Supplementary Material to: Fuzzing Channel-based Concurrency Runtimes Using Types and Effects

QUENTIN STIÉVENART, Vrije Universiteit Brussel, Belgium

MAGNUS MADSEN, Aarhus University, Denmark

1 PROOFS

1.1 Definitions

We refer the reader to Section 4 of the paper for the definition of final configurations, terminated process, terminating configuration, and terminating effect. We do require one more definition before we proceed:

Definition 1.1 (SPAWNED-By). Consider $e: \tau \& \varphi$, an expression with effect φ, where each spawn effect is assigned a unique identifier. Let us denote the set of the process identifiers that appear in φ as $\Delta(\varphi)$.

$$
\begin{array}{ccc}
\Delta(\epsilon)=\emptyset \quad \Delta(\operatorname{PUT}(c))=\emptyset \quad \Delta(\operatorname{Get}(c))=\emptyset & \Delta\left(\varphi_{1}+\varphi_{2}\right)=\Delta\left(\varphi_{1}\right) \cup \Delta\left(\varphi_{2}\right) \\
\Delta\left(\varphi_{1} ; \varphi_{2}\right)=\Delta\left(\varphi_{1}\right) \cup \Delta\left(\varphi_{2}\right) \quad \Delta\left(\operatorname{SPAWN}^{p}(\varphi)\right)=\{p\} \cup \Delta(\varphi) & \Delta\left(\varphi_{1}^{s r} \oplus \varphi_{2}^{s r}\right)=\Delta\left(\varphi_{1}^{s r}\right) \cup \Delta\left(\varphi_{2}^{s r}\right) \\
\Delta\left(\operatorname{SELGET}\left(_, \varphi\right)\right)=\Delta(\varphi) & \Delta\left(\operatorname{SELPUT}\left(_, \varphi\right)\right)=\Delta(\varphi)
\end{array}
$$

Definition 1.2 (Partially Terminated Predicate). The predicate \mathcal{T} is defined as follows and holds if, when P is final, then all processes in ps are terminated.

$$
\begin{gathered}
\mathcal{T}: \text { Configuration } \times \mathcal{P}(\text { ProcessId }) \rightarrow \text { Bool } \\
\mathcal{T}(P, \mathrm{ps}) \text { holds if } \operatorname{FinAL}(P) \Longrightarrow \forall p \in \mathrm{ps}, P(p) \in \text { Value }
\end{gathered}
$$

1.2 Main Theorems from the Paper

Theorem 1.3 (Generated Effect is Terminating). If $\varphi \in$ Generation, then φ is terminating.
Proof. This is a direct consequence of Lemma 1.5, with $P=[]$.
Theorem 1.4 (Rewrite Rules Preserves Termination). If φ is terminating, applying any rewrite rule (expansion or reordering) to a sub-effect of φ or φ itself preserves termination.

Proof. This is a direct consequence of Lemma 1.8 for expansion, Lemma 1.9 for reordering, Lemma ?? for simplification.

Authors' addresses: Quentin Stiévenart, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium, quentin.stievenart@vub.be; Magnus Madsen, Aarhus University, Åbogade 34, Aarhus, Denmark, magnusm@cs.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/10-ART \$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1.3 Generation Ensures Termination

Lemma 1.5 (Main Theorem, Rephrased). If e $: \tau \& \varphi$ where $\varphi \in$ Generation, e is closed, P is a set of processes, p_{0} is a fresh process, and $P\left[p_{0}: e\right] \Rightarrow^{\star} P^{\prime}$ then $\mathcal{T}\left(P^{\prime}, \Delta(\varphi) \cup p_{0}\right)$.

Proof. By induction on the derivation of $\varphi \in$ Generation. We make the assumption that channel names are unique and don't overlap when generated from different rules.

Case (G-Final). We know that the effect is ϵ. We must show that for all expressions e that have effect ϵ it must be the case that:

$$
P\left[p_{0}: e\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta(\epsilon) \cup\left\{p_{0}\right\}\right)
$$

We know that $\Delta(\epsilon)=\emptyset$, hence we have to show that $P^{\prime}\left(p_{0}\right) \in$ Value. By inversion, there are four subcases to consider.

Subcase: $e=x$. Impossible, because e is closed.
Subcase: $e=()$. Because p_{0} is final, it cannot progress further and $P^{\prime}\left(p_{0}\right)=()$, which is a value.
Subcase: $e=$ true. Because p_{0} is final, it cannot progress further and $P^{\prime}\left(p_{0}\right)=$ true, which is a value.
Subcase: $e=$ false. Because p_{0} is final, it cannot progress further and $P^{\prime}\left(p_{0}\right)=$ false, which is a value.

Case (G-SEQ). We know that the effect is $\varphi_{1} ; \varphi_{2}$, where both φ_{1} and φ_{2} are known to be terminating effects, and the channels used by φ_{1} and φ_{2} do not overlap. By inversion of the effect typing, we know that expression of the effect must be of the form:

$$
e_{1} ; e_{2}
$$

where both e_{1} and e_{2} are known to be terminating. We must show that for all such expressions, it must be the case that:

$$
P\left[p_{0}: e_{1} ; e_{2}\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta\left(\varphi_{1}\right) \cup \Delta\left(\varphi_{2}\right)\right)
$$

We know that e_{1} is terminating, hence we know that the configuration will always be reduced to a configuration of the following shape:

$$
P^{\prime \prime}\left[p_{0}: v ; e_{2}\right]
$$

where $\mathcal{T}\left(P^{\prime \prime}, \Delta\left(\varphi_{1}\right)\right)$. The evaluation rule (E-PROCESS) and (E-SEQ) can be applied, resulting in:

$$
P^{\prime \prime \prime}\left[p_{0}: e_{2}\right]
$$

We know that e_{2} is terminating (it has effect φ_{2}, which is terminating), and that $P^{\prime \prime \prime}$ is such that $\mathcal{T}\left(P^{\prime \prime \prime}, \Delta\left(\varphi_{1}\right)\right.$. Hence, we know that $P^{\prime \prime \prime}\left[p_{0}: e_{2}\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta\left(\varphi_{1}\right) \cup \Delta\left(\varphi_{2}\right)\right)$.

Case (G-Сноісе). We know that the effect is $\varphi_{1}+\varphi_{2}$, where both φ_{1} and φ_{2} are terminating. For the sake of simplicity and without loss of generality, we assume the effect to actually be $\epsilon ;\left(\varphi_{1}+\varphi_{2}\right)$. By inversion of the effect typing, we know that expressions with that effect must be of the form:

$$
\text { if } v_{0} \text { then } e_{1} \text { else } e_{2}
$$

Either v_{0} is true and E-If-True can apply, or v_{0} is false and E-If-False can apply. Consider a configuration evaluating this expression:

$$
P\left[p_{0}: \text { if } v_{0} \text { then } e_{1} \text { else } e_{2}\right]
$$

With the rule E-PROCESS, it can therefore reach any of the two following configurations:

$$
P\left[p_{0}: e_{1}\right] \quad \text { or } P\left[p_{0}: e_{2}\right]
$$

which both terminate, as e_{1} has effect φ_{1}, e_{2} has effect φ_{2}, and both φ_{1} and φ_{2} are terminating by the induction hypothesis.

Case (G-Spawn). We know that the effect is of the form $\operatorname{SPAWN}(\varphi)$, and we know by the induction hypothesis that φ is a terminating effect, i.e.:

$$
e: \tau \& \varphi \wedge P\left[p_{0}: e\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta(\varphi) \cup\left\{p_{0}\right\}\right)
$$

We must show that (unfolding the definition of Δ)

$$
\forall e^{\prime} . e^{\prime}: \tau \& \operatorname{SPAWN}^{p}(\varphi) \wedge P\left[p_{0}: e^{\prime}\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime},\left\{p, p_{0}\right\}\right)
$$

By inversion on effects we know that the only expression of effect $\operatorname{SPAWN}(\varphi)$ is the spawn expression:

$$
P\left[p_{0}: \text { spawne }\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta\left(\operatorname{SPAWN}(\varphi)^{p}\right) \cup\left\{p, p_{0}\right\}\right)
$$

Let us consider the configuration:

$$
P\left[p_{0}: \text { spawne }\right]
$$

for some process map P. In order for p_{0} to progress, only the rule (E-SPAWN) can be applied, resulting in:

$$
P\left[p_{0}:()\right][p: e]
$$

We see that p_{0} has terminated. We can apply the induction hypothesis with $p_{0}=p$ to get:

$$
P\left[p_{0}:()\right][p: e] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime}, \Delta(\varphi) \cup\{p\}\right)
$$

We must show that p_{0} is terminated in P^{\prime} which is true because (a) p_{0} was already terminated, and (b) \Rightarrow preserves termination by Process Never Removed Lemma.

Case (G-PINGPONG). We will prove this case for a less generic version of the rule: $\operatorname{SPAWN}\left([\operatorname{GET}(c)]_{0}^{n}\right) ;[\operatorname{PUT}(c)]_{0}^{n}$. It can be generalized to dual effects using exactly the same reasoning. The interleaved effects (denoted \square in the paper) do not influence termination of the generated effect, as they are all assumed to be terminating. We will therefore ignore them in the proof for the sake of simplicity, and without loss of generality.

We need to show that $\operatorname{SPawn}\left([\operatorname{Get}(c)]_{0}^{n}\right) ;[\operatorname{Put}(c)]_{0}^{n}$ is terminating. By inversion on the effect typing, and assuming - without loss of generality - that only unit values are communicated over channels, expressions with that effects are:

$$
\operatorname{spawn}^{p}(\leftarrow c ; \ldots ; \leftarrow c) ; c \leftarrow() ; \ldots ; c \leftarrow()
$$

where the number of put matches the number of get. Consider the following configuration.

$$
P\left[p_{0}: \text { spawn }^{p}(\leftarrow c ; \ldots ; \leftarrow c) ; c \leftarrow() ; \ldots ; c \leftarrow()\right]
$$

By applying the evaluation rule (E-SPAWN), we have

$$
P\left[p_{0}: \leftarrow c ; \ldots ; \leftarrow c\right][p: c \leftarrow() ; \ldots ; c \leftarrow()]
$$

By induction on n, we can show that the rule (E-SYNC) can be applied n times in order to reach the following configuration.

$$
P\left[p_{0}:()\right][p:()]
$$

The base case for $n=1$ is proven by directly applying (E-SYNC) followed by (E-SEQ) to $P\left[p_{0}: \leftarrow\right.$ $c][p: c \leftarrow()]$ in order to reach $P\left[p_{0}:()\right][p:()]$. The inductive case is proven by first applying (E-SYNC) followed by (E-SEQ) to $P[p_{0}: \underbrace{\leftarrow c ; \cdots \leftarrow c]}_{n}[p: \underbrace{c \leftarrow() ; \ldots ; c \leftarrow()}_{n}]$, resulting in $P\left[p_{0}\right.$:
$\underbrace{\leftarrow c ; \cdots \leftarrow c]}_{n-1}[p: \underbrace{c \leftarrow() ; \ldots ; c \leftarrow()}_{n-1}$, which itself results in $P\left[p_{0}:()\right][p:()]$ by the induction hypothesis. From this resulting configuration, we have:

$$
P\left[p_{0}:()\right][p:()] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime},\left\{p, p_{0}\right\}\right)
$$

Case (G-FANOUT). Again, without loss of generality, we ignore the interleaved effects (denoted \square in the paper), and we fix a direction of communication. Hence, we reason about the following effect:

$$
\left[\operatorname{SPAWN}\left(\operatorname{Get}\left(c_{i}\right)\right)\right]_{0}^{n} ;\left[\operatorname{PUT}\left(c_{i}\right)\right]_{0}^{n}
$$

By inversion of the effect typing, expressions with this effect are the following:

$$
\operatorname{spawn}\left(\leftarrow c_{0}\right) ; \ldots ; \operatorname{spawn}\left(\leftarrow c_{n}\right) ; c_{0} \leftarrow() ; \ldots ; c_{n} \leftarrow()
$$

Consider the following configuration:

$$
P\left[p_{0}: \operatorname{spawn}\left(\leftarrow c_{0}\right) ; \ldots ; \operatorname{spawn}\left(\leftarrow c_{n}\right) ; c_{0} \leftarrow() ; \ldots ; c_{n} \leftarrow()\right]
$$

After n applications of the E-SPAWN rule (and E-PROCESS applied with E-SEQ), we have the following configuration:

$$
P\left[p_{0}: c_{0} \leftarrow() ; \ldots ; c_{n} \leftarrow()\right]\left[p_{1}: \leftarrow c_{0}\right] \ldots\left[p_{n+1}: \leftarrow c_{n}\right]
$$

At this point, the E-Sync rule can also be applied n times, in order to reach the following configuration:

$$
P\left[p_{0}:()\right]\left[p_{1}:()\right] \ldots\left[p_{n+1}:()\right]
$$

And it is clear that we have:

$$
P\left[p_{0}:()\right]\left[p_{1}:()\right] \ldots\left[p_{n+1}:()\right] \Rightarrow^{\star} P^{\prime} \Longrightarrow \mathcal{T}\left(P^{\prime},\left\{p_{0}, p_{1} \ldots p_{n+1}\right\}\right)
$$

Because $\Delta\left(\left[\operatorname{SPAWN}\left(\operatorname{GET}\left(c_{i}\right)\right)\right]_{0}^{n} ;\left[\operatorname{PUT}\left(c_{i}\right)\right]_{0}^{n}\right)=\left\{p_{1} \ldots p_{n+1}\right\}$, this case holds.
Case (G-PIPELINE). The effect generated is the following:

$$
\operatorname{SPAWN}\left(\operatorname{Get}\left(c_{0}\right) ; \operatorname{PUt}\left(c_{1}\right)\right) ; \ldots ; \operatorname{SPAWN}\left(\operatorname{GET}\left(c_{n-1}\right) ; \operatorname{PUT}\left(c_{n}\right)\right) ; \operatorname{PUT}\left(c_{0}\right) ; \operatorname{GET}\left(c_{n}\right)
$$

By inversion of the effect typing rule, an expression with that effect must be the following:

$$
\text { spawn } \leftarrow c_{0} ; c_{1} \leftarrow() ; \ldots ; \text { spawn } \leftarrow c_{n-1} ; c_{n} \leftarrow() ; c_{0} \leftarrow() ; \leftarrow c_{n}
$$

Consider a configuration where p_{0} has this expression:

$$
P\left[p_{0}: \text { spawn } \leftarrow c_{0} ; c_{1} \leftarrow() ; \ldots ; \text { spawn } \leftarrow c_{n-1} ; c_{n} \leftarrow() ; c_{0} \leftarrow() ; \leftarrow c_{n}\right]
$$

We can apply the (E-SPAWN) rule n times to get the following configuration:

$$
P\left[p_{0}: c_{0} \leftarrow() ; \leftarrow c_{n}\right]\left[p_{1}: \leftarrow c_{0} ; c_{1} \leftarrow()\right] \ldots\left[p_{n-1}: \leftarrow c_{n-1} ; c_{n} \leftarrow()\right]
$$

At this point, rule (E-SYNC) can be applied to synchronize p_{0} with p_{1}, and we get (after applying (E-Process) with ($E-S_{E Q}$) on both p_{0} and p_{1}):

$$
P\left[p_{0}: \leftarrow c_{n}\right]\left[p_{1}: c_{1} \leftarrow()\right]\left[p_{2}: \leftarrow c_{1} ; c_{2} \leftarrow()\right] \ldots\left[p_{n-1}: \leftarrow c_{n-1} ; c_{n} \leftarrow()\right]
$$

A similar reasoning can be applied until we reach:

$$
P\left[p_{0}: \leftarrow c_{n}\right]\left[p_{1}:()\right] \ldots\left[p_{n-1}: c_{n} \leftarrow()\right]
$$

and a final application of (E-SYNC) results in:

$$
P\left[p_{0}:()\right]\left[p_{1}:()\right] \ldots\left[p_{n-1}:()\right]
$$

where all processes p_{0} to p_{n-1} are terminated.

Case (G-Select). We prove this case for $m=1$. The extension to an arbitrary value for m is natural: because we prove that one communication over each channel is terminating, a sequence of m communications over each channel will also be terminating, because the generated pattern makes sure that each new sequence of communication starts when the previous one is finished. Similarly, we prove this case for a single branch in the select effect, without loss of generality: if the effect is terminating for a single branch of the ones that can be generated, it is also terminating for multiple branches generated in the same way. Again, we consider φ_{i} to be $\operatorname{GEt}\left(c_{i}\right)$, and φ_{i} to be $\operatorname{PUT}\left(c_{i}\right)$ for a matter of simplicity, without loss of generality. The generated effect is the following:

$$
\operatorname{SPAWN}\left(\operatorname{GET}\left(c_{0}\right)\right) ; \ldots ; \operatorname{SPAWN}\left(\operatorname{GEt}\left(c_{n}\right)\right) ; \operatorname{branch}\left(\operatorname{shuffle}\left(\operatorname{PUT}\left(c_{0}\right) ; \ldots ; \operatorname{PUT}\left(c_{n}\right)\right)\right)
$$

By inversion of the effect typing, the expressions with such an effect are the following:

$$
\operatorname{spawn}\left(\leftarrow c_{0}\right) ; \ldots ; \operatorname{spawn}\left(\leftarrow c_{n}\right) ; \operatorname{select}\left\{\text { case }_{0}^{\prime} \leftarrow() \Rightarrow c_{1}^{\prime} \leftarrow() ; \ldots ; c_{n}^{\prime} \leftarrow()\right\}
$$

where $c_{0}^{\prime} \ldots c_{n}^{\prime}$ is a permutation of $c_{0} \ldots c_{n}$. Given a configuration where p_{0} evaluates this expression, and after applying n times the rule (E-SPAWN), we have the following configuration.

$$
P\left[p_{0}: \text { select }\left\{\operatorname{casec}_{0}^{\prime} \leftarrow() \Rightarrow c_{1}^{\prime} \leftarrow() ; \ldots ; c_{n}^{\prime} \leftarrow()\right\}\right]\left[p_{1}: \leftarrow c_{0}\right] \ldots\left[p_{n+1}: \leftarrow c_{n}\right]
$$

At this point, it is clear that the rule (E-Select-Put) can apply for channel c_{0}^{\prime}, as all processes p_{1} to p_{n+1} are trying to send over channels c_{0} to c_{n}, and c_{0}^{\prime} is one of these channels. Assuming, without loss of generality, that c_{0}^{\prime} is c_{0}, we reach the following configuration:

$$
P\left[p_{0}: c_{1}^{\prime} \leftarrow() ; \ldots ; c_{n}^{\prime} \leftarrow()\right]\left[p_{1}:()\right]\left[p_{2}: \leftarrow c_{1}\right] \ldots\left[p_{n+1}: \leftarrow c_{n}\right]
$$

By the same reasoning, rule (E-SYNC) can apply with channel c_{1}^{\prime}, followed by (E-SYNC) with channel c_{2}^{\prime}, until channel c_{n}^{\prime}. The resulting configuration is then the following.

$$
P\left[p_{0}:()\right]\left[p_{1}:()\right] \ldots\left[p_{n+1}:()\right]
$$

For which it is clear that all processes p_{0} to p_{n+1} are terminated.
Lemma 1.6 (Process Never Removed Lemma). If $P(p)=v$, then $\forall P^{\prime}$ such that $P \Rightarrow^{\star} P^{\prime}$, then $p^{\prime}(p)=v$

Proof. Consider a configuration P with $P(p)=v$. There exists no rule that can be applied to process p, hence this process cannot be reduced further. Moreover, there exists no rule that remove a process from the process map. Hence, for any P^{\prime} such that $P \Rightarrow^{\star} P^{\prime}$, we have that $P^{\prime}(p)=v$.

Lemma 1.7 (Process-Stays-Terminated). If P is a configuration, p is a process that is terminated in P, and $P \Rightarrow P^{\prime}$ then p is terminated with the same value in P^{\prime}.

Proof. By inversion on rules that can be applied to values in a process. (There are none).

1.4 Expansion Preserves Termination

Lemma 1.8 (Expansion Preserves Termination). If φ is a terminating effect, and $\varphi \rightarrow_{E} \varphi^{\prime}$, then φ^{\prime} is terminating. That is, for all $e: \tau \& \varphi^{\prime}$, we have that if $\left[p_{0}: e\right] \Rightarrow^{\star} P$ where P is final, then P is terminated.

Proof. We prove this by a case analysis on the rule applied. There are five cases to consider.

Case (E-ChoICe-Dup). The rewrite rule is

$$
\varphi \rightarrow_{E} \varphi+\varphi
$$

We know that for any expression e : $\tau \& \varphi$, e must terminate. By inversion of the effect typing, we know that the expression of the rewritten effect must be of the form (for simplicity and without loss of generality, we assume that $\varphi+\varphi$ is equivalent to $\epsilon ;(\varphi+\varphi)$):

$$
\text { ifv } v_{0} \text { then } e_{1} \text { else } e_{2}
$$

where $v_{0}: \tau \& \epsilon, e_{1}: \tau \& \varphi$, and $e_{2}: \tau \& \varphi$.
Given a configuration where p_{0} :

$$
\left[p_{0}: \text { if } v_{0} \text { then } e_{1} \text { else } e_{2}, \cdots\right]
$$

It can take a step with E-Process and either E-IF-True or E-If-FALSE, resulting in one of the following configurations

$$
\left[p_{0}: e_{1}, \cdots\right],\left[p_{0}: e_{2}, \cdots\right]
$$

which both terminate, as e_{1} and e_{2} have as effect φ, which is a terminating effect.
Case (E-SELECT-Dup). We prove this case for $i=1$. The reasoning is applicable mutatis mutandis for $i=2$. The rewrite rule is

$$
\varphi_{1}^{s r} \oplus \varphi_{2}^{s r} \rightarrow_{E} \varphi_{1}^{s r} \oplus \varphi_{1}^{s r} \oplus \varphi_{2}^{s r}
$$

By inversion of the effect typing, we know that the expression of the original effect must be of the form:

$$
e=\operatorname{select}\left\{\text { case } x \leftarrow c_{1} \Rightarrow e_{1} \text {, case } y \leftarrow c_{2} \Rightarrow e_{2}\right\}
$$

Given some configuration, which eventually terminates, where the above expression appears in an evaluation context:

$$
\left[p_{0}: E^{1}[e], \cdots\right]
$$

then for p_{0} to terminate, it must be the case that the (E-SELECT) evaluation rule is applied at some point. The configuration at that point must be of the form:

$$
\left[p_{0}: E^{1}[e], P_{1}, \cdots, p_{i}: E^{2}\left[c_{j} \leftarrow()\right], \cdots P_{m}\right]
$$

with $j \in\{1,2\}$. Applying (E-SELECT) then results in the following configurations.

$$
\left[p_{0}: E^{1}\left[e_{j}\right], p_{1}, \cdots, p_{i}: E^{2}[()], \cdots P_{m}\right]
$$

which must terminate.
By inversion of the effect typing, the expression of the rewritten effect must be of the form:

$$
e^{\prime}=\text { select }\left\{\text { case } x \leftarrow c_{1} \Rightarrow e_{1}^{\prime}, \text { case } y \leftarrow c_{1} \Rightarrow e_{2}^{\prime} \text {, case } z \leftarrow c_{2} \Rightarrow e_{3}^{\prime}\right\}
$$

Following the same reasoning as for e, we have the following configuration on which (E-SeLect) can be applied:

$$
\left[p_{0}: E^{1}\left[e^{\prime}\right], P_{1}, \cdots, p_{i}: E^{2}\left[c_{j} \leftarrow()\right], \cdots P_{m}\right]
$$

with $j \in\{1,2\}$. With $j=1$, by applying ($($-SELECT) we reach:

$$
\left[p_{0}: E^{1}\left[e_{1}^{\prime}\right], P_{1}, \cdots, p_{i}: E^{2}[()], \cdots P_{m}\right]
$$

which terminates because $e_{1}^{\prime}: \tau \& \varphi_{1}$ where φ_{1} is guaranteed to terminate. With $j=2$, by applying (E-SELECT) we reach one of the following configurations:

$$
\left[p_{0}: E^{1}\left[e_{2}^{\prime}\right], P_{1}, \cdots, p_{i}: E^{2}[()], \cdots P_{m}\right],\left[p_{0}: E^{1}\left[e_{3}^{\prime}\right], P_{1}, \cdots, p_{i}: E^{2}[()], \cdots P_{m}\right]
$$

which terminates because $e_{2}^{\prime}: \tau \& \varphi_{2}$ and $e_{3}^{\prime}: \tau \& \varphi_{2}$ where φ_{2} is guaranteed to terminate.

Case (E-GET-SELECT). The rewrite rule is:

$$
\operatorname{GET}(c) \rightarrow(\operatorname{GET}(c) ; \epsilon) \oplus(\operatorname{GET}(c) ; \epsilon)
$$

By inversion of the effect typing, we know that the expression of the original effect must be of the form:

$$
\leftarrow c
$$

for some channel c.
Given some configuration, which eventually terminates, where the above expression appears in an evaluation context:

$$
\left[p_{0} \mapsto E^{1}[\leftarrow c], P \cdots\right]
$$

then for p_{0} to terminate, it must be the case that the (E-SYNC) evaluation rule is applied at some point. The configuration at this point must be of the form:

$$
\left[p_{0} \mapsto E^{1}[\leftarrow c], P_{1}, \cdots, P_{m}\right]
$$

where there must be a process P_{i} whose evaluation context is performing a put operation. Once this happens, we reach a configuration of the form:

$$
\left[p_{0} \mapsto E^{1}[()], P_{1}, \cdots, P_{i} \mapsto E^{2}[()], \cdots, P_{n}\right]
$$

which must terminate.
By inversion of the effect typing, the expression of the rewritten effect must be of the form:

$$
e_{0}=\operatorname{select}\{\operatorname{case} x \leftarrow c \Rightarrow(), \text { case } x \leftarrow c \Rightarrow()\}
$$

for some variables x and y.
Consider the configuration the above expression appears in an evaluation context:

$$
\left[p_{0} \mapsto E^{1}\left[e_{0}\right], P \cdots\right]
$$

then we know that the original effect could reach the same configuration and this configuration must be able to evaluate to another configuration where there exists a process P_{i} performing a put on the channel c. Thus, by (E-SELECT), this configuration can take a step to another configuration of the form:

$$
\left[p_{0} \mapsto E^{1}[()], P_{1}, \cdots, P_{i} \mapsto E^{2}[()], \cdots, P_{n}\right]
$$

which is configuration reachable the by original overall effect, and hence the evaluation must terminate.
In the case where there exists multiple processes ready to perform a put operation on the channel c any of them can be chosen both in the original (overall) expression and in the rewritten (overall) expression.

Case (E-Put-SELECT). The reasoning of the (E-GET-SELECT) case is applicable mutatis mutandis to this case.

Case (E-SEQ). The rewrite rule is $\varphi \rightarrow_{E} \varphi_{1} ; \varphi ; \varphi_{2}$, where φ, φ_{1}, and φ_{2} are terminating effects. As shown in the proof of Lemma 1.5 for the (G-SEQ) case, sequencing terminating effects results in a terminating effect, and hence $\varphi_{1} ; \varphi ; \varphi_{2}$ is itself a terminating effect.

1.5 Reordering Preserves Termination

Lemma 1.9 (Reordering Preserves Termination). If φ is a terminating effect, and $\varphi \rightarrow_{R} \varphi^{\prime}$, then φ^{\prime} is terminating. That is, for all $e: \tau \& \varphi^{\prime}$, we have that if $\left[p_{0}: e\right] \Rightarrow^{\star} P$ where P is final, then P is terminated.

Proof. We prove this by case analysis on the rule applied. There are four cases to consider.

Case (R-SELECT). We have $\varphi=\varphi_{1}^{s r} \oplus \varphi_{2}^{s r}$, and $\varphi^{\prime}=\varphi_{2}^{s r} \oplus \varphi_{1}^{s r}$. By inversion of the effect typing, we know that the expression of the original effect φ must be of the form (limiting ourselves to get effects, the reasoning is identical for put effects):

$$
\text { select }\left\{\text { case } x:=c_{1} \Rightarrow e_{1} \text {, case } y:=c_{2} \Rightarrow e_{2}\right\}
$$

for some variables x and y where the effects of e_{1} and e_{2} are φ_{1} and φ_{2}, respectively. Similarly, by inversion of the effect typing, the expression of the rewritten effect φ^{\prime} must be of the form:

$$
\text { select }\left\{\text { case } y:=c_{2} \Rightarrow e_{2}^{\prime} \text {, case } x:=c_{1} \Rightarrow e_{1}^{\prime}\right\}
$$

The (E-SELECT) rule is the only evaluation rule applicable to each expression. But the order of cases in (E-SELECT) is immaterial. Thus, if the original effect terminates, the effects φ_{1} and φ_{2} terminate, and the rewritten effect must also terminate.

Case (R-ChoiceSelectGetGet). We have $\varphi=\left(\operatorname{Get}\left(c_{1}\right) ; \varphi_{1}\right)+\left(\operatorname{Get}\left(c_{2}\right) ; \varphi_{2}\right)$ and $\varphi^{\prime}=\left(\operatorname{SelGet}\left(c_{1}, \varphi_{1}\right)\right) \oplus$ ($\operatorname{SELGET}\left(c_{2}, \varphi_{2}\right)$). By inversion of the effect typing, the expression of the original effect is of the form:

$$
\text { ife then }\left(\leftarrow c_{1} ; e_{1}\right) \text { else }\left(\leftarrow c_{2} ; e_{2}\right)
$$

where the expression e has type bool (for simplicity, we ignore the effect of e, but it must terminate), and the expressions e_{1} and e_{2} have effects φ_{1} and φ_{2}, respectively. For this expression to reach a terminated configuration, it must first take a step by (E-IF-True) or (E-IF-False). Next, either of the two sub-expressions: $\leftarrow c_{1} ; e_{1}$ or $\leftarrow c_{2} ; e_{2}$ must take a step. The only applicable evaluation rule is (E-SYnC), hence there must exist some other process p which is ready to perform a put operation.

By inversion of the effect typing, the expression of the rewritten effect must be of the form:

$$
\text { select }\left\{\text { case } x:=c_{1} \Rightarrow e_{1} \text {, case } y:=c_{2} \Rightarrow e_{2}\right\}
$$

for some variables x and y. The only applicable evaluation rule is (E-SELECT) which requires that another process to perform a put operation on either c_{1} or c_{2}, and we know that such a process must exist for original effect to terminate.

Case $(R-\operatorname{SpaWn}-1)$. We have $\varphi=\operatorname{SpaWn}\left(\varphi_{1}\right) ; \operatorname{SPAWn}\left(\varphi_{2}\right)$ and $\varphi^{\prime}=\operatorname{SPAWN}\left(\varphi_{2}\right) ; \operatorname{SpaWn}\left(\varphi_{1}\right)$. By inversion of the effect typing, we know that the expressions of the two effects are of the form:

$$
\operatorname{spawn}\left(e_{1}\right) ; \operatorname{spawn}\left(e_{1}\right)
$$

and

$$
\operatorname{spawn}\left(e_{2}\right) ; \operatorname{spawn}\left(e_{1}\right)
$$

If we consider the configuration:

$$
\left[p_{0} \mapsto \operatorname{spawn}\left(e_{2}\right) ; \operatorname{spawn}\left(e_{1}\right)\right]
$$

It can take a step by (E-Spawn) to:

$$
\left[p_{0} \mapsto() ; \operatorname{spawn}\left(e_{1}\right), p_{1} \mapsto e_{2}\right]
$$

At this point either p_{0} or p_{1} can take a step. In either case, possibly through multiple steps, we must reach a configuration of the form:

$$
\left[p_{0} \mapsto \operatorname{spawn}\left(e_{1}\right), p_{1} \mapsto e_{2}^{\prime}, \Delta\left(\varphi_{2}\right)\right]
$$

where e_{2}^{\prime} is some reduction of e_{2} and $\Delta\left(\varphi_{2}\right)$ are some processes spawned by e_{2}. This configuration, possibly throught multiple steps, must reach a configuration of the form:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto e_{2}^{\prime \prime}, p_{2}=e_{1}, \Delta\left(\varphi_{2}\right)^{\prime}\right]
$$

where $e_{2}^{\prime \prime}$ is some reduction of e_{2}^{\prime} and $\Delta\left(\varphi_{2}\right)^{\prime}$ are some processes spawned by e_{2} and e_{2}^{\prime}. But this configuration is reachable by the original configuration and hence must terminate! Its corresponds to the case where e_{1} is spawned, e_{2} is spawned, and only the process e_{2} has taken some steps.

Case $(R-\operatorname{SpaWN}-2)$. We have $\varphi=\operatorname{Spawn}\left(\varphi_{1}\right) ; \operatorname{SPAWN}\left(\varphi_{2}\right)$ and $\varphi^{\prime}=\operatorname{SPAWN}\left(\operatorname{SPAWN}\left(\varphi_{2}\right) ; \varphi_{1}\right)$. By inversion of the effect typing, we know that the expressions of the two effects are of the forms:

$$
\operatorname{spawn}\left(e_{1}\right) ; \operatorname{spawn}\left(e_{2}\right)
$$

and

$$
\operatorname{spawn}\left(\operatorname{spawn}\left(e_{2}\right) ; e_{1}\right)
$$

If we consider the configuration:

$$
\left[p_{0} \mapsto \operatorname{spawn}\left(\operatorname{spawn}\left(e_{2}\right) ; e_{1}\right)\right]
$$

It can take a step by (E-Spawn) to:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto \operatorname{spawn}\left(e_{2}\right) ; e_{1}\right]
$$

This, again by (E-SPAWN), can take a step to:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto() ; e_{1}, p_{2} \mapsto \operatorname{spawn}\left(e_{2}\right)\right]
$$

At this point either p_{1} or p_{2} could take a step.
If p_{1} takes a step, we reach:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto e_{1}, p_{2} \mapsto \operatorname{spawn}\left(e_{2}\right)\right]
$$

but this configuration is reachable by the original effect and hence must terminate!
If, on the other hand, p_{2} takes one or more steps, we reach:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto() ; e_{1}, p_{2} \mapsto e_{2}^{\prime}, \Delta\left(\varphi_{2}\right)\right]
$$

where e_{2}^{\prime} is some reduction of e_{2} and $\Delta\left(\varphi_{2}\right)$ are the processes spawned by φ_{2}. At some point p_{1} takes a step to reach:

$$
\left[p_{0} \mapsto(), p_{1} \mapsto e_{1}, p_{2} \mapsto e_{2}^{\prime \prime}, \Delta\left(\varphi_{2}\right)^{\prime}\right]
$$

where $e_{2}^{\prime \prime}$ is some reduction of e_{2}^{\prime} and $\Delta\left(\varphi_{2}\right)^{\prime}$ is the reduction of the processes $\Delta\left(\varphi_{2}\right)$. But this configuration is reachable by the original effect and hence must terminate! It corresponds to the case where e_{1} is spawned, but does not run until e_{2} is spawned and has run for a while.

