𝜑2) ′ is the reduction of the processes Δ(𝜑2). But this configu-
ration is reachable by the original effect and hence must terminate! It corresponds to the case where 𝑒1
is spawned, but does not run until 𝑒2 is spawned and has run for a while.

, Vol. 1, No. 1, Article . Publication date: October 2020.

	1 Proofs
	1.1 Definitions
	1.2 Main Theorems from the Paper
	1.3 Generation Ensures Termination
	1.4 Expansion Preserves Termination
	1.5 Reordering Preserves Termination

