
Orchestration of
Actor-based Languages for
Cyber-physical Systems

Humberto Rodríguez Avila

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

August 2021

Promotors:
Prof. Dr. Wolfgang De Meuter, Vrije Universiteit Brussel

Prof. Dr. Joeri De Koster,Vrije Universiteit Brussel

Jury:
Prof. Dr. Ann Nowé, Vrije Universiteit Brussel, Belgium (chair)

Prof. Dr. Kris Steenhaut, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Theo D’Hondt, Vrije Universiteit Brussel, Belgium
Prof. Dr. Shigeru Chiba, The University of Tokyo, Japan

Dr. Tim Felgentreff, Oracle Labs, Germany

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

© 2021 Humberto Rodríguez Avila

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789493079960
NUR 989

All rights reserved. No part of this publication may be produced in any
form by print, photoprint, microfilm, electronic or any other means without
permission from the author.

Abstract

Actor-based programming languages already offer many essential features
for developing modern cyber-physical systems. These systems exploit the
actor model’s isolation property to fulfill their performance and scalability
demands. Unfortunately, the reliance of the model on isolation as its most
fundamental property requires programmers to express complex interaction
patterns between actors as complex combinations of asynchronous messages.
In the last three decades, several language design proposals have been
introduced to reduce the complexity that emerges from describing said
interaction and actors’ coordination. We argue that none of these proposals
is satisfactory to express the many complex interaction patterns between
actors found in modern cyber-physical systems.

This dissertation formulates seven smart home automation software
construction scenarios (in which every smart home appliance is represented
by its own actor) which motivate the need for advanced types of message
synchronization patterns between actors in practice; patterns that are
lacking in modern distributed actor-based languages. We have collected
evidence for the practical relevance of these scenarios by means of an
online poll conducted in various online home automation communities.
The results of this poll clearly cement the need for advanced synchronization
mechanisms in modern actor systems.

A careful analysis of these seven scenarios at the programming language
level uncovers five fundamental categories of synchronization patterns.
These include 1) the filtering of messages, both based on their content as
well as on their timestamps. 2) The selection of one or more messages based
on the order in which they arrive. 3) Correlation of messages using logical
operators. 4) Accumulation of messages based on windows in time as well
as the number of messages. And lastly, 5) Aggregation of accumulated
messages.

i

In this thesis, we present Sparrow, a domain-specific-language (DSL)
built on top of Elixir. Sparrow extends the single-message matching
paradigm of contemporary actor-based languages to support multiple-
message matching. This is enabled by supporting the abstraction and com-
position of elementary message patterns. Sparrow includes novel language
abstractions to support all five categories of synchronization patterns. We
also implemented an executable formal calculus for Sparrow – called NEST
– that serves as a precise specification of its defining language features. We
evaluate our DSL using a quantitative comparison of a state-of-the-art
implementation of all seven scenarios with an implementation in Sparrow.
Our preliminary evaluation shows that Sparrow effectively reduces the
amount of extraneous code that is interleaved with the synchronization
code.

Samenvatting

Actorgebaseerde programmeertalen bieden reeds verschillende essentiële
constructies aan voor het ontwikkelen van cyber-physical systemen. Zulke
systemen benutten het isolatieprincipe van actoren ten volle teneinde
hun performantie- en schaalbaarheidseisen te realiseren. Jammer genoeg
betekent de afhankelijkheid van ‘isolatie als meest fundamentele bouwsteen’
van het actormodel meteen ook dat programmeurs gedoemd zijn om com-
plexe interactiepatronen tussen actoren uit te drukken m.b.v. ingewikkelde
combinaties van asynchroon gestuurde boodschappen tussen de actoren.
In de voorbije drie decennia werden dan ook verschillende taalontwerpen
voorgesteld die als doel hebben de complexiteit te reduceren die voortvloeit
uit het beschrijven van de coördinatie tussen de actoren met zulke interac-
ties. Wij verdedigen de stelling dat geen van deze voorstellen voldoet om
het ingewikkeld soort interactiepatronen uit te drukken die men typisch
terugvindt in moderne cyber-physical systemen.

Dit proefschrift formuleert zeven ‘smart home automation’ software-
constructiescenario’s (waarin ieder ‘smart home apparaatje’ voorgesteld
wordt door zijn eigen actor) die duidelijk de noodzaak aantonen voor
meer geavanceerde synchronisatiepatronen van boodschappen uitgewisseld
tussen actoren; patronen die dus afwezig zijn in moderne gedistribueerde
actorgebaseerde programmeertalen. We hebben bewijs verzameld voor
de relevantie van deze scenario’s in de praktijk d.v.m. een bevraging in
verschillende online ‘home automation’ gemeenschappen op het internet.
Het resultaat van deze bevraging toont overduidelijk de nood aan van meer
geavanceerde synchronisatiemechanismen in moderne actorsystemen.

Een gedegen analyse van deze zeven scenario’s op programmeertaal-
niveau heeft niet minder dan vijf fundamentele categorieën van synchro-
nisatiepatronen bloot gelegd. Deze omvatten 1) filteren van boodschappen
gebaseerd op hun inhoud en op hun tijdseigenschappen. 2) selecteren

iii

van één of meerdere boodschappen gebaseerd op de volgorde waarin deze
werden ontvangen. 3) correlaties van boodschappen m.b.v. logische opera-
toren. 4) accumulaties van boodschappen gebaseerd op tijdvensters en/of
tellingen. 5) aggregaties van geaccumuleerde boodschappen.

In dit proefschrift presenteren we Sparrow, een domeinspecifieke pro-
grammeertaal (DSL) die gebouwd werd bovenop Elixir. Sparrow breidt het
enkelvoudige bericht-matchingsysteem van een moderne actorgebaseerde
taal (in casu dus Elixir) uit met ondersteuning voor meervoudige bericht-
matching. Dit wordt verwezenlijkt door het abstraheren en samenstellen
van elementaire bericht-patronen. Sparrow biedt taalondersteuning aan
voor alle vijf de categoriëen van synchronisatiepatronen die hierboven wer-
den beschreven. Sparrow werd voorzien van een precieze specificatie m.b.v.
een formele uitvoerbare calculus, genaamd NEST. We evalueren Sparrow
met een kwantitatieve vergelijking tussen een gangbare implementatie
van de zeven hogervermelde scenario’s met een implementatie in Sparrow.
Onze vergelijking toont aan dat Sparrow tot een substantiële reductie leidt
van overtollige code die in de gangbare implementaties verstrengeld is met
de feitelijke synchronisatiecode.

Acknowledgements

This dissertation would not have been possible without the tremendous
support from my promotors, colleagues, friends, and especially my family.
I would like to thank my promotors Wolf and Joeri for their guidance all
these years. Wolf, thanks for replying to my first email, that email changed
the course of my academic journey. I also thank Elisa for her support and
guidance at the beginning of this PhD.

Moreover, I would like to thanks all current and ex-SOFTies, especially
my REBLs colleagues for all the feedback given me at every research
presentation about my work. A big thanks to Thierry for his help to
improve the text of this dissertation.

I thank the secretaries of our department who were always ready to
help me not only with academic matters but also with my residency related
matters every year. Lara, thanks for all your calls and emails to ibz.

I want to sincerely thanks the members of my jury for the time they
spent reading this dissertation and their suggestions to improve its final
version.

Many thanks to all my friends and teachers who contributed to my
education. They are too many to name, but I am thankful for the knowledge
and human values that they taught me.

Finally, I would like to thank every member of my big family, and
especially my parents for all their support.

Een dikke merci allemaal!
– Humberto

v

Contents

1 Introduction 1
1.1 Research Context . 5
1.2 Problem Statement . 5
1.3 Research Goal . 6
1.4 Approach . 7
1.5 Contributions . 8

1.5.1 Publications . 9
1.6 Roadmap . 11

2 Motivation 13
2.1 Smart Home Scenarios . 13
2.2 Proof of Scenarios’ Relevance 16
2.3 Message Synchronization Requirements 19
2.4 Conclusion . 20

3 Coordination of Actors and CEP Operators 21
3.1 Coordination of Actor-based Systems 21

3.1.1 The canonical Actor Model 22
3.1.2 Communication Model Extensions 24
3.1.3 Monitor & Verification 28
3.1.4 Local Synchronization 33

3.2 Complex Event Processing 38
3.3 Conclusion . 41

4 Sparrow: A DSL for Actor Coordination 45
4.1 Elixir in a Nutshell . 45

vii

4.2 Sparrow by Example . 47
4.2.1 Enhanced Actors . 47
4.2.2 Language Syntax Overview 50

4.3 Sparrow’s Pattern Language 52
4.3.1 Elementary Patterns 52
4.3.2 Composite Patterns 55
4.3.3 Accumulation Patterns 60

4.4 Sparrow’s Reaction Language 63
4.5 Conclusion . 64

5 NEST: A Formal Semantics of Sparrow 65
5.1 Operational Semantics . 66

5.1.1 Syntax . 66
5.1.2 Semantic Entities . 67
5.1.3 Reduction Rules . 68

5.2 NEST Calculus in Redex 77
5.2.1 A Mechanized NEST Model 79
5.2.2 Randomized Tests of NEST’s Patterns 85
5.2.3 NEST compared to Sparrow 92

5.3 Conclusion . 93

6 Sparrow: An Elixir DSL Implementation 95
6.1 DSLs in Elixir . 95

6.1.1 Macros: the good . 97
6.1.2 Macros: limitations 98

6.2 Sparrow Actors . 99
6.2.1 Message Patterns . 102
6.2.2 Pattern Reactions 104

6.3 JuPITer: A Pattern Detection Engine for Sparrow 106
6.3.1 A RETE-based Matching Algorithm 107

6.4 Tool Support . 111
6.4.1 Visual Studio Code Extension 111
6.4.2 Real-time Monitoring Tool 113

6.5 Conclusion . 115

7 Validation 117

7.1 A Code Comparison Analysis of Scenario 5 117
7.2 Quantitative Evaluation . 120
7.3 Conclusion . 125

8 Conclusion 127
8.1 Summary and Contributions 127
8.2 Shortcomings and Future Work 131
8.3 Closing Remarks . 132

A Appendices 135
A.1 LoC Breakdown of the Smart-Home Scenario Solutions . . . 136
A.2 Source code of the Sparrow.Actor module 138
A.3 Statistical Analysis for Pattern Definition 142
A.4 Statistical Analysis for State Management 143
A.5 Statistical Analysis for Windowing Management 144
A.6 Normalization of LoC . 145
A.7 PLT Redex in a Nutshell . 146
A.8 NEST Semantics in Redex 153

List of Figures

2.1 Online poll results. Voters: 714. Voting time: 1 month . . . 18

3.1 Example of synchronization abstractions in AErlang 27

4.1 Sparrow EBNF-styled syntax definition 51
4.2 Example of an elementary pattern: (1) Primitive used to

declare a pattern; (2) Assign a name for future references;
(3) Define the pattern’s selector 53

4.3 Implementation of scenario 2 using a negated pattern: (1)
Negate the selector definition; (2) Set the time window . . . 54

4.4 Implementation of scenario 4 using a debouncing time be-
tween messages . 54

4.5 Example using the extensional sequencing operator (every)
of Sparrow . 55

4.6 Example of a pattern with a guard expression 55
4.7 Example of pattern reuse in Sparrow 56
4.8 Example of logic variable unification in a composite pattern 57
4.9 Example of use of sequencing operator (seq) 57
4.10 Example of renaming logic variables using the alias operator

(∼>) . 58
4.11 Example of a composite pattern with a time interval constraint 59
4.12 A solution to the occupied-home scene of scenario 5: (A)

Messages received by the actor; (B) Composite pattern that
enforces a selection strategy (last-in) 60

4.13 Example of a quantified accumulation pattern that matches
three heating failure messages 61

xi

4.14 Examples of unquantified accumulation patterns: (A) Use
of the window operator to accumulate all messages in the
last 60 minutes; (B) Example mixing both accumulation
operators . 62

4.15 Sparrow solution for scenario 6: (A) Elementary pattern
definition; (B) Accumulation pattern example with a trans-
former operator and guard 62

4.16 Overview of reaction primitives 64

5.1 Abstract syntax of NEST 66
5.3 Semantic entities of NEST 69
5.4 Substitution rules: x denotes a variable name or the pseudo-

variable, v denotes a value. 70
5.5 Actor-local reduction rules. 71
5.6 Actor-global reduction rules. 73
5.7 Auxiliary functions used in the reduction rules. 76
5.8 Auxiliary functions used in the reduction rules (Cont.). . . . 78
5.9 Translation of the NEST grammar to Redex 79
5.10 Screenshot of a term’s reduction graph using the traces

primitive . 84
5.11 Example of a reduction graph using the pattern-traces function 87

6.1 Metaprogramming tools in Elixir 96
6.3 Limitations to define new operators: (A) Define an ele-

mentary pattern; (B) Define a composite pattern using the
fictional andThen sequencing operator; (C) Real implementa-
tion of the sequencing operator in Sparrow; (D) Definition
of a quantified accumulation pattern using a fictional syntax
of a count operator; (E) Real implementation of a quantified
accumulation pattern in Sparrow 100

6.4 Overview of the internal representation of a Sparrow actor . 107
6.5 Internal representation of messages patterns in Sparrow . . 109
6.6 Autocomplete support for Sparrow abstractions 113
6.7 Autocomplete support by the Sparrow VS Code extension . 113
6.8 Incremental compilation output with an inline build error . 114
6.9 Internal representation of Sparrow’s patterns in JuPITer . . 115
6.10 Visual properties for the discrimination network representation116

7.1 Solution for scenario 5 in openHAB (A), Elixir (B), and
Sparrow (C) . 119

7.2 Expressiveness of the solutions per coding concern and plat-
form . 122

7.3 Summary of the solutions for the seven scenarios 124

A.1 Summary of analyzing different solutions for the seven sce-
narios . 137

List of Tables

2.1 Online poll questionnaire 17

3.1 Synchronization requirements supported by canonical actor
implementations . 23

3.2 Synchronization requirements addressed by CME proposals 29
3.3 Synchronization requirements supported by MV proposals . 34
3.4 Synchronization requirements supported by LS proposals . 38
3.5 Synchronization requirements supported by CEP proposals 39
3.6 Synchronization requirements supported by state-of-the-art

actor-based languages/frameworks and CEP systems 42

7.1 Total LoC of the different solutions for the seven smart
home scenarios . 120

7.2 Statistical overview of the solutions per coding concern . . . 121

A.1 Overview of lines of code for the different scenarios according
to the four identified coding concerns. 136

xv

Listings

1.1 Detect a sequence of messages in Elixir 3
1.2 A join pattern in Polyphonic C# 4
1.3 Vision of an advanced message synchronization abstraction

for actor-based languages 6
2.1 Jython-script implementation for scenario 5 in openHAB . . 15
3.1 Message pattern examples in Elixir 24
3.2 Example of sequencing control in Ambient Contracts 31
3.3 Example of the zip operator of Reactive Isolates 35
3.4 Example of join pattern in JErlang 36
3.5 Equivalence test example in CEDR 40
3.6 Manual timing constraint example in EventJava 40
3.7 Advanced timing constraint example in TESLA 41
4.1 A counter actor in Elixir . 46
4.2 A solution to an instance to scenarios 1 and 2 in Sparrow . 48
5.1 Examples of NEST grammar tests in Redex 80
5.2 Examples of NEST grammar randomized tests in Redex . . 81
5.3 Add evaluation contexts to NEST 82
5.4 Definition of the react-to reduction rule in Redex 82
5.5 Test example for the reduction rule react-to 83
5.6 Trace the reduction process of a term 84
5.7 Example of a NEST pattern test 86
5.8 Trace the reduction process of a pattern 87
5.9 A simple NEST pattern test 88
5.10 Implementation of the pattern-test abstraction 91
5.11 Implementation of the pattern-traces abstraction 92
6.1 A counter actor in Elixir . 97

xvii

6.2 Implementation of Sparrow’s actor module 101
6.3 Definition and instance of a Sparrow’s actor 103
6.4 Pattern macros . 104
6.5 Reaction macros . 105
6.6 Example of a complex actor in Sparrow 112
A.1 Source code of the Sparrow.Actor module (Part 1) 138
A.2 Source code of the Sparrow.Actor module (Part 2) 138
A.3 Source code of the Sparrow.Actor module (Part 3) 140
A.4 Source code of the Sparrow.Actor module (Part 4) 141
A.5 Python script for pattern definition analysis 142
A.6 Python script for state management analysis 143
A.7 Python script for windowing management analysis 144
A.8 LoC Normalization Script in Elixir 145
A.9 Example of a language definition 146
A.10 Example of syntax checks 147
A.11 Example of hand-written unit tests 147
A.12 Example of a randomized test 148
A.13 Example of a judgment form definition 149
A.14 Example of a metafunction definition 150
A.15 Add evaluation contexts to an existent language 151
A.16 Example of a reduction relation definition and evaluation . 152
A.17 Source code of the NEST (Part 1) 153
A.18 Source code of the NEST (Part 2) 154
A.19 Source code of the NEST (Part 3) 154

List of Acronyms

• DSL - Domain-Specific Language

• CPS - Cyber-physical systems

• CEP - Complex Event Processing

• LoC - Lines of Code

• NEST - NEST Epitomises Sparrow Theory

• Hass - Home Assistant

• CME - Communication Model Extensions

• MV - Monitor & Verification

• LS - Local Synchronization

• BEAM - Virtual machine that executes user code in the Erlang
Runtime System

• FIFO - First In First Out

• JuPITer - Join PaTterns Engine

• AST - Abstract Syntax Tree

• IDE - Integrated Development Environment

• IQR - Interquartile Range

xix

C
h

a
p

t
e

r

1
Introduction

Cyber-physical systems (CPS) enable technology for numerous innovative
applications in fields such as factory automation [55], networked mobility [6],
health [88], and smart buildings [51]. These kinds of systems promote a
link between physical processes/sensors and a virtual world to facilitate
greater productivity, comfort, safety, energy efficiency, and so forth. At the
same time, their heterogeneous nature and networked structures impose
three challenges for the software industry [4].

• First, these systems often require a more efficient execution by ex-
ploiting multi-core processor architectures.

• Second, CPS becomes ever more distributed and event-driven (reac-
tive).

• Third, CPS require a precise coordination logic. The coordination
logic represents the synchronization abstractions that define and
evaluate complex interactions between devices in a CPS (e.g., sensors).
For example, the execution of an action in these systems is typically
conditioned by the current state or other data shared by more than
one device.

These development challenges faced by the software industry have
required adopting alternative concurrency models to the widely used

1

CHAPTER 1. INTRODUCTION

thread-based model. The actor model [35] has become an interesting option
to design CPS because it addresses the first two challenges mentioned
above. However, in its original form, the model lacks basic synchronization
abstractions as indicated by the third requirement.

The interaction and coordination between actors of a system are mod-
elled by exchanging individual asynchronous messages. Whenever an actor
is supposed to execute an action in response to a received set of messages
(rather than just a single message) with certain characteristics, mainstream
actor languages (e.g., Erlang, Scala, Elixir) require developers to encode
the defining characteristics of the set of messages manually. This limitation
puts an extra workload on developers who have to define the coordination
logic and manually keep track of relevant data for the coordination process.

Consider the example illustrated in listing 1.1. In this example, the
actor will react only if a particular sequence of messages (:msg_a→ :msg_b
→ :msg_c) is received (lines 4, 6, 8). The execution of the reaction code
(line 10) is delayed until the expected messages have been received in
the correct order. To verify that, the actor must manually keep track of
previous messages (lines 5, 7, 12) and validate the progress of subsequent
message arrivals in a hard-coded fashion (line 9).

Looking at the simple example shown in listing 1.1 we already observe
that the complexity of its coordination logic (line 9) will grow exponentially
with the number of actors to coordinate. At the same time, we can imagine
that a bigger system will require complex synchronization abstractions and
not just sequencing. For example, consider a CPS that ensures an efficient
traffic flow; in a way, we never have to stop at a red light unless there is
actual cross traffic. In this scenario, traffic lights (intersections) and cars
need to cooperate to achieve such efficient traffic’s flow. Both cars and
intersections could be modelled as actors. Cars will track their position
and communicate with others cars to cooperatively use shared resources
such as intersections. In this last scenario, we do not know how many
actors must be coordinated, nor the order of the messages to synchronize.
Even though this kind of system will require more complex synchronization
requirements such as timing constraints, current mainstream actor-based
languages do not support such constraints even for the synchronization of
individual messages.

Briefly, the single-message match mechanism in traditional actors com-
plicates the construction of said CPS. Developers are forced to manually

2

Listing 1.1 Detect a sequence of messages in Elixir
1 def loop({ts_a, ts_b}) do
2 state =
3 receive do
4 {:msg_a, timestamp} ->
5 {timestamp, ts_b}
6 {:msg_b, timestamp} ->
7 {ts_a, timestamp}
8 {:msg_c, timestamp} ->
9 if ts_b > ts_a do

10 # reaction code
11 end
12 {0,0} # reset state
13 end # receive-end
14 loop(state)
15 end

weave two orthogonal concerns of their actor’s interactions and coordina-
tions: when to react (i.e., precisely describe the set of messages that is
supposed to give rise to a certain behaviour) and how to react (i.e., the
code that describes the actual method to be fired upon reception of said
set).

For almost three decades [24, 7, 25], researchers have been developing
new programming language features to improve the expressiveness of actors’
interaction and coordination features. One particular technique is based on
join patterns. Join patterns were invented by Benton et al. [12] as part of
the join calculus. They were added to the thread-based concurrency model
of C# leading to a language called Polyphonic C#. Line 2 in listing 1.2
exemplifies a join pattern that expresses the coordination between the two
methods (Get and Put) of a Buffer class. In this example, the calling thread
of the Get method will be blocked until the asynchronous Put method is
invoked. The ampersand (&) symbol expresses declaratively that both
threads need to rendezvous before the method’s body is executed.

Join patterns were recently popularized by Haller et al. [32]. This paper
introduces an extension of Scala featuring join patterns called, ScalaJoins.
ScalaJoins can be seen as an attempt to transpose the mainly synchronous
incarnation of join patterns in Polyphonic C# to the asynchronous world of

3

CHAPTER 1. INTRODUCTION

Listing 1.2 A join pattern in Polyphonic C#
1 public class Buffer {
2 public string Get() & public async Put(string s) {
3 return s;
4 }
5 }

Scala. To sum up, join patterns allow developers to express the interaction
and coordination logic of a program elegantly.

Although join patterns improved the actor’s coordination process sig-
nificantly, they still fall short in supporting common synchronization
abstractions required by modern CPS (see section 2.3). Luckily, a previous
study on complex event processing (CEP) systems [16] has revealed a set
of wanted properties and operators for correlating events from multiple
streams. After distilling a set of essential synchronization abstractions
required by modern CPS, we hypothesize that maybe we could borrow
well-established correlation operators from the CEP world to enhance join
patterns with them.

This dissertation uses smart home scenarios as a particular CPS ap-
plication domain to help steer our research. We formulate seven smart
home automations to motivate the necessity to encode complex interaction
and coordination patterns between actors more easily. These examples
represent real-world concerns that are really on the radar of the smart home
community, as demonstrated by our online survey (see Section 2.2). Using
this smart home scenario, we envision that an actor digitally represents
a smart device. From these seven automations, we identify five types of
message synchronization abstractions that cover operations like filtering,
selection, ordering, accumulation and transformation of messages.

This dissertation’s primary goal is to provide language constructs that
aid developers in the coordination process of a group of heterogeneous
actors. We ground our research by implementing Sparrow, a dialect of
Elixir1 that features actors whose complex interaction and coordination
patterns can be described in a highly declarative fashion. Sparrow’s
interaction patterns have been harvested from an extensive literature

1Elixir can be regarded as a modern Erlang (e.g., with macros) that runs atop BEAM;
i.e., the Erlang virtual machine.

4

1.1. RESEARCH CONTEXT

study of the state-of-the-art of join patterns and complex event processing
systems (see Chapter 3). Hence, Sparrow can be seen as a general-purpose
actor language whose actors have been enriched with join patterns and
CEP ideas.

1.1 Research Context

The research contexts related to this dissertation are:

Actor-based systems Our research focuses on concurrent and distributed
systems whose primary communication and coordination mechanism
is to exchange individual messages. As we discussed above, this
dissertation explores synchronization abstractions needed by modern
actor-based systems.

Coordination models and languages Due to the concurrent nature of
actors, the definition of program patterns that deal with their interac-
tion is relevant in all stages of the development process (e.g., debug-
ging and maintenance). In this dissertation, we target coordination
primitives that can be incorporated into an actor-based language
(e.g., Elixir).

Programming language design In this dissertation, we emphasize the
development of a domain specific language (DSL) to aid the coor-
dination process of a group of heterogeneous actors. Since actors
are by nature designed to work in conjunction with others, we argue
that they required a richer synchronization mechanism than reacting
to individual messages.

1.2 Problem Statement

Message passing is the primary communication and coordination mecha-
nism of actor-based systems. Actors read the messages from their inbox
one by one . This default behaviour forces developers to manually correlate
multiple messages (see chapter 2). Furthermore, the current matching
mechanism only filters messages based on their values without taking
into account time constraints. It is up to the developers to enforce such

5

CHAPTER 1. INTRODUCTION

advanced message synchronization abstraction themselves in a hard-code
way.

This dissertation motivates a subset of advanced message synchroniza-
tion abstractions using several motivating examples drawn from the domain
of smart home automation. However, their need can also be observed in
other domains of cyber-physical systems [37]. We drew our inspiration
for such our subset of message synchronization abstractions from complex
event processing systems. This dissertation also explores how to integrate
these synchronization abstractions into the message matching mechanism of
actors. Listing 1.3 gives a sneak peek of how we envision such integration.

Listing 1.3 Vision of an advanced message synchronization
abstraction for actor-based languages
1 pattern kw_alert as {:kw, @value}[window: {3, :weeks}]
2 |> fold(0, fn({_,_,v}, acc)-> acc+v end)
3 |> bind(total)
4 |> total > 200

In the snippet code of listing 1.3, an actor defines a pattern that will
match and accumulate the daily electricity consumption messages for three
weeks (line 1). After summing up the readings (line 2), the pattern will
determine if the total consumption was greater than 200 kWh (line 4).
Although it is not shown in the example, this kind of abstraction will
allow developers to define a set of actions that should be executed when
its conditions are satisfied.

In summary, this dissertation aims to tackle the following problem:

Actors often need to correlate messages from different sources in
a particular order, and within a specific time window. The
matching mechanisms present in mainstream actor languages only
filter messages based on their values.

1.3 Research Goal

This dissertation aims to extend the actor model’s default message matching
mechanism to support the detection of complex message synchronization ab-

6

1.4. APPROACH

stractions. Particularly, we aim to provide a rich set of message correlation
operators. To achieve this goal, we explore the integration of well-known
CEP operators into the actor model (see chapter 3). We envision the
following requirements for our extension of the actor model:

1. It must seamlessly integrate into a canonical actor-based host lan-
guage.

2. It must provide advanced message filters and selection mechanisms.

3. It must combine multiple operators by which developers can define
complex messages correlation.

4. It must improve the code’s expressiveness to correlate multiple mes-
sages.

1.4 Approach

This dissertation proposes a novel domain-specific language (DSL), called
Sparrow, that tackles the problem stated in Section 1.2. We envision its
development in five steps:

• First, we distil common message synchronization abstrac-
tions found “in the wild” in the smart home community (see Sec-
tion 2.1).

• Second, we use an online poll to confirm how frequently the
distilled message synchronization abstractions appeared in real
home automations of the smart home community (see section 2.2).

• Third, we investigate the support of the identified message syn-
chronization abstractions by state-of-the-art proposals of both join
patterns (see section 3.1) and complex event processing (see sec-
tion 3.2). This study will allow us to detect the weaknesses/strengths
of both approaches and apply this knowledge to implement Sparrow.

• Fourth, we implement a DSL prototype on top of a mainstream
actor language (see section 4.2).

7

CHAPTER 1. INTRODUCTION

• Fifth, we also incrementally formalized the operational seman-
tics of our DSL using Redex [21] to experiment with each message
synchronization abstraction (see section 5.1).

• Sixth, we compare the solutions obtained with our DSL against
the ones of two mainstream smart home platforms and an actor
language (see section 7.2).

1.5 Contributions

This dissertation makes the following contributions:

A suite of common synchronization requirements. A proposal for
a suite of common synchronization requirements needed by modern actor
systems. The need for these requirements was confirmed by more than 700
developers from the smart home community.

A survey of existing actor-based coordination approaches and
CEP operators. An extensive survey of related work on coordination
abstractions for the actor model and complex-event processing (CEP) oper-
ators. From this survey, we conclude that traditional implementations and
extensions to the actor model have limited support for the synchronization
requirements identified in this dissertation. However, these requirements
were commonly tackled by CEP operators.

A domain-specific language for advanced coordination of hetero-
geneous actors. Sparrow, a novel domain-specific language as a technical
incarnation of the aforementioned synchronization requirements on top of
Elixir. To the best of our knowledge, Sparrow is the first actor-based lan-
guage to combine join patterns and complex event processing techniques.

A formal calculus of Sparrow called NEST and its mechanization.
A specification of the operational semantics of Sparrow, called NEST.
This formal specification is used to experiment with its synchronization
abstractions.

A novel RETE-based matching algorithm. A custom implementa-
tion of the RETE [22] algorithm to reduce Sparrow’s message matching
performance overhead by supporting an incremental matching mechanism.

8

1.5. CONTRIBUTIONS

Basic Tools Support Basic software tools to support the development
and debugging of Sparrow-based programs.

The implementation of Sparrow, its formal semantics in Redex, and
the examples used for its validation are available at http://soft.vub.ac.
be/~hrguez/sparrow-lang.

1.5.1 Publications

Parts of this dissertation appear in the following publications:
Article

• Advanced Join Patterns for the Actor Model based on CEP Tech-
niques. Humberto Rodriguez Avila, Joeri De Koster, and Wolfgang
De Meuter. The Art, Science, and Engineering of Programming,
2021, Vol. 5, Issue 2, Article 10. DOI: https://doi.org/10.22152/
programming-journal.org/2021/5/10

This paper describes a subset of CEP-based synchronization oper-
ators implemented into an actor-based language to facilitate the
coordination between actors.

Workshop Paper

• Sparrow: a DSL for coordinating large groups of heterogeneous actors.
Humberto Rodriguez Avila, Joeri De Koster, and Wolfgang De Meuter.
In Proceedings of the 7th ACM SIGPLAN International Workshop
on Programming Based on Actors, Agents, and Decentralized Con-
trol (AGERE 2017). Association for Computing Machinery, New
York, NY, USA, 31–40. DOI: https://doi.org/10.1145/3141834.
3141838

This workshop paper introduces our first attempt at a novel coordina-
tion model for actor-based programs. This first prototype illustrates
the bases of Sparrow’s message correlation primitives.

Poster & Demo & Talk

• An Elixir library for programming concurrent and distributed em-
bedded systems. Humberto Rodriguez Avila, Elisa Gonzalez Boix,
and Wolfgang De Meuter. In Companion to the First International
Conference on the Art, Science and Engineering of Programming

9

http://soft.vub.ac.be/~hrguez/sparrow-lang
http://soft.vub.ac.be/~hrguez/sparrow-lang
https://doi.org/10.22152/programming-journal.org/2021/5/10
https://doi.org/10.22152/programming-journal.org/2021/5/10
https://doi.org/10.1145/3141834.3141838
https://doi.org/10.1145/3141834.3141838

CHAPTER 1. INTRODUCTION

(Programming 2017). Association for Computing Machinery, New
York, NY, USA, Article 6, 1. DOI: https://doi.org/10.1145/
3079368.3079383

This demo introduces a small actor library for developing concurrent
and distributed embedded systems. We showcase the implementation
details of a classic leader election algorithm using a small cluster of
Raspberry Pi computers.

• Intentional Join Patterns for Coordinating Large Groups of Heteroge-
nous Actors. Humberto Rodriguez Avila, Elisa Gonzalez Boix, and
Wolfgang De Meuter. Poster session presented at the International
Conference on the Art, Science and Engineering of Programming
(Programming 2017).

This poster introduces our initial steps towards the Sparrow DSL. We
present a limited join pattern DSL to correlate multiple messages.

• Tierless Reactive Programming for Big Data: Tackling the Storage-
Signal Impedance Mismatch. Humberto Rodriguez Avila, Elisa Gon-
zalez Boix, and Wolfgang De Meuter. Poster session presented at
European Conference on Object-Oriented Programming (ECOOP
2016)

This poster illustrates a reactive approach for processing a large
amount of data using NO-SQL databases. We discuss an extension
to Riak DB and a SQL-like DSL to react to incoming data.

• Reactive Databases for BigData Applications. Humberto Rodriguez
Avila, Wolfgang De Meuter, Elisa Gonzalez Boix. Talk at the 4th
Graph-based Technologies and Applications Workshop (GRAPH-TA
2016).

In this talk, we introduce an extension to Riak DB and a SQL-like
DSL to react to incoming data in NO-SQL databases.

Additionally, I contributed to the following publication during my
research:

• Composable higher-order reactors as the basis for a live reactive
programming environment. Bjarno Oeyen, Humberto Rodriguez Avila,
Sam Van den Vonder, and Wolfgang De Meuter. In Proceedings of

10

https://doi.org/10.1145/3079368.3079383
https://doi.org/10.1145/3079368.3079383

1.6. ROADMAP

the 5th ACM SIGPLAN International Workshop on Reactive and
Event-Based Languages and Systems (REBLS 2018). Association for
Computing Machinery, New York, NY, USA, 51–60. DOI: https:
//doi.org/10.1145/3281278.3281284

This paper introduces a new reactive language based on first-class
higher-order reactors, called Haai.

1.6 Roadmap

This dissertation is organized as follows:

Chapter 2: Motivation uses a smart home scenario to distil five cate-
gories of synchronization requirements that are needed to express
common interaction and coordination patterns between actors.

Chapter 3: Coordination of Actors and CEP Operators analyzes
the support of the synchronization requirements described in Chap-
ter 2 by actor-based technologies and complex event processing (CEP)
operators.

Chapter 4: Sparrow: A DSL for Actor Coordination introduces the
main synchronization abstractions proposed by our DSL to support
the synchronizations requirements described in Chapter 2.

Chapter 5: NEST: A Formal Semantics of Sparrow describes a for-
mal calculus for Sparrow, called NEST. This formalism serves as a
precise definition of the semantics of core Sparrow abstractions.

Chapter 6: Sparrow: An Elixir DSL Implementation reveals imple-
mentation details behind the synchronization operators supported by
Sparrow. We explain the variant of the RETE [22] algorithm used to
provide an incremental matching of Sparrow’s patterns. Furthermore,
this chapter describes an extension to the Visual Studio Code editor
to support incremental static analysis, code autocomplete, and inline
report of build warnings and errors of Sparrow-based programs. This
chapter also introduces a real-time inspector that can be used to
debug Sparrow-based applications.

Chapter 7: Validation details a quantitative evaluation based on the
implementation of the seven smart home scenarios described in

11

https://doi.org/10.1145/3281278.3281284
https://doi.org/10.1145/3281278.3281284

CHAPTER 1. INTRODUCTION

Section 2.1. Particularly, it compares our DSL solutions against the
ones of two smart home platforms (i.e., openHAB and Hass) and a
modern actor language (i.e., Elixir).

Chapter 8: Conclusions concludes this dissertation and highlights ave-
nues for future work.

12

C
h

a
p

t
e

r

2
Motivation

Cyber-physical systems and particularly smart home systems exhibit a
wide range of synchronization requirements. Devices used in such systems
exhibit three main properties that fulfil our vision of modelling them as
actors. First, they are heterogeneous by nature (e.g., bulbs, thermostats,
motion sensors). Second, they are distributed and isolated entities that
communicate with each other directly or through a middleman (i.e., local
or cloud server). Third, their state and behaviour are modified based on
coordinated actions within a group.

We adopt a smart home use case to distil common synchronization
requirements found on daily automation rules. Section 2.1 introduces
seven smart home scenarios that embody different coordination problems
between a group of actors representing smart devices. Later, section 2.2
reports on an online survey across multiple smart home communities which
we used to validate the coordination problems exemplified by our scenarios.
Finally, section 2.3 describes five categories of synchronization requirements
needed to express those coordination problems.

2.1 Smart Home Scenarios

Smart homes are an application domain where complex interactions be-
tween different smart devices occur. Home automation rules correlate

13

CHAPTER 2. MOTIVATION

events coming from multiple devices in order to execute a particular action
(e.g., turn on the lights). Here, we present seven home automation scenarios
that exemplify basic form of synchronization between a group of hetero-
geneous actors. These examples were inspired by real automation rules
shared on community forums of smart home platforms (e.g., openHAB1

and Hass2):

1. Turn on the lights in a room if someone enters, and the ambient light
is less than 40 lux.

2. Turn off the lights in a room after two minutes without detecting
any movement.

3. Send a notification when a window has been open for over an hour.

4. Send a notification if someone presses the doorbell, but only if no
notification was already sent in the past 30 seconds.3

5. Detect home arrival or leaving based on a particular sequence of
messages, and activate the corresponding “scene”4: occupied-home
or empty-home.

6. Send a notification if the combined electricity consumption of the
past three weeks is greater than 200 kWh.

7. Send a notification if the boiler fires three “Floor Heating Failures”
and one “Internal Failures” within the past hour, but only if no
notification was sent in the past hour.

Listing 2.1 shows an implementation of scenario 5 to illustrate the
degree of complexity that users of these platforms have to handle by
themselves. This openHAB implementation considers two motion sensors,
one in the entrance hall (α), and the second one outside the front door (δ).
Furthermore, we use a contact sensor (β) to detect when the front door
was opened. The occupied-home scene is enabled by the following sequence
of messages δ → β → α, and the empty-home scene by α→ β → δ. Both
scenes will be activated if the three messages occur in a time window of 60

1openHAB Forum (https://community.openhab.org, last accessed 2020-10-01).
2Hass Forum (https://community.home-assistant.io, last accessed 2020-10-01).
3The postman always rings twice.
4Scenes are used for setting a group of values or devices’ states.

14

https://community.openhab.org
https://community.home-assistant.io

2.1. SMART HOME SCENARIOS

Listing 2.1 Jython-script implementation for scenario 5 in openHAB
1 c_door = ZDT.now().minusHours(24)
2 m_hall = ZDT.now().minusHours(24)
3 m_door = ZDT.now().minusHours(24)
4
5 @rule("(Py) Front Door Opened")
6 @when("Item Front_Door_Contact changed to OPEN")
7 def front_door_opened(e):
8 global c_door
9 c_door = ZDT.now()

10
11 @rule("(Py) Motion Detected - Entrance Hall")
12 @when("Item Entrance_Hall_Motion changed to ON")
13 def entrance_hall_motion(e):
14 global m_hall, m_door, c_door
15 m_hall = ZDT.now()
16
17 if m_door.isBefore(m_hall.minusSeconds(60)):
18 return
19
20 if m_hall.isAfter(c_door) and c_door.isAfter(m_door):
21 # code logic for arriving home
22
23 @rule("(Py) Motion Detected - Front Door")
24 @when("Item Front_Door_Motion changed to ON")
25 def front_door_motion(e):
26 global m_hall, m_door, c_door
27 m_door = ZDT.now()
28
29 if m_hall.isBefore(m_door.minusSeconds(60)):
30 return
31
32 if m_door.isAfter(c_door) and c_door.isAfter(m_hall):
33 # code logic for leaving Home

seconds. Although this time constraint is not mentioned in the description
of scenario 5, we added it to our implementation to discard old messages.
Similarly, this particular openHAB implementation also considers that the
home has only one inhabitant. Although our solution was improved thanks
to the feedback received from the openHAB community [61], it exposes a

15

CHAPTER 2. MOTIVATION

lack of programming abstractions to synchronize messages from multiple
devices.

• First, we were responsible for keeping track of each sensor’s last
update (β line 9, α line 15, δ line 27).

• Second, we manually discarded messages older than the 60 seconds
time window (lines 17, 29).

• Finally, we had to verify that the messages were received in the right
order (lines 20, 32) before executing the automation’s reaction.

In summary, scenario 5 can be implemented in 33 lines of code (LoC)
in openHAB. Of those 33 LoC, 24 are part of the setup and coordination
logic of the different devices involved. This dissertation hypothesizes that
a set of novel synchronization primitives can reduce the required LoC
to implement the above synchronization concerns and improve the code
expressiveness of their solutions.

2.2 Proof of Scenarios’ Relevance

To validate that each of our scenarios is a representative example of the
different synchronization requirements found in the wild, we ran an online
poll. We asked each respondent to reply with a yes-or-no answer whether
or not they even felt the need for automations similar to each of our seven
scenarios. Table 2.1 shows the questionnaire of our online poll. As we
can notice, each question of our poll represents one of our scenarios. In
the rest of this section, we will refer to them as questions or scenarios
interchangeably.

Our poll was published in four smart home community forums (Hass [58],
openHAB [60], SmartThings [62], and Hubitat [59]). In one month, it
accumulated votes of 714 contributors. Figure 2.1 shows the results of this
poll. Even though we cannot derive any statistical meaningful conclusions
based on a mere poll, they suggest that our scenarios are good examples
of concerns that live within the smart home community. On the one hand,
scenario 1 (Q1) exemplifies the need for synchronizing multiple independent
messages. In this scenario, there are two sensors (motion and light) whose
messages need to be synchronized. This concern was identified and raised
as a known issue by 662 (92.72 %) of the voters. On the other hand,

16

2.2. PROOF OF SCENARIOS’ RELEVANCE

Table 2.1 Online poll questionnaire

Question Description

Q1 I have automations that involve multiple devices and conditions. For example,
turn on the lights of a room if motion is detected and its ambient light is less that 40 lux.

Q2 I have automations that require to react to the absence of events. For example, turn off
the lights in a room after two minutes without detecting any movement.

Q3
I have automations that require do some action if a device remains in the same state for
a period of time. For example, send a notification when a window has been open for over
an hour.

Q4
I have automations that require ignore some repeated events within a period of time. For
example, send a notification if someone presses the doorbell, but only if no notification
was already sent in the past 30 seconds.

Q5
I have automations that require to detect a particular sequence of events. For example,
detect home arrival or leaving based on a particular sequence of messages, and activate
the corresponding scene.

Q6
I have automations that their conditions are based on specific historical data of a device or
multiple devices. For example, send a notification if the combined electricity consumption
of the past three weeks is greater than 200 kWh.

Q7
I have automations that require a particular number of events before doing some action.
For example, send a notification if the boiler fires three Floor Heating Failures and one
Internal Failure within the past hour, but only if no notification was sent in the past hour.

advanced time-based synchronization of messages like the ones of scenarios
2 and 3 was also a well-recognized concern by more than 515 (>72 %)
respondents. Scenarios 4, and 5 also rely on fairly advanced time-based
synchronization with additional constraints: discard messages and enforce
a particular order in which its constituent messages must match. In both
cases, more than 295 (>40 %) of the voters was familiar with the need for
such constraints. Finally, even though scenarios 6 and 7 target expensive
devices which currently offer limited integration with third-party platforms,
more than a quarter of the respondents identified the need for aggregating
multiple messages over a specific time window.

The results of our poll do not validate our list of scenarios as exhaustive.
However, they do give us the certainty that the listed scenarios represent
common synchronization requirements demanded by automation rules
found “in the wild”. We implemented our scenarios in two popular open-
source smart home platforms (i.e., openHAB and Hass), and a modern
actor based language (i.e., Elixir). The source code of these implemen-
tations can be found online in our GitHub repository [56]. Despite the
clear need for such requirements, we could not get a straightforward and
elegant implementation for them in our solutions. Even though the selected
programming environments offer at least the same synchronization abstrac-

17

CHAPTER 2. MOTIVATION

Smart Home Communities
openHAB Hass SmartThings Hubitat Total Votes

Q1 440 134 55 33 662
Q2 333 109 51 27 520
Q3 332 107 50 23 512
Q4 228 66 31 17 342
Q5 210 47 25 16 298
Q6 169 39 20 11 239
Q7 132 31 17 11 191

Q1 Q2 Q3 Q4 Q5 Q6 Q7

20

40

60

80

100 92.72

72.83 71.71

47.9
41.74

33.47
26.75

Questions/Scenarios

%
of

vo
te
s

Figure 2.1 Online poll results. Voters: 714. Voting time: 1 month

18

2.3. MESSAGE SYNCHRONIZATION REQUIREMENTS

tions as their state-of-the-art alternatives (e.g., SmartThings, Akka/Scala),
they lack advanced synchronization abstractions to coordinate a group of
heterogeneous devices.

2.3 Message Synchronization Requirements

In this dissertation, we envision an extra layer of synchronization logic
for the actor’s inbox. This layer should enhance actors’ current message
matching mechanism to facilitate the interaction and coordination of a
group of actors. Further analysis of our scenarios allowed us to disambiguate
five categories of synchronization requirements needed to express the
scenarios. These requirements are:

Support for filtering is needed to enable the filtering of messages based
on their attribute values or timing constraints. For example, in
scenario 1, we are required to filter out messages from the ambient
light sensor for which the value does not reach 40 lux. Addition-
ally, scenario 4 and 6 show the need for filter capabilities based on
the absence or presence of messages within a certain time window
respectively.

Support for selection is needed to choose messages from the list of
matching messages after filtering. Traditional actor languages only
allow for the consumption of the oldest (first in) message. However,
in some cases, we require more flexible message selection policies. For
example, in scenario 7, we are only interested in the latest Internal
Failure message, and the third Floor Heating Failure message. In
general, expressing these types of constraints will require selection
abstractions that allow us to select any message from the list of
matching messages after filtering.

Support for correlation is needed to match a list of different types of
messages and to unify their attributes. For example, in scenario 1, we
are required to match a motion sensor message and an ambient light
sensor message but only match if both are present. Additionally, in
scenario 5, we also have to specify the order in which those messages
arrived to trigger the right scene. Depending on the order in which
sensors detected movement, the person either left the house or just
arrived home.

19

CHAPTER 2. MOTIVATION

Support for accumulation is needed to aggregate a list of matching
messages (e.g., after filtering) for further processing. For example, in
scenario 6, we have to aggregate electricity consumption messages of
the last three weeks into their sum.

Support for transformation is needed to transform (e.g., map) such a
list of accumulated messages. These messages can be subject to new
predicate conditions. For example, in scenario 6, we need to check
if the total electricity consumption is greater than 200 kWh before
sending a notification. Only if the predicate condition is true all the
accumulated messages are consumed.

2.4 Conclusion

The synchronization of messages plays a significant role for cyber-physical
systems. Using seven smart home scenarios, we identified five primary
categories of synchronization requirements needed to coordinate a group
of smart home devices. Although we have demonstrated the need for
such synchronizations requirements, other application domains might need
different synchronization requirements.

We used two mainstream smart home platforms and a modern actor-
based language to implement our scenarios. Even though our technologies
choices were state-of-the-art in their domain, we observed a lack of syn-
chronization primitives to coordinate a group of smart devices.

20

C
h

a
p

t
e

r

3
Coordination of Actors and CEP Operators

This chapter analyzes state-of-the-art technologies and their support for
the synchronization requirements described in chapter 2. Particularly, we
focus on actor-based technologies and complex event processing (CEP)
systems. In section 3.1, we analyze the different synchronization abstrac-
tions supported by actor-based languages/frameworks. Section 3.2 instead
explores synchronization abstractions implemented by general-purpose
CEP technologies.

3.1 Coordination of Actor-based Systems

In this section, we analyze the different synchronization abstractions sup-
ported by implementations of the original actor model [35] and its ex-
tensions. Furthermore, we discuss the current support for the kind of
synchronization requirements described in section 2.3 by actor-based tech-
nologies. First, we describe built-in synchronization abstractions of the
canonical actor model (see section 3.1.1). Second, we analyze a set of
extensions to the original actor model. Based on the type of of exten-
sion they propose, we group such solutions into three main categories:
communication model extension (see section 3.1.2), monitor & verification
(see section 3.1.3), and local synchronization (see section 3.1.4). Since our

21

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

definitions of categories are not mutually exclusive, some proposals may
fit in more than one category.

3.1.1 The canonical Actor Model

Since its proposal in 1973 [35], implementations of the actor model have
used message exchanging as the coordination mechanism for the con-
stituents of a system. Historic actor implementations such as PLASMA [34],
ABCL/1 [87], and Rossete [79] introduced basic concepts that have been
adopted by modern actor languages (e.g., Elixir [76]). Here we list them:

• First, messages are the unit of communication between a group of
actors.

• Second, the inbox of an actor stores the messages in the order received
by that actor.

• Third, the interface of an actor defines the set of message patterns
that the actor understands. Only messages that satisfy the actor’s
interface will be processed.

• Fourth, a message pattern defines a particular type of message and its
set of attributes to match. For example, the Elixir’s message pattern
{:motion, id, status, location}, matches messages of type :motion
that consist of three attributes id, status, and location. Addition-
ally, messages patterns can filter specific attributes using predicate
expressions (a.k.a. guards) or pattern-matching techniques. In func-
tional languages such as PLASMA, Erlang [73], Scala/Akka [75], and
Elixir such messages patterns are commonly implemented as clauses
of a matching primitive (e.g., Elixir’s receive). In contrast, object-
based implementations such as ABCL/1, Rossete, AmbientTalk [82],
and Pony [13] declare them as methods.

• Fifth, messages that satisfy a particular message pattern are removed
from the actor’s inbox and consumed by the body (a.k.a. reaction)
of the message pattern.

• Six, the body or reaction of a message pattern defines the set of
actions to be executed after a message match is found. Both messages
patterns and reactions are coupled during the definition of the former.

22

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

Table 3.1 Synchronization requirements supported by canonical
actor implementations

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg

re
ga

ti
on

PLASMA [34] x - - - - - - - -
ABCL/1 [87] x - - - - - - - -
Rossete [79] x - - - - - - - -
Erlang [73] x - - - - - - - -
Elixir [76] x - - - - - - - -
Scala/Akka [75] x - - xa - - - - -
AmbientTalk [82] x - - xa - - - - -
Pony [13] x - - - - - - - -
a Conjunction is only enforced to the synchronization of a group of futures

Table 3.1 summarizes the support of the synchronization requirements
identified in section 2.3 by the actor-based languages analyzed in this
section. At first sight, observe that all languages support filter abstractions
over the content (attributes) of a message (see column Filter in table 3.1).
These languages mostly based these abstractions on pattern-matching tech-
niques. However, implementations such as Erlang, Elixir, and AmbientTalk
support guard expressions to complement pattern-matching and define
complex filter expressions. For example, listing 3.1 shows the definition of
two messages patterns in Elixir. The first one illustrates pattern-matching
filtering. In this case, the message pattern defined in line 2 will match
:motion messages if their last attribute (location) is equal to the atom1

:bedroom. The second message pattern shows a more complex message
filter based on pattern-matching and a guard expression (line 4). This
message pattern will match :temperature messages if their last attribute
(location) is equal to the atom :bedroom, and the attribute value is less
than 18 ℃. However, none of these languages supports abstractions to filter
messages based on time constraints. They also completely lack support for
a flexible selection of messages (see column Selection). In these languages,
message patterns always try to match the oldest message in the actor’s
inbox. Furthermore, their message patterns only match individual mes-

1Atoms are constants whose values are their own name.

23

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Listing 3.1 Message pattern examples in Elixir
1 # message patterns
2 {:motion, id, status, :bedroom} ->
3 # reaction code
4 {:temperature, id, value, :bedroom} when value < 18 ->
5 # reaction code

sages. Therefore accumulation (see column Accum.) and transformation
(see column Transf.) of messages are not supported. At the same time,
only Scala/Akka and AmbientTalk support a rudimentary form of message
correlation based on abstractions to wait for the resolution of a group of
futures (see column Correlation/Conjunction).

3.1.2 Communication Model Extensions

Proposals in this category focus mostly on two types of modifications to
the traditional actor’s communication model. On the one hand, we have
proposals that add an extra synchronization layer to the traditional actor’s
point-to-point communication model [84, 40]. On the other hand, we have
proposals that add support for multi-cast message communication between
actors [7, 30, 67, 27, 17, 29]. This second type of extension enriches actors
systems with two main features: anonymity and open-endedness [17]. The
former allows actors to dynamically select potential receivers of a single
message, by relying on predicates over their exposed attributes. The latter
allows actors to enter or leave a system at any time. In the rest of this
section, we briefly describe each of these proposals and summarize their
support for the synchronization requirements identified in section 2.3.

Directors [84] offer a hierarchical coordination model where a director
constrains the interaction of a group of actors, called a cast. A director
is a particular type of actor that guarantees the reception of a message
by a potential receiver only if it satisfies its constraints. This hierarchical
approach requires that the sender explicitly name the target of the message.
In this extension, actors must explicitly join a cast, but they can only
belong to one or none at any time. Furthermore, a director can belong to
a cast being coordinated by another director. In such hierarchical cases, a
message will be delivered to a target actor only after approval by all the
directors involved in its coordination forest path.

24

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

Coordinators [40] introduce a special type of actor named coordinators
to handle variabilities in a product line of actor-based systems. Coor-
dinators are like any other regular actors with the exception that their
behaviours are defined using Reo [10] circuits to express the coordination
logic. This particular property allows coordinators to keep the variability
logic of the system separated from the computational components (a.k.a. ac-
tors). However, this approach also inherits the static nature of Reo in
the sense that coordinators’ behaviour can not be changed dynamically.
Furthermore, the circuit flow created by a coordinator processes a single
message at a time.

ActorSpace [7] proposes a new communication model inspired by the
Linda [28] model based on destination patterns. This particular type of
patterns allows actors to specify a group of potential recipients of a mes-
sage abstractly. To support that, ActorSpace provides two communication
primitives: send and broadcast. The former sends a message to one of
the actors matching a pattern specified by the sender. The selection of
the receiver actor is done in a non-deterministic way. The latter prim-
itive sends a message to all actors matching a pattern specified by the
sender. Both primitives exploit the visible attributes of an actor, which
provide an abstract view of an actor. This proposal also introduces an
abstraction to scope the mechanism for pattern-matching, called actor
spaces. Unlike other Linda-based models, actor spaces provide a more
secure communication mechanism since the message’s sender limits its
potential receivers. Upon the reception of a message, an actor space checks
the destination pattern against the list of attributes of its registered actors
before forwarding the message.

The Reflective Communication Framework (RCF) [30] allows dynamic
customization of communication protocols (e.g., message priority) between
actors. RCF’s actors can change their communication protocol at any
time since the model separates its specification from its implementation.
However, like in the traditional actor model a protocol process a single
message at a time. RCF uses a particular type of meta-actors called
messengers to control the runtime behaviour of application-level actors.
Each actor has a corresponding meta-actor or messenger. A messenger
serves as a customized and transparent inbox that can also modify its
actor’s state. Messengers extend the single inbox of the actor model with

25

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

unique inboxes to attach communication protocols to both incoming and
outgoing messages.

TOTAM [67], like ActorSpace, extended the Linda model to support
a dynamic scoping mechanism that limits the transportation of tuples
(messages) in mobile ad hoc networks. Similarly to ActorSpace’s destina-
tion patterns, TOTAM uses tuple space descriptors to scope tuples and
prevent their propagation to unwanted locations. By using such descriptors
TOTAM-based applications are able to enhance privacy and reduce their
network traffic.

Syndicate [27] introduces a publish-subscribe mechanism to generalize
the point-to-point communication of the actor model. A Syndicate’s
program may consist of two types of actors: a leaf-actor or a network-
actor. The former resembles a traditional actor [35], but they may also
publish state change notifications in its network’s shared dataspace. The
latter groups a particular set of communicating actors. Each leaf-actor
participates in scoped conversations, which act as a message bus for the
exchange of messages and coordinate access to a shared dataspace. A
leaf-actor uses assertions (subscriptions) to express its interest in particular
messages. Assertions are stored in the network-actor in which the leaf-
actor is a member. A network-actor keeps a list of their current leaf-actors
and notifies them each time there is a new match for their assertions.
Unlike Linda’s tuple spaces, network-actors support continuous queries
over their shared dataspaces. Furthermore, actor’s assertions exist only as
long as their leaf-actors live. Once a leaf-actor crashes, all its assertions
are automatically retracted from its network-actor.

interActors [29] add an extra communication layer to the traditional
actor model to support complex communication protocols (e.g., broadcaster,
router) based on a reflective approach. Protocols are implemented as first-
class objects called Communications. Communications are represented by
two or more meta-actors of type outlet and handler. On the one hand,
outlets can receive (input-outlet) and send (output-outlet) messages. On
the other hand, handlers carry out a particular communication logic to
process the received messages. Furthermore, they can send messages to
other handlers or outlets. A communication always requires at least one
input and one output outlet. However, it might not need a handler if any
interaction logic is required. Actors interact with a communication only
by sending messages to known input-outlets and receiving messages from

26

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

from("hobby = this.hobby and language = this.interest"),
receive
 {Language, Buddy} ->
 to("id = $Buddy") ! {ok, Id}
end

to("language = this.interest") ! {Language, Id}A

B

Count = to("language = this.interest") ! {Language, Id}
from("hobby = this.hobby and language = this.interest”, Count),
receive
 {Language, Buddy} ->
 to("id = $Buddy") ! {ok, Id}
end

C

Figure 3.1 Example of synchronization abstractions in AErlang

output-outlets. Outlets and handlers declare a particular behaviour to
define how to react to incoming messages. Behaviours, like the traditional
actor’s message patterns match and process a single message at a time.

AErlang [17] extends Erlang’s actor model with a set of primitives to
support attribute-based communication [3]. Like Syndicate, AErlang uses
a centralized mechanism (broker) to select groups of communicating actors
dynamically. AErlang’s multicast communication between actors relies on
predicates matches over their exposed attributes. Its predicates can be
seen as a combination of ActorSpace’ destination patterns and Syndicate’s
assertions. Predicates can specify attribute’s conditions that must be
satisfied by both potential receivers or senders of a message. However,
unlike Syndicate’s assertions, these predicates are based on a traditional
(non-continuous) database query. Whenever a process sends a new message,
the AErlang system’s broker parses the predicates and converts them into a
database query. After that, it forwards the message to all the receivers that
satisfied the query. Figure 3.1 illustrates the three main synchronization
abstractions supported by AErlang. The examples shown in this figure
are copied from [17]. Figure 3.1.A shows a snippet to send a message to
all members (actors) of a social network who share the same language
interests than the sending actor. Here, AErlang extends the Erlang’s send
! primitive to receive as its first argument a boolean predicate in order
to determine potential receivers of the message, instead of just the actor
id. Predicate expressions can access the actor’s attributes using the this
operator (e.g., this.hobby). In contrast, figure 3.1.B uses the primitive
from to limit the reception of messages of an actor. Predicate expressions

27

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

can also access local variables using the $ operator (e.g., $Buddy). In this
second example, the actor will only receive messages from senders who
share its hobby and language preferences. Notice that in our previous
example, we omitted the definitions of attributes (e.g., interest) and local
variables (e.g., Language and Id).

In general, languages/frameworks in this category use a centralized
actor to filter messages based on their values or the actor’s attributes.
However, none of them supports time-based filtering of messages to specify
which message to match if more than one is available. Furthermore, these
proposals do not provide abstractions to detect the absence of messages.
Additionally, a particular matching order cannot be specified neither a
message pattern that matches a disjunction of messages. Finally, all of the
synchronization mechanisms in this category are only able to match indi-
vidual messages, except for interActors and AErlang. In interActors, the
sender of a message can wait for two or more reply messages (a.k.a. futures)
before continuing. AErlang instead allows the receiver actor to accumulate
and filter a finite number of messages of the same type. For example, in
figure 3.1.C the variable Count stores the total number of receivers of the
message {Language, Id}. Later, this variable is used by the from primitive
to accumulate all the responses. Only after all expected responses have
arrived, the receiver block is executed. Although this from variant allows
developers to accumulate messages, it can block the actor forever if one of
the potential receivers do not reply.

Table 3.2 summarizes the supported synchronization requirements de-
fined in section 2.3 by Communication Model Extensions (CME) proposals.

3.1.3 Monitor & Verification

The proposals described in this section use reflection techniques to monitor
and limit the interaction of one or a group of actors [24, 52, 45, 42, 53,
68, 19, 66, 46, 23, 64, 65, 33]. In this category, the coordination process is
mostly done by a special type of meta-actor which enforces a particular
protocol for incoming and outgoing messages. In the rest of this section,
we briefly describe each of these proposals and summarize their support
for the synchronization requirements identified in section 2.3.

Synchronizers [24] uses reflection to observe and limit the delivery of
messages for a group of actors. Synchronizers can be seen as meta-actors
that express coordination patterns in form of multi-actor constraints to

28

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

Table 3.2 Synchronization requirements addressed by CME
proposals

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg

re
ga

ti
on

ActorSpace [7] x - - - - - - - -
TOTAM [67] x - - - - - - - -
Directors [84] x - - - - - - - -
Syndicate [27] x - - - - - - - -
AErlang [17] x - - xa - - - - -
interActors [29] x - - xa - - - - -
RCF [30] x - - - - - - - -
Coordinators [40] x - - - - - - - x
a Conjunction is only enforced to invocation of messages

limit the interaction between them. This particular type of constraints is
called atomicity constraints. These constraints wait for a set of messages
to be available before dispatching them as a whole and without temporal
ordering. Atomicity constraints can express under which conditions an
actor can or can not handle a message. However, they can interfere with
each other because multiple synchronizers can constrain the same actor.

RTsyncronizers [52] extend Synchronizers’ coordination patterns with
quantitative constraints, called timing relations. Like its predecessor,
RTsyncronizers pursue a total separation between the communication and
coordination concerns of an actor system. Furthermore, they facilitate
the ability to modify real-time message constraints over a group of actors
dynamically. Additionally, an exception can be signaled if the coordination
pattern can not be resolved. In this way, messages are not delayed forever.
However, unlike Synchronizers, the RTsynchronizers’ computation model
is based on the assumption that actors of a system have their local clocks
synchronized, and their invocations are scheduled atomically.

Moses [45] proposes the concept of regulated coordination policies for
actors. Policies are defined as declarative coordination constraints and
they are enforced on all actors of a system. Each policy is defined by a
set of rules called, Law. A law specifies what should be done when an
actor sends and receives a message. Unlike Synchronizers/RTsynchronizers’
constraints, a policy has a purely local effect that allows actors to be

29

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

subject to multiple coordination policies without interference. However,
each policy requires a centralized server where to persists its law and list
of members. After a member joins a policy, its interaction with other
members is direct, and the law is enforced locally.

Actors with Temporal Constraints (ACT) [42] proposes a new timed
actor model based on active and passive temporal constraints. The former
checks that one or more message invocations must occur in a given time
interval. The latter checks if one or more message invocations do not occur
before a given time interval. Like RTSynchronisers, temporal constraints
are expressed as message patterns, and they match at most one message.
However, ACT’s patterns do not support predicate expressions to filter
messages by their values. Furthermore, the body of a pattern must be
specified inside the handler of a particular message.

Actors-Roles-Coordinators (ARC) [53] proposes a decentralized three-
layer coordination model based on message manipulation. Actors (bottom
layer) represents the computational entities of a system. They are obliv-
ious to the coordination constraints enforced by the meta-actors of the
upper layers. Roles (middle layer) represent static abstractions for the
coordinated behaviours shared by a group of actors. This layer observes
and manipulates messages of the actors playing their roles (a.k.a. intra-role
coordination). In this way, ARC decouples the syntactic dependencies
between the actors and coordinators. Coordinators (top layer) are respon-
sible for the coordination of different roles (a.k.a. inter-role coordination)
by imposing determined constraints. The ARC model was extended in
[68] with the semantics of two new coordination operators, i.e., precede
and select to express temporal and spacial coordination constraints, re-
spectively. The former sets a quantitative temporal order among two or
more messages to enforce intra-role coordination. Like RTSynchronizers,
the precede primitive assumes that all the actors share the same global
wall-clock time. The latter primitive describes inter-role coordination con-
straints to select a group of actors to which a message can be dispatched.
Although the select primitive can define generic patterns (e.g., all lights
in room X), they can only match conjunctions of individual messages.

Scoped-Synchronizers[19] tries to mitigate bad intentional constraints
imposed by malicious actors over others, which results in a denial of service
at the targets. Unlike the original proposal [24], the scoped-synchronizers
constrain the sender of a message instead of its receiver. Furthermore,

30

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

Listing 3.2 Example of sequencing control in Ambient Contracts
1 def SeqProtocol := MessageProtocol: {
2 def init() {
3 (on: "login") => { next() };
4 };
5
6 def next() {
7 (on: "logout") => { end() };
8 (on: "buy") => { next() };
9 };

10
11 def end() { };
12 def start() {
13 init();
14 };
15 };
16
17 def Interface := object: {
18 def seq := provide: seq
19 withContract: any -ensure_m(SeqProtocol)-> any;
20 };
21
22 def buyforme(user,item) {
23 o<-login(user);
24 o<-buy(item);
25 o<-logout(user);
26 };

such constraints only will take effect if the actor enacting the synchronizer
holds the synchronization capability to the message source (sender-actor).
Synchronization capabilities are used as a scope mechanism to restrict the
effect of synchronization constraints to a subset of messages. However, they
can not completely prevent deadlocks that may arise from incompatible
overlapping constraints.

Contracts [66] allow developers to monitor the outgoing messages and
implement protocols to check which messages are being sent using a single
language (AmbientTalk [82]). Listing 3.2 shows an example of a sequence
protocol in Ambient Contracts copied from [66]. This protocol defines the
valid transition of states required to buy a product (lines 1-15). In lines

31

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

17-20 we observe how developers can export their protocols. Finally, lines
22-26 illustrate an example of a buyforme function that satisfies the above
protocol.

Multiparty Session Actors (MSA) [46] proposes a specification and
runtime-verification framework based on multiparty session types [36]
to ensure correct sequencing of actor interactions. In this framework,
actors may play multiple roles and can participate in multiple sessions
simultaneously. Safety interaction protocols between actors are defined
using a declarative protocol description language, called Scribble [74].
The projection of such protocols to actors is made using annotations in
their definition. This adaptation of [36] allows actors to verify that the
attributes of a message match their specified types, and the overall order
of interactions is correct. These communication constraints are checked
dynamically by compiling of Scribble protocols into finite state machines.

MSA-Erlang [23] presents a library for runtime monitoring of Erlang
applications based on MSA [46]. This library provides developers with
a new Erlang behaviour (ssa_gen_server) to monitor the communication
between actors. Like in [46], MSA-Erlang’s application-level protocols
among communicating actors are described using Scribble and are enforced
using finite-state machines.

lchannels [64] introduce a session-based programming model based on
Scala types. This lightweight model allows actors to verify their communi-
cation protocols by representing session types as Scala types, instead of
requiring language extensions or a protocol description language (e.g., Scrib-
ble). Furthermore, this model provides support for local and distributed
communication as a generalization of continuation-passing style protocols.
lchannels help the Scala compiler to detect out-of-protocols messages before
a session starts, with the exception of linearity errors (e.g., originated by
futures), which are checked at runtime.

Effpi [65] extends lchannels and presents a novel compile-time mes-
sage verification tool. This new tool is implemented as an embedded
domain-specific language in Dotty (a.k.a. Scala 3). It verifies safety and
liveness properties of actor-based programs via type-level model checking.
Furthermore, it allows actors to enforce a particular order of outgoing
messages through its sequencing operator (»).

OTyPe [33] adds support for runtime verification of incoming messages
of actors based on Erlang’s behaviours [1]. A behaviour (e.g., gen_server)

32

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

resembles an interface commonly found on object-oriented languages. Er-
lang developers use behaviours to divide the code for an actor in a generic
part (a behaviour module) and a specific part (a callback module). OTyPe
uses a combination of type inference and automatic code injection tech-
niques to discards malformed/ill-typed messages received by a behaviour
before calling its callback function. Furthermore, it can check types of
guard expressions constraining a message pattern handled by a behaviour’s
callback.

Overall, synchronization abstractions of Monitor & Verification (MV)
proposals can filter messages based on their values and time constraints
(e.g., [52, 42, 68]). However, [46, 33] only supports type-based constraints.
In this category, only [52] can detect the absence of messages, but it
assumes that actors have their local clocks synchronized, and their invoca-
tions are scheduled atomically. Like in traditional actor-based languages,
the synchronization abstractions of these proposals always match the old-
est message in the actor’s inbox. Table 3.3 summarizes the supported
synchronization requirements defined in section 2.3 found on MV proposals.

3.1.4 Local Synchronization

The synchronization abstractions of the proposals described in this category
are executed locally in the actor, unlike the ones described in sections 3.1.2
and 3.1.3. We can distinguish two main groups in this category. The
first one targets synchronization abstractions based on promises, futures,
or message-passing continuations [25, 85, 50]. These proposals allow the
synchronization and chaining of responses to individual message invocations.
The second group extends the actor interface to match multiple messages.
Proposals in this group [32, 69, 49, 47] expand the matching capabilities
of the traditional actor’s receive primitive with join patterns [12]. Join
patterns (joins for short) consist of two main components: a conjunction
of message patterns to match, and a body or reaction that will be executed
after a full match. A full match occurs when there is a match of all
required messages by the join pattern. In the rest of this section, we briefly
describe each of the above proposals and summarize their support for the
synchronization primitives identified in section 2.3.

Activators [25] proposes two message synchronization abstractions
called activators and receptionists. On the one hand, activators are patterns
defined in an actor that wait for a particular set of messages before

33

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Table 3.3 Synchronization requirements supported by MV proposals

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg

re
ga

ti
on

Synchronizers [24] x - - x x - - - -
RTSynchronizers [52] x x - x x x - - -
Scoped-Synchronizers [19] x - - x x - - - -
Moses [45] x - - - - - - - -
ATC [42] x x - - x - - - -
ARC [53, 68] x x - - - x - - -
Ambient Contracts [66] x - - xa - x - - -
MSA [46] xb - - - - - - - -
MPSA-Erlang[23] x - - - - - - - -
lchanels [64] xc - - - - - - - -
Effpi [65] xc - - - - xd - - -
OTyPe [33] xb - - - - - - - -
a Conjunction is only enforced to invocation of messages
b Additional type-based constraints are applied to message’s attributes (e.g., MsgA(int,
string))

c Type constraints to outgoing messages (object-level) are checked during the compilation
phase

d Sequencing is only enforced to outgoing messages

triggering their continuation (a.k.a. reaction). They can be defined as a
conjunction or disjunction of messages which are retrieved from a group of
special actors called receptionists. Furthermore, activators can constraint
the potential messages based on a predicate expression before remove them
from the receptionists. On the other hand, a receptionist only acts as a
handler of messages that can be monitored by multiple actors. Multiple
activators can be waiting for messages from the same receptionist. However,
a message can only be consumed by one activator. Similarly, a message
can satisfy multiple activators of an actor, but only one is activated. In
both cases, the selection is non-deterministic, and it is the responsibility
of the developer to implement a selection policy for each case.

SALSA [85] introduces three abstractions to coordinate interaction
among a group of actors. These abstractions base their synchronization
properties on a particular return value, called token. The first abstraction,
token-passing continuations, allows actors to synchronize and chain individ-

34

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

Listing 3.3 Example of the zip operator of Reactive Isolates
1 events onCase {
2 case Login(u) =>
3 val ec = keyCenter ? GetCert(u)
4 val ea = authServer ? GetAuth(u)
5 (ec zip ea) onCase {
6 case (cert, auth) =>
7 tokens(user) = compute(cert, auth)
8 user ! tokens(user)
9 }

10 }

ual message invocations in a similar way to the pipe command from UNIX2.
In contrast, the second one, joins continuations allow actors to receive
a list of tokens returned by multiple actors once they have all finished
processing their respective messages. Join continuations do not enforce a
particular order for the tokens’ resolution neither a time window for their
resolution. The last abstraction, first-class continuations, enable actors to
delegate a computation to another actor in the system.

Reactive Isolates (RI) [50] proposes a novel concurrency model to
overcome the lack of message protocol composition of the actor model.
This model extends the traditional actor model in three ways. First,
isolates (actors) can define multiple message entry points, called channels.
Channels are first-class objects that allow developers to declare separated
protocol messages instead of defining them in a single-message handling
construct (e.g., Erlang’s receive primitive). Second, RI provides a zip
abstraction to wait for a particular combination of messages (a.k.a. multi-
party protocols). This abstraction does not extend the interface of an actor.
Instead, it composes the response of individual asynchronous messages
using futures into a new complex event that is put on the actor’s inbox.
Listing 3.3 illustrates how developers can use the zip operator (line 5) to
compose the response of individual asynchronous messages (lines 3, 4) into
a newly composed message (line 7) which is then put on the actor’s inbox
(line 8). The example shown in this listing is copied from [50].

Scala Joins [32] introduce a join pattern library for synchronizing mul-
tiple synchronous and asynchronous messages in both actors and threads

2Pipe command - https://en.wikipedia.org/wiki/Pipeline_(Unix)

35

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Listing 3.4 Example of join pattern in JErlang
1 receive
2 {reindeer, Pid1} and {reindeer, Pid2} and {reindeer, Pid3} and
3 {reindeer, Pid4} and {reindeer, Pid5} and {reindeer, Pid6} and
4 {reindeer, Pid7} and {reindeer, Pid8} and {reindeer, Pid9} ->
5 % deliver presents
6 [Pid1, Pid2, Pid3, Pid4, Pid5, Pid6, Pid7, Pid8, Pid9];
7
8 {elf, Pid1} and {elf, Pid2} and {elf, Pid3} ->
9 % discuss R&D possibilities

10 [Pid1, Pid2, Pid3]
11 end

based systems. This library embraces an extensible message pattern-
matching approach based on extractors (partial functions). Additionally,
developers can specify more complex message constraints using predicate
expressions called guards. However, Scala Joins only supports conjunctions
of individual messages. Furthermore, joins’ body reactions are coupled
with the definition of their respective joins.

JErlang [49] extends Erlang to bring support for joins patterns. JEr-
lang’s joins target the synchronization of both synchronous and asyn-
chronous messages. Like in [32], joins can only express conjunctions of
single messages, and they always match the oldest relevant message in the
actor’s inbox. A relevant message is one that satisfied the constraints of a
message pattern or in this case a join pattern. Additionally, a message can
be consumed by multiple joins by using the optional propagation property
in the definition of a join. Listing 3.4 shows a snippet of the JErlang
solution to the well-known Santa Claus problem [80]. This solution is
copied from [49]. In this synchronization problem, Santa sleeps at the
North Pole waiting to be awakened by nine reindeer or three elves to
execute some work with them. However, the waiting group of the former
has higher priority if both full groups gather at the same time. Listing 3.4
shows that the receive primitive is now able to match a conjunction of
messages instead of individual messages. For example, lines 2-4 define a
join pattern that will match nine reindeer messages. In contrast, the join
pattern defined in line 8 will match three elf messages.

36

3.1. COORDINATION OF ACTOR-BASED SYSTEMS

JCThorn [47] extends the Thorn language with constructs based on
the join-calculus. This extension provides two variations of the same
synchronization abstraction named joins and chords. The former represents
the low-level communication mode and they resemble JErlang’s joins. The
latter is a more high-level abstraction that is translated to joins at runtime.
Like JErlang, JCThorn supports the synchronization of both synchronous
and asynchronous messages. Furthermore, developers can assign numeric
priorities to its joins. This feature enforces that messages in the actor’s
inbox have to be checked against a higher priority join before attempting
to match a lower priority one.

Multi-headed Message Receive Patterns (MMRP) [69] introduce an
extension of an Erlang-like actor model with receive clauses containing
multi-headed message patterns. This kind of patterns resembles the join
patterns of JErlang. However, they support multiple matching semantics:
first-match (like in JErlang) and rule priority-match (like in JCThorn).

Overall, join pattern languages support advanced pattern-matching
techniques to compact filtering expressions. However, only JErlang, JC-
Thorn, and MMRP support the unification of message patterns’ attributes
across a join. This mechanism allows join patterns to synchronize the
values of shared attributes among multiple message patterns without guard
expressions. The join patterns of the above join languages support con-
junction of messages. However, only Activators’ joins can define both
conjunctions and disjunctions with the constraint that they can not be
mixed in a join. The proposals analyzed in this section do not enforce a
particular matching order of their constituents’ messages. Furthermore,
despite the expressiveness of their abstractions, actor-based join languages
force developers to statically bind join patterns and reactions during the
definition of the former. Furthermore, they lack support for time-based
constraints and accumulation abstractions. We can observe this last limi-
tation in JErlang’s join patterns (see listing 3.4 lines 2-4). In this solution,
the size of the reindeer join grows proportionally to the number of rein-
deer (messages) being synchronized. Table 3.4 summarizes the supported
synchronization requirements supported by local synchronization (LS)
proposals.

In this section we have observed that different extensions to the tradi-
tional actor model presented until now fall short to support the synchro-
nization requirements identified in section 2.3. In order to support such

37

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Table 3.4 Synchronization requirements supported by LS proposals

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg

re
ga

ti
on

Activators [25] x - - xa x - - - -
Salsa [85] x - - xa - - - - -
Reactive Isolates [50] x - - xa - - - - x
Scala Joins [32] x - - x - - - - -
JErlang [49] x - - x - - - - -
JCThorn [47] x - - x - - - - -
MMRP [69] x - - x - - - - -
a Conjunction is only enforced to invocation of messages

synchronization abstractions in an actor-based language, we have gotten
our inspiration from CEP systems. Hence, in the next section, we will look
at types of synchronization mechanisms that exist for CEP and how we
can integrate them into an extension of the actor model.

3.2 Complex Event Processing

In this section, we analyze the support of the synchronization requirements
identified in section 2.3 by complex event processing (CEP) systems/lan-
guages. CEP systems, unlike the above proposals have been designed for
processing large amounts of data. These systems focus on the detection of
complex patterns of correlated temporal events instead of filtering individ-
ual events. Hence, CEP systems seem like a normal fit to tackle the type of
synchronizations that we envision. Unfortunately, the technical complexity
of these systems is higher than in join-pattern languages. They typically
require knowledge of a stack of various technologies from developers for
their deployment. Furthermore, CEP libraries frequently lack expressive
APIs since they rely on the programming abstractions of its host language.
In contrast, CEP languages provide greater expressiveness, but they mostly
focus on the detection of events using a SQL-like syntax. They also lack
support for the unification of multiple events. Nevertheless, as we will see,
they offer a great source of inspiration to build an enhanced actor model

38

3.2. COMPLEX EVENT PROCESSING

Table 3.5 Synchronization requirements supported by CEP
proposals

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg

re
ga

ti
on

Amit [5] x x x x - x x - -
CEDGME [48] x x - x x x - - -
PADRES [43] x x - x x xa - - -
CEDR [11] x x x x x x x - -
SASE [86] x x x - - x - - -
CAYUGA [18] x x - - - x - x x
SASE+ [31] x x x - - x - x x
PB-CED [8] x xa - x x x - - -
EventJava [20] x xa - - - xa x - xb

RACED [14] x x x x x xa - - -
ZStream [44] x x x x x x x - x
TESLA [15] x x x - - x - x x
ETALIS [9] x x x x x x - x x
PARTE [54] x x - x - x - - -
a The developer has the responsibility to do this action manually using the
timestamp attribute

b Specific aggregation abstractions (e.g., AVG) are not built-in; instead, develo-
pers must use standard iteration constructs (e.g., for) to aggregate values

that is capable of delivering with the kinds of synchronization that we are
after.

Table 3.5 summarize the results of our analysis. Although the analyzed
systems/languages are academic proposals, their abstractions are equal
or more expressive than modern CEP applied in the industry (e.g., Flink-
CEP [70] and Esper [38]). We can observe at first sight that CEP systems
have better overall support for each synchronization abstraction identified
in section 2.3. However, their content-based filters are mostly based on stan-
dard boolean predicates, lacking of advanced pattern-matching techniques.
Only [86, 11, 31] support a basic pattern-matching mechanism called equiv-
alence/equality tests. These predicates enforce that shared attributes across
an entire event sequence must have the same, different, or a particular
value. Listing 3.5 shows an equivalence test example in CEDR [11]. Line 4
establishes that all the constituents events of EVENT_PATTERN share the same
machine_id. This example also shows how the detection of a particular

39

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Listing 3.5 Equivalence test example in CEDR
1 Q1: FAILED_UPGRADE
2 EVENT_PATTERN SEQUENCE(INSTALL x, SHUTDOWN y,
3 NOT (RESTART z, WITHIN 5 minutes))
4 WHERE CorrelationKey(machine_id, Equal)
5 NOTIFY Each x, First y

sequence of events can be enforced. In this case, the query FAILED_UPGRADE
(line 1) requires that an event INSTALL must be followed by a SHUTDOWN event
which cannot be followed by a RESTART event within the next 5 minutes
(lines 2-3).

Unlike join languages, CEP systems strongly support time-based pred-
icates (see column Time-based in table 3.5). However, not all of them
implement high-level time filtering abstractions like CEDR’s not and
within. For example, listing 3.6 showcases how EventJava only makes
accessible implicit time attributes to developers, and they have to filter
the relevant messages manually (line 7). Although CEP systems support a
rich set of timing abstractions, negation is sometimes limited to a sequence
of events (e.g., SASE, SASE+).

Listing 3.6 Manual timing constraint example in EventJava
1 event
2 tvRelease(String model, float price, String date),
3 tvReview[5](String model, File review, float rating)
4 when(
5 for i in 0..3 tvReview[i].model == tvReview[i+1].model &&
6 for i in 0..4 tvReview[i].rating >= 3.5 &&
7 tvReview[4].time - tvReview[0].time = 30*24*60*60*1000 &&
8 tvReview[0].model == tvRelease.model
9) {...}

Time-based predicates in CEP systems focus at two levels: event and
pattern. The former allows developers to filter individual events of a
pattern. The latter sets a global time constraint to the whole pattern.
Systems like [5, 48, 11, 15, 54] support advanced timing constraints for
both levels. For example, in TESLA (see listing 3.7), developers can specify
specific timing constraints between different events of a pattern (line 5).
At the same time, other solutions such as [86, 18, 31, 20, 8, 14, 44, 9] only

40

3.3. CONCLUSION

Listing 3.7 Advanced timing constraint example in TESLA
1 define Fire(Val)
2 from Smoke(Area= $x) and
3 each Temp(Val > 45 and Area= $x)
4 within 5 min from Smoke
5 where Val=Temp.Val

support one of the two types of time constraint levels. In the particular
example of listing 3.7, a fire event will be created when the temperature of
an area is higher than 45 degrees and some smoke is detected in the same
area within 5 min.

CEP systems also have better support for correlation abstractions
(see column Correlation) than join-pattern approaches. However, only
[48, 8, 14, 11, 44, 9] support all three types of correlations. Developers of
systems like [43, 20, 14], have to manually set the desired sequence order
of the events using their timestamp attributes like in listing 3.6 (line 7).
Furthermore, the analyzed CEP systems lack support for accumulation
abstractions (see column Accum.). As we observe, frequently, only one
of both abstraction is supported. Moreover, computed aggregated values
can not be included in their pattern conditions (see column Aggregation),
except for [18, 31, 44, 15, 49, 9]. For example, EventJava does not provide
high-level aggregation abstractions (e.g., AVG) Instead, it gives developers
a generic iterator abstraction as shown in listing 3.6 (lines 5-6).

Table 3.6 summarizes the support for the synchronization requirements
identified in Section 2.3 by the state-of-the-art technologies analyzed in
this chapter.

3.3 Conclusion

The traditional actor model offers basic abstractions to synchronize mes-
sages within a group of actors.

Although extensions like join pattern improve the synchronization ca-
pabilities of canonical actor-based languages, they still fall short to support
the requirements identified in section 2.3. The analyzed join extensions
mostly support conjunctions of individual messages. Disjunctions have to
manually defined as new joins, leading to duplicated code. Furthermore,

41

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

Table 3.6 Synchronization requirements supported by
state-of-the-art actor-based languages/frameworks and CEP systems

Filter Selection Correlation Accum. Transf.

C
on

te
nt
-b
as
ed

T
im

e-
ba

se
d

F
le
xi
bl
e

C
on

ju
nc
ti
on

D
is
ju
nc
ti
on

Se
qu

en
ci
ng

C
ou

nt
-b
as
ed

T
im

e-
ba

se
d

A
gg
re
ga
ti
on

The canonical actor model

PLASMA [34] x - - - - - - - -
ABCL/1 [87] x - - - - - - - -
Rossete [79] x - - - - - - - -
Erlang [73] x - - - - - - - -
Elixir [76] x - - - - - - - -
Scala/Akka [75] x - - xa - - - - -
AmbientTalk [82] x - - xa - - - - -
Pony [13] x - - - - - - - -

Communication model extensions

ActorSpace [7] x - - - - - - - -
TOTAM [67] x - - - - - - - -
Directors [84] x - - - - - - - -
Syndicate [27] x - - - - - - - -
AErlang [17] x - - xa - - - - -
interActors [29] x - - xa - - - - -
RCF [30] x - - - - - - - -
Coordinators [40] x - - - - - - - x

Monitor & Verification

Synchronizers [24] x - - x x - - - -
RTSynchronizers [52] x x - x x x - - -
Scoped-Synchronizers [19] x - - x x - - - -
Moses [45] x - - - - - - - -
ATC [42] x x - - x - - - -
ARC [53, 68] x x - - - x - - -
Ambient Contracts [66] x - - xa - x - - -
MSA [46] xb - - - - - - - -
MPSA-Erlang [23] x - - - - - - - -
lchanels [64] xc - - - - - - - -
Effpi [65] xc - - - - xd - - -
OTyPe [33] xb - - - - - - - -

Local synchronization

Activators [25] x - - xa x - - - -
Salsa [85] x - - xa - - - - -
Reactive Isolates [50] x - - xa - - - - x
Scala Joins [32] x - - x - - - - -
JErlang [49] x - - x - - - - -
JCThorn [47] x - - x - - - - -
MMRP [69] x - - x - - - - -

Amit [5] x x x x - x x - -
CEDGME [48] x x - x x x - - -
PADRES [43] x x - x x xa - - -
CEDR [11] x x x x x x x - -
SASE [86] x x x - - x - - -
CAYUGA [18] x x - - - x - x x
SASE+ [31] x x x - - x - x x
PB-CED [8] x xa - x x x - - -
EventJava [20] x xa - - - xa x - xb

RACED [14] x x x x x xa - - -
ZStream [44] x x x x x x x - x
TESLA [15] x x x - - x - x x
ETALIS [9] x x x x x x - x x
PARTE [54] x x - x - x - - -
a Conjunction is only enforced to invocation of messages
b Additional type-based constraints are applied to message’s attributes
c Type constraints to outgoing messages are checked during the compilation phase
d Sequencing is only enforced to outgoing messages

42

3.3. CONCLUSION

their patterns lack time constraints and order matching. However, joins
provide a more elegant and local solution to improve the expressiveness of
an actor language.

We explored the synchronization mechanism available in CEP sys-
tems/languages. Our study found that proposals in this domain allow
developers to define complex synchronization patterns with flexible selec-
tion and consumption event policies. Unlike join languages, CEP proposals
target systems with larger volumes of messages. Nevertheless, they do not
support advanced pattern-matching techniques to filter events like joins
languages. CEP systems also restrict their reactions to the emission of a
single composite event, except for EventJava and PARTE. Moreover, CEP
languages tend to be declarative non-turing-complete languages which
also lack support for the unification of multiple events. In contrast, join
languages offer more powerful reactions options since they have full access
to the capabilities of their host languages (e.g., they can spawn new actors
or send multiple messages).

We conclude that a fusion between join-patterns and CEP features
could be the sweet spot between the two approaches for tackling the
synchronization requirements presented in section 2.3. In the next chapter,
we explore the reconciliation of join patterns and complex event processing
techniques into an actor language.

43

CHAPTER 3. COORDINATION OF ACTORS AND CEP
OPERATORS

44

C
h

a
p

t
e

r

4
Sparrow: A DSL for Actor Coordination

In this chapter, we introduce the main contribution of this dissertation,
to wit a novel join pattern language called Sparrow. Like previous join
pattern languages [32, 49, 47], Sparrow extends the traditional single-
message match interface of actors [35] to support multiple-message match.
CEP languages and frameworks heavily inspire Sparrow’s join pattern
language design. Sparrow has been implemented as a domain-specific
language (DSL) in Elixir that relies heavily on Elixir’s macro facilities for
its implementation. As it is implemented as a DSL, it has access to all of
the programming language constructs of its host language. As such, Elixir
syntax is an integral part of the Sparrow language. To ensure that this
dissertation is self-contained, in the next section, we will briefly introduce
Elixir.

4.1 Elixir in a Nutshell

This section introduces basic concepts of Elixir to facilitate the understand-
ing of Sparrow. Like Erlang, Elixir is a dynamically typed actor-based
language that runs on top of the BEAM1 virtual machine. Furthermore,
it embraces Erlang’s message-passing actor model [35] to build scalable,
fault-tolerant, and distributed systems. However, Elixir was designed to

1BEAM - Virtual machine that executes user code in the Erlang Runtime System

45

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

Listing 4.1 A counter actor in Elixir
1 defmodule Counter do
2
3 def start() do
4 spawn fn -> listen(0) end
5 end
6
7 def listen(count) do
8 receive do
9 :inc ->

10 listen(count + 1)
11 {:val, sender} ->
12 send sender, count
13 listen(count)
14 end
15 end
16
17 end

be an extensible language through metaprogramming (see section 6.1). For
instance, Elixir has a macro system inspired by Lisp-like languages.

Listing 4.1 shows the definition of a Counter actor and the essential
constituents of a typical Elixir program. Like any other Elixir program,
the actor definition is encapsulated in a module. As its name (Counter)
implies, this actor increments a value by one, and it can also return the
current value of its counter. Both actions are triggered by messages which
constitute the actor’s interface. The interface of an actor is defined by the
set of message patterns it understands and can react to. In Elixir, similar
to Erlang, this is done using a receive statement (lines 8-14). A common
approach is to use a recursive function to receive messages in a loop. When
a message is sent to an actor, the message is stored in the actor’s inbox.
The receive block goes through the current actor’s inbox searching for a
message that matches any given patterns.

The recursive function listen (lines 7-15) takes a single argument
which represents the current value of the counter and at the same time
the actor’s state. Its body defines the actor’s interface that consists of two

46

4.2. SPARROW BY EXAMPLE

patterns. The first one matches messages which values is the atom2 :inc.
This pattern is used to increase the current value of the counter (lines
9-10). The second one instead matches a tuple where the first element
identifies the message’s type (:val), while the second element represents
the sender’s id (sender). This last pattern introduces the primitive send
which is used to return the current value of the counter to the sender (lines
11-13). In both cases, the two patterns end with a tail recursive call of
the listen function (lines 10, 13) to read the next message of the actor’s
inbox. If there are no new messages, the actor waits indefinitely for a new
message to arrive. This waiting behaviour puts the actor in a suspended
state that does not waste CPU cycles.

The function start (lines 3-5) is used to create a new actor using
the spawn primitive. This primitive takes an anonymous function that
will perform the initial call to the listen function, thereby launching the
actor’s tail recursive process.

Like in Erlang, the actor’s inbox is a FIFO queue limited only by the
available computer’s memory. The receiver actor consumes messages in
the order in which they were received. A message can be removed from its
queue only if it’s matched (consumed) by one of the receive’s patterns.
Furthermore, the matching process inside the receive primitive occurs from
top to bottom. The interested reader can find detailed documentation of
Elixir in [76].

4.2 Sparrow by Example

Before detailing Sparrow’s language abstractions, this section will give a
sneak preview of how developers can program the coordination logic of
scenarios 1 and 2 (see section 2.1) in Sparrow.

4.2.1 Enhanced Actors

Listing 4.2 shows the definition of an actor LightManager whose purpose
is to turn on/off the light of any room if some conditions are met. In
Sparrow, the interface of an actor is defined by a set of patterns using
the pattern primitive. This primitive uses a tuple to specify the type of

2Atoms are constants whose values are their own name.

47

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

Listing 4.2 A solution to an instance to scenarios 1 and 2 in Sparrow
1 defmodule LightManager do
2 use Sparrow.Actor
3
4 pattern motion as {:motion, id, :on, room}
5 pattern light as {:light, id, status, room}
6 pattern low_light as {:amb_light, id, illuminance, room}
7 when illuminance < 40
8
9 pattern on_motion as motion

10 and light{status= :off}
11 and low_light,
12 options: [last: true]
13
14 pattern no_motion as not motion[window: {2, :mins}]
15 and light{status= :on},
16 options: [last: true]
17
18 reaction turn_on_light(l, i, t), do: # send on command
19 reaction turn_off_light(l, i, t), do: # send off command
20
21 react_to on_motion, with: turn_on_light
22 react_to no_motion, with: turn_off_light
23
24 end

relevant3 messages for it. The first element of that tuple represents the
message’s type, and the rest represent the message’s attributes, which can
be set to a particular value. The actor LightManager declares five patterns.
The first three (lines 4-7) are used as base patterns to compose the patterns
that will specify the logic to turn on/off the lights of a particular room
(lines 9-16).

• The motion pattern (line 4) will match a :motion message if the value
of its second attribute (location) is :on. The rest of the message’s
attributes (id and room) do not specify any constraints on their
values.

3A relevant message is a message that satisfies the constraints of a pattern.

48

4.2. SPARROW BY EXAMPLE

• The light pattern (line 5) will match a :light message without any
constraints on that message attributes’ values.

• The low_light pattern (lines 6-7) will match :amb_light messages if
their illuminance value is less than 40 lux. The rest of the message’s
attributes do not specify any constraints on their values.

• The on_motion pattern (lines 9-12) uses a conjunction between the
above base patterns to determine if the light of a particular room
should be turned on. However, it will only accept a message from
the pattern light if the status’s value of that message is off (line
10). Additionally, this pattern always requires to match the most
recent relevant messages in the actor’s inbox (line 12).

• The no_motion pattern (lines 14-16) uses a conjunction between the
base patterns motion and low_light to determine if the light of a
particular room should be turned off. In this case, it does not want
to receive any message from the motion pattern in a time window
of 2 minutes (see line 14). Furthermore, no_motion will only accept
messages from the pattern light if the status’s value of its messages
is on (line 115). Finally, like the on_motion pattern, it always requires
to match the most recent relevant messages in the actor’s inbox (line
16).

The primitive pattern allows developers to define a fully functional
actor’s interface, but no action will be executed upon a full match of one
of its patterns. A pattern has a full match if all its conditions are met.
In Sparrow, reactions define the logic to execute upon a full match of
a pattern. The process of executing the reactions of a pattern is called
pattern activation. Lines 18-19 show the declaration of two reactions:
turn_on_light and turn_off_light. For clarity, the body of both reactions
was omitted. Comments with their description were used instead. These
reactions are attached to their respective patterns using the function
react_to (lines 21-21). In the rest of this dissertation, will we refer to the
action of executing the reactions of a pattern as pattern activation.

In a nutshell, the definition of a Sparrow actor consists of four parts:

• Import Sparrow’s language abstractions (line 2).

• Define relevant message patterns (lines 4–16)

49

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

• Define pattern reactions lines 18-19)

• Bind patterns with their reactions (lines 21-22)

4.2.2 Language Syntax Overview

As we mentioned earlier, Sparrow is implemented as a domain-specific
language (DSL) that leverages the macro facilities of Elixir for its im-
plementation. At the same time, this decision shaped and restricted the
expressiveness of its language abstractions. Sparrow’s primitives are re-
stricted by the set of valid expressions and operators supported by Elixir’s
parser. Although Elixir provides developers with a rich macro system, it
does not allow redefining used operators (e.g., and, or), or create new ones.
However, it allows redefining a list of unused operators supported by its
parser (e.g., ∼>). Figure 4.1 shows an EBNF-styled syntax definition of
Sparrow. In this figure, observe that Sparrow can be subdivided into two
smaller languages.

On the one hand, there is Sparrow’s pattern language. In traditional
actor languages with pattern-matching (e.g., Erlang, Elixir), messages
are represented by any value, mostly tuples. In such languages, message
patterns usually decompose a single message into its constituents using
pattern-matching with logical variables. Sparrow builds on and extends
this idea by adding a rich set of additional synchronization operators to
its pattern language through the non-terminal <p-definition>. This non-
terminal introduces pattern <identifier> as <pattern> syntax to bind
any pattern to a name, where <identifier> can be any valid identifier and
<pattern> can be any valid Sparrow pattern. This special form can be used
to abstract and reuse patterns in Sparrow. Section 4.3 will describe in depth
the different variants of <pattern> and their properties. Briefly, Sparrow’s
pattern language can be seen as a declarative subset of Sparrow (inspired
by CEP languages) that enables the declaration of complex synchronization
patterns.

On the other hand, there is Sparrow’s reaction language. A pattern
reaction represents the body of a message pattern of traditional actor
languages. These languages typically require the programmer to specify the
body of a message pattern together with its definition. Sparrow decouples
these two definitions to improve the composability and reusability of
complex message patterns. Section 4.4 will describe in depth the different

50

4.2. SPARROW BY EXAMPLE

(R1) <p-definition> := pattern <identifier> as <pattern>
(R2) <pattern> := <acc-pattern> [<guard>] [, [options: <option>+]]
(R3) <acc-pattern> := <comp-pattern> {|> <transformer>}*
(R4) <comp-pattern> := <elem-pattern> [(and | or) <elem-pattern>]*
(R5) <elem-pattern> := [not] <selector> [[<operator>+]]
(R6) <selector> := {<symbol>, <attribute>*}

| <identifier>[{{<inline-guard>
| <alias-op>}+}]

(R7) <attribute> := <value>
| <symbol>
| <logic-var>

(R8) <guard> := when <expression>
(R9) <inline-guard> := <identifier> = <expression>
(R10) <alias-op> := <identifier> ∼> <identifier>
(R11) <symbol> := :<identifier>
(R12) <logic-var> := [(@ | !)]<identifier>
(R13) <operator> := window: <time>

| debounce: <time>
| every: <number>
| count: <number>

(R14) <transformer> := fold(<expression>, <expression>)
| map(<expression>)
| bind(<identifier>)

(R15) <option> := seq: <boolean>
| interval: <time>
| last: <boolean>

(R16) <time> := {<number>, (:secs | :mins | :hours | :days | :weeks)}

(R17) <r-definition> := reaction <identifier> (<arg>, <arg>, <arg>) do <expression> end
(R18) <react-to> := react_to <identifier>, with: <identifier>
(R19) <remove-from> := remove <identifier>, from: <identifier>
(R20) <remove-reactions> := remove_reactions <identifier>

(R21) <arg> := <identifier>

Figure 4.1 Sparrow EBNF-styled syntax definition

abstractions defined by the reaction language. Briefly, Sparrow’s reaction
language can be seen as a superset of the Elixir programming language in
which the reaction to a message pattern can be specified.

In the figure 4.1, the definitions of the non-terminals <expression>,
<identifier> <value>, <number> and <boolean> have been omitted and
corresponds to ordinary Elixir expressions, identifiers, primitive values,
numbers and booleans respectively. A detailed explanation of the grammar
rules of both languages will be given in the next sections.

51

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

4.3 Sparrow’s Pattern Language

Similarly to Elixir, in Sparrow, incoming messages are pattern matched
against a set of message patterns. When a match is found, the matching
messages are consumed from the actor’s inbox, and the actor starts a process
to react to those messages. This reaction is specified in the Sparrow’s
reaction language (see section 4.4).

Sparrow has support for three types of patterns: elementary patterns
enable the matching of single messages, composite patterns enable the
composition of multiple elementary patterns, and accumulation patterns
enable the accumulation and aggregation of multiple messages of the same
type. These patterns incarnate the synchronization requirements identified
in section 2.3.

4.3.1 Elementary Patterns

Elementary patterns are the most basic kind of Sparrow’s patterns (see
figure 4.1 R5). However, they extend the message patterns of traditional
actor programs (e.g., Erlang, Elixir) in several ways. For example:

• They can be reused to compose more complex patterns.

• They can detect the absence of a certain type of message in a time
window.

• They can ignore a certain type of message for some time.

• They can ignore a number n of messages of a certain type.

In the rest of this section, we detail all variant of elementary patterns
supported by our DSL.

In Sparrow, developers can define a new pattern using the pattern
special form (see figure 4.1 R1). Elementary patterns usually start with
a selector that designates a single message (see figure 4.1 R6). Similar
to Elixir’s messages, a selector in Sparrow is represented as a tuple. Its
first element determines the type of message to match, and it always
has a unique constant value (e.g., :window). The other selector elements
are called attributes (see figure 4.1 R7), and they can be primitive values
(e.g., string, number) or logic variables. Logic variables represent a dynamic
primitive value that is unknown until the matching of the pattern against a

52

4.3. SPARROW’S PATTERN LANGUAGE

message that sits in the actor’s inbox. Inspired by Elixir’s pattern-matching
mechanism [81], logic variables of a selector with the same identifier must
have the same value. Additionally, an elementary pattern’s selector can
be accompanied by an optional operator and an optional guard expression.
We will explain these last components in the next sections.

Figure 4.2 shows the definition of an elementary pattern that matches
when an open window is detected at any location (this is part of the
implementation for scenario 3). The pattern keyword is used to give a
name to the pattern. In Sparrow, patterns are second-class citizens that
can be reused and composed to define complex patterns. The as keyword
is followed by the selector of the pattern. As with plain Elixir, pattern-
matching on primitive values can be used to filter messages based on their
attribute values. For instance, the pattern shown in this example will only
match :window messages for which the second attribute (status) has as
value :open. The other attributes (id, location) are logic variables and
they will match any value.

pattern open_window as {:window, id, :open, location}

2

1

3

Figure 4.2 Example of an elementary pattern: (1) Primitive used to
declare a pattern; (2) Assign a name for future references; (3) Define the
pattern’s selector

4.3.1.1 Operators

Pattern operators (see figure 4.1 R13) are high-level conditions that further
delineate the kind of messages that can be matched by the pattern selector.
As we mentioned in section 4.3.1, a selector can optionally be followed by
one or more operators enclosed in square brackets. Elementary patterns
support three types of operators: negation, debouncing, and extensional
sequencing. The integration of Sparrow in Elixir required us to design
negation as a prefix operator, and debouncing and sequencing as postfix
operators. In the rest of this section, we will explain in detail each of these
operators.

Figure 4.3 shows an implementation for scenario 2 that uses the negation
operator. For this scenario, we want to turn off the lights after two

53

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

minutes without movement. Detecting the absence of motion events
can be implemented in Sparrow by using the negation operator (not) in
combination with a particular time window. The negation operator must
always be combined with an instance of the window operator (e.g., [window:
2, :mins). Every time the selector matches a new message, the time of
the window operator is reset. Once the time window expires, the pattern
is automatically matched.

pattern turn_off_light as not {:motion, id, :on, location}[window: {2, :mins}]

1 2

Figure 4.3 Implementation of scenario 2 using a negated pattern:
(1) Negate the selector definition; (2) Set the time window

Figure 4.4 shows an implementation of scenario 4 using the debounce4
operator. For this scenario, we only want to match doorbell messages if no
other doorbell message was matched in the past 30 seconds. The debounce
operator does exactly that, the first message that matches the preceding
selector automatically matches the entire pattern. Any future messages
that follow within the debouncing time are automatically discarded.

pattern doorbell_alert as {:doorbell, id}[debounce: {30, :secs}]

Figure 4.4 Implementation of scenario 4 using a debouncing time
between messages

Figure 4.5 shows a pattern where we are interested in matching every
third heating failure event. This can be done in Sparrow by following
the pattern selector with an extensional sequencing operator using the
every keyword. In our example, only every third message is matched and
consumed. All other messages that match the selector are discarded. This
pattern can be used as a partial solution to scenario 7 (see section 2.1).

4.3.1.2 Guards

Pattern guards (see figure 4.1 R8) are boolean predicates that are executed
after a match of a selector and its operators is found. They augment the

4The term debouncing is taken from the domain of electrical circuits where a
particular debouncing algorithm is used to avoid multiple triggers (within a period) to
produce an undesired control output [26].

54

4.3. SPARROW’S PATTERN LANGUAGE

pattern heating_failure as {:heating_f, id, code}[every: 3]

Figure 4.5 Example using the extensional sequencing operator
(every) of Sparrow

pattern-matching of selectors with more complex conditions. Like with
traditional Elixir guards [72], Sparrow’s guards are only allowed to contain
a set of boolean predicate expressions that can always be executed in
constant time and are side-effect free. This is a deliberate choice. In this
way, Sparrow can make sure that nothing bad happens while executing
guards. It also allows Sparrow’s macros to optimize the code related to
guards efficiently. If a not allowed expression (e.g., a user custom function)
is used the compilation process of the actor will fail and an error will be
raised. Figure 4.6 shows a guarded pattern that will be activated if it
matches an :open window message from the :bedroom or the :kitchen. The
full pattern is only matched (and the corresponding reaction fired) when
the guard expression evaluates to true. If the guard expression evaluates
to false, the pattern is not matched, and the messages are not consumed.

pattern open_window as {:window, id, :open, location}
 when location == :bedroom or location == :kitchen

Figure 4.6 Example of a pattern with a guard expression

Guards can also constrain attributes of patterns composed by multiple
selectors (see section 4.3.2). In such patterns, it is also possible to declare
a guard for a particular selector. This type of guard is called, inline
guards Unlike regular guards, inline guards allow developers to write
compact guard expressions that affect a single selector. Except for this last
constraint, an inline guard behaves as a regular guard. In the next section,
an example of inline guards will be given.

4.3.2 Composite Patterns

Unlike message patterns of traditional actor-based languages (e.g., Scala,
Elixir), Sparrow’s patterns can be reused, further specified or composed
with other patterns to declare a more complex coordination logic. This is
only possible for patterns that have been given a name through Sparrow’s

55

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

pattern as primitive. The following sections will detail the different forms
in which a pattern can be reused and composed.

4.3.2.1 Reusing patterns

Developers can reuse patterns by specifying a pattern name instead of a
selector when defining a new pattern. An optional set of inline guards
(see section 4.3.1.2) can follow this name. Pattern reuse is illustrated
in figure 4.7, which shows two semantically equivalent variants (B, C)
of a pattern that extends another elementary pattern (A). The pattern
open_window (A) will match messages of type :window if the value of its
attribute state is :open. We can observe in this example the use of the
inherited Elixir’s pattern-matching approach to filter messages using the
atoms :window (message’s type) and :open. The pattern kitchen_open_a
(B) uses a guard expression to further specify that the open window needs
to be detected in the kitchen using the equals operator (==) and the atom
:kitchen. In contrast, the pattern kitchen_open_b (C) employs an inline
guard to substitute the logic variable location for the atom :kitchen using
the match operator (=). Both patterns (A and B) will match the same
events, namely when a window is opened in the kitchen.

pattern open_window as {:window, id, :open, location}

pattern kitchen_window_a as open_window when location == :kitchen

pattern kitchen_window_b as open_window{location= :kitchen}

A

B

C

Figure 4.7 Example of pattern reuse in Sparrow

4.3.2.2 Composing patterns

Sparrow patterns can be composed by linking multiple patterns using a
logic operator. Sparrow supports both conjunctions (and) and disjunctions
(or) of patterns. Like with traditional actor languages; disjunction can also
be achieved by separating each of the patterns in a disjunction. However,
as Sparrow also has conjunction, which is typically not supported by
traditional actor languages, we also syntactically support disjunction. In
the same way, Elixir inspired us to add support for unification of logic
variables of a selector. Sparrow has support for unification of logical

56

4.3. SPARROW’S PATTERN LANGUAGE

variables crossing the constituents of a composite pattern. For example,
figure 4.8 shows a composite pattern that will be activated, if it receives
a carbon dioxide (:co2) and carbon monoxide (:co) message from the
same device notifying that certain level (previously specified) was detected
(true). This last constraint is enforced by the unification of the id attribute
of both anonymous patterns. Anonymous patterns behave like any other
pattern, except for the fact that they cannot be reused.

pattern carbon_alert as {:co2, id, true} and {:co, id, true}

Figure 4.8 Example of logic variable unification in a composite
pattern

Figure 4.9 illustrates a composite pattern (occupied_home) that partially
implements the smart home scenario 5 explained in section 2.1. For this
scenario, we consider a home inhabited by one person. We are interested
in detecting when the person is arriving home by first detecting motion
at the front door, followed by receiving an open door event, followed by
detecting motion in the entrance hall. In our example, the occupied_home
pattern is defined as a conjunction of three patterns. On the one hand,
the first and third pattern reuse the motion_sensor pattern to match only
motion events from the front door and entrance hall respectively. On the
other hand, the second one is an anonymous pattern that matches door
opening events.

pattern occupied_home as motion_sensor{location= :front_door}

 and {:contact, id, :open, :front_door}

 and motion_sensor{location= :entrance_hall},

 options: [seq: true]

pattern motion_sensor as {:motion, id, :on, location}

Figure 4.9 Example of use of sequencing operator (seq)

By default, a composite pattern does not enforce any particular order in
which its constituent patterns must match. However, that behaviour can be
changed using the intensional sequencing operator (seq). Due to the syntax
limitations imposed by Sparrow’s host language (see section 4.2.2), this
operator is specified as an entry in the general options of the pattern. In the
rest of this dissertation, we will refer to this operator as sequencing operator
for short. Figure 4.9 showcases the use of this operator to specify that

57

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

{:motion, 30, :on, :front_door}

{:contact, 20, :open, :front_door}

{:motion, 31, :on, :entrance_hall}

t1

t2

t3

Time

A

B {:motion, id, :on, :front_door} and

{:contact, id, :open, :front_door} and

{:motion, id, :on, :entrance_hall}

C pattern occupied_home as motion_sensor{location= :front_door}

 and {:contact, cid, :open, :front_door}

 and motion_sensor{location= :entrance_hall,id~> mid},

 options: [seq: true]
2

1

1

pattern motion_sensor as {:motion, id, :on, location}

Figure 4.10 Example of renaming logic variables using the alias
operator (∼>)

the occupied_home pattern can only be matched if the matched messages
arrive in the same order as they are specified in its definition.

4.3.2.3 Renaming Logic Variables

As was mentioned in section 4.3.2.2, Sparrow has support for the unification
of logical variables crossing the constituents of a composite pattern. This
is often desirable as it allows for the unification of various attributes across
different pattern selectors. However, it can potentially lead to unexpected
unification of logical variables when composing named patterns. For
example, our first implementation of scenario 5 in figure 4.9 contains a
bug as it incorrectly does not match the sequence of messages shown in
figure 4.10.A. Figure 4.10.B shows the expanded form of the composite
pattern defined in figure 4.9. Each elementary pattern’s selector contains
the same logical variable id. However, in this case, it is undesirable to
unify these three logical variables as each sensor can have a different id.
To circumvent this issue, Sparrow allows developers to manually change
the logical variable for an attribute using the aliasing operator (∼>). The
aliasing operator renames the logical variable on its left-hand side to the
logical variable on its right-hand side in the elementary pattern.

58

4.3. SPARROW’S PATTERN LANGUAGE

We acknowledge this operator is not an optimal solution. In future
versions of Sparrow, the default behaviour of unification may be changed
to facilitate the maintenance of large pattern sets. However, as patterns
are not first-class entities, developers can identify shared logic variables by
looking at the pattern definition.

Figure 4.10.C presents an updated version of the occupied_home pattern
defined in figure 4.9. The updated definition of the occupied_home pattern
reflects two changes. First (C.1), the id attribute of the second pattern
(:contact) was manually renamed to cid. Second (C.2), the id attribute
of the third pattern (motion - entrance hall) was renamed using the alias
(∼>) operator.

4.3.2.4 Timing Constraints on Composite Patterns

Similar to windowing for elementary patterns, composite patterns also
support timing constraints. Developers can specify a time-interval in which
the composed set of constituent patterns should be matched. Figure 4.11
presents a new version of the occupied_home pattern where the 60 seconds
time constraint is added. Similar to the intentional sequencing operator
(:seq), this time constraint (interval) is also defined in the options of a
composite pattern.

pattern occupied_home as motion_sensor{location= :front_door}

 and {:contact, cid, :open, :front_door}

 and motion_sensor{location= :entrance_hall,id~> mid},

 options: [seq: true, interval: {60, :secs}]

Figure 4.11 Example of a composite pattern with a time interval
constraint

4.3.2.5 Composite Patterns Selection Strategy

Like most actor languages, Sparrow messages are matched in FIFO5 order.
However, Sparrow allows developers to deviate from that default selection
strategy. Figure 4.5 already showed an example of this action by only
selecting every third message. A flexible message selection strategy is also
useful to synchronize always on the latest messages that may be relevant to

5FIFO - First In First Out

59

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

A

B pattern occupied_home as motion_sensor{location= :front_door}

 and {:contact, id, :open, :front_door}

 and motion_sensor{location= :entrance_hall, id ~> mid},

 options: [seq: true, interval: {60, :secs},last: true]

t1
Time

t2 t3 t4 t5

M_FrontDoor

C_FrontDoor

M_EntHall

Figure 4.12 A solution to the occupied-home scene of scenario 5:
(A) Messages received by the actor; (B) Composite pattern that enforces a
selection strategy (last-in)

a pattern. For example, the implementation of the pattern occupied_home
from figure 4.11 must always check all potential messages received from the
three sensors in the last 60 seconds. However, as observed in figure 4.12.A
at t4, the pattern should only check the latest message (t3) from the
entrance hall’s motion sensor and discard the old ones (t1, t2).

4.3.3 Accumulation Patterns

The third big category of patterns (often elementary and composite) are
accumulation patterns. Accumulation patterns extend the above patterns
with quantified and unquantified accumulation of messages. Once the
messages are accumulated, they can be subject to further transformation
and filtering operations. Accumulation patterns can be constructed by
means of several optional accumulation operators. Like other operators (see
section 4.3.1.1), they can be specified between square brackets following
the selector.

4.3.3.1 Quantified Accumulation

Quantified accumulation patterns are used to accumulate a certain number
of matching messages. Figure 4.13.A shows a pattern that uses the count
operator to match three heating failure messages. Like composite patterns,
quantified accumulation patterns do a unification of their logic variables
during the expansion of its pattern selector. In our example, this means that
the pattern heating_failure accumulates three heating failure messages

60

4.3. SPARROW’S PATTERN LANGUAGE

pattern heating_failure as {:heating_f, id, code}[count: 3]A

B {:heating_f, id, code} and {:heating_f, id, code} and {:heating_f, id, code}

pattern heating_failure as {:heating_f, id, @code}[count: 3]C

Figure 4.13 Example of a quantified accumulation pattern that
matches three heating failure messages

from the same boiler and with the same failure code as the logical variables
id and code will be unified (see figure 4.13.B).

As we mentioned in section 4.3.2.3, the above default behaviour may
be useful in some circumstances, but it is not always desirable. Sparrow
introduces the operators: must be distinct “!” and may be distinct “@”,
to specify the expected matching behaviour of logic variables when used
in an accumulation pattern. The former guarantees that the constrained
attribute must have a distinct value in all the messages accumulated. In
contrast, the latter allows the constrained attribute to have any value. For
example, the definition of heating_failure pattern shown in figure 4.13.C
will match three messages from the same boiler regardless of the code
attribute’s value.

4.3.3.2 Unquantified Accumulation

Unquantified accumulation patterns are used to accumulate any number
of messages within a certain time window using the window operator.
Figure 4.14.A shows a pattern that uses the window operator to accumulates
all heating failure messages in the last 60 minutes. Messages older than
the time constraint are automatically removed by Sparrow’s run-time. As
a second example of unquantified accumulation patterns, figure 4.14.B
shows a hybrid accumulation pattern that use both count and window
accumulation operators. In this last case, the first operator that reaches
its condition will win and result in a match.

4.3.3.3 Transformation operators

Transformation operators allow developers to transform and filter a group
of messages that have been accumulated using the previously described
operators. Inspired by functional languages such as Haskell and Elixir,

61

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

pattern heating_failure as {:heating_f, id, @code}[window: {60, :mins}]A

pattern heating_failure as {:heating_f, id, @code}[count: 3, window: {60, :mins}]B

Figure 4.14 Examples of unquantified accumulation patterns: (A)
Use of the window operator to accumulate all messages in the last 60
minutes; (B) Example mixing both accumulation operators

Sparrow supports two transformation operators map and fold. The be-
haviour of these operators resembles the ones from the same abstractions
found in the above mentioned functional languages.

Figure 4.15.B presents a electricity_alert pattern that implements
the requirements for scenario 6. For this scenario, it is required to ac-
cumulate the daily electricity consumption for the last three weeks and
check if the total consumption was greater than 200 kWh. Notice in our
implementation, the use of the may be distinct operator (B.1) to match
any daily consumption values. Once the accumulation operator of pattern
electricity_alert is satisfied (B.2), the list of messages is transformed
(B.3). Later, the pattern uses the special form bind (B.4) to bind the total
electricity consumption in a local variable (total), which scope extends to
the rest of the pattern. Finally, the guard expression (B.5) is evaluated
to determine if the messages are consumed or not by the pattern. In this
example, messages older than three weeks are automatically discarded by
Sparrow’s runtime.

pattern daily_electricity as {:consumption, meter_id, value}

1

A

pattern electricity_alert as daily_electricity{@value}[window: {3, :weeks}]

 |> fold(0, fn({_,_,v}, acc)-> acc + v end)

 |> bind(total)

 when total > 200

B

2

3

4

5

Figure 4.15 Sparrow solution for scenario 6: (A) Elementary
pattern definition; (B) Accumulation pattern example with a transformer
operator and guard

In this section, we have focused on the definition of patterns to compose
the interface of an actor. However, we have not specified what should be

62

4.4. SPARROW’S REACTION LANGUAGE

done with the matched messages. The next section will introduce a new
abstraction called reaction, which is used to define the logic to process the
matched messages of a pattern.

4.4 Sparrow’s Reaction Language

In Sparrow, once a pattern is matched, the matched messages are consumed,
i.e., removed from the actor’s inbox, and the actor starts reacting to the
matched pattern. A reaction is a piece of code that corresponds to a
“function” in Elixir (see figure 4.16). Sparrow’s reactions always receive
the three parameters. The first one (A.1) is a list of messages matched by
the pattern. The second parameter (A.2) is a key-value list with all the
intermediate results saved with the bind operator during a transformation
process (see figure 4.15.B.4). Finally, the third parameter (A.3) represents
the current state of the actor.

In Sparrow, this reaction logic is syntactically decoupled from the
pattern definition (similar to [83]). A reaction can be dynamically bound
to one or more patterns, and a pattern can ever have multiple reactions.
This behaviour was intentionally designed to facilitate the reuse of both
patterns and reactions. Furthermore, it avoids developers adding an extra
layer of indirection (middleman) to determine which reactions to execute.
The middleman approach circumvents the duplicity definition of both
patterns and reactions. However, it also introduces a performance penalty
since it is always notified whether a pattern has registered reactions or not.
In brief, the decoupling of patterns and reactions allows the programmer
to change the behaviour of an actor dynamically, which is reminiscent of a
become statement in the original actor model.

Binding a reaction to a pattern is done using the react_to special
form (see figure 4.16.C) which expects two arguments: the pattern’s name
(C.1), and the reaction’s name (C.2). When the pattern open_window (see
figure 4.16.B) is successfully matched, the actor will invoke all its reactions
in the same order they were bound to the pattern. A reaction can also be
unbound from a pattern. The remove primitive function (see figure 4.16.D)
also expects the same two arguments as the react_to primitive function but
in reverse order. Finally, the remove_reactions function (see figure 4.16.E)
removes all the reactions of the pattern received as argument.

63

CHAPTER 4. SPARROW: A DSL FOR ACTOR COORDINATION

reaction turn_off_heating (mgs, int_res, state), do: # reaction code

1

A

C

2 3 4

react_to open_window, with: turn_off_heating

1 2

D remove turn_off_cooling, from: open_window

1 2

E remove_reactions open_window

reaction turn_off_cooling (mgs, int_res, state), do: # reaction code

B pattern open_window as {:window, id, :open, location}

Figure 4.16 Overview of reaction primitives

Figure 4.16 showcases a smart home scenario where the binding of
reactions to a pattern is based on the current season of the year (e.g.,
summer, winter). In this way, developers can avoid duplicated patterns
with different reactions to match the season’s requirements. For clarity, this
figure omits the code related to the dynamic scheduling of the reactions.
Figure 4.16.A shows the definition of two reactions (turn_off_heating,
turn_off_cooling) using the reaction special form. Both reactions can be
bound to the pattern window_open (see figure 4.16.B) based on the current
season.

4.5 Conclusion

By implementing the synchronizations requirements identified in section 2.3
as language constructs, Sparrow has moved forward to define complex
coordination patterns easily in an actor-based language. Although we have
demonstrated the need for such language constructs, other application
domains might need new synchronization abstractions. Sparrow’s host
language provides an advanced macro system to extend its language capa-
bilities. However, it also restricts the expressiveness of its domain-specific
languages to a set of predefined operators supported by its parser. The
unification of logic variables of a single pattern’s selector contributes to de-
clare more expressive patterns. Still, further research is needed to confirm
the relevance of its application across multiple selectors of a composite
pattern.

64

C
h

a
p

t
e

r

5
NEST: A Formal Semantics of Sparrow

In the previous chapter, we introduced Sparrow as a domain-specific lan-
guage for orchestrating actors which e.g., represent physical objects in
cyber-physical systems. We detailed the main abstractions of its internal
pattern language (see section 4.3) and reaction language (see section 4.4),
but not their formal operational semantics. This chapter presents a formal
calculus of Sparrow called NEST1. We use this formal calculus to pre-
cisely describe the semantics of core coordination abstractions presented
in chapter 4. First, we describe NEST’s syntax and small-step operational
semantics (see section 5.1). Second, we introduce an implementation of
NEST in Redex (see section 5.2). We use this executable NEST implemen-
tation to validate its formal semantics definition by means of an extensive
suite of hand-written and randomized tests. Section 5.2.2 describes how we
extended the randomized test suite provided by Redex to evaluate NEST
pattern-matching semantics’ correctness. We end this chapter by listing
the differences between the formal semantics of NEST and the current
implementation of Sparrow (see section 5.2.3).

1NEST: NEST Epitomises Sparrow Theory

65

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Ps ⊆ Pattern ::= pattern pn as p

Rs ⊆ Reaction ::= reaction rn do e

As ⊆ Actor ::= actor an {react_to pn with: rn}

e ∈ E ⊆ Expr ::= nil | x | l | i | λx.e | {mid, e} | let x = e in e | spawn an

| send e, e | react_to pn, with: rn | remove rn, from: pn

| remove_reactions pn

x, l, i ∈ VarName, pn ∈ PatternName, rn ∈ ReactionName, an ∈ ActorName

Figure 5.1 Abstract syntax of NEST

5.1 Operational Semantics

This section starts by defining the syntax of NEST (see section 5.1.1)
and its main semantic entities (section 5.1.2). Next, it introduces a set
of reduction rules based on evaluation contexts [21] to describe the core
features supported by NEST (section 5.1.3).

5.1.1 Syntax

The NEST abstract syntax is composed of three main subsets, whose basic
abstractions can be observed in figure 5.1.

Pattern subset (Ps) describes all different types of patterns introduced
in section 4.3. In this abstract definition, pn represents the name
of the pattern, and p is used as a placeholder for the non-terminal
expression <pattern> of figure 5.2 previously defined in chapter 4.

Reaction subset (Rs) describes the definition of reaction functions. A
reaction function has a name rn and a body e. The body e of a
reaction in NEST has access to three implicit arguments i.e., list of
matched messages, list of intermediate results, and the current state
of the actor. In case, the list of intermediate results correspond to
transformation executed over the accumulation patterns defined in
section 4.3.3. We opted for this variant of implicit arguments to
simplify the implementation of the operational semantics.

66

5.1. OPERATIONAL SEMANTICS

Actor subset (As) describes how to define new actor behaviours. The
actor construct takes two arguments: the actor name an, and a set
of bindings between patterns and reactions previously defined.

We integrate the above subsets into NEST’s expressions e together
with a set of built-in functions to create NEST’s programs. For example,
the built-in function react_to with: binds a pattern with name pn to a
reaction with name rn. As patterns and reactions are second-class entities,
their lookup and binding (association), is globally scoped within an actor.
The function remove from: removes a reaction with name rn from a
pattern with name pn. Similarly, remove_reactions removes all reactions
associated to a pattern with name pn. After the definition of an actor,
several actors can be created using the spawn primitive. This function
takes a single argument, the actor name an, and returns the id (aid) of
the newly spawned actor. Finally, lambdas are denoted by λx.e, and local
variables can be introduce via let x = e in e.

5.1.2 Semantic Entities

Figure 5.3 shows the primary semantic entities of a NEST program. Here,
we use different font styles to distinguish our semantic entities syntactically.
For example, the calligraphic letter A represents a constructor. Regular
uppercase letters like K and M denote sets or sequences. Parentheses
represent a pair, while curly brackets denote a tuple as in Elixir. Actors
and messages have different types of identifiers (or ids for short), denoted
aid and mid respectively.

The computational state of a NEST program is represented as a config-
uration K. This configuration is composed of a set of running actors. Each
actor consists of an identifier aid, a queue Q of messages remaining to be
processed (a.k.a. the inbox), a set of pattern-reaction bindings (pn, rn), and
an expression e that is currently evaluated. NEST and Sparrow inherit all
primitive values supported by Elixir. To simplify the semantics of NEST,
only primitive values used by its reduction rules are included (e.g., nil,
aid).

Similar to Elixir, messages are represented as tuples, where the first
element mid denotes the type of a message followed by a list of values v.
Intermediate results of pattern transformations I are represented as a set of
values v or pairs x, v. The first element of a pair corresponds to a variable’s

67

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

<p-definition> := pattern <identifier> as <pattern>
<r-definition> := reaction <identifier> (<arg>, <arg>, <arg>) do <expression> end
<react-to> := react_to <identifier>, with: <identifier>
<remove-from> := remove <identifier>, from: <identifier>
<remove-reactions> := remove_reactions <identifier>
<pattern> := <comp-pattern> [<guard>] [, [options: <option>+]]
<comp-pattern> := <elem-pattern> [(and | or) <elem-pattern>]*
<elem-pattern> := [not] <selector> [[<operator>+]] {|> <transformer>}*
<selector> := {<symbol>, <attribute>*}

| <identifier>[{{<inline-guard>
| <alias-op>}+}]

<attribute> := <value>
| <symbol>
| <logic-var>

<guard> := when <expression>
<inline-guard> := <identifier> = <expression>
<alias-op> := <identifier> ∼> <identifier>
<symbol> := :<identifier>
<logic-var> := [(@ | !)]<identifier>
<operator> := window: <time>

| debounce: <time>
| every: <number>
| count: <number>

<transformer> := fold(<expression>, <expression>)
| bind(<identifier>)

<option> := seq: <boolean>
| interval: <time>
| last: <boolean>

<time> := {<number>, (:secs | :mins | :hours | :days | :weeks)}
<arg> := <identifier>

Figure 5.2 Sparrow EBNF-styled syntax (repetition of figure 4.1)

name and the second to its value. These variables can be used in guard
expressions, and they are also accessible in the body of a reaction. Finally,
the subset of expressions e is extended to include actor identifiers aid since
a sub-expression may reduce to an actor identifier before being reduced
further. This new subset of expressions is called runtime expressions.

5.1.3 Reduction Rules

This section describes NEST’s reduction rules. These rules are based on
evaluation contexts [21], and they operate on the runtime expressions
defined in section 5.1.2.

68

5.1. OPERATIONAL SEMANTICS

K ∈ Configuration ::= A Configurations
a ∈ A ⊆ Actor ::= A〈aid, Q, (pn, rn), e〉 Actors

M,L ∈ MessageList ::= {mid, v} List of Messages
v ∈ Value ::= nil | aid Values

I ⊆ IntResult ::= v | (x, v) Intermediate Results
e ∈ E ⊆ Expr ::= ... | aid Runtime Expressions

aid ∈ ActorId, mid ∈MessageId, x ∈ VariableName,

Figure 5.3 Semantic entities of NEST

5.1.3.1 Evaluation Contexts

An evaluation context is a term that contains a hole e�. A hole has the
purpose of identifying the next subexpression to reduce in a compound
expression. NEST reduction rules use evaluation contexts to determine
which subexpressions should be entirely reduced to a value before the
compound expression itself can be reduced. In other words, the reduction
rule will try to find the sub-term that matches the hole. We use the
notation e�[e] to indicate that the expression e is part of a compound
expression e�. Consequently, a set of reduction rules should reduce such
expression e before they reduce the compound expression e� further.

e� ::= � | let x = e� in e | {mid, v, e�, e} | send(e�, e) | send(e, e�)

In NEST, holes can appear in two main expressions: let and send.
A let expression can only be further reduced once the left expression is
fully reduced to a value. Expressions that are part of a message tuple are
always reduced from left to right. Similarly, the send primitive reduces its
left argument before its right argument.

5.1.3.2 Notation

We use the following conventions to facilitate the understanding of NEST
evaluations rules. The notation O = O′ ·O′′ concatenates two sequences or
lists. Sometimes, we also use O = O′ · o as a shortcut to concatenate two
lists. In this particular case o is considered as a list with a single element.

69

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

[v/x]x′ = x′ [v/x]let x′ = e in e = let x′[v/x]e in [v/x]e
[v/x]x = v [v/x]let x = e in e = let x = [v/x]e in e

[v/x]nil = nil [v/x]aid = aid

[v/x]send e, e = send [v/x]e, [v/x]e
[v/x]spawn pn = spawn pn

[v/x]react_to pn, rn = react_to pn, rn

[v/x]remove rn, from:pn = remove rn, from:pn

[v/x]remove_reactions pn = remove_reactions pn

Figure 5.4 Substitution rules: x denotes a variable name or the
pseudo-variable, v denotes a value.

Simultaneously, we use a similar notation to deconstructs a sequence being
part of the arguments of an auxiliary function. For example, we use the
notation o · O and O · o to remove the first or last element respectively
from the sequence O. We represent queues as sequences of messages that
are processed right-to-left, meaning that the last message in the sequence
is the first one to be processed. We use the ∅ symbol to denote both empty
sets and empty sequences.

5.1.3.3 Evaluation Rules

NEST’s semantics is defined in terms of a relation → on configurations,
K → K ′. A NEST program is an expression e that is reduced to an initial
configuration containing a single “root” actor Kinit = {A〈a′id, ∅, ∅, nil〉}.
The actor’s queue and the pattern-reaction binding list are initially empty.
NEST does not yet consider actors distributed across different devices;
it relies on the default behaviour of the base actor language to handle
disconnections. In other words, NEST assumes that all actors remain
permanently connected.

The evaluations rules described in this section are split into two groups
to make explicit which actions can be executed in isolation by a single
actor (local-rules), and which ones require interaction between different
actors of a configuration (global-rules). The above rules can be applied
non-deterministically, which gives rise to concurrency. Figure 5.4 outlines
the set of substitution rules employed by NEST evaluation rules.

Actor-local reduction rules are always initiated after taking the next
message from their actor’s message queue. Such a message is then trans-

70

5.1. OPERATIONAL SEMANTICS

A〈aid,M, (pn, rn), e�[let x = v in e]〉 ·∪ A
→ A〈aid,M, (pn, rn), e�[[v/x]e]〉 ∪A

(let)

M ′, L, I, e = match((pn, rn),M)
A〈aid,M, (pn, rn), v〉 ·∪ A

→ A〈aid,M
′, (pn, rn), [L/l][I/i]e〉 ∪A

(match-message)

A〈aid,M, (pn, rn), e�[react_to(pn, rn)]〉 ·∪ A
→ A〈aid,M, (pn, rn) · (pn, rn), e�[nil]〉 ∪A

(react-to)

(pn, rn)′ = remove(rn, pn, (pn, rn))
A〈aid,M, (pn, rn), e�[remove(rn, pn)]〉 ·∪ A
→ A〈aid,M, (pn, rn)′, e�[nil]〉 ∪A

(remove-reaction-from)

(pn, rn)′ = remove_reactions(pn, (pn, rn))
A〈aid,M, (pn, rn), e�[remove_reactions(pn)]〉 ·∪ A

→ A〈aid,M, (pn, rn)′, e�[nil]〉 ∪A

(remove-reactions)

Figure 5.5 Actor-local reduction rules.

formed into an expression (e.g., by a reaction’s body) that is finally reduced
to a value. The process of reducing such a single expression to a value is
called a turn. Once a turn is completed, the next message is processed.
The activation of local rules stops when the actor’s message queue is empty,
and it restarts when a new message arrives. If during the activation of
a local rule, it cannot reduce an expression further, the actor is said to
be stuck. This unexpected behaviour signifies a semantic error in the
program. Figure 5.5 lists the set of actor-local reduction rules implemented
by NEST.

• let: a “let” - expression simply substitutes the value of x for v in e
according to the substitution rules outlined in Figure 5.4.

• match-message: this rule matches messages in the actor’s inbox
with that actor’s interface. Its activation only occurs when the
expression of the actor’s previous turn is fully reduced to a value.

71

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

The auxiliary function match is then used to match the actor’s pattern-
reaction pairs (pr, rn) with that actor’s inbox, M . When a match
is found, this auxiliary function returns the updated inbox, M ′,
without the matched messages, the list of matched messages, L, a list
of bound identifiers, I, and the expression, e, of the reaction that was
associated with the matched pattern. The actor’s inbox is updated,
and the currently active expression is substituted with the reaction
body, e. In this expression, the variables l and i are replaced with
the list of matched messages and the bound identifiers respectively.

• react-to: this rule associates a pattern named pn with a reaction
named rn. The new association is added to the right of the list of
pattern-reaction bindings. The react-to expression is then reduced
to nil. Unlike in Sparrow, NEST patterns and reaction are globally
defined. This decision helped us to simplify the formal description of
our model.

• remove-reaction-from: this rule removes the association between
a reaction named rn and a pattern named pn. The auxiliary func-
tion remove (see figure 5.8) removes the particular entry from the
pattern-reaction list associated with the specified reaction and pat-
tern. Furthermore, it returns the updated set of pattern-reaction
bindings. The remove-reaction-from expression is then reduced to
nil.

• remove-reactions: this rule removes all associations of reactions
from a pattern pn, where pn the name of the pattern. The auxiliary
function remove_reactions (see figure 5.8) removes the entries from
the pattern-reaction list associated with the specified pattern. Fur-
thermore, it returns the updated set of pattern-reaction bindings.
The remove-reactions expression is then reduced to nil.

Actor-global reduction rules formalize operations that require interac-
tion between different actors of a configuration. Figure 5.6 shows the two
actor-global reduction rules supported by NEST.

• spawn-actor: this rule describes the reduction of spawning a new
actor. When the spawn-actor expression is reduced, a new actor
with identifier a′id is added to the configuration. Furthermore, it

72

5.1. OPERATIONAL SEMANTICS

a′id fresh

actor an{(pn, rn)′} ∈ Ac

A〈aid,M, (pn, rn), e�[spawn(an)]〉 ·∪ A
→ A〈aid,M, (pn, rn), e�[a′id]〉 ∪ A〈a′id, {:init}, (pn, rn)′, nil〉 ∪A

(spawn-actor)

A〈aid,M, (pn, rn), e�[send(a′id, {mid, v})]〉 ·∪
A〈a′id,M ′, (pn, rn)′, e′〉 ·∪ A

→ A〈aid,M, (pn, rn), e�[nil]〉 ∪ A〈a′id, {mid, v}.M ′, (pn, rn)′, e′〉 ∪A

(send-message)

Figure 5.6 Actor-global reduction rules.

returns the identifier to the new actor, allowing the creator actor to
communicate further with the new actor. The inbox of the new actor
is populated with an {:init} message that will use as a starting
point to initialize the actor’s interface. The interface of an actor is
defined by the set of messages or message patterns that the actor
understands. In NEST, an actor’s interface is defined by that actor’s
pattern-reaction pairs.

• send-message: this rule describes the reduction of an asynchronous
message sent to an actor. After a message is sent, a new message is
added to the inbox of the recipient actor a′id, and the expression is
then reduced to nil. NEST only formalizes one-way asynchronous
messages as in Elixir.

Figures 5.7 and 5.8 list the most important auxiliary functions used by
NEST’s reduction rules. Some of the less relevant auxiliary functions are
not listed in the interest of clarity, but we describe their purposes below.
The interested reader can find the implementation of all auxiliary functions
in our GitHub repository2.

• match: this auxiliary function matches the entire inbox of an actor
with that actor’s pattern reaction pairs. When it finds a set of
messages that satisfy the conditions of a particular pattern, it removes
them from the actor’s inbox. Then it returns the updated inbox
M ′ together with the list of matched messages L, the list of bound
identifiers I and the body expression e of the associated reaction.

2NEST Implementation - https://github.com/rhumbertgz/nest-plt-redex

73

https://github.com/rhumbertgz/nest-plt-redex

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

• match_patt: this overloaded auxiliary function formalises the core
of the Sparrow pattern language. It returns an updated inbox, a
list of matched messages, a list of bound identifiers and a list of
bindings between logical variables and primitive values. The latter
list is used for unification when finding a match for a compound
pattern. We added a numeric label to each of its variants to facilitate
their description (see figures 5.7 and 5.8).

1. Match a pattern composed by a selector against the messages in
the actor’s inbox. In this case, relevant messages are determined
by pattern-matching their attribute values against the pattern’s
selector.

2. Match a pattern composed by a conjunction between the pat-
terns p1 and p2 against the messages in the actor’s inbox. In
this case, the function unify is used to check that shared logic
variables between p1 and p2 have the same value. The matching
order of messages is not relevant.

3. Match a pattern composed by a pattern p1 followed by a pattern
p2 against the messages in the actor’s inbox. The function unify
is used to check that shared logic variables between p1 and p2
have the same value. Additionally, this match function checks
that a relevant message for p2 arrived to the actor’s inbox after
a relevant message for p1.

4. Match a pattern composed by a disjunction between p1 and p2
against the messages in the actor’s inbox. In this case, a match
will occur whenever a relevant message for p1 or p2 is found.

5. Match a pattern p against the messages in the actor’s inbox. In
this case, only messages that satisfy the guard (h−→ ∗) expression
e are considered relevant.

6. Match an accumulation pattern p with the operator count
against the messages in the actor’s inbox. A match will oc-
cur when n relevant messages are found. In this case, a list of n
messages will be returned.

7. Match a pattern p with the operator every against the mes-
sages in the actor’s inbox. A match will occur when n relevant
messages are found. In this case, it only returns a list with the
last (n) message matched.

74

5.1. OPERATIONAL SEMANTICS

8. Match an accumulation pattern p with the operator window
against the messages in the actor’s inbox. A match will occur
when any relevant messages are found within the specified time
window. In this case, a list of all matched messages will be
returned.

9. Match an extension of the pattern pn against the messages in the
actor’s inbox. Remember that we mentioned in section 4.3.2.1
that Sparrow’s can be reused and extended.

10. Match an accumulation pattern p with the transformation op-
erator fold against the messages in the actor’s inbox. After the
conditions of p are satisfied, the fold operator is applied to the
list of matched messages.

11. Match an accumulation pattern p with the transformation op-
erator map against the messages in the actor’s inbox. After the
conditions of p are satisfied, the map operator is applied to the
list of matched messages.

12. Match an accumulation pattern p with the operator bind against
the messages in the actor’s inbox. After the conditions of p
are satisfied, the bind operator is applied to save intermediate
results after a transformation operator is applied.

• match_attr: this auxiliary function matches a pattern’s attributes
with a message’s values. A value attribute in the pattern must always
be identical to each corresponding value in the message. A logical
variable always matches with any value in the message. This function
returns a list of bindings between these logical variables and their
corresponding values in the message.

• within_outside_window: this auxiliary function determines if poten-
tial messages for a pattern’s match are within or outside a particular
time window. It takes a time interval, {n, unit_time}, and an inbox,
M , and returns two separate inboxes, M ′ and M ′′. The former is a
list of messages that fall within the window. The latter is a list of
messages that fall outside of the window.

• seq?: this auxiliary function determines if the first message from the
list L′ arrived at the actor’s inbox after the last message of list L.

75

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

match((pn, rn) · (pn, rn), M) = M ′, L, I, e

where
pattern pn as p ∈ PL

reaction rn do e ∈ RL

M ′, L, I, (lv, v) = match_patt(p,M)

match((pn, rn) · (pn, rn), M) = match((pn, rn), M)

(1) match_patt({mid, at}, M · {mid, v}) = M, {mid, v}, ∅, (lv, v)
where
(lv, v) = match_attr(at, v)

(2) match_patt(p1 and p2,M) = M ′′, L · L′, I · I ′, unify((lv, v), (lv′, v′))
where
M ′, L, I, (lv, v) = match_patt(p1, M)
M ′′, L′, I ′, (lv′, v′) = match_patt(p2, M

′)

(3) match_patt(p1 andThen p2,M) = M ′′, L · L′, I · I ′, unify((lv, v), (lv′, v′))
where
M ′, L, I, (lv, v) = match_patt(p1, M)
M ′′, L′, I ′, (lv′, v′) = match_patt(p2, M

′)
seq?(L,L′)

(4) match_patt(p1 or p2, M) = match_patt(p1, M)
match_patt(p1 or p2, M) = match_patt(p2, M)

(5) match_patt(p when e, M) = M ′, L, I, (lv, v)
where
M ′, L, I, (lv, v) = match_patt(p, M)
[v/lv]e h−→ ∗ true

match_patt(p [count: 0], M) = M ′, ∅, ∅, ∅
(6) match_patt(p [count: n], M) = M ′′, L · L′, I · I ′, unify((lv, v), (lv, v′))

where
M ′, L, I, (lv, v) = match_patt(p, M)
M ′′, L′, I ′, (lv, v′) = match_patt(p, [count: n− 1], M ′)

match_patt(p [every: 1], M) = match_patt(p, M)
(7) match_patt(p [every: n], M) = match_patt(p, [every: n− 1], M ′)

where
M ′, L, I, (lv, v) = match_patt(p, M)

(8) match_patt(p [window: {n, ut}], M) = M ′′ ·M ′′′, L, I, (lv, v)
where
M ′,M ′′ = within_outside_window({n, ut}, M)
M ′′′, L, I, (lv, v) = match_patt(p, M ′)

Figure 5.7 Auxiliary functions used in the reduction rules.

It is assumed that both lists have their elements ordered by their
arrival time to the actor’s inbox.

76

5.2. NEST CALCULUS IN REDEX

• expr h−−→ ∗ boolean: defines a reduction relation h−→ ∗ that reduces
a predicate expression (expr) in the host language (h) to a boolean
value. We do not specify this relation here. However, we apply it
here repeatedly to fully reduce the guard expression to a boolean
value. If the constraints of the guard are satisfied, the expression
will reduce to true.

• foldl: this auxiliary function resembles a standard foldl function
available on functional programming languages. It applies the λ
function for each element in the list L with the neutral element n.

• map: this auxiliary function resembles a standard map function avail-
able on functional programming languages. It applies the λ function
for each element in the list L.

• fresh creates a new variable identifier.

5.2 NEST Calculus in Redex

Previous sections of this chapter have focused on NEST’s formal model
for Sparrow. Although we consider that the above model manages to
describe the main language design ideas of our DSL, we did not state
any theorems to prove its “correctness”. Since a faulty model does not
serve its purpose, we opted to implement a mechanized model of NEST in
order to prove its correctness. However, instead of stating theorems and
creating heavy-weight machine-checked proofs (e.g., in Coq [71]), we chose
a lightweight approach based on random testing. We based our decision
inspired by the results showed in [41], where the authors demonstrated the
effectiveness of random testing by detecting mistakes in nine formalized
models, including two, which were already mechanized. Furthermore, we
wanted a lightweight mechanism that did not required more explicit details
than programming.

In this section, we introduce a mechanized implementation of
NEST in Redex [21]. Redex is a domain-specific language in Racket [78]
for formalizing operational semantics. It allowed us as language designers
to write down NEST language grammar, reduction rules, and auxiliary
functions in an untyped and high-level expressive language. Furthermore,
its integrated set of tools (e.g., unit-test suite, visual inspector) helped

77

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

(9) match_patt(pn, M) = match_patt(p′, M)
where
pattern pn as p ∈ PL

lv = logical_vars(p)
p′ = [lv′/lv]p lv′ fresh

(10) match_patt(p fold(n, λ), M) = M ′, L, I · v, (lv, v)
where
M ′, L, I, (lv, v) = match_patt(p,M)
v = foldl(n, λ, L)

(11) match_patt(p map(λ), M) = M ′, L, I · v, (lv, v)
where
M ′, L, I, (lv, v) = match_patt(p,M)
v = map(λ, L)

(12) match_patt(p bind(x), M) = M ′, L, I · (x, v), (lv, v)
where
M ′, L, I · v, (lv, v) = match_patt(p,M)

match_attr(lv · at, v · v) = (lv, v) · match_attr(at, v)
match_attr(v · at, v · v) = match_attr(at, v)

match_attr(∅, ∅) = ∅

unify(∅, (lv, v)) = (lv, v)
unify((lv, v) · (lv, v), (lv′, v′)) = unify_single((lv, v), (lv′, v′)) · unify((lv, v), (lv′, v′))

unify_single((lv, v), ∅) = (lv, v)
unify_single((lv, v), (lv, v) · (lv′, v′)) = ∅

unify_single((lv, v), (lv′, v′) · (lv′′, v′′)) = unify_single((lv, v), (lv′′, v′′))
if
lv 6= lv′

remove(rn, pn, (pn, rn) · (pn, rn)) = (pn, rn)
remove(rn, pn, (p′n, r′n) · (pn, rn)) = (p′n, r′n) · remove(rn, pn, (pn, rn))

remove_reactions(pn, (pn, rn) · (pn, rn)) = remove_reactions(pn, (pn, rn))
remove_reactions(pn, (p′n, r′n) · (pn, rn)) = (p′n, r′n) · remove_reactions(pn, (pn, rn))

remove_reactions(pn, ∅) = ∅

Figure 5.8 Auxiliary functions used in the reduction rules (Cont.).

us to debug and find bugs during the development of our mechanized
formalization. We used and extended Redex’s randomized testing suite to
check if our implementation produces the result predicted by the model
described in section 5.1. In the rest of this chapter, we describe this
mechanized formalization and the challenges faced during its development.

78

5.2. NEST CALCULUS IN REDEX

A

Pe ⊆ Pattern ::= pattern pn as p

Re ⊆ Reaction ::= reaction rn do e

Ae ⊆ Actor ::= actor an {react_to pn with: rn}

e ∈ E ⊆ Expr ::= nil | x | l | i | λx.e | {mid, e} | let x = e in e

| spawn an | send e, e | react_to pn, with: rn

| remove rn, from: pn

| remove_reactions pn

B

1(define-language NEST
2 (pe ::= (pattern pn p))
3 (re ::= (reaction rn e))
4 (ae ::= (actor an (react-to pn rn) ...))
5 (e ::= nil
6 x l i
7 (λ [e ...] e)
8 (let (x e) in e)
9 (spawn an)

10 (send e e)
11 (react-to pn rn)
12 (remove rn pn)
13 (remove-reactions pn)
14 (x l i pn rn an ::= variable-not-otherwise-mentioned))

Figure 5.9 Translation of the NEST grammar to Redex

The source code of this implementation is available online3. A short
intro to Redex and a full overview of our implementation can be found in
appendices A.7 and A.8 respectively.

5.2.1 A Mechanized NEST Model

We develop the mechanized implementation of NEST in four phases.

• First, we translate the grammar of our paper-and-pencil model into
Redex using the primitive define-language (see figure 5.9).

3NEST Implementation - https://github.com/rhumbertgz/nest-plt-redex

79

https://github.com/rhumbertgz/nest-plt-redex

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.1 Examples of NEST grammar tests in Redex
1 (module+ test
2 (define valid-pe-exp? (redex-match? NEST pe))
3
4 (define p1 (term (pattern pn_1 (:indoor_humidity a))))
5 (define p2 (term (pattern pn_2 ((:motion a) (count 4)))))
6 (define p3 (term (pattern pn_3 ((and (:indoor_humidity a)
7 (:outdoor_humidity b))
8 (when (> a b))))))
9

10 (test-equal (valid-pe-exp? p1) #true)
11 (test-equal (valid-pe-exp? p2) #true)
12 (test-equal (valid-pe-exp? p3) #true)
13
14 (test-results)
15)

;; All 3 tests passed.

• Second, we test each expression of the Redex model using handwritten
(see listing 5.1) and randomized tests (see listing 5.2).

• Third, we translate the reduction rules of our paper-and-pencil model
into Redex using the primitive reduction-relation (see listing 5.4).

• Fourth, we test each reduction rule of the Redex model using hand-
written (see listing 5.1) and randomized tests (see section 5.2.2).

Figure 5.9 shows the grammar described in section 5.1.1 (A) and its
corresponding definition in Redex (B). Both definitions looks almost the
same, except that in line 7 we uses three dots (...) to express one or
more expressions e, and then in line 14 we use the built-in production
variable-not-otherwise-mentioned to match any of variable used in the
productions of the above non-terminals. Figure 5.9.B excludes other non-
terminals required to support the different definitions of p (see figure 5.2).
However, the full definition of the language can be found in appendix A.8.

Redex provides language designers with a test suite to test their models.
Listing 5.1 shows three hand-written tests for pattern expressions pe. This
example defines a module test with four main blocks of code. Line 2 shows
the definition of a helper function that uses the primitive redex-match? to

80

5.2. NEST CALCULUS IN REDEX

Listing 5.2 Examples of NEST grammar randomized tests in Redex
1 (module+ test
2 (define valid-pe-exp? (redex-match? NEST pe))
3
4 (redex-check
5 NEST
6 pe
7 (valid-pe-exp? (term pe))
8 #:attempts 10000)
9)

;; redex-check: ../nest-plt-redex/random-tests1.rkt:18
;; no counterexamples in 10000 attempts

determine if a particular term matches the non-terminal pe of the NEST
language. Lines 4-8 define three pattern expressions where the pn_1 will
match any message of type :indoor_humidity, pn_2 will match upon the
reception of four messages of type :motion, and pn_3 will match upon
the reception of a message of type :indoor_humidity and another of type
:outdoor_humidity if the value of the indoor humidity (a) is greater than
the value of the outdoor humidity (b). Lines 10-12 check if the above
patterns match a valid production of pe. Finally, line 14 prints the results of
the tests (see the last line) by invoking the built-in function test-results.

Hand-written tests were helpful for initial checks of NEST’s syntax.
However, they require extra work, and they can not exhaustively test
whether NEST is a solid formal model that has no bugs. To overcome
this limitation, we also defined random tests to check syntactic properties
of the NEST model using Redex’s randomized test suite. For example,
listing 5.2 shows an example of such random checker for the non-terminal
pe. The first two lines of this example are identical to the ones of listing 5.1.
Nevertheless, lines 4-8 use Redex’s primitive redex-check try to find a
randomly generated term that does not satisfy the condition on line 7
(a.k.a. counterexample). The first two arguments of redex-check represent
the language (line 5) and the type of expression that it should generate (line
6), respectively. The last argument (line 8) sets the number of attempts
(by default 1000). The last two lines of this listing show an example of the
output printed after the execution of redex-check.

81

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.3 Add evaluation contexts to NEST
1 (define-extended-language NEST-R NEST
2 (E ::=
3 hole
4 (v ... E e ...)
5 (let (x E) in e)
6 (send E e)
7 (send v E)))

The third phase of the NEST mechanized implementation requires
translating the reduction rules defined in section 5.1.3 into Redex. In order
to support the test of such reduction rules, we have to add support for
evaluation contexts to the Redex model of NEST defined in figure 5.9.
Listing 5.3 exemplifies the extension the initial NEST model to add a four of
evaluation contexts by means of the of new non-terminal E. An evaluation
context is a special term that contains a hole. Reduction relations can
match a term against an evaluation context to find a sub-term that matches
the hole.

Listing 5.4 Definition of the react-to reduction rule in Redex
;;===
;; Extracted from the function NEST-Reductions
;; Source file: nest-reductions.rkt
;;===

134 [-->
135 (in-hole K
136 (pl
137 rl
138 (actor id q pr (in-hole E (react-to pn_a rn_b)))))
139 ,(term-let
140 ([p (term pn_a)] [r (term rn_b)])
141 (term
142 (in-hole K
143 (pl
144 rl
145 (actor id q (ADD-REACTION pr p r) (nil))))))
146 "react-to"]

82

5.2. NEST CALCULUS IN REDEX

Listing 5.4 exemplifies the translation of the reduction rule react-to
defined in section 5.1.3 on page 71. In Redex, reduction rules are defined
by the operator –-> (line 134). The first argument (lines 135-138) of this
operator, searches a term that contains the subterm (react-to pn_a rn_b).
The second argument (lines 139-145) reduces that subterm and puts a new
value back into the hole in the evaluation context. The auxiliary function
ADD-REACTION (line 145) updates the list of pattern-reaction bindings list.
The third argument specifies the rule’s name, react-to.

Similarly, to regular syntax tests, Redex provides language designers
with the operator test–-» to test reduction of rules. Listing 5.5 shows
a unit test that checks the correct reduction of the react-to rule. The
operator test–-» checks if the first term (lines 127-129) reduces to the
second one (lines 130-132). In this case, the expression on line 129, and
particularly the term (react-to p1 r1) must be reduced. Line 32 shows
how the actor with id a_40 ends in a new state where it has a new pattern-
reaction binding pair, and the react-to expression was reduced to nil.
This example also showcases both global pattern and reaction maps (lines
127-128, 130-131).

Listing 5.5 Test example for the reduction rule react-to

;;=======================================
;; Extracted from function test-reactions
;; Source file: nest-reductions.rkt
;;=======================================

126 (test-->> NEST-Reductions
127 (term ((((p1 . (((:humidity x_in x_out) nil) ())))
128 ((r1 . ("Firing reaction 1")))
129 (actor a_40 () () (react-to p1 r1)))))
130 (term ((((p1 . (((:humidity x_in x_out) nil) ())))
131 ((r1 . ("Firing reaction 1")))
132 (actor a_40 () ((p1 . (r1))) (nil))))))
133

Redex’s test suite also supports the visualization of the reduction graph
of a particular term using the function traces. For example, listing 5.6
traces a term where a binding between the pattern p1 and the reaction r1

83

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.6 Trace the reduction process of a term
1 (traces NEST-Reductions
2 (term ((() () (actor root_7 () ()
3 (new-actor (~
4 (pattern p1 (:humidity x_in x_out))
5 (reaction r1 "Firing reaction 1")
6 (react-to p1 r1))))))))

Figure 5.10 Screenshot of a term’s reduction graph using the traces
primitive

is added to a new actor. Figure 5.10 shows the resulting reduction graph
of listing 5.6.

84

5.2. NEST CALCULUS IN REDEX

5.2.2 Randomized Tests of NEST’s Patterns

NEST’s patterns introduce new challenges to validate the correctness of the
mechanized model of NEST. Patterns only match when a message or a list
of messages satisfy predefined conditions set by their guard expressions and
operators (e.g., count, windows, sequencing). However, such constraints
cannot be satisfied by Redex’s randomized tests. These tests only generate
random instances of a non-terminal in an attempt to falsify it. Additionally,
a pattern may have multiple reaction’s bindings. The process of executing
the reactions of a pattern after a complete match is called pattern activation.
To evaluate the correctness of a pattern, we need to check that it had the
right number of activations for a particular list of messages. For instance,
if a list of 20 random valid messages is generated for an elementary pattern
with a single reaction, 20 activations should be expected. In contrast, if a
list of 20 random invalid messages is generated for the same elementary
pattern, zero activations should be expected instead. Therefore we state
the correctness of a NEST’s pattern test if:

• The total number of activations of the pattern equals the total
number of valid message sequences generated by the test.

• The total number of activations of the pattern is zero after invalid
message sequences were generated by the test.

• The inbox of an actor is empty by the end of a test no matter if valid
or invalid message sequences were generated.

To address the limitations of Redex’s test suite for NEST’s patterns,
in this section, we introduce a proposal for randomized tests of NEST’s
patterns. Briefly, we extended Redex’s test suite with two functions:
pattern-test and pattern-traces. The former aims to prove the correct-
ness of NEST’s patterns using a randomized testing approach particularly
designed for them. The latter targets to ease debugging sessions by visually
representing the reduction graph of a NEST program.

5.2.2.1 pattern-test

Listing 5.7 shows an example of use of the new pattern-test function.
This function takes as arguments a reduction relation (line 2), a pattern
term (line 3-4), and three optional arguments: the number of iterations

85

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.7 Example of a NEST pattern test
1 (pattern-test
2 NEST-T-Reductions
3 #:pattern (term (pattern p1 ((:humidity x_in x_out)
4 (when (< x_in x_out)))))
5 #:iterations 4000
6 #:log-output 'basic
7 #:polluted-msgs #false)
8
9 (pattern-test-results)

;;===
;; pattern-test: (pattern p1 ((:humidity x_in x_out)
;; (when (< x_in x_out))))
;; - random messages: 4000
;; - matched messages: 4000
;; - fired reactions: 4000
;;===
;; All pattern tests passed.

(line 5), the log level (line 6), and a boolean to specify if the messages
should be polluted or not (line 7). The number of iterations represents
the total of message sequences that must be generated. At the end of its
execution, this function will check the correctness of the pattern based on
the conditions defined at the beginning of section 5.2.2. For example, if
the #:polluted-msgs argument is not specified the number of activations
(i.e., the total of fired reactions) must be equal to the number of iterations
passed to the function. Internally, this function creates an actor, and it
binds the pattern received as an argument to an auto-generated reaction.
Conversely, if the #:polluted-msgs argument is set to #true, the pattern
should not have any activation. This function also checks that the actor’s
inbox must be empty at the end of each iteration. If any above conditions
are not met, the test fails.

The optional arguments of the function pattern-test have the fol-
lowing default values: #:iterations = 1000, #:log-output = 'none, and
#:polluted-msgs = #false. The #:log-output argument accepts three val-
ues 'none, 'basic and 'advanced. In its basic log setting the pattern-test
function shows only general statistics (see listing 5.7). If the advanced log

86

5.2. NEST CALCULUS IN REDEX

Listing 5.8 Trace the reduction process of a pattern
1 (pattern-traces
2 NEST-T-Reductions
3 #:pattern (term (pattern p1 ((:humidity x_in x_out)
4 (count 2)
5 (when (> x_in x_out))))))

Figure 5.11 Example of a reduction graph using the pattern-traces
function

setting is enabled, the list of generated, matched and consumed messages
by each activation will be printed.

The call to the function pattern-test-results (line 9) will print out
on the terminal how many tests passed and failed. Furthermore, it resets
the counters so that the next time this function is called, it prints the
results for the next round of tests.

87

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.9 A simple NEST pattern test
1 (pattern-test
2 NEST-T-Reductions
3 #:pattern (term (pattern p1 ((:humidity x_in x_out)
4 (when (< x_in x_out)))))
5 #:iterations 4)

5.2.2.2 pattern-traces

The function pattern-traces is a simplified version of pattern-test for
visualization and debugging purposes. It only generates one round of
messages and does not show any logs, nor validates any of the conditions
checked by pattern-test (e.g., number of activations). However, it can
visualize reduction graphs for patterns with polluted and non-polluted
messages (see listing 5.8). Figure 5.11 shows the reduction graph for the
traced pattern defined in listing 5.8. In this figure can be observed how
the pattern’s reaction consumes the list of generated list messages.

5.2.2.3 Randomized Pattern Test Generation Algorithm

This section describes the methodology used to generate random messages
used by the pattern-test and pattern-traces functions. Redex’s random-
ized terms are limited to a particular language expression However, NEST
abstractions require a more refined random strategy taking into account
the structure and constraints of a pattern.

Listing 5.10 exemplifies NEST randomized pattern test methodology
applied to the implementation of the pattern-test function. In order to
facilitate the explanation of this algorithm we will use the example shown
in listing 5.9. The function pattern-test (see listing 5.10) executes the
following operations:

• Define an expression actor_def that uses the pattern p as the only
message pattern of the interface of a new actor (line 7). Additionally
this expression includes the binding of a reaction r1 to the pattern
p (p1 in our example of listing 5.9). The body of the reaction r1
only prints the list of matched messages. For example, the pattern
defined in listing 5.9 will be transformed into the following term:

88

5.2. NEST CALCULUS IN REDEX

(new-actor (~ (pattern p1 ((:humidity x_in x_out)
(when (< x_in x_out))))

(reaction r1 log-reaction)
(react-to p1 r1)))

• Reduce the expression actor_def until all its subterms cannot be
reduced further (line 8). In this case, a new actor will be created
with a binding between its only pattern and its only reaction. The
resulting actor term is listed below.

(actor id_new () ((p1 r1))

This term represents a new actor with identifier id_new, an empty
inbox (), and its pattern-reaction bindings ((p1 r1)). Remember
that patterns and reactions are stored in global scope (see section 5.1),
for this reason we omitted their representation.

• Decompose the main components of the pattern p (see section 4.3)
into a map (line 9). For example, the pattern p1 shown in listing 5.9
will be decomposed into a map p_parts, where the selector key’s
value is (:humidity x_in x_out) and the guard key’s value is (< x_in
x_out).

• Generate valid or non-valid messages sequences for pattern p (line 10).
For example, the test defined in listing 5.9 requires four messages
sequences of length 1, since p1’s selector matches single messages.
The number of iterations n passed to the function pattern-test
determines the total of messages sequences to generate. In case of
a composite (e.g., (pattern pn_1 (and (:msg1 a b) (:msg2 c d)))))
or an accumulation pattern (e.g., (pattern pn_2 ((:msg2 4) (count
4)))), the generated messages sequences will contains the required
messages by the pattern. If the value of pollute argument is #true
none of the messages sequences should match pattern p. Internally
the build-message-sequences function executes the following actions:

1. Extract all existing logic variables in the selectors of the pattern
p and store them in a list. For example, the value of this list
for the pattern p1 defined in listing 5.9 will be (x_in, x_out).

89

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

2. Collect the constraints of all logic variables and store them in a
map. For example, the pattern p1 has a guard expression that
constrains the value of in. In this case, the value of x_in must
be less than the value of x_out.

3. Sort the list logic variables based on their guard constraints.
Logic variables without constraints will be moved to the end of
the list. In contrast, logic variables with at least a comparison
against a particular value (e.g., (> x 5)) will be moved to the be-
ginning of the list. At the same time, logic variables’ constraints
are also sorted. Constrains which compare a variable against
a particular value will be moved to the beginning of the list of
constraints. Just like Sparrow and Elixir, NEST only allows
a limited set of guard expressions, and custom user functions
are not allowed. The current implementation of NEST only
supports numeric comparisons in guard expressions. However,
NEST pattern-matching capabilities allow a pattern’s selector to
match any value it supports. For example, the following selector
(:humidity v 'bedroom) will match messages of type :humidity
that its second attribute (location) is equals to 'bedroom.

4. Generate a map of valid or non-valid random values for each
logic variable. If a logic variable is involved in a guard, its
value will always be numeric, and it must satisfy its guard
constraints. Otherwise, the value of the logic variable can be
a string, boolean, atom, or a number. During the generation
of messages, this map is used to guarantee that shared logic
variables between the selectors of a pattern get assigned the
same value.

• Process each of the messages sequences generated. This task is
executed in three steps:

1. Inject the messages ml into the inbox of the actor term for
further reduction of this term (line 14).

2. Reduce the new_term that contains the injected messages (see
line 15).

3. Check if the injected messages matched the pattern (line 18).
If the actor’s inbox is empty, the next messages sequence will

90

5.2. NEST CALCULUS IN REDEX

be processed. Otherwise, an error will be raised, and the test
will fail (line 19).

Listing 5.10 Implementation of the pattern-test abstraction
1 (define
2 (pattern-test r #:pattern p #:iterations [n 1000]
3 #:polluted-msgs [pollute #false]
4 #:log-output [level 'none])
5
6 (let*
7 ([actor_def (build-base-term p)]
8 [actor (reduce-term r actor_exp)]
9 [p_parts (decompose-pattern p)]

10 [msgs (build-message-sequences p_parts n pollute)])
11
12 (for-each
13 (lambda (ml)
14 (let* ([new_term (inject-messages actor ml)]
15 [new_actor (reduce-term r new_term)]
16 [inbox (get-actor-inbox new_actor)])
17 (cond
18 [(empty? inbox) 'continue]
19 [else raise "Invalid reduction."])))
20 msgs)
21 (cond
22 [(check-activations n pollute)
23 (print-logs p msgs level)]
24 [else raise "Invalid reduction."])))

• Compare the number of pattern activations against the number of
iterations (line 22). Remember that the generated actor has a single
pattern and a single reaction. The total of activations should be
equal to the number of iterations if the generated messages were valid.
Contrary, the number of activations should be zero if the messages
were polluted. The test succeeds if the previous condition is met.
Then any required output log will be printed (line 23). If the test
fails, an error will be raised (line 24).

As mentioned in section 5.2.2.2, pattern-traces is a simplified version
of pattern-test designed only for visualization and debugging support.

91

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

Listing 5.11 shows the implementation details of this function. The imple-
mentation of pattern-traces differs from the one of pattern-test in three
main aspects. First, it has a reduced number of arguments (lines 2-3).

Listing 5.11 Implementation of the pattern-traces abstraction
1 (define
2 (pattern-traces r #:pattern p
3 #:polluted-msgs [pollute #false])
4 (let*
5 ([actor_def (build-base-term p)]
6 [actor (reduce-term r actor_exp)]
7 [p_parts (decompose-pattern p)]
8 [msgs (build-messages-sequence p_parts pollute)]
9 [new_term (inject-messages actor msgs)])

10
11 (traces r new_term)))

Second, it requests the generation of a single messages sequence (line 8).
Third, it does not check for an empty inbox nor the number of activations.
After it injects the generated messages into the actor’s inbox (line 9), it
passes the resulting term to the Redex’s primitive traces to visualize its
reduction graph (line 11).

5.2.3 NEST compared to Sparrow

In this section, we list the differences between NEST’s formal semantics
and the actual implementation of Sparrow as explained in chapter 4. Our
goal with NEST was never to encompass a fully-fledged implementation of
Sparrow. Instead, we only formalised the core parts of Sparrow. These
parts cover the semantics of Sparrow programs in the interest of their formal
reasoning. For this reason, a few Sparrow abstractions were purposefully
omitted from NEST. In a future avenue of our research NEST may support
such Sparrow abstractions. Here we list the differences between NEST and
Sparrow.

• NEST is built conceived atop a base language, which is not included
in our formalization. Sparrow is built on top of Elixir as a domain-
specific language. The base language of NEST is limited to a subset
of Elixir: only primitive values and comparison/logic operators are
used in our formalization.

92

5.3. CONCLUSION

• In NEST the debounce and interval operator implemented in
Sparrow are not formalized. Only the window operator can be used
to declare unquantified accumulation patterns.

• NEST patterns cannot combine quantified (e.g., count) and unquan-
tified (e.g., window) operator at the same time. However, Sparrows
supports the particular combination of count and window operators
in its patterns.

• NEST does not formalize negated patterns.

• NEST formalizes two of the three filter mechanism for messages
implemented in Sparrow: pattern-matching and regular guards. In
contrast, Sparrows supports inline guards which are a syntactic sugar
to write more compact filter expressions.

• NEST does not formalize advanced attribute operators (e.g., alias,
may be equal, and must be equal) that are used for the definition of
collection patterns.

Although NEST does not implement all Sparrow’s abstractions, its
current implementation is fully functional and serves its experimental
purpose.

5.3 Conclusion

The NEST formalism plays a vital role in the precise description of Spar-
row’s coordination abstractions. Our mechanized implementation of NEST
in Redex allowed us as language designers to validate its grammar and re-
duction rules. We defined an extensive set of handwritten and randomized
tests based on Redex’s test suite to accomplish such validation. However,
we could not use the standard randomized test suite provided by Redex
to exhaustively test NEST patterns. To satisfy the requirements imposed
by such patterns, we implemented a randomized message generator that
can provide a list of valid or invalid messages for a particular pattern. We
used this generator as the backbone of two randomized testing abstractions
for NEST patterns. These abstractions allowed us to validate the correct
results of the evaluation of NEST reduction relations with randomized mes-
sages. Future work may entail the implementation of Sparrow’ abstractions
missing in our mechanized model.

93

CHAPTER 5. NEST: A FORMAL SEMANTICS OF SPARROW

94

C
h

a
p

t
e

r

6
Sparrow: An Elixir DSL Implementation

Up to now, we have described the formal aspects of Sparrow. In this
chapter, we describe the details of its implementation as an Elixir domain-
specific language based on macros. Section 6.1 introduces the strengths
and weaknesses of Elixir’s macro system. Section 6.2 presents a detailed
description of low-level design decisions that we made for both syntax
and internal implementation of Sparrow’s actors. Section 6.3 describes
the design and implementation of a message pattern engine. Finally,
section 6.4 describes the implementation of two language tooling support
for Sparrow-based applications.

6.1 DSLs in Elixir

Elixir allows developers to tailor their applications to a particular domain
through domain-specific languages (DSLs). An Elixir’s DSL can be built
using a combination of data structures, functions, and macros. In this sec-
tion, we will focus on the latter approach since it was the main mechanism
used in the implementation of Sparrow’s language constructs. To facilitate
its extensibility, Elixir provides two main metaprogramming tools.

• First, it exposes the abstract syntax tree (AST) of its programs using
its own data structures. This help developers to seamlessly interact

95

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

2 * 3 {:* , [context: Elixir, import: Kernel] , [2, 3]}

21 3

{:+ , _ ,[{:* , _ , [2, 3]}, 5]}

quote do: 2 * 3 + 5

A

B

number = 5C

quote do: 2 * 3 + unquote(number)

1

2

{:+ , _ ,[{:* , _ , [2, 3]}, 5]}

Figure 6.1 Metaprogramming tools in Elixir

with the syntax of their programs. Every expression breaks down into
a three-element tuple in the AST. For example, figure 6.1A showcases
the above homoiconic behaviour. The AST of the expression (2 * 3)
on the left is represented as the three-element tuple on the right. In
this example, A.1 is an atom1 denoting a function call (* operator),
but it can be another tuple representing a nested node in the AST.
A.2 represents metadata about the expression. In this case, the
operator * is just syntactic sugar for the Kernel.∗ function. Finally,
A.3 holds the list of arguments for the function call.

• Second, Elixir provides a clear macro language providing syntax
shortcuts for quote and unquote expressions. These expressions use a
high-level syntax to receive ASTs as arguments and provide ASTs as
return values. At the same time, they give control to developers to
extend the language. Elixir itself extensively uses them. For example,
the constructs defmodule, def, and receive used in listing 6.1 are all
macros. In a similar way, other Elixir’s top-level constructs like if,
case, and cond are implemented as macros. Figure 6.1B illustrates
the simplicity of transforming a high-level source to its low-level AST
using the quote macro. For reasons of brevity, we have omitted the
metadata expression of the resulting AST, and instead used the _
character. In contrast, figure 6.1C demonstrates the injection of an
outside bound variable (C.1) into an AST using the unquote macro
(C.2).

1Atoms are constants whose values are their own name.

96

6.1. DSLS IN ELIXIR

Listing 6.1 A counter actor in Elixir
1 defmodule Counter do
2
3 def start() do
4 spawn fn -> listen(0) end
5 end
6
7 def listen(count) do
8 receive do
9 :inc ->

10 listen(count + 1)
11 {:val, sender} ->
12 send sender, count
13 listen(count)
14 end
15 end
16
17 end

In summary, Elixir allows DSL developers to manipulate and inspect
the AST of their programs in a way typically reserved only for compilers
and language designers. Besides the above-mentioned features, Elixir’s
macros can also limit the expressiveness of its DSLs. The next sections
will summarize both strengths and weakness of Elixir’s macros.

6.1.1 Macros: the good

In this section, we describe four main properties of Elixir macros.

• First, macros are hygienic by default. Variables defined inside of
a macro would not conflict with variables defined in the context
where that macro is expanded (user’s code). In the same way, alias
definitions and function calls available in the macro context are not
going to leak into the user context. However, under specific situations,
hygiene can be bypassed2.

2https://hexdocs.pm/elixir/Kernel.html#var!/2 [Accessed: 04-11-2020]

97

https://hexdocs.pm/elixir/Kernel.html#var!/2

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

• Second, macros are lexical scoped. A macro cannot inject code or
other macros globally. The developer has to require or import the
module that defines the macro explicitly.

• Third, macros are explicit. It is impossible to run a macro without
an explicit invocation. In other words, macros must be explicitly
called in the caller context at compilation time.

• Fourth, macros can be public or private. Private macros are only
available at compilation time inside the module that defines them.
In both cases, developers must define macros before their usage;
otherwise, their invocation will raise an error at runtime.

Sparrow’s macros are public and they are explicitly called in the context
of an instance of its Actor module.

6.1.2 Macros: limitations

Although Elixir provides developers with a powerful macro language, its
macros have certain limitations to create new operators. This section
identifies such limitations and describes some alternatives used in this
dissertation to circumvent them.

In Elixir, unlike Haskell, macros cannot define new operators. This
limitation forces the shape of Sparrow’s syntax (see figure 6.2). For example,
figure 6.3B shows a composite pattern using an ideal andThen operator
to detect a sequence of messages. However, due to the above limitation
our real implementation (see figure 6.3C) had to use the standard and
operator together with a map to set the desired sequencing behaviour (see
the highlighted code in gray color). Similarly, other syntaxes such as the
ones to specify timing constraints (see section 4.3.2.4), message selection
strategy (see section 4.3.2.5), and message accumulation (see section 4.3.3)
were affected. Figure 6.3E shows another example of the above syntax
limitations. In summary, the limitation to define new operators forced us
as language designers to add an extra layer of square brackets and commas
to the syntax of Sparrow’s patterns.

To overcome the above-mentioned limitations, Sparrow rewrites the
AST to change the meaning of valid Elixir expressions (e.g., as, when) for
its patterns definitions. Furthermore, it overrides operators (e.g., ∼>)

98

6.2. SPARROW ACTORS

<p-definition> := pattern <identifier> as <pattern>
<r-definition> := reaction <identifier> (<arg>, <arg>, <arg>) do <expression> end
<react-to> := react_to <identifier>, with: <identifier>
<remove-from> := remove <identifier>, from: <identifier>
<remove-reactions> := remove_reactions <identifier>
<pattern> := <comp-pattern> [<guard>] [, [options: <option>+]]
<comp-pattern> := <elem-pattern> [(and | or) <elem-pattern>]*
<elem-pattern> := [not] <selector> [[<operator>+]] {|> <transformer>}*
<selector> := {<symbol>, <attribute>*}

| <identifier>[{{<inline-guard>
| <alias-op>}+}]

<attribute> := <value>
| <symbol>
| <logic-var>

<guard> := when <expression>
<inline-guard> := <identifier> = <expression>
<alias-op> := <identifier> ∼> <identifier>
<symbol> := :<identifier>
<logic-var> := [(@ | !)]<identifier>
<operator> := window: <time>

| debounce: <time>
| every: <number>
| count: <number>

<transformer> := fold(<expression>, <expression>)
| bind(<identifier>)

<option> := seq: <boolean>
| interval: <time>
| last: <boolean>

<time> := {<number>, (:secs | :mins | :hours | :days | :weeks)}
<arg> := <identifier>

Figure 6.2 Sparrow EBNF-styled syntax (repetition of figure 4.1)

parsed but not used by Elixir3. By using this approach, Sparrow patterns
do not require an entirely new syntax on top of Elixir.

6.2 Sparrow Actors

In this section, we describe the implementation details behind the multiple-
message match interface of Sparrow’s actors. These actors differ from
traditional Elixir ones in three aspects.

• First, their interface is defined by patterns that can match multiple
messages, instead of individual messages (see section 4.3).

3https://hexdocs.pm/elixir/operators.html [Accessed: 04-11-2020]

99

https://hexdocs.pm/elixir/operators.html

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

pattern motion_sensor as {:motion, id, :on, location}

C

A

pattern occupied_home as motion_sensor{location= :front_door}

 andThen {:contact, id, :open, :front_door}

 andThen motion_sensor{location= :entrance_hall}

B

D pattern heating_failure as {:failure, id, @code} count 3

E

pattern occupied_home as motion_sensor{location= :front_door}

 and {:contact, id, :open, :front_door}

 and motion_sensor{location= :entrance_hall},

 options: [seq: true]

pattern heating_failure as {:failure, id, @code}[count: 3]

Figure 6.3 Limitations to define new operators: (A) Define an
elementary pattern; (B) Define a composite pattern using the fictional
andThen sequencing operator; (C) Real implementation of the sequencing
operator in Sparrow; (D) Definition of a quantified accumulation pattern
using a fictional syntax of a count operator; (E) Real implementation of a
quantified accumulation pattern in Sparrow

• Second, they have a virtual inbox that it is used by an embedded
message pattern engine (see section 6.3). After an actor receives a
message, it is forwarded to its virtual inbox and the matching process
starts.

• Third, messages in the virtual inbox have a finite lifetime established
by its actor. Subsequent a message expires, it is automatically
garbage collected by the actor’s message pattern engine.

Listing 6.2 shows the essential parts of the Sparrow.Actor module
implementation. We use three dots (...) and comments (#) to denote
code excluded from the listing. The full source code of this module can
be found in the appendix A.2. Sparrow’s actors are implemented as an
extension of the GenServer4 behaviour (line 7). A behaviour provides a
way to define a set of functions that have to be implemented by a module.
Furthermore, it ensures that a module implements all the functions in that
set.

4https://hexdocs.pm/elixir/GenServer.html [Accessed: 06-11-2020]

100

https://hexdocs.pm/elixir/GenServer.html

6.2. SPARROW ACTORS

Listing 6.2 Implementation of Sparrow’s actor module
1 defmodule Sparrow.Actor do
2 ...
3 defmacro using (_) do
4 ...
5 quote do
6 import Sparrow.Actor
7 use GenServer
8
9 ## Actor API

10 def start(options \\ [], linked \\ true), do: # code
11 def stop(pid), do: # code
12 def send(pid, message), do: # code
13 ...
14 ## Actor Callbacks
15 @impl true
16 def handle_continue(:init, args) do
17 state = Sparrow.Actor. init(MODULE , args)
18 {:noreply, state}
19 end
20 @impl true
21 def handle_cast({:send, msg}, {engine, _}= state) do
22 Jupiter.process_message(engine, msg)
23 {:noreply, state}
24 end
25 end
26 end
27
28 defmacro pattern({name,_, [{:as,_, [p | []]}]}) do
29 ...
30 end
31 ...
32 defmacro reaction({r_name,_, [header]}, do: body) do
33 ...
34 end
35 ...
36 defmacro react_to({p_name,_,_}, with: {r_name,_,_}) do
37 ...
38 end
39 ...
40 defmacro remove({r_name,_,_}, from: {p_name,_,_}) do
41 ...
42 end
43 ...
44 defmacro remove_reactions({p_name,_,_}),do
45 ...
46 end
47 ...
48 end

101

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Like any other Elixir behaviour, Sparrow.Actor consists of a generic
part (Actor API lines 10-12) and a specific part (Actor callbacks lines
14-24). The former provides basic actions such as start (line 10) and stop
(line 11) an actor, as well as send an asynchronous message (line 12). The
latter shows the the definition of two callbacks functions handle_continue
and hande_cast. The first callback is asynchronously invoked during the
initialization of the actor after invoking the start function. This callback is
responsible for initializing the actor’s message pattern engine (line 17). The
first one is a standard GenServer callback to handle asynchronous messages.
In this case, the handle_cast function will match a message {:send, msg}
and forward its body (msg) to the actor’s message pattern engine for its
further processing. In both cases, the actor’s API and callback functions
are injected to an Sparrow.Actor instance using the macro __using__.
Additionally, the actor module defines a set of macros to build patterns and
reactions expressions (lines 28-47) which form part of the actor behaviour
API.

Listing 6.3 exemplifies the definition and instance of an actor in Sparrow.
Lines 1-10 define an actor BedRoomActor which will turn on the bedroom’s
light. In line 2 we extend the Sparrow.Actor module through the macro
use. This macro invokes the Sparrow.Actor.__using__ macro to inject
its body in the new module BedRoomActor. At the same time, it makes
accessible to the BedRoomActor module all macros defined by Sparrow.Actor.
In this example, the interface of this actor consist of a single motion pattern
that only match messages of type :motion if its second and third attributes
have values :on and :bedroom respectively (line 4). In line 6, we define a
turn_on_light reaction which body have been omitted for brevity. Later,
in line 8, we bind both pattern and reaction using the react_to macro.
On the other hand, the module HomeManager (lines 12-21) initializes an
instance of the BedRoomActor using the start function (line 15). Next, in
lines 16-18, we send three messages to the new actor using its id reference
(pid). By running this program on a terminal we can verify that only the
first message (lines 16) was matched and consumed by the turn_on_light
reaction. The full implementation of this example can be found in ??.

6.2.1 Message Patterns

As we mentioned in section 6.1, Sparrow’s patterns are implemented as
macros. Since macros receive the AST representation of their arguments,

102

6.2. SPARROW ACTORS

Listing 6.3 Definition and instance of a Sparrow’s actor
1 defmodule BedRoomActor do
2 use Sparrow.Actor
3
4 pattern motion as {:motion, id, :on, :bedroom}
5
6 reaction turn_on_light(l, i, t), do: # send on command
7
8 react_to on_motion, with: turn_on_light
9

10 end
11
12 defmodule HomeManager do
13
14 def run do
15 {:ok, pid} = BedroomActor.start
16 BedroomActor.send pid, {:motion, 301, :on, :bedroom}
17 BedroomActor.send pid, {:motion, 301, :off, :bedroom}
18 BedroomActor.send pid, {:motion, 303, :on, :kitchen}
19 end
20
21 end

Run the program
iex> HomeManager.run

we exploit Elixir’s pattern-matching features to determine which pattern
definition was invoked. For example, in listing 6.4, we define three pattern
macros that match different ASTs (lines 4-12). The first one (line 4),
matches patterns without options (e.g., sequencing, interval). The second
one (line 8), will match only patterns with options. The last one (line 12),
will match any pattern definition that did not match by its predecessor
and will raise an exception at compile time. In this case, the symbol_
is used to ignore a given value of the AST. All these macros, except
the last one, will inject a new function to the module instantiating the
Sparrow.Actor module. Such a function will return a struct value of type
Sparrow.Core.Pattern. This struct can be seen as an object of traditional
object-oriented languages (e.g., Java) where its properties (fields) store
all constraints and operators of the defined pattern. During the actor

103

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Listing 6.4 Pattern macros
1 defmodule Sparrow.Actor do
2 ...
3
4 defmacro pattern({name,_, [{:as,_,[p | []]}]}) do
5 Builder.build_pattern(name, p)
6 |> Macro.expand(CALLER)
7 end
8 defmacro pattern({name,_, [{:as,_,[_,_ | []]=p}]}) do
9 Builder.build_pattern(name, p)

10 |> Macro.expand(CALLER)
11 end
12 defmacro pattern(_), do: # raise an error
13
14 end

initialization, the pattern definitions are retrieved to build the actor’s
message pattern engine.

To facilitate the maintenance, debugging, and testing of Sparrow’s
macros, we avoided injecting a large amount of code into them. We split
their definition and the transformation process, by using regular functions
to do the transformation work. For instance, the macro definition in lines
4-7 only does two actions: matches a particular pattern AST (line 4) and
expands its output AST in the caller’s context (line 6). The auxiliary
Builder module (line 5) generates all the code related to the pattern
declared by the developer. All macros introduced in this chapter follow the
above two-step procedure. The last instance of each overloaded pattern
macro (line 12) will match any other AST not matched by its predecessors.
In this case, an error will be raised and the compilation process will fail.

6.2.2 Pattern Reactions

Reactions resemble an Elixir function which always receives three
arguments. However, we opted for a macro implementation instead of
a plain Elixir function to enforce this constraint at compile time. Lines
3-7 show the definition of the reaction macros. The first macro pattern
matches the AST of a reaction expression (line 4). Once again, the Builder
helper module is in charge of the required transformations. The function

104

6.2. SPARROW ACTORS

Listing 6.5 Reaction macros
1 defmodule Sparrow.Actor do
2 ...
3 defmacro reaction({name, _, [header]}, do: body) do
4 Builder.build_reaction(name, header, body)
5 |> Macro.expand(CALLER)
6 end
7 defmacro reaction(_, _), do: # raise an error
8
9 defmacro react_to({p_name, _, _},

10 with: {r_name, _, _})
11 when is_atom(p_name)
12 and is_atom(r_name) do
13 Builder.register_react_to(p_name, r_name)
14 |> Macro.expand(CALLER)
15 end
16 defmacro react_to(_, _), do: # raise an error
17
18 defmacro remove({r_name, _, _},
19 from: {p_name, _, _}) do
20 Builder.remove_reaction(r_name, p_name)
21 |> Macro.expand(CALLER)
22 end
23 defmacro remove(_, _), do: # raise an error
24
25 defmacro remove_reactions({p_name, _, _}) do
26 Builder.remove_reactions(p_name)
27 |> Macro.expand(CALLER)
28 end
29 defmacro remove_reactions(_), do: # raise an error
30
31 end

build_reaction returns the AST of a new function with the same name as
the reaction containing the reaction’s body. Finally, the resulting AST is
injected in the caller’s context by calling the Macro.expand function (line
5). The implementation of the macros to bind and unbind reactions to
patterns was done similarly (lines 9-29).

105

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

6.3 JuPITer: A Pattern Detection Engine for
Sparrow

Patterns and reactions patterns cover the syntax to define the interface of
Sparrow’s actors. The computational logic to match the messages required
by an actor’s patterns is implemented by an embededpattern detection
engine, called JuPITer (Join PaTterns Engine).

JuPITer builds a directed graph (also known as discrimination network)
representing all patterns defined in an actor. For example, figure 6.5B
display the graph that corresponds to patterns shown in Figure 6.5A.
Internally, Sparrow’s patterns are represented by a special type of node
called pattern node. These nodes implement the different synchronizations
operators supported by Sparrow (see section 4.3). Additionally, each
pattern node maintains a history (called the buffer) of previously matched
messages.

Figure 6.4 shows a simplified view of the internal representation of a
Sparrow actor, and how messages in that actor’s Elixir-level inbox are
transferred to the pattern engine’s virtual inbox. The matching process
starts by transferring each received message from the actor’s Elixir-level
inbox into its virtual inbox (see Step 1). Later JuPITer tries to match each
new message against a group of patterns for which it is relevant; we call
this process a match-cycle. The discrimination network’s root node serves
as the entry point of new messages for the matching process. This node
will determine potential pattern nodes based on the message’s type and
will forward it to them. After this step, the message will “flow through”
the discrimination network until a pattern node is found with a successful
match for its conditions (see Step 2). In that case, the message is consumed
by its reaction(s), which will be sequentially executed by the actor’s reaction
manager (see Step 3). Otherwise, the message remains in the node’s buffer
until a successful match is completed or until the message expires. The
above process is an essential tool for the engine’s incremental matching
strategy. This strategy is based on a custom implementation of the RETE
algorithm [22] that will be explained in section 6.3.1. Furthermore, it
implements a single pattern selection and selected message consumption
policies [89]. The former guarantees that a pattern matches at most once
per match-cycle. The latter guarantees that a pattern can consume a
message only once. However, multiple patterns can consume the same

106

6.3. JUPITER: A PATTERN DETECTION ENGINE FOR SPARROW

Pattern Engine

Actor

Inbox

Discrimination

Network

Step 1

Step 2

Reaction Manager

Step 3

Pattern’s reactions

Discrimination

Network

Reaction Manager

Pattern’s reactions

Message

Message being transfered

Root node

Pattern node

Reaction in execution

Legend

Virtual inbox

Figure 6.4 Overview of the internal representation of a Sparrow
actor

message (only once). Although in this figure patterns are represented by
a single type of node, several subtypes exist, each of them addressing a
particular type of pattern defined in chapter 4. In the next section, we
detail the matching algorithm of JuPITer.

6.3.1 A RETE-based Matching Algorithm

As we mentioned in the previous section, JuPITer’s matching mechanism is
inspired by the RETE [22] algorithm. This algorithm is a well-established
efficient pattern-matching algorithm for implementing production rule-
based systems. RETE maintains a network of nodes through which facts
(a.k.a. events or messages) are filtered. In the rest of this chapter, we will
use the term message instead of fact to refer to the entry values of the
RETE algorithm. RETE avoids re-evaluating the conditions of its rules
each time a new message arrives. This incremental matching strategy
is supported by storing data in-between match cycles. From its original
definition, we can distil three main types of nodes:

• Alpha nodes are responsible to filter individual messages based on
simple conditional tests which match messages attributes against
constant values.

• Beta nodes are responsible to perform joins between different mes-
sages. Unlike alpha nodes, they consist of two-input nodes.

• Terminal nodes are responsible to execute the body of a rule.

107

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

RETE has been the subject of multiple extensions such as [39, 54]. In
this dissertation, we present an adaptation of this algorithm to support
the message synchronization abstractions provided by Sparrow. Briefly,
JuPITer’s matching algorithm extends RETE in four aspects:

• Advanced filters mechanisms to filter individual messages and group
of messages by their content and time constraints.

• Flexible matching selection policy.

• Explicit support for conjunctions, and disjunctions of messages.

• Detection of the absence of messages in a time window.

We now explain in detail the different type of RETE network nodes
that realize this behaviour:

Root Node serves as the entry point for new messages into JuPITer’s
node network. It will determine potential alpha nodes based on the
message’s type and will forward the message to these alpha nodes.

Alpha Nodes match a full pattern selector of a named pattern (see sec-
tion 4.3), instead its individual attributes (as in the original RETE).
This decision was inspired by the need to reuse and compose patterns.
By having this level of filter granularity, the hierarchy of nodes can
be easily established. Messages that not satisfy the filter conditions
of an alpha node are immediately discarded and garbage collected.
In contrast, successfully matched messages are forward to its list of
child omega nodes and its terminal node.

Opaque Alpha Nodes are a special type of alpha node generated by
anonymous patterns (see section 4.3). Unlike regular alpha nodes,
they cannot be reused by other patterns.

Omega Nodes extend the filter conditions of alpha nodes and are respon-
sible to implement the computational logic of the different pattern
operators such as time window, extensional sequencing, etc (see sec-
tion 4.3). The parent of an omega node can be any other type of
node except a terminal node.

108

6.3. JUPITER: A PATTERN DETECTION ENGINE FOR SPARROW

1 defmodule LightManager do
2 use Sparrow.Actor
3
4 pattern motion as {:motion, id, :on, room}
5 pattern light as {:light, id, status, room}
6
7 pattern on_motion as motion
8 and light{status= :off}
9 and {:amb_light, id, illuminance, room},
10 options: [last: true]
11 when illuminance < 40
12
13 pattern no_motion as not motion[window: {2, :mins}]
14 and light{status= :on},
15 options: [last: true]
16
17 reaction turn_on_light(l, i, t), do: # send on command
18 reaction turn_off_light(l, i, t), do: # send off command
19
20 react_to on_motion, with: turn_on_light
21 react_to no_motion, with: turn_off_light
22
23 end

A

B

light

when illuminance < 40

{:amb_light, id, illuminance, room}motion

not [window: {2, :mins}]

on_motion
status= :on

status= :off

[last: true]

no_motion

[last: true]

turn_off_light

turn_on_light

Alpha node Opaque Alpha node Beta node Omega node Negation node Root node Terminal node

Legend

Figure 6.5 Internal representation of messages patterns in Sparrow

Negation Nodes are a special type of omega node that will be activated
if after an initial match no other message matches in a particular
time window. Whenever a new message matches, its internal timer
is reset.

109

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Beta Nodes are responsible to perform joins between different messages.
Unlike traditional RETE beta nodes, they may consist of more than
two input nodes.

Terminal Nodes are responsible to request the execution of one or more
reactions attached to a pattern. These nodes differ from the tra-
ditional RETE terminal nodes in two aspects. First, a JuPITer’s
terminal node may contain one or more reactions. Second, they do
not execute the body of a reaction, instead, they schedule its exe-
cution. For this reason, unlike the aforementioned nodes, terminal
nodes are merged with their respective node (i.e., alpha, opaque
alpha, omega, or beta). However, to facilitate the understanding of
the actor’s pattern engine we visually represented it as a standalone
node (see figure 6.5). The reactions of a pattern or multiple patterns
are scheduled since they can modify the state of its actor. As we
explained early in this section, reactions are executed one at a time
by the actor’s reaction manager. The reaction manager guarantees
that a reaction is always executed with the latest state of the actor.

Figure 6.5 illustrates how message patterns of a Sparrow’s actor are
represented in its embedded JuPITer engine. At the top (A), observe a
variant of listing 4.2 introduced in section 4.2, which declares two composite
patterns (lines 7-11, 13-15) and two reactions (lines 17-8) to turn on/off the
light of any room. The only change in this variant is that the pattern to
detect low ambient light has been defined as an anonymous pattern (line 9).
At the bottom (B) of this figure, observe the generated pattern engine for
the actor LightManager and its patterns. For example, two alpha nodes and
one opaque alpha node are responsible to filter incoming messages based
on their values. As light and motion were declared as named patterns we
used their names in the graph. In contrast, for the anonymous pattern
that allows us to detect low ambient light, we used the full definition of
its selector and guard. This example also showcases the use of two omega
nodes to filter the status (on/off) of light messages, and a negated omega
node to detect the absence of movement in a room for a time window
of two minutes. Furthermore, two beta nodes are used to represent both
composite patterns (i.e., no_motion, on_motion). Finally, observe each beta
node has a terminal node with a reaction attached to it. This corresponds
to the fact that we only registered a reaction to each of these nodes.

110

6.4. TOOL SUPPORT

Technically in Elixir, JuPITer’s node network is implemented as a
sub-network of actors. Each node is represented by a particular type of
actor that was designed to execute a specific task. The state of the network
is currently implemented in-memory and its nodes form part of an actor
supervision tree [77]. JuPITer has a specialized actor, called supervisor
with one purpose: monitoring JuPITer’s node network. Although this
supervisor provides fault-tolerance to the actor’s engine, in its current
implementation (i.e., in-memory) if a node crashes, its data (and that of
its children) will be lost since that part of the network must be rebuilt.
This limitation can be fixed in future versions of JuPITer by adding a
state persistence mechanism for its network. For example, we might use a
@persistent annotation for Sparrow’s actors.

6.4 Tool Support

New programming abstractions designed to facilitate the coordination of
actors are beneficial (see chapter 7). However, if they lack support for
features typically found at the IDE level (such as syntax highlighting,
autocomplete, and debugging) their adoption by software developers will
be limited. In the next two sections, we describe two basic tools that aim
to facilitate the development of Sparrow-based programs. We will use
the Sparrow actor defined in listing 6.6 to illustrate the language tooling
support described in this section. The CourtLightsDemo actor illustrate a
typical actor with several types of Sparrow’s patterns.

6.4.1 Visual Studio Code Extension

Sparrow as a DSL benefits of the existing tools (e.g., debugger5, observer6)
provided by its host language, Elixir. However, its custom syntax and
macros are obviously not supported by Elixir’s extensions for standard
integrated development environments (e.g., IntelliJ IDEA) and code editors
(e.g., VS Code). To overcome this limitation, we have extended an existing
Elixir extension for VS Code, called vscode-elixir-ls7. More specifically, we
extended its implementation of Microsoft’s IDE-agnostic Language Server
Protocol and VS Code debug protocol to add support for Sparrow’s syntax

5https://elixir-lang.org/getting-started/debugging.html#debugger
6https://elixir-lang.org/getting-started/debugging.html#observer
7https://github.com/elixir-lsp/vscode-elixir-ls

111

https://elixir-lang.org/getting-started/debugging.html#debugger
https://elixir-lang.org/getting-started/debugging.html#observer
https://github.com/elixir-lsp/vscode-elixir-ls

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Listing 6.6 Example of a complex actor in Sparrow
1 defmodule CourtLightsDemo do
2 use Sparrow.Actor
3
4 pattern motionSensor as {:motion, zoneId}
5 pattern rainSensor as {:rain_sensor, zoneId, visibility}

6 pattern courtLights as {:court_lights, zoneId, status}
7
8 pattern noMotion as not motionSensor[window: {30, :secs}]

9 pattern noiseSensor as {:noise, zoneId, noise}[group: 10]

10
11 pattern courtLightsOff as courtLights{ status= :OFF }
12 pattern courtLightsOn as courtLights{ status= :ON }
13
14 pattern turnCLightsOn as motionSensor
15 and rainSensor{visibility < 30}
16 and courtLightsOff
17 or noiseSensor{noise> 90}
18
19 reaction reaction1(_), do: # code
20 reaction reaction2(_), do: # code
21 reaction reaction3(_), do: # code
22
23 react_to rainSensor, with: reaction1
24 react_to noMotion, with: reaction2
25 react_to turnCLightsOn, with: reaction3
26 end

and macros. We call our VS Code extension Sparrow VS and its language
server protocol implementation Sparrow LS. Both source code repositories
can be found online89.

Figure 6.6 shows an example of the suggested code autocompletation
for the macro pattern. Similarly, developers will be assisted with all
other Sparrow’s macros as well. Sparrow VS also supports automatic and

8Sparrow VS Code Extension - https://github.com/rhumbertgz/sparrow-vs
9Sparrow Language Server Protocol - https://github.com/rhumbertgz/sparrow-ls

112

https://github.com/rhumbertgz/sparrow-vs
https://github.com/rhumbertgz/sparrow-ls

6.4. TOOL SUPPORT

Figure 6.6 Autocomplete support for Sparrow abstractions

incremental Dialyzer analysis [2] of Sparrow programs. Using this built-in
static analysis tool inherited from the Erlang/Elixir ecosystem, Sparrow
VS provides inline reporting of build warnings and errors. For example,
figure 6.7 shows an example of an inline build error while trying to extend
a non declared motion pattern. As we observe in line 4 of listing 6.6 the
right pattern name is motionSensor.

Figure 6.7 Autocomplete support by the Sparrow VS Code
extension

Figure 6.8 shows another example of an inline build error that is caused
by the use of a non-supported operator (windows). In this case, the right
operator is window. The interested reader can see a full demo of Sparrow
VS on YouTube10.

6.4.2 Real-time Monitoring Tool

Sparrow VS adds language support for our DSL abstractions in a modern
code editor. However, this does not satisfy to debug complex Sparrow’s

10Sparrow VS Demo - https://youtu.be/IyCN7nolv6I

113

https://youtu.be/IyCN7nolv6I

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Figure 6.8 Incremental compilation output with an inline build error

actors. Developers need to have an understanding of how an actor is
internally represented and how its embedded pattern engine works. To
provide developers with such information about a running Sparrow program,
we have developed a real-time monitoring tool, called JuPITer monitor.
This tool allows developers to inspect the current state of an actor’s
virtual-inbox and pattern engine. This tool is meant to be used during
the development of an application, and it is fed by events generated by
each h of the main activities undertaken by a running Sparrow-based
system: create new actors, send messages, and react to pattern matches.
We have integrated the JuPITer monitor as a mix11 task. Developers
can easily monitor an application by executing the command mix spw.run
–monitor in the root directory of that application. The interested reader
can watch a full demo of the JuPITer monitoring tool on YouTube12.
During the initialization of the actors (and its patterns/reactions) of a
monitored application, events describing that process will be generated
and visualized by the web interface of this tool. Such events are sent to
the monitoring application using the macro notify defined by the module
AppMonitor. We decided to implement notify as a macro instead of a
regular function to optimize the Sparrow’s code for applications ready to
run on production. In production, AppMonitor.notify expressions would
be completely removed from the AST of Sparrow’s core libraries. We can
see the resulting Sparrow optimized version as a minified or compressed
version of a JavaScript library (e.g., jquery.min). This optimization was
inspired by Elixir’s Logger library that in a similar way skips log calls.

11Mix is a build tool that ships with Elixir that provides tasks for creating, compiling,
testing, managing dependencies, etc.

12JuPITer monitor demo - https://youtu.be/pl-I9qh3ZgU

114

https://youtu.be/pl-I9qh3ZgU

6.5. CONCLUSION

Figure 6.9 Internal representation of Sparrow’s patterns in JuPITer

Figure 6.9 shows the visual representation of the pattern engine that
sits in the actor created by the code shown in listing 6.6 on page 112.
Here we observe how developers can select a node (e.g., motionSensor) and
visualize, in real-time, its state (e.g., name, type, selector, messages) in the
Properties tab. Developers can also customize the visual representation of
the engine’s nodes network (Settings tab) to help them to understand the
composition of complex patterns. For example, in figure 6.10 we enabled
the overview panel to facilitate the navigation of large nodes network.
Furthermore, we enabled the highlighting of the links of connected nodes.
As we observe, by selecting the node CourtLightsDemo its input and output
links are highlighted.

6.5 Conclusion

The implementation of Sparrow’s primitives and auxiliaries functions
heavily rely on Elixir’s pattern matching mechanism. Sparrow’s patterns
inherit Elixir’s pattern matching capabilities to simplify the definition of
message filter constraints.

The limitations of Elixir’s macro system restricted the expressiveness
of Sparrow’s coordination abstractions.

115

CHAPTER 6. SPARROW: AN ELIXIR DSL IMPLEMENTATION

Figure 6.10 Visual properties for the discrimination network
representation

The custom implementation of the RETE algorithm used by the em-
bedded pattern engine of a Sparrow actor helped to support the advanced
coordination operators imported from CEP systems. This implementa-
tion could be still improved in future versions, e.g., by adding persistence
support of its nodes network.

The development of a VS code extension and a real-time monitor tool for
Sparrow-based programs proved advantageous during the implementation
and debugging of Sparrow’s abstractions. Furthermore, these tools could
also facilitate its adoption and extension by other researchers in the future.

116

C
h

a
p

t
e

r

7
Validation

In this chapter, we evaluate the expressiveness of Sparrow by means of
its solutions for the seven smart home scenarios formulated in chapter 2.
Section 7.1 does an initial comparison of the solutions in openHAB, Hass,
Elixir, and Sparrow for one of these scenarios. Section 7.2 presents a
more detailed quantitative evaluation approach. This approach is based
on an analysis of the lines of code required by the solutions of the above
technologies to express the coordination logic of all these smart home
scenarios.

7.1 A Code Comparison Analysis of Scenario 5

In this section, we compare three implementations of scenario 5 in openHAB,
Elixir, and Sparrow. We chose scenario 5 because it exemplifies a set of
coding concerns that developers have to take care of manually. These
coding concerns are:

• State management is the code that is used to save temporal data
required by the ongoing coordination process.

• Windowing management highlights the code needed to discard
messages that do not satisfy the pattern’s timing constraints.

117

CHAPTER 7. VALIDATION

• Sequencing control is the code is needed to enforce a particular
message order.

• Pattern definition emphasizes the code used to express the type
of messages to be synchronized and their content-based conditions.

Regarding the programming alternatives, we obviously chose Elixir
because it is the host language of our DSL and it provides synchronization
abstractions similar to other mainstream actor languages (e.g., Erlang,
Scala). Due to the similarity between the solutions of openHAB (Jython)
and Hass (Python), we omitted the latter. This decision was also motivated
by the fact that the openHAB community was the most responsive and
helpful during the validation of the scenarios formulated in chapter 2.
However, the interested reader can find the implementation of all the smart
home scenarios in our GitHub repository [56].

We observe in figure 7.1 that for the scenario 5, Sparrow’s solution
requires the least amount of code. But more importantly, Sparrow manages
to completely hide or significantly reduce these coding concerns from the
developer. For example, in the implementations of both openHAB (lines
5-7, 12-13, 18-19, 30-31) and Elixir (lines 4-5, 13, 21, 24, 27), we had to
manually track each sensor’s most recent message (state management).
However, Sparrow automatically keeps track of message timestamps and
therefore it can mostly hide this concern from the developers. Furthermore,
our DSL (lines 10, 13) provides a compact syntax to discard messages based
on time windows (windowing management) instead of forcing developers
to write complex and nested if expressions to carry out that action
as is the case in openHAB (lines 21-22, 33-34) and Elixir (lines 8, 16).
Similarly, Sparrow’s sequencing operator (lines 10, 13) offers a short syntax
to specify the desired matching order (sequencing control). In contrast,
such synchronization operation in openHAB (lines 21, 24, 33, 36) and
Elixir (lines 8-9, 16-17) is directly proportional to the number of different
messages involved. Finally, although the last concern (pattern definition)
is the most crucial for the coordination process, both openHAB (lines 8-9,
15-16, 27-28) and Elixir (lines 7, 15, 23) abstractions only define when to
react to single messages.

In brief, these implementations of scenario 5 give a strong indication that
Sparrow’s abstractions succeed to provide more expressive and compact
solutions for coordinating a group of actors. The inability to express the

118

7.1. A CODE COMPARISON ANALYSIS OF SCENARIO 5

Sequencing controlWindowing managementPattern definitionState management

C 1 defmodule Automation5 do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern m_front_door as motion{location= :front_door}
 6 pattern m_entrance_hall as motion{location= :entrance_hall, id~> mid}
 7 pattern c_front_door as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as m_front_door and c_front_door and m_entrance_hall,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as m_entrance_hall and c_front_door and m_front_door,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

B 1 defmodule Automation5 do
 2 import Timex
 3
 4 def loop({m_door, m_hall, c_door}) do
 5 state =
 6 receive do
 7 {:motion, _id, :on, :front_door, m_door_dt} ->
 8 if before?(shift(m_door_dt, seconds: -60), m_hall) do
 9 if after?(m_door_dt, c_door) and after?(c_door, m_hall) do
10 # code logic for leaving home
11 end
12 end
13 {m_door_dt, m_hall, c_door}
14
15 {:motion, _id, :on, :entrance_hall, m_hall_dt} ->
16 if before?(shift(m_hall_dt, seconds: -60), m_door) do
17 if after?(m_hall_dt, c_door) and after?(c_door, m_door) do
18 # code logic for arriving home
19 end
20 end
21 {m_door, m_hall_dt, c_door}
22
23 {:contact, _id, :open, :front_door, dt} ->
24 {m_door, m_hall, dt}
25 end
26
27 loop(state)
28 end
29
30 end

A 1 from core.rules import rule
 2 from core.triggers import when
 3 from java.time import ZonedDateTime as ZDT
 4
 5 c_door = ZDT.now().minusHours(24)
 6 m_hall = ZDT.now().minusHours(24)
 7 m_door = ZDT.now().minusHours(24)
 8
 9 @rule("(Py) Front Door Opened")
10 @when("Item Front_Door_Contact changed to OPEN")
11 def front_door_opened(event):
12 global c_door
13 c_door = ZDT.now()
14
15 @rule("(Py) Motion Detected - Entrance Hall")
16 @when("Item Entrance_Hall_Motion changed to ON")
17 def entrance_hall_motion(event):
18 global m_hall, m_door, c_door
19 m_hall = ZDT.now()
20
21 if m_door.isBefore(m_hall.minusSeconds(60)):
22 return
23
24 if m_hall.isAfter(c_door) and c_door.isAfter(m_door):
25 # code logic for arriving home
26
27 @rule("(Py) Motion Detected - Front Door")
28 @when("Item Front_Door_Motion changed to ON")
29 def front_door_motion(event):
30 global m_hall, m_door, c_door
31 m_door = ZDT.now()
32
33 if m_hall.isBefore(m_door.minusSeconds(60)):
34 return
35
36 if m_door.isAfter(c_door) and c_door.isAfter(m_hall):
37 # code logic for leaving home

Figure 7.1 Solution for scenario 5 in openHAB (A), Elixir (B), and
Sparrow (C)

whole coordination process using declarative patterns forces developers to
shift their focus from when to react to how to do it. In contrast, in Sparrow
(see figure 7.1.C), a developer focuses on the declaration of patterns, and
lets the run-time figure out how to match its constituents.

119

CHAPTER 7. VALIDATION

Table 7.1 Total LoC of the different solutions for the seven smart
home scenarios

openHAB Hass Elixir Sparrow

State management 29 31 55 0
Sequencing control 2 2 2 2
Windowing management 20 15 14 7
Pattern definition 24 20 31 16

Total lines of code (LoC) 75 68 102 25

7.2 Quantitative Evaluation

In this section, we do a preliminary quantitative evaluation of all the
scenarios solutions in openHAB, Hass, Elixir, and Sparrow. To get a
fair comparison between our actor-based solutions and the ones from the
smart home platforms, we published these solutions on both community’s
forums (see openHAB [61] and Hass [57] topics). This happened during
the development of Sparrow. The publication of our solutions allowed us
to get feedback and incrementally arrive at a solution that could be used
by experts of these communities.

Table 7.1 shows the sum of the total LoC required by the different
implementations for each of the coding concerns identified in section 7.1.
For a detailed LoC breakdown of each solution we refer the reader to
appendix A.1. Like in our analysis for the solutions of scenario 5, we do
not consider code not related to the coordination process (e.g., imports,
reaction logic of the automations), and we limit all lines to a maximum of
95 characters. Next, we manually tagged each LoC related to the identified
concerns to obtain the relevant code for our analysis. These tags were later
retrieved and aggregated in a CSV file (a dataset per concern) using a helper
script (statistics.exs) located in the root directory of each solution group
(e.g., openHAB, Sparrow). In this table, we observe that Sparrow
required less LoC for each coding concern in all its solutions than
the other implementations, except for the sequencing control
concern where all have the same value. However, as we mentioned
earlier in section 7.1, for this concern Sparrow is the only one for which the

120

7.2. QUANTITATIVE EVALUATION

Table 7.2 Statistical overview of the solutions per coding concern

Mean Std Min 25% 50% 75% Max

State management

openHAB 4.14 4.26 0.00 1.00 3.00 6.50 11.00
Hass 4.43 4.20 1.00 2.00 2.00 6.50 11.00
Elixir 7.86 2.41 5.00 6.00 7.00 10.00 11.00
Sparrow 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sequencing control

openHAB 0.29 0.76 0.00 0.00 0.00 0.00 2.00
Hass 0.29 0.76 0.00 0.00 0.00 0.00 2.00
Elixir 0.29 0.76 0.00 0.00 0.00 0.00 2.00
Sparrow 0.29 0.76 0.00 0.00 0.00 0.00 2.00

Windowing management

openHAB 2.86 2.48 0.00 1.00 2.00 5.00 6.00
Hass 2.14 2.12 0.00 1.00 1.00 3.00 6.00
Elixir 2.00 1.29 0.00 1.50 2.00 2.50 4.00
Sparrow 1.00 0.58 0.00 1.00 1.00 1.00 2.00

Pattern definition

openHAB 3.43 1.40 2.00 2.50 3.00 4.00 6.00
Hass 2.86 2.67 1.00 1.00 2.00 3.50 8.00
Elixir 4.43 1.40 2.00 4.00 4.00 5.50 6.00
Sparrow 2.29 1.98 1.00 1.00 1.00 3.00 6.00

LoC of its solutions does not grow depending on the number of messages
being synchronized.

Besides the results shown in table 7.1, we have applied a descriptive
statistic analysis over the above datasets in order to compare Sparrow
beyond simple LoC counting. Table 7.2 summarizes the central tendency,
dispersion and distribution of the required LoC for each coding concern.

In order to facilitate the analysis of the results shown in table 7.2, we
use a boxplot visualization (see figure 7.2). The source code of this analysis
and its datasets are publicly available in [63].

121

CHAPTER 7. VALIDATION

openHAB Hass Elixir Sparrow

0

2

4

6

8

10

12

Lo
C

(A) State Management

openHAB Hass Elixir Sparrow

0

0.5

1

1.5

2

Lo
C

(B) Sequencing Control

openHAB Hass Elixir Sparrow

0

2

4

6

Lo
C

(C) Windowing Management

openHAB Hass Elixir Sparrow

2

4

6

8

Lo
C

(D) Pattern Definition

Figure 7.2 Expressiveness of the solutions per coding concern and
platform

Figure 7.2.A shows the distribution of the LoC required to handle
the state management for the seven smart home scenarios introduced in
chapter 2. Since Sparrow does not require the developers to manually track
the state relevant for the coordination process in its solutions, we only
focus on the interpretation of the results of openHAB, Hass, and Elixir.
First, we observe that in general, both smart home platforms solutions

122

7.2. QUANTITATIVE EVALUATION

require less LoC than the Elixir ones. However, 50% of Elixir’s solutions
have a lower LoC variability (less is better) than the solutions of openHAB
and Hass. For example, openHAB has the highest LoC variability, with
5.5 lines as their interquartile range (IQR). Second, their solutions do not
have a normal LoC (data) distribution since their boxplot representations
are upper-skewed. Nevertheless, the third quartile (75%) of openHAB and
Hass solutions has a more LoC variability than the third quartile of Elixir.
Briefly, although Elixir’s solutions require more LoC, they have less LoC
variability between them leading to more uniform solutions.

Figure 7.2.B shows that all solutions have the same LoC distribution
for sequencing control. We attribute this result to the fact that only one
scenario required a particular sequence of messages, and the number of
involved messages was relatively small (only three). Despite these results,
the required LoC in openHAB, Hass, and Elixir will grow based on the
number of messages being synchronized. Furthermore, the complexity of
that code will also increase since it will be mostly based on if statements. In
contrast, Sparrow solutions will require the same expression [seq: true]
in order to enforce a sequence order for more than two messages.

Despite the outliers of Sparrow’s solutions shown in figure 7.2.C, it still
provides the most expressive solutions. We observe that as Sparrow’s inner
quartiles overlap they have less LoC variability. This means that 75% of
Sparrow’s solutions are at minimum 2x and a maximum 5x more compact
than the solutions from openHAB, Hass, and Elixir. Although Hass and
Sparrow share the same median value (1 LoC) in their solutions, the
solutions of our DSL followed by the Elixir ones have less LoC variability
than the rest. Briefly, the solutions of both actor-based languages
are more consistent concerning the required LoC between their
solutions than the one from the smart home platforms.

Finally, figure 7.2.D shows that Sparrow offers the most consistent
solutions. As we observe in this figure, Sparrow’s first and second quartiles
(median 50%) overlap, so the 50% of the cases Sparrow requires the lowest
number of LoC of all implementations (e.g., openHAB). Additionally,
Sparrow’s third quartile is also smaller than the rest, as result the 75%
of the cases its solutions are more compact than the others. Although
Sparrow falls behind openHAB to offer less LoC variability in its IQR,
this can be justified by the fact that Sparrow’s developers focus more

123

CHAPTER 7. VALIDATION

State
management

Sequencing
control

Windowing
management

Pattern
definition

Elixir
openHAB
Hass
Sparrow

(A) Overall results per coding concerns

openHAB Hass Elixir Sparrow

0

2

4

6

8

10

12

Lo
C

(B) Overall Results

Figure 7.3 Summary of the solutions for the seven scenarios

124

7.3. CONCLUSION

on the definition of patterns than any other of the concerns identified in
section 7.1.

Figure 7.2 shows that Sparrow seems to succeed in reducing the effects
of those coding concerns above the synchronization of messages. Figure 7.3
summarizes our analysis using two different types of visualization. The first
one, figure 7.3.A uses radar chart to plot the data presented in table 7.1.
In this particular graph, values closer to the center represent less LoC
required and, as a result, more expressiveness in the code. By representing
each coding concern as an axis in this graphical method, we can visually
observe how Sparrow’s abstractions have greater expressiveness along all
axis, except in sequencing control where all implementations have the same
value. The second one, figure 7.3.B illustrates that Sparrow’s solutions
are the most compact of all implementations, followed by the solutions of
Hass. In general, the 75% of the solutions our DSL required less LoC than
the 50% of the other solutions. At the same time, we observe that Elixir’s
solutions require more effort from their developers. The data used in this
last box plot corresponds to the combination of the individual data frames
used in figure 7.2.

7.3 Conclusion

The implementation of the seven scenarios described in chapter 2 allowed us
to showcase the expressiveness of Sparrow. At the same time, our empirical
and preliminary evaluation allowed us to identify four coding concerns faced
by developers during the coordination of a group of smart devices. Finally,
the comparison between the solutions using openHAB, HAS, Elixir, and
Sparrow shows that our DSL was more effective at reducing the amount of
code needed to express the intended synchronization behavior. However, a
more rigorous evaluation must be conducted in the future to complement
this preliminary judgement.

125

CHAPTER 7. VALIDATION

126

C
h

a
p

t
e

r

8
Conclusion

In this final chapter, we reflect on the requirements for advanced message
synchronization abstractions formulated and motivated in chapter 2, and
we highlight how the Sparrow DSL addresses them. We discuss the current
limitations of Sparrow and give an overview of future research directions.

8.1 Summary and Contributions

Since its invention in 1973, the actor model has been the subject of several
extensions to facilitate the coordination of a group of actors. Researchers
have explored different approaches from centralized to local coordination
using several techniques based on reflection, session types, constraint-
handling rules, and join patterns just to mention a few. In this dissertation,
we identified a suite of common message synchronization requirements
using seven smart home scenarios for which, up to now, have no or very
limited support exists in modern actor-based languages. The relevance
of these requirements was confirmed by more than 700 developers in the
smart home community. We summarize these requirements as:

1. Advanced message filter abstractions to support timing constraints
and negation.

127

CHAPTER 8. CONCLUSION

2. A flexible message selection policy that allows an actor to match a
particular message instead of just the oldest message in the actor’s
inbox.

3. Advanced message matching mechanism to support matching of
multiple messages with or without a particular order.

4. Advanced message matching mechanism to accumulate and match a
quantified or unquantified number of messages.

5. Support for further transformation and filter of matched messages
before the corresponding reaction is actually executed.

Sparrow’s patterns form a research contribution in the context of actor
model extensions. They are motivated by the above message synchroniza-
tion requirements. As a result, the actor’s interface is empowered with
advanced declarative message matching capabilities. In this dissertation,
we validate the expressiveness of Sparrow’s patterns by comparing its solu-
tions for the seven smart home scenarios against the ones of two popular
smart home platforms and a modern actor-based language. The choice of
the technologies used in our validation had two main motivations. First,
they are state-of-the-art and popular technologies within their communi-
ties. Second, they provide a level of synchronization abstractions similar
to the ones used in their alternative technologies. We now revisit the
contributions outlined in this dissertation.

A suite of common synchronization requirements. Our first contri-
bution is the formulation of a suite of common synchronization requirements
needed to coordinate modern actor-based systems. These requirements
were presented in chapter 2. We started by developing seven smart home
scenarios inspired by real automation rules found on smart home com-
munity forums. We chose this particular type of cyber-physical systems
because they exhibit a wide range of synchronization requirements. From
these smart home scenarios, we designed and ran an online poll to validate
that each of them was a representative example of the different synchroniza-
tion needs found in the wild. Based on the results of our poll we concluded
that our scenarios are good examples of concerns that live within the smart
home community. Later we distilled five categories of synchronization
requirements needed to express the seven smart home scenarios. During
the implementation of these scenarios, we found that two popular smart

128

8.1. SUMMARY AND CONTRIBUTIONS

home platforms (i.e., openHAB, Hass) and a modern actor-based language
(i.e., Elixir) did not have good support for the identified synchronizations
requirements.

A survey of existing actor-based coordination approaches and
CEP operators. Our second contribution is an extensive survey of
related actor coordination proposals and CEP operators presented in
chapter 3. Our literature review analyzed a large list of contributions
in these two fields and compared their support for the synchronization
requirements identified in chapter 2. First, we started by reviewing the
literature on extensions to the point-to-point communication model of the
traditional actor model. Second, we studied approaches based on reflection
and runtime verification used to extend the synchronization abstractions
supported by the actor model. Third, we scrutinised more local approaches
which seamlessly integrated their synchronization abstractions into an
actor-based language. Since we found the approaches in the above groups
had limited support for the synchronization requirements identified in
chapter 2, we drew inspiration from the existing types of synchronization
mechanisms supported by CEP systems.

A domain-specific language for advanced coordination of hetero-
geneous actors. Our third contribution is the design and implementation
of the Sparrow DSL (see chapter 4). Sparrow’s coordination abstractions
target the synchronization requirements identified in chapter 2. These
coordination abstractions were implemented as advanced messages patterns
that can be reused and composed. Sparrow’s patterns use pattern-matching
techniques and a set of operators to filter, accumulate and transform mes-
sages. These patterns were built as Elixir macros, of which the output
code is optimized and validated during the compilation of a Sparrow-based
program. Furthermore, they can seamlessly integrate into standard Elixir
applications and can fully leverage Elixir’s primitives and libraries. The
validation of our DSL demonstrated the expressiveness of its coordination
abstractions. Furthermore, it also demonstrated that Sparrow’s solutions
were more effective to reduce the effects of non-functional concerns on the
synchronization of messages than the other compared technologies. To the
best of our knowledge, Sparrow is the first actor-based DSL that combines
join patterns and complex event processing techniques into one coherent
model.

129

CHAPTER 8. CONCLUSION

A formal calculus of Sparrow called NEST and its mechaniza-
tion. Our fourth contribution is the definition and implementation of
a mechanized formal calculus to precisely describe the semantics of the
core coordination abstractions of Sparrow (see chapter 5). We called this
calculus NEST. NEST was implemented in Redex [21]. Using Redex’s tests
suite, we exhaustively tested NEST’s syntax and reduction rules. However,
we could not define randomized tests for NEST’s patterns reduction rules.
These reduction rules require specific randomized messages sequences and
such requirements could not be expressed with the built-int Redex’s test
suite. To overcome this limitation, we implemented a randomized pattern
test generation algorithm, and two new functions to test (pattern-test)
and trace (pattern-traces) the correct resolution of NEST’s reduction
rules for patterns. Our algorithm enabled us to verify not only whether
valid messages sequences are detected by the calculus, but also whether
invalid messages sequences are not accidentally accepted. We constructed
this method to validate our semantics without having to construct formal
proofs.

A novel RETE-based matching algorithm. Our fifth contribution
is a custom implementation of the RETE [22] algorithm to support an
incremental matching mechanism of Sparrow’s patterns (see section 6.3).
This implementation is used by the embedded message pattern engine of
Sparrow’s actors, called JuPITer. Our extension adopts a higher level of
granularity, but more advanced filter conditions than the original RETE
to facilitate the reuse and composition of patterns. It also introduces new
types of nodes into JuPITer’s nodes network to support the synchronization
abstractions implemented by Sparrow. A distinct characteristic of our
RETE-based implementation is that it only processes messages from a
single actor, instead of the common approach of using a global RETE
implementation for a whole system. Each Sparrow’s actor has its own
RETE-based JuPITer instance.

Basic Tools Support. Our sixth contribution is the implementation of
two software tools to support the development of Sparrow-based programs
(see section 6.4). On the one hand, we extended the syntax and language
server protocol of an existent Elixir VS Code extension with a double
purpose. First, add support for Sparrow’s syntax highlighting and macro
autocompletion. Second, provide inline reporting of build warnings and

130

8.2. SHORTCOMINGS AND FUTURE WORK

errors of Sparrow programs, using an automatic and incremental static
analysis based on Erlang’s Dialyzer tool. On the other hand, we com-
plemented the above VS Code extension with a real-time monitor tool
to allow developers to inspect running JuPITer’s instances of a Sparrow
program. The development of both tools had a significant impact during
the implementation and debugging of Sparrow’s abstractions. Furthermore,
they also can facilitate the adoption and extension of Sparrow by other
researchers in the future.

8.2 Shortcomings and Future Work

There is still room for improvements to both the NEST mechanized for-
malism and the Elixir-based implementation of Sparrow. We now present
future research opportunities.

Fully-fledged Sparrow formalisation. The current formalisation of
Sparrow (NEST) only supports the core coordination abstractions of Spar-
row. One avenue of future work would be to incorporate all of Sparrow’s
abstractions into NEST. This could lead us to find new requirements and
constraints for our randomized message generation algorithm.

Generic message patterns test suites. In section 5.2.2, we have in-
troduced randomized tests for NEST’s patterns. This implementation
targets the particular requirements of these patterns. However, to the
best of our knowledge, there is no such kind of generic test suite for ac-
tor models. It would be interesting to explore the possibility to extend
our message generation algorithm and test abstractions (i.e., pattern-test
and pattern-traces) to support general actor-based language implementa-
tions.

Explicit unification of logic variables. Sparrow’s patterns inherited
the unification behaviour of Elixir’s pattern-matching mechanism for its
logic variables. This behaviour is desirable in many cases of composite
patterns in order to reduce the need for more explicit filter expressions
(e.g., guards). However, it can lead to unexpected result particularly by
patterns that reuse definitions of other patterns. One avenue of future
work could be to study a language design which allows only the unification
of logic variables between anonymous patterns and requires an explicit
unification expression in other cases.

131

CHAPTER 8. CONCLUSION

Dynamic pattern engine. The current implementation of JuPITer
requires knowing all patterns that will be part of its matching node’s
network at compile time. This was a decision that we made during
its implementation, but there are no constraints imposed by RETE or
Elixir that prevent adding or removing a pattern dynamically. It would
be interesting for more dynamic cyber-physical systems to explore the
possibility to add and remove patterns at runtime. At the same time, we
need to evaluate the impact in terms of performance and security of such
dynamic behaviour.

Performance. In the development of our DSL, we did not focus on ef-
ficiency. Nevertheless, we adopted a RETE-based matching mechanism
for Sparrow’s patterns to increase their matching performance based on
historical evidence about RETE’s benefits. A future task of our work
may target the evaluation of Sparrow’s composite patterns matching over-
head concerning the matching process of traditional actor-based languages
(e.g., Elixir). We could measure the memory consumption and the matching
speed of the manual coordination patterns implemented in Elixir and the
ones implemented in Sparrow. The result of this analysis could help us
to determine the overhead introduced by the pattern engine of Sparrow’s
actors and whether that trade off is worth the additional expressiveness
Sparrow provides.

Applicability to other concurrency models. The current implemen-
tation of Sparrow and NEST targets actors as their concurrency model.
It would be interesting to explore the integration of the synchronization
abstractions identified in this dissertation to other concurrency models
(e.g., threads).

8.3 Closing Remarks

The fast-growing development of cyber-physical systems (CPS) in the last
decade has introduced new technological challenges for the hardware and
software industry. In this dissertation, we stated that the actor model
constitutes a promising avenue to tackle software requirements of emerging
challenges for CPS. Traditional actor-based languages have always em-
braced asynchronous point-to-point communication based on the exchange

132

8.3. CLOSING REMARKS

of and reaction to single messages. However, the distributed and hetero-
geneous architecture of modern CPS, imposes complex synchronization
patterns between the different components of a system. In this disserta-
tion, we have shown that the message matching mechanism of traditional
actor-based languages does not satisfy the current synchronization require-
ments of CPS. Although the actor model has been the subject of multiple
extensions meant to improve its synchronization abstractions, there is still
a serious need for more research to tackle the increased complexity of CPS.
To the best of our knowledge Sparrow is the first attempt to tackle this
issue by reconciling CEP techniques and Join Patterns with the message
matching mechanism of the actor model.

133

CHAPTER 8. CONCLUSION

134

A
p

p
e

n
d

ix

A
Appendices

135

APPENDIX A. APPENDICES

A.1 LoC Breakdown of the Smart-Home Scenario
Solutions

Table A.1 Overview of lines of code for the different scenarios
according to the four identified coding concerns.

openHAB Hass Elixir Sparrow

State management

Automation 1 0 3 7 0
Automation 2 4 2 10 0
Automation 3 1 2 6 0
Automation 4 3 2 5 0
Automation 5 9 10 6 0
Automation 6 1 1 10 0
Automation 7 11 11 11 0

Sequencing control

Automation 1 0 0 0 0
Automation 2 0 0 0 0
Automation 3 0 0 0 0
Automation 4 0 0 0 0
Automation 5 2 2 2 2
Automation 6 0 0 0 0
Automation 7 0 0 0 0

Windowing management

Automation 1 0 0 0 0
Automation 2 6 4 4 1
Automation 3 6 1 2 1
Automation 4 1 1 1 1
Automation 5 4 6 2 2
Automation 6 1 1 2 1
Automation 7 2 2 3 1

Pattern definition

Automation 1 3 2 5 2
Automation 2 2 1 6 1
Automation 3 4 1 4 1
Automation 4 2 1 2 1
Automation 5 6 5 4 6
Automation 6 3 2 6 4
Automation 7 4 8 4 1

Total lines of code (LoC) 75 68 102 25

136

A.1. LOC BREAKDOWN OF THE SMART-HOME SCENARIO
SOLUTIONS

A1 A2 A3 A4 A5 A6 A7

0

5

10

Lo
C

(A) State Management

A1 A2 A3 A4 A5 A6 A7

0

1

2

Lo
C

(B) Sequencing Control

A1 A2 A3 A4 A5 A6 A7

0

2

4

6

Lo
C

(C) Windowing Management

A1 A2 A3 A4 A5 A6 A7
0

2

4

6

8

Lo
C

(D) Pattern Definition

openHAB Hass Elixir Sparrow

Figure A.1 Summary of analyzing different solutions for the seven
scenarios

137

APPENDIX A. APPENDICES

A.2 Source code of the Sparrow.Actor module

Listing A.1 Source code of the Sparrow.Actor module (Part 1)
1 defmodule Sparrow.Actor do
2 @moduledoc false
3 alias Sparrow.Core.{Builder, AppMonitor}
4 alias Sparrow.Engine.Jupiter
5 alias Sparrow.Exceptions.ReactionError
6
7 defmacro using (_) do
8 storeName =
9 :crypto.strong_rand_bytes(20)

10 |> :base64.encode()
11 |> String.to_atom()
12
13 Builder.init(storeName)
14 quote do
15 import Sparrow.Actor
16 use GenServer
17
18 def start(options \\ [], linked \\ true) do
19 case linked do
20 true -> GenServer
21 .start_link(MODULE , [], options)
22 false -> GenServer
23 .start(MODULE , [], options)
24 end
25 end
26
27 ## Actor Server Callbacks
28 @impl true
29 def init(args) do
30 {:ok, args, {:continue, :init}}
31 end
32
33 @impl true
34 def handle_continue(:init,_args) do
35 app = Mix.Project.config()
36 |> Keyword.get(:app)
37 nodeId = self()

138

A.2. SOURCE CODE OF THE SPARROW.ACTOR MODULE

Listing A.2 Source code of the Sparrow.Actor module (Part 2)

38 state = Sparrow.Actor
39 . init_network(MODULE , app, nodeId)

40 {:noreply, state}
41 end
42
43 def stop(pid) do
44 GenServer.stop(pid)
45 end
46
47 def send(pid, message) do
48 GenServer.cast(pid, {:send, message})
49 end
50
51 @impl true
52 def handle_cast({:send, msg}, {engine, _} = state) do

53 Sparrow.Engine.Jupiter.process_message(engine, msg)

54 {:noreply, state}
55 end
56 end
57 end
58
59 defmacro pattern(expr)
60 defmacro pattern({name, _, [{:as, _, [pttr | []]}]}) do
61 Builder.build_pattern(name, pttr)
62 |> Macro.expand(CALLER)
63 end
64
65 defmacro pattern({name, _,
66 [{:as, _, [pttr, _options | []] = p}]}) do

67 Builder.build_pattern(name, p)
68 |> Macro.expand(CALLER)
69 end
70
71 defmacro reaction({name, _, [header]}, do: body) do
72 Builder.build_reaction(name, header, body)
73 |> Macro.expand(CALLER)

139

APPENDIX A. APPENDICES

Listing A.3 Source code of the Sparrow.Actor module (Part 3)

74 end
75 defmacro reaction(_call, _expr) do
76 raise ReactionError,
77 message:
78 "Invalid reaction definition.
79 A reaction only receives a single
80 argument of type `Sparrow.Engine.Token`."
81 end
82
83 defmacro react_to({pName, _, _}, with: {rName, _, _})
84 when is_atom(pName) and is_atom(rName) do
85 Builder.register_react_to(pName, rName)
86 |> Macro.expand(CALLER)
87 end
88
89 defmacro react_to(_, _) do
90 raise ReactionError,
91 message:
92 "Invalid reaction registration.
93 Check that both reaction and
94 pattern names are correct."
95 end
96
97 def init_network(module, app, nodeId) do
98 monitor = Application.get_env(app, :monitor, false)
99 ttl = Application.get_env(app, :ttl, {2, :hours})

100 AppMonitor.notify(:add_actor, nodeId, {app, module}, monitor)

101
102 {patterns, reactions, prRegistry} = dnetwork(module)

103
104 {:ok, engine} = Jupiter.start(patterns, reactions,
105 prRegistry, nodeId, ttl, monitor)

106 {engine, monitor}
107 end

140

A.2. SOURCE CODE OF THE SPARROW.ACTOR MODULE

Listing A.4 Source code of the Sparrow.Actor module (Part 4)

108 def dnetwork(module) do
109 functions = module. info (:functions)
110 patterns =
111 functions
112 |> Enum.filter(fn {f, _} ->
113 Atom.to_string(f)
114 |> String.starts_with?(" pattern_")
115 end)
116 |> Enum.map(fn {f, _} -> apply(module, f, []) end)

117 |> Enum.sort(&(&1.id < &2.id))
118
119 reactions =
120 functions
121 |> Enum.filter(fn {f, _} ->
122 Atom.to_string(f)
123 |> String.starts_with?(" reaction_")
124 end)
125 |> Enum.map(fn {f, _} -> apply(module, f, []) end)

126 |> Enum.reduce(%{},
127 fn {n, f}, acc -> Map.put(acc, n, f) end)

128 prRegistry =
129 functions
130 |> Enum.filter(fn {f, _} ->
131 Atom.to_string(f)
132 |> String.starts_with?(" react_to_")
133 end)
134 |> Enum.map(fn {f, _} -> apply(module, f, []) end)

135 |> Enum.sort(&(elem(&1, 0) < elem(&2, 0)))
136 |> Enum.reduce(%{},
137 fn {_, p, r}, acc ->
138 group_reactions(acc, p, r)
139 end)
140 {patterns, reactions, prRegistry}
141 end
142 end

141

APPENDIX A. APPENDICES

A.3 Statistical Analysis for Pattern Definition

Listing A.5 Python script for pattern definition analysis
1 import pandas as pd
2
3 results = pd.read_csv('pattern_definition.csv')
4
5 openHAB = results[results.Platform.isin(['openHAB'])]
6 hass = results[results.Platform.isin(['Hass'])]
7 elixir = results[results.Platform.isin(['Elixir'])]
8 sparrow = results[results.Platform.isin(['Sparrow'])]
9

10 openHAB.LoC.describe()
11 #mean 3.428571, std 1.397276
12 #min 2.000000, 25% 2.500000
13 #50% 3.000000, 75% 4.000000
14 #max 6.000000
15
16 hass.LoC.describe()
17 #mean 2.857143, std 2.672612
18 #min 1.000000, 25% 1.000000
19 #50% 2.000000, 75% 3.500000
20 #max 8.000000
21
22 elixir.LoC.describe()
23 #mean 4.428571, std 1.397276
24 #min 2.000000, 25% 4.000000
25 #50% 4.000000, 75% 5.500000
26 #max 6.000000
27
28 sparrow.LoC.describe()
29 #mean 2.285714, std 1.976047
30 #min 1.000000, 25% 1.000000
31 #50% 1.000000, 75% 3.000000
32 #max 6.000000

142

A.4. STATISTICAL ANALYSIS FOR STATE MANAGEMENT

A.4 Statistical Analysis for State Management

Listing A.6 Python script for state management analysis
1 import pandas as pd
2
3 results = pd.read_csv('state_management.csv')
4 openHAB = results[results.Platform.isin(['openHAB'])]
5 hass = results[results.Platform.isin(['Hass'])]
6 elixir = results[results.Platform.isin(['Elixir'])]
7 sparrow = results[results.Platform.isin(['Sparrow'])]
8
9 openHAB.LoC.describe()

10 #mean 4.142857, std 4.259443
11 #min 0.000000, 25% 1.000000
12 #50% 3.000000, 75% 6.500000
13 #max 11.000000
14
15 hass.LoC.describe()
16 #mean 4.428571, std 4.197505
17 #min 1.000000, 25% 2.000000
18 #50% 2.000000, 75% 6.500000
19 #max 11.000000
20
21 elixir.LoC.describe()
22 #mean 7.857143, std 2.410295
23 #min 5.000000, 25% 6.000000
24 #50% 7.000000, 75% 10.000000
25 #max 11.000000
26
27 sparrow.LoC.describe()
28 #mean 0.0, std 0.0
29 #min 0.0, 25% 0.0
30 #50% 0.0, 75% 0.0
31 #max 0.0

143

APPENDIX A. APPENDICES

A.5 Statistical Analysis for Windowing Manage-
ment

Listing A.7 Python script for windowing management analysis
1 import pandas as pd
2
3 results = pd.read_csv('windowing_management.csv')
4
5 openHAB = results[results.Platform.isin(['openHAB'])]
6 hass = results[results.Platform.isin(['Hass'])]
7 elixir = results[results.Platform.isin(['Elixir'])]
8 sparrow = results[results.Platform.isin(['Sparrow'])]
9

10 openHAB.LoC.describe()
11 #mean 2.857143, std 2.478479
12 #min 0.000000, 25% 1.000000
13 #50% 2.000000, 75% 5.000000
14 #max 6.000000
15
16 hass.LoC.describe()
17 #mean 2.142857, std 2.115701
18 #min 0.000000, 25% 1.000000
19 #50% 1.000000, 75% 3.000000
20 #max 6.000000
21
22 elixir.LoC.describe()
23 #mean 2.000000, std 1.290994
24 #min 0.000000, 25% 1.500000
25 #50% 2.000000, 75% 2.500000
26 #max 4.000000
27
28 sparrow.LoC.describe()
29 #mean 1.00000, std 0.57735
30 #min 0.00000, 25% 1.00000
31 #50% 1.00000, 75% 1.00000
32 #max 2.00000

144

A.6. NORMALIZATION OF LOC

A.6 Normalization of LoC

Listing A.8 LoC Normalization Script in Elixir
1 upper_range = 5
2
3 normalize = fn (list, upper_range) ->
4 min = Enum.min list
5 max = Enum.max list
6 Enum.reduce(list, [], fn x, acc -> acc++[
7 Float.round(((x-min)/(max-min))*upper_range, 2)] end)
8 end
9

10 ajust = fn (list) ->
11 Enum.map(list, fn x ->
12 cond do
13 x == 0 -> Float.round(x+0.01, 2)
14 x < (upper_range-1) -> Float.round(x+1, 2)
15 true -> x
16 end
17 end)
18 end
19
20 all_values = [
21 29,2,20,24,
22 31,2,15,20,
23 55,2,12,31,
24 0,2,7,16]
25
26 all_values
27 |> normalize.(upper_range)
28 |> ajust.()
29 |> IO.inspect()

145

APPENDIX A. APPENDICES

A.7 PLT Redex in a Nutshell

PLT Redex (or Redex for short) [21] is a domain-specific language in Racket
for formalizing operational semantics with powerful pattern-matching
capabilities. It allows language designers to write down the language
grammar, reduction rules, and relevant meta-functions for their calculi in
a single language. Besides its language capabilities, Redex offers language
designers a set of tools integrated into the DrRacket IDE, including a
stepper for small-step operational semantics, hand-written/randomized
test suites, and inspectors reduction graphs. In short, Redex aims to help
language designers to validate their language implementations against their
specifications at a low cost.

A.7.0.1 Language Definition

Listing A.9 shows a simple example of a language definition and its gram-
mars in Redex. The language Bool has two non-terminal grammars exp
and val. The first non-terminal has associated three productions or pat-
terns representing all valid expressions valid in the Bool language. The
second one has two patterns that match boolean values. Notice that Redex
uses a parenthesized version of BNF notation to define its tree grammars.
Furthermore, it does not use vertical bars to separate productions, simply
juxtaposing them instead.

Listing A.9 Example of a language definition
1 (define-language Bool
2 (exp ::= val
3 (exp && exp)
4 (exp || exp))
5 (val ::= #true
6 #false))

Language designers can use the built-in function (redex-match? L p
t) to test their languages’ syntax. This function determines if the term t
matches the pattern p in the language L. Listing A.10 shows how to check
the syntax of both Bool’s non-terminals using the above function. The
underscore (_) symbol is used to refer to an instance of a non-terminal,
also known as named non-terminals. Furthermore, the pattern p can refer
to particular productions (see line 3) or the global non-terminal element
(see lines 1, 2, 4).

146

A.7. PLT REDEX IN A NUTSHELL

Listing A.10 Example of syntax checks
1 (redex-match? Bool val_a (term #true))

;; #true
2 (redex-match? Bool exp_a (term (#true || #false)))

;; #true
3 (redex-match? Bool (exp_a && exp_b) (term (#true || #true)))

;; #false
4 (redex-match? Bool exp_a (term 1))

;; #false

A.7.0.2 Hand-written and Randomized Unit Tests

Using Redex’s unit testing library, we can transform the syntax check
examples of Listing A.10 in proper tests. Listing A.11 shows an example
of a test unit module with four hand-written tests (see lines 4-7) and their
results (text in green color1). This example uses an auxiliary function
valid-syntax? (see line 2) to compact the invocations of the built-in
test-equal function. The tests’ results are shown in the terminal by
invoking the built-in test-results function (see line 9). As we can observe,
the last test (see line 7) fails because any of the defined productions of the
non-terminal exp matches the term 1.

Listing A.11 Example of hand-written unit tests
1 (module+ test
2 (define valid-syntax? (redex-match? Bool exp_i))
3
4 (test-equal (valid-syntax? (term #true)) #true)
5 (test-equal (valid-syntax? (term (#true && #true))) #true)

6 (test-equal (valid-syntax? (term (#true || #false))) #true)

7 (test-equal (valid-syntax? (term 1)) #true)
8
9 (test-results))
;; ####### OUTPUT ######
;; FAILED /../nest-plt-redex/bool_lang.rkt:33.2

1The font color of comments and terminal outputs will always be green. The text
will always start with a double comment symbol of its language (e.g., ;;)

147

APPENDIX A. APPENDICES

;; actual: #f
;; expected: #t
;; 1 test failed (out of 4 total).

Hand-written tests are useful for initial checks of the language syn-
tax. However, they require extra work from designers, and they cannot
exhaustively test a language. Redex supports randomized tests of syntactic
properties using the redex-check function to overcome this issue. This
built-in function searches for a counterexample to the grammar produc-
tions. It uses it a “guess and check” strategy to freely generates candidate
terms and tests whether they happen to satisfy the production constraints.
Listing A.12 shows a randomized test for the non-terminal exp, and its
output. Our calculus makes use of both types of unit tests to check its
syntax exhaustively.

Listing A.12 Example of a randomized test
1 (redex-check
2 Bool
3 exp_i
4 (redex-match? Bool exp (term exp_i))
5 #:attempts 1000)
;; redex-check: /../nest-plt-redex/bool_lang.rkt:40
;; no counterexamples in 1000 attempts

A.7.0.3 Judgment Forms and Metafunctions

Redex offers an easy way to define a relation on terms through a judgment
form. Judgments can check various types of relations, including type
inference rules and well-formedness conditions. However, they cannot
express inference rules that require guessing [21]. Listing A.13 shows an
example of a judgment Equals? which defines an equality relation on
booleans values. Like other Redex’s a !22primitives, the first argument
of the define-judgment-form function refers to the language. The next
two arguments specify a mode and a contract for the judgment. The
former (see line 2) specifies the number of expected input terms (i.e., two).
The latter (see line 3) specifies that both input terms must match the
non-terminal val. Finally, this judgment receives a set of inferences rules
(see lines 4-9), named BothTrue? and BothFalse?. In this simple example,
both rules hold if their arguments have the same value. Additionally, rules

148

A.7. PLT REDEX IN A NUTSHELL

Listing A.13 Example of a judgment form definition
1 (define-judgment-form Bool
2 #:mode (Equals? I I)
3 #:contract (Equals? val val)
4 [
5 --- BothTrue?
6 (Equals? #true #true)]
7 [
8 --- BothFalse?
9 (Equals? #false #false)])

10
11 (judgment-holds (Equals? #true #true))

;; #true
13 (judgment-holds (Equals? #false #false))

;; #true
14 (judgment-holds (Equals? #true #false))

;; #false

can use where clauses (a.k.a guards) to check that each pattern matches
the corresponding term before applying it. Language designers can test the
above inference rules by using the built-in function judgment-holds. Lines
11-13 showcase the use of this primitive to check if the judgments "#true
#true", "#false #false", and "#true #false" satisfy any of the patterns
defined by the judgment form Equals?.

In addition to judgment forms, Redex supports term-level functions,
called metafunctions. Metafunctions like judgments are a formal alternative
to escape from Redex (a.k.a Redex mode) to Racket (a.k.a Racket mode).
Listing A.14 shows the equivalent metafunction to the judgment form
defined in Listing A.13. The significant difference between the listings
mentioned above is the addition of a new rule (see Listing A.14 lines 12-14).
Without this rule, the Redex’s interpreter will raise an error since no clause
will match the terms "#true #fase" (see line 18). Although metafunctions
and judgment forms can be used interchangeable, the latter are preferred
since they are easier to read, debug, and maintain.

149

APPENDIX A. APPENDICES

Listing A.14 Example of a metafunction definition
1 (define-metafunction Bool
2 Equals? : val val -> boolean
3 [
4 ;--- BothTrue
5 (Equals? #true #true)
6 #true]
7 [
8 ;--- BothFalse
9 (Equals? #false #false)

10 #true]
11 [
12 ;--- Otherwise
13 (Equals? val_0 val_1)
14 #false])
15
16 (term (Equals? #true #true))

;; #true
17 (term (Equals? #false #false))

;; #true
18 (term (Equals? #true #false))

;; #false

A.7.0.4 Reduction Relations

In Redex, a reduction relation is a set of term-rewriting rules. Language
designers can choose to apply one step of a reduction relation or reduce it
until its normal form or some condition. A language must include at least
three non-terminals to apply a reduction relation. First, a non-terminal
for the reduction relation domain (see listing A.9 line 2-4). Second, a
non-terminal for a subset of the domain cannot be reduced further (see
listing A.9 line 5-6). Third, a non-terminal for evaluation contexts. An
evaluation context is a special term that contains a hole. Reduction
relations can match a term against an evaluation context to find a sub-
term that matches the hole. Our definition of the Bool language (see
Listing A.10) covers the first two required non-terminals, but it does not
contain any evaluation contexts.

Listing A.15 illustrates how to extend the Bool language to add its
evaluation contexts using the primitive define-extended-language. The

150

A.7. PLT REDEX IN A NUTSHELL

Listing A.15 Add evaluation contexts to an existent language
1 (define-extended-language Bool+ Bool
2 (E ::= hole
3 (E && exp)
4 (E || exp)))

Bool+ language adds a new non-terminal E and inherits all non-terminals of
its parent Bool. The non-terminal E contains three patterns that represent
the evaluation contexts of the Bool+ language. The first pattern will try to
match any subexpression using the hole abstraction, while the other two
patterns will try to match conjunctions and disjunctions expressions.

Listing A.16 shows the reduction relation for both conjunction (see lines
4-8) and disjunction (see lines 9-13) expressions supported by the Bool+
language. Like other abstractions, the reduction-relation primitive needs
a language to know how to interpret patterns, a domain to specify the
pattern that its input/output must match and a set of rewrite rules. The
domain in the above reduction rule is the non-terminal exp, in which a term
represents a simple (e.g., #true) or composed (e.g., a conjunction) boolean
expression. Simple boolean expressions are values (see the non-terminal
val) that cannot reduce further. The use of in-hole primitive in both cases
(i.e., "and-step" and "or-step") of the reduction relation bool-step is two
fold. In one hand, as the first argument of —>, it searches a term for a
subterm that Redex can apply a reduction rule to (see lines 4, 9). On the
other hand, as the second argument of —>, it puts a new value back into
the hole in the evaluation context (see lines 5, 10).

Redex also gives language designers access to a non-deterministic inter-
preter to evaluate their reduction relations, build reduction graphs (via
traces), and detects cycles in them. For example, at the end of Listing A.16
(see lines 15-18) the function apply-reduction-relation applies the re-
duction relation bool-step to a term and returns a list of ways that the
term can step. The cases of reduction relation form a set, not a sequence.
Consequently, if a term matches more than one case, Redex will apply all
of them.

151

APPENDIX A. APPENDICES

Listing A.16 Example of a reduction relation definition and
evaluation
1 (define bool-step
2 (reduction-relation Bool+
3 #:domain exp
4 [--> (in-hole E (val_lhs && val_rhs))
5 (in-hole E val_new)
6 "and-step"
7 (where val_new
8 ,(and (term val_lhs) (term val_rhs)))]

9 [--> (in-hole E (val_lhs || val_rhs))
10 (in-hole E val_new)
11 "or-step"
12 (where val_new
13 ,(or (term val_lhs) (term val_rhs)))]))

14
15 (apply-reduction-relation
16 bool-step (term #true))

;; '()
17 (apply-reduction-relation
18 bool-step (term (#true && #true)))

;; '(#true)
19 (apply-reduction-relation
20 bool-step (term (#true && #false)))

;; '(#false)
21 (apply-reduction-relation
22 bool-step (term ((#true || #false) || #true)))

;; '((#true || #true))

152

A.8. NEST SEMANTICS IN REDEX

A.8 NEST Semantics in Redex

Listing A.17 Source code of the NEST (Part 1)
1 #lang racket
2
3 (provide NEST NEST-R NEST-T) ;; Language

4
5 (require redex)
6
7 ;; NEST's BNF grammar
8 (define-language NEST
9 (pe ::= (pattern pn p))

10 (re ::= (reaction rn e))
11 (ae ::= (actor an (react-to pn rn) ...))

12 (e ::= nil
13 x l i
14 (lambda [e ...] e)
15 (let (x e) in e)
16 (spawn an)
17 (send e e)
18 (react-to pn rn)
19 (remove rn pn)
20 (remove-reactions pn)
21 (e ...)
22 (~ e ...)
23 (aop e e)
24 (lop e e)
25 (cop e e)
26 v)
27
28 (aop ::= + - / *)
29 (lop ::= and andThen or)
30 (cop ::= == >= <= > <)
31 (v ::= nil number integer string boolean atom)

32 (atom ::= (variable-prefix :))
33 (g ::= (when e))
34
35 (q ::= (m ...))

153

APPENDIX A. APPENDICES

Listing A.18 Source code of the NEST (Part 2)

36 (m ::= (x (t v ...)))
37 (p ::= pb
38 (pb g))
39
40 (pb ::= ep
41 (lop pb pb))
42
43 (ep ::= s
44 (s po pt ...)
45 (not s (window number u)))
46
47 (t ::= atom)
48
49 (s ::= (t att ...))
50
51 (att ::= x v)
52
53 (po ::= (count integer)
54 (every integer)
55 (window number u)
56 (debounce integer u)
57)
58
59 (pt ::= (fold e) (map e) (bind x))
60
61 ;; time units
62 (u ::= secs mins hours days weeks)
63
64 (pl ::= ((pn . (p (m ...))) ...))
65
66 (rl ::= ((rn . (e)) ...))
67 (pr ::= ((pn . (rn ...)) ...))
68 (ml ::= ((x . (x)) ...))
69
70 (x l i pn rn an ::= variable-not-otherwise-mentioned)

71 (id ::= variable-not-otherwise-mentioned)

72)

154

A.8. NEST SEMANTICS IN REDEX

Listing A.19 Source code of the NEST (Part 3)

73 (define-extended-language NEST-R NEST
74 (e ::= pe re)
75 (g ::= nil)
76 (v ::= rf)
77
78 (rf ::= (ref id))
79
80 (K ::= (a ... A a ...))
81 (A ::=
82 hole
83 (pl rl (actor id q pr E)))
84
85 (E ::=
86 hole
87 (v ... E e ...)
88 (let (x E) in e)
89 (send E e)
90 (send v E)
91 (aop E e)
92 (aop v E)
93 (cop E e)
94 (cop v E)
95)
96
97
98 (k ::= (a ...))
99 (a ::= (pl rl (actor id q pr e))

100 ((pl rl (actor id q pr e))))
101
102)
103
104 (define-extended-language NEST-T NEST-R

105 (m ::= (v (t v ...)))
106)

155

APPENDIX A. APPENDICES

156

Bibliography

[1] AB, E. Otp design principles. URL: https://erlang.org/doc/
design_principles/des_princ.html. Accessed: 2019-05-21.

[2] AB, E. Dialyzer documentation. URL: https://erlang.org/doc/
man/dialyzer.html, 2021. Accessed: 2021-02-08.

[3] Abd Alrahman, Y., De Nicola, R., and Loreti, M. On the
power of attribute-based communication. In Formal Techniques for
Distributed Objects, Components, and Systems (2016), vol. 9688 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg.

[4] acatech (Ed.). Cyber-Physical Systems. Driving force for innova-
tion in mobility, health, energy and production (acatech POSITION
PAPER). Heidelberg et al.: Springer Verlag, 2011.

[5] Adi, A., and Etzion, O. Amit - the situation manager. The VLDB
Journal 13, 2 (2004), 177–203.

[6] AG, C. Networked mobility. URL: https://www.continental.
com/en/products-and-innovation/innovation/connectivity/
networked-mobility, 2021. Accessed: 2021-04-28.

[7] Agha, G., and Callsen, C. J. Actorspace: An open distributed
programming paradigm. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New
York, NY, USA, 1993), PPOPP ’93, ACM, pp. 23–32.

[8] Akdere, M., undefinedetintemel, U., and Tatbul, N. Plan-
Based Complex Event Detection across Distributed Sources. Proc.
VLDB Endow. 1, 1 (2008), 66–77.

157

https://erlang.org/doc/design_principles/des_princ.html
https://erlang.org/doc/design_principles/des_princ.html
https://erlang.org/doc/man/dialyzer.html
https://erlang.org/doc/man/dialyzer.html
https://www.continental.com/en/products-and-innovation/innovation/connectivity/networked-mobility
https://www.continental.com/en/products-and-innovation/innovation/connectivity/networked-mobility
https://www.continental.com/en/products-and-innovation/innovation/connectivity/networked-mobility

BIBLIOGRAPHY

[9] Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic,
N., and Studer, R. ETALIS: Rule-Based Reasoning in Event
Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 99–124.

[10] Arbab, F. Reo: a channel-based coordination model for component
composition. Math. Struct. Comput. Sci. 14, 3 (2004), 329–366.

[11] Barga, R. S., and Caituiro-Monge, H. Event correlation and
pattern detection in cedr. In Current Trends in Database Technology
– EDBT 2006 (Berlin, Heidelberg, 2006), vol. 4254 of Coordination
Languages and Models, Springer Berlin Heidelberg, pp. 919 – 930.

[12] Benton, N., Cardelli, L., and Fournet, C. Modern concurrency
abstractions for c#. In ECOOP 2002 - Object-Oriented Programming
(2002), B. Magnusson, Ed., vol. 2374 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 415–440.

[13] Clebsch, S., Drossopoulou, S., Blessing, S., and McNeil,
A. Deny capabilities for safe, fast actors. In Proceedings of the 5th
International Workshop on Programming Based on Actors, Agents,
and Decentralized Control (New York, NY, USA, 2015), AGERE!
2015, Association for Computing Machinery, p. 1–12.

[14] Cugola, G., and Margara, A. Raced: An adaptive middleware
for complex event detection. In Proceedings of the 8th International
Workshop on Adaptive and Reflective MIddleware (New York, NY,
USA, 2009), ARM ’09, Association for Computing Machinery.

[15] Cugola, G., and Margara, A. Tesla: A formally defined event
specification language. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems (New York, NY, USA,
2010), DEBS ’10, Association for Computing Machinery, p. 50–61.

[16] Cugola, G., and Margara, A. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv.
44, 3 (June 2012).

[17] De Nicola, R., Duong, T., Inverso, O., and Trubiani, C.
Aerlang: Empowering erlang with attribute-based communication.
Science of Computer Programming 168 (2018), 71 – 93.

158

BIBLIOGRAPHY

[18] Demers, A., Gehrke, J., Hong, M., Riedewald, M., and
White, W. Towards expressive publish/subscribe systems. In Pro-
ceedings of the 10th International Conference on Advances in Database
Technology (Berlin, Heidelberg, 2006), EDBT’06, Springer-Verlag,
p. 627–644.

[19] Dinges, P., and Agha, G. Scoped synchronization constraints
for large scale actor systems. In Coordination Models and Languages
(Berlin, Heidelberg, 2012), M. Sirjani, Ed., Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 89–103.

[20] Eugster, P., and Jayaram, K. R. Eventjava: An extension of java
for event correlation. In ECOOP 2009 – Object-Oriented Programming
(Berlin, Heidelberg, 2009), Springer Berlin Heidelberg, pp. 570–594.

[21] Felleisen, M., Findler, R. B., and Flatt, M. Semantics Engi-
neering with PLT Redex, 1 ed. The MIT Press, 2009.

[22] Forgy, C. L. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence 19, 1 (1982),
17–37.

[23] Fowler, S. An erlang implementation of multiparty session actors.
In Proceedings 9th Interaction and Concurrency Experience, ICE 2016,
Heraklion, Greece, 8-9 June 2016 (2016), M. Bartoletti, L. Henrio,
S. Knight, and H. T. Vieira, Eds., vol. 223 of EPTCS, pp. 36–50.

[24] Frølund, S., and Agha, G. A language framework for multi-object
coordination. In ECOOP’ 93 — Object-Oriented Programming (Berlin,
Heidelberg, 1993), O. M. Nierstrasz, Ed., Springer Berlin Heidelberg,
pp. 346–360.

[25] Frølund, S., and Agha, G. Abstracting interactions based on
message sets. In Object-Based Models and Languages for Concurrent
Systems (Berlin, Heidelberg, 1995), P. Ciancarini, O. Nierstrasz, and
A. Yonezawa, Eds., Springer Berlin Heidelberg, pp. 107–124.

[26] Ganssle, J. G. A guide to debouncing. URL: http://www.ganssle.
com/debouncing.htm. Accessed: 2020-10-01.

[27] Garnock-Jones, T., and Felleisen, M. Coordinated concurrent
programming in syndicate. In Programming Languages and Systems

159

http://www.ganssle.com/debouncing.htm
http://www.ganssle.com/debouncing.htm

BIBLIOGRAPHY

(Berlin, Heidelberg, 2016), P. Thiemann, Ed., Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, pp. 310–336.

[28] Gelernter, D. Generative communication in linda. ACM Trans.
Program. Lang. Syst. 7, 1 (Jan. 1985), 80–112.

[29] Geng, H., and Jamali, N. interActors: A Model for Separating
Communication Concerns of Concurrent Systems. Lecture Notes in
Computer Science. Springer International Publishing, Cham, 2018,
pp. 186–215.

[30] Gutierrez-Nolasco, S., and Venkatasubramanian, N. A re-
flective middleware framework for communication in dynamic environ-
ments. In On the Move to Meaningful Internet Systems 2002: CoopIS,
DOA, and ODBASE (Berlin, Heidelberg, 2002), R. Meersman and
Z. Tari, Eds., Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 791–808.

[31] Gyllstrom, D., Agrawal, J., Diao, Y., and Immerman, N. On
supporting kleene closure over event streams. In 2008 IEEE 24th
International Conference on Data Engineering (April 2008), pp. 1391–
1393.

[32] Haller, P., and Van Cutsem, T. Implementing joins using
extensible pattern matching. In Coordination Models and Languages.
Springer Berlin Heidelberg, Berlin, Heidelberg, June 2008, pp. 135–
152.

[33] Harrison, J. Runtime type safety for erlang/otp behaviours. In
Proceedings of the 18th ACM SIGPLAN International Workshop on
Erlang (New York, NY, USA, 2019), Erlang 2019, Association for
Computing Machinery, p. 36–47.

[34] Hewit, C., and Smith, B. A plasma primer (draft). AI Lab Working
Paper 92, MIT (1975).

[35] Hewitt, C., Bishop, P., and Steiger, R. A universal modular
actor formalism for artificial intelligence. In IJCAI’73: Proceedings of
the 3rd International Joint Conference on Artificial Intelligence (San
Francisco, CA, USA, 1973), IJCAI’73, Morgan Kaufmann Publishers
Inc., p. 235–245.

160

BIBLIOGRAPHY

[36] Honda, K., Yoshida, N., and Carbone, M. Multiparty asyn-
chronous session types. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (New York, NY, USA, 2008), POPL ’08, Association for Com-
puting Machinery, p. 273–284.

[37] IMEC. City of things. Zenodo. Jul. 2019. DOI:
10.5281/zenodo.3972329.

[38] Inc., E. Esper documentation. URL: https://www.nasa.gov/nh/
pluto-the-other-red-planet, 2015. Accessed: 2020-10-26.

[39] Kambona, K. Reentrancy & Scoping in Rule Engines for Cloud-based
Applications. PhD thesis, Vrije Universiteit Brussel, Brussels, BE, 06
2018.

[40] Khosravi, R., and Sabouri, H. Using coordinated actors to model
families of distributed systems. In Coordination Models and Languages
(Berlin, Heidelberg, 2012), M. Sirjani, Ed., Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 74–88.

[41] Klein, C., Clements, J., Dimoulas, C., Eastlund, C.,
Felleisen, M., Flatt, M., McCarthy, J. A., Rafkind, J.,
Tobin-Hochstadt, S., and Findler, R. B. Run your research:
On the effectiveness of lightweight mechanization. In Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New York, NY, USA, 2012), POPL ’12,
Association for Computing Machinery, p. 285–296.

[42] Laichi, B., and Sami, Y. Atc: actors with temporal constraints. In
Fourth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing. ISORC 2001 (2001), IEEE Computer Society,
pp. 306–313.

[43] Li, G., and Jacobsen, H.-A. Composite subscriptions in content-
based publish/subscribe systems. In Middleware 2005 (Berlin, Heidel-
berg, 2005), G. Alonso, Ed., Springer Berlin Heidelberg, pp. 249–269.

[44] Mei, Y., and Madden, S. Zstream: A cost-based query processor
for adaptively detecting composite events. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data

161

https://doi.org/10.5281/zenodo.3972329
https://www.nasa.gov/nh/pluto-the-other-red-planet
https://www.nasa.gov/nh/pluto-the-other-red-planet

BIBLIOGRAPHY

(New York, NY, USA, 2009), SIGMOD ’09, Association for Computing
Machinery, p. 193–206.

[45] Minsky, N. H., and Ungureanu, V. Regulated coordination
in open distributed systems. In Coordination Languages and Mod-
els (Berlin, Heidelberg, 1997), D. Garlan and D. Le Métayer, Eds.,
vol. 1282 of Lecture Notes in Computer Science, Springer Berlin Hei-
delberg, pp. 81–97.

[46] Neykova, R., and Yoshida, N. Multiparty session actors. In Co-
ordination Models and Languages (Berlin, Heidelberg, 2014), E. Kühn
and R. Pugliese, Eds., Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 131–146.

[47] Paula, I. S. Jcthorn - extending thorn with joins and chords. Master’s
thesis, Imperial College London, Department of Computing Imperial
College London, June 2010.

[48] Pietzuch, P. R., Shand, B., and Bacon, J. Composite event
detection as a generic middleware extension. IEEE Network 18, 1
(2004), 44–55.

[49] Plociniczak, H., and Eisenbach, S. Jerlang: Erlang with joins. In
Coordination Models and Languages: 12th International Conference,
COORDINATION 2010, Amsterdam, The Netherlands, June 7-9,
2010. Proceedings (Berlin, Heidelberg, 2010), D. Clarke and G. Agha,
Eds., Springer Berlin Heidelberg, pp. 61–75.

[50] Prokopec, A., and Odersky, M. Isolates, channels, and event
streams for composable distributed programming. In 2015 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!) (New York, NY, USA, 2015),
Onward! 2015, Association for Computing Machinery, p. 171–182.

[51] Qi, J., Kim, Y., Chen, C., Lu, X., and Wang, J. Demand
response and smart buildings: A survey of control, communication,
and cyber-physical security. ACM Trans. Cyber-Phys. Syst. 1, 4 (Oct.
2017).

[52] Ren, S., Agha, G. A., and Saito, M. A modular approach to
programming distributed real-time systems. Journal of Parallel and
Distributed Computing 36, 1 (1996), 4 – 12.

162

BIBLIOGRAPHY

[53] Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., and
Shen, L. Actors, roles and coordinators — a coordination model for
open distributed and embedded systems. In Coordination Models and
Languages (Berlin, Heidelberg, 2006), P. Ciancarini and H. Wiklicky,
Eds., Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp. 247–265.

[54] Renaux, T. A Distributed Logic Reactive Programming Model and
its Application to Monitoring Security. PhD thesis, Vrije Universiteit
Brussel, Brussels, BE, 03 2019.

[55] Riedl, M., Zipper, H., Meier, M., and Diedrich, C. Automation
meets cps. IFAC Proceedings Volumes 46, 7 (2013), 216–221. 11th
IFAC Workshop on Intelligent Manufacturing Systems.

[56] Rodriguez Avila, H. Advanced Join Patterns for the Actor Model
based on CEP Techniques (Scenarios solutions). Zenodo. Aug. 2019.
DOI: 10.5281/zenodo.3971130.

[57] Rodriguez Avila, H. Hass topics. Zenodo Jul. 2019. DOI:
10.5281/zenodo.3611271.

[58] Rodriguez Avila, H. Home assistant - automation scenarios poll.
Zenodo. Aug. 2019. DOI: 10.5281/zenodo.3465385.

[59] Rodriguez Avila, H. Hubitat - automation scenarios poll. Zenodo.
Aug. 2019. DOI: 10.5281/zenodo.3464966.

[60] Rodriguez Avila, H. Openhab - automation scenarios poll. Zenodo.
Aug. 2019. DOI: 10.5281/zenodo.3666325.

[61] Rodriguez Avila, H. Openhab topics. Zenodo. Jul. 2019. DOI:
10.5281/zenodo.3611168.

[62] Rodriguez Avila, H. Smartthings - automation scenarios poll.
Zenodo. Aug. 2019. DOI: 10.5281/zenodo.3464952.

[63] Rodriguez Avila, H. Statistic analysis of seven smart-home sce-
narios implemented in openHAB, Hass, Elixir, and Sparrow, Nov.
2020.

163

https://doi.org/10.5281/zenodo.3971130
https://doi.org/10.5281/zenodo.3611271
https://doi.org/10.5281/zenodo.3465385
https://doi.org/10.5281/zenodo.3464966
https://doi.org/10.5281/zenodo.3666325
https://doi.org/10.5281/zenodo.3611168
https://doi.org/10.5281/zenodo.3464952

BIBLIOGRAPHY

[64] Scalas, A., and Yoshida, N. Lightweight session programming in
scala. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016 (2016), B. Lerner and S. Krishnamurthi, Eds., vol. 56 of
30th European Conference on Object-Oriented Programming (ECOOP
2016), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 21:1–
21:28.

[65] Scalas, A., Yoshida, N., and Benussi, E. Effpi: Verified message-
passing programs in dotty. In Proceedings of the Tenth ACM SIG-
PLAN Symposium on Scala (New York, NY, USA, 2019), Scala ’19,
Association for Computing Machinery, p. 27–31.

[66] Scholliers, C. Ambient Contracts. PhD thesis, Vrije Universiteit
Brussel, Brussels, BE, 03 2013.

[67] Scholliers, C., Boix, E. G., and De Meuter, W. Totam:
Scoped tuples for the ambient. Electronic Communications of the
EASST 19 (2009).

[68] Song, M., and Ren, S. Coordination operators and their composi-
tion under the actor-role-coordinator (arc) model. SIGBED Review 8,
1 (Mar. 2011), 14–21.

[69] Sulzmann, M., Lam, E. S. L., and Weert, P. Actors with
multi-headed message receive patterns. In Coordination Models and
Languages. Springer Berlin Heidelberg, 12 2008, pp. 315–330.

[70] Team, A. F. C. Flinkcep - complex event process-
ing for flink. URL: https://ci.apache.org/projects/flink/
flink-docs-stable/dev/libs/cep.html, 2020. Accessed: 2020-10-
26.

[71] Team, C. Coq homepage. URL: https://coq.inria.fr, 2021.
Accessed: 2021-02-11.

[72] Team, E. C. Guards - official documentation. Zenodo. Jul. 2019.
DOI: 10.5281/zenodo.3971124.

[73] Team, E. C. Erlang homepage. URL: https://www.erlang.org,
2020. Accessed: 2020-10-26.

164

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://coq.inria.fr
https://doi.org/10.5281/zenodo.3971124
https://www.erlang.org

BIBLIOGRAPHY

[74] Team, S. Scribble homepage. URL: http://www.scribble.org, 2019.
Accessed: 2019-08-19.

[75] Team, S. C. Scala homepage. URL: https://www.scala-lang.org,
2020. Accessed: 2020-10-26.

[76] Team, T. E. Elixir homepage. URL: https://elixir-lang.org,
2020. Accessed: 2020-10-26.

[77] Team, T. E. Supervisor behaviour. URL: https://hexdocs.pm/
elixir/Supervisor.html, 2020. Accessed: 2020-10-26.

[78] Team, T. R. Racket homepage. URL: https://racket-lang.org,
2020. Accessed: 2020-09-22.

[79] Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B.,
and Agha, G. Rosette: An object-oriented concurrent systems
architecture. SIGPLAN Not. 24, 4 (Sept. 1988), 91–93.

[80] Trono, J. A new exercise in concurrency. ACM SIGCSE Bulletin
26 (09 1994), 8–10.

[81] Trottier-Hebert, F. Syntax in functions. pattern matching. URL:
https://learnyousomeerlang.com/syntax-in-functions, 2013.
Accessed: 2021-03-18.

[82] Van Cutsem, T., Gonzalez Boix, E., Scholliers, C., Lom-
bide Carreton, A., Harnie, D., Pinte, K., and De Meuter,
W. Ambienttalk: programming responsive mobile peer-to-peer appli-
cations with actors. Computer Languages, Systems & Structures 40,
3 (2014), 112 – 136.

[83] Van Ham, J. M., Salvaneschi, G., Mezini, M., and Noyé,
J. Jescala: Modular coordination with declarative events and joins.
In Proceedings of the 13th International Conference on Modularity
(New York, NY, USA, 2014), MODULARITY ’14, Association for
Computing Machinery, p. 205–216.

[84] Varela, C., and Agha, G. A hierarchical model for coordination of
concurrent activities. In Coordination Languages and Models (Berlin,
Heidelberg, 1999), P. Ciancarini and A. L. Wolf, Eds., vol. 1594

165

http://www.scribble.org
https://www.scala-lang.org
https://elixir-lang.org
https://hexdocs.pm/elixir/Supervisor.html
https://hexdocs.pm/elixir/Supervisor.html
https://racket-lang.org
https://learnyousomeerlang.com/syntax-in-functions

BIBLIOGRAPHY

of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
pp. 166–182.

[85] Varela, C., and Agha, G. Programming dynamically reconfig-
urable open systems with salsa. SIGPLAN Notices 36, 12 (Dec. 2001),
20–34.

[86] Wu, E., Diao, Y., and Rizvi, S. High-performance complex event
processing over streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data (New York, NY,
USA, 2006), SIGMOD ’06, Association for Computing Machinery,
p. 407–418.

[87] Yonezawa, A., Briot, J.-P., and Shibayama, E. Object-oriented
concurrent programming in abcl/1. In Conference Proceedings on
Object-Oriented Programming Systems, Languages and Applications
(New York, NY, USA, 1986), OOPSLA ’86, Association for Computing
Machinery, p. 258–268.

[88] Zhang, Y., Qiu, M., Tsai, C.-W., Hassan, M., and Alamri, A.
Health-cps: Healthcare cyber-physical system assisted by cloud and
big data. IEEE Systems Journal 11 (08 2015), 1–8.

[89] Zimmer, D., and Unland, R. On the semantics of complex events
in active database management systems. In Proceedings of the 15th
International Conference on Data Engineering (Washington, DC, USA,
1999), ICDE ’99, IEEE Computer Society, pp. 392–399.

166

	Introduction
	Research Context
	Problem Statement
	Research Goal
	Approach
	Contributions
	Publications

	Roadmap

	Motivation
	Smart Home Scenarios
	Proof of Scenarios' Relevance
	Message Synchronization Requirements
	Conclusion

	Coordination of Actors and CEP Operators
	Coordination of Actor-based Systems
	The canonical Actor Model
	Communication Model Extensions
	Monitor & Verification
	Local Synchronization

	Complex Event Processing
	Conclusion

	Sparrow: A DSL for Actor Coordination
	Elixir in a Nutshell
	Sparrow by Example
	Enhanced Actors
	Language Syntax Overview

	Sparrow's Pattern Language
	Elementary Patterns
	Composite Patterns
	Accumulation Patterns

	Sparrow's Reaction Language
	Conclusion

	NEST: A Formal Semantics of Sparrow
	Operational Semantics
	Syntax
	Semantic Entities
	Reduction Rules

	NEST Calculus in Redex
	A Mechanized NEST Model
	Randomized Tests of NEST's Patterns
	NEST compared to Sparrow

	Conclusion

	Sparrow: An Elixir DSL Implementation
	DSLs in Elixir
	Macros: the good
	Macros: limitations

	Sparrow Actors
	Message Patterns
	Pattern Reactions

	JuPITer: A Pattern Detection Engine for Sparrow
	A RETE-based Matching Algorithm

	Tool Support
	Visual Studio Code Extension
	Real-time Monitoring Tool

	Conclusion

	Validation
	A Code Comparison Analysis of Scenario 5
	Quantitative Evaluation
	Conclusion

	Conclusion
	Summary and Contributions
	Shortcomings and Future Work
	Closing Remarks

	Appendices
	LoC Breakdown of the Smart-Home Scenario Solutions
	Source code of the Sparrow.Actor module
	Statistical Analysis for Pattern Definition
	Statistical Analysis for State Management
	Statistical Analysis for Windowing Management
	Normalization of LoC
	PLT Redex in a Nutshell
	NEST Semantics in Redex

