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ABSTRACT
Modern distributed applications increasingly replicate data to guar-
antee both high availability of systems and optimal user experience.
Conflict-Free Replicated Data Types (CRDTs) are a family of data
types specially designed for highly available systems that guarantee
some form of eventual consistency. To ensure state convergence
between replicas, CRDT implementations need to keep track of
additional meta-data. This is not a scalable strategy, as a growing
amount of meta-data has to be kept.

In this paper, we show that existing solutions for this prob-
lem miss optimisation opportunities and may lead to less reactive
CRDTs. For this, we analyse the relation between meta-data and
the causality of operations in operation-based CRDTs. We explore
a new optimisation strategy for pure operation-based CRDTs and
show how it reduces memory overhead. Our approach takes ad-
vantage of the communication layer providing reliable delivery
to determine causal stability, and as a result, meta-data can be re-
moved sooner. We furthermore propose a solution for improving
the reactivity of CRDTs built on a reliable causal broadcasting layer.

We apply our strategy to pure-operation based CRDTs and val-
idate our approach by measuring its impact on several different
set-ups. The results show how our approach can lead to significant
improvements in meta-data cleanup when compared to state-of-
the-art techniques.

CCS CONCEPTS
• Software and its engineering → Garbage collection; Syn-
chronization; Consistency; Distributed architectures.
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1 INTRODUCTION
To ease the development of geo-distributed applications, much
research has studied the concept of replicated data types which
expose to programmers an interface akin to that of a sequential
data type while implementing mechanisms to keep data consistent
across replicas [7, 12, 16]. Conflict-Free Replicated Data Types [14–
16] (CRDTs) are replicated data structures that can be concurrently
updated without requiring synchronization among replicas to deal
with conflicts. In particular, CRDTs are said to be strong eventually
consistent (SEC), which denotes that if two components of a system
have received the same updates, they will be in the same state. This
implies that assuming no new updates happen to a set of replicas,
they will eventually converge to the same state without conflicts.

Designing new data types that adhere to this property is a com-
plex task. In the most simple form, one can construct a CRDTwhere
all operations are commutative. This means that regardless of the
ordering in which a set of operations is applied, the resulting state
will be equivalent. Another common approach is to use causal or-
dering for non-concurrent operations and only have concurrent
operations be commutative [2, 11, 14].

To handle concurrent operations and ensure commutativity, a
CRDT implementation typically keeps some meta-data. For exam-
ple, some set CRDTs might use tombstones — placeholders for
removed entries — to ensure that removal operations are commuta-
tive [16]. If a replica receives a removal operation for an item before
it received the actual operation that added it, then tombstone will
ensure that the removal will still be processed after the add.

Alternatively, many CRDT implementations rely on Reliable
Causal Broadcasting [6] (RCB), used to ensure both causal ordering
and reliable delivery [3, 16]. In fact, RCB is commonly understood
to be a requirement for operation-based CRDTs [2, 3, 14, 16].

Regardless of the approach, some causality meta-data will always
be stored in some form. For many CRDT types, this meta-data grows
unboundedly, leading to bad performance and scalability.

Pure operation-based CRDTs [3], a framework for building
operation-based CRDTs, aims to tackle this problem by removing
meta-data for causally stable operations (i.e. operations for which
no new concurrent operations can occur). The framework relies on
a messaging middleware utilizing RCB for keeping a partially or-
dered log of operations, according to the happened-before causality
relation[13]. By tracking the causality information between replicas
it is possible to determine if operations are causally stable and if,
consequently, their meta-data can be removed.

While this approach ensures causal ordering and allows meta-
data to be removed, it is not a complete solution and suffers from
some issues. First of all to determine causal stability from causal
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information alone all replicas need to regularly push out updates.
This means that if a single replica in a system does not perform
any operation, no meta-data can be removed. Secondly, causal
ordering is not always desirable, as it may hamper the reactivity
of an operation-based CRDT. Since the happened-before relation
does not always imply an actual dependency between operations,
operations may be buffered by the RCB middleware needlessly. The
result of this is a less responsive CRDT, where replicas might have
to wait for updates of multiple other replicas before they can apply
already received updates.

In this paper, we explore techniques for overcoming the de-
scribed limitations and detail our strategy for addressing them in
the pure operations-based framework. We first analyse the rela-
tionship between meta-data and the causality of operations for
operation-based CRDTs and look into the meta-data removal ap-
proach used by the pure operation-based CRDT framework. We
then explore a new optimisation strategy for the framework that
takes advantage of the communication layer providing reliable
delivery and show how meta-data can be removed sooner, improv-
ing on the existing approach. We furthermore propose a solution
for improving the reactivity of CRDTs built on a reliable causal
broadcasting layer, by reifying part of the RCBs message buffer.

We apply our new optimisation strategy to pure-operation based
CRDTs and validate our approach by measuring the log size of set
CRDTs in different set-ups. The results show how our approach
can lead to significant improvements on meta-data cleanup when
compared to state-of-the-art techniques while providing developers
withmethods to optimize the tradeoff between operation processing
and meta-data cleanup.

2 META-DATA IN CRDTS AND ITS RELATION
TO CAUSALITY

This section delves into the details of the described limitations and
analyses them in the context of current implementation strategies.
We furthermore provide some background information on CRDTs,
meta-data usage and causal stability.

2.1 Background
The core idea of CRDTs is to provide a replicated data type which
exhibits an API similar to that of a sequential data type while guar-
anteeing eventual state convergence under concurrent operations.
This means that eventually the state of two replicas should become
equivalent when they have received the same operations, regardless
of the order in which they arrived.

There are two main and complementary CRDT designs: state-
based and operation-based. State-based approaches propagate local
updates by transferring their entire state (or deltas of the state) to
other replicas that will merge them with their state. This approach
may incur a large network overhead and requires complex state
design and merge functionality. Operation-based designs, on the
other hand, propagate updates at the operation level and do not need
special merging logic. This allows for a simpler implementation
and state design while limiting network overhead. Operation-based
designs do however require reliable delivery[6, 17] of all updates,
which is not required for state-based designs. In this paper, we focus
on operation-based approaches and their means of implementation.

2.2 Current Implementation Strategies
Operation-based CRDTs can be implemented in various ways using
different techniques. In this section, we detail the general idea used
by state-of-the-art implementations and what methods they employ
for limiting meta-data built-up.

The simplest strategy for implementing an operation-based
CRDT is to make all possible operations commutative, ensuring
that, regardless of the order of operations, an equal state will even-
tually be reached. However, the operations that can be applied to
most common data types mostly do not commute. For example,
a set data type traditionally supports add and remove operations.
These operations do not commute, as can be demonstrated by sim-
ply comparing the two different possible orderings of an add and
remove applied to an empty set:

(1) set <- add(X)
(2) set <- remove(X)

This will result in a set without the item X. The following will result
in a set with item X:

(1) set <- remove(X)
(2) set <- add(X)
To keep the sequential data type API for a data structure, a CRDT

implementation will typically modify the semantics of the data type
so that it can commute. In our set example, the Observed-Removed
Set (OR-Set) CRDT[16] solves this by generating a unique identifier
per newly added item. From the user’s point of view, the client code
interacts with the OR-Set using add and remove operations. But, at
the implementation level, an item in an OR-Set can have multiple
unique identifiers associated with it, stored along as meta-data.
When an item is removed, replicas will instruct other replicas to
only remove the items with the identifiers that they have observed
before. If the replica receiving the remove has not yet observed
a certain identifier, it will keep track of the removed identifier
as a tombstone and effectively delay the operation until after the
add is received. This ensures that in the case of a concurrent add
and remove operations, the add will always be ordered before the
remove, resulting in a commutative data type.

The unique identifiers in OR-Sets have essentially two purposes:
1) encoding the happened-before relation of operations[13]; e.g.
remove operations that do not include a certain identifier must have
happened before adds with that identifier, and 2) providing add-wins
semantics for concurrent operations, i.e. that concurrent adds will
win over concurrent removes. Similarly, many other CRDTs (e.g.
MV-Registers, U-Sets, RGAs, ...) use unique identifiers and meta-
data to guarantee that operations commute[5, 11, 14, 16]. However,
this approach leads to complicated implementations as the code
responsible for operation logic handles many different concerns[2].
The meta-data also leads to a memory management problem as
information— such as tombstones — has to be kept to ensure correct
concurrent behaviour[3, 5, 15].

To simplify some of this complexity, some CRDT implementa-
tions rely on Reliable Causal Broadcasting [6] (RCB), which will
ensure causal ordering for non-concurrent operations (along with
reliable delivery)[2, 16]. Baquero et al. extend on this and rely on
existing causality information stored within the RCB middleware
instead of manually encoding causality information as meta-data to
operations. To this end, they introduced the Pure Operation-Based

2



From Causality to Stability: Understanding and Reducing Meta-Data in CRDTs MPLR ’20, November 4–6, 2020, Virtual, UK

framework embodying such an implementation strategy [3]. The
framework employs a partially ordered log of operations (shortened
to PO-Log) constructed with the causality information of the un-
derlying RCB communication layer. The state of the data structure
can be computed by observing this log, and with simple rules, the
log can be compacted whenever operations become redundant.

While the framework simplifies CRDT design, it does not tackle
the growingmeta-data problem. For this, an extensionwas proposed
that uses causality information from the RCB layer to determine
what operations are causally stable. Operations are causally stable if
they have been applied by all replicas, i.e. no concurrent operation
can occur anymore. The implication of this is that causal meta-data
can be stripped away from log entries when an operation becomes
causally stable and that the remaining operations can be stored in
a sequential data structure. This reduces memory overhead and
limits the computational complexity as a smaller log means that
less work is needed to construct the state of a replica.

2.3 Problem Statement
There are, however, some limitations to pure op-based CRDT due
to the approach used to determine causal stability and its reliance
on reliable causal broadcasting. In this section, we further analyse
meta-data and its relation to causality and identify two problems
which motivate our work.

2.3.1 Too Conservative Approach to Causal Stability. As mentioned
previously, pure operation-based CRDTs will strip causal informa-
tion from operations whenever the framework determines that
they are causally stable. Baquero et al. utilize an underlying Re-
liable Causal Broadcast (RCB) middleware to track the causality
of operations that are propagated through a system. They define
causal stability as follows:

A timestamp τ , and a corresponding message, is
causally stable at node i when all messages subse-
quently delivered at i will have timestamp t > τ . (Ba-
quero et al., 2017; Note: node is equivalent to replica
in our text)

This means that if a replica has received an operation o with
a (logical) timestamp t for source replica n, and subsequently it
receives operations from all other replicas where the timestamp
for replica n is larger than t, o is said to be causally stable as every
other replica must have observed it.

Consequently, with this approach, it is only possible to determine
causal stability for an operation if and only if every other replica
in the system sends new updates following the operation, to collect
enough causal information. In other words, if one single node does
not issue any updates for some time, no causal stability can be
determined at any replica during that period. In the evaluation
section of this paper, we perform several tests to further illustrate
this problem, clearly showing that the approach is not eager enough
as it may be problematic in terms of memory usage.

2.3.2 Lowered Reactivity Through Causal Buffering. The second
issue we identify with current approaches is rooted in the reliance
on an RCB middleware for communication. An RCB layer orders
causally related messages according to Lamport’s happened-before

Table 1: A sequence of operations applied to several replicas
implementing an add-wins pure operation-based set CRDT.

SET A SET B SET C Operation

{} {} {} SET C :: Add (X)
SET C :: Add (Y)

{X,Y} {X,Y} {X,Y} SET B :: Add(Z)
{X,Y} {X,Y,Z} {X,Y,Z} SET C :: Remove(X)
{X,Y} {Y,Z} {Y,Z}

Table 2: A sequence of operations applied to several replicas
implementing a classic OR-Set CRDT.

SET A SET B SET C Operation

{} {} {} SET C :: Add (X)
SET C :: Add (Y)

{X,Y} {X,Y} {X,Y} SET B :: Add(Z)
{X,Y} {X,Y,Z} {X,Y,Z} SET C :: Remove(X)
{Y} {Y,Z} {Y,Z}

relation. This means it may buffer a message if some causal prede-
cessors have not yet been received. However, that buffering will
delay operations that may not be dependent on each other, resulting
in a less reactive CRDT. This means that CRDTs may not immedi-
ately reflect the updates that they have received, even if there is no
valid reason for doing so. In the case of pure op-based CRDTs, this
may also impact the removal of redundant log entries, leading to
higher memory consumption.

To demonstrate the implications of a less reactive CRDT, consider
a sequence of operations that are applied to three replicas A, B,
and C hosting a set CRDT. Figure 1 visualises the connectivity
between the replicas. All replicas are connected, except for the link
between A and B which has a temporal failure, i.e. updates are not
propagated between replicas A and B.

We employ two different implementations of a set CRDT with
add-wins semantics: table 1 shows the operations applied on a pure
op-based Add-Wins set, while table 2 shows the operations applied
on an OR-Set CRDT. Contrary to the pure op-based Add-Wins set,
the OR-Set CRDT does require an RCB middleware. At first two
operations are applied to replica C. This update is propagated to
all other sets and their state will be updated. Following this, an
additional update is applied to set B. This update is only sent to
set C, as there is a disconnection between set A and B. Now set C
applies a remove of item X, which will be observed by set A and
B as set C is connected to both other replicas. In the case of the
OR-Set, the item will be immediately removed on both set A and
B. This differs however for the Add-Wins set, where the operation
will not be applied. The reasoning behind this is simple: the Add-
Wins set relies on the RCB middleware, and that layer will buffer
the operation as it can observe in the causality information that it
received along with the operation (from set C) that A has not yet
received one or more operations from B. In practice, this means
that only after the connectivity issue between A and B is resolved,
and set A receives and applies the Add(Z) operation from B, the
remove operation from set C will be applied.
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Not only was the OR-Set able to apply the operation immediately
because there was no buffer holding it back, but also because it only
encodes causal dependencies for operations that can effectively be
dependant on each other, e.g. operations on the same set items.

A B

C

Figure 1: Network connectivity between set replicas

2.3.3 Summary. In short, we identified two issues applicable to all
operation-based approaches that rely on RCB and comparison of
clocks for the determination of causal stability:

(1) a single replica not performing updates prevents the removal
of meta-data since no causal stability can be determined. (2) the
reliable causal broadcasting layer will buffer operations while it
waits for their causal predecessors, which may lead to less reactive
CRDTs and higher memory overhead.

3 EAGER STABILITY DETERMINATION
In this section, we propose an extension for pure operation-based
CRDTs that improves on its meta-data removal capabilities by tak-
ing advantage of reliable delivery. Classic pure-operation based
CRDTs rely on the causality information provided by the RCB
middleware to determine causal stability. However, an RCB middle-
ware does not only ensure causal delivery but also reliable delivery,
i.e. messages sent through RCB have to be acknowledged. In this
work, we propose to take advantage of reliable delivery to eagerly
determine causal stability, minimising memory consumption.

When an operation is applied on a CRDT, the underlying repli-
cation mechanism will ensure that it is broadcasted to all other
replicas. Reliable delivery requires all receiving replicas to acknowl-
edge the reception of the operation, as shown in figure 2. In our
approach we take advantage of this design: if acknowledgements
have been received from all replicas, it follows that no new op-
erations can be concurrent to it and as a result, the operation is
causally stable. At this point, however, only the replica that issued
the operation is aware that the operation is causally stable. We use
an additional mechanism to broadcast this information to the other
replicas (as can be seen in figure 3).

This strategy improves on the pure-operation based approach,
allowing causal stability to be determined even when some replicas
may not issue updates. As a result, our approach is more suitable
when memory resources are scarce, but it introduces a network
overhead as stability messages have to be propagated as well. To
allow for a flexible trade-off between memory consumption and
network overhead, developers can specify intervals in which sta-
bility messages are sent. Between the intervals, our approach will
simply rely on the causality information of the middleware to de-
duce causal stability, reducing the number of missed opportunities
for removing meta-data.

A

B

CACK

Figure 2: Acknowledgements used by the RCB layer to en-
sure reliable delivery

A

B

CStable!

Figure 3: Letting other replicas know that an operation is
stable

3.1 An Operation-Based Framework With
Eager Stability Determination

In this section, we describe an operation-based framework which
has support for causal stability determination using our proposed
strategy. We show how its interface allows developers to directly
interact with the middleware to implement CRDTs. We then detail
how the framework implements the mechanisms for causal stability
determination.

The core replication functionality of the framework is built with
RCB, as we want both reliable delivery and causal ordering. Causal
ordering is used to simplify the design of CRDT implementations,
while reliable delivery ensures correctness. We piggyback on these
properties in our framework for the eager stability determination
approach. Note that in our problem statement we mentioned that
causal ordering may lead to less reactive CRDTs. The fact that we
rely on it for the framework does not contradict with this, as we
will later show in section 5.

The framework provides abstractions that allow developers to
propagate and receive operations while abstracting away the details
of RCB and stability determination mechanisms. Below we present
its interface, which allows the implementation of memory-efficient
CRDTs. We employ a class-based language for the description of the
interface, along with pseudo-code that describes the logic for some
of the essential functionality. In section 4 we present a concrete
implementation in TypeScript that takes advantage of this interface.
The class should provide the following abstract methods:

• onOperation(clock, op, args): invoked whenever a new
update arrives. Will be invoked in causal order.
• gcStable(): invoked after a new operation is applied and
when a CRDT implementation may want to remove causally
stable operations.
• onLoaded(): invoked when a new CRDT object finishes ini-
tialising.
• onNewReplica(ref, refs): invoked when a new CRDT
replica is discovered.
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The logic for the replication functionality and stability determi-
nation is exposed with the following methods:
• performOperation(op, args): performs an operation on
the receiver CRDT object. op is an enumerable type and
together with the args variable it represents the operation
that has to be applied. It will cause the onOperationmethod
to be invoked first locally and then remotely (by means of
message propagation).
• isCausallyStable(clock): can be used to check if a cer-
tain clock is causally stable.
• performPendingStableMsg(): if the RCB layer has some
stability message pending, push them to all replicas. This
enables CRDT implementors to encode custom heuristics for
causal stability message updates.
• setStableMsgInterval(interval): sets the interval in
which stability messages are sent.

The power of this structure is that CRDTs built on top of the API
do not need to be aware of the implementation details of the causal
stability algorithms and extensions to it.

3.2 Replication Algorithms
We now further detail the replication algorithm employed by our
framework based on the aforementioned interface. For the sake
of brevity, we only list the essential logic for extending the RCB
framework with support for causal stability messages.

Algorithm 1: performOperation
Input: an operation o, with arguments arдs
localClock .increment();
var clock := localClock .copy();
this .doOperation(clock , o, arдs);
foreach replica in replicas do

replica ← doOperation(clock , o, arдs);
end
when all operations are reliably delivered do

this .notifyStable(clock);
end

Algorithm 1 is responsible for the application of an operation
on a replica. It starts by incrementing the local logical clock of
the replica on which it is being applied. Following this, the opera-
tion is first applied locally and then propagated to all replicas. The
code is extended with a conditional that invokes notifyStable
(described later) with the clock of the operation when all messages
have been reliably delivered. Note that we pass a copy of the origi-
nal clock, to avoid a race condition where the original clock may
have been updated between the delivery of all messages and their
acknowledgement.

Algorithm 2 implements the notifyStable functionality that
handles the stability case after reliable delivery and uses the
setStable helper function to update all the locally stored replica
clocks. To set a particular clock value as stable (meaning, the local
clock value for a particular replica), it updates all stored replica
clocks with that clock value. It then notifies all remote replicas, if a
particular interval (based on the number of operations) is met, that

Algorithm 2: notifyStable
Input: a logical clock clock
Data: global pendinдStable := False;
Data: global stableCounter := 0;
Data: global stableMsдInterval := 10;
Data: global pendinдClock ;
var noti f yClock := localClock .copy();
noti f yClock .setClockAt(clock .getId(), clock .localValue);
this .setStable(clock .getId(), clock .localValue);
pendinдStable := ((this .stableCounter++) mod
stableMsдInterval) != 0 ;
if pendinдStable == True then

pendinдClock := noti f yClock ;
else

performStableMsg(noti f yClock);
end

the given clock has become stable (using the logic of algorithm 3).
If the interval is not met, the clock will be stored and a flag will
be set so that it can be applied at a later time. Because concurrent
operations may have occurred, the clock for the stability message
must be updated with this information. This ensures that the RCB
will order the stability messages after any concurrent operation,
avoiding that some operations may be compacted before all con-
current operations have arrived, leading to inconsistencies. The
replica issuing the stability message will be aware of all concur-
rent operations as the acknowledgements that are part of reliable
delivery will always arrive after any concurrent operation.

Algorithm 3: performStableMsg
Input: a logical clock clock
foreach replica in replicas do

replica ← doOperation(clock , STABLE, []);

The logic for notifying other replicas that an operation is stable
is shown in algorithm 3. We use the same delivery mechanism for
the stability messages as for normal messages, because we want
them to be ordered by the RCB middleware as well. One difference
that is not visible in the pseudo-code is that the stability message
does not have to be delivered reliable, e.g. we instruct the receiving
middleware that no acknowledgement is needed.

Algorithm 4: performPendingStableMsg
if pendinдStable then

performStableMsg(pendinдClock);
pendinдStable := False;

Algorithm 4 shows the logic for performPendingStableMsg
which enables CRDT implementors to force trigger any pending
stability messages. In combination with setting a particular interval,
this allows developers to use custom heuristics for triggering the
stability messages.
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4 IMPLEMENTATION
We have implemented our proposed operation-based framework
with eager stability determination in Flec [4], an extensible program-
ming framework for CRDTswritten in TypeScript. Flec incorporates
the concepts of ambient-oriented programming [8, 9], to discover
and communicate with replicas in a distributed dynamic network.
In ambient-oriented programming, developers are provided with
an actor-based programming model where actors can communi-
cate using asynchronous message passing and coordinate through
futures [1, 10]. We implement the extended pure operation-based
framework for building CRDTs on top of Flec. Flec targets several
platforms, such as Node.js1, and we are currently integrating it with
the ESP322, a lightweight, power-efficient integrated system-on-a-
chip platform. In this section, we first explore the implementation
of our framework on top of Flec, and then the implementation of
the RW-Set CRDT.

Flec Middleware

RCB

Pure-op framework

Classic 
CRDTs

(OR-Set, MV-
Register, …)

Pure-Op based CRDTs
(RW-Set, MV-Register, …)

Figure 4: Implementation on top of Flec

Figure 4 depicts the overall architecture of our framework imple-
mentation. The RCB layer is implemented directly on top of Flec
and brings support for causal delivery and eager stability deter-
mination. The pure operation-based CRDT framework builds on
this and is used to implement several pure operation-based CRDTs
such as the AW-Set, RW-Set, and MV-Register CRDTs. We also
implemented several classic CRDTs directly on Flec, which were
used for the comparisons in our motivation section.

4.1 An Open Pure Operation-Based Framework
Our pure operation-based framework with eager stability determi-
nation is implemented as an abstract class that extends the interface
described in Section 3.1, and follows the pure-op design by Baquero
et al.. Listing 1 shows the general structure of the class, with the
main code redacted.

The class keeps track of several state variables, the most im-
portant one being the log. The log is updated when non-redundant
operations arrive at a replica. To this end, the onOperationmethod
is overridden. Listing 2 shows how onOperation updates the log.
The onOperation method is called every time the RCB layer has
to deliver an operation, which can originate either from a local or
remote performOperation invocation.

The onOperation method relies on results of the abstract
isRedundantByOperation and isRedundantByLogmethods to de-
termine what entries are added or removed from the log. These
1https://nodejs.org
2https://www.espressif.com/en/products/socs/esp32

methods define the redundancy relations for pure-operation based
CRDTs and must be implemented by the CRDT implementor. An
example of this can be seen in 4.2 where we implement an RW-Set
using the framework.
1 export abstract class POLog <O> extends CRDT_RCB <O> {
2 // CRDT state
3 log : POLogEntry <O>[] = [];
4 compact = {};
5
6 // CRDT nework
7 network = [];
8 joinNode: FarRef <this >;
9
10 // used to set stability trigger level
11 logCompactSize : number = 100;
12
13 constructor (tag) { ... }
14
15 // Handle replica joins
16 onNewReplica(ref: FarRef <this >, refs) { ... }
17 setupState(state) { ... }
18 getNetwork (){ ... }
19 join(id) { ... }
20 getState () { ... }
21
22 // Handle new operations
23 onOperation(clock: VectorClock , op: O, args: any[]) { ... }
24
25 // Manage cleanup of causally stable entries
26 getConcurrentEntries(entry: POLogEntry <O>) { ... }
27 markStable (){ ... }
28 compactStable (){ ... }
29 gcStable () { ... }
30 cleanup () { ... }
31 setGCParams(logSize: number , intervalSize) { ... }
32
33
34 // Hooks for implementors of pure -op based CRDTs
35 protected setEntryStable( entry: POLogEntry <O> ) : boolean { ... };
36
37 protected removeEntry( entry: POLogEntry <O>) {};
38 protected newOperation(entry: POLogEntry <O>) {};
39
40 protected abstract isRedundantByOperation(e: POLogEntry <O>, entry:

POLogEntry <O>, isRedundant: boolean) : boolean;
41 protected abstract isRedundantByLog(entry: POLogEntry <O>) : boolean;
42 }

Listing 1: Structure of the POLog class, used to implement
pure-operation based CRDTs

1 onOperation(clock: VectorClock , op: O, args: any[]) {
2 let entry = new POLogEntry <O>(clock , op, args);
3
4 this.newOperation(entry);
5 let isRedundant = this.isRedundantByLog(entry);
6
7 for (let i=this.log.length -1; i>=0; i--) {
8 let e = this.log[i];
9 if (this.isRedundantByOperation(e, entry , isRedundant)) {
10 this.removeEntry( this.log[i] );
11 delete this.log[i];
12 }
13 }
14
15 this.log = this.log.filter(e => typeof e !== "undefined");
16
17 if (! isRedundant) {
18 this.log.push(entry);
19 }
20
21 this.cleanup ();
22 }

Listing 2: The onOperation method is used to process
received operations.

Listing 3 shows how the frameworkmarks and compacts causally
stable log entries. The gcStable method is invoked by the RCB
layer whenever some operations are processed. It ensures that
periodically all causally stable log entries are marked as sta-
ble (markStable) and eventually compacted (compactStable). As
such, it ensures that an entry will only be removed once all concur-
rent entries are stable as well.

A final aspect of our pure-operation based CRDT implementation
is the cleanupmethod, which is invoked at the end of onOperation
as can be seen in listing 2.
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1 markStable (){
2 let stableItems = false;
3
4 this.log.forEach(e => {
5 if (this.isCausallyStable(e.clock)) {
6 e.setStable ();
7 stableItems = true;
8 }
9 });
10
11 return stableItems;
12 }
13
14 compactStable (){
15 this.log.filter(e => e.isStable && this.getConcurrentEntries(e)
16 .map(e=>e.entry.stable)
17 .reduce ((a,b)=> a && b, true))
18 .forEach(e => {
19 if (this.setEntryStable(e))
20 delete this.log[this.log.indexOf(e)];
21 });
22
23 this.log = this.log.filter(e => typeof e !== "undefined");
24 }
25
26 gcStable () {
27 if (this.markStable ())
28 this.compactStable ();
29 }

Listing 3: The logic used to mark and compact causally
stable log entries.

1 cleanup () {
2 if (this.log.length === this.logCompactSize)
3 this.performPendingStableMsg ();
4 }
5
6 setGCParams(logSize: number , intervalSize) {
7 this.logCompactSize = logSize;
8 this.setStableMsgInterval(intervalSize);
9
10 this.cleanup ();
11 }

Listing 4: Methods allowing instrumentation of the cleanup
process.

The cleanupmethod checks the size of the log, and if it is higher
than a certain limit it will ask the RCB layer to send any pending
stability messages (employing performPendingStableMsg()).

4.2 Implementing CRDTs on the Framework
We now detail how to implement a CRDT in our pure operation-
based framework, using an RW-Set as an example. The implemen-
tation is based on the specification for the pure-op RW-Set from
Baquero et al., though there are some slight differences with the
redundancy relations which we further detail later in the section.

To implement a pure operation-based CRDT the set of opera-
tions that can be applied on the CRDT must be defined. Listing
5 defines the operations for the RW-Set using an enumeration
with add, remove, and clear values. Then, the PO-Log class of
our framework is extended and a constructor ensures that a call-
back method is registered for state updates. The enum type is used
to specify the entries that can be stored by the PO-Log. Follow-
ing this, the abstract isRedudantByOperation, isRedudantByLog,
setEntryStable and newOperation methods from the PO-Log
class are implemented and extended, providing the behaviour of
the RW-Set. Finally, the toList, add, remove, and clear methods
provide the CRDT with its public interface. We detail the imple-
mentation of these methods below.

The redundancy relations for the set are implemented with the
abstract isRedundantByOperation and isRedundantByLog meth-
ods from the PO-Log class, as shown in Listing 6 and 7 respectively.

1 enum SetOperation {
2 Add , Clear , Remove
3 }
4 type SetEntry = POLogEntry <SetOperation >;
5
6 export class RWSet extends POLog <SetOperation > {
7
8 constructor(tag , callback) {
9 super(tag);
10 this.callback = callback;
11 }
12
13 ...
14 }

Listing 5: Basic structure of the RW-Set implementation

The relationships between log entries can easily be defined
by means of .is, .precedes, .follows, .isConcurrent and
.hasSameArgsAs methods . Contrary to the original RW-Set spec-
ification we do immediately remove add operations concurrent
with remove operations. By ensuring that the clear operation can
never make remove operations redundant there is no chance that a
remove operation is cleared before a concurrent add is processed.
In the original specification, this was remedied by keeping all con-
current add operations in the PO-Log at all times, complicating the
CRDT design.
1 isRedundantByOperation(e1: SetEntry , e2: SetEntry , isRedundant: boolean)

: boolean {
2 return (e1.precedes(e2) &&
3 ((e1.is(SetOperation.Add) && e2.is(SetOperation.Clear)) ||

e1.hasSameArgAs(e2))) ||
4
5 (e1.isConcurrent(e2) &&
6 e1.is(SetOperation.Add) && e2.is(SetOperation.Remove) &&

e1.hasSameArgAs(e2));
7 }

Listing 6: Logic implementing the RW-Set redundancy
relations for operations stored in the log

1 isRedundantByLog(entry : SetEntry ) {
2 return entry.is(SetOperation.Clear) || (entry.is(SetOperation.Add) &&
3 !!this.log.find(e => e.is(SetOperation.Remove) &&
4 e.hasSameArgAs(entry) &&
5 e.isConcurrent(entry)));
6 }

Listing 7: Logic implementing the RW-Set redundancy
relations for new operations

Listing 8 shows how to remove entries that are causally sta-
ble from the log for the RW-Set. To this end, the setEntryStable
method can be overridden. In the case of the RW-Set, all stable en-
tries corresponding to add operation will be applied to a sequential
set (implemented by using an object as a dictionary). The return
value of the setEntryStable method determines if the entry is
removed from the log or not, which is useful for the implementation
of more complex stability logic.
1 setEntryStable(entry : SetEntry) : boolean {
2 let element;
3
4 if (entry.is(SetOperation.Add)) {
5 const element = entry.args [0];
6 this.compact[element] = true;
7 }
8
9 return true;
10 }

Listing 8: When an add operation becomes stable, the
operation is applied to a sequential set

To update the compacted state whenever a new operation is
applied, the newOperation method can be overriden. For the RW-
Set we remove any item from the set if an operation is received
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that affects that item, as shown in listing 9. The clear operation will
simply clear the entire set. This behaviour is similar to the behaviour
of isRedundantByOperation (every entry in the compacted state
can be seen an entry that always precedes new ones), but instead
of being applied to the log, it will be applied to the compacted state.
1 newOperation(entry: SetEntry) {
2 if (!entry.is(SetOperation.Clear)) {
3 let element = entry.args [0];
4 delete this.compact[element ];
5 } else {
6 this.compact = {};
7 }
8 }

Listing 9: Cleanup of the compacted state whenever new
operations arrive

Listing 10 shows the implementation of toList, which evaluates
the log and compacted state and constructs the full state of the
RW-Set. Because the redundancy methods already filter out adds
concurrent to removes we can simply take all the add operations
and construct the state from that.
1 toList () {
2 let list = {... this.compact };
3
4 this.log.forEach(entry => {
5 if (entry.operation == SetOperation.Add)
6 list[entry.args [0]] = true;
7 });
8
9 return Object.keys(list);
10 }

Listing 10: When an add operation becomes stable, the
operation is applied to a sequential set

Finally listing 11 implements the mutator methods for the set. All
they do is simply signal the RCB layer using performOperation
that a particular operation has applied and the RCB layer will
propagate and apply it on all other replicas in the system.
1 add(element){
2 this.performOperation(SetOperation.Add , [element ]);
3 }
4 remove(element) {
5 this.performOperation(SetOperation.Remove , [element ]);
6 }
7 clear(element) {
8 this.performOperation(SetOperation.Clear , [element ]);
9 }

Listing 11: Implementation of the mutator functions for the
RW-Set

5 IMPROVING THE REACTIVITY OF CRDTS
IN AN RCB-BASED APPROACH

As explained in section 2, RCB ensures that messages are reliably
delivered in causal order. To this end, the RCB middleware will hold
a message if it can determine that there are missing messages which
are causally dependent, and will only deliver the message once all
missing dependent messages arrive. As argued in section 2.3.2,
this can make a CRDT less reactive, and as a result, the CRDT
contains an outdated state even though the information to compute
an updated state has already reached the replica node.

To solve this issue, we propose that the buffer of the RCB mid-
dleware where these messages are held is made accessible (reified)
to CRDT implementors as part of the framework interface. In the
context of a pure operation-based CRDT, this buffer can then be
used to construct an incomplete partial ordered log. We say it is
incomplete because the buffer can contain gaps of missing causal

dependencies. The incomplete log can then complement the exist-
ing log and compacted sequential state to represent the full CRDT
state. Furthermore, entries in the main PO-Log and the compacted
state can be made redundant by entries from the incomplete log.
However, entries in the incomplete log cannot be redundant as long
as they have not yet been moved to the main PO-Log as concurrent
operations that might be affected by the operation may yet arrive.

This approach has some additional advantages besides providing
a more reactive CRDT. Since entries from the incomplete log can
cause entries from the main log to become redundant, it can be
used for decreasing memory consumption whenever intermediate
disconnections are common. In these cases, it is hard to determine
causal stability as not all replicas will be responsive. But the incom-
plete log can be used to determine redundant operations even if
they may be missing causal dependencies.

6 EVALUATION
In this section, we validate our approach by running several per-
formance experiments that aim to answer the following questions:
• how does our approach compare to the vanilla pure
operation-based framework in terms of log size?
• what is the benefit of stability messages and the overhead it
incurs?
• what is the impact of using the log size as a heuristic for
triggering the stability messages?

6.1 Setup
We ran our experiments on a notebook machine with the following
hardware specifications and software versions:

CPU 2,7 GHz Quad-Core Intel Core i7 (I7-8559U)
Memory 16 GiB
OS macOS 10.15.5
Node.js v13.12.0
TypeScript v3.9.5

For our experimental setup, we are running several Flec actors on
the machine with instances of the RW-Set implementation. These
instances are configured as replicas of each other. Flec is running on
top of Node.js, and is compiled using TypeScript.We then repeatedly
perform operations on each replica, and either measure their log
sizes or analyse the log contents depending on the experiment. Our
results are not platform specific since we evaluate the log size rather
than memory usage. This allows us to clearly evaluate the different
extensions.

6.2 Methodology
For our experiments, we employ an implementation of the Remove-
Wins set (RW-Set). An RW-Set cannot solely rely on the redun-
dancy mechanisms of pure operation-based CRDTs and requires
compaction through causal stability to limits its log size, making it
ideal for our experiments. In particular, we implemented two ver-
sions: a pure-operation based (RW-Set) CRDT implementation as
described in [3], and an extended implementation using our eager
stability approach.
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Algorithm 5 shows the core logic for benchmarking. For every
benchmark we configure the properties of the set replicas (this hap-
pens in setupSets), enabling/disabling stability messages, tweak-
ing the size of the message interval, or setting up a log-size depen-
dent trigger. A total of TOTAL_ROUNDS * ROUND_SIZE items
will be added to the sets, where the source set (the set where the
operation is directly applied to) is changed every round. After every
add operation, statistics regarding the size of first set’s log will be
measured.

Since the analysis code and CRDT implementations are deter-
ministic, we do not need to perform multiple measurements. All
the numbers from the experiments can be exactly reproduced and
therefore there is no need for multiple runs from which confidence
intervals are computed.

Algorithm 5: Core logic for RW-Set benchmarking
Data: sets
var current_set := 0;
var step := 0;
setupSets();
while step < TOTAL_ROUNDS * ROUND_SIZE do

sets[current_set]← add("element" . step);
takeMeasurements();
if step mod ROUND_SIZE == 0 then

current_set := ( current_set + 1) mod
NUMBER_OF_SETS;

end
sleep(STEP_TIME);

end

6.3 Assessing Meta-Data Removal for the
Vanilla Pure Op-Based Framework

Figure 5 plots the results for our first test, where we look at the
behaviour of the vanilla pure-op RW-Set implementation. We per-
form the test on a system with 2, 4, and 8 replicas. As explained
in our methodology, we repeatedly keep adding items to the sets.
To ensure that every replica eventually performs an update and
that we eventually can determine causal stability, the source node
for the operations is switched every 100 operations. E.g. the first
100 operations will be performed on set 0, the next 100 on set 1,
intermediately wrapping back to the set 0 once we pass the last
set. Every operation on one replica will be propagated to the other
replicas in the system.

The plot in figure 5 shows a clear zig-zag pattern in the results:
only every 100 operations, when the source replica is switched
and an update has been pushed from the new source replica, can
the CRDT remove elements from the logs. This is because only
at that point does new causality information about earlier opera-
tions become available, which may be enough for some replicas
to determine causal stability. This also explains the initial slope
in the graphs: a replica can only start determining stability once
it has received updates from all other replicas. The graph shows
that for the first set this happens after the 101st operation in a
system with 2 replicas. For systems with four and eight replicas,

Figure 5: Numbers of entries in log of a pure-operation based
Remove-Wins set, as operations are being applied to the sets
in the system. Every 100 operations the source replica is
changed. Measurements take for a system with 2, 4 and, 8
replicas.

this is after the 301st and 701st operation respectively. From that
point on, every 100 operations the system can determine causal
stability for operations issued ((NR_OF_REPLICAS − 1) ∗ 100) to
((NR_OF_REPLICAS − 2) ∗ 100) operations earlier, which implies
that the log will always be at least the size of the number of opera-
tions issued afterwards.

Note, however, there is an apparent exception to that trend
in the graph: there is a slightly larger dip in the log size every
(NR_OF_REPLICAS − 2) switches. To understand what exactly is
going on we plot a dissected view of the log for the system with 4
replicas in Figure 6. Each colour in the graph represents the source
set for a particular entry in the log. For example, a light blue en-
try means that the log contains an entry for which its operation
originated in set 1. For set 0, 2, and 3 it takes 300 operations before
the items can be removed from the log, for set 1 it only takes 200
operations.

Figure 6: Numbers of entries in log of a pure-operation based
Remove-Wins set, as operations are being applied to the
sets in the system. Every 100 operations the source node is
changed. Measured in a system with 4 replicas. The colours
represent the source of the entries in the logs.

The reason for the apparent exception is because as set 1 directly
follows set 0 (which we are measuring), set 0 only needs causal
information from set 2 and 3 to be able to determine causal stability
for the operations issued by set 1. This information becomes avail-
able after the next two replica switches. For all the other replicas
there is always one extra node in between. E.g. for operations from
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set 3 we first have to go through set 0, set 1, and set 2 before enough
causal information is available.

6.3.1 Conclusion. These experiments show that there is a large
impact on the size of the log when replicas do not regularly push out
updates, one that grows with the number of replicas in the system.
The results confirm the missed memory optimisation opportunities
that the vanilla causal stability algorithm used in pure-op CRDTs
suffers from.

6.4 Assessing the Benefits of Stability Messages
In this section, we validate in terms of log size what the benefits of a
pure operation-based framework with eager stability determination
are when compared to a pure operation-based one in the context
of an RW-Set implementation. In particular, we will compare three
different setups:
• Vanilla RW-Set replicas without any stability messages,
meaning the framework only relies on causality informa-
tion of propagated messages to deduce causal stability (no
acks).
• RW-Sets replicas with our extension for stability messages;
interval set to 10 operations (int=10).
• RW-Sets replicas with our extension for stability messages;
interval set to 50 operations (int=50).

In all of these setups, we use four replicas, which means that each
experiment is performed under circumstances identical to those
from the previous section. We compare the results of this set-up to
RW-Sets that are implemented on our proposed framework.

Figure 7: Comparison of the number of entries in the log
of a pure-operation based Remove-Wins set, in a system of
4 replicas, but with no additional stability messages, stabil-
ity messages every 10 operations, and stability messages ev-
ery 50 operations. Every 100 operations the source node is
changed.

Figure 7 shows the result of this experiment. A clear drop in
log size can be observed when utilising stability messages, demon-
strating their effectiveness. A smaller jigsaw pattern is visible, with
drops every 10 or 50 operations depending on the setup. Because
stability messages are more frequent and do not depend on multiple
replicas communicating, there is no initial slope.

The slight build-up that is visible is due to the nature of the
benchmarking setup. Figure 8 shows the log in more detail for
the test where the interval is set to 50 (shown in red in figure 7).
Because we switch replica every 100 operations and only send
stability messages after an interval of 50 messages (meaning, after

51, 101, 151... operations) the last 50 operations from the previous
set will remain in the log. As such, the number of entries in the log
can stack up at times.

Figure 8: Detailed view at the number of entries in log of a
pure-operation based Remove-Wins set, in a system with 4
replicas and stability messages every 50 operations.

Figure 9 shows the results of an experiment with the same three
setups but in which we change the source node every 200 opera-
tions. In the case of the vanilla RW-Set without stability messages,
the initial slope has doubled while the two instances with causal
stability messages remain stable. The experiments confirm that
there is a large memory improvement when stability messages are
utilised when compared to the vanilla pure-op approach.

Figure 9: Same comparison as in Figure 7, but with the differ-
ence that the source node is changed every 200 operations.

6.5 Assessing the Network Overhead
In this section, we assess the network overhead that our approach
incurs. As described in section 3, we use stability messages for an-
nouncing causal stability, resulting in an increased network usage
(as in bandwidth consumption). Figure 10 shows the total number
of messages sent when using the same initial setup as in the pre-
vious experiment (following figure 7). As shown in the graph, the
overhead decreases when increasing the interval, i.e. the longer the
interval is, the less overhead. This illustrates the trade-off between
network (i.e. the number of stability messages sent to the network)
and memory usage (i.e the size of the log).

In our implementation we utilise separate messages per replica,
meaning that the total number of messages (including those for
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Figure 10: Comparison of the total number of sent messages
for a pure-operation based Remove-Wins set, in a system of
4 replicas, but with no additional stability messages, stabil-
ity messages every 10 operations, and stability messages ev-
ery 50 operations. Every 100 operations the source node is
changed.

propagating operations) in a system is relative to both the number
of operations applied and to the number of replicas. Figure 11
shows the result of the previous experiment repeated, but with 8
replicas instead of 4. As expected, the overhead has increased as
more stability messages have to be sent.

Figure 11: Comparison of the total number of sent messages
for a pure-operation based Remove-Wins set, in a system of
8 replicas, but with no additional stability messages, stabil-
ity messages every 10 operations, and stability messages ev-
ery 50 operations. Every 100 operations the source node is
changed.

This extra overhead is unavoidable in system designs where
replicas can only talk directly with each other. In systems where
multicasting is possible, the overhead and message sending can be
dropped dramatically as all replicas can be addressed in one go.

This experiment shows that there is a network overhead when
using eager stability determination, but that it may be acceptable
as a tradeoff with the improved memory consumption.

6.6 Assessing the Benefits of Using Log Size as
a Heuristic for Stability Messages

In this section, we assess what the impact is of using the log size
as a heuristic for triggering the stability messages, aside from the
interval-based approach. This may be useful to cope with the build-
up of stability messages that was observed in the previous experi-
ments (as seen in figure 8). Additionally, it can be used by developers
to implement a better tradeoff between network and memory usage.

Figure 12 shows what the effect of using the log size as a heuristic
is when enabled for the RW-Set. Again, we are using the same setup
as the previous sections, but with the following additions:
• In the instance where the interval is set to 10 operations, we
put the trigger on 15 log entries.
• In the instance where the interval is set to 50 operations, we
put the trigger on 75 log entries.

Figure 12: Same comparison as in Figure 7, but with the dif-
ference that nodes will additionally try to trigger stability
messages if the number of entries log exceeds a certain size
(75 entries for the system with int=50 and 15 entries for the
system with int=10). Every 100 operations the source node
is changed.

In the graph we observe that the log can still grow to be larger
than the trigger limit. The reason for this is that replicas can only
broadcast stability messages for operations that they initiated. Con-
sequently, replicas may reach their limit by receiving operations
of other replicas, and will not be able to remove these entries until
they receive stability messages for them. This can also be seen more
clearly in figure 13, where we have a detailed plot of the log for the
case where the trigger is set to 75 (and the interval is 50).

In general, as all replicas will receive updates and eventually hit
the trigger limit, they will push out stability updates. The overall
log size drops to about half of the consumption of what it was in
previous experiments without this heuristic, with limited build-up.
To conclude, we show that allowing custom heuristics, such as a
trigger on the log size, can be beneficial for improving memory
efficiency and allows developers to fine-tune the tradeoffs according
to the data type.

7 CONCLUSION AND FUTUREWORK
Conflict-free Replicated Data Types (CRDTs) are important data
structures in the domain of distributed programming for easing
the development of geo-distributed applications. They allow for
concurrent operations on replicas and guarantee that eventually, all
replicas will end up in the same state. To handle concurrent opera-
tions, causal relationships between operations need to be tracked.
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Figure 13: A detailed look at the number of entries in the
log of a pure-operation based Remove-Wins set, in a system
with 4 replicas and stability messages every 50 operations
and when the number of entries in the log exceeds 75. Every
100 operations the source node is changed.

Traditional operation-based approaches model this by explicitly
including logical clocks or unique identifiers as meta-data with
operation messages. This, however, leads to an over-complicated
design where CRDT implementations have to deal with semantics
and causal ordering in a mixed way. One way to deal with this is
by relying on a communication layer implementing reliable causal
broadcasting (RCB) which handles causal ordering and reliable
delivery. The pure-operation based CRDT framework takes this
approach and compacts and cleans up meta-data when operations
are causally stable.

In this paper we showed that relying only on causal information
for deducing causal stability of operations may not be enough, as
it may take too long before redundant meta-data can be removed.
Moreover, we describe how the reliance on RCB limits the reac-
tivity of operation-based CRDTs when compared to traditional
approaches. Operations may be buffered for some time, waiting for
other causally related operations to arrive.

To solve these issues, we propose a novel operation-based frame-
work which is more eager in determining causal stability, by taking
advantage of reliable delivery. We evaluated our approach by per-
forming several experiments demonstrating its effectiveness. The
results show that our more eager approach to determine causal
stability yields promising benefits in log compaction time. To deal
with the reactivity issue, we propose to make the buffer of the RCB
layer accessible to developers.

By providing an open operation-based CRDT framework, we
believe that this paper additionally contributes to better language
implementations for CRDTs. As future work, we would like to

efficiently implement incomplete partial logs as an extension for
pure operation-based CRDTs. Secondly, we would like to provide a
formal description of this extension and explore the difference in
complexity with traditional approaches. Finally, we would like to
use a formal model for proving the correctness of our eager causal
stability approach.
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