
Advanced Debugging Techniques to Handle
Concurrency Bugs in Actor-based

Applications

Carmen Torres López

Dissertation submitted in fulfillment of the
requirement for the degree of Doctor of Sciences

June 29, 2021

Promotor:
Prof. Dr. Elisa González Boix, Vrije Universiteit Brussel

Jury:
Prof. Dr. Beat Signer, Vrije Universiteit Brussel, Belgium (chair)

Prof. Dr. Viviane Jonckers, Vrije Universiteit Brussel, Belgium (secretary)
Prof. Dr. Kris Steenhaut, Vrije Universiteit Brussel, Belgium

Prof. Dr. Philipp Haller, KTH Royal Institute of Technology, Sweden
Dr. Stéphane Ducasse, Inria RMoD Group, France

Vrije Universiteit Brussel
Faculty of Sciences and Bio-engineering Sciences

Department of Computer Science
Software Languages Lab

© 2021 Carmen Torres López

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / fax : +32 2 629 33 44
crazycopy@vub.ac.be
www.crazycopy.be

ISBN 9789493079892

NUR 989

All rights reserved. No part of this publication may be produced in any form by print,
photoprint, microfilm, electronic or any other means without permission from the author.

To Harrison

“As soon as we started programming, we found to our
surprise that it wasn’t as easy to get programs right as we

had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large part

of my life from then on was going to be spent in finding
mistakes in my own programs."

— Maurice Wilkes, "The Design and Use of the EDSAC".
Lecture delivered at the Digital Computer Museum,

September 23, 1979.

Abstract

With the advancements of multicore hardware, concurrent and parallel programming
has become an essential part of software development. The actor model is an attractive
foundation for developing concurrent applications because they can avoid data races by
design since actors are isolated concurrent entities that do not share state. However,
actor-based programs are not immune to concurrency bugs, e.g., deadlocks can still
happen at the message level. Identifying concurrency bugs is a challenging task that
consumes time and effort. Unfortunately, the non-deterministic behavior of concurrent
programs makes it hard to reproduce bugs. Besides, the mere presence of a debugger can
affect the program’s behavior, a condition known as the probe-effect.

This dissertation explores the design and implementation of advanced online debug-
ging techniques for actor-based programs. First, we created a taxonomy of concurrency
bugs that can occur in actor-based programs, divided into two categories: lack of progress
issues and message protocol violations. Using this taxonomy, we classified concurrency
bugs found in the literature of actor-based programs. This systematic study drives our
exploration of debugging techniques to aid the process of finding the root cause of con-
currency bugs.

Second, we proposed catalogs of breakpoint types on messages and stepping oper-
ations that combine sequential and message stepping. We implemented such message-
based breakpoints and stepping operations with visualizations for message causality and
asynchronous stack traces in Apgar, a proof of concept debugger for SOMns programming
language in IntelliJ IDE. To evaluate the proposed debugging techniques in Apgar, we
conducted a user study following an experimental research design. Although we cannot
generalize its results, we obtained positive assessments from participants regarding the
proposed debugging techniques, not only to identify the root cause of concurrency bugs
but to understand the program’s behavior.

Third, we explore a novel technique to build probe-effect free debuggers called multi-
verse debugging. Multiverse debugging is a new approach for debugging non-deterministic
programs that allows developers to observe all possible execution paths of a parallel pro-
gram and debug it interactively. We implemented Voyager, a proof of concept multiverse
debugger based on a formal operational semantics of an actor-based language. Finally,
we provide a proof of non-interference, i.e., we prove that observing the behavior of a
program by the debugger does not affect the behavior of that program and vice versa.

i

Together, the advanced debugging techniques implemented for SOMns language and
the proposed operational semantics of a multiverse debugger for actors presented in this
dissertation provide a novel set of interactive debugging tools to help developers identify
concurrency bugs in actor-based applications.

Samenvatting

Dankzij vorderingen in multicore hardware is concurrent en parallel programmeren een es-
sentieel onderdeel geworden van softwareontwikkeling. Het actor model is een aantrekke-
lijke basis voor het ontwikkelen van concurrente toepassingen aangezien data races verme-
den worden doordat actoren volledig geïsoleerde entiteiten vormen die geen staat delen.
Actor-gebaseerde programma’s zijn echter niet volledig immuun voor concurrentie bugs,
bv. deadlocks kunnen nog steeds voorkomen op berichtniveau. Het identificeren van bugs
in concurrente toepassingen is een uitdagende taak die veel tijd en moeite kost. Helaas
maakt het niet-deterministische gedrag van concurrerende programma’s het moeilijk om
deze bugs na te bootsen. Bovendien kan de aanwezigheid van een debugger het gedrag
van het programma beïnvloeden, een probleem dat bekend staat als het probe-effect.

Deze dissertatie onderzoekt het ontwerp en de implementatie van geavanceerde online
foutopsporingstechnieken voor actorprogramma’s. Allereerst hebben we een taxonomie
gemaakt van concurrente bugs die kunnen voorkomen in toepassingen die actoren ge-
bruiken, verdeeld over twee categorieën: gebrek aan voortgang, en schendingen van het
berichtprotocol. Met behulp van deze taxonomie hebben we de veel voorkomende en
in de literatuur gedocumenteerde types van concurrente bugs geclassificeerd. Deze sys-
tematische studie vormt de leidraad voor ons onderzoek naar debugging technieken die
kunnen helpen bij het opsporen van concurrente bugs.

Verder hebben we een catalogi samengesteld van breakpoint types voor berichten
en stepping-operaties die van toepassing zijn in actor-systemen. We hebben dergeli-
jke breakpoints en stepping-operaties geïmplementeerd in Apgar, een debugger voor de
SOMns programmeertaal in IntelliJ IDE, waarmee we de causaliteit van berichten en
asynchrone stack-traces kunnen visualiseren. Om de voorgestelde technieken te evalueren
hebben we een gebruikersstudie uitgevoerd. Alhoewel we de resultaten niet kunnen ve-
ralgemenen, kregen we positieve beoordelingen van de deelnemers over de voorgestelde
foutopsporingstechnieken, niet alleen om de onderliggende oorzaak van concurrente bugs
te identificeren, maar ook om het gedrag van het programma beter te vatten.

We onderzochten ook een nieuwe techniek om probe-effect vrije debuggers te bouwen,
welke we multiverse debugging noemen. Multiverse debugging is een nieuwe benadering
voor het debuggen van niet-deterministische programma’s dat ontwikkelaars in staat
stelt om alle mogelijke executiepaden van een parallel programma te observeren en het
programma interactief te debuggen. We hebben Voyager geïmplementeerd, een proof-

iii

of-concept multiversum debugger gebaseerd op een formele operationele semantiek van
actor-gebaseerde talen. Tenslotte leveren we een bewijs van non-interferentie, m.a.w. we
bewijzen dat het geobserveerde gedrag niet beïnvloed werd door de debugger en vice
versa.

Samen bieden de geavanceerde debugging technieken die we hebben ontwikkeld al-
sook de voorgestelde operationele semantiek van de multiverse debugger voor actoren,
gepresenteerd in dit proefschrift, een nieuwe verzameling van interactieve debugging tools
om ontwikkelaars te helpen bij het identificeren van concurrente bugs in actor-gebaseerde
toepassingen.

Acknowledgements

I wish to express my deepest gratitude to Elisa González Boix, the promotor of this
thesis. I cannot thank her enough for the opportunity she gave me to start a Ph.D. at
the Software Languages Lab. Her advice, guidance and unconditional support during all
these years have been essential for completing this research. Thank you so much for the
discussions for every paper, the late work hours, the revision of this dissertation, and
mainly for inspiring me to work in the research field of debugging.

I am greatly indebted to Stefan Marr. From the start of this research, his insightful
comments have helped me to crystallize ideas and focus on the goals of this dissertation.
I truly thank him for his patience with me to get acquainted with SOMns, for reviewing
each paper, and for always finding the time to answer my technical questions.

Many thanks to both! Elisa and Stefan, I am deeply grateful for your guidance and
persistence for me to become a better researcher.

I also want to sincerely thanks Christophe Scholliers for his guidance and enthusiasm
that helped me to materialize the multiverse debugging idea, “...to boldly debug where no
one has debugged before". I truly appreciate his time for helping me to get familiar with
formalisms and mathematical proofs.

I would like to thank the members of my jury for the time they spent reading this
thesis and their suggestions for the final version: Prof. Dr. Beat Singer, Prof. Dr.
Viviane Jonckers, Prof. Dr. Kris Steenhaut, Prof. Dr. Philipp Haller, and Dr. Stéphane
Ducasse.

Being part of the MetaConc project gave me the opportunity to work with researchers
from different universities. I want to give a special thanks to Dominik Aumayr and
Hanspeter Mössenböck from the Johannes Kepler University in Austria. To Dominik for
his help to understand the technical details of SOMns tracing mechanism. To Hanspeter
for his support on the initial ideas of this research. Many thanks also to Robbert Gurdeep
Singh from UGent, for his collaboration and work on the Voyager frontend. And I
appreciate very much the help of Clément Bera in the initial version of the asynchronous
stack trace for SOMns.

Carl Sagan said that “Science is more than a body of knowledge, is a way of think-
ing...". It has been a privilege for me to have worked at the Software Languages Lab
(SOFT) that encourages scientific thinking in researchers. I would like to thank all my

v

colleagues (professors, pre-docs and post-docs) for their feedback in every research pre-
sentation I did at the lab. Moreover, I want to express my gratitude to the members
of the Distribution and Concurrency research group (DisCo): Matteo, Jim, Kevin, Scull
and Isaac for their comments and support during the development of this research. A
special thanks to Scull, my colleague for many years, for being a good friend that I can
always count on.

I want to thanks also to Louise and Sander, two students that worked with me on the
initial ideas about interrogative debugging and the first version of turns visualization,
respectively.

I owe a big thanks to the participants of my user study, from the RMOD group at
INRIA in France to the current and old SOFTies and guests.

My personal thanks go to my friends and family. I want to express my gratitude to
my father, José Luis Torres Carbonell, for sparking my interest in science since I was a
child. I want to specially thanks to my mother, Carmen Isabel López Damas, my best
friend and dedicated mother who is there for me every time I need her. Without her
support all these years, this thesis would not have been finished. Thank you so much,
mom! (Quiero agradecer especialmente a mi madre, Carmen Isabel López Damas, mi
mejor amiga y madre dedicada que está ahí para mi cada vez que la necesito. Sin su
apoyo todos estos años, esta tesis no se habría terminado. ¡Muchas gracias mamá!)

There is a person without whom I would not have known Belgium or SOFT: Humberto
Rodríguez Avila. I want to thank him for encouraging me to pursue a Ph.D. and for his
support during my research.

Last but not least, I want to thank my son, Harrison Rodríguez Torres. Although he
has only three years old, I want to thank him because he has been my strength to finish
my research in the last year. For Harrison, “Remember to look up at the stars and not
down at your feet. Never give up work. Work gives you meaning and purpose and life
is empty without it. If you are lucky enough to find love, remember it is there and don’t
throw it away" (Stephen Hawking).

The work in this dissertation has been founded by the FWO MetaConc research
project (G004816N).

Carmen Torres López
June 2021

Contents

1 Introduction 1
1.1 Research Context . 3
1.2 Problem Statement . 3
1.3 Research Goals . 5
1.4 Research Approach . 6
1.5 Contributions . 6

1.5.1 Technical Contributions . 7
1.5.2 Supporting Publications . 8

1.6 Dissertation Outline . 9

2 Concurrency Bugs in Actor-based Programs 11
2.1 The Actor Model . 11

2.1.1 Processes Model . 12
2.1.2 Communicating Event-Loops Model 13

2.2 Terminology about Concurrency Bugs . 14
2.3 Taxonomy of Concurrency Bugs for Actor-based Programs 14

2.3.1 Lack of Progress Issues . 15
2.3.2 Message Protocol Violations . 19
2.3.3 Comparison with Existing Terminology in Literature 23
2.3.4 Issues Mixing Actor Libraries with other Concurrency Models . . . 24

2.4 Study of Concurrency Bugs in Actor-based Programs 25
2.4.1 Lack of Progress Issues . 27
2.4.2 Message Protocol Violations . 28
2.4.3 Concurrency Bugs by Actor Variants 30

2.5 Related Studies of Concurrency Bugs in Actor-based Programs 31
2.5.1 Field Studies in Akka programs . 32
2.5.2 Field Study in Node.js programs 35
2.5.3 Conclusion from the Related Field Studies 37

2.6 Heisenbugs and Probe-Effect . 37

vii

2.7 Conclusion . 38

3 State of the Art of Techniques to Handle Concurrency Bugs in Actor-
based Programs 39
3.1 Identifying and Solving Concurrency Bugs 39
3.2 Debugging Techniques . 40

3.2.1 Online Debugging Techniques . 41
3.2.2 Offline Debugging Techniques . 42

3.3 State of the Art Techniques to Handle Concurrency Bugs 43
3.3.1 Online Debuggers . 44
3.3.2 Offline Debuggers . 45
3.3.3 Visualization Techniques . 46
3.3.4 Static Analysis . 52
3.3.5 Testing . 54
3.3.6 Discussion based on our Taxonomy of Concurrency Bugs 56

3.4 Conclusion . 56

4 SOMns: a Concurrent Actor-based Language 61
4.1 The SOMns Programming Language . 61
4.2 Object-oriented Programming in SOMns 62

4.2.1 Classes . 62
4.2.2 Objects . 64
4.2.3 Synchronous Messages . 66
4.2.4 Block Closures . 66

4.3 Concurrent Programming in SOMns . 67
4.3.1 Actor Creation . 68
4.3.2 Asynchronous Messages . 69
4.3.3 Promises . 70

4.4 SOMns: a Language Implemented on Top of Truffle 73
4.4.1 Building Tools with Truffle Instrumentation API 76
4.4.2 Implementation of Asynchronous Message Passing in SOMns . . . 81

4.5 Conclusion . 86

5 Online Debugging Techniques for Actor-based Programs 87
5.1 Design of Online Debugging Techniques for Actor-based Programs 87

5.1.1 Message Breakpoints . 90
5.1.2 Message Stepping . 94
5.1.3 Trace-based Visualizations . 97
5.1.4 Asynchronous Stack Trace . 101
5.1.5 Advanced Visualization Techniques 102

5.2 Apgar, a Proof of Concept Online Message-oriented Debugger for SOMns 103
5.2.1 Architecture Overview . 104
5.2.2 Apgar Frontend . 105

5.3 Extension to Kómpos Protocol . 109
5.3.1 Meta Model . 111
5.3.2 Debugger Messages . 113
5.3.3 Trace Events . 114

5.4 Comparison to Related Work . 115
5.5 Conclusion . 117

6 Implementation of Online Debugging Techniques for SOMns 119
6.1 Apgar Backend (Medeor), Debugging Support in SOMns 119

6.1.1 Message Breakpoints . 120
6.1.2 Message Stepping . 125
6.1.3 Trace-based Visualizations . 129
6.1.4 Asynchronous Stack Trace . 129

6.2 Apgar Frontend, an IntelliJ Plugin . 131
6.2.1 A Custom Language Support Plugin 131

6.3 Conclusion . 135

7 Evaluation of Online Debugging Techniques for Actor-based Programs137
7.1 Design of the User Study . 137

7.1.1 A Mixed Methods Experimental Research Design 138
7.1.2 Experiment Planning . 141

7.2 A Between-Subjects Research Design . 143
7.2.1 Random Assignment of Matched Participants 143
7.2.2 Debugging Assignments . 144
7.2.3 Posttest Design . 144

7.3 Results . 145
7.3.1 Participants Profile . 145
7.3.2 Quantitative Results . 146
7.3.3 Qualitative Results . 151
7.3.4 Overview of the Results . 162

7.4 Threats to Validity in Mixed Methods Experimental Research 163
7.4.1 Internal Validity Threats . 164

7.5 Discussion . 167
7.6 Conclusion . 169

8 Online Debugging Techniques Probe-Effect Free 171

8.1 Multiverse Debugging . 171
8.1.1 Recipe . 172
8.1.2 A Multiverse Debugger for a Small Language 173
8.1.3 Challenges . 176

8.2 Voyager, a Proof of Concept Multiverse Debugger for Actors 176
8.2.1 Debugging a Sample Program . 177
8.2.2 Overview of a Debugging Session 179

8.3 Voyager Calculus, an Implementation of a Multiverse Debugger for Actor-
based Programs . 181
8.3.1 Syntax and Operational Semantics of the AmbientTalk Language . 182
8.3.2 Syntax and Operational Semantics of the Voyager Debugger 184

8.4 Discussion . 190
8.4.1 Static Analysis and Multiverse Debugging 191

8.5 Proof of Non-Interference for a Multiverse Debugger 192
8.6 Related Formal Specifications for Debugging 193
8.7 Conclusion . 195

9 Conclusion and Future Work 197
9.1 Research Goals Revisited . 197
9.2 Restating the Contributions . 198
9.3 Discussion . 200
9.4 Future Work . 201
9.5 Concluding Remarks . 202

Appendices 205

Appendix A Catalog of Bugs Found in Actor-based Programs 207
A.1 Catalog of bugs found in actor-based programs 207

Appendix B SOMns Cheat Sheet 211

Appendix C Sample Programs in SOMns 215
C.1 Prime number . 215
C.2 Instant messenger . 217
C.3 Pythagoras calculator . 219

Appendix D Apgar Implementation Details 223
D.1 Medeor Implementation Classes . 223

D.1.1 Debugger Tool in Medeor . 223
D.1.2 Breakpoints and Stepping . 224

D.1.3 Trace Events for Actor State Inspection 226
D.1.4 Asynchronous Stack Trace . 227

D.2 Apgar Frontend Implementation Classes 227
D.3 Interactions between Apgar Frontend and Backend 229

D.3.1 Setup and Breakpoint Activation 229
D.3.2 Trace Information Request . 231
D.3.3 Stack Trace Information Request 233

Appendix E User Study Material 235
E.1 Code of conduct for the online experiment 235
E.2 Steps for random assignment . 235
E.3 Debugging assignments . 236

E.3.1 Assignment 1: FlightBooking . 236
E.3.2 Assignment 2: OrderPurchase . 239

E.4 Questionnaire . 244
E.5 Additional user study results . 246

E.5.1 Participants profile . 246
E.6 Threats to Validity in the Qualitative Study 249

Appendix F Debugger Configuration in PLT-Redex 251

Bibliography 253

Glossary 271

List of Figures

2.1 Overview of the CEL model (from [VCGBS+14]). 13

3.1 A visualized promise graph, extracted from [AZMT18]. 47
3.2 Filmstrip examples, extracted from [CBKB19]. 48
3.3 Screenshot of Akka-viz visualization for a dining philosophers program,

extracted from [Av16]. 49
3.4 Causeway GUI. It shows the process order (left) and message order (right)

views on the top, and on the bottom it shows the stack view (left) and
source code view (right). Extracted from [SCM09]. 50

3.5 Screenshot of Actoverse debugger, extracted from [SW17]. 51
3.6 Tracking causality visualization in IDeA. Actor pingActor2 sends a mes-

sage to pongActor2 which is marked in the same color (i.e., red). Extracted
from [MOM18]. 52

4.1 Overview of GraalVM architecture with SOMns as a guest language, in-
spired by [dVSH+18]. 75

4.2 Node specialization for profiling feedback and partial evaluation for getting
specialized machine code (i.e., speculate and optimize), extracted from
[dVSH+18]. 75

4.3 Deoptimization back to the AST interpreter handles speculation failures
(i.e., transfer back to the interpreter and reoptimize), extracted from
[dVSH+18]. 76

4.4 Truffle instrumentation of an AST node with a wrapper (W) and probe
(P) node, extracted from [dVSH+18]. 79

4.5 Messages classes in SOMns. 82
4.6 Message invocation protocol at sender side. The blue font stands for mes-

sage operations, the black font stands for AST node operations, the red
font stands for actor operations. Dotted circles represent AST nodes, and
normal circles represent objects. 84

xiii

4.7 Message invocation protocol at receiver side. The blue font stands for
message operations, the black font stands for AST node operations, the
red font stands for actor operations. Dotted circles represent AST nodes,
and normal circles represent objects. 85

5.1 Points of interest for debugging actor-based programs. 88
5.2 Mailbox visualization for a paused actor. 98
5.3 Graph visualization to show the process order with happened-before rela-

tionship between messages. Rectangles depict actors, ellipses depict turns
and arrows depict messages. Turn a is causally link to turn b. 100

5.4 Sentbox visualization that shows messages sent in order. The turn prop-
erty denotes the causal turn for the selected message in the sentbox. . . . 101

5.5 Asynchronous stack trace visualization that shows frames for method acti-
vations (white color), frames for asynchronous messages send (pink color)
and frames related to promise resolution (purple color). 102

5.6 Architecture of the Apgar debugger. 105
5.7 User interface for the Apgar frontend in IntelliJ IDE. 106
5.8 Actors and Mailbox views. 107
5.9 Actors visualization showing running (green color) and paused state (yel-

low color). 107
5.10 Turns and Sentbox views. 108
5.11 Frames and Variables views. 109
5.12 Breakpoints menu visualized for the asynchronous send operator. 110
5.13 Stepping commands. Sequential stepping: (1) step over (2) step into

(3) step out. Message stepping: (4) step to message receiver (5) step
to promise resolver (6) step to promise resolution (7) step next turn (8)
return from turn to promise resolution (9) step end turn. 110

5.14 Class diagram of the main elements of the Kómpos protocol. 112

7.1 Mixed methods experimental research design used in our user study. . . . 140
7.2 Actor model experience. 146
7.3 Debugging techniques. 147
7.4 Assignment success. 148
7.5 Violin plot with cumulative time for the control and experimental group. . 150
7.6 Violin plot with time values for the control and experimental group in each

assignment. 150

7.7 Comparison of participants’ evaluation of both experimental and control
groups about the debugging assignments. The percentage values shown
on the left represent the sum of negative answers for the statement, i.e.,
strongly disagree and disagree. The values in gray slots represent the
neutral answers. Finally, the percentage values on the right represent
positive answers to the question, i.e., agree and strongly agree. 152

7.8 Comparison of participants’ evaluation of the experimental group about
the debugging features. Percentages work similar as in Figure 7.7. 154

7.9 Violin plot that shows a correlation between participants expertise and
their perception about the advanced debugging features. The 5-point Lik-
ert scale is represented in the Y-axis, where 1 = strongly disagree, 2 =
disagree, 3 = neutral, 4 = agree and 5 = strongly agree. The X-axis
represents the statements about the experiment. 155

7.10 Debugging operations used for successful and unsuccessful assignments in
the experimental group, grouped by sequential operations and message-
based operations. 156

7.11 Cumulative usage of the debugging operations. 157
7.12 Debugging operations correlation with years of experience. 158
7.13 Participants perception about the time pressure. 159

8.1 Semantic entities and reduction rules of the λamb calculus. 174
8.2 Multiverse evaluation graph of a λamb program. 174
8.3 Semantic entities and reduction rules of the Damb calculus. 175
8.4 Multiverse debugging graph of a λamb program. 175
8.5 Overview of the Voyager tool. 179
8.6 A debugging session in Voyager for the program displayed in listing 8.1. . 180
8.7 Application of a shortest-path-to-end-states query to the program dis-

played in Listing 8.1. 182
8.8 Semantic entities of the atf calculus. 183
8.9 Extended semantic entities in atf for debugging in Voyager calculus. . . . 184
8.10 Semantic entities of the Voyager calculus. 185

C.1 Conceptual diagram of the prime number program. For simplicity the
isPrime message is represented as a message sent to a far reference in the
diagram, however, in the implementation shown in listing C.1 this message
is sent to promise math, the instance created for the Math actor. 215

C.2 Conceptual diagram of the Instant messenger program. For simplicity of
the diagram we only show one promise message, i.e., name. Besides, the
startChat message is represented as a message sent to a far reference in
the diagram, however, in the implementation shown in listing C.2 this mes-
sage is sent to promise messenger1 and messenger2, which are instances
created for the InstantMessenger actor. 217

C.3 Conceptual diagram of the Pythagoras calculator program. For simplicity
of the diagram we only show one promise message, i.e., sqrt. Besides, the
computePerimeter message is represented as a message sent to a far refer-
ence in the diagram, however, in the implementation shown in listing C.3
this message is sent to promise c, the instance created for the Calculator
actor. 220

D.1 Class diagram of the main classes of Medeor. Classes in gray color belongs
to the Truffle framework and the WebSocket API. 224

D.2 Main classes related to the breakpoints and stepping operations. 225
D.3 Main classes related to the asynchronous stack trace support in SOMns.

Node is the abstract base class for all Truffle nodes. 227
D.4 Class diagram of the main classes of Apgar debugger frontend. In gray

color are represented classes from the IntelliJ platform and the WebSocket
API. 229

D.5 Sequence diagram corresponding to the setup of an online debugging ses-
sion in Apgar. Classes in blue color denote classes of the debugger fron-
tend, classes in yellow color denote classes of the SOMns interpreter and
the class in pink color belongs to the Truffle Debug API. 230

D.6 Sequence diagram of a breakpoint activation. 231
D.7 Sequence diagram for trace data request. Classes in blue color denote

classes of the debugger frontend, classes in yellow color denote classes
of the SOMns interpreter. The goal of this interaction is to return the
Kómpos protocol trace events recorded for the program being debugged. . 232

D.8 Sequence diagram for stack trace information request. Classes in blue color
denote classes of the debugger frontend, classes in yellow color denote
classes of the SOMns interpreter and the class in pink color belongs to
the Truffle Debug API. 234

E.1 Conceptual diagram for the flight booking program. 237
E.2 Flight booking program output. 237
E.3 Conceptual diagram for the order purchase program. 240
E.4 Order purchase program output. 241
E.5 Participants workplace. 246
E.6 Participants scholar degree. 247

E.7 Years of experience developing software. 248
E.8 Debuggers. 249

List of Tables

2.1 Taxonomy of concurrency bugs. 16
2.2 Summary of bugs patterns and observable behaviors found in literature. . 27
2.3 Categories for concurrency bugs proposed by [HZ18] in Akka programs. . . 33
2.4 Bug patterns proposed by [BFSK20] for concurrency bugs in Akka repos-

itories. 34
2.5 Observable behaviors proposed by [BFSK20] for concurrency bugs in Akka

repositories. 34
2.6 Bug categories proposed by [WDG+17] for concurrency bugs in Node.js

repositories. 36
2.7 Bug patterns proposed by [WDG+17] for concurrency bugs in Node.js

repositories. 36
2.8 Observable behaviors proposed by [WDG+17] for concurrency bugs in

Node.js repositories. 37

3.1 Overview of the bug categories addressed in the literature of static analysis
techniques. A ’p’ indicates that the bug has been addressed only partially.
A ’X’ indicates that the technique can address the bugs in that category. . 57

3.2 Overview of the bug categories addressed in the literature of testing tech-
niques. A ’p’ indicates that the bug has been addressed only partially. A
’X’ indicates that the technique can address the bugs in that category. . . 58

3.3 Overview of the bug categories that we consider that are addressed by
debuggers of state of the art. A ’p’ indicates that the bug has been ad-
dressed only partially. A ’X’ indicates that the technique can address the
bugs in that category. A ’N/A’ indicates that is not applicable for those
debuggers for languages which cannot suffer from communication deadlocks. 59

4.1 Operations that create eventual messages in SOMns. 82

5.1 Catalog of breakpoints for actor-based programs. 91
5.2 Breakpoint examples from Listing 5.1. AST locations are defined by the

line number (ln), a column number (cn) and the character length (cl). . . 92
5.3 Promise breakpoint examples defined on the whenResolved construct. . . 93

xix

5.4 Promise breakpoint examples defined on the createPromisePair construct. 94
5.5 Catalog of stepping operations for actor-based programs. 95
5.6 Stepping operation examples from Listing 5.1. 97
5.7 Overview of questions and answers when debugging a CEL actor-based

program, from [Ver20]. 103
5.8 Concurrency concepts for the CEL concurrency model from the Kómpos

protocol [MLA+17]. 111
5.9 Overview of Apgar features with the state of the art debuggers for actor-

based programs. A ’X’ indicates that the debugging technique is addressed
by the debugger. A ’X*’ indicates that the support for that debugging
technique is limited. 116

6.1 Implementation strategies for message-oriented breakpoints. 121
6.2 Implementation strategies for stepping operations. 126
6.3 Step end turn examples from Appendix C.2. 128
6.4 Main nodes instrumented in SOMns to create entries for the asynchronous

stack trace. 131

7.1 Experiment planning. 142
7.2 Times for solving the debugging assignments (in minutes). 149
7.3 Summary of issues found in explicit comments by participants of both

groups about the experiment. The number in each cell indicates the num-
ber of participants that referred to that issue. These numbers were col-
lected from question 16 of the questionnaire and comments participants
gave during and after solving each assignment (via Zoom chat messages
in private to the host of the experiment). 161

7.4 Summary of comments about the debugger by participants of the control
group. The number in each cell indicates the number of participants that
referred to that issue. These numbers were collected from answers to
question 15 of the questionnaire. The percentage is calculated based on
the number of comments and the total participants in the control group
(i.e., 14). 162

7.5 Summary of comments about the debugger by participants of the experi-
mental group. The percentage is calculated based on the number of com-
ments and the total participants in the experimental group (i.e., 14). . . . 162

7.6 Threats in mixed methods experimental design, from [CC17]. 164
7.7 Threats to internal validity, from [CJT15]. 165
7.8 Additional threats to internal validity. 166

8.1 Message interleavings for the program shown in Listing 8.1. 179

A.1 Catalog of bugs found in actor-based programs 210

E.1 Threats in qualitative research, from [CJT15]. 250

Listings

2.1 Syntax of the receive statement in Erlang [AVWW93]. 12
2.2 Communication deadlock example in Erlang (from [CS11b]). Line 12 has

a blocking receive causing the pong process to deadlock because the
expected message is never sent. 17

2.3 Behavioral deadlock example of a dining philosopher implementation in
SOMns. Line 22 calculates rightForkId incorrectly, preventing the philoso-
phers from eating. 18

2.4 Livelock in a sleeping barber implementation in SOMns. Line 7 reads
always the same customer, but does not remove it from the list, preventing
global progress. 19

2.5 Message order violation within a single event-loop in JavaScript (from
[RVS13]). On line 2, the onclick event can be triggered by the user
before the function f is parsed and made available, causing an error. . . . 21

2.6 Bad message interleaving example in ActorFoundry (from [LDMA09]).
The Server actor can interleave the messages set and get sent by the
Client actor. If that is the case v1 will get a value that differs from v2. . 22

2.7 Memory inconsistency example in Erlang (based on [Huc99, DKO13]).
Line 23 shows a message pattern that allows different processes to store
different values for the same key. 23

2.8 Code snippet of a program written in Akka in Java that could manifest a
data race (from Parallelism and Distribution course at VUB). 26

4.1 Code snippet of InstantMessenger class and two of its methods, sendMessage
and startChat. 63

4.2 Class example in SOMns using a mixin operator. 63
4.3 Code snippet of the InstantMessengerApplication that shows a main

method implementation in SOMns. 64
4.4 Code snippet of InstantMessengerApplication program that shows the

implementation of TextMessage class and a code snippet of the InstantMessenger
class. 65

4.5 Code snippet of InstantMessenger class that shows a self send and an
implicit receiver send. 67

xxiii

4.6 Code snippet of the PrimeNumber class that shows a block closure example. 67
4.7 Code snippet of the InstantMessenger class that shows an actor creation

example in SOMns. 68
4.8 Code snippet of the InstantMessenger class that shows an asynchronous

message send in SOMns. 69
4.9 Code snippet that shows how a promise can be resolved with a value or

with an error. 71
4.10 Code snippet of the Calculator class that shows the hypotenusePromise

promise chained to the squareSumP promise using values 1 and 25 as example. 72
4.11 Code snippet of the Calculator class that shows explicit promises. 73
4.12 Code snippet of the Calculator class that shows a promise group. 74
4.13 Code example of an expression coverage instrument, from CoverageExample

class. 78
4.14 Implementation example of an instrumentable node to tag nodes as state-

ments and support for source section. 80
5.1 Implementation of a prime number program in SOMns. 89
6.1 Code snippet that shows a message sent to a promise (from Appendix C.3).133
6.2 Representation of events for the same actor’s turn recorded in different

buffers. 133
8.1 Double program containing a bad message interleaving bug in SOMns. . . 178
C.1 Implementation of a prime number program in SOMns. 215
C.2 Implementation of an instant messenger application in SOMns. 217
C.3 Implementation of the Pythagoras calculator program in SOMns. 220
E.1 Flight booking program in SOMns. 237
E.2 Order Purchase program in SOMns. 241
F.1 PLT-Redex version of the Double program containing a bad message in-

terleaving bug. 252

Chapter 1

Introduction

Multicore hardware is present everywhere. Having multiple cores in computers allows
executing computing tasks in parallel, enabling programs to solve problems faster. Be-
sides performance, it enables to logically separate independent control flows of computa-
tion [Sut05].

To take advantage of multicore processors, software developers need to learn how to
program concurrent applications. This led Herb Sutter to state that concurrency was
“the next major revolution in how we write software" in 2005 [Sut05]. However, con-
current programming is difficult, mainly because programmers need to understand and
coordinate tasks that may be executed simultaneously. Also, concurrent programming
is non-deterministic, i.e., the program output does not depend only on the input but on
the scheduling of concurrent tasks. Non-determinism also makes debugging and testing
difficult since reproducing the same conditions that caused the bug is hard.

Many concurrency models and abstractions have been proposed to facilitate the de-
velopment of concurrent software [VRH04], e.g., declarative models such as the data-flow
model, shared-state models such as the thread-based model, and message-passing models
such as the actor model. Since these models are suited to different problems, software
developers often use one or multiple concurrency models in the same program [TPLJ13].
Thus, 16 years after Herb Sutter’s statement, we observe that software developers have
a wide range of models at their hands to program concurrent software. Unfortunately,
today there is still few tool support for concurrent software. However, tool support is an
integral part of the software development process.

In this dissertation, we focus on debugging techniques for concurrent software written
in the actor model. The actor model has been first proposed as a mathematical model
in which actors are concurrent entities that communicate via messages [HBS73]. In the
1980s, Gul Agha defined the actor model as a concurrent object-oriented programming
model [Agh86]. Since then, the actor model has become very important in the devel-
opment of concurrent and distributed software. For example, programming languages
such as Erlang, Akka and Node.js, have been used to manage WhatsApp communication

1

CHAPTER 1. INTRODUCTION

services1, manage transactions in Paypal servers2, and improve database management
access for NASA3, respectively.

The actor model is an attractive foundation for developing concurrent applications
because it can avoid some concurrency bugs by design (e.g., data races) since actors are
isolated concurrent entities that do not share states. Nevertheless, actor-based programs
are not immune to concurrency bugs, e.g., deadlocks and ordering issues can still happen
at the message level. These bugs are caused, for example, due to incorrect implementation
of the actor protocol or the message patterns, wrong variable initialization, etc.

Developers rely on debugging tools to assist the process of finding the root cause
of an application failure. Debugging concurrent programs is, however, difficult due to
the increased program complexity and non-determinism. Understanding concurrent pro-
grams require developers to reason about interactions amongst concurrent entities, i.e.,
actors. Non-determinism affects the order in which actors receive messages, which can
be sensitive to timing and thus hard to reproduce. Furthermore, a debugging tool’s mere
presence can also affect the order in which concurrent entities are executed, making the
reproduction of a bug even rarer. This condition, similar to the Heisenberg uncertainty
principle, is known as the probe-effect [Gai86].

Despite the developers’ efforts, debugging consumes considerable time in the software
development process. A study from 2013 estimated that 50% of programming time
is spent on debugging, and the global cost of debugging was estimated at 312 billion
USD per year (including wages and overheads) [BJC+13]. A more recent study with
professional software developers revealed that the majority of most difficult bugs were
solved by developers in more than a week or even longer [PSTH16]. The most frequent
root causes of their hardest bug were design errors and errors due to the parallel behavior
of programs. Also, in that study, participants declared that the hardest bugs were difficult
to solve due to the long distance between the unexpected behavior and the root cause,
especially for those bugs caused by parallel behavior. The authors of the study concluded
that developers require specialized tools to debug parallel programs.

The overall goal of this dissertation is the study of debugging techniques for concur-
rent programs, particularly programs written using the actor model. Debugging concur-
rent programs has been studied for many years [MH89, AASE+17]. Existing techniques
can be classified into two main families: offline debugging, i.e., exploring traces after
the program’s execution, and online debugging, i.e., interactively searching for the fault
in a debugging session that controls the program’s execution. However, few debugging
approaches have focused on actor-based programs. Most existing work for actor-based
programs comes from adapting tools from sequential to concurrent programs.

1https://codesync.global/media/scaling-erlang-developer-experience-at-whatsapp/
2https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-

day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
3https://openjsf.org/wp-content/uploads/sites/84/2020/02/Case_Study-Node.js-NASA.pdf

2

https://codesync.global/media/scaling-erlang-developer-experience-at-whatsapp/
https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
https://www.lightbend.com/case-studies/paypal-blows-past-1-billion-transactions-per-day-using-just-8-vms-and-akka-scala-kafka-and-akka-streams
https://openjsf.org/wp-content/uploads/sites/84/2020/02/Case_Study-Node.js-NASA.pdf

1.1. RESEARCH CONTEXT

This dissertation explores the design and implementation of advanced techniques
for interactively debugging actor-based programs to aid developers in the task of find-
ing the root cause of concurrency bugs. A secondary goal of this dissertation is to
study and categorize concurrency bugs in actor-based programs. While we observe that
concurrency bugs in thread-based models have been studied for many years [AHB03,
PGB+05, LPSZ08, AASE+17], there is not yet a true understanding of which kind of
concurrency bugs actor-based programs exhibit. It is only in the last years that the first
studies of concurrency bugs for actor-based programs have appeared, e.g., for Scala and
JavaScript [BFSK20, WDG+17].

1.1 Research Context

The research presented in this dissertation is mainly related to the fields of concurrent
systems, and debugging tool support to identify concurrency bugs. We describe here our
main concerns in each research field.

Concurrent systems research field that studies the different models and techniques
to build software that consists of independent components which may perform op-
erations at the same time (i.e., concurrently). Our focus is concurrent systems
built using the actor model. In particular, we focus on concurrent systems built on
a variant of the actor model called the Communicating Event-Loops (CEL). This
concurrency model features non-blocking communication, serial execution, and ex-
clusive access to the actor state. These properties are very attractive for concurrent
programming because they avoid certain concurrency bugs like deadlocks and data
races by design. Examples of languages that implement CEL concurrency are E
[MTS05], AmbientTalk [VCGBS+14], Newspeak [Bra09], SOMns, and JavaScript
[TV10].

Debugging tool support research field that studies the design and implementation
of debugging techniques and tools to help developers in the task of finding and
fixing application failures. We focus on studying the field of building interactive
debugging techniques. We aim to enhance the means for developers to explore the
program execution interactively to identify the root cause of concurrency bugs.

1.2 Problem Statement

When a program fails, programmers usually reason backward, starting from the failure to
discover the cause of the incorrect behavior [Zel09]. Programmers mostly use observation
to determine facts about parts of the program that have been executed. Common tech-
niques for examining the program’s execution include logging (e.g., print statements),
offline and online debuggers, and visualization tools.

3

CHAPTER 1. INTRODUCTION

Classical logging requires adding code into the program, which is later removed by
the developer after the observation. Using print statements is not effective in the context
of concurrent programs first because introducing code can affect the timing of operations
and thus the program’s behavior (i.e., probe-effect). Also, logging statements can produce
large outputs, which are often mixed with the expected output of the program. This is
difficult for the developer to get a proper understanding of the program behavior [Zel09].
Besides, often developers in production insert additional logs in the program, deploy
the modified program, and later examine the output. Developers often have to repeat
these actions several times when searching for the root cause of a bug, which has been
considered impractical for production systems (and even prohibited by change control
policies) in which fast solutions are needed [Pac11].

On the one hand, offline debuggers emerged to help to reconstruct the past state
after the program has been executed, i.e., from a log file or a trace. Tools for concurrent
programs record the program execution as a sequence (or several parallel sequences)
of events [MH89]. Interestingly, if the recording of events captures the bug, then it is
possible to inspect or deterministically replay the program as many times as needed to
understand the conditions leading to the bug. However, offline techniques are said to be
expensive in terms of runtime and memory overhead [Eng12, PSTH16].

On the other hand, online debuggers are observation tools that allow developers to
do a controlled execution of the program through the use of breakpoints and stepping
operations to inspect (or even change) the program state. Thus, developers could obtain
a faster result without changing the source code [Zel09]. These tools have been addressed
for concurrent programs applying ideas from traditional sequential debuggers. They often
behave as a collection of “sequential debuggers”, one for each concurrent entity [MH89].
Their main disadvantage is that they suffer from the probe-effect, and thus, are ineffective
for timing-dependent failures.

At the start of this dissertation, we observed very few attention from academia and
industry in debugging tools for actor-based programs and, more generally, asynchronous
code. For instance, Stanley et al. [SCM09] proposed tracking the causality of messages
for the E programming language, and Gonzalez Boix et al. [GBNDM14] implemented
the first catalog of breakpoints for messages and stepping operations for AmbientTalk. In
mainstream languages, only Akka and JavaScript debuggers provide asynchronous stack
traces [Dra13, LM18]. In the latest years, we observe more attention from academia in
offline debugging techniques, e.g., record and replay approaches [SW17, AMB+18], re-
verse debugging [MOM18, LNPV18] and interesting visualizations [AZMT18, MOM18].
Some efforts have also been made to incorporate offline features in debuggers for Node.js,
e.g., to step backward in the execution of recorded trace and restoring state using check-
points [BM14, BMM+16, VBMM18]. However, advanced support for online debugging
techniques remains unexplored.

We now describe the problems this dissertation tackles:

4

1.3. RESEARCH GOALS

Limited understanding of concurrency bugs in actor-based programs Devel-
opers of concurrent applications do not have available a standard classification of
concurrency bugs that can happen in actor-based programs. This knowledge can
be useful not only to identify common bug patterns and observable behaviors for
concurrency bugs but to guide the design of novel debugging techniques to identify
and solve concurrency bugs.

Limited debugging support to identify the root cause of concurrency bugs in
actor-based programs Today’s debuggers do not provide sufficient support for
identifying the root cause of complex concurrency bugs that can occur in actor-
based programs, e.g., few debuggers allow setting breakpoints on different points
of interest according to the actor model semantics. Moreover, we observe very few
integrations between the debugging operations for concurrent code and the ones for
sequential one. For example, as far as we know, there is no debugger that combines
sequential stepping with message-oriented stepping 4. Since a concurrency bug
can manifest due to a combination of erroneous program states and erroneous
interactions amongst actors, finding the root cause of a bug requires controlling
both execution of sequential computation as well as interactions amongst actors.
Besides, few approaches have studied dedicated visualization techniques that show
the actors of the program and the messages they have exchanged. Finally, the
combination of online and offline techniques remains unexplored, while that could
give developers better tooling support for different types of concurrency bugs.

Absence of probe effect-free debuggers that help to identify concurrency bugs
interactively Today’s online debuggers suffer from the probe-effect, i.e., the de-
bugger can affect the behavior of the program, which makes it difficult for devel-
opers to observe the bug again. While the interactive nature of online debuggers
is very helpful to guide the exploration of a concurrent program for identifying the
root cause of a bug, they do not help to manage the non-determinism of concurrent
programs. The problem is that online debuggers only allow exploring the state of
a single execution path (instead of all different states a concurrent program can
exhibit at runtime) and may alter the manifestation of bugs.

1.3 Research Goals

In this dissertation, we study advanced debugging techniques to identify concurrency
bugs in actor-based programs. This dissertation pursues the following research goals:

We investigate which kinds of concurrency bugs appear in actor-based pro-
grams Our goal here is to study bugs that have been reported for actor-based

4We denote as message-oriented those debugging operations (e.g., breakpoints or stepping) that work
at the level of message interchanged by actors

5

CHAPTER 1. INTRODUCTION

programs and introduce terminology which can serve as common ground for un-
derstanding concurrency bugs in actor-based programs. We aim first to revise the
literature of publications to categorize the concurrency bugs that have been re-
ported. Furthermore, we are interested in investigating which features of the state
of the art of techniques have been proposed to help to identify concurrency bugs
in actor-based programs.

We investigate novel techniques for interactively debugging actor-based pro-
grams Based on our study of the state of the art of concurrency bugs and the
disadvantages of the techniques developed to tackle them, we aim to design and
implement a set of advanced debugging techniques that interactively allow develop-
ers to explore the execution of an actor-based program. A secondary goal here is to
explore novel visualizations on current and past execution suitable for actor-based
programs.

We investigate interactive debugging techniques which do not suffer from
probe-effect We aim to design and implement online debugging techniques that
help manage the non-determinism of a concurrent program and that do not affect
the program behavior when debugging.

1.4 Research Approach

In this dissertation, we design and implement debugging techniques that allow developers
to explore the program execution interactively. In particular, we explore online debugging
techniques which are also combined with offline features to enable trace-based visualiza-
tion features in an interactive fashion. The following main approaches will be used to
achieve the aforementioned research goals.

Metaprogramming To prototype the novel online debugging techniques, we will depart
from self-optimizing AST-interpreters [WWS+12]. This means that the debugger
is implemented as part of the interpreter, but it is based on AST node wrapping
and relies on the underlying platform for optimizations. The AST node approach
will also ease the exploration of integrating sequential and concurrent debugging
operations (e.g., stepping).

Formal semantics To build a probe-effect free debugging approach, we depart from an
executable operational semantics of an actor-based language. The formalism will
allow us to write the semantics of a debugger in a modular and mechanized way,
as well as to prove properties on the debugger, e.g., probe-effect free.

1.5 Contributions

In this section, we summarize the main contributions of our research.

6

1.5. CONTRIBUTIONS

A taxonomy of concurrency bugs for actor-based programs Our first contribu-
tion is a taxonomy that classifies concurrency bugs reported in the literature of
tool development for actor-based applications. To the best of our knowledge, it is
the first taxonomy of bugs in the context of actor-based concurrent software when
first published in [LMBM18]5. Our taxonomy consists of six subcategories of bugs
grouped in two main categories, i.e., lack of progress issues and message protocol
violations. We analyzed the patterns and observable behaviors found in different
actor-based programs. We created a catalog of 24 bugs reported in the literature
and classified them according to our taxonomy (see Chapter 2).

Interactive debugging techniques for actor-based programs Our second contri-
bution is the design and implementation of advanced debugging techniques for
actor-based programs. First, we created catalogs of message-oriented breakpoints
and stepping operations, which combine sequential and message stepping to inter-
actively debug actor-based programs. Second, we combine the online techniques
with offline debugging techniques, to provide developers with visualizations based
on space-time diagrams for tracking message causality. Moreover, to enable better
actor state inspection, we enriched the actor state information with message prop-
erties such as message type and the turn where the message was sent, also based on
trace data. Third, we designed an asynchronous stack trace that shows the calling
context and the send context for asynchronous messages, and shows also frames
related to promise resolutions. We applied these novel features for debugging actor-
based programs written in a Communicating Event-Loops language [MTS05] (see
Chapter 5).

A user study to evaluate the advanced debugging techniques Our third contri-
bution is a user study we conducted with 28 software developers to measure our
novel debugging techniques for actor-based programs through a mixed methods
experimental research design. We measure the time developers spend solving two
debugging assignments, and at the end of the experiment, we measure participants’
perception about the debugging techniques in a questionnaire (see Chapter 7).

Multiverse debugging, a novel online probe-effect free debugging technique
for actor-based programs Our fourth contribution is the design of a novel de-
bugging technique named multiverse debugging. This technique allows developers
to interactive explore all possible states to execute a parallel program. We apply
multiverse debugging for a language based on the Communicating Event-Loops
actor model. We proved observational equivalence between the debugger and the
base language semantics in a proof of non-interference, showing that the debugger
is probe-effect free (see Chapter 8).

5The official publication was in Lecture Notes in Computer Science book series, but the first presen-
tation of our work was in AGERE! 2016 [TLMMGB16]

7

CHAPTER 1. INTRODUCTION

1.5.1 Technical Contributions

From the mentioned contributions, we derived the following software artifacts:

Apgar is a proof of concept online message-oriented debugger integrated into an IntelliJ
plugin for SOMns. SOMns is a programming language that features the Commu-
nicating Event-Loops concurrency actor model and it is build on top of the Truffle
and Graal platform. Apgar implements the advanced online debugging techniques
we have designed for actor-based programs (see Chapter 5 and Chapter 6).

Voyager calculus is a proof of concept multiverse debugger that was implemented
in the PLT-Redex programming language for AmbientTalk [VCGBS+14]. Am-
bientTalk is a programming language which operational semantics features the
Communicating Event-Loops concurrency actor model. AmbientTalk operational
semantics is used as base language for our multiverse debugger. Voyager allows
developers to observe all possible execution paths of an actor-based program and
debug it interactively (see Chapter 8).

1.5.2 Supporting Publications

In what follows, we mention the publications that support this dissertation.

• A Study of Concurrency Bugs and Advanced Development Support for
Actor-based Programs Torres Lopez, C., Marr, S., Gonzalez Boix, E., & Mossen-
bock, H. (2018). In Programming with Actors - State-of-the-Art and Research Per-
spectives (Vol. LNCS 10789, pp. 155-185). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 10789 LNCS). Springer. https://doi.org/10.1007/978-3-
030-00302-9_6 [LMBM18].

This publication introduced the first taxonomy of concurrency bugs for actor-based
programs. We classified concurrency bugs reported in the literature and analyzed
their bug patterns and observable behaviors. We also reviewed the state of the art of
techniques that have been used to find concurrency bugs in actor-based programs.

• A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent De-
bugging Tools Marr, S., Torres Lopez, C., Gonzalez Boix, E., Aumayr, D.,
& Mossenbock, H. (2017). In D. Ancona (Ed.), 13th ACM SIGPLAN Interna-
tional Symposium on Dynamic Languages (DLS 2017) (pp. 3-14). ACM. https:
//doi.org/10.1145/3133841.3133842 [MLA+17].

This publication introduced the first catalogs of breakpoints and stepping opera-
tions at the message level we designed and implemented for actor-based programs.
Also, an initial version of an actor turn visualization was proposed, which was
implemented for the Kómpos debugger.

8

https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.1145/3133841.3133842

1.6. DISSERTATION OUTLINE

• Multiverse Debugging: Non-deterministic Debugging for Non-determinis-
tic Programs. Torres Lopez, C., Gurdeep Singh, R., Marr, S., Gonzalez Boix,
E., & Scholliers, C. (2019). In A. F. Donaldson (Ed.), ECOOP 2019 (Vol. 134,
pp. 27:1–27:30). [10.4230/LIPIcs.ECOOP.2019.27] (Leibniz International Proceed-
ings in Informatics (LIPIcs); Vol. 134). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2019.27 [LSM+19].

This publication introduces the idea of multiverse debugging as a new online debug-
ging technique for interactively debugging actor-based programs without suffering
from probe-effect. We introduce the Voyager calculus: a debugging configuration,
and a debugging operational semantics for actor-based programs.

1.6 Dissertation Outline

This dissertation is structured as follows:

Chapter 2: Concurrency Bugs in Actor-based Programs This chapter introduces
our first contribution, i.e., a taxonomy we created for concurrency bugs in actor-
based from our literature review. We classify the bugs reported in the literature
in the categories we proposed in our taxonomy. This chapter also discusses recent
studies that derived other taxonomies of concurrency bugs from issues reported
in GitHub repositories and Stack Overflow questions. Finally, we describe how
the probe-effect makes it hard to reproduce bugs in concurrent programs. We
conclude that actor-based programs can exhibit different issues depending on the
specific actor model variant. In particular, programs based on the Communicating
Event-Loops model can suffer from behavioral deadlocks, livelocks, message order
violations, and bad message interleavings.

Chapter 3: State of the Art of Techniques to Handle Concurrency Bugs in
Actor-based Programs This chapter describes the current state of the art of
techniques that support the development of actor-based programs. In particular,
we surveyed techniques from fields of debuggers, visualization, static analysis, and
testing. We discussed their advantages and disadvantages with respect to our
categorization of concurrency bugs. We conclude that today most of the work of
static analysis and testing tools can solve some specific cases of concurrency bugs,
and few debuggers support strategies such as recording the causality of messages
with message-oriented breakpoints and stepping.

Chapter 4: SOMns: a Concurrent Actor-based Language This chapter describes
the SOMns, the Communicating Event-Loops programming language we prototype
our advance debugging techniques. It also describes the main features of the tech-
nologies in which SOMns is implemented, i.e., the Truffle framework and GraalVM.

9

https://doi.org/10.4230/LIPIcs.ECOOP.2019.27

CHAPTER 1. INTRODUCTION

We conclude by explaining the necessary implementation details related to asyn-
chronous message passing to understand our work’s technical contributions later.

Chapter 5: Online Debugging Techniques for Actor-based Programs This
chapter introduces our second main contribution, the design of advanced online
debugging techniques for actor-based programs. The first part of the chapter de-
scribes the online debugging techniques we propose for actor-based programs, i.e.,
breakpoints and stepping operations on the level of messages. Besides, we explain
how we combine these online techniques with trace-based visualizations to provide
actor state and message causality information. We also describe an asynchronous
stack trace design to show the calling context and asynchronous context related
to the suspension. The second part of the chapter introduces Apgar, our proof of
concept debugger for the SOMns language. We give details about its architecture,
and particularly how we extended the Kómpos protocol to enable debugging sup-
port for actor-based programs. We conclude the chapter comparing the debugging
techniques proposed to related work on debugging tools for actor-based programs.

Chapter 6: Implementation of Online Debugging Techniques for SOMns This
chapter describes how we implemented the advanced online debugging techniques
for actor-based programs. In the first part of the chapter, we explain how we
implemented the advanced techniques in Medeor, the debugging support in SOMns
interpreter. Medeor implements wrapper nodes in the AST of the target program
to enable breakpoints and stepping operations on the level of messages. In the
second part of the chapter, we explain the implementation of Apgar frontend as a
custom language plugin in the IntelliJ IDE and its main interactions with Medeor.

Chapter 7: Evaluation of Online Debugging Techniques for Actor-based Pro-
grams This chapter describes the design and results of a user study we conducted
to evaluate the online debugging techniques we have implemented for actor-based
programs. Furthermore, we analyze the quantitative and qualitative results and the
threats to validity for our mixed-methods experimental research design approach.
Overall, we conclude that the advanced debugging techniques may be helpful in
the context of actor-based programming to identify concurrency bugs.

Chapter 8: Online Debugging Techniques Probe-Effect Free This chapter intro-
duces the novel technique of multiverse debugging for exploring all non-deterministic
paths of an actor-based program when searching for the root cause of a concur-
rency bug. We start the chapter by defining multiverse debugging, and we show
an example of how to apply it for a small language. Next, we introduce Voyager
as a proof of concept debugger that uses our implementation of a formal semantics
of a multiverse debugger for actors. First, we show a debugging session in Voyager
through an actor-based program, and later we explain the calculus implementation.
We conclude the chapter with a proof of non-interference for a multiverse debugger
that shows that our debugging approach is probe-effect free.

10

1.6. DISSERTATION OUTLINE

Chapter 9: Conclusion and Future Work This chapter concludes this dissertation
and explains avenues for future work.

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

Concurrency Bugs in Actor-based
Programs

This chapter analyzes concurrency bugs exhibited by actor-based programs. First, we
introduce the main concepts related to the Communicating Event-Loops concurrency
model, the actor variant on where we focus our research. Second, as first contribution
of our research, we propose a taxonomy of concurrency bugs in actor-based programs,
which is based on bugs reported in the literature and from our own experience with
actor based-programs. Third, we survey and categorize the different concurrency bugs
reported in the literature for different actor variants. We then compared our taxonomy
of bugs with two recent field studies of concurrency bugs found in real-world repositories
of Akka and Node.js programs.

2.1 The Actor Model

The actor model was first proposed as a mathematical model that represents concurrent
entities as actors which communicate with one another by means of messages [HBS73].
Later, Agha defines the actor model as a concurrent object-oriented programming model
[Agh86]. Each actor has a thread of execution, which perpetually processes messages
stored in its mailbox. Each actor has a behavior associated that defines how the actor
processes messages. The set of messages that an actor knows how to process denotes
the interface of the actor’s behavior. Besides, actors can store state which can only be
accessed or mutated by the thread of execution associated to the actor. In other words,
actors have exclusive access to their mutable state. In response to a message, an actor
can create new actors, send messages to other actors and replace its behavior. In the
actor model, sending an asynchronous message means that the sender actor will add a
message in the mailbox of a receiver actor and it returns immediately, i.e., the sender
actor does not block waiting for the receiver actor to compute a result for the message.
Thus, access to the result happens in a non-blocking way.

13

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Since the creation of the actor model, several variants have been proposed. De Koster
et al. [DKVCDM16] distinguishes three variants in addition to the classic actor model
[Agh86]: active objects [YBS86], processes [AVWW93], and communicating event-loops
[MTS05].

The actor model variants most used in industry are processes and event-loops. For
example, the processes variant is implemented by languages such as Erlang [AVWW93]
and Akka in Scala [HS11], while communicating event-loops have been embraced by the
asynchronous programming model of JavaScript and Node.js [TV10]. We will now briefly
explain both variants.

2.1.1 Processes Model

The processes model represents an actor as a process, which as in the classic actor model,
contains a mailbox and a thread of execution. The state of a process cannot be accessed
by other processes. Processes communicate sending asynchronous messages, which are
placed into the mailbox of the receiver actor [AVWW93, HO09].

In general, languages that implement this model has a receive statement, which
defines the interface of the actor. Typically, this receive statement is blocking, i.e.,
when the actor finishes processing the messages in its mailbox, the process blocks, waiting
to receive the next message. Besides, a process can define a flexible interface, i.e., an
actor can process different types of messages at different points in time, in this case, for
example, evaluating different receive expressions [DKVCDM16].

As a concrete example, consider Listing 2.1 showing the receive syntax in Erlang
programming language [AVWW93]. The process that implements the receive is trying
to receive a message described by one of the specified patterns. The process will be sus-
pended until one of the messages received matches a pattern. When the match happens,
the actions after the operator -> are evaluated, and the message is removed from the
mailbox of that process.

receive
case msgpattern1 ->
... ;

case msgpattern2 ->
... ;

end

Listing 2.1: Syntax of the receive statement in Erlang [AVWW93].

Actor languages typically offer dedicated syntax for asynchronous messages. For
example, asynchronous messages in Akka are sent using ! on the handler to the actor
instance, i.e., ActorRef. The ActorRef is used mainly to communicate with an actor and
control the actor’s life cycle [HS11]. Akka also provides a mechanism to identify unavail-
able actors through dead letters. Messages that cannot be delivered (e.g., because the

14

2.1. THE ACTOR MODEL

receiver actor was terminated before receiving the message) will be sent to a “synthetic”
actor for later inspection.

Typically, processes implementation such as Erlang do not provide futures. Akka
does support futures to retrieve the result of concurrent operations synchronously or
asynchronously, but they are not integrated with the actor model (as we discuss later in
Section 2.3.4).

2.1.2 Communicating Event-Loops Model

The Communicating Event-Loops (CEL) is a non-blocking variant of the actor model of
concurrency first introduced by the E language [MTS05]. The model was also adopted
by languages such as AmbientTalk/2 [VCGBS+14], and SOMns, the language we use to
prototype our debugging techniques in this dissertation [Bra09].

Actor Actor

A B

Message
queue

Event
Loop

Message from A to B

Object Far reference

Near
reference

Figure 2.1: Overview of the CEL model (from [VCGBS+14]).

Figure 2.1 shows an overview of the CEL model. Each actor is a container of objects, a
message queue (or mailbox), and an event-loop (or thread of control). An actor executes
messages sequentially from its mailbox, i.e., messages are processed one by one in order
of arrival. The processing of one message by an actor defines a turn. Like in the process
variant, actors have exclusive access to their mutable state. This means that each object
is owned by one actor, and only the owner actor can directly access it.

In contrast to the process variant, in CEL, objects stored in an actor can be accessed
by other actors. Communication with objects owned by other actors happens using
asynchronous messages via far references. When a far reference receives a message, it
forwards it to the mailbox of the actor owning the object. A near reference is a direct
reference between two objects within the same actor. Communication between these
objects happens through synchronous messages.

To reconcile return values with asynchronous message passing, CEL model intro-
duced the concept of non-blocking promises [MTS05]. A promise is a placeholder for
the result that is to be computed by the receiver actor in response to the asynchronous
message. Some actor languages refer to promises as futures [VCGBS+14]. In CEL,

15

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

the promise itself is an object, which can also receive asynchronous messages. Thus, a
promise resolution can be dependent on another promise (returned from another asyn-
chronous message), which is known as promise chaining. Messages sent to a promise are
not delivered until the promise is resolved. Once a promise is resolved, the asynchronous
message is forwarded in order to the result value of the computation [MTS05].

2.2 Terminology about Concurrency Bugs

Before studying different kinds of concurrency bugs for actor-based programs, we will
first introduce the terminology that we will use in this dissertation. A concurrency bug
is a failure related to the interactions among different concurrent entities of a system.
Following Avizienis’s terminology [ALRL04], a failure is an event that occurs when the
services provided by a system deviate from the ones it was designed for. The discrepancy
between the observed behavior and the theoretically correct behavior of a system is
called an error. Hence, an error is an event that may lead to a failure. Finally, a fault
is an incorrect step in a program that causes an error (e.g., the cause of a message
transmission error in a distributed system may be a broken network cable). A fault is
said to be active when it causes an error, and dormant when it is present in a system
but has not yet manifested itself as an error. Throughout this dissertation, we use the
terms concurrency bug and issue interchangeably.

This dissertation studies concurrency bugs that appear in actor-based programs used
in concurrent systems. Since actors are a good fit for distributed computing, they have
been adopted in languages targeted for distributed systems like Erlang, Akka and Am-
bientTalk. However, bugs that are only observable in distributed systems (e.g., due to
network failures) are out of the scope of this dissertation.

2.3 Taxonomy of Concurrency Bugs for Actor-based Pro-
grams

While there are many studies for concurrency bugs in thread-based programs [AHB03,
PGB+05, LPSZ08, BFSS10, LLLG16, AASE+17], only a few studies focus on message
passing programs. Zhang et al. [ZWCZ15] study bug patterns, manifestation conditions,
and bug fixes in three open source applications that use message passing. Also, Tu et al.
[TLSZ19] study root causes and possible fixes for concurrency bugs when implementing
communication channels in the Go programming language. Often, literature documents
particular issues, e.g., ordering problems [LBL+16], but very few efforts has focused on
taxonomizing bugs. For actor-based programs, there was not established terminology at
the beginning of this thesis. The first contribution of our research has been to introduce
a taxonomy of concurrency bugs for the actor model derived from bugs reported in
literature of actor-based programs.

16

2.3. TAXONOMY OF CONCURRENCY BUGS FOR ACTOR-BASED
PROGRAMS

This section introduces a taxonomy of concurrency bugs for the actor model derived
from concrete bugs reported in the literature and from our own experience with actor-
based programs. Table 2.1 introduces our proposed terminology for concurrent bugs in
actor-based programs. Our overall categorization starts from the terminology for thread-
based concurrency in literature (also shown in Table 2.1), which classifies bugs in two
general categories: lack of progress issues and race conditions.

Depending on the guarantees provided by a specific actor model, programs may be
subject to different concurrency bugs. Therefore, not all concurrency bugs are applicable
to all actor variants. In the rest of the section, we define each type of bug and discuss in
which variants can be present.

2.3.1 Lack of Progress Issues

Lack of progress issues in thread-based programs denotes the condition when one or
more threads are in a waiting state because they need to obtain a resource that is held
by another thread which is also waiting [AASE+17]. Actor-based programs can also
exhibit this lack of progress issues, but they manifest differently, i.e., at message level
instead of memory level. We have identified three kinds of conditions that can lead
to a lack of progress in an actor-based program: communication deadlocks, behavioral
deadlocks, and livelocks.

2.3.1.1 Communication Deadlock

A communication deadlock is a condition in a system where two or more actors are
blocked forever, waiting for each other to send a message. This condition is similar to
traditional deadlocks known from thread-based programs. We base the terminology on
the work of [CS11b] in Erlang concurrency bugs.

Communication deadlocks can only occur in variants of the actor model that feature
a blocking receive operation. This is common in variants of the actor model based
on processes such as Erlang and the Scala Actors framework [HO09]. A communication
deadlock manifests itself when an actor only has messages in its inbox that cannot be
received with the currently active receive statement. Listing 2.2 shows a communication
deadlock example in Erlang [CS11b]. In Line 12 the pong process is blocked because it
is waiting for a message that is never sent by the ping process, i.e., its mailbox is empty.
The fault is in Line 7, there the ping process returns ok instead of sending the message
ping_msg to the pong process.

2.3.1.2 Behavioral Deadlock

Many variants of actors do not feature blocking constructs but they can still suffer from
deadlocks at message level. We call a behavioral deadlock to the condition when two
or more actors conceptually wait for each other because the message to complete the

17

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Concurrency Model Category of Concurrency Bugs Bug Definition

Threads

Lack of Progress
Deadlock condition in a system where two

or more threads are blocked forever
waiting for another thread to do
something [PGR+15].

Livelock condition in which two or more
threads while not blocked cannot
make further progress [PGB+05].

Race Condition
Data race special case of race condition that

occurs when two threads access the
same data and at least one of them
writes the data [AASE+17].

Bad interleaving (also
known as high-level data
race [AHB03], atomicity
violation [AASE+17])

occurs when the program exposes an
inconsistent intermediate state due
to the overlapping execution of two
threads [PGR+15].

Order violation occurs when the expected order of
execution of at least two memory ac-
cesses is not respected [AASE+17].

Actors
Lack of Progress

Communication deadlock condition in a system where two
or more actors are blocked forever
waiting for each other to send a mes-
sage.

Behavioral deadlock condition in a system when two or
more actors are not blocked but wait
on each other for a message to be
able to progress, i.e., the message to
complete the next step is never sent.

Livelock condition similar to a deadlock in
which two or more actors are not
able to make progress but they con-
tinuously change their state.

Message
Protocol
Violation

Message order violation condition in which the order of ex-
changing messages of two or more
actors is not consistent with the in-
tended behavior of the program.

Bad message interleaving occurs when a message is processed
between two messages which are in-
tended to be processed one after the
other.

Memory inconsistency occurs when different actors have in-
consistent views of shared resources.
The effects of the turn that modifies
a conceptually shared resource, may
not be visible to other actors which
also alter the same resource.

Table 2.1: Taxonomy of concurrency bugs.

18

2.3. TAXONOMY OF CONCURRENCY BUGS FOR ACTOR-BASED
PROGRAMS

1 play() ->
2 Ping = spawn(fun ping /0),
3 spawn(fun() -> pong(Ping) end).
4

5 ping() ->
6 receive
7 pong_msg -> ok
8 end.
9

10 pong(Ping) ->
11 Ping ! pong_msg ,
12 receive
13 ping_msg -> ok
14 end.

Listing 2.2: Communication deadlock example in Erlang (from [CS11b]). Line 12 has a
blocking receive causing the pong process to deadlock because the expected message is
never sent.

next step in an algorithm is never sent. In this case, no actor is necessarily suspended.
We call this situation a behavioral deadlock, because the mutual waiting prevents local
progress. However, these actors might still process messages from their mailbox (sent by
other actors). Since actors do not actually block, detecting behavioral deadlocks can be
harder than detecting deadlocks in thread-based programs.

We illustrate a behavioral deadlock in an implementation of the widely known dining
philosophers concurrency problem [Dij65] written in SOMns [Bra09]. In the context of
dining philosophers, a behavioral deadlock can prevent philosophers from eating when
they cannot acquire two forks. In our implementation shown in Listing 2.3, the left
fork has the same value as the id of the philosopher, but for the right fork the program
computes its value (Line 12). For example, philosopher 1 will eat with fork 1 and 2 and
so on. The fault occurs when the philosopher puts down its forks: the right fork gets a
wrong value (Line 22) because the implementation swapped numForks and leftForkId
variables. This causes fork 2 and 4 to be always taken. Consequently, philosopher 2 and
4 never eat, and philosopher 1 and 3 eat only once. However, since philosopher 5 can
always eat, the overall application shows local progress.

In contrast to communication deadlocks, all variants of actor models can suffer from
behavioral deadlocks. One cause for such deadlocks are flexible interfaces [DKVCDM16],
because when an actor limits the set of messages it accepts, the overall system can reach a
state where actors mutually wait for messages being sent, without allowing any progress.
On the other hand, if an actor implements two or more interfaces, it could be that only
one of them is deadlocked, allowing some progress with respect to interactions with other
actors.

19

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

1 class PhilosopherActor new: id rounds: rounds
2 counter: aCounter arbitrator: arbitrator = (
3 (* . . . *)

4 public start = (
5 arbitrator <-: pickUpForks: self id: id.
6)
7)
8 class ArbitratorActor new: numForks resolver: resolver = (
9 (* . . . *)

10 public pickUpForks: philosopher id: leftForkId = (
11 | rightForkId |
12 rightForkId := 1 + (leftForkId % numForks).
13 ((forks at: leftForkId) or: [forks at: rightForkId])
14 ifTrue: [philosopher <-: denied]
15 ifFalse: [
16 forks at: leftForkId put: true.
17 forks at: rightForkId put: true.
18 philosopher <-: eat]
19)
20 public putDownForks: leftForkId = (
21 | rightForkId |
22 rightForkId := 1 + (numForks % leftForkId).
23 forks at: leftForkId put: false.
24 forks at: rightForkId put: false.
25)
26)

Listing 2.3: Behavioral deadlock example of a dining philosopher implementation in
SOMns. Line 22 calculates rightForkId incorrectly, preventing the philosophers from
eating.

20

2.3. TAXONOMY OF CONCURRENCY BUGS FOR ACTOR-BASED
PROGRAMS

2.3.1.3 Livelock

A livelock occurs when two or more actors are continually changing their state but they
actually do not make any progress, i.e., actors repeat the same interaction in response
to the message sent by each other.

An example for a livelock is given in Listing 2.4. It shows the sleeping barber problem
[Dij68] implemented in SOMns. The waiting room, the barber, and the customers are
implemented as actors. The concurrency issue in this example is caused by a fault
in Line 7. Instead of receiving the next customer from the collection of customers
waitingCustomers, the barber always receives the same first customer. Both actors,
room and barber are not blocked. The barber asks for the next customer to the room
(Line 20) and the room sends the customer to the barber to do the haircut (Line 8). But,
as the customer that is sent is always the same, there is no global progress.

1 class WaitingRoomActor new: capacity barber: anActor = (
2 (* . . . *)

3 public next = (
4 waitingCustomers size > 0
5 ifTrue: [
6 | customer |
7 customer := waitingCustomers first.
8 barber <-: enter: customer in: self]
9 ifFalse: [

10 barber <-: wait.
11 barberAsleep := true]
12)
13)
14 class BarberActor new: resolver = (
15 (* . . . *)

16 public enter: customer in: room = (
17 customer <-: start.
18 busyWait: (random next: avHaircutRate) + 10.
19 customer <-: done.
20 room <-: next
21)
22)

Listing 2.4: Livelock in a sleeping barber implementation in SOMns. Line 7 reads always
the same customer, but does not remove it from the list, preventing global progress.

2.3.2 Message Protocol Violations

The second big family of concurrency issues are related to how messages are processed
by actors. Actors cannot suffer from data races like thread-based programs since they
have exclusive access to their state and messages are processed serially. Nevertheless,
computation in actor-based programs depends on the order how actors process messages.

21

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

We call message protocol violations to the race conditions that happen at the level
of messages. We consider these race conditions to be at a high-level to distinguish them
from the low-level memory access race conditions that occur in thread-based programs,
because they occur at the level of messages rather than memory locations. Therefore, we
refer to them more specifically as message protocol violations. We identified three types
of message protocol violations, which are described in the remainder of this subsection:
message order violations, bad message interleavings, and memory inconsistencies.

2.3.2.1 Message Order Violation

A message order violation appears when the order in which two or more actors exchange
messages is not consistent with the intended behavior of the program. This includes
messages that are received out of order or unexpected interleavings of messages. They
are typically caused by actors only supporting a subset of all possible message sequences.

Message order violations are common for instance in JavaScript event-loops. In a
contemporary browser, each script runs inside one single-threaded event-loop per page.
After the initial parsing and interpretation of <script> tags, the event-loop processes
incoming events related to page lifecycle events, UI events, timer events, XRS responses,
etc. The order in which corresponding event handlers are executed is non-deterministic,
e.g., because of user actions or I/O timing. This can give rise to an unexpected ordering
of messages that is not handled correctly by the program. Listing 2.5 extracted from
[RVS13] shows an example of such a message order violation. In this case the failure
occurs because of an interleaving between the execution of the user action onclick and
the HTML parsing.

The code in Listing 2.5 defines an input tag for a button in an HTML page (Line 2),
and two scripts: one declaring two variables (init and y) and the behavior of function
f which is executed when the button is clicked (Line 4–12), and a second script which
updates the variables init and y. Since the parsing of the input tag and the execution
of the scripts happen in different turns of the event-loop, a violation in the order of
messages execution can occur. For example, if the button is clicked before the first script
runs, the function f is not yet declared, causing the JavaScript interpreter to crash. As
a result, the user will not see a result from the button clicked.

In the example in Listing 2.5 the message order violation only affects a single actor,
because client-side web programs runs in a single JavaScript event-loop, which processes
all types of events. In general, message order violations can also involve more than two
actors. In the context of JavaScript, a message order violation can affect more than
one event-loop if a client-side web application employs WebWorkers, or interacts with a
Node.js server.

22

2.3. TAXONOMY OF CONCURRENCY BUGS FOR ACTOR-BASED
PROGRAMS

1 <html><body>
2 <input type="button" id="b1" onclick="javascript:f()">
3 ... <! - - m a n y e l e m e n t s - - >
4 <script >
5 function f() {
6 if (init)
7 alert(y.g);
8 else
9 alert("not ready");

10 }
11 var init = false , y = null;
12 </script >
13 ...
14 <script >
15 y = { g: 42 };
16 init = true;
17 </script >
18 </body></html>

Listing 2.5: Message order violation within a single event-loop in JavaScript (from
[RVS13]). On line 2, the onclick event can be triggered by the user before the function
f is parsed and made available, causing an error.

2.3.2.2 Bad Message Interleaving

We define a bad message interleaving as the condition when a message is processed in
between two messages which are expected to be processed one after the other, causing
some misbehavior of the application or even a crash.

In the original actor model, messages are expected to be eventually delivered in the
order in which the sender actor sent them (i.e., on a per-sender basis). However, messages
from different senders may be interleaved in between messages from one sender. In other
words, even if the actor model enforces that messages are processed in a first-in-first-out
(FIFO) order per-sender, messages from different sender actors may still be processed
between them. Moreover, some implementations of the actor model do not guarantee
in-order delivery of the messages. This can be found in actor models used to build
distributed systems, like Scala Actors framework1 [HO09] or ActorFoundry library for
Java [LDMA09] in which communication between actors is not enforced to work in a
FIFO manner.

Listing 2.6 shows an example of bad message interleavings translated from a real ex-
ample in Scala to the ActorFoundry programming language (extracted from [LDMA09]).
The listing shows an example of bad message interleaving in a network communication
between two actors, Server and Client. In line 10, the Client sends an asynchronous

1Scala Actors is currently deprecated. The Akka framework (2.6.14), is now the default actor library
for Scala, and it does guarantees FIFO message delivery for some mailbox implementations, https:
//doc.akka.io/docs/akka/current/typed/mailboxes.html.

23

https://doc.akka.io/docs/akka/current/typed/mailboxes.html
https://doc.akka.io/docs/akka/current/typed/mailboxes.html

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

1 class Server extends Actor {
2 int value = 0;
3 @message void set(int v) { value = v; }
4 @message int get() { return value; }
5 }
6 class Client extends Actor {
7 ActorName server;
8 Client(ActorName s) { server = s; }
9 @message void start() {

10 send(server , "set", 1);
11 int v1 = call(server , "get");
12 int v2 = call(server , "get");
13 assert v1 == v2;
14 }
15 }

Listing 2.6: Bad message interleaving example in ActorFoundry (from [LDMA09]). The
Server actor can interleave the messages set and get sent by the Client actor. If that
is the case v1 will get a value that differs from v2.

message to the Server to store the value 1. In line 11, the Client does a call, which
waits for a result, to retrieve the value from the Server. Since the Server processes the
set message between the two get messages, the values of v1 and v2 will be inconsistent.

In the context of JavaScript, bad message interleavings can also occur within a single
event-loop if programs can receive notifications for external events, e.g., events from the
network, from timers or from sensors. Such issues have been previously reported by
[HPK14].

2.3.2.3 Memory Inconsistency

A memory inconsistency is a condition in which different actors have inconsistent views
of shared resources. This can be caused because the effects of the turn that modifies
a conceptually shared resource may not be visible to other actors which also alter the
same resource. Previous research on Erlang has reported such kinds of problems [Huc99,
HB11, DKO13].

Listing 2.7 shows a modified fragment of an Erlang program used by [DKO13] to
verify the property of mutual exclusion in actors. The program (originally introduced
by [Huc99]) spawns one database process and several client processes. The purpose of
the program is to save information in a database, which acts as a conceptually shared
resource by different client actors. The database consists of a map of key-value tuples.
When a client process sends an allocate message to the database, the database checks
if the key exists already (Line 8). If the value does not exist (Line 29) then it is saved.
The free message in the client computes the value to be saved (Line 10) and then the
client process sends the tuple to the database. If a second process does lookup before the

24

2.3. TAXONOMY OF CONCURRENCY BUGS FOR ACTOR-BASED
PROGRAMS

first value is saved, the lookup function will fail due to the key not having been inserted
yet. When the database process receives the key and value to be stored, another client
that has a different value with the same key can save it. Thus, the value sent by the
first process will be overwritten by the value of another client process. The fault is in
Line 11, and to avoid the memory inconsistency it needs to be replaced by the commented
receive statement (from Line 12 to 15). This way the value sent by the client is saved
and we avoid other processes making a lookup.

1 main() ->
2 DB = spawn(fun()->dataBase (#{})end),
3 spawnmany(fun()->client(DB) end).
4

5 dataBase(M) ->
6 receive
7 {allocate ,Key ,P} ->
8 case lookup(Key ,M) of
9 fail ->

10 P!free ,
11 dataBase(M);
12 % r e c e i v e

13 % { v a l u e , K e y , V } ->
14 % d a t a B a s e (m a p s : p u t (K e y , V , M))

15 % e n d ;

16 succ ->
17 P!allocated ,
18 dataBase(M)
19 end;
20 {lookup ,Key ,P} ->
21 P!lookup(Key ,M),
22 dataBase(M);
23 {value ,Key ,V} ->
24 dataBase(maps:put(Key ,V, M))
25 end.
26

27 lookup(K,M) ->
28 case maps:find(K,M) of
29 error -> fail;
30 _V -> succ
31 end.
32

Listing 2.7: Memory inconsistency example in Erlang (based on [Huc99, DKO13]). Line
23 shows a message pattern that allows different processes to store different values for
the same key.

2.3.3 Comparison with Existing Terminology in Literature

The goal of establishing a taxonomy is to provide a common vocabulary for concurrency
bugs in actor-based programs. As we mentioned before, there is no agreed terminology for

25

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

bugs found in actor-based programs. In what follows, we relate terms found in literature
to our taxonomy.

Bad message interleavings have been denoted as ordering problems by Lauterburg
et al. [LDMA09] and Long et al. [LBL+16] but we consider ordering problems to be
too coarse-grained terminology. The term atomicity violation was denoted by Zheng
et al. [ZBZ11], Hong et al. [HPK14] and Wang et al. [WDG+17], but we decided to
use the term bad message interleaving to avoid confusion with atomicity violations in
thread-based programs due to low-level memory accesses errors.

Message order violations have been collected under many different names in literature:
data races by Petrov et al. [PVSD12], harmful races by Raychev et al. [RVS13], order
violations by Hong et al. [HPK14] and Wang et al. [WDG+17], and message ordering
bugs by Tasharofi et al. [TPLJ13]. We consider message order violations to be a descrip-
tive name while avoiding confusion with low-level data races present in thread-based
programs.

Memory inconsistency problems have been denoted as race conditions by Hughes et
al. [HB11] and D’Osualdo et al. [DKO13].

Finally, the term orphan messages [CPS97] has been employed to refer to messages
that an actor sends but that the receiver actor(s) will never handle. Rather than a kind
of concurrency bug, we consider orphan messages as an observable property of an actor
system which may be a symptom of a concurrency bug like communication deadlocks or
message ordering violations. We use this terminology in the next section when we classify
concurrency bugs reported in literature with our taxonomy. Orphan messages can for
example be present in actor languages that allow flexible interfaces such as Erlang, the
Scala Actors framework and the Akka library [DKVCDM16]. An actor may change the
set of messages it accepts after another actor has already sent a message which can only
be received by an interface which is no longer supported.

2.3.4 Issues Mixing Actor Libraries with other Concurrency Models

The taxonomy proposed in this chapter focuses only on concurrent programs written
with the actor model. However, often mainstream languages offer the actor model as a
library next to other concurrency models, e.g., with threads. The most representative
example is the Scala language, in which the thread and actor model coexist.

Tasharofi et al. [TPLJ13] did a study of actor programs written in Scala and found
that 80% of the programs mixed the actor model with another concurrency model. Their
study revealed that some of the reasons for the mixing of concurrency models are that
developers lack knowledge about the actor library or found it easier to implement certain
protocols using a shared-memory model. Others argue that the support provided by the
library, e.g., for I/O, was not efficient [TPLJ13].

In this context, when combining, for example, actors and threads, thread-based bugs
such as deadlocks and data races that do not happen in actor-based programs could

26

2.4. STUDY OF CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

occur. For example, race conditions can be seen when combining, for example, actors
and futures in Akka [Hal15, BFSK20]. As a concrete example of a data race between
thread an actors, consider Listing 2.8. The example implemented in Akka Java shows a
simple computation of adding two numbers using a Math actor (Line 25). The callback
(Line 32) uses the log variable, but the actor writes on the log when processing the
received result (Line 21). This data race can happen because the application of the
thenApply closure in the future is not modeled as a message in the actor mailbox (as
for example, how event-loops languages do). Instead, futures and actors run in different
threads, and simultaneous memory access on the actor state can happen if developers
are not careful. Tools to cope with these challenges when mixing concurrency models are
also needed, but it is out of the scope of this dissertation.

2.4 Study of Concurrency Bugs in Actor-based Programs

In this section, we review various concurrency bugs reported in literature, and classify
them according to the taxonomy introduced in Section 2.3.

The goal is twofold: (1) to classify concurrency bugs collected in prior research in the
bug categories according to our taxonomy and (2) to identify bug patterns and observable
behaviors that appear in programs exhibiting a particular concurrency bug. The latter is
useful to design mechanisms for testing, verification, static analysis, or debugging of such
concurrency issues. In the context of this dissertation, this study was used to ground our
research on novel techniques for debugging actor-based programs.

Our survey gather 24 distinct concurrency bugs reported in the literature. Table 2.2
summarizes the bug patterns and observable behaviors by our bug categories (see Ta-
ble 2.1). Each bug scenario is identified with an id, i.e., bug-id. We describe the bug
pattern as a generalized description of the fault by identifying the actions that trigger
the error. And we describe the observable behavior of the program that has the concur-
rency issue, i.e., the failure. The full catalog for each reported concurrency bug is shown
in Table A.1. In the remainder, we highlight the identified bug patterns for each bug
scenario in italic font.

27

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

1 public class MathUserActor extends AbstractActor {
2 private static ActorRef mathActor;
3 private final LoggingAdapter log =
4 Logging.getLogger(getContext ().getSystem (), this);
5

6 public MathUserActor(ActorRef mathActor){
7 this.mathActor = mathActor;
8 }
9

10 @Override
11 public Receive createReceive () {
12 return receiveBuilder ()
13 .match(CalculateSomething.class , this:: receiveCalculateSomething)
14 .match(Result.class , this:: receiveResult)
15 .match(CalculateSomethingFuturized.class ,
16 this:: receiveCalculateSomethingFuturized)
17 .build();
18 }
19

20 private void receiveResult(Result message){
21 log.info("sum = {}", message.result);
22 }
23

24 private void receiveCalculateSomething(CalculateSomething message){
25 mathActor.tell(new Sum(1,2), getSelf ());
26 }
27

28 private void receiveCalculateSomethingFuturized (CalculateSomethingFuturized
message){

29 Duration t = Duration.ofSeconds (1);
30 CompletableFuture <Object > future =
31 ask(mathActor , new Sum(3,2), t).toCompletableFuture ();
32 future.thenApply(v -> {
33 Result vv = (Result) v;
34 / / w a t c h o u t ! u s e g e t C o n t e x t () . g e t S y s t e m () . l o g () i n s t e a d

35 log.info("sum = {}", vv.result);
36 return vv; });
37 }
38 }

Listing 2.8: Code snippet of a program written in Akka in Java that could manifest a
data race (from Parallelism and Distribution course at VUB).

28

2.4. STUDY OF CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Bug category Bug-id Bug pattern Observable behav-
ior

message order vio-
lation

1, 11, 13, 14, 16, 17,
18, 19, 20, 23

incorrect execution
order of actors
(e.g., processes) or
messages (e.g., user
events)

crashes, exceptions,
exit abnormally

bad message inter-
leaving

12, 15, 21, 22, 24 interleaving of one
message between
two other messages

value inconsisten-
cies, exceptions,
errors

memory inconsis-
tency

2, 3, 5, 6, 7, 8 actors accessing to
shared resources
(e.g., access to
Erlang Term Stor-
age or Mnesia
database)

value inconsisten-
cies, exceptions

communication
deadlock

4, 9, 10 incorrect message
implementation
(e.g., orphan mes-
sages)

blocked process

Table 2.2: Summary of bugs patterns and observable behaviors found in literature.

2.4.1 Lack of Progress Issues

Most of the reported communication deadlocks so far are in the context of Erlang pro-
grams. Table A.1 shows 3 communication deadlocks we found in this context. Bug-4 is
an example of a communication deadlock collected by Christakis and Sagonas [CS11b],
which corresponds to the example depicted in Listing 2.2.

Christakis and Sagonas [CS11b] distinguish two causes for communication deadlocks
in Erlang programs:

• receive-statement with no messages i.e., empty mailbox,

• receive with the wrong kind i.e., the messages of the mailbox are different to the
ones expected by the receive statement.

We classify these conditions as bug patterns for orphan messages, which can lead to
communication deadlocks in Erlang.

Christakis and Sagonas [CS11a] mention also other conditions that can cause mail-
box overflows or potentially indicate logical errors. Such conditions include no matching
receive, i.e., the process does not have any receive clause matching a message in its mail-
box, or receive-statement with unnecessary patterns, i.e., the receive statement contains
patterns that are never used.

Bug-9 was identified by Gotovos et al. [GCS11] when implementing a test program in
Erlang which has a server process that receives and replies to messages inside a loop. The
server process blocks indefinitely because it waits for a message that is never sent. They
also identify it as problematic, when a message is sent to an already finished process,
which is exhibited by bug-10. This can happen due to two possible situations. First, if

29

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

a client process sends a message to an already finished server process, the client process
will throw an exception. Second, if the server process exits without replying after the
message was received, the client process will block waiting for a reply that is never sent.
We categorize bug-4, bug-9, and bug-10 as communication deadlocks and the observable
behaviors as orphan messages.

D’Osualdo et al. [DKO13] identified three other bug patterns leading to abnor-
mal process termination in Erlang programs, which might cause deadlocks: sending a
message to a non-pid value, applying a function with the wrong arity and spawning a
non-functional value. These bug patterns could result in a communication deadlock or
in a message order violation if the termination notification is not handled correctly.

Aronis et al. [AS17] studied built-ins operations that can cause races in Erlang
programs. Because the studied built-ins can access memory that is shared by processes,
races can be observed in form of different outputs. Their classification on observable
interferences of Erlang/OTP built-ins can help to diagnose communication deadlocks,
message order violations, and memory inconsistencies.

2.4.2 Message Protocol Violations

We found 10 message order violations, 5 bad message interleavings and 6 memory incon-
sistencies reported in the literature of actor-based programs. In what follows, we discuss
the bug patterns and observable behaviors of those message protocol violations.

2.4.2.1 Message Order Violation

In Erlang, updating certain resources such as the global name registry requires careful
coordination to avoid concurrency issues. Bug-1 is an example of a race on the global
process registry [CS10]. The bug is caused because two processes try to register processes
for the same global name more than once, which is done with non-atomic operations.
For correctness, these processes would need to coordinate with each other.

Bug-11 reported by Christakis et al. [CGS13b] is another example of a message
order violation exhibited when a spawned process terminates before the parent process
registers its process id. The application expects the parent process to register the id
of the spawned process before the spawned process is finalized, but as the execution of
spawn and register functions are not atomic, an unexpected termination can cause a
message order violation.

Zheng et al. [ZBZ11] identified issues when two events are executed but the appli-
cation cannot return the responses in time, e.g., the second message is executed with the
value of the first message. It is included in our table as bug-14. They argue that the cause
of this issue can be the network latency and the delay in managing the responses by the
JavaScript engine. If the events operate on the same data, it can lead to inconsistencies
e.g., deleting an object of a previous event. We consider this a case of a message order

30

2.4. STUDY OF CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

violation, because the order of the messages is not consistent with the expected protocol
or behavior of the web application.

In the context of JavaScript, Petrov et al. [PVSD12] identified 4 different message
order violations. An interleaving between the execution of a script and the event for
rendering an input text box is shown in bug-17, which can lead to inconsistencies when
saving the text a user entered. Also problematic is the potential interleaving of creating
an HTML element and executing a script that uses the element shown in bug-18. If the
HTML element has not yet been created, it will cause an exception. Moreover, bug-
19 corresponds to an issue that manifests when executing a function can race with its
definition. This can happen when the function is invoked first because the HTML loads
faster, and the script where it is declared is only loaded later. Another example is shown
in bug-20, the onload event of an HTML element is triggered before the code is loaded,
which causes the event handler to never run correctly.

Raychev et al. [RVS13] detected similar race conditions to the ones reported in
[PVSD12], which we categorize as message order violations. Listing 2.5 corresponds to
their bug example which we identify as bug-16. Hong et al. [HPK14] also collected
message ordering violations in three different existing websites. One of its examples
shows a scenario where a user input invokes a function before it is defined. This last
example is detailed in bug-23. From all these collected bugs, we conclude that a common
issue in JavaScript programs is the bad interleaving of two events in an unexpected order.

Tasharofi et al. [TPLJ13] identified twelve bugs in five Scala projects using the Akka
actor library, which we categorize as message ordering problems. Bug-13 gives details of
one of these bugs. The study found two bug patterns in Scala and Akka programs that
can cause concurrency bugs in actors. First, when changing the order of two receives in a
single actor (consecutive or not), which can provoke a message order violation. Second,
when an actor sends a message to another actor which does not have the suitable receive
for that message. This last issue manifests as an orphan message, and can also lead to
other misbehaviors such as communication deadlocks.

2.4.2.2 Bad Message Interleaving

Most of the bad message interleavings we have found are reported in JavaScript. Zheng
et al. [ZBZ11] also identified bad message interleavings such as the one exhibited in
bug-15. The bug pattern corresponds to the use of a variable not initialized by other
methods before it was defined. This delay of receiving a response can be caused by a busy
network and leads to an exception in the application. Hong et al. [HPK14] also observed
bad message interleavings in JavaScript programs. Bug-21 shows a pattern in which a
variable is undefined because after a user has uploaded a file to a workspace, the user
changes the workspace before the file has been completely uploaded. In the case of bug-22,
a variable is null because an event handler updates the DOM between two inputs events
that manipulate the same DOM element.

31

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Chang et al. [CDG+19] reported a bad message interleaving from a Node.js applica-
tion. The code snippet corresponds to a callback chain of three callbacks, which should
be executed one after the other. However, because Node.js does not guarantee the atom-
icity of the callback chain, message interleavings can occur. Two cases can be observed
due to the bad interleaving, a message is set to undefined, and a message is overwritten.

Bug-12 corresponds to the example of bad message interleaving collected by Lauter-
burg et al. [LDMA09] from Scala and translated to ActorFoundry, which was shown in
Listing 2.6. The bug pattern occurs when an actor executes a third message between two
consecutive messages due to the actor model implementation being not FIFO.

2.4.2.3 Memory Inconsistency

To the best of our knowledge, memory inconsistency issues have only been reported in
the context of Erlang programs. Christakis et al. [CS10] shows an example of high-level
races between processes using the Erlang Term Storage in bug-2. In this case the error is
due to inserting and lookup in tables that have public access, thus it is possible that two
or more processes try to read and write from them simultaneously. A second example
detailed in bug-3, shows a similar issue that can happen when accessing tables of the
Mnesia database. The cause is due to the use of reading and writing operations that can
cause race conditions. We categorize both issues as memory inconsistency problems.

Hughes et al. [HB11] detected four bugs corresponding to memory inconsistencies
in dets, the disk storage back end used in the Erlang database Mnesia. Bug-5 refers to
insert operations that run in parallel instead of being queued in a single queue. They
can cause inconsistent return values or even exceptions. The observable behavior of
bug-6 corresponds to an inconsistency of visualizing the dets content. This issue can
occur when reopening a file that is already open and executing insert and get_contents
operations in parallel. Bug-7 and bug-8 are caused due to failure on integrity checks.
Bug-7 is reproduced only in one specific scenario when running three processes in parallel,
and bug-8 can occur only in those languages implementations that similar to Erlang with
Mnesia can keep new and old versions of the server state.

Huch et al. [Huc99] and D’Osualdo et al. [DKO13] conducted studies to verify mutual
exclusion in Erlang programs. Listing 2.7 shows an example. The bug pattern identified
corresponds to the wrong definition of the behavior of the actor, and the observable
behavior is that two actors can store different values for the same key which leads to
inconsistencies.

2.4.3 Concurrency Bugs by Actor Variants

We now discuss which concurrency bugs can occur according to the two variants of
the actor model for which we have found bugs in literature, i.e., processes and CEL.
Furthermore, we identify the patterns that can cause a concurrency bug and the behavior
that can be observed in the programs that have these bugs.

32

2.5. RELATED STUDIES OF CONCURRENCY BUGS IN
ACTOR-BASED PROGRAMS

2.4.3.1 Lack of Progress Issues

In languages that implement the processes variant of the actor model, e.g., Erlang and
Scala, programs can exhibit communication deadlocks because the actor implementation
features blocking operations. A common observable behavior of this concurrency bug is
orphan messages. This means an actor with this issue is blocked, i.e., the process is in a
waiting state.

Languages that use the communicating event-loops model, e.g., JavaScript and SOMns,
do not provide blocking primitives, and thus, do not suffer from communication dead-
locks. However, the rest of lack of progress issues such as behavioral deadlocks and
livelocks can occur. Bug patterns for a behavioral deadlock or a livelock are typically
mistakes in the code when processing a message, or a message that was sent to the wrong
actor at the wrong time. The resulting observable behavior can be an incorrect program
output in which one or more actors do not progress with their computation. As men-
tioned before, those bugs are hard to diagnose, because some actors are not blocked, but
the overall program is not progressing.

2.4.3.2 Message Protocol Violations

Both variants of the actor model can suffer from message protocol violations. In the
case of processes based programs, literature has reported message order violations and
memory inconsistencies. For message order violations, possible bug patterns are the
delays in managing responses or the unsupported interleaving of messages, i.e., the actor
protocol does not correspond to the executed message interleavings. These can result
in a program crash or inconsistent computational results. Memory inconsistencies are
typically caused by a wrong message order when accessing shared resources.

Similar to the processes actor variant, we found in event-loops based programs mes-
sage order violations and bad message interleavings. Our survey shows that JavaScript
has more occurrences in these bug categories. Bug patterns are typically caused by high-
level races between HTML parsing and events execution (e.g., user actions). A common
observable behavior is exceptions or application crashes.

2.5 Related Studies of Concurrency Bugs in Actor-based
Programs

As mentioned before, at the start of this work, few research has focused on categorizing
bugs for actor-based programs. Recently, several field studies have been conducted on
how bugs appear in actor-based programs. In particular, we have found two studies
for Akka programs [HZ18, BFSK20] and one study about bugs in Node.js programs
[WDG+17]. Here we describe them and compare their bug categorization with ours.

33

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

2.5.1 Field Studies in Akka programs

Hedden et al. [HZ18] conducted a study categorizing 126 bugs in 12 real-world Akka
systems in the context of distributed applications. They have used the ScalaIndex2 web-
site to search for the top 20 communities rated programs using Akka written in Scala
language. Authors checked that each community had active issue tracking (i.e., GitHub)
and contained issues with the labels “bug" and “closed," and that at least one git com-
mit was done when closing it. They checked that the bug was resolved and the track
issue closed with fixes to the code and a non-trivial solution, e.g., not a misspelling,
missing documentation, or a mislabeled bug. They give priority to bugs related to erro-
neous behavior rather than to program development. They selected 12 systems with the
mentioned requirements.

Authors classified the bugs found in three categories, i.e., communication (20,5%),
coordination (22%) and logic (57,5%). Communication and coordination are bugs related
to concurrency. Logic category refers to bugs that can be seen in any system, e.g., null
pointer errors, optimization issues, etc. In Table 2.3 we show the subcategories they
proposed for communication (from 1 to 4) and coordination (from 5 to 10) categories.

We observe in Hedden et al.’s categorization that most of their categories are related
to issues in the context of distributed systems. Because our taxonomy is focused on bugs
that can be seen in concurrent programs (i.e., without considering distribution), we only
found one overlap in our work, i.e., our message order violation category is very similar
to Hedden’s subcategory of message order.

More recently, Bagherzadeh et al. [BFSK20] did an extensive study of 186 Akka
concurrency bugs that have been reported in GitHub and Stack Overflow repositories.
The authors collected 130 bugs from Stack Overflow, manually inspecting the questions
with the tags “Akka" and “Actor." They consider the question related to a bug if the
developer asking explains the error of their code (i.e., the expected and unexpected
behavior). The authors consider that the bug was solved if the answer identifies a solution
for the mentioned error. The remaining 56 bugs were collected from Scala and Java
projects using Akka in GitHub. The repositories selected were rated with five stars by
contributors and including the statement import akka.actor.*, to indicate that they
used actors. In later step, the authors stem the words in the message commits and filter
messages that contain the keywords “error", “bug",“fix", “issue", “mistake", “incorrect",
“fault", “defect" and “flaw". Finally, the authors manually analyze each commit obtained
to check if the bug and fix reported correspond truly to Akka actors. The authors
classified the bugs found according to 10 bug patterns (or root causes). We summarize
them in Table 2.4.

Now we compare the bug patterns we found in the literature (see Table 2.2) with
Bagherzadeh et al. root causes, and the observable behaviors we found in the literature
with Bagherzadeh et al. symptoms.

2https://index.scala-lang.org

34

2.5. RELATED STUDIES OF CONCURRENCY BUGS IN
ACTOR-BASED PROGRAMS

Bug subcategory Description
1. response refers to issues that occur when an actor receives im-

proper responses to different communication based opera-
tions, e.g., when try to connect to a not running database.

2. connection refers to issues not related to sending messages to another
actor, but to streaming services or file requests.

3. error handling refers to issues that occur when connection and message
errors are not handled properly, e.g., defining unlimited
number of reconnections attempts can lead to a system
deadlock.

4. message order refers to issues due to out of order messages, i.e., actors
receive messages in the wrong order.

5. cooperation refers to issues that emerge when actors are executing si-
multaneously, although in its example authors mention an
issue due to mixing actors with semaphores.

6. shutdown refers to issues involving problematic shutdown process e.g.,
processes that remain with open connections at system ter-
mination.

7. recovery refers to issues when actors recover or recreate after a fail-
ure, e.g., system did not recognize a worker after the worker
dies and recover because an unsuccessful registration of the
worker in the system.

8. workload refers to issues caused by long or demanding computations,
which results for example in “deadlocked" actors (i.e., while
busy due to configured time out of windows), or getting
multiple duplicated messages.

9. operation order refers to issues that occur due to wrong order of operations
not related to messages sent and received by actors, i.e.,
other operations carried out by the system such as when
sending messages to uninitialized actors.

10. creation refers to issues that occur when actors are incorrectly cre-
ated, e.g., null references to actors when running multiple
actor systems within a computer cluster.

Table 2.3: Categories for concurrency bugs proposed by [HZ18] in Akka programs.

35

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Bug pattern Description
1. logic refers to issues caused by incorrect implementation of the

logic of the program, e.g., operations performed over wrong
variables causing undesired results.

2. race refers to issues that occur when two conflicting computa-
tions have different execution and program orders.

3. API confusion refers to issues related to incorrect use of Akka API classes.
4. explicit life cycle refers to issues caused by incorrect implementation of actors

lifecycle, e.g., an actor lifecycle in Akka consists of creation,
initialization, lookup, monitoring, termination and restart.

5. programming refers to incorrect implementation of syntatic and seman-
tic elements of the programming language, e.g., incorrect
dependencies and imports.

6. messaging pat-
terns

refers to issues caused by incorrect use of Akka message
patterns, e.g., request-response, forward, and route.

7. model confusion refers to issues caused by incorrect implementation of the
semantics of programs based on the actor model, because
developers confuse its semantics with threads, e.g., excep-
tion handling for Scala actors and Akka actors is different.

8. misnaming refers to issues caused by incorrect actor naming.
9. misconfiguration refers to issues caused by incorrect use of actors config-

uration parameters in Akka, e.g., dispatching, shutdown,
mailbox, etc.

10. untyped com-
munication

refers to issues caused by incorrect discovering of message
types in the implementation of the program, i.e., because
actors do not know the type of message they may receive.

Table 2.4: Bug patterns proposed by [BFSK20] for concurrency bugs in Akka repositories.

Observable behav-
ior

Description

1. error an actor or the application throws an error (e.g., timeout,
out-of-memory and actor name errors) or exception during
its execution or compilation.

2. unexpected be-
havior

an actor or its enclosing application does not behave in a
way that the developer expects from its implementation,
e.g., misbehaving schedulers, dispatchers, supervisor ac-
tors, loggers, etc.

3. incorrect mes-
saging

an expected message is not sent by an intended sender of
the message or not received, stashed or processed by its
intended receiver.

4. incorrect termi-
nation

an actor or its enclosing application does not terminate,
terminates prematurely, terminates and restarts infinitely,
or hangs.

5. incorrect excep-
tions

an intended actor does not throw, catch, or properly handle
an expected exception.

Table 2.5: Observable behaviors proposed by [BFSK20] for concurrency bugs in Akka
repositories.

36

2.5. RELATED STUDIES OF CONCURRENCY BUGS IN
ACTOR-BASED PROGRAMS

In Table 2.4 we consider the majority of bug patterns (i.e., 1, 3, 4, 5, 7, 8, 9) not
to be related to actor-based programming. Instead, those bug patterns are related to
programming with Akka and incorrect implementation of the program, which, although
could lead to bugs, are not directly related to the interaction of the concurrent entities,
i.e., actors and messages. Bug pattern 2, 6 and 10 are related to actor programming
and we now relate them to our taxonomy. First, bug pattern 2 is similar to our category
of message order violation. However, as we mentioned before Section 2.3.4, there are
special cases in Scala in which concurrency bugs from thread-based model can occur,
e.g., data races when using futures and actors. Although there is not a direct match of
bug pattern 6 in our taxonomy, we think this is similar to the bug patterns we found in
our communication deadlocks examples in Erlang programs. Also, we think that the bug
pattern 10 can be manifested by orphan messages and lead to communication deadlocks
in Akka.

In their work, Bagherzadeh et al. also classified their bugs considering 5 observable
behaviors (or symptoms). We summarize them in Table 2.5. Comparing the observ-
able behaviors in Table 2.5 with the observable behaviors we have found in literature,
Table 2.2), we see that our taxonomy is aligned with the findings of [BFSK20]. In partic-
ular, we have seen in literature errors and exceptions (observable behavior 1), incorrect
termination (observable behavior 4) such as crashes and exit abnormally of the appli-
cations, e.g., for the message order violation and bad message interleavings reported in
JavaScript. Also, in literature have been reported misbehaviors such as incorrect mes-
saging (observable behavior 3), e.g., in communication deadlocks in Erlang programs.
However, we consider orphan messages more like a bug pattern than an observable be-
havior for the category of communication deadlocks. We consider observable behaviors
2 and 5 specific for Akka actors.

2.5.2 Field Study in Node.js programs

In the context of event-loops programs, Wang et al. [WDG+17] studied 57 concurrency
bugs in Node.js programs from GitHub repositories. Authors used keywords to search
potential concurrency bugs, such as “concurrent", “race", “synchronization", “atomic",
“mutex", “transaction", “deadlock", “compete" and “starve". They also used GitHub
search filters labeled with “bug" tag and in a closed state. They also filter by the keywords
“submit" and “fix". In a second step, the authors manually checked 1583 bug reports to
exclude unrelated reports for concurrency bugs and obtained 57 complete reports about
the bugs.

Wang et al. classified bugs found into three categories, i.e., order violation, atomicity
violation and starvation (see Table 2.6). As mentioned in Section 2.3.3 we found that their
order violation category is equivalent to our category of a message order violation. And,
the atomicity violation category corresponds to what we call bad message interleavings.
We consider what they call starvation a case of behavioral deadlock.

37

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

Bug category Description
order violation violation order between two or more events (i.e., asyn-

chronous operations or callbacks). The events access the
same shared resources (e.g., variables, files) and are ex-
pected to be processed in a certain order.

atomicity violation violation among callbacks or asynchronous operations that
should be executed atomically without interruption.

starvation happen when some tasks take a long time and prevent other
events from processing. Usually, callbacks registered by
higher priority can starve the lower ones.

Table 2.6: Bug categories proposed by [WDG+17] for concurrency bugs in Node.js repos-
itories.

Bug pattern Description
1. non-
deterministic
event triggering

refer to issues that emerge when two asynchronous oper-
ations are scheduled by the worker pool their completion
order is unknown.

2. non-
deterministic
event handling

the schedule of one callback execution from multiple avail-
able callbacks is non-deterministic, i.e., they may not be
processed in the expected order and cause issues.

3. non-
deterministic
execution of asyn-
chronous opera-
tions

refer to issues that emerge when multiple asynchronous
tasks are delegated to the worker pool simultaneously, their
processing order is unknown.

4. non-
determinism
among multiple
processes

Node.js is single-thread but it can create many processes
to distribute the workload. These processes may have con-
flicting accesses to the same resources, e.g., copy and delete
actions of a directory from different processes.

5. scheduling and
protocol APIs

refer to issues that originates due to incorrect usage of
Node.js asynchronous APIs, i.e., schedule APIs and event-
driven specification protocol.

Table 2.7: Bug patterns proposed by [WDG+17] for concurrency bugs in Node.js repos-
itories.

Similar to Bagherzadeh et al. [BFSK20], Wang et al. identified bug patterns (i.e.,
faults or root causes) shown in Table 2.7, and observable behaviors (i.e., failures) shown
in Table 2.8 for the concurrency bugs.

The authors reported having found bug patterns 1, 3, 4, 5 in the categories of order
violation and atomicity. Bug pattern 2 was seen in a lower number of bugs in the category
of starvation. From the five bug patterns of Table 2.7 all are similar to our taxonomy
except bug pattern 5, which is specific to Node.js APIs. We consider bug pattern 1, 2, and
3 characteristics bug patterns that can cause message order violations and bad message
interleaving. Bug pattern 4 is related to our memory inconsistency category.

From the classification of observable behaviors in Table 2.8, we found similarities in
3 of them, i.e., in the bugs reported in the literature, authors also mentioned behaviors
1, 2 and 4. However, we do not have in our catalog concrete examples for behaviors 3
and 5, which certainly can occur in actor-based programs.

38

2.6. HEISENBUGS AND PROBE-EFFECT

Observable behav-
ior

Description

1. crashes/ excep-
tions

e.g., null pointer exceptions, or crashes due to out of mem-
ory.

2. incorrect states e.g., incorrect persistence data in database.
3. wrong outputs refers to wrong results of the program which are shown to

users.
4. hangs/ no re-
sponse

e.g., when a listener is removed from an event before it is
triggered, the event cannot be processed correctly.

5. operation fail-
ures

refers to unexpected behaviors, e.g., jobs getting processed
incompletely or rejected, I/O starvation issues under heavy
load.

Table 2.8: Observable behaviors proposed by [WDG+17] for concurrency bugs in Node.js
repositories.

2.5.3 Conclusion from the Related Field Studies

We draw two conclusions from the recent field studies of issues in repositories of Akka
and Node.js with respect to our taxonomy.

First, the bug patterns we have found in the literature for our three categories of
message protocol violations (see Table 2.2), have also been reported in repositories of
Akka and Node.js programs in GitHub. Bug patterns that cause memory inconsistencies
problems are particular to Erlang programs but can be compared with some Akka and
Node.js races.

Second, the observable behaviors we have seen in literature have also been reported
for Akka and Node.js programs (see Table 2.2).

All in all, the categorization introduced by our work provides thus a solid basis to
categorize concurrency bugs in real-world applications. We aim to keep our catalog of
bugs up to date as more field studies are conducted.

2.6 Heisenbugs and Probe-Effect

So far, we have focused on bugs manifested by an actor-based program. However, some
bugs may only manifest when the program is being externally controlled, e.g., by a
debugging tool. Those kind of bugs are typically known as heisenbugs [sig83, Gra86].
A heisenbug has been referred to as a concurrency bug that “disappears" in the next
program’s execution [sig83, Gra86]. In other words, are bugs that, due to timing issues
originated by external tools such as debuggers, can be seen in one run of the program
(i.e., in one path of the program execution), and later is very difficult to see it again
because the output or behavior of the program where the bug was observed cannot be
reproduced again.

The fact that observing the program execution affects the program behavior is known
as the probe-effect. Gait initially defined the probe-effect as: “a characteristic behaviour
of the execution trace of an incorrectly synchronized concurrent program when extrane-

39

CHAPTER 2. CONCURRENCY BUGS IN ACTOR-BASED
PROGRAMS

ous delays are introduced" [Gai86]. Gait summarized two causes for the probe-effect.
First, the interactions between application programs and multiprocessor operating sys-
tems, and second, the effect debuggers may have in the program’s execution by altering
synchronisation actions [Gai86]. This last means that the debugger’s mere presence (e.g.,
adding print statements or executing debugging commands) may affect the order in which
concurrent entities are executed, making the reproduction of a concurrent bug even more
difficult [MH89]. This idea that measuring something can change the measurement itself
recalls the Heisenberg Uncertainty principle [Hei27]3.

2.7 Conclusion

In this chapter, we explained the main concepts of the Communicating Event-Loops con-
currency model, the actor model variant to which we address our research. We proposed
a taxonomy of concurrency bugs for actor-based programs to enable research on debug-
ging support for actor-based programs. Although the actor model avoids data races and
deadlocks by design, it is still possible to have lack of progress issues and message-level
race conditions in actor-based programs.

Our literature review shows that actor-based programs exhibit a range of different
issues depending on the specific actor model variant. In languages that feature the
processes actor variant like Akka in Scala and Erlang, programs can suffer from com-
munication deadlocks because the actor implementation uses blocking operations. In
languages that implement the event-loops concurrency model, this issue cannot occur.
However, they can suffer from other lack of progress issues such as behavioral deadlocks
and livelocks. Behavioral deadlocks and livelocks are really hard to identify because ac-
tors are not blocked. Both lack of progress issues can be seen in all variants of the actor
model. Message order violations, bad message interleaving, and memory inconsistencies
are message protocol violations that can also happen in programs that implement any
variants of the actor model.

We also discussed three recent related field studies that proposed other taxonomies
for actor-based programs from repositories of mainstream languages such as Akka and
Node.js. We found some bug patterns and observable behaviors in the studies, which as
our taxonomy are focused in concurrency and have overlaps in our classification. Other
bug categories are rather specific of an actor language or focus on issues that can happen
in distributed environments.

In the next chapter, we will review the state-of-the-art techniques for identifying and
handling concurrency bugs in actor-based programs and how they are related to the
concurrency bugs we have studied in this chapter.

3The Heisenberg principle for subatomic particles says that “that the position and the velocity of an
object cannot both be measured exactly, at the same time, even in theory" [Bri20].

40

Chapter 3

State of the Art of Techniques to
Handle Concurrency Bugs in
Actor-based Programs

This chapter surveys the current state of the art of techniques to identify and solve
concurrency bugs in actor-based programs. Furthermore, we analyzed how the techniques
relate to the bug categories of our taxonomy to identify open issues. Specifically, we
survey techniques for static analysis, testing tools, visualization, and debuggers.

3.1 Identifying and Solving Concurrency Bugs

In the tasks of identifying and solving concurrency bugs, we can find tools in two cate-
gories, static and dynamic [MH89, Zel09]. On the one hand, static techniques, such as
model checking identify concurrency issues without executing the program [CHVB18].
On the other hand, dynamic analysis techniques such as testing and debugging “evaluate
a system or a component based on its behavior during execution" [glo90]. Specifically,
testing tools require the implementation (or generation) of code that tests the main func-
tionalities of the program [BMP18]. Alternatively, debuggers do not require additional
code, but they run the program in a controlled way. Debugging techniques are applied
directly to the execution of the target program. Debuggers have the benefit of starting
the program inspection fast without changing the source code, which allows developers
to have immediate results [Zel09].

Here we cite definitions of the three mentioned techniques from the standard glossary
of IEEE [glo90]:

Static analysis “the process of evaluating a system or a component based on its form,
structure, content, or documentation".

41

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

Testing “the process of operating a system or component under specified conditions,
observing or recording the results, and making an evaluation of some aspect of the
system or component". Also, “the process of analyzing a software item to detect the
differences between existing and required conditions (that is, bugs) and to evaluate
the features of the software items".

Debug “to detect, locate, and correct faults in a computer program. Techniques include
use of breakpoints, desk checking, dumps, inspection, reversible execution, single-
step operation and traces".

In our research, we focus on debugging techniques that allow developers to explore
the program execution interactively to find the root cause of a bug when they do not
have a clear idea of what the fault is.

3.2 Debugging Techniques

For more than three decades, researchers have emphasized that the main problems as-
sociated with debugging concurrent programs are the increased program complexity,
non-determinism and non-repeatability [MH89]. Understanding concurrent programs is
complex because it requires understanding interactions amongst concurrent entities. On
the other hand, the non-deterministic behavior of concurrent programs makes that the
output of a program does not only depend on the input but also on the scheduling
of concurrent entities. Moreover, communication or synchronization between concurrent
entities can also be sensitive to timing, affecting the order in which concurrent entities ex-
ecute operations. Finally, the problem with non-repeatability is that running a program
several times with the same input may not reproduce the bug as it may only manifest on
weird schedulings of concurrent operations. Non-repeatability occurs mostly due to races
between the concurrent entities [MH89]. Control over sources of non-determinism is thus
important for achieving the reproducibility of bugs. But, as explained in Section 2.6,
the debugging tool may introduce more non-determinism, e.g., timing differences, which
makes that the bug does not manifest, requiring many debugging cycles before being able
to reproduce the bug.

Debugging tools for parallel and concurrent programs can be categorized into two
main families [MH89]:

• Event-based debuggers also known as log-based, offline, or postmortem debuggers.

• Breakpoint-based debuggers also known as online, cyclic or interactive debuggers.

While event-based approaches generate a program trace for offline browsing or de-
terministic replay, breakpoint-based debuggers control the program execution allowing
developers to pause and resume program execution at well-defined points, inspect pro-
gram state, and perform step-by-step execution. In the remainder of this section, we

42

3.2. DEBUGGING TECHNIQUES

analyze the features of each family and how they help to handle concurrency bugs. We
refer to event-based approaches as offline debugging techniques and breakpoint-based
approaches as online debugging techniques.

3.2.1 Online Debugging Techniques

Online debuggers are software tools that allow developers to inspect the program state
interactively, i.e., pausing and resuming the program execution at one (or more) point
of interest (typically called breakpoints). Breakpoints is a well-known debugging feature
by today’s developers, which was actually invented for the ENIAC computer more than
70 years ago: “literally the removal of a wire to break the flow of program pulses...to
halt calculations at particular points so that values stored in memory could be checked"
[HPR16]. With the hardware evolution during the years, debuggers have integrated
different types of breakpoints, such as line and conditional breakpoints, as well as other
online features such as variables state inspection, and stack traces.

In particular, online debuggers for actor-based programs have adapted the afore-
mentioned techniques from sequential debugging to the concepts of concurrent pro-
gramming. We summarize three online debugging techniques that have been applied
in the context of actors, i.e., actor state inspection, breakpoints (line, conditional and
message-breakpoints) and stepping operations (sequential and message-oriented), and
asynchronous stack traces. Here we detail each of them:

Actor state inspection in the context of actor-based programs refers to inspecting
the state of the objects inside the actor and the messages enqueued in its mailbox.
Examples of debuggers that provide this feature are REME-D for the AmbientTalk
language [GBNDM14], and IDeA for the Akka framework in Scala [MOM18].

Breakpoints and stepping operations in the context of actor-based programs, there
are interesting locations in which developers can inspect the programs’ state using
breakpoints. We can make use of line breakpoints and conditional breakpoints,
which are often used in sequential debugging. However, pausing the program on
the level of messages, promises or turns can be of great benefit. For example,
REME-D debugger employed the concept of message-oriented breakpoints based
on the work of [Wis97]. Furthermore, stepping operations that cross the boundaries
of turns will allow to inspect an actor state, for example, at the end of the current
turn, in the next turn, or return to the turn where a promise is resolved.

Asynchronous stack traces in the context of actor-based programs, an asynchronous
stack provides the concept of a call stack from the sequential world into the concur-
rent one. They show the sequence of asynchronous messages that were processed
until the point of the suspension. For example, the Scala debugger provides an
asynchronous stack for programs written with Akka [Dra13] and Chrome debugger
[Not17] for JavaScript programs.

43

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

We now discuss how those online techniques could help to handle concurrency bugs.
For example, inspecting the actor state could help identify behavioral deadlocks, e.g.,
inspecting the promise object state if it is successfully resolved or not may help to detect
a deadlock due to an unresolved promise. Besides, inspecting variables state may help
identify value inconsistencies that are often produced by message order violations or bad
message interleavings.

Breakpoints combined with actor state inspection are useful for observing the state
of one or multiple actors in a program with a failure. For example, pausing the program
before a message is sent can help developers to identify a wrong value that is about to be
sent in the argument of the message, which can cause a behavioral deadlock or a message
order violation.

Finally, we consider that asynchronous stack traces can be especially helpful for mes-
sage order violations and bad message interleavings because it can help to detect incor-
rectly (or missing) asynchronous messages sent.

3.2.2 Offline Debugging Techniques

Offline debugging techniques allow developers to explore the program execution based
on a trace that contains all the events of the program after it has been executed. Ex-
amples of offline debugging techniques are record and replay, reverse debugging, actor
state inspection and visualization. In the following, we describe each of the four offline
debugging techniques which have been applied in the context of actors:

Record and replay this technique consists of recording (all or fragments) events of
a program execution in a trace and then re-execute the events again from the
trace. In actor-based programs, events can be the creation of an actor, messages
sent, messages processed, etc. [AMB+18]. This technique eases the problem of
non-repeatability due to non-determinism. Because replaying the trace events de-
terministically, i.e., replaying the same path of execution in which the bug was
observed, will allow developers to observe the same program misbehavior immedi-
ately. Examples of debuggers that apply this technique are Jardis, a debugger for
JavaScript programs [BMM+16] and IDeA debugger for Akka [MOM18].

Reverse debugging also known as back-in-time debugging or omniscient debugging, it
is a debugging technique that allows to go forward and backward into the history
of the program execution to inspect the program state [Eng12]. More concretely,
the debugger reads the events from a trace, i.e., the state is restored from a full
log or snapshots (or checkpoints) previously recorded. Different from the record
and replay technique, developers can step backward until a breakpoint hits, i.e.,
observing a past state in the program interactively. The debuggers Jardis and IDeA
also apply reverse debugging together with record and replay.

44

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

Actor state inspection similar to online debuggers, we can find offline debuggers that
allow the state inspection of the actor objects and the actor mailbox. The dif-
ference is that in offline approaches, the state is previously recorded, and setting
breakpoints and triggering stepping operations is done over the recorded trace.
For example, the IDeA debugger allows inspecting the actor local variables and its
mailbox.

Visualization offline debuggers typically provide views to visualize messages exchanged
between the actors of the application. Data is obtained from a previously recorded
trace. For example, the Causeway debugger [SCM09] for the E language introduced
views in which messages are shown in chronological order by each process in a tree,
which is built based on program events, e.g., asynchronous message sends, recorded
during the program execution.

We now discuss how those offline techniques could help handle concurrency bugs.
Recording and replaying the program execution can be effective in the context of actors,
for example, for identifying heisenbugs, because if the bug was recorded, then it is possible
to reproduce the program execution deterministically. In contrast, in a cyclic debugging
approach, it can take more than one run of the program to see it again. Thus, it will be
possible to reproduce as well lack of progress issues and message protocol violations.

Reverse debugging techniques could be helpful to find the root cause of concurrent
bugs because literature has reported that the distance between the failure and the root
cause is long in concurrent programs [PSTH16].

The technique of actor state inspection, like for online debuggers, allow inspecting
variables state that could help discover root causes for lack of progress issues or message
protocol violations.

Visualization of messages exchanged between actors can be useful to unveil complex
paths of message sends that could aid in solving message protocol violations. Unfortu-
nately, offline visualization on traces often does not capture enough information to find
the root cause of a bug.

3.3 State of the Art Techniques to Handle Concurrency
Bugs

This section reviews state of the art for identifying and solving concurrency bugs in
actor-based programs. We distinguish techniques between online debuggers and offline
debuggers. We also survey visualization techniques and interesting works in the fields
of static analysis and testing. We finish this section by discussing the advantages and
disadvantages of each technique, and we summarize the approaches by our taxonomy of
concurrency bugs.

45

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

3.3.1 Online Debuggers

In this section, we will analyze the existing online debuggers for research actor-based
languages (e.g., E, AmbientTalk) or for mainstream languages (e.g., JavaScript, Erlang,
Scala).

REME-D [GBNDM14] is an online debugger for distributed communicating event-
loops programs written in AmbientTalk [VMG+07]. REME-D provides message-oriented
debugging techniques such as actor state inspection, in which the developer can inspect
an actor’s mailbox and objects while the actor is suspended. It also supports a cata-
log of breakpoints, which can be set on asynchronous and promise messages (or future
messages in AmbientTalk) sent between actors. REME-D allows inspecting the history
of messages sent and received when an actor is suspended, also known as causal link
browsing [GBNDM14].

In the context of JavaScript, the Chrome DevTools online debugger supports Web
Workers [Not17] which are actors that communicate with the main actor through message
passing. The Chrome debugger allows pausing workers. In the case of shared workers,
it also provides mechanisms to inspect, terminate, and set breakpoints [Blo12]. Chrome
also supports asynchronous stack traces. This means it shows the stack at the point a
callback was scheduled on the event-loop. Since this works transitively, it allows inferring
the point and context of how a callback got executed.

Erlang has an online debugger [AB20] that supports line, conditional, and function
breakpoints. The Erlang processes can be inspected from a list, and for each process, a
view with its current state, as well as its current location in the code, can be opened,
which allows one to inspect and interact with each process independently. It also supports
stepping through processes and inspecting their state.

The ScalaIDE offers a classic online debugger with support for stepping, line, and
conditional breakpoints [fED]. Furthermore, one can follow a message send and stop in
the receiving actor. Additionally, the debugger supports asynchronous stack traces similar
to the Chrome debugger. In particular, Dragos [Dra13] proposes two interesting points
to save asynchronous information, i.e., when a promise is created and when an actor
message is sent. In their approach, the stack trace data relies on static type information
at a breakpoint source location. Besides, it shows the state at the moment when the
message was sent.

All in all, online techniques aid in identifying the root cause of bugs by allowing de-
velopers to interactively control the execution of program and inspect the program state
at interesting points, e.g., at the receiving actor before processing a message. However,
they suffer from the probe effect since the mere presence of the debugger may affect
the program execution, making that bugs do not manifest during the debugging session.
So far, most of the efforts in online debugging techniques have focused on adding some
support for debugging messages (e.g., message-oriented breakpoints) and asynchronous
stack traces. However, we observe very few integrations between the debugging opera-
tions for concurrent code and the ones for sequential one. Since a concurrency bug can

46

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

manifest due to a combination of erroneous program states and erroneous interactions
amongst actors, finding the root cause of a bug requires controlling both executions of
sequential computation within a turn as well as interactions amongst actors. Integrating
online techniques such as breakpoints and stepping operations from the sequential and
concurrent world is thus needed for handling concurrency bugs.

3.3.2 Offline Debuggers

In this section, we describe different debugging tools for actor-based programs that use
offline debugging techniques. Causeway is a postmortem debugger for E programming
language that pioneered a message-oriented approach to debugging CEL programs which
followed the flow of messages across actor boundaries based on the happened-before re-
lationship [SCM09]. It focuses on displaying the causal relation of messages to enable
developers to determine the cause of a bug. Causality is modeled as the partial order of
events based on Lamport’s happened-before relationship [Lam78].

Actoverse debugger [SW17] enables reverse debugging of Akka programs written in
Scala. It uses snapshots for restoring the state of actors and enables back-in-time debug-
ging in a postmortem mode. Furthermore, Actoverse provides message-oriented break-
points and a message timeline that visualizes the messages exchanged by actors, similar
to a sequence diagram. The authors aim to ease finding the cause of message protocol
violations in Akka programs.

The recently proposed IDeA debugger [MOM18] provides a 3D interface in virtual
reality for developers to debug Akka programs using traces. It is a postmortem approach
because it records traces for later replay the program’s execution deterministically. Using
the trace allows developers to interact with the program, setting breakpoints and querying
the actor state. Besides, it provides a list of steps of the program execution in the past,
allowing developers to select them and inspect the actor state at that point in time.
Furthermore, it provides a visualization to track the causal relationship of messages sent.

For the JavaScript/Node.js languages, there are debugging approaches focused on
enabling time-traveling debugging features based on recording and replaying snapshots
or checkpoints of the program state [BM14, BMM+16, VBMM18]. The most recent im-
plementation is McFly, a novel time-traveling debugger for web applications [VBMM18].
It allows to step forwards using a log to replay the program’s execution deterministically.
For stepping backward it uses two monitors to determine the statement and the time the
developer wants to inspect in the past. The first monitor contains the last branch in-
struction taken by each function in the call stack and a second monitor that includes the
timestamp of each function in the call stack. Furthermore, McFly supports visual state
by checkpointing and logging changes to a high-level representation of the layout engine’s
visual state. Checkpoints are object graphs representing the application program state
from the JavaScript engine and a visual state from the layout engine. Also, it ensures
the time-traveling is deterministic through logs of I/O operations.

47

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

All in all, offline debugging techniques can ease the problem of non-repeatability
since once the bug is captured, the program can be deterministically replayed. The
record and replay technique, for example, has been considered an intermediate form
between cyclic and reverse debugging [Eng12] because it can trigger breakpoints and
replay a program execution from a trace. However, offline techniques usually incur a
high overhead. Besides, the information captured is often not enough to identify the
root cause of a concurrency bug [PSTH16]. Often developers cannot inspect past states
without replaying again the program trace [Eng12]. Reverse debuggers can alleviate
these issues by offering backward stepping operations. But they are not widely used in
practice yet, mainly due to the overhead of tracing strategies, e.g., access to long traces
tends to be slow [BJC+13, PSTH16]. In this context, techniques that allow the efficient
exploration of the program execution in both directions, i.e., forward and backward, are
needed.

3.3.3 Visualization Techniques

This section discusses mechanisms and approaches to visualize actor-based systems. We
group each approach based on either it is implemented on a debugger or it is implemented
as a standalone tool.

3.3.3.1 Visualization in Non-debugging Tools

Miriyala et al. [MAS92] proposed the use of predicate transition nets for visualizing
actors execution. Based on the classic model of actors, the approach focuses on the rep-
resentation of the actor’s behavior and sent messages. The activation of each transition
in the Petri net corresponds to a behavior execution. The main idea is that the user
interacts with a visual editor for building the execution of an actor system in the Petri
net. The authors emphasize that the order of net transitions should be represented in
the same order as the execution of messages of the actor system.

Coscas et al. [CFL95] presented a similar approach in which the predicate transi-
tion nets are used to simulate actors execution in a step by step mode. When a user
fires a specific transition, he or she only observes a small part of the whole net. The
approach also verifies messages that do not match with the ones expected by the actor,
i.e., messages that do not match the actor’s interface.

An interesting visualization approach based on dynamic program analysis has been
proposed for promises in asynchronous JavaScript programs [AZMT18]. The authors ar-
gue that the use of visual graphs could help developers to understand the flow of execution
of promises and also identify anti-patterns, i.e., incorrect usages of promises such as un-
resolved promises and missing reactions for broken (or ruined) promises. Specifically,
they use directed graphs to show control and data flow dependencies. Their dynamic
graphs represent promises that are created, resolved, and unresolved during one program

48

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

execution. Figure 3.1 shows a promise graph with an example of a promise exception
not being handled.

Figure 3.1: A visualized promise graph, extracted from [AZMT18].

Sun et al. [SBSB19] proposed asynchronous graphs to visualize the asynchronous
flow of execution of a Node.js application. Their tool uses instrumentation techniques
to detect bugs automatically caused by the incorrect usage of a combination of different
event-based APIs, such as the ones related to callback scheduling of promises and emit-
ters. Each node in the graph belongs to a single execution of an event-loop and can be
of different types, e.g., callback registrations, callbacks execution, and object binding.
Unlike the previous approach, [AZMT18], asynchronous graphs aim to capture not only
promises but also all sources of asynchronous execution, e.g., callbacks executed due to
self-scheduling (APIs including promises) and external scheduling (I/O or timing events
happening in the operative system).

Clark et al. [CBKB19] proposed a visualization based on the semantics of event his-
tories of an actor language. Specifically, they proposed a filmstrips pattern visualization
and implemented it for ESL, an actor language that follows the semantics for the classic
model of actors [NA96]. A filmstrip is denoted as a sequence of snapshots of objects and
relationships of the program described in state transitions derived from system operation
calls. Their approach translates messages into state transitions, state transitions into

49

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

semantic values, and semantic values are represented as sequences of displays. A display
consists of a 2D board containing a collection of trees with boxes, shapes, and images.
Although their research context is multi-agent-based systems, the authors argue that
a filmstrip gives a visual semantic description of the system that can help developers
identify the application issues. Figure 3.2 shows filmstrip examples.

Figure 3.2: Filmstrip examples, extracted from [CBKB19].

An interesting approach has been developed to represent Akka actors through an-
imated flow visualizations [Lig21]. The actor system view shows inter-actor communi-
cation and actor-node communication, and it allows developers to identify easily dead
letters messages, i.e., messages sent to an actor that is terminated before receiving it (see
Section 2.1.1). On the other hand, it has the disadvantage that the UI does not represent
an accurate representation of the message flow.

Another proposal for Akka programs is Akka-viz [Av16], an experimental tool that
visualizes on a graph messages exchanged between actors. It allows filtering messages
by class, monitor actor creation and display information about exceptions in actors. A
similar graph representation was developed by [web16]. In contrast to Akka-viz, it does

50

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

not show the actor’s state, but only its mailbox size. Figure 3.3 shows a screenshot of
the Akka-viz tool.

Figure 3.3: Screenshot of Akka-viz visualization for a dining philosophers program, ex-
tracted from [Av16].

Colak et al. [CC19] recently created AkkaVisual, a web-based tool, which consists of
an actor model visualization for teaching programming with actors to computer science
students. Their proposal shows information about actors and messages, e.g., sender,
receiver, message content, and type of message sent by an actor. The authors argue that
a timeline view is better than a graph view to show the order in which each message
was sent. They did a user study with a group of 19 students to evaluate their tool. An
interesting result is that participants said they would like to have a visualization that is
possible to record and replay.

3.3.3.2 Visualization as Part of a Debugger

The Causeway debugger visualizes the program’s execution based on views for process
order, message order, stack, and source code view (see Figure 3.4) [SCM09]. The process
order view shows all messages executed for each actor in chronological order, e.g., a
parent item with asynchronous message sends. The message order view shows the causal
messages for a message sent, i.e., other messages that have been executed before the
message was sent and provoked the sent of the message we want to debug. In this
view, it is also possible to distinguish processes by color, which helps users to visualize
when a message flow (known as activation order) corresponds to a different process.

51

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

The stack view shows the activation order for a message sent, i.e., asynchronous sends
and immediate calls that originated the message selected in the process order. The
source code view shows the code where the message was sent in the code. Thanks to
the synchronization achieved between all the views, it is possible to transit through the
messages related to the execution of the actor’s behavior that led to the bug.

Figure 3.4: Causeway GUI. It shows the process order (left) and message order (right)
views on the top, and on the bottom it shows the stack view (left) and source code view
(right). Extracted from [SCM09].

As we mentioned in Section 3.3.2, Shibanai et al. [SW17] proposed a debugger for
Akka programs. Their tool uses sequence diagrams to visualize messages sent in the
program and provide developers a visual means for tracking causality. A vertical line
represents each actor, and an arrow represents a message. The event in which an actor
receives a message is represented as a point in the actor line. Clicking that point on the
diagram will restore a past state of actors, and messages after that point are not persisted

52

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

to avoid memory issues. The order of messages is computed using Lamport timestamps.
Figure 3.5 shows a screenshot of the Actoverse debugger.

Figure 3.5: Screenshot of Actoverse debugger, extracted from [SW17].

As we mentioned in the previous section, the IDeA debugger [MOM18] uses virtual
reality for debugging an Akka program at the message level. IDeA represents actors as
geometric entities in 3D space and messages as arrows between the entities, which fade
over time. The animation consists of traces that can be manipulated, e.g., displaying
the sequence of messages exchanged between the actors, go back to a previous step in
the execution, and enforce a selected actor to receive its next message. As visualization
helpers, they allow to position actors on the workspace, as well as tracking the causality
of messages (see Figure 3.6). They also mentioned how to suppress information, for
example as selecting actors and discard messages in untracked actors. Moreover, the
debugger provides a focus area to allow the developer to move a set of selected actors.
The authors argue that an immersive visualization in 3D requires less effort than a 2D
environment because the first involves only moving the eye-head-bearing, whereas the
second environment requires an explicit interaction.

53

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

Figure 3.6: Tracking causality visualization in IDeA. Actor pingActor2 sends a message
to pongActor2 which is marked in the same color (i.e., red). Extracted from [MOM18].

3.3.4 Static Analysis

The static approaches surveyed in this section focuses on approaches that identify con-
currency issues without executing a program. The approaches include techniques based
on typing, abstract interpretation, model checking, and others.

3.3.4.1 Type Systems

In the field of actor languages, the Erlang programming language has been subject to
extensive studies. Dialyzer is a static analysis tool that uses type inference in addition
to type annotations to analyze Erlang code [Sag05]. The static analysis uses information
on control flow and data flow to identify problematic usage of Erlang built-in functions
that can cause concurrency issues. Dialyzer also has support for detecting message order
violations as well as memory inconsistencies [Sag10, CS10]. Christakis et al. [CS11b]
extended Dialyzer to also detect communication deadlocks in Erlang using a technique
based on communication graphs.

Another branch of work uses type systems to prevent concurrency issues. For actor
languages, this includes, for instance, the work of Colaco et al. [CPS97]. Based on a type
system for a primitive actor calculus, they can give compilation errors for some situations
leading to orphan messages. However, static analysis cannot detect all possible orphan
messages. Therefore, the approach relies on dynamic type checks to detect the remaining

54

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

cases. Similar work was done for Erlang, where orphan messages are also detected based
on a type system [DP02].

3.3.4.2 Abstract Interpretation Techniques

Abstract interpretation of programs is a static technique that describes computations in
a universe of abstract objects. Executing the abstract representation of objects will give
results about the actual computations [CC77].

Stievenart et al. [SNDMDR17] used abstract interpretation techniques to statically
verify the absence of errors in actor-based programs and upper bounds of actor mailboxes.
As mentioned before, the verification of mailbox bounds can avoid the presence of orphan
messages. The proposed technique is based on different mailbox abstractions, which
allows to preserve the order and multiplicity of the messages. Thus, this verification
technique can be useful to avoid not only lack of progress issues but also message order
violations.

Garoche et al. [GPT06] verified safety properties statically for an actor calculus by us-
ing abstract interpretation. Their work focuses on orphan messages and specific message
order violations. Their technique is especially suited for detecting unreadable behav-
ior, detecting unboundedness of resources, and determining whether linearity constraints
hold.

3.3.4.3 Model Checking Techniques

Model checking is a static technique for automatically verifying correctness properties
of programs given a specification of the property [CHVB18]. Model checking has been
explored in the context of actor-based languages to verify properties like boundedness
of actor mailboxes and incorrect interleavings of messages. Dam et al. [DF98] proposed
an approach using static analysis to verify properties such as the boundedness of mail-
boxes. The verification of this property can avoid the presence of orphan messages in
a program. Their technique applies local model checking in combination with temporal
logic and extensions to the µ-calculus for basic Erlang systems. In the context of Erlang
programs, Fredlund et al. [FGN+03] proposed a model checker that verifies boundedness
of their mailboxes and process spawning.

Huch [Huc99] focused on verifying the property of mutual exclusion or the absence of
deadlocks and livelocks in Erlang programs, using model checking techniques and abstract
interpretation. Similarly, [DKO13] also worked on Erlang and used static analysis and
infinite-state model checking. Their goal is to check specific properties for programs
that are expressed with annotations in the code. With this approach, they are able to
verify, for instance, correct mutual exclusion semantics modeled with messages. However,
their current approach cannot model arbitrary message order violations because the used
analysis abstracts too coarsely from messages.

55

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

3.3.4.4 Static Techniques to Detect Races

Zheng et al. [ZBZ11] developed a static analysis for JavaScript relying on call graphs
and points-to sets. The analysis detects bad message interleavings and message order
violations by analyzing the JavaScript event-loop with respect to its reaction to incoming
messages. WebRacer [PVSD12] is a tool that uses a memory access model and a notion
of happened-before relations for detecting races at the level of the DOM tree nodes. The
detected bugs correspond to bad message interleavings and message order violations in
our taxonomy. EventRacer [RVS13] is another tool that aims at finding bad message
interleavings or message order violations in JavaScript applications. In this case, the
authors proposed a race detection algorithm based on vector clocks.

3.3.5 Testing

This section describes techniques that have been used on testing actor based-programs
to identify concurrency bugs. Several techniques make use of static analysis techniques
such as state model checking and variants of symbolic execution, e.g., concolic testing.
Hence, we group the different approaches into three groups, the ones that test actor-based
programs using symbolic execution, model checking, and other techniques.

3.3.5.1 Testing based on Symbolic Execution

Symbolic execution is a static technique to test whether certain predefined properties
can be violated by a program [BCD+18]. A key idea in symbolic execution is to explore
programs taking as input symbolic values rather than concrete ones.

In the context of actors, much work has focused on concolic testing, which is a mix of
concrete and symbolic execution. In particular, the authors used symbolic execution for
generating data inputs that may lead to alternate behaviors, while they used concrete
execution to guide the symbolic execution along a distinct execution path. Sen et al.
[SA06] proposed a testing algorithm to detect communication deadlocks in a language
closely related to actor semantics. They use a concolic testing approach that combines
symbolic execution for input data generation with concrete execution to determine branch
coverage. The key aspect of their technique is to minimize the number of execution paths
that need to be explored while maintaining full coverage.

Albert et al. [AAGZ15] developed a test case generation framework which avoids
redundant computations when exploring the order of several tasks. Their approach based
on symbolic execution focus in implementing a test generation framework based on con-
straint logic programming. More recently, Albert et al. [AAGZ18] proposed a variant of
a dynamic partial order reduction algorithm which can be used when searching for dead-
locks. Their algorithm aims to reduce state space exploration by distinguishing between
two sources of non-determinism: actor selection and message selection.

56

3.3. STATE OF THE ART TECHNIQUES TO HANDLE
CONCURRENCY BUGS

Recently, Li et al. proposed a target test generation technique that consists of building
a message flow graph to later apply a backward symbolic execution in an actor system
[LHA18]. Their approach explores the state space using symbolic execution based on
heuristics that consider paths where only interact with a small number of actors. In
their evaluation, their tool could identify message order violation bugs in Akka programs.
Other bugs were related to orphan messages.

3.3.5.2 Testing based on Model Checking

In the field of testing, researchers have also applied static techniques like model checking.
Concuerror [CGS13b] is a systematic testing tool for Erlang that can detect abnormal

process termination as well as blocked processes, which might indicate a communication
deadlock. To identify these issues, Concuerror records process interleavings for test exe-
cutions and implements a stateless search strategy to explore all interleavings.

Basset [LKMA10] is an automated testing tool based on Java PathFinder, a state
model checker, that can discover bad message interleavings in Scala and ActorFoundry
programs.

Tasharofi et al. [TKL+12] improved Basset with a partial order reduction technique
to reduce schedules to be explored, which improves the performance of Basset. Their key
insight is to exploit the transitivity of message send dependencies to prune the search
space for relevant execution schedules. For the Scala-Akka programs there is another
testing tool called Bita, which can also detect message order violations [TPLJ13]. Their
proposal is based on a technique called schedule coverage, which analyzes the order of
the receive events of an actor.

3.3.5.3 Techniques for Test Case Generation

Claessen et al. [CPS+09] use a test case generation approach based on QuickCheck1 in
combination with a custom user-level scheduler to identify race conditions. The focus
is specifically on bad message interleavings and process termination issues. To make
their approach intuitive for developers, they visualize problematic traces. Hughes et al.
[HB11] use the same approach and apply it to a key component of the Mnesia database
for Erlang. They demonstrate that the system is able to find race conditions at the
message level that can occur when interacting with the shared memory primitives used
by Mnesia.

Hong et al. [HPK14] proposed a JavaScript testing framework called WAVE for
the same classes of issues mentioned by Petrov et al. [PVSD12] and Raychev et al.
[RVS13]. The framework generates test cases based on operation sequences. In case of a
concurrency bug, they can observe different results for the generated test cases.

1QuickCheck is a testing tool for Erlang available at http://www.quviq.com/products/erlang-
quickcheck/.

57

http://www.quviq.com/products/erlang-quickcheck/
http://www.quviq.com/products/erlang-quickcheck/

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

The Setac framework [TGMJ11] for the Scala Actors framework enables testing for
race conditions on actor messages, specifically message order violations. A test case de-
fines constraints on schedules and assertions to be verified, while the framework identifies
and executes all relevant schedules on the granularity of message processing.

Recently, Chang et al. [CDG+19] proposed NodeAV, a tool for detecting bad mes-
sage interleavings in Node.js applications. Their approach first instruments the source
code and then executes test cases on the instrumented version to collect the execution
trace. Later they build a happened-before graph with the partial order among events
of the execution trace. Finally, they infer atomic event pairs based on happened-before
graphs and use predesigned bad message interleavings patterns to detect the incorrect
interleavings.

3.3.6 Discussion based on our Taxonomy of Concurrency Bugs

This section summarizes the main techniques for each field of study we have seen in
this chapter, and we discuss their advantages and disadvantages. Table 3.1, Table 3.2
and Table 3.3 show the techniques we surveyed of the fields static analysis, testing and
debugging, respectively. A ‘p’ indicates that a bug category is addressed only partially.
Typically, the approaches are limited by, for instance, a too coarse abstraction or a
description language not expressive enough to capture all bugs in a category.

From Table 3.1 we observe that existing static analysis tools address mostly message
order violations and communication deadlocks. On the one hand, approaches based on
abstract interpretation have been applied to identify, for example, safety properties for
actor messages. On the other hand, model checking and symbolic execution techniques
have been explored to identify communication deadlocks. Overall, static techniques re-
quire programmers to know in advance exactly the type of bug is looking for or which
specific property is violated in a program.

From Table 3.2 we observe that testing tools have addressed mostly message pro-
tocol violations. Although there are approaches that automatically generate test cases
[BMP18], other approaches such as [CDG+19] require to have test cases available to use
a testing tool.

Table 3.3 shows our categorization of bugs that we think are addressed in the debug-
ging tools we surveyed from literature.

3.4 Conclusion

In this chapter, we have studied techniques of static analysis, testing, debuggers, and
visualization that assist developers in finding concurrency bugs in actor-based programs.
Much work on identifying concurrency bugs is done in the fields of static analysis and
testing. However, since these techniques work on approximations of programs, it is
difficult to use them when the bug is not known in advance. In this dissertation, we

58

3.4. CONCLUSION

Communi. Behav. Live- Message Or. Bad Msg. Mem.
Deadlock Deadlock Lock Violation Inter. Incon.

Static Analysis
type inference and
communication graphs
[CS11b]

X

type inference [CS10] X X
type system [CPS97] p
type system [DP02] p
local model checking
and temporal logic
[DF98]

p

model checking
[FGN+03]

p

abstract interpretation
[SNDMDR17]

p p

model checking [Huc99] p p p
infinite state model
checking [DKO13]

p p p

abstract interpretation
[GPT06]

p p

call graphs and points
to sets [ZBZ11]

p p

memory access model
and happened-before
relationship [PVSD12]

X X

race detection algorithm
based on vector
clocks [RVS13]

X

Table 3.1: Overview of the bug categories addressed in the literature of static analysis
techniques. A ’p’ indicates that the bug has been addressed only partially. A ’X’ indicates
that the technique can address the bugs in that category.

59

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

Communi. Behav. Live- Message Or. Bad Msg. Mem.
Deadlock Deadlock Lock Violation Inter. Incon.

Testing Tools
concolic testing [SA06] X
test case
generation with
custom scheduler
[CPS+09]

X

stateless search
strategy
[CGS13b]

X

state model
checker [LKMA10]

X

coverage-guided
schedule generation
[TPLJ13]

X

specify constraints
on schedules
and assertions [TGMJ11]

p p

reduce schedules
with partial order
reduction [TKL+12]

p X

test case
generation with
randomizing scheduler
[HB11]

p X

test cases based
on operation sequences
[HPK14]

X X

test instrumented
source code and
build happened-before
graphs [CDG+19]

X

test generation based
on symbolic execution
[AAGZ15, AAGZ18]

p p p

targeted test
generation based on
backwards symbolic
execution [LHA18]

X p p

Table 3.2: Overview of the bug categories addressed in the literature of testing techniques.
A ’p’ indicates that the bug has been addressed only partially. A ’X’ indicates that the
technique can address the bugs in that category.

60

3.4. CONCLUSION

Communi. Behav. Live- Message Or. Bad Msg. Mem.
Deadlock Deadlock Lock Violation Inter. Incon.

Online Debuggers
REME-D
[GBNDM14]

N/A X X p p

Chrome
DevTools
[Not17]

N/A p p p p

Erlang
debugger
[AB20]

p p p p p p

ScalaIDE
debugger
[fED]

p p p X X

Offline Debuggers
Causeway
[SCM09]

N/A p p X X

Actoverse
[SW17]

p p p X X

IDeA
[MOM18]

p p p X X

McFly
[VBMM18]

N/A p p p p

Table 3.3: Overview of the bug categories that we consider that are addressed by debug-
gers of state of the art. A ’p’ indicates that the bug has been addressed only partially.
A ’X’ indicates that the technique can address the bugs in that category. A ’N/A’ indi-
cates that is not applicable for those debuggers for languages which cannot suffer from
communication deadlocks.

61

CHAPTER 3. STATE OF THE ART OF TECHNIQUES TO HANDLE
CONCURRENCY BUGS IN ACTOR-BASED PROGRAMS

focus on online debugging techniques which allows interactive exploration of actor-based
programs to find the root cause of concurrency bugs.

From the related work we studied in Section 3.3.1 and Section 3.3.2, there is a need
for debuggers that combine strategies such as visualizing the causality of messages with
message-oriented breakpoints and rich stepping. We argue that a debugger that does not
only allow us to inspect the program state within a turn but also combines message-
oriented features with sequential ones will help to identify the root cause of concurrency
bugs as many times erroneous steps in sequential code and interactions between actors
lead to application failures. So far, most of the visualization techniques focus on showing
actor state and messages, but some of them do not show this information based on a
happened-before relationship amongst messages. Besides, other visualization approaches
are often not combined with breakpoints or stepping operations and thus developers
cannot inspect actor state at certain points in the program execution. In Chapter 5
we propose interactive debugging techniques based on message-oriented breakpoints and
stepping, trace-based visualizations, and an asynchronous stack trace to help developers
identifying concurrency bugs present in actor-based programs.

Moreover, we have not found a debugging approach that enables interactive debugging
of programs while minimizing the effects of the probe-effect. As mentioned by McDowell
et al. [MH89] offline debuggers use deterministic replay to avoid the effects of the probe-
effect, but they are only effective if the bug manifested in the execution that got recorded.
Unfortunately, due to non-determinism, many cycles may be required to record the bug.
In Chapter 8 we propose a new technique to allow developers to explore not one but all
possible non-deterministic execution paths of an actor-based program interactively while
avoiding the probe-effect.

Before explaining the details of the debugging techniques we propose in this disser-
tation, we will introduce in the next chapter SOMns, the programming language we will
use in our research.

62

Chapter 4

SOMns: a Concurrent Actor-based
Language

The work described in this dissertation employs the SOMns programming language as
the research vehicle in which the novel debugging techniques will be implemented. This
chapter describes the main characteristics of SOMns, which are required to understand
the code snippets and technical contributions presented in the following chapters.

4.1 The SOMns Programming Language

The SOMns programming language is an implementation of the Newspeak programming
language [Bra09] building on the Simple Object Machine class libraries1 (SOM). SOMns
has been designed as a research language in the context of concurrency models with
good performance. SOMns implements shared-memory models such as threads and
software transactional memory as well as message-passing models such as communicating
sequential processes and actors. In this work, we use SOMns concurrency implementation
for actors, i.e., its implementation of the Communicating Event-Loops (CEL) actor model
(see Section 2.1.2), as a foundation for implementing advanced debugging techniques for
actor-based programs.

We first detail the main language concepts including its object-oriented and con-
current programming features. Subsequently, we describe the implementation strategy
on which the SOMns language is built. In particular, we explain the implementation
of asynchronous message passing in the SOMns interpreter as it will be crucial to un-
derstand how we extended the SOMns interpreter to add our novel debugging support
for concurrency. We will illustrate SOMns’s features by means of code snippets from
three sample applications: an instant messenger application (i.e., a chat application),
a Pythagoras calculator application and an application that identifies prime numbers.
The full description and implementation of those examples can be found in Appendix C.

1http://som-st.github.io/

63

http://som-st.github.io/

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

The source code of all sample programs can be also found online in a fork of SOMns 2.
Appendix B includes the SOMns cheat sheet for fast reference with a summary of the
language constructs which was also employed in the user study we conducted to validate
our debugging support (see Chapter 7).

4.2 Object-oriented Programming in SOMns

SOMns is an object-oriented programming language based on the Smalltalk tradition
[KG76]: everything is an object and computation happens in terms of objects sending
messages. In this section, we explain the object-oriented programming model by means
of the prime numbers application and instant messenger application. The full implemen-
tation is included in Appendix C.1 and Appendix C.2, respectively.

4.2.1 Classes

SOMns follows the traditional principles of the class declaration of object-oriented pro-
gramming in which a class defines instances of objects with identical behavior, i.e, “all
instances of a class respond to the same set of messages" [Bra09].

A class declaration in SOMns consists of a constructor and a body. The construc-
tor defines the structure of the class through instance variables (called slots in SOMns
terminology). The body consists of nested classes and methods. A method provides an
implementation of a message. Listing 4.1 shows an example of a SOMns class named
InstantMessenger, which represents a messenger user in a chat application. The class
declaration starts with an access modifier (i.e., public, private, protected), the class
keyword, the name of the class, and a list of parameters. The colons in the constructor is
denoted for a place where a parameter is expected. In this case, the constructor method
selector is new:total: (Line 1). This means that the constructor takes two parame-
ters: the name of the user and size as the number of users in the chat. The argument
name is stored in the instance variable named name (Line 3). The argument size is used
as input for the dictionary buddyMap (Line 2). The constructor initializes the variable
textMessage to nil (Line 4).

When a message is sent, the SOMns runtime system looks up for a method that
matches this message (selector 3), starting at the class of the receiver object. The
first method found in the inheritance chain is invoked in the receiver. In Listing 4.1,
the InstantMessenger class defines two methods, startChat starting in Line 7, and
sendMessage starting in Line 11. The startChat method expects only one argument,
i.e., remoteMessenger. This method adds the remote messenger to the dictionary of
known messengers for this user (i.e., buddyMap) and later the current messenger user
sends a ’Hello’ message to the remote messenger. The sendMessage method expects two

2https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/
3Only the selector is used since it encodes the number of arguments.

64

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/

4.2. OBJECT-ORIENTED PROGRAMMING IN SOMNS

arguments, i.e., receiverName and content. This method creates a new TextMessage
object using the content argument, and send it asynchronously to the remote messenger,
which is searched in the dictionary of buddies by its name (receiverName).

1 public class InstantMessenger new: name total: size = (
2 | private buddyMap = Dictionary new: size.
3 public name = name.
4 private textMessage ::= nil.
5 |)(
6

7 public startChat: remoteMessenger = (
8 ...
9)

10

11 public sendMessage: receiverName contentMsg: content = (
12 ...
13)
14 ...
15)

Listing 4.1: Code snippet of InstantMessenger class and two of its methods,
sendMessage and startChat.

The SOMns language uses the concept of mixins to reuse and extend classes. “A
class is either the empty class Top or the application of a mixin to another class known
as its superclass." [Bra09]. The class thus inherits all the properties of its superclass that
are not explicitly specified to be different by its mixin. Listing 4.2 shows an example4 of
class inheritance using the mixin operator <:. In the example the class JsonParseError
extends from Exception and inherits all the properties of Exception class, as well as the
properties of Value class which are not in Exception. Class JsonParseError corresponds
to an implementation of an exception due to an unexpected character position when
parsing incoming strings into JSON tokens. Instances of classes that extend from Value
class as JsonParseError, are called in SOMns value objects (see Section 4.2.2).

1 private class JsonParseError signalFor: str at: idx = Exception <: Value (
2 | public string = str.
3 public index = idx.
4 |
5 signal
6)(
7 public message = (
8 ^ ’JSON parse error. Unexpected character at ’ +
9 index + ’ in "’ + string + ’".’.

10)
11)

Listing 4.2: Class example in SOMns using a mixin operator.

4This code snippet has been extracted from https://github.com/ctrlpz/SOMns/blob/somns-
intellij-4.5/core-lib/demos/KomposDemo.ns

65

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/demos/KomposDemo.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/demos/KomposDemo.ns

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

4.2.1.1 Main Class Definition

The entry point of any SOMns program is the main method defined in a class called the
main class in SOMns. The main class is declared as a regular class but it also needs to
declare the parameter name usingPlatform with the parameter value platform. The
platform object makes the standard library accessible. This is needed because Newspeak
is a capability based language [Bra09].

Listing 4.3 shows the main class definition corresponding to our example of the chat
application. The object instance of the InstantMessengerApplication class imports
the actors module, the Array class from kernel module, and the Dictionary class
from collections module. We will explain in Section 4.3 the facilities used from actors
module. Line 16 and Line 17 adds two user names in the users array, calling the message
at:put: from the Array class. The main method can return an integer as error code or
a promise (see Section 4.3.3) to indicate program completion.

1 class InstantMessengerApplication usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private Array = platform kernel Array.
4 private Dictionary = platform collections Dictionary.
5 |)(
6 ...
7

8 public main: args = (
9 | completionPP1 completionPP2 users messenger1 messenger2 pResult1

pResult2 |
10 completionPP1 :: actors createPromisePair.
11 completionPP2 :: actors createPromisePair.
12

13 ’[INSTANT MESSENGER APPLICATION] Starting ’ println.
14

15 users :: Array new: 2.
16 users at: 1 put: ’Joe’.
17 users at: 2 put: ’Marie’.
18

19 ...
20)
21)

Listing 4.3: Code snippet of the InstantMessengerApplication that shows a main
method implementation in SOMns.

4.2.2 Objects

As mentioned by [Bra09], “an object is an entity that can perform computation in response
to a message" and “every object is an instance of some class". Objects in SOMns can
be of two types:

Mutable objects: can change after they are created.

66

4.2. OBJECT-ORIENTED PROGRAMMING IN SOMNS

Deeply immutable objects: known also as value objects in SOMns cannot change
after they are created. The main properties for immutable objects are [Bra09]:

• All its slots are immutable and contain value objects.

• Its enclosing objects are all value objects.

• Its class inherits from class Value.

In Listing 4.4, Line 1 to Line 4 show the implementation of the TextMessage class.
Object instances of the TextMessage class are deeply immutable because inherits from
the Value class. Line 6 to Line 18 show the implementation of the InstantMessenger
class, which does not inherit from the Value class and thus object instances of this class
are not deeply immutable objects.

Mutable slots can be updated, while immutable slots cannot be updated. Line 9
shows the declaration of the mutable slot textMessage with the mutable operator ::=.
In Line 14 the textMessage variable is updated using the assignment operator ::.

Lines 7 and 8 show the declaration of immutable slots, using the operator = 5. Declar-
ing an immutable slot means that the slot cannot be updated (i.e., with the :: operator).
However, it is possible to store mutable objects into immutable slots. In our code snippet,
the buddyMap slot is an immutable object storing mutable objects (i.e., objects instances
of the InstantMessenger class).

1 class TextMessage new: content sender: senderName = Value (
2 | public content = content.
3 public sender = senderName.
4 |)()
5

6 public class InstantMessenger new: name total: size = (
7 | private buddyMap = Dictionary new: size.
8 public name = name.
9 private textMessage ::= nil.

10 |)(
11

12 public sendMessage: receiverName contentMsg: content = (
13 | receiverActor pReceive |
14 textMessage :: TextMessage new: content sender: name.
15 ...
16)
17 ...
18)

Listing 4.4: Code snippet of InstantMessengerApplication program that shows the
implementation of TextMessage class and a code snippet of the InstantMessenger class.

5In SOMns the equals operator = can be used with two different purposes, to declare immutable slots
and to compare values.

67

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

4.2.3 Synchronous Messages

As Smalltalk, objects in SOMns communicate through messages. Messages make func-
tionality of an object available. As mentioned before, when a message is sent, a matching
method is looked up and invoked. A message send consists of a receiver followed by a
selector and a list of arguments. Messages can be classified in three types according their
structure:

unary messages: consists of a receiver and a selector, e.g., 25 sqrt.

binary messages: consists of a receiver, a selector and an argument, e.g., 3 + 10.

keyword messages: consists of a receiver and an argument for each keyword, e.g.,
2.0 pow: 3.0.

Messages are sent according to the following precedence rules:

1. Unary messages are always sent first, then binary messages and finally keyword
messages.

2. Messages in parentheses are sent prior to any kind of messages.

3. Messages of the same kind are evaluated from left to right.

For example, in the expression value:: 5+4*2 the variable value is equal to 18
instead of 13, because binary messages + and * have the same precedence and the eval-
uation happens from left to right. On the other hand, the expression value:: 5+(4*2)
results in 13 because the use of parentheses makes the * binary message have the highest
priority.

SOMns features reserved words that can be used as the receiver in message sends,
e.g., self. As in Smalltalk, self is the receiver of the message and the method lookup
starts in the class of the receiver. Listing 4.5 shows an example of a self send in Line 11
when the message addMessenger sent to the receiver object, in this case an instance of
InstantMessenger.

So far, we have explained messages declare as ordinary sends, i.e., object messageSe-
lectorAndArguments, and self sends, i.e., self messageSelectorAndArguments. But
developers can also declare implicit receiver sends, i.e., messageSelectorAndArguments.

The receiver of an implicit message send can be self or an enclosing object to self
[Bra09]. For example, in Listing 4.5 in Line 14 shows the message sendMessage whose
receiver is the current executing object instance of InstantMessenger class. Arguments
remoteName and msg represent the name of the user and the message content respectively.

4.2.4 Block Closures

An important syntactic element in SOMns is block closures (blocks in short). A block
is an anonymous function with a definition context. Blocks are lexical closures since

68

4.3. CONCURRENT PROGRAMMING IN SOMNS

1 public class InstantMessenger new: name total: size = (
2 | private buddyMap = Dictionary new: size.
3 public name = name.
4 private textMessage ::= nil.
5 |)(
6

7 public startChat: remoteMessenger = (
8 | pDiscover pName pSend msg pp array |
9

10 (* r e t u r n s a f a r r e f e r e n c e o f t h e r e m o t e m e s s e n g e r *)

11 pDiscover :: self addMessenger: remoteMessenger.
12 ...
13

14 pSend :: sendMessage: remoteName contentMsg: msg.
15 ...
16)
17 ...
18)

Listing 4.5: Code snippet of InstantMessenger class that shows a self send and an
implicit receiver send.

they can refer to the variables of the surrounding environment. Blocks are essential in
SOMns because there is no syntax for control-flow constructs. They are just implemented
as expressions that operate on blocks.

A block is declared between brackets, and it can take arguments which are denoted
in the syntax :name |. Also, blocks can declare local variables. The general syntax for
blocks in SOMns is [:p1 ...:pN | | variables | body].

Listing 4.6 shows the to:do: message that implements a loop and takes a block as
second argument; this block takes one argument i and the body adds random numbers
to an array.

1 numbers :: TransferArray new: 10.
2

3 1 to: 10 do:[:i |
4 rand:: Random new: i + 73425.
5 numbers at: i put: (1 + (rand next % 100)).
6].

Listing 4.6: Code snippet of the PrimeNumber class that shows a block closure example.

4.3 Concurrent Programming in SOMns

SOMns is a concurrent actor-based language, in which concurrent entities are represented
as Communicating Event-Loops (see section 2.1.2), as introduced in the E programming

69

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

language [MTS05]. In this concurrency model, objects are owned by vats, i.e., actors.
Objects can refer to objects within the same actor via near references while objects can
refer to objects in different actors via far references. Communication via near references
happens by synchronous messages (as explained in Section 4.2.3). Communication via
far references is always through asynchronous message passing. In this section we ex-
plain the concurrent programming model of SOMns by means of the program examples
of instant messenger application and the Pythagoras calculator application. The full
implementation is included in Appendix C.2 and Appendix C.3, respectively.

4.3.1 Actor Creation

In order to create an actor, SOMns provides the message createActorFromValue which
takes as argument a value object. The message returns a far reference to the behavior
object of an actor, which is an instance of the given value. Listing 4.7 shows the creation
of an actor in the main method of the chat application. Line 12 creates an actor instance
of the InstantMessenger class, which is stored in variable messenger1. Message new is
sent to the far reference of the behavior object of the newly created actor which initializes
the instance of the InstantMessenger actor. In SOMns asynchronous messages are
defined by an explicit receiver expression, the asynchronous send token <-: and a message
selector and its arguments [Bra09]. In this case new takes as argument the username of
the messenger (e.g., Joe) and a number representing the total number of users in the
chat (e.g., 2), which is needed to initialize the dictionnary that keeps all messengers.

1 public main: args = (
2 | completionPP1 completionPP2 users messenger1 ... |
3 completionPP1 :: actors createPromisePair.
4 completionPP2 :: actors createPromisePair.
5

6 ’[INSTANT MESSENGER APPLICATION] Starting ’ println.
7

8 users:: Array new: 2.
9 users at: 1 put: ’Joe’.

10 users at: 2 put: ’Marie’.
11

12 messenger1 :: (actors createActorFromValue: InstantMessenger) <-: new: ’Joe’
total: 2.

13 ...
14)

Listing 4.7: Code snippet of the InstantMessenger class that shows an actor creation
example in SOMns.

70

4.3. CONCURRENT PROGRAMMING IN SOMNS

4.3.2 Asynchronous Messages

We now explain message semantics amongst actors, i.e., asynchronous message. Asyn-
chronous messages in SOMns return a promise, a placeholder object to store the result
of the computation that happens in a later point in time [MTS05].

1 public class InstantMessenger new: name total: size = (
2 | private buddyMap = Dictionary new: size.
3 public name = name.
4 private textMessage ::= nil.
5 |)(
6

7 public sendMessage: receiverName contentMsg: content = (
8 | receiverActor pReceive |
9 textMessage :: TextMessage new: content sender: name.

10

11 receiverActor :: buddyMap at: receiverName.
12 pReceive :: receiverActor <-: receive: textMessage.
13 pReceive whenResolved :[: r|
14 (’Receive message ’+ r) println.
15].
16

17 ^ pReceive
18)
19 ...
20)

Listing 4.8: Code snippet of the InstantMessenger class that shows an asynchronous
message send in SOMns.

Listing 4.8 shows an asynchronous message send in the chat application. Line 12
shows the message receive sent asynchronously to receiverActor, which is another
actor instance of the InstantMessenger class. The receiver of an asynchronous message
is an object in the actor where the message is sent. The result of the computation of
the message sent is the promise pReceive. In the next section we detail the semantics
of promises in SOMns. Finally, the message receive takes as argument a TextMessage
object, which contains the content of the message and the username of the message
sender.

As explained before, the receiver of the asynchronous message is a far reference to
another actor. Besides, the receiver expression can be a promise (see Section 4.3.3) and
a near reference. In what follows, we explain how the message will be processed for each
of the three receivers [Bra09]:

• If the receiver is a far reference, the message is sent to the actor associated with the
object corresponding to the far reference. The message is enqueued in the mailbox
of the actor for later processing considering the following rules:

– If actor A1 sends a message m1 to actor A2, and subsequently sends message
m2 to A2, then A2 will receive and process m1 before m2.

71

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

– If actor A1 sends a message m1 to a far reference object associated with actor
A2, and A1 subsequently passes that object to A3, then m1 will be received
and processed by A2 before any message from A3 to the object.

• If the receiver is a near reference, the message is sent to the current actor, and it
is processed following the same approach as described for the far reference.

• If the receiver is a promise, the message will be sent to the result to which the
promise is resolved. The message will be processed following the same approach as
described for the far reference.

We now detail the passing parameter semantics for asynchronous messages. By de-
fault, objects which are shared amongst actors as an argument in messages or as return
types of asynchronous message (i.e., mutable objects) are passed by reference. Objects
instances of the Value class (i.e., immutable objects) or instances of the TransferObject
6 class are passed instead by (deep) copy. The deep copy of transfer objects ends when
reaching value objects, regular objects, or far references. References to value objects
do not change, while references to regular objects are changed into far references. Far
references are replaced with near references when the receiving actor is the owner of the
far referenced object. Value objects in SOMns can be shared amongst actors. Some
examples of value objects are numbers, booleans, and strings.

4.3.3 Promises

As mentioned before, an asynchronous message returns a promise. SOMns considers a
promise to be in either one of the following four states: unresolved, successful, erroneous,
or chained. When a promise is created, i.e., it has not a return value yet, is said to
be unresolved. A promise is successful when it has been resolved with a value (that
is not a promise). A promise is erroneous when it has been resolved with an error.
This happens when processing the asynchronous message raised an exception (which is
transmitted to the sender). Finally, a promise is chained when it has been resolved with
another promise. When the original promise is resolved, all the dependent promises are
immediately resolved with the proper returned value (see Section 4.3.3.1).

In SOMns, a block can be registered to a promise, which is asynchronously applied
when the promise becomes resolved with a value or with an error. This can be done
through the messages whenResolved: (i.e., to handle a successful promise), onError:
(i.e., to handle an erroneous promise) or whenResolved:onError: (i.e., to handle a
successful or an erroneous promise).

As a concrete example, consider the Line 13 in Listing 4.8. When the return value
of message receive is computed, the promise pReceive is resolved and a whenResolved
block applied, i.e., this result value (i.e., #ok) is made available to the sender actor of the

6Implementation of TransferObject class can be found in https://github.com/ctrlpz/SOMns/
blob/somns-intellij-4.5/core-lib/Kernel.ns

72

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns

4.3. CONCURRENT PROGRAMMING IN SOMNS

message, then it is said that the promise is resolved. The resolution value of a promise
can be a far reference, or a near reference if the object can be passed by copy between
the actors [MTS05]. In this case, the callback gets as argument r the return value of
the computation of the message receive, and the body of the block prints the value.
The whenResolved: message registers a block only for the case when the promise is
successful, and returns a new promise which will be resolved with the return value of
the block given as argument. In this case if an error occurs an exception is thrown (or
signaled) by the SOMns interpreter.

We now illustrate how the developer can register handlers to a successful or an er-
roneous promise using the message whenResolved:onError:. The message takes two
blocks as input: the whenResolved: block is applied for the case in which the promise
resolution is successful and the second one, onError:, is applied if the promise resolution
was erroneous. To this end we employ the code example shown in Listing 4.9. In Line 1,
the message division7 is sent to the math actor and returns the promise resultDiv.
At this point the promise created is unresolved. If the promise is resolved with a value,
Line 3, then its state will be successful, but if for example a division by zero error occurs,
Line 5, the promise is resolved with the error and then its state will be erroreous.

1 resultDiv :: math <-: division: 27 and: 5.
2 resultDiv whenResolved :[:div |
3 (’Division result: ’+ div) println.
4] onError :[:e |
5 (’DivisionZeroError: ’ + e) println.
6].

Listing 4.9: Code snippet that shows how a promise can be resolved with a value or with
an error.

The message onError: can be also sent directly to a promise, i.e., without adding
handlers for the success case (whenResolved:). In that case the promise to which this
message is sent will have only registered a block for the erroneous resolution.

4.3.3.1 Promise Chaining

Asynchronous messages can be sent to promises even if they have not yet been resolved
with a value or an error. When an asynchronous message is sent to an unresolved promise,
it is said that the new promise representing the message sent is chained to the receiver
promise [MTS05]. The message will not be delivered until the receiver’s promise is
resolved.

7The division message is not used in the Pythagoras calculator application, it has been added only
to be used as demonstrative example for listing Listing 4.9.

73

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

Listing 4.10 shows a promise chaining in the context of the Pythagoras calculator
application (see Appendix C.3). In this example, the sqrt message is chained. Once the
result of the add message is available, the sqrt message is sent to that result.

1 public computePerimeter = (
2 | sideA sideB squareA squareB perimeterPP |
3 ...
4

5 squareSumP :: math <-: add: 1 and: 25.
6 hypotenusePromise :: squareSumP <-: sqrt.
7

8 ...
9)

Listing 4.10: Code snippet of the Calculator class that shows the hypotenusePromise
promise chained to the squareSumP promise using values 1 and 25 as example.

4.3.3.2 Explicit Promises

Promises are implicitly created when an asynchronous message is sent using the asyn-
chronous operator <-: in SOMns. In SOMns, developers can also explicitly create
promises for conditional synchronization amongst actors. Explicit promises are created
by sending the createPromisePair message. This construct creates a pair object8,
storing the promise object and its resolver. A resolver is an object which understands
messages to resolve a promise with a value or with an error.

As an example of explicit promise consider Listing 4.11, Line 3. For the case of
explicit promises the promise resolution is declared explicitly by the developer, using the
resolve message, an example can be seen in Line 12. In this case the promise is resolved
with the value of perimeter variable, making the promise successful. It can happen
that the promise is resolved with another promise and then is chained. To resolve the
promise with an error the developer can use the message error. A developer can send
the message resolve or error directly to the pair object, (as shown in Line 12). The pair
object understands these messages as the resolver object, i.e., the pair object invokes
the resolve or error messages that the resolver object implements.

4.3.3.3 Promise Group

SOMns allows creating a promise group representing a combined promise for a list of
promises for which a block can be applied when all the promises are resolved. Promises
can be grouped using the concatenation operator (,) which returns the combined promise

8A promise pair in SOMns is an instance of the Pair class implemented in https://github.com/
ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns which contains two objects, a promise
and a resolver.

74

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

1 public computePerimeter = (
2 | sideA sideB squareA squareB perimeterPP |
3 perimeterPP :: actors createPromisePair.
4 ...
5 perimeterPromise :: (math <-: trianglePerimeter: sideA b: sideB c: sideC).
6 perimeterPromise whenResolved :[: perimeter |
7 (’Student assignment: ’+ studentId + ’,
8 Triangle sides: A = ’+sideA+’,
9 B = ’+sideB+ ’,

10 C = ’+sideC + ’,
11 Perimeter: ’+perimeter) println.
12 perimeterPP resolve: perimeter.
13].
14 ...
15

16 ^ perimeterPP promise
17)
18

Listing 4.11: Code snippet of the Calculator class that shows explicit promises.

in a vector9. Sending the whenResolved: message to the promise group registers a block
to be applied when all the promises in the group have been resolved.

In the example shown in Listing 4.12, we create a promise group for applying some
computation when the return value of two square messages is received. More concretely,
the receiver of the whenResolved message in Line 11, is a vector of two promises for the
two square asynchronous message sends. The whenResolved message gets as argument
the squares variable, which is a vector of resolution values corresponding to the promises
squareA and squareB.

4.4 SOMns: a Language Implemented on Top of Truffle

SOMns is implemented as an AST-based interpreter that runs on top of the Java Virtual
Machine (JVM) using Truffle [MM15]. This section describes the necessary details on
Truffle and the implementation of SOMns to follow our technical contributions later.

Truffle is a language and tool development framework that allows developers to write
programming languages as interpreters that perform self-optimizations at runtime, which
allows these languages to reach the performance of state of the art virtual machines.
Truffle languages run on top of the GraalVM 10, a high-performance platform capable
of running applications written in different languages such as Java, Scala, JavaScript,
LLVM-based languages such as C and C++, Python, Ruby, and more.

9The implementation of the Vector class is available at https://github.com/ctrlpz/SOMns/blob/
somns-intellij-4.5/core-lib/Kernel.ns

10https://github.com/oracle/graal

75

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/oracle/graal

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

1 public computePerimeter = (
2 | sideA sideB squareA squareB perimeterPP |
3 perimeterPP :: actors createPromisePair.
4

5 sideA :: 1 + (rand next % numberStudents).
6 sideB :: 1 + (rand next % numberStudents).
7

8 squareA :: math <-: square: sideA.
9 squareB :: math <-: square: sideB.

10

11 squareA , squareB whenResolved :[: squares |
12 | squareSumP hypotenusePromise |
13 squareSumP :: math <-: add: (squares at: 1) and: (squares at: 2).
14 hypotenusePromise :: squareSumP <-: sqrt.
15 ...
16].
17

18 ^ perimeterPP promise
19)

Listing 4.12: Code snippet of the Calculator class that shows a promise group.

Figure 4.1 gives an overview of the GraalVM architecture with a guest language
implementation. The green layer represents the language application, i.e., actor-based
programs written in SOMns in our case. The pink layer represents an AST interpreter
implementation, e.g., SOMns. Truffle interpreters are written in the Java language. The
gray layers correspond to the already mentioned GraalVM platform. Graal is a just-in-
time compiler, from Java bytecode to machine code, which generates optimized compiled
code from interpreters using advanced techniques such as partial evaluation [WWS+12,
WWW+13]. The white and blue layers show the JVM, which is the host language,
i.e., the language where the guest language is written [WWS+12]. The JVM provides
different services that can be leveraged by the guest language, e.g., memory management,
exception handling, and others. In this thesis, SOMns is the guest language, and Java
is the host language.

We now briefly describe how guest language programs are executed in GraalVM. Fig-
ure 4.2 shows an example of an AST with five uninitialized nodes (U) representing the
execution of a JavaScript program. The execution of a program boils down to the eval-
uation of these nodes. During the program’s execution, uninitialized nodes are replaced
with type-specific nodes corresponding to the types seen at runtime, i.e., in the figure,
the types shown belong to the guest language, in that case, JavaScript. The action of
replacing nodes during execution by a type-specific version is called node specialization11

[dVSH+18] (i.e., “node replacement allows the node to specialize on a subset of the se-
mantics of a particular guest language operation" [WWW+13]). In the example, three
nodes are specialized to integer (I), and two nodes are specialized to generic (G). Generic

11This action was initially refer as node rewriting by [WWW+13]

76

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

Truffle framework

Graal compiler

JVM Compiler Interface (JVMCI)

Java HotSpot Runtime

SOMns language implementation (AST interpreter)

SOMns program

Operative System

GraalVM

Figure 4.1: Overview of GraalVM architecture with SOMns as a guest language, inspired
by [dVSH+18].

means that the specialization for that node in a specific execution was not valid, and a
generic node is used instead to handle all possible cases. Node specialization allows up-
dating profiling information, e.g., dynamic type information. Later, when the AST nodes
representation is stable, GraalVM uses partial evaluation, to produce highly specialized
machine code [WWW+13, WWH+17, dVSH+18].

When a specialization fails, i.e., the type of the node is no longer valid, then compiled
code is reverted to the AST interpreter through dynamic deoptimization. Figure 4.3
extracted from [dVSH+18] shows the scenario in which a computation overflows the
integer range, and the compilation to obtain machine code cannot handle the case for
computation on a double. This way, the integer nodes rewrite themselves to double
nodes. Later the AST is recompiled, producing double-specialized code.

4.4.1 Building Tools with Truffle Instrumentation API

Guest languages implemented in Truffle can use the Truffle Instrumentation API12 to
create language-agnostic tools, e.g., profilers, code coverage tools, debuggers, etc. on top
of the GraalVM. This API allows developers to introspect the program’s behavior and
inject behavior by inserting nodes.

12The documentation about the classes of this API can be found in https://www.graalvm.org/
truffle/javadoc/com/oracle/truffle/api/instrumentation/package-summary.html

77

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/package-summary.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/package-summary.html

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

Figure 4.2: Node specialization for profiling feedback and partial evaluation for getting
specialized machine code (i.e., speculate and optimize), extracted from [dVSH+18].

Figure 4.3: Deoptimization back to the AST interpreter handles speculation failures (i.e.,
transfer back to the interpreter and reoptimize), extracted from [dVSH+18].

4.4.1.1 Code Coverage Example

We now illustrate how to use the Truffle Instrumentation API to implement a language-
agnostic tool to perform code coverage 13.

Listing 4.13 shows the code to create the code coverage tool. The first step is to sub-
class the TruffleInstrument class to create an instrumentation agent. Instrumentation
agents can monitor VM-level runtime events, e.g., source code related events, alloca-
tion events, thread creation events and application events [Gra21]. Besides, extending
TruffleInstrument class, the instrument needs to override the onCreate method, in
order to register itself in the GraalVM execution environment (Line 7).

13Example extracted from Truffle Instrumentation API code coverage example at https://github.
com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/
src/com/oracle/truffle/api/instrumentation/test/examples/CoverageExample.java A second
example that makes use of the Coveralls.io service is available at https://github.com/MetaConc/
CoverallsTruffle

78

https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/CoverageExample.java
https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/CoverageExample.java
https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/CoverageExample.java
https://github.com/MetaConc/CoverallsTruffle
https://github.com/MetaConc/CoverallsTruffle

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

In this tool example, the goal is to instrument all expressions with a wrapper node
to notify when that expression is executed. The nodes to be executed implement the
ExecutionEventNode class, which instrument events during execution, i.e., implement
methods to intercept runtime execution events such as onEnter, onReturnValue, onRe-
turnExceptional. Instances of ExecutionEventNode class (Line 26), wrap AST nodes
of interest, which are defined by the source filter in Line 8. In the example, the fil-
ter allows obtaining all nodes that are considered expressions, which is denoted by the
ExpressionTag tag, in Line 9.

In order to attach our code coverage instrumentation agent to the GraalVM, we call
the method attachExecutionEventFactory passing as argument a source filter and a
ExecutionEventNodeFactory instance (in our case, an instance of CoverageExampleEvent-
Factory in Line 12). The argument ExecutionEventNodeFactory provides instrumenta-
tion for the AST nodes to be executed by the agent every time a runtime event specified
by the source filter is executed. As we can observe in Line 36, the source section of
the current evaluated expression will be saved in the Set coverage after the node corre-
sponding to the expression is evaluated. The flag visited in Line 31 keeps track of all
code locations that have already been visited.

Finally, it is important to mention that each instrumentation node is bound to a code
location, which can be accessed through the EventContext object corresponding to the
node.

4.4.1.2 Instrumentation for Debugging

In our work, we will use the Truffle Instrumentation API to build debugging support
for actor-based programs. Furthermore, we will use the features provided by the Truffle
Debug API.

The Truffle Debug API 14 contains language-agnostic abstractions for adding tradi-
tional debugging functionalities to the guest language implementation. For example, this
API can be used to add line and conditional breakpoints, standard stepping (step over,
step into, step out), stack information for a suspension, and more. The classes provided
by this API simplify the debugger implementation for a Truffle language 15. Two relevant
classes in the Truffle Debug API are:

• DebuggerSession implements a debugging session. An instance of this class re-
quests the suspension of guest language execution threads when it receives a noti-
fication that the thread has reached an AST location, which occurs, for example,
when setting a breakpoint or a step operation.

14https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/package-
summary.html

15A simple example for a debugger tool implemented with the instrumentation framework can be
found in the GraalVM repository (https://github.com/oracle/graal/blob/master/truffle/src/
com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/
test/examples/DebuggerExample.java).

79

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/package-summary.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/package-summary.html
https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/DebuggerExample.java
https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/DebuggerExample.java
https://github.com/oracle/graal/blob/master/truffle/src/com.oracle.truffle.api.instrumentation.test/src/com/oracle/truffle/api/instrumentation/test/examples/DebuggerExample.java

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

1 @Registration(id = CoverageExample.ID, services = Object.class)
2 public final class CoverageExample extends TruffleInstrument {
3 public static final String ID = "test -coverage";
4 private final Set <SourceSection > coverage = new HashSet <>();
5

6 @Override
7 protected void onCreate(final Env env) {
8 SourceSectionFilter.Builder builder = SourceSectionFilter.newBuilder ();
9 SourceSectionFilter filter = builder.tagIs(ExpressionTag.class).build();

10 Instrumenter instrumenter = env.getInstrumenter ();
11 instrumenter.attachExecutionEventFactory(filter ,
12 new CoverageExampleEventFactory(env));
13 }
14

15 private class CoverageExampleEventFactory
16 implements ExecutionEventNodeFactory {
17

18 private final Env env;
19

20 CoverageExampleEventFactory(final Env env) {
21 this.env = env;
22 }
23

24 public ExecutionEventNode create(final EventContext ec) {
25 final PrintStream out = new PrintStream(env.out());
26 return new ExecutionEventNode () {
27 @CompilationFinal private boolean visited;
28

29 @Override
30 public void onReturnValue(VirtualFrame vFrame , Object result) {
31 if (! visited) {
32 CompilerDirectives.transferToInterpreterAndInvalidate ();
33 visited = true;
34 SourceSection src = ec.getInstrumentedSourceSection ();
35 out.print(src.getCharIndex () + " ");
36 coverage.add(src);
37 }
38 }
39 };
40 }
41 }
42 }

Listing 4.13: Code example of an expression coverage instrument, from CoverageExample
class.

80

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

• SuspendedEvent handles the state of a suspended guest language execution thread.
An instance of this class is passed by the session via synchronous callback on the
execution thread and has access to the stack frames corresponding to the suspen-
sion.

Despite the existing debugging functionalities, the Truffle Debug API does not sup-
port language-agnostic abstractions for concurrency.

As we saw in the coverage program example, nodes implemented with the class
ExecutionEventNode listen to instrumentation events in a specific location of the guest
language. However, building new debugging support (e.g., new breakpoints) requires
more advanced instrumentation of the guest language. For instance, when defining an
instrumentable node which can create their own specializations.

Listing 4.1416 shows how developers can define instrumentable nodes implementing
the interface InstrumentableNode. Truffle automatically generates wrapper nodes once
the guest language is compiled, i.e., with the @GenerateWrapper annotation.

Here we describe how the instrumentation of a node works. Truffle instruments a
node by inserting two additional nodes [dVSH+18]. First, a wrapper node (W), which is
automatically generated, proxies for its child and report events before the wrapper child
executes, e.g., events such as onEnter(), onReturnValue(), onReturnExceptional().
The second node is a probe node (P) that dispatches event reports to clients. Figure 4.4
shows a simple representation of the instrumentation of an AST node N with a wrapper
node (proxy) and a probe node (dispatcher).

Figure 4.4: Truffle instrumentation of an AST node with a wrapper (W) and probe (P)
node, extracted from [dVSH+18].

Each node that is instrumented keeps the information about its source location (i.e.,
source attribution) and tags (i.e., syntactic tags). These two elements are relevant for
debugging [dVSH+18].

Source attribution is the source section of an AST node corresponding to the exact
location of the node in the code, which is needed, for example, for defining and triggering
breakpoints. In the example of Listing 4.14, methods in Line 31, Line 37, Line 44 shows
how to enable source sections for instrumentable nodes. Usually, the language parser

16This code example was extracted from https://www.graalvm.org/truffle/javadoc/com/oracle/
truffle/api/instrumentation/InstrumentableNode.html

81

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/InstrumentableNode.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/InstrumentableNode.html

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

1 @GenerateWrapper
2 abstract static class StatementNode extends SimpleNode
3 implements InstrumentableNode {
4

5 private static final int NO_SOURCE = -1;
6 private int sourceCharIndex = NO_SOURCE;
7 private int sourceLength;
8

9 @Override
10 public final Object execute(VirtualFrame frame) {
11 executeVoid(frame);
12 return null;
13 }
14

15 public abstract void executeVoid(VirtualFrame frame);
16

17 @Override
18 public final InstrumentableNode.WrapperNode createWrapper(ProbeNode probe) {
19 / / A S T N o d e W r a p p e r i s g e n e r a t e d b y @ G e n e r a t e W r a p p e r

20 return StatementNodeWrapper.create(this , probe);
21 }
22

23 public boolean hasTag(Class <? extends Tag > tag) {
24 if (tag == StandardTags.StatementTag.class) {
25 return true;
26 }
27 return false;
28 }
29

30 / / i n v o k e d b y t h e p a r s e r t o s e t t h e s o u r c e

31 void setSourceSection(int charIndex , int length) {
32 assert sourceCharIndex == NO_SOURCE : "source should only be set once";
33 this.sourceCharIndex = charIndex;
34 this.sourceLength = length;
35 }
36

37 public final boolean isInstrumentable () {
38 / / a l l A S T n o d e s w i t h s o u r c e a r e i n s t r u m e n t a b l e

39 return sourceCharIndex != NO_SOURCE;
40 }
41

42 @Override
43 @CompilerDirectives.TruffleBoundary
44 public final SourceSection getSourceSection () {
45 if (sourceCharIndex == NO_SOURCE) {
46 / / A S T n o d e w i t h o u t s o u r c e

47 return null;
48 }
49 RootNode rootNode = getRootNode ();
50 if (rootNode == null) {
51 / / n o t y e t a d o p t e d y e t

52 return null;
53 }
54 Source source = rootNode.getSourceSection ().getSource ();
55 return source.createSection(sourceCharIndex , sourceLength);
56 }
57 }

Listing 4.14: Implementation example of an instrumentable node to tag nodes as
statements and support for source section.

82

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

handles the source section17. Truffle source attribution allows configuring a debugger to
step through expressions instead of the traditional line breakpoint.

Declaring syntactic tags is useful for a debugger to identify on which AST nodes the
program’s execution might halt. In other words, tags are used by guest languages to
categorize nodes which will be later required by the debugger. In Listing 4.14, Line 23,
we can see how the language implementor overrides the method hasTag to decide if
the instrumented node is tagged with a specific tag. In the code example, the node is
classified as a statement. This way, a debugger can recognize all statement nodes. Truffle
Instrumentation API provides a set of tags by default in the StandardTags class. Some
examples are:

• RootTag: marks program locations as the root of a function, method, or closure.

• StatementTag: marks program locations that represent a statement of a language.

• CallTag: marks program locations that represent a call to other guest language
functions, methods, or closures.

• ExpressionTag: marks program locations as to be considered expressions of the
languages.

We leverage the Truffle Instrumentation API and the Truffle Debug API to build
a debugger for SOMns programs. Our novel debugging techniques for actor programs
are built on asynchronous message passing nodes in the SOMns implementation. In the
next section, we describe what is needed from SOMns message passing implementation
to understand the implementation of our debugging features (see Chapter 6).

4.4.2 Implementation of Asynchronous Message Passing in SOMns

Asynchronous messages in the SOMns interpreter are instances of the class EventualMes-
sage. SOMns distinguishes between two types of eventual messages: direct and promise
messages. A direct message is an asynchronous message sent to a far reference and will
be executed on the actor owning the receiver (i.e., the far reference). A promise message
is an asynchronous message sent to a promise. SOMns further distinguishes between
promise send and promise callback message. A promise send message, is a message sent
to a promise while it is unresolved, and the message will be delivered once the promise
gets resolved. A promise callback message is a message to be sent after a promise is
resolved, e.g., the message created to apply a whenResolved block, which is a callback
for the resolved promise.

17https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/source/SourceSection.html

83

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

EventualMessage

DirectMessage PromiseMessage

PromiseSendMessage PromiseCallbackMessage

Figure 4.5: Messages classes in SOMns.

Using Truffle specializations18 the SOMns interpreter creates eventual messages de-
pending on the receiver of the message and the result. Table 4.1 provides an overview of
the different operations that create eventual messages in SOMns. These operations are
implemented in the EventualSendNode class, i.e., the AST node for the asynchronous
send operator. Besides the operation name, the table specifies the receiver (i.e., a mes-
sage can be sent to a near reference, a far reference, or to a promise) as well as its result.
Asynchronous messages return promises. Operations may also differ depending on how
the promise resolution happens:

• normal resolution: the promise is resolved with a value or an exception.

• null resolution: the promise has been optimized out because the program does not
use the return value.

• chained resolution: a promise is resolved with another promise, which is not itself.

Also, the table shows the message type created by each operation, i.e., a direct message
or a promise message.

Operation name Receiver Result Type resolution Message type
toFarRefWithResultPromise far reference promise normal resolution direct msg
toPromiseWithResultPromise promise promise chained resolution promise msg
toNearRefWithResultPromise near reference promise normal resolution direct msg
toFarRefWithoutResultPromise far reference nil null resolution direct msg
toPromiseWithoutResultPromise promise nil null resolution promise msg

Table 4.1: Operations that create eventual messages in SOMns.

Figure 4.6 and Figure 4.7 show the message invocation protocol for an asynchronous
message at the sender side and receiver side, respectively. We first describe Figure 4.6
showing the steps taken by the SOMns interpreter as a result of an asynchronous

18https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.
html

84

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

message send: pReceive:: receiverActor <-: receive: textMessage from List-
ing 4.8, Line 12. This message is sent from an instant messenger actor to another and
corresponds to the toFarRefWithResultPromise in Table 4.1. Evaluating the message
receiverActor <-: receive: textMessage results in the execution of the node that
represents the asynchronous operator in the abstract syntax tree (AST) of the program,
namely a SendNode instance. Figure 4.6 uses straight lines for direct messages and dotted
lines for promise messages. We now detail the sequence of steps at sender side:

• Step 1: A first path (annotated with number 1) is denoted for the case of a message
sent directly to a far reference. The sendDirectMessage method creates the new
message and invokes the send method on the Actor class.

• Step 2: The send method is called for the receiverActor.

• Step 3: Then the far reference corresponding to the receiver actor appends the
message in the actor’s mailbox.

• Step 4: The execute method of the Actor class is invoked, which makes the thread
of a pool execute the messages of the current actor.

• Step 5: The current actor processes all messages contained in its mailbox. This is
enabled by the invocation of the processCurrentMsg method by the runnable task
corresponding to the thread.

The sequence of steps at sender side of a message sent to a promise are similar to the
ones described above, except for step 1. After executing the SendNode, instead of invoking
the sendDirectMessage method, the interpreter calls the sendPromiseMessage method
(step 1a). Here a PromiseSendMessage message is created and passed as argument to the
register method of the RegisterPromiseNode class (step 1b). This method also expects
as argument a promise object, a resolver object and the arguments corresponding to the
message. Step 1c corresponds to scheduling the promise message to the current executing
actor. Only when the promise is resolved the message will be delivered (step 2a). Hence
the promise message is added in the mailbox (step 3) and waits to be processed in the
actor pool (step 4).

Figure 4.7 shows the sequence of steps for the message invocation protocol at the
receiver side.

• Step 1: Processing the current message in the actor pool triggers the execute
method of the EventualMessage class, which is the abstract class for all message
types supported in SOMns19 (see figure 4.5).

• Step 2: Executing the message means to call the node that corresponds to the
invoked message. In the diagram the node is ReceivedRootNode.

19Its implementation is available at https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/
src/som/interpreter/actors/EventualMessage.java

85

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/interpreter/actors/EventualMessage.java
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/interpreter/actors/EventualMessage.java

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

SOMns interpreter

SendNode send(msg, actorPool)

SchedulePromise
HandlerNode

RegisterOnPromiseNode
.RegisterWhenResolved

register(frame,
promise, msg, actor)

schedule(promise, msg,
actor, rcvrWrapper,

argWrapper)

InstantMessenger actor (receiverActor)

sendDirectMessage
(args, actor,

resolver)

sendPromiseMess
age(args,

promiseRcvr,
resolver,

registerNode)

<-:
2 far reference

ForkJoin pool

1

1a

1b

execute(actor
Pool)

3

processCurrentMsg(actorThread,
debugger)

Task

Task

Thread

Thread

Thread

Thread

5

1c
1c

2a

4

appendToMailbox
(msg)

send(msg, actorPool)

Figure 4.6: Message invocation protocol at sender side. The blue font stands for message
operations, the black font stands for AST node operations, the red font stands for actor
operations. Dotted circles represent AST nodes, and normal circles represent objects.

• Step 3: The executeBody method in the ReceivedMessage node evaluates the
arguments of the message in the method body.

• Step 4: Once the body of the message is executed, the result value is used to resolved
the promise pReceive through the node AbstractPromiseResolutionNode, which
is the abstract class for resolving promises.

• Step 5: In this case, the promise follows a normal resolution, i.e., the promise is
resolved with a value that is not another promise (i.e., #ok returned by the receive
method). This resolution is executed in the node ResolveNode.

• Step 6: The method resolveAndTriggerListenersUnsynced in the SPromise class
handles the resolution of the promise with a proper value. If there are callbacks they
will be scheduled, and if the promise was chained to other promises, the chained
promises will be resolved.

• Step 7: The resolver object, i.e., an instance of SResolver class, executes the
scheduleAllWhenResolvedUnsync method to schedule all whenResolved callbacks
for the promise. In our running example, there is one callback registered, that
prints the result once the promise has been resolved.

• Step 8: The scheduleCallbacksOnResolution method adjusts the target of the
eventual message and calls the send message for the target actor. In this case, a
promise callback message is created corresponding to the callback registered to the
promise.

86

4.4. SOMNS: A LANGUAGE IMPLEMENTED ON TOP OF
TRUFFLE

• Step 9: The SPromise instance invokes the send method, which is executed by the
far reference of the receiver actor.

• Step 10: Then, the promise callback message is appended in the mailbox.

• Step 11: The execute method is called immediately. This way the callback message
is processed once the promise pReceive has been resolved.

SOMns interpreter

InstantMessenger actor (receiverActor)

1

far reference

ForkJoin pool

2

execute(actor
Pool)

5

processCurrentMsg(actorThread,
debugger)

Task

Task

Thread

Thread

Thread

Thread

6

EventualMessage ReceivedRootNode

execute()

AbstractPromise
ResolutionNode

SPromise

SResolver

call(msg)
ReceivedMessage

executeBody()

resolvePromise()

3 4

ResolveNode

normalResolution()

scheduleAllWhenR
esolvedUnsync()

resolveAndTriggerL
istenersUnsynced()

scheduleCallbacks
OnResolution()

send(msg,
actorPool)

7

8

9

10 appendToMailbox
(msg)

11

Figure 4.7: Message invocation protocol at receiver side. The blue font stands for message
operations, the black font stands for AST node operations, the red font stands for actor
operations. Dotted circles represent AST nodes, and normal circles represent objects.

As mentioned in step 5, the described example follows a normal promise resolution.
Recall that two more cases that SOMns implementation considers: null and chained
resolutions.

The case of the null resolution is possible when the result of a message is never
and can never be used, i.e., it’s not the receiver of a message, and it is not assigned
to a variable. For this case, the resolver object is not allocated. The following code
snippet illustrates this case: receiverActor <-: receive: textMessage. Here, the
program does not use the promise resulting from the asynchronous message send, but if
a callback is registered to that asynchronous send, the promise resolver object is not null
because the result is used by the program in the callback. For example (receiverActor
<-: receive: textMessage) whenResolved:[: r| ...]. The implementation of
the null resolution case is handled by the ReceivedRootNode node, and the interpreter
knows that a result is not used based on whether the result value is ever consumed by
another expression in the program. The case of null resolution is shown for the operations
toFarRefWithoutResultPromise and toPromiseWithoutResultPromise of Table 4.1.

87

CHAPTER 4. SOMNS: A CONCURRENT ACTOR-BASED
LANGUAGE

The following code snippet shows the case of chained resolutions, i.e., in which a
promise is resolved with another promise. More concretely, the promise for the second
eventual message sent is chained to the promise stored in pReceive:

pReceive:: receiverActor <-: receive: textMessage.
pPrint:: pReceive <-: println.
The implementation of this code example is handled by the AbstractPromiseResolu-

tionNode node, where the current promise is added to the list of chained promises owned
by the receiver promise. When the first promise is resolved the chaining promises are
resolved. This task is handled by the promise object (i.e., an instance of SPromise class).
Chained promises are created by the operation toPromiseWithResultPromise shown in
Table 4.1.

4.5 Conclusion

In this chapter, we have described SOMns, an implementation of the Newspeak pro-
gramming language on the SOM class libraries. SOMns is a dynamically typed class-
based programming language featuring the Communicating Event-Loops concurrency ac-
tor model, which avoids data races and deadlocks by design. We have illustrated through
three running examples how an actor-based program can be implemented in SOMns. We
have also described the main features of the Truffle framework and GraalVM, the run-
time on which the SOMns language is built, and the key parts of the SOMns language
implementation needed to understand our technical contributions.

In the following chapters, we describe novel techniques for debugging actor-based
programs and how we implemented them as an extension to the SOMns interpreter.

88

Chapter 5

Online Debugging Techniques for
Actor-based Programs

As we described in Chapter 3, nowadays, only three debuggers support breakpoint on
messages to inspect the actor’s state (i.e., REME-D [GBNDM14], Actoverse [SW17]
and IDeA [MOM18]). To the best of our knowledge, there is no debugger that combines
message-oriented stepping with sequential stepping so that developers can seamlessly ap-
ply step-by-step execution at asynchronous message level as well as method or function
calls. Besides, few debuggers provide dedicated visualizations for easing the comprehen-
sion of message causality relations.

This chapter presents novel techniques to interactively debug programs in online
debugging mode. First, we introduce a breakpoint catalog and a catalog of stepping
operations on the level of messages, promises, and turns. Moreover, we design techniques
to visualize information related to the actor’s state, the causality of messages, and an
asynchronous stack trace. For explaining the new debugging features, we will use a
simple SOMns program that identifies prime numbers (Appendix C.1). For illustrating
visualizations related to actor state inspection, message causality, and asynchronous stack
trace, we will use code snippets from the Pythagoras calculator program (Appendix C.3).

Afterwards, we introduce a proof-of-concept debugger called Apgar, which is imple-
mented in the IntelliJ IDE that features the mentioned advanced debugging techniques
for SOMns. Later, we describe the extensions to the Kómpos protocol needed to im-
plement the proposed visualizations, and we conclude the chapter by comparing our
approach to related work.

5.1 Design of Online Debugging Techniques for Actor-based
Programs

Inspired by the work of [GBNDM14], which introduced developing message breakpoints
in the context of actor programming, our goal is to investigate a breakpoint and step-

89

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

ping operations catalog to allow developers to explore a target program written in the
Communicating Event-Loops model (CEL) interactively. Central to both breakpoints
and stepping operations is the identification of interesting halting locations for pausing
the execution of an actor for further inspection.

Since turns run till completion in the CEL model, operation interleavings happen at
the message level. As such, we consider the point in time right before and right after a
message is processed as relevant for breakpoints. Figure 5.1 shows the points of interest
involved in an asynchronous message send in CEL, in particular for the case of sending
an asynchronous message to a far reference that returns a promise. We consider here
the case where the promise has whenResolved listeners attached. The diagram repre-
sents the message send pIsPrime:: math <-: isPrime: n. shown in Line 48, Listing 5.1
corresponding to the prime number program.

1 2

34

isPrime: n

promise msg

Platform Actor Math Actor

platformstart

pIsPrime

math

boolean

Figure 5.1: Points of interest for debugging actor-based programs.

In the diagram, the Platform actor is executing the message start -orange color - in
which the behavior object of the actor platform sends the message isPrime: n to the
behavior object of actor Math (point 1) -green color -. The orange message corresponds
to the start message, which as mentioned in Section 4.2.1.1 is the first message sent
by the Platform actor, which invokes the main method of the program. The isPrime:
n message is appended to the receiver actor’s mailbox, i.e., Math actor, and a promise
object pIsPrime is immediately returned to the Platform actor. When the new message
reaches the head of the mailbox of the Math actor (point 2), then the actor proceeds
to execute it. After the value for the promise is computed (point 3), which is true or
false in our code example, a new message -blue color - with the result value is created
and sent back to the actor hosting the sender object, i.e., the Platform actor. The blue
message carrying the result of the computation is not sent explicitly in the code, but
internally in the language interpreter (for implementation details see section 4.4.2, figure
4.7). This new message carrying the result value is appended to the sender’s mailbox,
and when the message reaches the head of the mailbox of the Platform actor (point 4)
the promise resolution listeners are finally triggered. At this point, a promise can be

90

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

resolved or ruined, but for debugging, there is no explicit difference. We will refer to
point 4 as “resolved" in this chapter. In this case, the listener attached to the returned
promise is declared in the whenResolved block, which starts in Line 49.

1 class PrimeNumber usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private TransferArray = platform kernel TransferArray.
4 private harness = (platform system loadModule:
5 ’core -lib/Benchmarks/Harness.ns’ nextTo: self) usingPlatform: platform.
6 private Random = harness Random.
7 |)(
8

9 public class Math = ()(
10

11 public isPrime: number = (
12 | limit |
13 number > 1
14 ifTrue :[
15 limit :: number /2.
16 2 to: limit do: [: counter|
17 number%counter = 0
18 ifTrue :[
19 ^ false
20]
21].
22

23 ^ true
24]
25 ifFalse :[
26 (’ERROR in Math: Prime numbers should be greater than 1,
27 number received: ’ + number) println.
28 ^ false
29].
30)
31)
32

33 public main: args = (
34 | math numbers completionPP rand |
35

36 completionPP :: actors createPromisePair.
37 numbers :: TransferArray new: 10.
38

39 1 to: 10 do:[:i |
40 rand:: Random new: i + 73425.
41 numbers at: i put: (1 + (rand next % 100)).
42].
43

44 math:: (actors createActorFromValue: Math) <-: new.
45

46 numbers do:[:n |
47 | pIsPrime pWR |
48 pIsPrime :: math <-: isPrime: n.
49 pWR:: pIsPrime whenResolved :[: isPrime |
50 isPrime ifTrue :[(’Number ’+ n + ’ is prime’) println .].
51 isPrime ifFalse :[(’Number ’+ n + ’ is not prime ’) println .].
52

53 n = (numbers at: (numbers size))

91

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

54 ifTrue :[
55 completionPP resolve: true.
56]
57].
58

59 pWR <-: println.
60].
61

62 completionPP promise <-: println.
63

64 ^ completionPP promise
65)
66)

Listing 5.1: Implementation of a prime number program in SOMns.

5.1.1 Message Breakpoints

As we mentioned before, one of the main features of online debuggers is breakpoints (see
Section 3.2). In this work, we propose an extension of the breakpoint catalog for debug-
ging actor-based programs introduced by [GBNDM14]. The breakpoints correspond to
the 4 points of interest shown in Figure 5.1. Table 5.1 summarizes the catalog in which
we classified the message-oriented breakpoints into five dimensions:

Halt represents the point of interest defined in figure 5.1, specifically the point where a
breakpoint will pause the program’s execution.

Actor activation determines the place where the breakpoint halts regarding the actor.
We distinguish between two sides, at the sender or the receiver actor.

Message execution defines whether the breakpoint’s goal is to halt the execution before
or after the message is processed.

Category groups the breakpoints regarding its halting scope, which could be related to
a passive entity (i.e., message or a promise) or a dynamic scope (i.e., a turn). We do
not have breakpoints with the turn category because the halting does not include
changing of turn’s execution1. This is different for some stepping operations (see
Section 5.1.2), that only one command can lead the debugger to pause the program
in a different turn.

Definition distinguishes the place where the breakpoints are defined in the underlying
language implementation. In particular, in our work we develop breakpoints applied
to AST nodes and we distinguish primitives and operators that return promises,
on which we can define promise breakpoints:

1The developer needs to define a second breakpoint in a different turn and execute the resume
command if he or she wants to pause in a different turn than the one in which the program is currently
paused, i.e., the debugger requires two debugging operations a breakpoint and resuming execution.

92

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

• asynchronous send operator (e.g., in SOMns <-:)

• promise primitives, i.e., primitives that return a promise (e.g., in SOMns
createPromisePair, whenResolved:, whenResolved: onError:, onError:)

Breakpoints
Halt Actor activation Message execution Definition Category

Sender Receiver Before After AST node
message
sender

1 X X <-: message

message
promise

resolution
4 X X

<-:
promise

primitives
promise

message
receiver

2 X X <-: message

asynchronous
before

2 X X
method

declaration
message

message
promise
resolver

3 X X
<-:

promise
primitives

promise

asynchronous
after

3 X X
method

declaration
message

Table 5.1: Catalog of breakpoints for actor-based programs.

Now we describe and illustrate the semantics of each of the breakpoints in Table 5.1
on the running example shown in Listing 5.1.

A message sender breakpoint triggers before the message is sent. For example, if
one sets a message sender breakpoint in the asynchronous operator node located
in Line 48, the debugger will pause the program’s execution in the same line before
sending the message to the Math actor.

A message receiver breakpoint triggers before the actor processes the received mes-
sage. For example, if one sets a message receiver breakpoint in the asynchronous
operator located in Line 48, the debugger will pause the program’s execution in
the AST node starting in Line 13, before the Math actor processes the isPrime
message.

A message promise resolver breakpoint triggers before the computed value of the
message is used to resolve the promise. For example, if one sets a promise resolver
breakpoint in the asynchronous operator node located in Line 48, the debugger
will pause the program’s execution in Line 29 corresponding to the last line of the
sequence node, which represents the body of the method. The message has been
executed, and the result of the computation is known, but the promise has not
been resolved yet with the result value.

93

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

A message promise resolution breakpoint triggers after the promise is resolved but
before executing the callback. For example, if one sets a promise resolution break-
point in the asynchronous operator node located in Line 48, the debugger will pause
the program’s execution in the node starting in Line 50, before the statement in
this line is executed. This node corresponds to the body of the callback.

The breakpoints named as asynchronous before and asynchronous after exhibit similar
semantics as message receiver and promise resolver, but the actor will suspend execution
when it is about to process any asynchronous message invoking the selected method.

An asynchronous before breakpoint triggers before the message is processed. For
example, if one sets an asynchronous before breakpoint in the declaration of method
isPrime located in Line 11, the debugger will pause the program’s execution in
Line 13, before the method is executed.

An asynchronous after breakpoint triggers after the message is processed. For ex-
ample, if one sets an asynchronous after breakpoint in the declaration of method
isPrime located in Line 11, the debugger will pause the program’s execution in
Line 29, after the execution of the body of the method.

Table 5.2 summarizes the positions mentioned for the breakpoints examples on our
proof of concept debugger for SOMns programs. Specifically, the AST location where
each breakpoint is defined, the AST location where the halt should occur and the actor
that is paused. In Table 5.2 the starting line number for asynchronous before breakpoint
and for the asynchronous after breakpoint is 13 instead of 11 because we send to the
interpreter the coordinates of the node corresponding to the method’s body. In Sec-
tion 6.1.1 we explain the implementation strategy for these breakpoints in our proof of
concept debugger.

Breakpoint AST location Halt AST location Actor paused
message sender ln: 47, cn: 24, cl:3 ln: 47, cn: 24, cl: 3 Platform
message receiver ln: 47, cn: 24, cl:3 ln: 13, cn: 11, cl: 414 Math
message promise resolver ln: 47, cn: 24, cl:3 ln: 28, cn: 12, cl: 414 Math
message promise resolution ln: 47, cn: 24, cl:3 ln: 49, cn: 9, cl: 233 Platform
asynchronous before ln: 13, cn: 11, cl: 414 ln: 13, cn: 11, cl: 414 Math
asynchronous after ln: 13, cn: 11, cl: 414 ln: 28, cn: 11, cl: 414 Math

Table 5.2: Breakpoint examples from Listing 5.1. AST locations are defined by the line
number (ln), a column number (cn) and the character length (cl).

5.1.1.1 Message breakpoints and promises

Breakpoints on messages are as important as having breakpoints on promises since, as we
mentioned before (Section 2.1.2), promises are used in the CEL model to get the return
value of asynchronous messages and for synchronization amongst actors.

94

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

As we mentioned in Chapter 4, there are promises that can be created implicitly (e.g.,
created by the interpreter with the asynchronous message operator) and explicitly (i.e.,
promises resolved explicitly by the developer in the program). In our proposal, we cover
both cases, using the concrete constructs that SOMns features for them but the concepts
and ideas can be applied to other CEL languages, e.g., AmbientTalk.

Here we describe three different cases where breakpoints in the category of promises
can be defined.

5.1.1.1.1 Breakpoints on implicit promises In our approach, it is possible to de-
fine promise resolver and promise resolution breakpoints that work on implicit promises.
Recall from Section 4.3.3 that SOMns features constructs such as whenResolved, onError
and whenResolvedOnError that return implicit promises. We now show how they work
by means of our running example.

For example, if one sets a promise resolver breakpoint in the whenResolved message
located in Line 49, the debugger will pause the program’s execution in Line 56, after the
statement was executed. If you set a promise resolution breakpoint in the whenResolved
message located in Line 49, the debugger will pause the program’s execution in Line 77 of
the Thing class2, in which the println method is implemented. This is because in Line 59
of Listing 5.1 a println message is sent to the promise returned by the whenResolved.
Table 5.3 summarizes the mentioned examples.

Breakpoints AST location Halt AST location Actor paused
message promise resolver ln: 48, cn: 23, cl: 275 ln: 55, cn: 10, cl: 233 Platform

message promise resolution ln: 48, cn: 23, cl: 275
ln: 77, cn: 25, cl: 36

(Thing) class
Platform

Table 5.3: Promise breakpoint examples defined on the whenResolved construct.

Similar to the whenResolved, promises breakpoints are applicable in the constructs
onError and whenResolvedOnError.

5.1.1.1.2 Breakpoints on explicit promises We now turn our attention to break-
points on explicit promises. Recall from Section 4.3.3.2, SOMns offers the createPromise-
Pair construct to create an explicit promise. The construct createPromisePair returns
a pair (promise, resolver), and the developer can use it to explicitly resolve a promise
by sending the resolve: message to the resolver. We now illustrate the semantics of
explicit promise breakpoints on our running example. For example, if one sets a promise
resolver breakpoint in the message createPromisePair located in Line 36, the debugger
will pause the program’s execution in Line 93 of the Pair3 class, before executing the

2The Thing class is part of the SOMns runtime system, can be found in https://github.com/ctrlpz/
SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns

3The Pair class is part of the SOMns runtime system, can be found in https://github.com/ctrlpz/
SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns

95

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Actors.ns

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

resolve: primitive. If you set a promise resolution breakpoint in Line 36, the debugger
will pause the program’s execution in Line 77 of the class Thing of SOMns, in which
the println method is implemented. This is because in Line 62 a println message is
sent to the promise of the promise pair. If there is no message sent to that promise, the
breakpoint does not trigger. Table 5.4 summarizes the mentioned examples.

Breakpoints AST location Halt AST location Actor paused

message promise resolver ln: 35, cn: 29, cl: 17
ln: 93, cn: 16, cl: 14

Pair class
Platform

message promise resolution ln: 35, cn: 29, cl: 17
ln: 77, cn: 25, cl: 36

Thing class
Platform

Table 5.4: Promise breakpoint examples defined on the createPromisePair construct.

5.1.1.1.3 Promise breakpoints on chained resolution In the case of setting a
promise resolution breakpoint in a chained resolution, i.e., on a promise that is chained
with another promise, the resolution breakpoint will trigger before executing the message
that was sent to that promise. For example, in appendix C.3, a promise resolution
breakpoint in Line 61 will paused the program before executing sqrt message of the class
Integer4. This is the expected behavior because message sqrt is sent to the squareSumP
promise in Line 62, which is the result message of the message sent of Line 61.

5.1.2 Message Stepping

Stepping is a crucial feature in an online debugger that allows developers to follow a
program’s execution between various points of interest. In sequential programs, stepping
operations typically allow stepping through the program line by line. In CEL programs,
stepping also needs to allow developers to step through the program’s execution con-
currently, i.e., let them follow the execution between the points of interest involved in
asynchronous message passing. Thus, stepping operations can be applied at each of the
points shown in Figure 5.1, and it will allow the developer to step to the next point of
interest. Our concrete proof of concept debugger will enable the combination of both
message and sequential stepping based on AST node wrapping (as we will explain in
Chapter 6).

Table 5.5 shows 6 stepping operations we propose for actor-based programs. We
classify the stepping operations in three dimensions:

Halt before step distinguishes the place (s) where the actor is halted due to, for
example, a previous stepping or a breakpoint. In this place, a stepping operation
can be defined. Numbers refer to the point of interest shown in figure 5.1. The
last three operations can be defined from anywhere inside the current executing

4The Integer class is part of the SOMns runtime system, can be found in https://github.com/
ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns

96

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/core-lib/Kernel.ns

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

turn. These nodes are represented in the table by * symbol. Our implementation
includes points 2 and 3 in figure 5.1, which corresponds to the beginning and end
of the turn, respectively. Besides, the program could be halted in a turn node 5

due to a classical sequential stepping operation, i.e., step into, step over, step out.

Halt after step shows the halting location for each actor related to the message being
stepped. The actor that halts in the next node means that the actor will be sus-
pended due to a step over. This means that it cannot process the next message,
but the actor is not blocked, it still can receive messages. The actor that resumes
will continue its execution, i.e., it will not be suspended.

Category groups the breakpoints regarding its halting scope. The halting is related to
a passive entity (i.e., message or a promise) or a dynamic scope (i.e., a turn).

Stepping operation
Halt

before step
Halt after step Category

Sender actor Receiver actor
step to message receiver 1 next node 2 message
step to promise resolver 1, 2 next node 3 promise
step to promise resolution 1, 2, 3 next node 4 promise
return from
turn to
promise resolution

2, 3, * 4 resume turn

step to next turn 2, 3, * resume 2 turn
step to end turn 2, 3, * resume 3 turn

Table 5.5: Catalog of stepping operations for actor-based programs.

Here we describe and illustrate the semantics of each of the stepping operations shown
in Table 5.5 on the running example of Listing 5.1.

A step to message receiver allows the developer to halt the program execution before
a message is executed by the receiver actor (i.e., is equivalent to define a message
receiver breakpoint). E.g., if the program of Listing 5.1 is suspended in the asyn-
chronous operator node located in Line 48 due to a message sender breakpoint, and
step to message receiver is triggered, the Platform actor will be suspended in the
AST node starting in Line 49 and the Math actor will be suspended in the AST
node corresponding to the method body in Line 13.

A step to promise resolver allows the developer to halt the program execution before
a promise is resolved (i.e., is equivalent to define a promise resolver breakpoint).
E.g., if the program is suspended in the asynchronous operator node located in

5We refer a turn node to any expression node that is declared inside a specific turn, i.e., in the method
body corresponding that turn.

97

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Line 48 due to a message sender breakpoint, and step to promise resolver is trig-
gered, the Math actor will be suspended at the end of the method body Line 29,
after the value for resolving the promise is computed. The Platform actor will be
suspended in the AST node starting in Line 49.

A step to promise resolution allows the developer to halt the program execution af-
ter a promise is resolved but before executing its callbacks (i.e., is equivalent to
define a promise resolution breakpoint). E.g., if the program is suspended in the
asynchronous operator node located in Line 48 due to a message sender breakpoint,
and step to promise resolution is triggered, the Platform actor will be suspended
in the AST node starting in Line 49.

A return from turn to promise resolution allows the developer to halt before the
execution of the first statement of all handlers registered on a promise that is re-
solved by the current turn (i.e., is equivalent to define a promise resolution break-
point for the current turn). E.g., if the program is suspended at the beginning of
the method body in Line 13 due to a message receiver breakpoint, and return to
promise resolution is triggered, the Math actor resumes execution but the Platform
actor will be suspended in the AST node of the body of the callback starting in
Line 50.

A step to next turn allows the developer to halt the suspended actor before the next
message of its mailbox is processed (i.e., is equivalent to define a message receiver
breakpoint in the next message of the mailbox). E.g., if the program is suspended at
the beginning of the method body in Line 13 due to a message receiver breakpoint,
and step to next turn is triggered, the Math actor will be suspended in the next
turn, in the same AST node of Line 13. For this code example, the next turn
happens to be the same message but with a different value for the number variable.

A step to end turn allows the developer to halt the actor before returning from the
method (i.e., it is equivalent to define a promise resolver breakpoint in the current
turn). Here the code example refers to stepping to the end of the turn when the
program is suspended at the beginning of the turn. More cases can be considered,
such as stepping from inside synchronous calls and from inside blocks. E.g., if the
program is suspended at the beginning of the method body in Line 13 due to a
message receiver breakpoint, and step to end turn is triggered, the Math actor will
be suspended at the end of the method body in Line 29, after the value to resolve
the promise is computed.

Table 5.6 summarizes the positions mentioned for the stepping examples. Specifically,
the AST node source coordinates where each stepping is defined, i.e., the line number,
the column number, and the character length, where the halt should occur and the actor
that is paused.

98

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Step to
Halt before step Halt after step

Sender Receiver
message receiver ln: 47, cn: 24, cl: 3 Platform ln: 48, cn: 8, cl: 290 Math ln: 13, cn: 11, cl: 414
promise resolver ln: 47, cn: 24, cl: 3 Platform ln: 48, cn: 8, cl: 290 Math ln: 28, cn: 12, cl: 414

promise resolution ln: 47, cn: 24, cl: 3 Platform ln: 48, cn: 8, cl: 290 Math resume
return from turn to
promise resolution

ln: 13, cn: 11, cl: 414 Platform ln: 49, cn: 9, cl: 233 Math resume

next turn ln: 13, cn: 11, cl: 414 Platform resume Math ln: 13, cn: 11, cl: 414
end turn ln: 13, cn: 11, cl: 414 Platform resume Math ln: 28, cn: 12, cl: 414

Table 5.6: Stepping operation examples from Listing 5.1.

We argue that halting the program’s execution on the level of messages is a use-
ful debugging technique for actor-based programs because developers can inspect the
program’s state at relevant halting locations for messages, promises, and turns. E.g.,
developers can inspect the actor state at the sender or the receiver actor and before or
after a message is processed. Even more, we can inspect computed values before and after
resolving a promise. These possibilities can be helpful when debugging lack of progress
issues such as livelocks and behavioral deadlocks because the developer will see whether
the message arguments have the expected values, e.g., with a breakpoint at the sender
side. Also, a breakpoint after a promise is resolved, allows us to inspect the actor state at
that point which can be helpful as well for message protocol violations. The combination
of message stepping with the possibility of seeing the sequential operations that the actor
executes inside of a turn (and even more, navigating to other turns) gives developers a
better toolbox to identify the root cause of a bug.

5.1.3 Trace-based Visualizations

The debugging features explained on breakpoints and stepping operations are essential to
enable interactive debugging of a program in an online debugger. As already explained in
Chapter 3, postmortem techniques may still be beneficial to understand the root cause
of a concurrency bug since the distance between the failure and the fault is large in
concurrent programs. As such, we propose a hybrid approach in which we complement
the catalogs of online techniques with visualization based on trace information when
programs are suspended on a breakpoint or due to a stepping operation.

In this section, we propose two visualization designs for showing the actor state and
the message causality information of an actor-based program. One of the main contribu-
tions in our proposal is that the debugging information to build these visualizations are
obtained from trace data generated by the debugger backend and send to the debugger
frontend using the Kómpos debugging protocol (see Section 5.3), to be shown in an online
mode.

99

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

5.1.3.1 Actor State Inspection

Our approach for showing the actor state follows very close to the one of the REME-D
debugger, i.e., exhibit a list of actors created in the running program and the mailbox
for the paused actors. For each asynchronous message REME-D showed two properties,
its selector and the id of the sender actor. We have extended the mailbox visualization
with four more message properties than in REME-D:

origin the source location where that message was sent, i.e., the source coordinate of
the corresponding node for the asynchronous operator.

type the message type (i.e., if a message is sent to a far reference or to a promise).

target the message target (i.e., the receiver of the message).

turn the message turn, i.e., the message object that corresponds to the turn where
the current processing message was sent. This property allows developers to later
inspect all messages in a turn view, which visualization we explain in Section 5.1.3.2.

Figure 5.2 shows our proposed visualization of a mailbox that contains a list of mes-
sages for a paused actor. With this visualization, the developer can also see causality
information in the actor state. Moreover, in the next section, we show the design of
another visualization for showing not only causal information for the paused actor but
for all of the actors of the program.

Figure 5.2: Mailbox visualization for a paused actor.

The mailbox visualization is crucial to enable developers to inspect the actor to deter-
mine if it is in some behavioral deadlock (see Section 2.3.1.2). Developers can witness this
issue because although the actor is paused, it is not blocked, i.e., it can receive messages
from the other running actors of the program. Furthermore, the mailbox inspection can
also help to identify unexpected interleavings of messages received by the actor.

100

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

5.1.3.2 Message Causality

Inspired by Causeway and REME-D debuggers, we designed a visualization to show the
happened-before relationship of messages in an actor-based program. In our research, we
explore the notions of Lamport’s space-time diagrams used by [BWBE16] in the context
of distributed systems, and we apply them to a message-oriented debugger for actor-based
programs. Particularly, we propose a graph visualization in a space-time diagram.

We now briefly introduce the necessary elements from Lamport’s happened-before
relationship to be able to understand our visualizations. Our message causality design
targets concurrent programs, then we consider Lamport’s view of a program that consists
of several processes, i.e., actors, consisting of a sequence of events, i.e., an event can be
represented by sending or receiving a message in an actor. Here we present the conditions
to be satisfied in the happened-before relationship defined by [Lam78]:

1. If a and b are events in the same process, and a comes before b, then a −→ b .

2. If a is the sending of a message by one process and b is the receipt of the same
message by another process, then a −→ b.

3. If a −→ b and b −→ c then a −→ c. Two distinct events are said to be concurrent
if a ̸−→ b and b ̸−→ a.

As argued by [SCM09] showing the partial ordering of events narrows the search for
the root cause of a bug. For example, an event a that happened before an event b can
influence the later one. On the contrary, if a did not happen before b, then to explain a
bug in event b we can ignore a. In addition to showing the order of messages sent by an
actor, having information about the process order can give better debugging exploration
space to developers [SCM09]. Like Causeway and REME-D, we consider that a debugger
for actor-based programs can use information about executed turns and messages sent
by each of the program actors. Although we propose different visualizations, we adopt
two orders naming from Causeway debugger in our approach:

Process order represents the turns executed6 by each actor of the program in chrono-
logical order, i.e., in the order the actor received the messages.

Message order shows the order in which each actor of the program sends messages.

We propose to show message causality information in an actor system through a graph
visualization in which columns represent turns executed for one actor, i.e., the process
order. In contrast to Lamport space-time diagrams, in our diagram, earlier turns are
represented higher in the graph in our visualization.

Figure 5.3 shows an example of our graph visualization of turns and causal messages.
The first row in the diagram shows all the actors of the program, which are represented

6turns executed = messages processed

101

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Space

Time

b

a

Figure 5.3: Graph visualization to show the process order with happened-before relation-
ship between messages. Rectangles depict actors, ellipses depict turns and arrows depict
messages. Turn a is causally link to turn b.

with rectangles. The color green indicates the actors are in run state. Each column
represents the turns processed by each actor, and each turn is shown with an ellipse.
Arrows indicate message sends between the actors and are causally link to the turn
where it was sent. If the developer clicks one turn, there will be another view, i.e., a
sentbox view, which shows a list of all messages sent (in order) from a selected turn in
the graph (see figure 5.4). Similar as we showed in the mailbox, each message sent shown
in the sentbox contains information about its turn. These views are part of our proof
of concept debugger implemented as a plugin in the IntelliJ IDE (see section 5.2 and
5.2.2.2).

An initial version of our graph visualization was prototyped for the Kómpos debugger
[MLA+17], but without the notion of a sentbox and message properties information.
During the development of our graph visualization, we have discussed our design with
different researchers from our laboratory as well as externals (e.g., INRIA RMOD group).

We think that exploring turns in a process and message order can be especially useful
for detecting bugs such as message protocol violations, i.e., message order violations and
bad message interleavings. Developers will be able to see in the process order turns
execution and notice when there is a turn that is in the incorrect place of execution for
an actor. Similarly, having the possibility to see the message sent in order will help to
identify wrong or null receivers, e.g., if the expected target actor received the message.

102

5.1. DESIGN OF ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Figure 5.4: Sentbox visualization that shows messages sent in order. The turn property
denotes the causal turn for the selected message in the sentbox.

5.1.4 Asynchronous Stack Trace

Using the happened-before relationship of messages, one can understand the asynchronous
message send that leads to a particular point of interest (i.e., a pausing state). However,
this information needs to be combined with information on method activations. To un-
derstand how we got to a code location in a concurrent program is needed a stack that
can show the asynchronous and synchronous events that activated the current frame.

We propose an asynchronous stack trace that shows the calling context and the send
context for asynchronous messages. Furthermore, we propose that an asynchronous stack
trace can be configured to provide information not only about all asynchronous messages
that were sent previous to the suspension (i.e., the control flow), but the messages sent
that lead to the resolution of promise objects (i.e., the data flow).

Visualizing the frames related to control flow, data flow, and method activations in
the same stack can be overwhelming for a developer. As such, we propose to categorize
the different kinds of information which are clearly depicted in the asynchronous stack
of Figure 5.5. In this figure we show a proposal for visualizing the mentioned frames in
a debugging session for a SOMns program. In particular, we distinguish the following
frame types:

method activations frames in white color.

asynchronous messages sent frames in pink color.

promise resolution frames in purple color.

method activations in the runtime system frames in yellow color.

As can be observed, we also consider one color to distinguish method activations
from the runtime system, as shown by traditional stack traces. We distinguish method

103

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

activations that are due to runtime so that it is easier to identify end-user code. The
coloring should help to reason about synchronous and asynchronous computation. As
mentioned, in section Section 3.3.1, both information is necessary to find the root cause
of bugs.

Figure 5.5: Asynchronous stack trace visualization that shows frames for method acti-
vations (white color), frames for asynchronous messages send (pink color) and frames
related to promise resolution (purple color).

An asynchronous stack trace is different from the mentioned message causality design
(see section 5.1.3.2). An asynchronous stack trace will only show all the method acti-
vations, and the asynchronous message sends related to the suspension. However, the
message causality feature provides a more extensive spectrum for the send context of the
program because it shows all the messages processed and sent that have been executed
until the suspension. Hence, we consider that the asynchronous stack trace narrows the
control flow path of the program’s execution.

5.1.5 Advanced Visualization Techniques

Finally, we would like to mention that as part of this research, we also explored advanced
visualization techniques through interrogative debugging for actor-based programs. In-
terrogative debugging was first proposed for thread-based programs [KM08, KM10], with
the goal of augmenting debugging tools with facilities to ask questions interactively re-
lated to program runtime failures in a debugging session.

We have supervised a bachelor thesis at the Vrije Universiteit Brussel [Ver20], which
prototyped our ideas on the questions which we envisioned to support interrogative de-
bugging for actor-based programs. Table 5.7 shows an overview of the questions and
answers we devised for an online debugger for actor-based programs written in the CEL
model. We categorized the questions into three groups. Two of the categories are related
to entities in the CEL model, such as actors and messages. The third category is related

104

5.2. APGAR, A PROOF OF CONCEPT ONLINE
MESSAGE-ORIENTED DEBUGGER FOR SOMNS

to variables, which includes promises and primitives types [Ver20]. We believe interroga-
tive debugging offers developers an alternative interactive way to inspect the actor state.
The current proposal also explored questions to get information on promise resolutions.
For example, developers can ask for an unresolved promise, which is a feature suggested
to be added to Apgar by participants of the user study we conducted to validate our
techniques (see Chapter 7). It remains as future work to integrate the prototype im-
plementation by [Ver20] into Apgar, our proof-of-concept debugger implementing the
proposed novel debugging features for SOMns programs, which we describe in the next
section.

Question Answer

1. Actors
- Which promises are resolved? - All resolved promises of the actor.
- Which promises are not resolved? - All unresolved promises of the actor.

2. Messages
- Which is the turn of message X? - Information about the turn.

3. Variables
All variables
- Why has variable X that value? - Timeline of assignments.
Promises
- What is the resolution value of promise X? - Resolution value.
- When did promise X resolve? - Information about a selected promise in

the timeline + Timeline of promise depen-
dencies

Table 5.7: Overview of questions and answers when debugging a CEL actor-based pro-
gram, from [Ver20].

5.2 Apgar, a Proof of Concept Online Message-oriented De-
bugger for SOMns

In this section, we describe our proof of concept debugger for the SOMns language where
we integrate the debugging features designed for actor-based CEL programs described
in the previous section. We call Apgar7 to our debugging tool, which consists of the
debugger backend, the Kómpos protocol, and the debugger frontend. A demo video of
the debugger is publicly available8 and it was used as part of a user study material we
describe in Chapter 7.

7The name is inspired by the work of Dr. Virginia Apgar, which created the first standardized tool to
evaluate newborn health, i.e., the Apgar score, https://medlineplus.gov/ency/article/003402.htm.

8https://www.youtube.com/watch?v=3m-VuAfIrK0

105

https://medlineplus.gov/ency/article/003402.htm
https://www.youtube.com/watch?v=3m-VuAfIrK0

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

We start by giving an overview of the debugger architecture. Later, we describe the
debugger views implemented in the frontend as a plugin for SOMns language in the
IntelliJ IDE.

5.2.1 Architecture Overview

Figure 5.6 shows an overview of the debugger architecture. It consists of three main
elements: the frontend, the backend, and a protocol to exchange information needed for
debugging.

Apgar frontend has been implemented as a custom language plugin for the SOMns
language in IntelliJ IDEA IDE. Besides incorporating the features for debugging
actor-based programs described in the previous section, the frontend also has sup-
port for the development of SOMns programs expected from a modern IDE (e.g.,
editor with syntax highlighting, project packages, etc.)

Apgar backend (Medeor) has been implemented in the SOMns interpreter. Medeor9,
the main set of classes that manages the debugging information are built on top
of the Truffle instrumentation framework, as mentioned in Section 4.4.1. This
framework makes it possible to debug on the AST node level, i.e., to be able to
set a breakpoint on a node definition instead of a line number. However, it does
not provide support for concurrency. In the next chapter, we will explain the main
implementation details we built to implement concurrent debugging support on
Truffle by means of AST node wrapping.

Kómpos protocol is a concurrency-agnostic debugging protocol that mediates interac-
tions between the backend and frontend.10. The Kómpos protocol was proposed in
collaboration with Dr. Stefan Marr in the context of the MetaConc project with
the Johannes Kepler University in which this research was funded 11. In this work,
we extended the original protocol for pausing and resuming actors and enabling
our visualizations on actor state and message causality (see Section 5.3).

9Latin word meaning heal, cure, good against a disease.
10Messages between frontend and backend are exchanged using JSON format
11https://ssw.jku.at/Research/Projects/MetaConc/

106

https://ssw.jku.at/Research/Projects/MetaConc/

5.2. APGAR, A PROOF OF CONCEPT ONLINE
MESSAGE-ORIENTED DEBUGGER FOR SOMNS

Backend: SOMns interpreterFrontend: IntelliJ IDEA

Medeor 2.0

Truffle debugger
Kómpos protocol

(JSON)

Debugging support

(Java) (Java)

IntelliJ Platform

Plugin

APIs

Debugger
Editor

Project

…

Figure 5.6: Architecture of the Apgar debugger.

5.2.2 Apgar Frontend

In this section, we illustrate Apgar from the programmer’s perspective interacting with
the debugger frontend. Figure 5.7 shows the user interface of Apgar in IntelliJ, which
consists of three main panels:

Project panel is located on the left and contains all the available programs of the
open project. In the editor is shown the Pythagoras calculator program (see Ap-
pendix C.3). The red envelope next to line 42 indicates that a message breakpoint
has been defined, in this case for the asynchronous operator declared in that line
for the square message.

Editor panel is located in the center where the program’s source code is visualized.
Next to the program’s name, there is the Run button (for running the program),
the Debug button (for debugging the program), and the Stop button (for stopping
the program’s execution). On the top right, we can see highlighted a blue rectangle
that shows the program’s name to be run or debug. The figure shows in the editor
in dark blue that the debugger paused the program execution on line 42 due to a
message sender breakpoint, i.e., before the message square is sent (it is highlighted
the asynchronous send operator node).

Debugger panel is located at the bottom and contains all the views for interactively
debugging actor-based programs explained in the previous section. We describe the

107

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

different debugging views in the next sections. We will use as a running example
the Pythagoras calculator program.

Figure 5.7: User interface for the Apgar frontend in IntelliJ IDE.

5.2.2.1 Actors and Mailbox

In Section 5.1.3.1 we mentioned how we designed visualizations to inspect the state of a
paused actor. Figure 5.8 shows the Actors view on the left panel and the Mailbox view
on the right panel. These views show the state of the mailbox at the point where the
actor got suspended (corresponding to line 42 in Figure 5.7 as mentioned before). The
Actors view shows all actors active in the program execution. In this example four actors
are active, i.e., Platform, Math, and two Calculator actors. Actors can be in run or in
pause state. Actors are described with its id, a state (running represented with a green
icon and paused represented with a yellow icon) and a source coordinate corresponding
to the code location where it was created using the createActorFromValue message.
Recall from Chapter 4 that Platform actor is the main actor in the runtime system,
which runs a SOMns program.

In the Actors view, it is also possible to select one of the program’s running actors
and pause it. This means that the actor will halt execution before processing the next
message in its mailbox. The actors’ view allows developers to see how many actors have

108

5.2. APGAR, A PROOF OF CONCEPT ONLINE
MESSAGE-ORIENTED DEBUGGER FOR SOMNS

been created in the program and inspect their state. An enlarged view of the actors’
view is shown in Figure 5.9.

The state for the selected paused actor is shown in the Mailbox view, with all the
messages they have received until the suspension. The yellow message corresponds to
the current processing message, and gray messages are waiting to be processed. If the
developer clicks on the message the following properties are displayed: an identifier, its
origin (code location where it was created), the type, the id of the sender actor, the target
of the message and the turn where this message was sent. Right-clicking on one message
allows developers to jump to the source location in the editor where that message was
sent. In Figure 5.8 we can see that computePerimeter message is the message about to
be processed by the selected Calculator actor. The message properties are visualized
and the properties for the target promise object of that message. An enlarged view of
the mailbox, but for another debugging session was shown in, Section 5.1.3.1, Figure 5.2.

Figure 5.8: Actors and Mailbox views.

Figure 5.9: Actors visualization showing running (green color) and paused state (yellow
color).

109

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

5.2.2.2 Turns and Sentbox

Section 5.1.3.2 explained the main elements of our novel graph visualization for causality
of messages based on a space-time diagram. We now discuss further the interactions
between the Turns view showing the space-time diagram and the Sentbox view for a
given turn.

Figure 5.10 shows the Turns view on the left panel and the Sentbox view on the
right panel. The Turns view provides a visualization of turns per actor. Rectangles
represent actors, and ellipses represent turns. The yellow color indicates the actor or
turn is paused, and the green color indicates that the actor or turn is running. Arrows
represent messages. The ones in red color indicate the message was sent to a far reference
and the purple color indicates a message sent to a promise. There are also buttons for
zoom in and zoom out the graph. The visibility of each actor column and the messages
can be selected using the checkboxes at the top of the visualization.

When developers select a turn in the graph, highlighted by the green dotted line, the
Sentbox view shows messages that have been sent in the selected turn. The visualization
in Figure 5.10 shows one of the Calculator actors in paused state, and the sentbox for
the second turn of the last Calculator actor.

Figure 5.10: Turns and Sentbox views.

5.2.2.3 Frames and Variables

In Section 5.1.4 we showed the conceptual design of an asynchronous stack trace for
actor-based programs. We now describe the integration of asynchronous stack traces in
the Frames view. Figure 5.11 shows that view on the left panel, and the variables state
for the selected frame in the stack on the right panel, called Variables view.

The Frames view shows the current frame corresponding to the method of the sus-
pension (highlighted in dark blue), together with frames corresponding to the method
activations (white color), asynchronous message sent (in pink color) and promise reso-
lution frames (in purple color). Above the list of frames, developers can inspect the list
of paused actors and the variables state on the right panel.

110

5.3. EXTENSION TO KÓMPOS PROTOCOL

By default, the debugger frontend enables the creation of an asynchronous stack trace
in the debugger backend, but it can be disabled also by developers to see a traditional
call stack (i.e., without frames for asynchronous message send or promise resolution).

Figure 5.11: Frames and Variables views.

5.2.2.4 Breakpoints and Stepping commands

Section 5.1.1 and Section 5.1.2 describe the catalogs we proposed for message-oriented
breakpoints and stepping operations. In Figure 5.12 we illustrate with an example how
we can define message breakpoints in Apgar. The figure shows a code snippet of the
Pythagoras calculator program opened in the editor panel of Apgar frontend. The con-
textual menu depicts four breakpoint options that are visualized due to the selection of
the asynchronous send operator in Line 38. Regions in the editor in pink color represent
AST nodes where a breakpoint can be placed. Besides, as mentioned in Section 5.1.1
it is possible to add promise breakpoints on messages that return promises such as
createPromisePair:, whenResolved:onError:, whenResolved:, onError:. Finally,
the developer can set asynchronous before and asynchronous after breakpoints on method
names. Figure 5.13 shows all the buttons related to the sequential and message-based
stepping operations.

5.3 Extension to Kómpos Protocol

Inspired by Visual Studio Code debugging protocol [Mic21], Kómpos is a concurrency-
agnostic debugger protocol that decouples the debugger from the concurrency models
employed by the target application [MLA+17]. In particular, the protocol defines com-
munication between the debugger frontend and the interpreter in a concurrency agnostic
way by modeling concurrency concepts relevant for debugging with breakpoints and step-
ping operations. Kómpos original version was derived from the first version of our cata-
logs for message-oriented breakpoints and stepping operations for actors and transposed
to other concurrency models [MLA+17]. As mentioned before, in this work, we report
the extended version of the protocol to support our online debugging for actor-based
programs and more advanced visualizations than initially foreseen.

111

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Figure 5.12: Breakpoints menu visualized for the asynchronous send operator.

Figure 5.13: Stepping commands. Sequential stepping: (1) step over (2) step into (3)
step out. Message stepping: (4) step to message receiver (5) step to promise resolver (6)
step to promise resolution (7) step next turn (8) return from turn to promise resolution
(9) step end turn.

Figure 5.14 shows a class diagram for the main elements of the Kómpos protocol
organized in three categories: Meta model, Debugger messages, and Trace events. The
meta model (1) describes the concurrency and debugger concepts supported by the inter-
preter and metadata used to interpret the exchanged messages. The debugger messages
(2) are used to update the frontend or the interpreter, e.g., breakpoints, stepping, pause
and resume commands. The trace events (3) encode data collected by the interpreter on
program behavior for visualization. Elements in blue color represent our extension to the
original version of the protocol, published in [MLA+17]. In the following sections, we de-

112

5.3. EXTENSION TO KÓMPOS PROTOCOL

scribed the semantics for each of the elements in the protocol, focusing on its application
for debugging actor-based programs.

5.3.1 Meta Model

The Kómpos protocol derived many concurrency concepts relevant for debugging based
on activities, dynamic scopes, passive entities, send operations and receive operations.
Table 5.8 shows the definition of those concepts applied to the actor-based model of
concurrency. The debugger, however, requires meta data to match debugging operations
to these concurrency concepts. This information is part of the meta model. In what
follows, we detail the concurrency and debugger concepts in Kómpos meta model.

Concurrency concept Definition CEL
activity active entity that execute code actors
dynamic scope well-structured and nested parts of

a program’s execution during which
certain concurrency related proper-
ties hold

turns

passive entity entities that do not act themselves,
but are acted upon

messages
promises

send operations interaction between entities that ini-
tiates communication or synchro-
nization

send message
resolve promise

Table 5.8: Concurrency concepts for the CEL concurrency model from the Kómpos
protocol [MLA+17].

The Kómpos meta data consists of the eight concepts for debugging shown at the top
of Figure 5.14.

An EntityType defines data common to all entity types, i.e., activity types, dynamic
scopes types and passive entities types. All entities have a label, i.e., a name and a
unique id to distinguish them. In CEL programs, entity types correspond to actors,
turns, messages, and promises, as shown in Table 5.8.

An ActivityType represents active entities that execute code, i.e., actors in our work.
A DynamicScopeType is used to determine the scope for operations. In our work, turns
will delimit for example the possible message stepping operations. A PassiveEntityType
is used mainly for visualization, and in CEL programs, corresponds to messages and
promises.

A BreakpointType defines the possible breakpoints. Each breakpoint has a unique
name, a label to be used in the user interface, and an applicability criterion based on
source tags to identify the semantics elements contained in a source range. We will use
Truffle’s tagging mechanism to annotate AST nodes in the interpreter (see Chapter 6).
If a breakpoint type does not specify any source tags, it applies to all source locations.

113

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

1. Meta Model

ActivityType
creation: byte

completion: byte
icon: string

EntityType
id: typeId

label: string

DynamicScopeType
start: byte
end: byte

PassiveEntityType
creation: byte

BreakpointType
name: string
label: string

applicableTo: Tag[]

SteppingType
name: string
label: string

applicableTo: Tag[]
activities: ActivityType[]

scopes: DynamicScopeType[]SendOperationType
marker: byte

entity: EntityType
target: EntityType

ReceiveOperationType
marker: byte

source: EntityType

Source
URI: URI

sourceText: string
locations: TaggedCoord[]

BreakpointUpdate
location: Coord

type: BreakpointType

Stopped

activityId: long
location: Coord

actType: ActivityType
scopes:DynamicScopeType[]

Step
activityId: long

type: SteppingType

Symbol
syms: Map<symId, string>

StackTraceRequest
activityId: long

ResumeActivity
activityId: long

2. Debugger Messages

StackTraceResponse
stackFrames: long[]
activityId: long

messageId: long
asyncStack: boolean

scopes: byte[]

PauseActivity
activityId: long

3. Trace Events

ActivityCreation
activityId: long
name: symId

location: Coord

ActivityCompletion
ScopeStart

scopeId: long
location: Coord

ScopeEnd

PassiveEntityCreation
entityId: long

location: Coord

ReceiveOperation
sourceId: long

marker: byte

MessageReception
messageId: long
activityId: long

SendOperation
entityId: long
targetId: long

msgSelector: string
targetSource: Source
targetActivity: long

ImplThreadCurrentActivity
activityId: long

bufferId: int

ImplThread
threadId: long

length: int
resolutionValue: byte[]

Figure 5.14: Class diagram of the main elements of the Kómpos protocol.

114

5.3. EXTENSION TO KÓMPOS PROTOCOL

A SteppingType defines the stepping operations to follow program execution sequen-
tially or concurrently. As for breakpoints, stepping operations are distinguished by the
name and the source tags that will be used to define whether a stepping operation is
applicable. For instance, the operation to step to the receiver of a message is only avail-
able on a message send operation. An additional applicability criterion is the current
activity type, e.g., to enable stepping to the next turn for actors. Similarly, stepping can
be conditional to the current dynamic scope. As such, the third applicability criterion is
the scope active for the current execution.

A SendOperationType is used for visualization of send message and resolve promise.
A send operation type defines a unique marker, the sender entity, and the target to which
this operation belongs to. A ReceiveOperationType is used for visualizations of receive
operations, but currently, they are not used for CEL programs.

5.3.2 Debugger Messages

In its original version, the Kómpos protocol provides five messages that the debugger and
interpreter can exchange for debugging. Figure 5.14 shows two additional messages, i.e.,
requests and responses for stack trace information. We also added two new messages to
indicate that an activity (i.e., an actor in our case) has been paused or resumed in the
debugger frontend.

A Source message provides the source information to the frontend. The Source mes-
sage includes a URI to identify the source file or resource, the source text, and a list
of tagged source locations. Source locations specify the exact coordinates, for instance,
based on a line number, column number, and character length. The tags are opaque
identifiers that identify concurrency operations. Tags are also useful for highlighting
the breakpoint nodes in the source editor, i.e., all the nodes from the program AST in
which it is possible to define breakpoints. In our concrete debugger implementation, we
use the notion of PSI elements from IntelliJ12 to obtain source coordinates for break-
points that the debugger frontend sends to the backend when initializes connection (see
Appendix D.3.1)13.

A BreakpointUpdate message is used to communicate breakpoints from the frontend
to the backend. It encodes the source location and the breakpoint type.

A Stopped message is sent from the backend to the frontend to indicate that either a
breakpoint was hit or a stepping operation completed. It identifies the current location
and the suspended activity with id and type. Furthermore, it includes a list of currently
active dynamic scopes for this activity. Note that the activity type and active dynamic
scopes can also be determined from the trace data, but providing them explicitly simpli-
fies the debugger implementation.

12https://plugins.jetbrains.com/docs/intellij/psi.html
13This strategy differs from the first debugger frontend implementation for SOMns which was imple-

mented as a web application.

115

https://plugins.jetbrains.com/docs/intellij/psi.html

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

A Step message is sent from the debugger frontend to the debugger backend to
instruct the latter to resume execution of a specified activity with a given stepping type.

A Symbol message avoids sending long strings repeatedly by sending a symbol table
from the interpreter to the debugger.

The StackTraceRequest and StackTraceResponse are messages exchanged by the
debugger frontend and interpreter due to a breakpoint or a stepping operation. A
StackTraceRequest models the request message and StackTraceResponse models the
response carrying the information to show state of the paused actor. We added in
StackTraceResponse the message id corresponding to the current processing message
at which the suspension occurs. This is needed for the visualization of debugging infor-
mation in the frontend (e.g., to show the state of the paused actor). Besides, we declare
a flag that indicates if the asynchronous stack is enabled.

In the original version of the protocol, pausing actors was only possible via break-
points or stepping operations. For indicating that an activity has been paused or re-
sumed explicitly by the end-user at the debugger frontend, we added PauseActivity
and ResumeActivity. A PauseActivity message is sent from the debugger frontend to
the backend to pause a given actor by activating a flag in the actor to execute a step. This
means the actor will pause execution before processing the next message in its mailbox.
The message response for pausing an actor that is sent to the frontend will update in
the frontend the actor’s state to running. A ResumeActivity message is sent from the
debugger frontend to the backend to resume a given actor. In the debugger, the actor’s
state will be updated to running. This message is defined by the actor id.

5.3.3 Trace Events

The Kómpos protocol provides details on the execution of a concurrent program through
trace events that encode the program execution in terms of eight different trace entries
depicted in Figure 5.14. These trace events can be used, for instance, to visualize con-
current interactions. In general, each trace event starts with a marker, which is indicated
by the dashed line in Figure 5.14. The relation between the concrete marker and a con-
currency concept is defined via the metadata elements previously described. Here we
describe each of the trace events, which the exception of ReceiveOperations which is
not used when recording actor events.

An ActivityCreation event records the id of the created actor, its name, and the
source location of the creation operation. An ActivityCompletion is merely a marker
recording that an actor terminated. The corresponding activity id can be determined
from the complete trace.

A ScopeStart event records the beginning of a dynamic scope. It records the id of a
scope, which corresponds to, e.g., the message id for an actor turn. It also includes the
source location for the scope, e.g., the method invoked for an actor turn. A ScopeEnd
event is also a marker that can be matched to the scope start implicitly.

116

5.4. COMPARISON TO RELATED WORK

A PassiveEntityCreation event records the id of the passive entity created and the
source location of the operation.

A SendOperation event is defined by the id of the involved passive entity, e.g., a
message, and the target entity id, e.g., the receiving actor. Also, we added an entry to
record the message selector, the target source section, and the target actor id. This new
information is needed for showing the state of a paused actor at the debugger frontend.
Information about the sending entity can be inferred from the trace based on the dynamic
scope or current activity. Moreover, we added two fields needed to communicate to the
frontend the resolution value of promises, i.e., resolution value and its length. Specifically,
this is visualized in the mailbox and sentbox, in the properties of a promise object (see
Figure 5.8).

An ImplThreadCurrentActivity indicates the actor that is currently executing.
Also, when the buffers are swapped, the current activity should be received (see Sec-
tion 6.2.1.2). This event is defined by an actor id and a buffer id. Moreover, an
ImplThread event indicates when a new chunk of trace starts. It is defined by a thread
id.

In the first work using the Kómpos protocol, the ReceiveOperation message was
not used in the trace of the CEL model because messages are implicitly received, and
the SendOperation message carries the target entity id. We extended the tracing imple-
mentation in the debugger backend to incorporate this information for CEL actors, but
to avoid confusion with the initial version of the protocol, we use a different name, i.e.,
MessageReception. This message represents the reception of a message in the actor’s
mailbox. This information is needed to show the received messages of the mailbox for
the paused actor in order of arrival. Besides, this information is necessary for the visual-
ization of turns processed by an actor in the frontend. One message reception is defined
by the message id and the actor id.

5.4 Comparison to Related Work

In this section, we compare the debugging techniques we propose in this chapter with the
state of the art of debuggers for actor-based programs which we surveyed in Chapter 3.
Table 5.9 compares Apgar features with state of the art. We have marked with an ’X’
every debugger that has addressed a technique. We have employed ’X*’ those cases in
which limited support is provided for the feature. We now discuss the approaches per
debugging technique.

As we can observe, most of the debuggers provide actor state inspection. More con-
cretely, all debuggers except Causeway have reported facilities to inspect the mailbox as
well as local variables (or objects) of the actor. Chrome DevTools, McFly, Erlang and
Actoverse do not provide an independent view dedicated to show the messages in the
mailbox.

117

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

Actor St. Msg. Msg Visualiz. Async. Record Reverse
Insp. Bkp Stepp. Causality Stack. Replay Debug.

Online debuggers
REME-D
[GBNDM14]

X X X X*

Chrome
DevTools
[Not17]

X* X

Erlang
[AB20]

X*

ScalaIDE
[fED]

X X* X X*

Offline debuggers
Causeway
[SCM09]

X

Actoverse
[SW17]

X* X* X X X*

IDeA
[MOM18]

X X* X* X X X

McFly
[VBMM18]

X* X X

Apgar X X X X X

Table 5.9: Overview of Apgar features with the state of the art debuggers for actor-based
programs. A ’X’ indicates that the debugging technique is addressed by the debugger.
A ’X*’ indicates that the support for that debugging technique is limited.

Besides Apgar, REME-D, Actoverse, and IDeA debuggers have support for message-
oriented breakpoints. However, IDeA only provides breakpoints to halt before messages
are received by the actor [MOM18], and Actoverse mentioned breakpoints on the sender
and receiver side of the message [SW17]. Neither IDeA or Actoverse feature breakpoints
on promises. In comparison to REME-D, our proposal further explores breakpoints on
promises, and integrates it with stepping operations; REME-D only features one type of
breakpoint for promises [GBNDM14].

Concerning the message stepping operations in state of the art, besides REME-D,
there are two approaches for the Akka framework that have proposed stepping operations
on the level of messages, i.e., ScalaIDE with step to the receiver of the message [fED] and
IDeA which steps to the next message execution [MOM18]. However, those approaches
do not offer a range stepping operations as Apgar (e.g., none of the approaches supports
stepping at the level of promises), and do not integrate message stepping with sequential
stepping operations.

With respect to visualizations features for message causality, it has only explored
in state of the art of offline debuggers such as Causeway [SCM09]. REME-D debugger
keeps the information of the turn where a message was sent, however, it does not provide
a dedicated visualization to show the happened-before relationship of messages in its

118

5.5. CONCLUSION

Eclipse plugin frontend [GBNDM14]. As shown in Section 3.3.3, Causeway used tree
views for displaying the causal information related to processes and messages. More
recently, some works have explored visualizations based on sequence diagrams [SW17]
and virtual reality [MOM18]. In Apgar, we propose a graph visualization in a space-
time diagram to show process and message order. Space-time diagrams has been used
before for visualizing messages in distributed systems [BWBE16], but not for debugging
actor-based programs as in Apgar.

Similar to Apgar, mainstream debuggers for Scala and JavaScript feature asyn-
chronous stack traces. In particular, the ScalaIDE for Akka programs shows a stack
of asynchronous messages, including two kinds of stack frames, i.e., the history of frames
when a promise is created and when a message is sent to an actor [Doc21]. Interest-
ingly, they include state for asynchronous message sends, something that Apgar does not
store yet. However, ScalaIDE is not reported to show frames corresponding to promise
resolution or promise dependencies (i.e., promise callbacks). The Chrome debugger, on
the other hand, visualizes the stack of functions that are called asynchronously and can
show promise dependencies for JavaScript programs [LM18]. Similarly, Apgar includes
frames related to asynchronous message send, and promise resolutions, including promise
dependencies. In particular, Apgar asynchronous stack support is represented by frames
corresponding to AST locations causally related to promise resolutions. In other words,
the Apgar stack can distinguish different entries in the asynchronous stack, e.g., when
a promise is resolved (i.e., with a value, with an error, or with another promise) and
when a callback has been registered to a promise (e.g., with whenResolved: message in
SOMns). Also, the stack will show frames not only for implicit promises created with
the asynchronous send operator and promise callbacks but also it will show the program
execution flow for explicit promises. We believe that Apgar’s stack frame visualization
based on colors can aid developers to identify faster the frames related to interactions
between actors, i.e., asynchronous message sends and promise resolution, from methods
activations. That is useful since, many times, erroneous steps leading to an application
failure are due to both sequential code and concurrent interactions.

Even though we have focused on online debugging, Apgar provides support for mes-
sage causality, a feature typically only supported by offline debuggers. As we mentioned
in Section 3.3.2, in the recent past, some academic work has focused on offline debugging
techniques for actor-based languages, in particular reverse debugging and record and re-
play. For completeness, we include them in the overview table, but incorporating further
offline debugging features in Apgar is future work which we discuss later in Section 9.4.

5.5 Conclusion

In this chapter, we have proposed the design of different online debugging techniques for
actor-based programs.

119

CHAPTER 5. ONLINE DEBUGGING TECHNIQUES FOR
ACTOR-BASED PROGRAMS

First, we have devised a breakpoint catalog to allow developers to pause the program
at four different halting locations in the context of asynchronous message passing. Be-
sides, we have classified the debugging operations to cover three concurrency concepts
present in communicating event-loops programs, i.e., messages, promises, and turns. Our
work models also combine sequential and message-oriented stepping. We think this is a
relevant aspect because the root cause of the bug can be originated in sequential or asyn-
chronous code, which can help developers to identify lack of progress issues and message
protocol violations.

Second, we proposed two visualizations related to the actor’s mailbox inspection and
the happened-before relationship of messages sent by the actors. Current debuggers for
actor-based programs lack good visualization techniques to show the debugging informa-
tion. Then we think our proposal gives a step in the direction to overcome that problem.
These visualizations have been implemented using execution trace data that encodes the
program’s behavior on different trace events. In this approach, the debugger frontend
requests to the backend the information about the concurrent entities until the point of
the suspension in the program. We consider that the actor’s mailbox visualization can
help developers to identify mainly lack of progress issues. Besides, a graph visualization
in a space-time diagram to show causality between the messages sent of the actors of the
program can aid to identify particularly message protocol violations.

Third, we have designed an asynchronous stack trace that provides information about
the calling and send context of a suspension in a debugging session. The novel feature
of our stack trace is the combination of different kinds of frames related not only to
asynchronous messages but also to promise resolutions. This could help to identify, for
example, unresolved promises due to a behavioral deadlock. Although our implementa-
tion is a first proposal for the SOMns research language, we think asynchronous stack
traces that provide the mentioned frame types can be applied to other actor languages
to assist developers in identifying message protocol violations.

Finally, we have extended the Kómpos protocol with some elements needed to model
online debugging features (e.g., pause and resume activities) as well as the visualization
of the actor’s state and message causality. Furthermore, this extension allows developers
to switch between visualizing a traditional stack trace or an asynchronous stack. In the
next chapter, we describe the implementation details related to our proof of concept
debugger for SOMns programs, Apgar.

120

Chapter 6

Implementation of Online
Debugging Techniques for SOMns

This chapter describes the implementation of the different online debugging features for
the SOMns language. First, we focus on the relevant parts of the debugger backend in
SOMns (Medeor). We describe the implementation of the catalogs of breakpoints and
stepping operations for online debugging as well as support for asynchronous stack traces.
Besides, we explain our changes in the Kómpos trace to provide support for inspecting the
actor state and showing message causality. Finally, we explain our implementation of our
debugger frontend as an IntelliJ plugin. In particular, we detail how we process the trace
data obtained from the backend through the Kómpos protocol to visualize the actor’s
state, message causality, and the asynchronous stack when a suspension occurs. For
reproduction purposes, implementation details, including class diagrams and sequence
diagrams for the interaction between frontend and backend, are included in Appendix D.

6.1 Apgar Backend (Medeor), Debugging Support in SOMns

Medeor is the backend component of our online debugging support in the SOMns inter-
preter. It is implemented as an extension of the Truffle Debug API. We added support in
Medeor for message-oriented breakpoints and stepping, and implemented asynchronous
stack trace support that provides control flow and data flow information about the pro-
gram suspension. Besides, we extended the implementation of the Kómpos protocol in
SOMns to obtain debugging information related to the added debugger and the trace
events described in Section 5.3.

Appendix D.1.1 shows an overview of the main classes of Medeor 1 to create a debug-
ger on top of the Truffle Debug API. Recall that the Truffle Debug API only supports
sequential debugging for the SOMns interpreter. In the following sections, we explain

1The complete implementation of Medeor is available in a fork of SOMns at https://github.com/
ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger

121

https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger
https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

our implementation in Medeor to provide advanced debugging support for concurrent
programs and its integration with sequential debugging.

6.1.1 Message Breakpoints

Medeor implements two types of breakpoints, line breakpoints and the message-oriented
breakpoints we proposed in the breakpoint catalog of Section 5.1.1. Appendix D.1.2
details the implementation classes. We classify the breakpoints into two categories ac-
cording to their implementation:

Breakpoints managed directly by Truffle Debug API Those breakpoints corres-
pond to types of breakpoints which can be implemented with only the information
of syntactic tags (e.g., to set breakpoints on expressions) and by specifying condi-
tions (e.g., to evaluate if the current node is an instance of ReceivedRootNode).
These breakpoints are created with the breakpoint builder provided by the Break-
point2 class in the Truffle Debug API. Then we just need to install them in the
Truffle debugging session. Line breakpoints and simple section breakpoints are
instances of Breakpoint and are created through this strategy.

Breakpoints managed by SOMns implementation Those breakpoints correspond
to more complex breakpoints which require executing a stepping strategy to halt
in an AST node besides a flag on the message. They are more complex section
breakpoints which declare wrapper nodes in the AST to control each breakpoint’s
state, i.e., when is enabled or disabled. These breakpoints are instances of the
AbstractBreakpointNode class (see Figure D.2), which extends from the Truffle
Node3 class, and it controls the state of breakpoints. These breakpoints are saved
based on their source coordinate and their type.

Table 6.1 summarizes the implementation strategy for each of the proposed message-
oriented breakpoints. Column name corresponds to the breakpoint name, as shown in
Table 5.1. Column category refers to the category in which we consider the breakpoint
according to its implementation, i.e., using Truffle Breakpoint class or dedicated wrapper
nodes. Column strategy describes the halting strategy we implemented for each break-
point. Column syntactic tag shows the tag name that the node to halt needs to have
annotated. Column node indicates the node where the halt should occur.

To define breakpoints in the frontend, the backend provides syntactic tags for identi-
fying syntactic elements of the language as part of the Kómpos protocol. As explained in
Section 5.3, use the notion of PSI elements from IntelliJ to identify syntactic elements of
the language in the frontend, e.g., the asynchronous operators and primitives that return
promises. Once we have the source section information for the breakpoint definition, we

2https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/debug/Breakpoint.html
3Abstract base class for all Truffle nodes, https://www.graalvm.org/truffle/javadoc/com/oracle/

truffle/api/nodes/Node.html

122

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/Node.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/Node.html

6.1. APGAR BACKEND (MEDEOR), DEBUGGING SUPPORT IN
SOMNS

send it to the backend (see Section 6.2). In what follows, we describe the implementa-
tion strategies for the each of the breakpoints of the catalog based on the breakpoint
categories.

Name Category Strategy Syntactic tag Node
message sender truffle-based before execution

of expression
nodes

Expression
Breakpoint

SendNode

asynchronous be-
fore

truffle-based before the ex-
ecution of root
nodes which
are instances of
ReceivedRootNode

RootTag ReceivedRootNode

asynchronous af-
ter

truffle-based after the exe-
cution of root
nodes instance of
ReceivedRootNode

RootTag ReceivedRootNode

message receiver wrapper nodes before the execu-
tion of the next
root node + flag
on message

RootTag ReceivedRootNode

message promise
resolver

wrapper nodes after the execu-
tion of the next
root node + flag
on message

RootTag ReceivedRootNode

message promise
resolution

wrapper nodes before the execu-
tion of the next
root node + flag
on promise + flag
on message

RootTag ReceivedRootNode

Table 6.1: Implementation strategies for message-oriented breakpoints.

6.1.1.1 Breakpoints Managed Directly by Truffle Debug API

As can be seen in Table 6.1 we have three breakpoints in the category of breakpoints
managed directly by the Truffle Debug API. In general, the implementation strategy
consists of specifying the syntactic tag that marks the node in which we want to halt,
and the suspended position, i.e., before or after the node execution. In the following we
describe the implementation for each breakpoint in the Truffle-based category4.

• Message sender: This breakpoint will halt before the execution of the node an-
notated with the tag ExpressionBreakpoint 5 for the given source section. This

4The classes ReceivedRootNode, EventualMessage, EventualSendNode, SPromise,
RegisterOnPromiseNode, PromisePrims, ResolveNode, AbstractPromiseResolutionNode are available
at https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/interpreter/actors/

5SOMns implements different syntactic tags in https://github.com/ctrlpz/SOMns/blob/somns-
intellij-4.5/src/tools/concurrency/Tags.java

123

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/interpreter/actors/
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/tools/concurrency/Tags.java
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/tools/concurrency/Tags.java

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

tag marks an expression that can be the target of a breakpoint. In SOMns a node
annotated with this tag is the asynchronous send operator <-: which is an instance
of the SendNode (see step 1 and 1a in Figure 4.6).

• Asynchronous before: The debugger will pause the execution before the node an-
notated with the tag RootTag in the given source section. This tag marks pro-
gram locations as the root of a function, method, or closure. Besides, a condi-
tion is declared to validate that the current evaluated root node is an instance of
ReceivedRootNode, which represents the receiver node of the asynchronous mes-
sage send (see step 3 in Figure 4.7).

• Asynchronous after: The debugger will pause the execution after the node exe-
cuted with tag RootTag in the selected source section. The difference with the
asynchronous before breakpoint is that we specified here as suspended position
after execution, instead of the before execution position. This breakpoint reuses
the same condition that the previous breakpoint to guarantee that the halted node
corresponds to an asynchronously sent message.

6.1.1.2 Breakpoints managed by SOMns implementation (with wrapper nodes)

The last three breakpoints in Table 6.1 were implemented using wrapper nodes. Their
implementation strategy can be generalized in the following steps:

1. When a message is created in the interpreter we ask the wrapper node (i.e., an
instance of AbstractBreakpointNode class) declared as child of the SendNode if
the breakpoint state is enabled or not.

2. With the breakpoint state we update the corresponding flag on the message (i.e.,
on EventualMessage or on PromiseMessage).

3. When the actor is about to process the message (i.e., TracingActor see Sec-
tion 6.1.3) we checked the flags on the message and then instruct the debugger
(i.e., WebDebugger) to proceed to execute the breakpoint.

Here we describe the detailed implementation for each breakpoint in the wrapper
nodes category.

• Message receiver: For this breakpoint we use the step next stepping strategy, that
we implement in the SteppingStrategy6 class of Truffle Debug API, which consists
in halting before the execution of the next root node annotated with the RootTag
tag. The EventualMessage class contains a flag named haltOnReceive, which
is enabled to true when this breakpoint is set in the asynchronous operator. In

6https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.
oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java

124

https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java
https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java

6.1. APGAR BACKEND (MEDEOR), DEBUGGING SUPPORT IN
SOMNS

the implementation of the class SendNode corresponding to the operator, we have
declared a child node of type AbstractBreakpointNode which handles the state of
enabled or disabled. When an actor is about to process a new message from the
mailbox, it checks if the message has the haltOnReceive flag enabled. The halting
position in the AST is equivalent to the asynchronous before breakpoint (see step
3 in Figure 4.7).

• Message promise resolver: For this breakpoint we use the same stepping strategy
as the previous breakpoint, but specifying that we want to halt after, instead of
before the next root node is executed. The EventualMessage class contains a flag
named haltOnResolver, which is enabled to true when this breakpoint is defined
in the asynchronous operator. Like the previous breakpoint, we declared a child
node of type AbstractBreakpointNode in the message which handles the state of
enable or disable when the breakpoint has been defined in the asynchronous send
operator. The flag is checked in the ReceivedRootNode class, when this node is
about to execute the body of the method (see step 3 in Figure 4.7). There we
communicate to the debugger that should do the halt after the execution of the
next root node. The halting position in the AST is equivalent to the asynchronous
after breakpoint.

• Message promise resolution: This breakpoint reuses the implementation for the
message receiver breakpoint. In the class corresponding to the promise object
SPromise we declared a flag haltOnResolution. This flag is verified when schedul-
ing the callbacks for the promise, just after the promise has been resolved, i.e., in
RegisterOnPromiseNode node (see step 1b in Figure 4.6). If it is enabled, then
a message receiver breakpoint is activated enabling the haltOnReceive flag in the
message. This message corresponds to the PromiseMessage 7, and it will halt be-
fore it is processed by its receiver actor, which is the sender actor of the original
message that was sent.

As explained in Section 4.4.2 the SOMns language considers that promises can be
resolved in three ways: normal resolution, null resolution and chained resolution. So
far we described message promise resolution breakpoints for normal resolution on the
asynchronous send operator. We now detail how we handle the other two cases.

• If the promise has a null resolution, the promise has been optimized out because the
return value is not used. This means that there is no value for its resolution, and
then a promise resolution breakpoint cannot be defined at the frontend. However,
a promise resolver breakpoint can be defined for this case.

• If the promise that has the promise resolution breakpoint is chained to another
promise, the flag haltOnResolution is enabled for that other promise, i.e., the

7The promise message can be a PromiseSendMessage or a PromiseCallbackMessage (see Sec-
tion 4.4.2).

125

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

promise to be resolved. This is implemented in AbstractPromiseResolutionNode
class (see step 4 in Figure 4.7, instead of resolvePromise() method is called
chainedPromise()). A promise resolver breakpoint will halt execution after the
next executed root node.

We now turn our attention to how to deal with resolved and unresolved promises.
If the promise is unresolved, the message sent is registered in the promise, and after it
is scheduled in the actor. If the promise is resolved, the message is directly scheduled
in the actor. For triggering the breakpoint in this case, it was implemented in the
RegisterOnPromiseNode class, updating the flag of the message receiver breakpoint in
the message PromiseSendMessage just before it is scheduled in the actor.

We now describe particular considerations to implement breakpoints on explicit promises
and on promises returned with the message whenResolved message.

Considerations for explicit promises For explicit promises created with createPro-
misePair message we did a similar implementation as for the asynchronous send operator.
The class CreatePromisePairPrim8 contains two child nodes of type AbstractBreakpoint-
Node to handle the activation, one for the resolver breakpoint and one for the resolution
breakpoint. The class ResolveNode implements the wrapper node for the case when the
promise is resolved with a non-promise value. Here we distinguish the explicit promises
to ask directly to the promise if a promise resolver or a promise resolution breakpoint
was set. For triggering the promise resolver breakpoint a wrapper node is executed
(haltNode). This one will do the suspension just before the resolve: primitive is exe-
cuted. The value returned by the wrapper node for the promise resolution breakpoint,
will be propagated when registering the callbacks for the promise, in the SPromise class,
where its value is verified, i.e., haltOnResolution flag. If that flag is true, then the
interpreter will enable a message receiver breakpoint to halt before the callbacks are
executed. This means that if a promise has registered more than one callback (i.e., an
asynchronous message send to a promise or more than one whenResolved message), a
promise resolution breakpoint pauses the program’s execution before each of the callbacks
is executed.

Considerations for promises returned with whenResolved Promises returned with
the message whenResolved follow a similar implementation as for createPromisePair
message. WhenResolvedPrim9 class is similar to CreatePromisePairPrim class because
contains wrapper nodes for the promises breakpoints, which in this case can be defined on
the promise returned by the whenResolved. When the promise is created, the wrapper

8https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/
PromisePrims.java

9Implementation of classes WhenResolvedPrim, WhenResolvedOnErrorPrim, OnErrorPrim are avail-
able at https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/
PromisePrims.java

126

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/PromisePrims.java
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/PromisePrims.java
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/PromisePrims.java
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/som/primitives/actors/PromisePrims.java

6.1. APGAR BACKEND (MEDEOR), DEBUGGING SUPPORT IN
SOMNS

nodes update the flags in the SPromise class, and then the message is scheduled in
the actor. A similar implementation was done for the messages whenResolvedOnError
and onError. We declared wrapper nodes for the promises breakpoints in the classes
WhenResolvedOnErrorPrim and OnErrorPrim, respectively.

6.1.2 Message Stepping

For each stepping operation received in the debugger backend, we implemented a stepping
strategy (see SteppingType class Figure D.2). This strategy consists of the actions of
the sender and the receiver actor of the suspended message for the stepping operations
depicted in Table 5.5.

As we described in Section 5.1.2 stepping operations follow the program’s execution
between various breakpoints. Then, stepping operations in the category of messages and
promises have the same semantics of their corresponding breakpoint and thus can reuse
their implementation directly. However, this is not the case for stepping operations that
goes beyond the boundaries of the current turn, i.e., that halt the actor’s execution in
a different turn. Even more, when the program’s execution is suspended inside a turn,
if we would like to resume until the end of that turn, we need to consider different
cases of implementation to halt in that location. Thus, we distinguish two categories for
the stepping according to the place where the stepping strategy for the current actor is
implemented in the backend:

Stepping operations managed directly by a breakpoint This case is applied to
stepping operations defined for messages and promises. Stepping operations in
this category handle the halting of the actor reusing the wrapper node of its corre-
sponding breakpoint.

Stepping operations managed in the Suspension class This case is applied to step-
ping operations in the category of turns. In this case of enabling the halting in the
desired turn (also using the wrapper node of the corresponding breakpoint), we
need additional flags and check the received stepping strategy in the Suspension
class.

In Table 6.2 we summarize the stepping strategies we followed for the implementation
of each stepping operation. Column name refers to the name of the stepping operation
(as designed in Table 5.5). Column category refers to our categorization according to
the implementation for the stepping operations. Column strategy describes the halting
strategy we implemented for that stepping command. Finally, column breakpoint, relates
a stepping operation with its equivalent breakpoint(s) regarding its halting semantics.

127

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

Name Category Strategy Breakpoint
step to message
receiver

managed directly
by wrapper node

before the execu-
tion of the next
root node + flag
on message

message receiver

step to promise
resolver

managed directly
by wrapper node

after the execu-
tion of the next
root node + flag
on message

promise resolver

step promise reso-
lution

managed directly
by wrapper node

before the execu-
tion of the next
root node + flag
on promise + flag
on message

promise resolu-
tion

return from turn
to promise resolu-
tion

managed in
Suspension class

before the execu-
tion of the next
root node + flag
on promise + flag
on message

promise resolu-
tion

step next turn managed in
Suspension class

before the execu-
tion of the next
root node + flag
in the actor

message receiver

step end turn managed in
Suspension class

after the execu-
tion of the next
root node in that
turn

asynchronous af-
ter or promise re-
solver

Table 6.2: Implementation strategies for stepping operations.

6.1.2.1 Stepping Operations Managed Directly by a Breakpoint

As we can observe in Table 6.2 the three first stepping operations are grouped in the
category of managed directly by a wrapper node. The general stepping strategy consists
of the following steps:

1. When a stepping command is received in the debugger backend (i.e., through a
StepMessage of the Kómpos protocol), the thread for the current actor is updated
with the selected stepping strategy.

2. Afterwards, the debugger backend resumes execution.

3. The wrapper node of the equivalent breakpoint is updated with the stepping strat-
egy information of the current actor, in the BreakpointNode class. If the corre-
sponding breakpoint has the stepping strategy enable, i.e., due to a stepping oper-
ation received from the debugger frontend, the breakpoint is enabled, otherwise is
disabled (unless an explicit breakpoint has been set previously).

128

6.1. APGAR BACKEND (MEDEOR), DEBUGGING SUPPORT IN
SOMNS

Following the described strategy, when a step to message receiver is defined in the
frontend, a message receiver breakpoint is enabled for the selected message. Similarly,
a promise resolver breakpoint is enabled for a step to promise resolver, and a promise
resolution breakpoint for a step to promise resolution.

6.1.2.2 Stepping Operations Managed in the Suspension class

The general strategy for the last three stepping operations of Table 6.2 adds a new step
in the strategy described for the stepping operations managed directly by a breakpoint.
More concretely, between step 2 and step 3, once the debugger backend resumes execu-
tion, we check in the Suspension class the next task received from the debugger frontend.
We have different implementation strategies if the stepping operation has been defined
on the level of the current (or a different) turn. In what follows, we describe each case
in detail.

• Return from turn to future resolution: when this stepping command is re-
quested to the backend, we need to enable the flag haltOnResolution for the
promise corresponding to the current processing turn, i.e., for the promise returned
by the message of the current turn 10. Consequently, when the actor processes the
message corresponding to the callback of the promise of the turn, it will check the
flag haltOnResolution of the promise, i.e., in TracingActors class. Then, if true,
the debugger will halt the program’s execution before executing the next root node,
i.e., the root node corresponding to the callback of that promise.

• Step to next turn: when this stepping command is enabled, the value for the
stepToNextTurn flag declared in the TracingActors class is updated to true. In
this case, if the flag is true, we invoke the stepping until next root node strategy,
similarly as for a message receiver breakpoint. Then, the debugger will halt the
program’s execution before executing the next root node, i.e., before the execution
of the next message in the actor’s mailbox.

• Step to end turn: if the actor suspended has defined this stepping strategy, we
need the information of the current executing turn, the node suspended, and the
stack frames corresponding to the suspension. This information is needed for the
different cases in which this stepping command can be defined, for example:

1. at the beginning of a turn

2. from a node declared inside a turn

3. from a synchronous call

4. from inside a block
10A promise resolution breakpoint is different because it halts at the resolution of a promise that

belongs to a message that is sent inside a turn

129

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

In the implementation, using the mentioned information, the debugger runs until
the next root node and checks if the source section corresponding to that node
matches the source section of the turn where the suspended node belongs. If that
is the case, then the debugger will halt execution after the root node is executed,
i.e., before returning the result value 11.

Table 6.3 shows code examples for each variant where the step to end turn can
be defined. For the example scenario of beginning of a turn we consider that the
InstantMessenger actor is first paused due to a message receiver breakpoint in Line 44
in Appendix C.2. Then the stepping end to turn is executed. For the case of a node
declared inside a turn, we start from the previous scenario with message receiver break-
point in Line 44, and we define a step over command. Then the stepping end to turn is
executed. We consider a program paused in a a synchronous call, for example, due to a
line breakpoint in Line 53, which is called synchronously in Line 85, then we step end
turn. Also, we can step end turn if the program is paused inside a block, for example,
due to a promise resolution breakpoint in Line 60.

Step to end turn from
Halt before step Halt after step

Sender Receiver

beginning of a turn ln: 82, cn: 7, cl: 131 Platform resume
InstantMessenger
ln: 87, cn: 11, cl: 131

a node declared
inside a turn

ln: 82, cn: 7, cl: 29 Platform resume
InstantMessenger
ln: 87, cn: 11, cl: 131

a synchronous call ln: 53, cn: 34, cl: 7 Platform resume
InstantMessenger
ln: 87, cn: 11, cl: 131

inside a block ln: 62, cn: 9, cl: 303 Platform resume
InstantMessenger
ln: 70, cn: 45, cl: 303

Table 6.3: Step end turn examples from Appendix C.2.

From the described strategies in Table 6.2 we can observe that a return from turn to
promise resolution is similar to define a promise resolution breakpoint, but for a different
turn. The semantics for the step next turn operation is similar to the message receiver
breakpoint, but also for a different turn. Finally, in the case of a step end turn the halting
semantics is similar to a promise resolver or an asynchronous after breakpoint, but the
implementation strategy is different in this case.

In short, we summarize the five stepping strategies for implementing breakpoint and
stepping:

• halting before the execution of the next root node

• halting before the execution of the next root node with a condition
11The implementation of the stepping strategy for this command can be found in https:

//github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.
api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java

130

https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java
https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java
https://github.com/ctrlpz/truffle/blob/debugger/step-end-turn/truffle/src/com.oracle.truffle.api.debug/src/com/oracle/truffle/api/debug/SteppingStrategy.java

6.1. APGAR BACKEND (MEDEOR), DEBUGGING SUPPORT IN
SOMNS

• halting after the execution of the next root node

• halting before the execution of expression nodes

• halting after the execution of the next root node in a turn

6.1.3 Trace-based Visualizations

As we mentioned in Section 5.1.3, we use the trace information from the Kómpos protocol
(see Figure 5.14) to visualize the actor state and message causality information in Apgar
frontend (see Section 6.2).

The trace events are encoded in binary format using thread-local buffers [LBM15] and
considers actors being executed in different threads [AMB+18]. The recording approach
uses subtraces to record the different events per actor. New subtraces are started when
an actor starts executing or when a buffer becomes full. Subtraces are ordered by a
bufferId and actorId, because events of one actor can be recorded by different threads.
When buffers are full, they are swapped to minimize runtime overhead. In Medeor, the
trace events are written in buffers and afterward to a file. In this work, we do not parse
the file, but we read the information directly from the buffers, which are sent to the
frontend.

KomposTrace is the implementation class in Medeor that records the trace events,
i.e., the start of subtraces, the creation, and completion of actors, the start and end of
dynamic scopes (i.e., turns), the creation of passive entities (i.e., messages and promises),
sending operations (e.g., a message send and a resolution of a promise). As we mentioned
in Section 5.3, we added in this class support for recording the received messages by each
actor in order, which was not present in the original version of the Kómpos protocol.
In particular, we use the notion of messages received by the actor to guarantee that the
order of messages visualized in the mailbox corresponds to the messages that will be
executed by the actor, i.e., messages are shown in order of arrival. To this end, we record
message reception at two points in the Actor class in the debugger backend, i.e., when
the actor appends the received message in its mailbox, and when the actor is about to
process the messages of its mailbox. We need both recordings because the actor can be
paused and still receive messages.

Appendix D.1.3 describes the implementation of the trace events in the SOMns inter-
preter needed to implement the visualizations for the actor state and message causality
at the frontend. In the next section, we focus our attention on the strategy to implement
asynchronous stack traces.

6.1.4 Asynchronous Stack Trace

Thanks to the Truffle Debug API, SOMns features a traditional synchronous stack,
which consists of frames returned by the method SuspendedEvent.getStackFrames().

131

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

The SuspendedEvent class is located in the Truffle Debug API, and it describes the
suspended thread’s location in the guest language code.

We extended the sequential stack with information needed to trace asynchronous
interactions. The implementation we present here12 builds on an initial version of an
asynchronous stack implemented by Dr. Clement Bera13. Appendix D.1.4 shows the
main classes related to asynchronous stack trace support. An asynchronous stack consists
of a list of frames of different types:

1. an entry created when an asynchronous message is sent (EntryAtMessageSend
class).

2. an entry created when a promise is resolved (EntryForPromiseResolution class).

3. an entry for method activations (ShadowStackEntry class).

The overall idea is to traverse the runtime stack and manage the different kinds of
entries. If the stack trace frame corresponds to an asynchronous message send or an entry
related to promise resolution we employ the first frame and then rely on the shadow stack
to get the next stack entries.

To get the control flow frames, we followed the implementation strategy of instrument-
ing the place where an asynchronous message is sent <-:, in the EventualSendNode class.
Specifically, before returning the arguments for the node execution, in the InternalOb-
jectArrayNode class.

To get the data flow frames, we consider instrument eight different places in the inter-
preter. Table 6.4 shows a summary of the class locations in the interpreter that we need
to instrument to get all the entries for the asynchronous stack. Because promise callbacks
have different stack traces, due to the asynchronous nature of the program, we need to
causally related these traces. This implementation is located in the EventualMessage
class. Specifically, we saved the entries for the promise resolution in two places:

• at the resolution of a promise to which an eventual message was sent, in the
AbstractPromiseSendMessage class. There, we concatenated the entries of the
promise that has been resolved, with the entry of the message sent to this promise,
i.e., which is a callback of the promise.

• at the resolution of a promise, that has a callback registered with the whenResolved
message, in the class AbstractPromiseCallbackMessage. There, we concatenated
the promise resolution stack entries corresponding to the promise to which this
callback is registered on.

12https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/tools/debugger/
asyncstacktraces/

13https://github.com/clementbera/SOMns/tree/AsyncStackTraceStructureFromDev

132

https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/tools/debugger/asyncstacktraces/
https://github.com/ctrlpz/SOMns/blob/somns-intellij-4.5/src/tools/debugger/asyncstacktraces/
https://github.com/clementbera/SOMns/tree/AsyncStackTraceStructureFromDev

6.2. APGAR FRONTEND, AN INTELLIJ PLUGIN

Entry type class Node class Description

EntryAtMessageSend InternalObjectArrayNode
entry for asynchronous
message send

EntryForPromiseResolution

ResolvedNode resolved with a value
ErrorNode resolved with an error
SResolver resolved with a promise
ReceivedCallback on whenResolved block
RegisterWhenResolved on whenResolved message

RegisterOnError
on whenResolved
error message

ReceivedMessage on receive message
SchedulePromiseHandlerNode on schedule promise

ShadowStackEntry

IntToByDoMessageNode loop message to:do:
DoPrim array message do:
DoIndexesPrim array message doIndexes:
BlockPrims block closures
TimerPrim message actorDo:after:
CreatePromisePairPrim message createPromisePair

ExceptionsPrims
message exceptionDo:
catch:onException:

AbstractGenericDispatchNode method activations

Table 6.4: Main nodes instrumented in SOMns to create entries for the asynchronous
stack trace.

6.2 Apgar Frontend, an IntelliJ Plugin

In this section, we will describe the main elements of the debugger frontend implemen-
tation and its interaction with Medeor, the debugging support in the backend.

6.2.1 A Custom Language Support Plugin

The debugger frontend is implemented in a plugin for SOMns14 in the IntelliJ IDE. The
IntelliJ Platform provides APIs to build common IDE functionality, such as a project
model and a build system. This platform also provides an infrastructure for debugging
with language-agnostic advanced breakpoint support, call stacks, watch windows, and
expression evaluation. Appendix D.2 shows the main classes of the plugin implementa-
tion. We used the program structure interface (PSI) support that the IntelliJ platform
provides to parse the SOMns program files. We have implemented a grammar in BNF
language that supports SOMns classes, methods, and expressions declarations. The fol-
lowing sections explain how we use the data for showing actor state and message causality.
Appendix D.3 shows the three main interactions between backend and frontend by means
of sequence diagrams.

14Our plugin for SOMns language is publicly available at https://plugins.jetbrains.com/plugin/
13213-somns.

133

https://plugins.jetbrains.com/plugin/13213-somns
https://plugins.jetbrains.com/plugin/13213-somns

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

6.2.1.1 Actor State Inspection

As we can observe in Figure D.4 the TraceParser is the main class that handles the
trace data that is sent from the debugger backend to the frontend. After parsing the
trace data15 that the frontend receives from the backend, it updates the actors’ view and
mailbox with new data.

The actors view loads all the actors created by the program, i.e., parsing the Activity-
Creation event. The view updates the state of running or paused for an actor using
the debugger messages from the Kómpos protocol, i.e., when the frontend receives a
StoppedMessage from the backend. This is the case when an actor is paused explicitly
in the frontend (with a button) or when an actor is paused due to a breakpoint or a
stepping operation.

In the mailbox view the frontend shows the current processing message of the paused
actor and other messages that the actor has received. For this, the frontend needs to parse
the different events generated and sent for the backend (see Section 6.1.3). In particu-
lar the frontend uses data parsed from the events SendOperation, MessageReception,
PassiveEntityCreation and ScopeStart. In the next section, we explain how the fron-
tend obtains the turn information from the trace data.

From the StackTraceResponse debugger message the frontend obtains a message
identifier that is needed to visualize the current processing message in the mailbox of
the paused actor. The mailbox distinguishes messages sent to far references and sent to
promises. The messages shown in the mailbox correspond to messages not yet executed
by the actor, then our implementation class of the mailbox view searches in the trace
data for messages which receiver is the paused actor. If the message has been sent to
a far reference, the mailbox class in the frontend asks the identifier of the actor to the
SendOperation directly, i.e., the targetId. If the message has been sent to a promise,
we do not have the information of the target actor that will resolve the promise until it
is resolved, then the frontend needs to wait for the send operation corresponding to that
promise resolution. Therefore, the mailbox class in the frontend asks the creation activity
of the resolution, which indicates the actor that resolved the promise16 and the mailbox
class checks if this actor matches with the pausing actor. For example in Listing 6.1,
Line 8 the eventual message computePerimeter is sent to c, which is a promise for
a new instance of a Calculator actor. This way when the frontend visualizes in the
mailbox the computePerimeter message the mailbox view can show its target promise
(see Figure 5.8).

15By parsing the trace we refer to parse the trace data, i.e., a ByteBuffer, we receive from the backend
using the Kómpos protocol.

16A promise is resolved with a value, an error or can be chained to another promise, that can be seen
in the properties state and value of the promise in the mailbox.

134

6.2. APGAR FRONTEND, AN INTELLIJ PLUGIN

1 calculators doIndexes: [:i |
2 | c |
3 c:: (actors createActorFromValue: Calculator) <-: new: i math: math.
4 calculators at: i put: c
5].
6

7 calculators do: [:c |
8 c <-: computePerimeter whenResolved :[:p |
9 counter :: counter + 1.

10 counter = numberStudents
11 ifTrue: [
12 completionPP resolve: true.
13].
14].
15].

Listing 6.1: Code snippet that shows a message sent to a promise (from Appendix C.3).

6.2.1.2 Message Causality

To obtain the happened-before relationship between messages, the frontend needs infor-
mation about the turn in which a message was sent. The frontend obtains this infor-
mation parsing the trace events, in particular, from the ScopeStart event. However, we
have one problem we needed to consider in the implementation.

When the debugger frontend requests trace data to the debugger backend, the buffers
where the trace events are saved are forcibly swapped, and this can happen in the middle
of a turn, which can cause that the remaining events of a turn are recorded in a different
buffer. For example, in Listing 6.2 we can see a representation of events for the same
actor’s turn recorded in different buffers.

[Thread 2][Buffer 0][Activity 1][Turn 1][turn 1 events] ...
[Thread 2][Buffer 1][Activity 2][Turn 3][Activity 1] [remaining turn 1

events]

Listing 6.2: Representation of events for the same actor’s turn recorded in different
buffers.

The three dots (...) means the buffers have been swapped when executing the events
of Turn 1 of Activity 1. We expect the threads where the buffers are executed are the
same, because actors cannot switch threads in the middle of a turn, i.e., the remaining
events of Turn 1 should be on the same thread (Thread 2)17.

17We do not consider using the thread ids for our solution to the problem because we have observed
trace outputs were the threads ids are different for the previous example. Further research needs to be
conducted here to find the cause of when the threads are blocked, the thread pool does not behave as
expected.

135

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

In short, we can observe in the Kómpos trace the following problem: when recording
the actor’s events in the trace, it can happen that a turn may be open in one buffer, and
its events are executed in another buffer. Besides, together with the swapping problem,
it can happen that buffers may be written out of chronological order from the perspective
of an actor because an actor can be executed on different threads over time [AMB+18].

To solve the problem related to the turn’s events divided between different buffers, we
implemented the trace parser in the frontend to use the buffer identifiers to reorder the
events and get the correct turn identifier, i.e., the id of the causal message for the current
processing events. This message id is declared in the Kómpos protocol as scopeId of
the ScopeStart event, which is saved in the frontend in the variable currentTurn of the
TraceParser class. The events an actor processes in a turn are activity creations, send
operations, message receptions, and passive entity creations.

Therefore, to get the correct turn data information for the recorded actor’s events, we
declared a sorted map in our TraceParser class, i.e., eventsByActor in Figure D.4, to
keep all events ordered by actorId and bufferId. The sorted map data structure grows
incrementally with each new information received from the backend. This data structure
is initialized for each new debugging session. Every time an event is parsed from the
trace, the trace parser saves the corresponding actorId and bufferId. This is possible
because when the buffers are swapped, the current activity is recorded in the trace using
a designed marker, i.e., the ImplThreadCurrentActivity event in figure 5.14.

Then, after parsing all the events of the trace received in the frontend, the trace parser
resolves the turns for each event. There can be multiple turns opened in one buffer, but
only one turn open by actor because actors processed one message at a time. We save
the open turns by actor in a map, every time an event ScopeStart is received. Then,
when an event such as ActivityCreation, PassiveEntityCreation, MessageReception
and SendOperation are received, the frontend queries the map of open turns, to get the
turn where this event was created, i.e., the causal turn. When the trace parser parses
the event ScopeEnd, we remove the turn from the map of open turns, for the current
bufferId.

6.2.1.3 Asynchronous Stack Trace

As mentioned in Section 6.1.4 in Medeor we implemented support for asynchronous
stack traces. Our debugger frontend receives the stack trace information through the
debugger message StackTraceResponse of the Kómpos protocol. There, we added the
flag asyncStack, which indicates that the data received corresponds to the asynchronous
stack instead of the traditional stack. With the flag information, the frontend updates
the rendering our the stack trace that is visualized in the Frames view and the available
variables in the Variables view. We build our stack trace in the frontend thanks to the
classes provided by IntelliJ Debug API, e.g., XExecutionStack and XStackFrame.

136

6.3. CONCLUSION

6.3 Conclusion

In this chapter, we described the implementation of online debugging techniques for the
SOMns language. We have added support for debugging concurrent concepts such as
actors, promises, messages, and turns by implementing several breakpoints and stepping
operations on top of the Truffle instrumentation and debugger API. The strategy of
instrumenting nodes of the AST allows define breakpoints on the node instead of the line
numbers, as usually done by traditional online debuggers. The combination of sequential
and asynchronous stepping enables developers to inspect the actor messages at different
interesting locations, which has not been available until this work.

Besides, extending the Kómpos trace implementation allows us to include data events
relevant to enable actor state inspection and show message causality information in our
tool. Moreover, the asynchronous stack trace’s work can enable developers to see not
only method activations but to visualize entry points for asynchronous message send and
promise resolution.

At the frontend side, the IntelliJ platform offers flexible APIs to integrate custom lan-
guage functionalities in a plugin. The interaction between the frontend and the backend
is made straightforward thanks to the Kómpos protocol, which provides the necessary
debugging messages and events for visualization. We think the implementation of an on-
line debugger presented here can be used as guidance to provide advanced tool support
for other actor languages. Our next step is to evaluate the online debugging features
proposed in this dissertation in an experimental study.

137

CHAPTER 6. IMPLEMENTATION OF ONLINE DEBUGGING
TECHNIQUES FOR SOMNS

138

Chapter 7

Evaluation of Online Debugging
Techniques for Actor-based
Programs

In the literature of debugging techniques, two common approaches have been employed
to validate debugging operations: user studies and formal specifications. User stud-
ies [SM16, GBNDM14, PSTH16, KM08, LSX+17] mainly focus on evaluating usability
and effectiveness of the approach, e.g., giving participants debugging assignments and
measure their success, time, and perception of the tool. On the other hand, formal-
ization of debugging techniques has been used to prove correctness when identifying
problematic states in a program [LC06] and to analyze issues in concurrent programs
[LLL14, CMMRT18, VMV17].

In this dissertation, we employed both approaches. In particular, in this chapter,
we describe a user study we conducted to evaluate the online debugging techniques we
proposed for actor-based programs and implemented for the SOMns language. The study
aims to know if the debugging techniques help identify the root cause of concurrency bugs
and understand an actor-based program behavior. In the next chapter, we make use of
formal specifications.

We now describe the user study conducted with Apgar based on a mixed methods
research design approach [CC17]. We will conduct quantitative (QUAN) and qualitative
(qual) studies sequentially, first the quantitative and later the qualitative. This is called
a QUAN → qual design [CJT15]. Subsequently, we explain our findings and threats to
validity in our experiment.

7.1 Design of the User Study

Our goal is to study the effect that has on developers the use of the advanced debugging
techniques we proposed in Chapter 5. This section explains our research design selection

139

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

and how we apply it to the proposed experimental conditions. Besides, we mention the
main elements we consider to formulate our research hypothesis about the proposed online
debugging techniques for actor-based programs, i.e., research problem and variables to
analyze.

7.1.1 A Mixed Methods Experimental Research Design

Our experimental study measures as independent variable our novel debugging techniques,
and as a dependent variable, the time developers spend solving the debugging assign-
ments. To this end, we use a mixed methods experimental design [CC17]. First,
we will conduct a quantitative study to measure the time taken by participants when
solving debugging assignments in SOMns. Then, we will conduct a qualitative study
to measure developers’ perception of our debugging techniques. This design allows re-
searchers to embedded qualitative data in a quantitative experiment, before, during, or
after the experiment. We now detail the designs we used for quantitative and qualitative
studies.

A quantitative research study is based on collecting numerical data to answer a re-
search question [CJT15]. A quantitative research study can be classified as experimental
and nonexperimental. Experimental research is the best type of quantitative research for
demonstrating cause-and-effect relationships, where the researcher can actively manipu-
late the independent variable (IV). For example, in the relationship between debugging
techniques and identifying the root cause of concurrency bugs, the IV is the debugging
techniques, and the dependent variable (DV) is identifying the root cause of concurrency
bugs. The levels of manipulation of IV have been referred to as treatment or experimental
conditions. For instance, one level of manipulation of the IV in our example is the use
of advanced debugging techniques, whereas another level is the control condition of tra-
ditional debugging techniques. In nonexperimental quantitative research, the researcher
is not able to manipulate the independent variable. In this work, we will conduct an
experimental quantitative study.

Christensen et al. mention three groups of experimental research design: Weak,
Quasi, and Strong [CJT15]. We adopt a strong experimental design because they
have greater internal validity than weak or quasi-experiments, this means that the effect
of the independent variable on the dependent variable can be isolated and tested. Besides,
strong designs allow controlling all possible extraneous variables using random assignment
of participants. Strong experimental designs can be further classified in four design
categories [CJT15] [CS63] [SCC01]:

• Between participants (posttest-only control group design): this research design con-
sists of participants randomly assigned to two groups. The groups are exposed to
different levels of the independent variable, and afterward, a posttest is adminis-
tered. A control group is a research group in which participants do not receive the
active level of the independent variable. A treatment group is a research group in

140

7.1. DESIGN OF THE USER STUDY

which participants receive some level of the independent variable that is intended
to produce an effect. Hence, this design addresses two experimental conditions at
the same time, but each group performs only one experimental condition.

• Within participants (within posttest only design): this research design uses one
group in which all participants are exposed to each experimental condition. After
each experimental condition is administered, a posttest is applied. Participants
need to do all experiments sequentially.

• Mixed (pretest-posttest control group design): this research design is a combina-
tion of a between-subjects and within-subjects design, in which participants are
randomly assigned to two groups, then a pretest is administered, and later the
treatment conditions are executed. Finally, a posttest is administered. In litera-
ture about research methods [SCC01, CJT15], it has been recommended to include
pretests to the basic randomized design.

• Factorial: this research design studies more than one independent variable. A
factorial design can be based on each of the (three) other variants. This design
requires a more significant number of research participants 1. Consequently, it
presents a greater difficulty to manipulate different independent variables.

In this work, we used a between participants design because it allows measuring
the effect of having the advanced debugging techniques for actor-based programs com-
pared to a control condition in which only traditional debugging techniques are provided
to the participants. We do not include a pretest in our experiment because we can only
quantify our dependent variable at posttest, i.e., the time in which participants solve the
debugging assignments. In literature, other debugging studies have also used the same
design [KM10, SM16, XBLL16, LSX+17].

Thus, in our between participants design, we expose the participants to two experi-
mental conditions:

1. Solve debugging assignments using traditional debugging techniques (i.e., line break-
points, sequential stepping, variables state visualization).

2. Solve debugging assignments using the proposed debugging techniques for actor-
based programs (i.e., message breakpoints, sequential and message stepping, visu-
alization of causality relations, asynchronous stack, visualization of actor state and
variables).

After the quantitative experiment, we will conduct a qualitative study. A qualitative
research study collects some type of nonnumerical data to answer a research question
[CJT15], e.g., statements or the observed behavior of a person during an interview. A

1E.g., for two independent variables. An arrangement of 4 cells is needed. If each cell requires 15
participants, a total of 60 participants is required.

141

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

qualitative research study is an interpretive research approach that relies on subjective
data to investigate people in particular situations rather than manipulating independent
variables. In our work we want to capture qualitative data after the treatment, i.e.,
after using the debugger, because it can help us explain if the treatment or intervention
(i.e., the advanced debugging techniques) helped developers to find the root cause of
concurrency bugs.

Figure 7.1 gives an overview of the workflow of the overall approach for our mixed
methods experimental design. Before the experiment, we measure participants’ con-
current programming experience, i.e., an expertise score, to create matched groups of
participants, i.e., the control and treatment groups (1). Later, we create the groups
using random assignment of the matched participants (2). Steps 3 and 5 represent the
quantitative study, in which we measure the time participants spend solving the debug-
ging assignments. We perform qualitative measures after the experiment (steps 4, 6,
and 7) to explain and interpret the results of the experiment. In particular, we measure
participants’ perception of the debugging assignments and advanced debugging features
they have seen during the experiment. This design keeps the quantitative and qualitative
studies sequential, and their results separated.

Qualitative question for
creating the groups

Quantitative measure
(Time) for assignment 1

Qualitative questions
about assignment 1

Qualitative questions
about assignment 2

Quantitative measure
(Time) for assignment 2

Qualitative measure
about the experiment

3 4

5 6

7

1

Randomization of the
matched participants

2

Figure 7.1: Mixed methods experimental research design used in our user study.

142

7.1. DESIGN OF THE USER STUDY

Finally, we detail the research hypothesis (i.e., the best prediction or a tentative
solution to a research problem [CJT15]) that our user study aims to investigate. First,
we declare the research problem that motivates our study as:

Do advanced debugging techniques such as message-oriented breakpoints and rich step-
ping with visualizing the causality of messages help developers to identify the cause of
complex concurrency bugs in actor-based programs?

We derived the IV debugging techniques, which represents the cause of the relationship
from our research problem. The effect, which represents our DV, is identifying the cause
of concurrency bugs in actor-based programs. And the treatment condition advanced
debugging techniques we proposed. To measure the effect in our experiment, we declare
as dependent variable the debugging assignment completion time, i.e., the time taken by
participants to solve the debugging assignment. The complex concurrency bugs we refer
here are the ones we classified in section 2.3.

We define now the research hypothesis we aim to investigate as the following:

Hypothesis 1. Advanced debugging techniques such as message-oriented breakpoints and
rich stepping with visualizing the causality of messages help developers to identify the
cause of complex concurrency bugs in actor-based programs.

From the research problem, we derived more hypothesizes to test the proposed ad-
vanced debugging features:

Hypothesis 2. Message breakpoints and stepping operations help to reduce the effort
when searching the root cause of concurrency bugs.

Hypothesis 3. The combination of sequential and message stepping is effective to inspect
actor’s turn.

Hypothesis 4. Visualization of message causality is useful for understanding the pro-
gram while debugging.

Hypothesis 5. The asynchronous stack trace is useful for identifying message ordering
problems.

7.1.2 Experiment Planning

As mentioned before, in a between-participants design, participants are assigned to either
a control or an experimental group. The control group used a traditional online debugger
found in mainstream languages with state inspection features. On the other hand, the
experimental group used Apgar including advanced debugging features for actor-based
programs.

For both groups, we log all debugging operations participants used during the assign-
ments, i.e., the breakpoints and the stepping operations. We obtained 28 participants
that agreed to participate in the study. We conducted the experiment online, supported

143

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

with Zoom and VirtualBox, because it was not possible to enable a computer room at
the university with all participants due to COVID-19 measures.

Potential participants were asked to fill a time slot to randomize them into the two
groups (see details in Section 7.2.1). A maximum of 6 participants was allowed to reserve
a time slot. Participants received a day before the experiment an email with instruc-
tions to download and setup a VirtualBox2 image with the corresponding version of the
debugger, i.e., control or experimental group. Besides the VirtualBox instructions, we
provided participants with a SOMns cheat sheet3 we prepared with a summary of the
language syntax. Table 7.1 details all the activities made during the experiment.

Activity Time (min)
(1) Read code of conduct 1
(2) Screen sharing of the SOMns language tutorial 13
(3) Screen sharing of the Apgar debugger tutorial EG: 9, CG: 3
(4) Debugging exercise in IntelliJ 5
(5) Debugging assignments 60 (max. 80)
(6) Questionnaire 5 (max. 10)
Total estimated 90 (max. 120)

Table 7.1: Experiment planning.

The first activity in the experiment was to read a code of conduct with some rules for
the participants to agree (see Appendix E.1) (activity 1). We prepared two video tutori-
als, one about the SOMns language and a second one about the debugging features that
participants could find in their debugger version (activities 2 and 3). The experimental
and control group had different videos about the debugging features because they were
exposed to different experimental conditions, but both videos had a similar length. After
viewing the video, we did a debugging exercise with the PythagorasCalculator program
to illustrate participants the debugging features they have available in the debugger for
solving the assignments (activity 4). Later, we gave participants the image location of
the file with the assignments to read and perform the experiment (activity 5). Finally,
when each participant completed the two assignments, we gave each participant a link
to fill a questionnaire (activity 6).

We measure time only for the activity of the debugging assignments, i.e., activity
5. Except for activity 3, in which the experimental group’s tutorial was a bit longer
than the control group, both groups had the same timing duration. The experiment was
estimated for 90 minutes approximately. We gave a margin of 120 minutes maximum
for those cases where the number of participants was 5 or 6 because the interaction with

2https://www.virtualbox.org
3See Appendix B. The version to print is available at https://github.com/ctrlpz/somns-sample-

programs/tree/master/docs.

144

https://github.com/ctrlpz/somns-sample-programs/tree/master/docs
https://github.com/ctrlpz/somns-sample-programs/tree/master/docs

7.2. A BETWEEN-SUBJECTS RESEARCH DESIGN

the host took more time in those groups. However, the time limit for the debugging
assignments was the same for all cases.

7.2 A Between-Subjects Research Design

In this section, we describe how we will apply a between-subjects research design to
our study. First, we will explain how we apply the random assignment technique of
participants for creating the groups. Second, we will show the debugging assignments
used in the experiment. And finally, we describe the posttest we conducted to measure
the variables of the study, i.e., the time and participants’ perception about the debugger.

7.2.1 Random Assignment of Matched Participants

As we mentioned before, we define two groups of participants from two experimental
conditions:

1. a control group, which will employ traditional debugging techniques to solve two
debugging assignments.

2. a treatment group, which will use our advanced debugging techniques in Apgar.

Randomization or random assignment to groups has been defined as “a probabilistic
control technique, that equates experimental groups at the start of an experiment on all
extraneous variables, both known or unknown" [CJT15].

When the group of participants is less than 30, there is no complete assurance of the
equivalence between the groups [CJT15]. Christensen et al. advise combining matching
with statistical control along with the randomisation technique, e.g., match pairs of
participants and then randomly assign them to treatment and control groups. One
drawback here is that a survey needs to be done in advance (i.e., before the experiment) to
measure the participants regarding the matching variable. Since we have 28 participants
in our study, we follow Christensen’s advice.

We defined the matching variable as the programming experience of participants in
actor-based programs or concurrent programs in general. We ask each participant their
experiences programming concurrent applications and programming concurrent applica-
tions using actors (e.g., how many years, which concurrency models or actor variants).
With the participants’ answers, we gave a score in the range of 0 to 3 to each partici-
pant. The 0 value represents a null programming experience in developing concurrent
applications, 1 represents beginner, 2 represents intermediate and 3 advanced. We then
create the groups as follow:

1. Order participants according to the matching variable. E.g., rank all participants
from lowest to highest programming experience in developing concurrent programs.

145

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

2. Match participants for the matching variable. E.g., the two participants with the
lowest score are the first set (two, because we have two treatment groups).

3. Assign randomly each individual of the set to one of the treatment groups. For the
random assignment, we extended a table of random numbers from [CJT15] for our
28 participants. Appendix E.2 details the randomization steps based on a table of
random numbers.

4. Repeat the previous step until the set of participants with the highest score is
randomly assigned to the groups.

7.2.2 Debugging Assignments

Appendix E.3 shows the two debugging assignments used in the experiment. In assign-
ment 1, we employ Acme Air booking system implementation in SOMns [AMB+18] where
we injected a message order violation bug (see Section 2.3.2.1). In assignment 2, partici-
pants use an order purchase similar to the one found in literature [SCM09, GBNDM14],
which contains a behavioral deadlock concurrency bug (see Section 2.3.1.2).

We gave the participants a description of the program with a conceptual actor dia-
gram. Also, each assignment description contains an expected and observable output.
We asked participants to find the root cause of the problem, but they do not need to fix
the bug in the code.

During the debugging assignments, participants were not allowed to talk with other
participants. However, they were allowed to ask the host4 any question regarding the
SOMns language or how to activate a debugger functionality.

7.2.3 Posttest Design

Our posttest design consists of two measurements. First, we measure the dependent
variable of our quantitative study, i.e., the time participants spent to complete each
debugging assignment. Later, when participants finished the second assignment, we
measured their perception of the debugger in a questionnaire.

The participants notified each assignment start time to the host, and the end time
we got it when the participant sent the line number of the fault to the host. We gave
the participants a time limit of maximum 40 minutes for each assignment. Section 7.3.2
will discuss the results of the statistical test regarding the time values. Also, at the
end of each assignment, the host asked each participant two questions “How did you
get to the fault?" and “Which debugging features you used?". This way, we could get
additional information about how participants used the debugging features and whether
they correctly understood the root cause of the program’s bug.

4The host is the researcher conducting the experiment, i.e., Carmen.

146

7.3. RESULTS

At the end of the experiment, when each participant finish both assignments, we
gave them a questionnaire, i.e., to collect qualitative information about the participants’
profile and their perceptions of the debugger. Appendix E.4 shows the exact list included
in the questionnaire, which consists of four kinds of questions:

• The first part of the questionnaire (q1 - q8) collects participants’ programming
experience information.

• The second part of the questionnaire (q9 - q14) collects participants’ impressions
and data regarding the experiments.

• We also added two questions to give additional comments about the debugger (q15)
and the experiment (q16).

• Finally, participants were asked to upload a file generated by the debugger with a
log of the operations they used during the experiment (q17).

For question 10, we chose to use a 5-point approval rating scale, aka 5-point Lik-
ert scale, because it allows us to observe two key dimensions of attitudes. This rate
measures direction (positive or negative toward the attitudinal object) and strength or
intensity of attitude [CJT15] regarding the debugging features participants used during
the experiment. Section 7.3.3 will discuss the results for the qualitative study.

7.3 Results

In this section, we present and discuss the results of the experiment. We start by de-
scribing the participants’ profiles. Later, we interpret the quantitative and qualitative
results concerning the debugging assignments.

7.3.1 Participants Profile

Our study observed 28 participants. Of the 28 participants, 19 had a Master degree and 8
hold a PhD, 1 participant only had a bachelor’s degree. Both groups are approximately
balanced in the number of participants from 6 to 10 years of experience developing
software. Appendix E.5.1 shows charts with the details of the participants’ workplace
and scholar degree.

As mentioned before, the posttest questionnaire requested information about the
participants’ profiles. Figure 7.2 shows a summary of the participants’ experience re-
garding programming using actor model variants. Overall, groups are balanced in actor
knowledge because the same number of participants, i.e., 11, reported having experience
with the actor model in each group. However, the experimental group has more partici-
pants with experience in Communicating Event-Loops languages (e.g., AmbientTalk and
SOMns) than the control group. In our population, most participants in both groups

147

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

are more knowledgeable of the process actor model variant. In particular, the language
participants have programming expertise include Akka, Elixir, Erlang, and Pony. In
both control and experimental groups, 3 participants did not have any experience with
actor-based programs.

The posttest questionnaire also asked debugging techniques participants have used.
Unfortunately, less than half of the participants in each group had experience with de-
buggers when developing actor-based programs, as shown in Figure 7.3. Nevertheless,
we can see similar proportions for both groups when using a debugger.

In terms of debugging tools, most participants have experience with JetBrains IDEs
debuggers (see details in Figure E.8 in the appendix). This fact is positive because those
programming environments are rather similar to the IntelliJ IDE used in the study.

Figure 7.2: Actor model experience.

7.3.2 Quantitative Results

In this section, we interpret the quantitative results referent to the time measures for the
debugging assignments.

The number of participants who succeeded in finding the bug’s root cause in both
assignments was almost equal in the two groups. In the control group, 9 participants

148

7.3. RESULTS

Figure 7.3: Debugging techniques.

solved assignment 1, and 12 participants solved assignment 2. In the experimental group,
9 participants solved assignment 1, and 11 participants solved assignment 2. The differ-
ence between the groups is only 1 participant in favor of the control group. Figure 7.4
shows the percentage representation of these data.

Table 7.2 shows the time measures in minutes for each of the debugging assignments
of the experiment. Time was adjusted for 5 participants that reported problems with the
VM, -10 min the ones that restarted the VM, and -5 min problems of a blocking IDE. We
obtain measures of central tendency, i.e., median and mean values for each assignment
per group. Median5 is the center point in an ordered set of numbers [CJT15]. Mean is
the arithmetic average [CJT15].

From the obtained measures with descriptive statistics, we observe that the mean and
median values are greater in the control group for assignment 1. Thus the experimental
group found faster the root cause of the bug in that assignment. For the second assign-
ment, the experimental group also used less time to complete the assignment. However,
there is no much difference between the values with the control group. In the following,
we will analyze the results based on participants’ expertise levels.

5E.g., for an odd number of numbers the median is the middle number, 1,2,3,4,5 = 3. E.g., for an
even number of numbers the median is the average of the two centermost numbers, 1,2,3,4 = 2.5.

149

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Figure 7.4: Assignment success.

7.3.2.1 Correlation of Time and Participants Expertise

To analyze the correlation of participants’ expertise and the time values, we use a violin
plot. Violin plots allow us to visualize the distribution of a numeric variable for one or
several groups6. Figure 7.5 shows the experiment results for the cumulative time, i.e.,
for both assignments. The black bullet represents the mean, and the black line in the
boxplot represents the median. We use dots in the box plot to identify small sample sizes
and bimodal distributions. The dots allows interpreting the correlation between the time
and participants’ experience on concurrent programming.

Overall, experimental group scored lower times. Median value of experimental group
(µEG = 20) is less than the control group (µCG = 24). Mean value for the experimental
group (σEG = 23) is also less than the mean value for the control group (σCG = 24).
The total number of participants for the control group that solved the assignments is 21,
whereas the number of participants for the experimental group is 20.

6We considered them over box plots because box plots hide data distribution, e.g., there is no visual
difference between a normal vs. bimodal distribution with a box plot. In contrast, a violin plot can show
differences using the density information [Hol18].

150

7.3. RESULTS

Group Control group Experimental group

Assignment 1

20 18
37 36
23 23
28 13
14 36
30 19
30 17
40 18
25 35

Median 28 19
Mean 27 24

Assignment 2

19 20
17 23
21 18
11 28
25 23
19 18
18 15
24 25
30 18
20 19
36 30
25

Median 21 20
Mean 22 22
Total median 24 20
Total mean 24 23

Table 7.2: Times for solving the debugging assignments (in minutes).

We now analyze the times with respect to the participants’ expertise. Figure 7.5
shows different colors for each expertise level. We observe that expert participants (score
= 2 and score = 3) of the experimental group solved the assignment in less time com-
pared to expert participants of the control group. Specifically, the mean value for expert
participants of the control group is 24, whereas the mean value for the experimental
group is 21. Hence, we can infer that participants’ expertise was important to solve
the assignments in less time in the experimental group. From the figure, we can derive
that participants with more expertise in concurrent programming with actors used Apgar
more efficiently than expert participants that used traditional debugging techniques.

Now we will analyze the time for each assignment independently. Figure 7.6 shows
times of participants for solving assignment 1 and assignment 2. We can see in assign-
ment 1 that expert participants of the experimental group solved the assignment in less
time than the rest of the participants. Conversely, in the control group, expert partici-
pants took more time to solve this assignment. Median value of the experimental group
(µCG = 19) is less than the control group (µEG = 28). Mean values are σCG = 27 and

151

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

factor (experience score): 0 = null 1 = beginner 2 = intermediate 3 = advanced

mean of all participants mean of expert participants

Figure 7.5: Violin plot with cumulative time for the control and experimental group.

σEG = 24 for control and experimental group respectively. In the figure we also show
the mean values for expert participants which are 27 for the control group and 22 for the
experimental group.

factor (experience score): 1 = beginner 2 = intermediate 3 = advanced

mean of all participants mean of expert participants

(a): Assignment 1

factor (experience score): 0 = null 1 = beginner 2 = intermediate 3 = advanced

mean of all participants mean of expert participants

(b): Assignment 2

Figure 7.6: Violin plot with time values for the control and experimental group in each
assignment.

In the case of assignment 2, intermediate and expert participants of the experimental
group, solved the assignment in the same time approximately. For the control group,
time is more spread. Median value of both groups is almost the same, µCG = 21 and

152

7.3. RESULTS

µEG = 20. Mean values are σCG = 22 and σEG = 22 for control and experimental group
respectively. In the figure we also show the mean values for expert participants which
are 22 for the control group and 21 for the experimental group.

From the results shown in Figure 7.6, we conclude that most of expert participants
solved assignment 1 in less time for the experimental group. On the other hand, in
assignment 2, results are similar between both groups. There is no much difference
regarding the participants’ expertise in that case. Considering these results, we argue
that knowledge and experience about programming with actors is required to benefit
from the advanced techniques we proposed in our proof of concept debugger.

7.3.2.2 Statistical Significance of the Results

After measuring the time, we checked if the time difference between both groups is
significant. In particular, we formulate the following null (H0) and alternative (H1)
hypothesis:

H0 : There is no difference of assignment completion time between the groups.

H1 : There is a difference of assignment completion time between the groups.

First, we run the Shapiro-Wilk test on the times data. The null hypothesis of this
test is that the sample distribution is normal. If the test is significant (i.e., p-value <

0,05), the distribution is non-normal. We obtained p-value = 0,02678 which is significant,
and then this distribution is not normal for both assignments, i.e., for the cumulative
times of both assignments. We then used an independent 2-group Mann-Whitney U Test
non-parametric test to compute the data significance.

Running the Mann-Whitney U Test for the time data of each assignment resulted
in p-values greater than the alpha level (0,05). For assignment 1 we obtained p-value
= 0,2687. For assignment 2 we obtained p-value = 0,8045. For the cumulative time
of both assignments, we obtained p-value = 0,2659. Then, because p-value > 0,05 the
experiment failed to reject the null hypothesis H0. This means that we do not have
statistical evidence that the difference in time between the groups is not due to chance
instead of the independent variable (i.e., IV = debugging techniques). Since results
might be caused by chance, we cannot make generalizations about the opposite of our
hypothesis either. Section 7.4 analyzes threats to validity to contextualize the described
statistical result.

7.3.3 Qualitative Results

In this section, we will interpret qualitative results related to participants’ perception
about the debugger and the experiment. As mentioned before, part of the posttest
included a 5-point Likert scale about the debugging assignments (see Section 7.3.3.1)
and the debugging features (see Section 7.3.3.2) participants had used in the experiment
(see question 10 in Appendix E.4).

153

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

7.3.3.1 Debugging Assignments

We now analyze the results for the debugging assignments. We denote with letters A
and B the statements regarding the debugging assignments:

A: The debugging assignments were difficult.

B: The debugging assignments are representative of common bugs I have seen in actor-
based programs.

Figure 7.7: Comparison of participants’ evaluation of both experimental and control
groups about the debugging assignments. The percentage values shown on the left rep-
resent the sum of negative answers for the statement, i.e., strongly disagree and disagree.
The values in gray slots represent the neutral answers. Finally, the percentage values on
the right represent positive answers to the question, i.e., agree and strongly agree.

Figure 7.7 shows a stacked barplot of the results to analyze Likert-type items. Each
box denoted with a letter represents a question (i.e., a statement), and each box consists
of two rows of answers, one for the experimental group and the second one for the control
group. The percentage values shown on the left represent the sum of negative answers for
the statement, i.e., strongly disagree and disagree. The values in gray slots represent the
neutral answers. Finally, the percentage values on the right represent positive answers
to the question, i.e., agree and strongly agree.

We can observe that 50% of participants of the control group found more difficult the
debugging assignments. In contrast, only 14% of the experimental group were positive
in this statement. Then, participants of the experimental group found the assignments
less difficult, although 43% were neutral.

154

7.3. RESULTS

Regarding if the bugs introduced in the assignments were common bugs that partic-
ipants have seen in actor-based programs, we could observe that half of the participants
of the experimental and control group agreed, in 50% and 64% for the experimental and
control group, respectively.

7.3.3.2 Debugging Features

Participants of the study assessed the following statements regarding the debugging fea-
tures:

C: Message breakpoints and stepping operations help to reduce the effort when searching
the root cause of concurrency bugs.

D: The combination of sequential and message stepping is effective to inspect actor’s
turn.

E: Visualization of message causality is useful for understanding the program while de-
bugging.

F: The asynchronous stack trace is useful for identifying message ordering problems.

G: The plugin debugging views are useful to inspect actor’s state.

H: The debugging techniques used in the experiment assist developers not only to dis-
cover program faults but to comprehend program’s behavior.

Figure 7.8 shows the Likert representation of participants’ answers about the debug-
ging features they have seen during the experiment. The control group participants did
not answer statements C, D, E, and F, because the mentioned advanced features was not
present in their version of the debugger as it only included sequential debugging features.
This is denoted in the figure by scoring 100% neutral for those four statements.

Most experimental group participants (71%) reported that message breakpoints and
stepping operations help reduce the effort when searching the root cause of concurrency
bugs (statement C). Also, 64% participants agreed with the effectiveness of combining
sequential and message stepping (statement D). However, only 29% of participants that
experienced the message causality visualization considered it useful for understanding the
program (statement E). The same percentage of participants considered the asynchronous
stack trace useful for identifying message ordering problems (statement F). In section 7.4
we will discuss participants’ comments about these two features.

As for the usefulness of the plugin debugging views (statement G), most of the exper-
imental group participants (86%) were positive. On the other hand, most control group
participants (71%) were also positive about their views.

Finally, less than half of the control group (43%) expressed positively regarding the
value of the debugging techniques they used to comprehend the program’s behavior

155

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Figure 7.8: Comparison of participants’ evaluation of the experimental group about the
debugging features. Percentages work similar as in Figure 7.7.

(statement H). Meanwhile, most experimental group participants (64%) agreed that the
debugging features they used could help developers better to understand the debugged
program.

7.3.3.2.1 Correlation of participants expertise with the statements We now
analyze the statements on our advanced debugging features (i.e., statements C to H).
Figure 7.9 depicts a violin plot that shows a correlation between participants’ exper-
tise and their perception about the advanced debugging features. We now discuss how
participants with less or higher scores rate each statement.

In statement C, intermediate and advanced participants mostly agree that message
and stepping operations help to reduce the effort when searching the root of concurrency
bugs. The median value for this statement is agree (4).

In statement D, intermediate and advanced participants mostly agree on the combi-
nation of sequential and message stepping to be effective to inspect actor’s turn. The
median value for this statement is agree (4).

In statement E, we can see that experts’ assessments about the visualization vary
between neutral, disagree, strongly disagree, and strongly agree. The majority of the rest
of the participants have a neutral position. Then, the median value for this statement is
neutral (3).

156

7.3. RESULTS

In statement F, advanced participants are neutral or disagree about the possibil-
ity that the asynchronous stack visualization is useful for identifying message ordering
problems. The median value for this statement is also neutral (3).

In statement G, intermediate and advanced participants agree that the plugin views
are useful to inspect actor state. The median value for this statement is strongly agree
(5).

In statement H, intermediate and expert assessments agree and strongly agree re-
garding whether the shown debugging features help comprehend the program’s behavior.
The median value for this statement is agree (4).

factor (experience score): 0 = null 1 = beginner 2 = intermediate 3 = advanced

mean of all participants mean of expert participants

Figure 7.9: Violin plot that shows a correlation between participants expertise and their
perception about the advanced debugging features. The 5-point Likert scale is repre-
sented in the Y-axis, where 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree
and 5 = strongly agree. The X-axis represents the statements about the experiment.

From the analysis shown in Figure 7.9 we conclude that expert participants agreed
with the effectiveness of message breakpoints and stepping operations to inspect actor’s
turn. Furthermore, expert participants gave higher rates to the combination of sequential

157

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

and message-based stepping. Contrary, the expert’s assessment varies for visualizing
message causality and having an asynchronous stack trace. We think that more research
on visualization techniques is needed. Finally, experts’ perception about the usefulness
of the advanced debugging views and the advanced debugging techniques was high (agree
and strongly agree).

7.3.3.3 Observations from Recorded Debugging Operations

As mentioned before, we automatically recorded the debugger operations performed by
the users. In this section we analyze the logs corresponding to the participants of the
experimental group. We count the debugging operations that participants used from
these logs, i.e., a breakpoint or a stepping operation (we do not measure the frequency
but if each participant used the debugging operation at least once).

Figure 7.10: Debugging operations used for successful and unsuccessful assignments in
the experimental group, grouped by sequential operations and message-based operations.

Figure 7.10 summarizes the two types of debugging operations provided in the de-
bugger, sequential and message-based for all participants’ assignments, i.e., participants

158

7.3. RESULTS

that found the bug, and we also count the ones that did not find it. Percentage repre-
sent the usage of the operation by each participant, which is computed from the total of
participants of the group (i.e., 14). For example, only the 7% of the group used asyn-
chronous after breakpoint in assignment 1. We observe that sequential operations such
as line breakpoint and step over were the most used operations by the participants in
both assignments. We also observe that the usage of operations from assignment 1 to
assignment 2 considerably increases. We believe that there is a learning process by the
participants regarding the breakpoints and stepping operations since we observed growth
in 13 of the 16 debugging operations available.

Figure 7.11 shows the cumulative frequency of operations used during the experiments
by the experimental group. The figure also shows that participants used more debugging
operations for the second assignment in the two types of operations, sequential and
message-based.

Figure 7.11: Cumulative usage of the debugging operations.

We believe that learning we observe in Figure 7.10, and Figure 7.11 is positive because
participants were able to learn the sequential and message-based debugging operations
that were new for them. Less than half of the participants (35,7%) in both groups have
used a debugger before (see Figure 7.3). We argue that our tool could assist more than
half of the participants in debugging an actor-based program for the first time with the
new advanced techniques.

7.3.3.3.1 Correlation of debugging operations usage with participants pro-
gramming experience We now turn our attention to the correlation between the

159

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

debugging operations usage per years of experience. As shown in Figure 7.12 5 out of 7
participants in the group of 6 to 10 years learned more operations from assignment 1 to
assignment 2. In the rest of the groups, however, there are fewer participants that showed
this learning. Thus, we conclude that in the experiment’s population, participants with
more than 5 years of experience learned better the use of debugging operations. In con-
trast, it is unexpected that participants with more than 10 years of experience do not
show this learning compared to the group of 6 to 10 years.

Figure 7.12: Debugging operations correlation with years of experience.

7.3.3.4 Time Pressure

We now discuss the perception of participants with respect to time pressure. As shown in
Figure 7.13 the experimental group participants felt more time pressure than the control
group when solving the debugging assignments.

160

7.3. RESULTS

Figure 7.13: Participants perception about the time pressure.

From the comments of question 15 and 16 of Appendix E.4 we obtained that some
experimental group participants (2 out of 14) explicitly said the amount of time was not
sufficient for them to perform the experiment effectively, e.g., “In general I feel I was not
able to use the debugger effectively. I spent a lot of time "fiddling around with it", trying
to get to grips with it. I feel I needed more intro/guidance, and certainly more experience,
with the debugger to be exploit it fully. I think it is a really functional tool, but it did
not really help that much in the short time available, since I’m not used to work with it."
After finishing the second assignment, that participant said via chat to the host about
the debugger that “...learn to use it in a short amount of time was difficult". A second
participant said in the questionnaire that “I thought the current offerings were pretty
complete... in the short amount of time, I was not able to get too familiar to them, and
I feel like they probably would have helped me solve the tasks quicker." One participant
was an expert in programming with actors, and the second one intermediate.

From those comments, we conclude that time was not sufficient for all participants
to solve the assignments effectively. Considering these results in combination with the
learning that we observed when we analyzed the debugging operations usage (see Fig-
ure 7.10), we believe that more time with the tool seems to be needed to get familiar
with the debugger.

161

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

7.3.3.5 Observations from Comments

Finally, we analyze participants’ comments, about the experiment and about the de-
bugging features presented in the debugger (from questions 15 and 16 in Appendix E.4
respectively).

In the questionnaire, participants were asked to comment about the experiment (ques-
tion 16). Overall, 71,4% of participants of the experimental group and 50% of the control
group gave comments about the experiment. Both groups expressed impressions mainly
about their unfamiliarity with the tool or the language in that question.

On the positive side (from question 15 and question 16), 2 participants of the control
group declared they would like to try the debugger version of the experimental group,
e.g., “...I would definitely like to try the experimental group set-up, if that would be pos-
sible", and “I would be interested in the experimental features I did not get to see in
the control group". In the experimental group, 3 participants referred to some of the
advanced features as useful explicitly, e.g., “regarding the combination of sequential mes-
sage / stepping: I do think this is useful...", “...I thought the current offerings were pretty
complete" and “I don’t think there is anything to add".

On the other hand, participants specified some issues they faced during the exper-
iment, which are summarized in Table 7.3. As mentioned before, participants of both
groups did remarks related to their lack of experience with the tool and the language. As
we can observe in the table, more than half of the participants of the experimental group
(8 out of 14) declared their unfamiliarity with the debugger tool. Thus, unsurprisingly,
one of the key issues of the experiment was that participants was not familiar with the
tool.

Regarding the interaction with the VirtualBox image, there were participants in both
groups that notice the VM slow and unresponsive. This issue was seen more frequently
for participants of the experimental group. Performance issues may be related due to
virtualization on the participant’s machine, but unfortunately, due to COVID-19, we
could not use a more controlled hardware and software environment, i.e., a room equipped
with the same sort of computers configured by us.

We believe our prototype debugger was stable since there was only one comment
from a participant of the experimental group reporting implementation issues, i.e., “I
don’t think all Variables are always displayed in the Variables tab".

7.3.3.5.1 Advanced debugging support suggested by the control group Ques-
tion 15 of the questionnaire asked participants for other features they would like to see in
the tool. Table 7.5 show a list of suggestions from both control and experimental groups,
respectively.

Table 7.4 shows that most of the features participants of the control group wanted
in the debugger are already supported by Apgar. The most frequent comments were
related to the need to show visualizations for message exchange between the actors, and

162

7.3. RESULTS

Issue Participants
control
group

Percentage Participants
experimen-
tal group

Percentage

Not sufficient
amount of time

0 0% 2 14,3%

Lack of experi-
ence with the tool

1 7,1% 8 57,1%

Lack of experi-
ence with the lan-
guage

3 21,4% 1 7,1%

Unresponsive/slow
VM

1 7,1% 5 35,7%

Review variables
information

0 0% 1 7,1%

Table 7.3: Summary of issues found in explicit comments by participants of both groups
about the experiment. The number in each cell indicates the number of participants that
referred to that issue. These numbers were collected from question 16 of the questionnaire
and comments participants gave during and after solving each assignment (via Zoom chat
messages in private to the host of the experiment).

visualizations for the actor state visualization. Next were the comments related to the
advanced features that were disabled, e.g., “... analyzing concurrent code with a sequential
debugger is difficult..." and “... I would expect when I step into a message, whether it’s a
callback or a method to go inside this.". One participant explicitly mentioned the need for
“A message trace or stack trace", which is a debugging feature that we already supported
in the experimental version of the debugger, i.e., an asynchronous stack trace.

Finally, three comments gave suggestions for features which we are currently experi-
menting (i.e., show unresolved promises as described in section Section 5.1.5) or plan in
future work (i.e., reverse debugging as we will discuss in section Section 9.4).

7.3.3.5.2 Advanced debugging support suggested by the experimental group
We now analyze the suggestions given by the experimental group. More than half of the
participants of the experimental group (11 out of 14) gave feedback in question 15 of
the questionnaire. Most of the comments are related to improvements of the already
supported debugging features, such as improving the relation between the sentbox to
the asynchronous stack and merging mailbox and sentbox. Similar to the control group
participants, we also got comments on showing information of unresolved promises and
replay message execution.

Finally, 3 participants mentioned that in the turns view they could not find the
information they were looking for while it was there, e.g., “The turn view can help to find
the message ordering, but, as far as I can see, didn’t help me to find out what exactly
was sent..." and “...I also did not understand what the effect of "selecting" a message is".

163

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Debugging feature Number of comments Percentage

Features supported
in the experimental
version

Message exchanged visualization 5 35,7%
Actor state visualization 5 35,7%
Async stack trace 1 7,1%
Features that were disabled,
e.g. message receiver and
promise resolution breakpoints

4 28,6%

Not supported
features

Back in time debugging 1 7,1%
Showing unresolved promises 1 7,1%
Showing previous debugging steps 1 7,1%

Table 7.4: Summary of comments about the debugger by participants of the control
group. The number in each cell indicates the number of participants that referred to that
issue. These numbers were collected from answers to question 15 of the questionnaire.
The percentage is calculated based on the number of comments and the total participants
in the control group (i.e., 14).

From those comments we conclude that some participants actually did not understand
some debugging features.

Debugging feature Number of comments Percentage

New features
Show unresolved promises 1 7,1%
Replay a message execution 1 7,1%

Improvements to the
supported features

Improve visualization of turns 3 21,4%
Design of the tabs,
higher coupling between them

1 7,1%

Highlight active/hit breakpoint 1 7,1%
Relate sentbox to the async stack 1 7,1%
Merge mailbox and sentbox 1 7,1%

Table 7.5: Summary of comments about the debugger by participants of the experimental
group. The percentage is calculated based on the number of comments and the total
participants in the experimental group (i.e., 14).

7.3.4 Overview of the Results

On the one hand, in the measures made for the quantitative study, we have obtained
differences between the groups in favor of the experimental group. In particular, we ob-
served that expert participants who used the advanced debugging techniques we proposed
in Apgar found the bugs in less time than participants who used traditional debugging
techniques. However, we obtained that the differences between the groups are not sta-
tistically significant, i.e., the study failed to reject the null hypothesis. This means we
cannot generalize the results in which the advanced debugging techniques help (or not
help) to reduce the time of finding the root cause of the bug.

164

7.4. THREATS TO VALIDITY IN MIXED METHODS
EXPERIMENTAL RESEARCH

On the other hand, in the qualitative study, we have obtained positive impressions
from the participants regarding advanced features, e.g., message breakpoints and the
combination of sequential and message stepping. Interestingly, we obtained those rates
from most intermediate and expert participants of the experimental group. On the
positive side, most intermediate and expert participants found the plugin views useful
to inspect actor state and the debugging techniques helpful for program comprehension.
Unfortunately, more than half of the participants were neutral about the features of turn
visualization, and half of the participants were neutral about the asynchronous stack
trace.

From the recording of the debugging operations, we obtain the insight that partici-
pants of the experimental group learned the majority of the debugging operations they
have available, from the first assignment to the second one. This is positive because
that shows that the debugging features are not difficult to learn. The learning process
is noticeable for participants with programming experience from 6 to 10 years. From
participants’ comments in the questionnaire, we conclude that some issues could nega-
tively influence their execution in the assignments, e.g., some participants emphasized
that the lack of experience in the language and the tool was the main problem in the
task. Positively, most of the comments by participants of the control group pointed out
the need for debugging features we already support in Apgar.

Although we cannot generalize our user study results, we consider we obtained posi-
tive assessments from participants regarding the advanced debugging techniques we pro-
posed, not only to identify the root cause of concurrency bugs but also to help developers
understand the program’s behavior.

7.4 Threats to Validity in Mixed Methods Experimental Re-
search

This section mentions the different threats that could invalidate the results we have
obtained in the user study and how we addressed them. Creswell et al. [CC17] mention
three threats we need to consider when applying a mixed methods experimental design.
Table 7.6 shows these threats and a general strategy to minimize them.

Here we explain the strategies we used to minimize each of the mentioned threats in
our research study.

1. Internal and external validity In our study, our priority is to determine if the
relationship between the IV and DV is causal, which in our case corresponds to
ensure correctness for possible internal threats [CJT15]. External validity for cause-
and-effect relationships is often needed in research studies conducted by different
researchers in different settings with different kinds of people. However, our popu-
lation is not large (i.e., 28 participants < 30). Thus, we focus on addressing internal
threats about our quantitative study (see in Section 7.4.1).

165

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Validity threat General strategy to minimize the threat
1. Not addressing threats to internal
and external validity in an experiment
design

Address internal and external threats
noted in the literature about experi-
mental designs

2. Not specifying why and where the
qualitative component is embedded in
the experiment

Provide an explicit rationale for collect-
ing qualitative data and its use in the
experimental design

3. Introducing bias in the experimen-
tal design when qualitative data are col-
lected during the experiment

Consider strategies such as unobtrusive
data collection during the experiment
that do not introduce bias that might
alter the experimental outcomes

Table 7.6: Threats in mixed methods experimental design, from [CC17].

2. Embedded qualitative component We give arguments about selecting our re-
search design consisting of quantitative and qualitative measures and how we apply
it in our study in Section 7.1.1. Because we collected qualitative data in a posttest
questionnaire, we additionally analyzed some validity threats that could occur and
possible strategies to minimize their effect (see Appendix E.6).

3. Bias when collecting qualitative data We did not perform qualitative questions
during the experiment, but only when participants finished each assignment. Ques-
tions were only related to the assignment they just finished, e.g., “How did they
found the bug?" and “Which debugging operations they used the most?". Thus, we
did not give any information that could bias the next assignment or the question-
naire. Participants worked individually during the whole experiment.

In the following section, we explain how we minimize each threat to internal validity.

7.4.1 Internal Validity Threats

As mentioned before, quantitative studies are subject to internal validity, i.e., it is im-
portant to validate the conclusions made for the cause-and-effect relationship between
the variables of a quantitative study [CJT15]. Ensuring internal validity means that no
other variable apart from the independent variable can influence the dependent variable.
Therefore, we need to control all other variables (i.e., extraneous variables) that can
influence participants during the experiment and affect the results. In our study, we
consider the debugging techniques the only variable that can influence the participants
to identify the root cause of concurrency bugs.

Christensen et al. [CJT15] identified 8 threats to internal validity. As we mentioned
in Section 7.2.1 we used the control technique of random assignment of participants to
the groups. Having a control group and applying randomization minimizes all the 8
threats mentioned by Christensen et al. Table 7.7 describes each of the validity threats
to internal validity.

In the history threat, Christensen et al. [CJT15] mentions that could be a particular
threat named differential history in which one group experiences the history event and

166

7.4. THREATS TO VALIDITY IN MIXED METHODS
EXPERIMENTAL RESEARCH

the other group does not, which is not solved with a control group. Because we run
the experiment in two weeks, we minimize this threat regarding possible time differences
by controlling the exact time in which participants watch the tutorial videos about the
language and the debugger. The host screen shared the videos for all participants at
the same time. Later, the host guided each participant through the different experiment
steps using private communication via chat messages. Besides, each time slot where
we run the experiment was meant only for one group of participants, i.e., participants
of the control group or of the experimental group. This way, the host only controlled
participants using only one version of the debugger.

On the other hand, we are aware that the time-lapse in the research study should
be short to avoid history becoming a rival explanation. However, because of the current
situation with the COVID-19 outbreak was not possible to do the experiment for all
participants in the same location. As we mentioned in Section 7.1.2, at the beginning
of the experiment, the host read a code of conduct with rules for the participants to
compromise to follow them during the experiment and after they finish it, at least during
the experiment’s time period (see Appendix E.1).

Validity threat Description Strategy to mini-
mize the threat

1. History Any event that can produce the out-
come, other than the treatment condi-
tion, that occurs during the study be-
fore posttest measurement

control group

2. Maturation Any physical or mental change that oc-
curs with the passage of time and af-
fects dependent variable scores

control group

3. Instrumentation Changes from pretest to posttest in the
assessment or measurement of the de-
pendent variable

control group

4. Testing Changes in a person’s score on the sec-
ond administration of a test resulting
from having previously taken the test

control group

5. Regression artefact Effects that appear to be due to the
treatment but are due to regression to
the mean

control group

6. Attrition Loss of participants because they do
not show up or they drop out of the
research study

control group +
pretest [SCC01]

7. Selection Production of nonequivalent groups be-
cause a different selection procedure op-
erates across the groups

randomization

8. Additive and interactive
effects

Differences between groups is produced
because of the combined effect of two
or more threats to internal validity

randomization

Table 7.7: Threats to internal validity, from [CJT15].

Besides the threats to validity shown in Table 7.7 we identify other factors that could
affect our study’s internal validity, summarized in Table 7.8. There we mention a possible
solution strategy to minimize the influence of these threats in the results.

167

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Validity threat Strategy to minimize the threat
1. Participants lack of knowledge on
SOMns language

Tutorial about SOMns + SOMns cheat sheet

2. No familiarity of the participants
with the debugged programs

Selection of new programs and give a description
for each assignment

3. Debugging assignments are difficult Avoid the use of complex constructs from SOMns
language and add question in posttest question-
naire

4. Introductory tutorials Do small debugging exercise, but participants can
choose any feature they found most appropriate

5. Time pressure Add question in the posttest questionnaire
6. The programs in the assignment
might not be representative

Add question in the posttest questionnaire

Table 7.8: Additional threats to internal validity.

Here we discuss the threats of table 7.8 with the results we obtained:

1. Lack of language knowledge We created a video tutorial with the main syntax
elements of SOMns. Also, we sent to participants in advance a SOMns cheat sheet
by email. Although we provided the mentioned documentation, some participants
emphasized in their comments that their lack of experience with the language and
the debugger influenced their performance when solving the assignment.

2. Unfamiliarity with the programs Programs that have not been seen before by
the participants should equate better the groups and reduce the threat in which
some participants could know more about the program in advance. To minimize
threat 2 we also give a description and a conceptual diagram of the program in the
assignment (as shown in Appendix E.3). Some participants declared as useful the
assignment’s description.

3. Difficulty of debugging assignments We added a question in the posttest ques-
tionnaire to measure participants’ perception about the assignments. We obtained
that 50% of the participants from the control group found the assignments diffi-
cult, whereas only 14% of participants from the experimental group agreed with
this idea. Then, only a 32% of the total of participants confirmed they found the
assignments difficult. i.e., 9 out of 28 participants.

4. Introductory tutorials We gave both groups a tutorial about the debugger, and
we used PythagorasCalculator program to show the debugging features, which
are different for each group. Moreover, participants freely chose the debugging
features they used during the experiment. As such, we consider results should not
be biased by any of these materials. Besides, tutorials had similar time length for
each group.

5. Time pressure During the experiment, 64,3% of participants of the experimental
group perceived time pressure (threat 5). We think a possible reason for this is

168

7.5. DISCUSSION

that the number of new debugging features and debugging views was bigger than
the ones experienced by the control group. Because 50% of participants of the
control group perceived time pressure, we think that indeed the time limit for
the experiment might have influenced the results. Furthermore, some participants
expressed that learning the language and the tool took them part of the available
time (see Section 7.3.3.5).

6. Actor-based programs representative We collected answers that show that par-
ticipants’ assessments were positive for the two actor-based programs used in the
experiment. Participants of the experimental group agreed in 50%, and partici-
pants of the control group agreed in 64% that programs in the assignments could
be representative of real-world actor-based programs. Nevertheless, we conclude
that no generalization about the results can be made at the moment. Further
studies with real-world applications and real-world bugs are still needed.

Furthermore, Christensen et al. mention the statistical conclusion validity as another
validity type in quantitative studies. Statistical validity allows inferring that the inde-
pendent and dependent variables covary, i.e., variations in the first variable affects the
dependent variable [CJT15]. In our case, the lack of sufficient participants can threaten
the statistical conclusion validity. We solved this threat using the Shapiro-Wilk test
to know if the distribution was normal, and then we use Mann-Whitney U test as a
non-parametric test to compute the significance of the results.

7.5 Discussion

We now discuss our results regarding our general hypothesis declared in section 7.1.1. We
also analyze the results we obtained for our specific hypotheses related to the proposed
advanced debugging techniques.

Although we did get differences in the time measures between the groups in favor
of the experimental group, the results we obtained are not statistically significant in
response to hypothesis 1. This means that we cannot conclude that the advanced debug-
ging techniques reduce the effort to identify the cause of complex concurrency bugs in
actor-based programs because results might be caused by chance. Furthermore, regard-
ing the success of the assignments, we obtained almost similar results in both groups.
The control group got 1 participant more that solved the assignments compared with the
experimental group.

From the qualitative assessment measured with the posttest at the end of each assign-
ment, we conclude that the time we gave to participants may not be sufficient, mainly
because of their lack of experience with the tool and the SOMns language. More than
half of the experimental group participants expressed that a previous interaction with
the tool would make them perform the experiments better (see Table 7.3).

169

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

Although the quantitative result was not as we expected, we think we obtained pos-
itive insights from the experiment. We could see a learning of the debugging operations
from assignment 1 to assignment 2. There was an attempt and learning from the partic-
ipants for using the new advanced debugging techniques despite the fact they have not
previous experience with the tool.

Interpreting the participants’ perception about the advanced debugging features, we
can conclude that we got positive results for hypothesis 2 and hypothesis 3. More than
half of the experimental group participants (71%) agree that message breakpoints and
stepping operations can help reduce the effort when searching the root cause of concur-
rency bugs. Besides, most of the participants of the experimental group (64%) found
effective combining both types of stepping, sequential and message-based, to inspect
actor’s turn.

From the answers to qualitative questions at the end of each assignment, we got that
some participants (28,6%) of the experimental group read the code or use only sequential
features instead of using the advanced debugging techniques (3 participants in assignment
1 and 1 participant in assignment 2). One factor that could have influenced this behavior
could be the time pressure, which participants of the experimental group felt more than
participants of the control group. However, from the rating results for statement G and
H of question 10 of the questionnaire, we can say that participants of the experimental
group had more positive assessment about the plugin views (86%) and the debugging
techniques (64%) than participants of the control group (71% and 43%, respectively).

In response to hypothesis 4, i.e., statement E of question 10 in the questionnaire, we
got that some participants who tried to use the turns view found it difficult to understand
the drawings. They mention that they were not very clear or a bit cluttered. This
issue can be a reason for the low rating (29%) obtained in the statement related to
the usefulness of the visualization of message causality. Another factor is that some
participants did not find the need to use some of the advanced views to identify the
bugs. Nevertheless, although participants consider the information not yet visualized
clearly enough, it was useful for some of them.

Finally, responses to hypothesis 5, i.e., statement F of question 10 in the questionnaire,
had an equal rating result (29%) to hypothesis 4. On the positive side, in the comments,
one participant of the control group suggested an asynchronous stack trace as a feature
they would like to see in a debugger for actor-based programs. On the other hand, another
participant proposed to relate the sentbox to the asynchronous stack in the experimental
group. Although not all participants used this feature, maybe because of unfamiliarity,
we believe that the asynchronous stack is a relevant debugging feature for actor-based
debugging.

170

7.6. CONCLUSION

7.6 Conclusion

In this chapter, we have described a user study design to evaluate the advanced debug-
ging techniques implemented in Apgar, our proof of concept debugger for actor-based
programs. Our study investigates if the use of advanced debugging techniques helps
identify concurrency bugs in actor-based programs. To accomplish this goal, we used a
mixed methods experimental design, where we focused on an experimental approach, i.e.,
a posttest only control group design with embedded qualitative measures.

We conducted an online experiment for two groups of participants. The control group
solved the debugging tasks using traditional debugging techniques. Meanwhile, the exper-
imental group solved the debugging assignments using advanced debugging techniques.
From the results interpreted, validated, and discussed in the previous sections, we arrive
at the following four conclusions.

First, we cannot ensure that the advanced debugging techniques help to identify the
cause of complex concurrency bugs in actor-based programs because time measurement
was not significant statistically.

Second, the participant’s perception of the debugging features is positive. We can say
participants valued message breakpoints and stepping operations and the combination of
sequential and message stepping. Quantifying the usage of debugging operations helped
us see the operations’ learning through the two assignments by the participants. Overall,
the experimental group participants gave a more positive assessment regarding using the
plugin views for inspecting the actor’s turn. Most experimental group participants also
confirmed that the debugging techniques could help developers identify the root cause
of concurrency bugs and program comprehension. Thus we can conclude the advanced
debugging features may be helpful in the context of developing actor-based programming.

Third, further research is needed to improve and evaluate visualization for features
such as message causality and asynchronous stack traces.

Finally, from the data correlation between the participants’ expertise in concurrent
programming and the quantitative measures (e.g., the time) and qualitative measures
(e.g., statements about the experiment), we conclude that Apgar can be considered as a
valuable tool for expert developers.

171

CHAPTER 7. EVALUATION OF ONLINE DEBUGGING
TECHNIQUES FOR ACTOR-BASED PROGRAMS

172

Chapter 8

Online Debugging Techniques
Probe-Effect Free

Online debugging techniques allow to explore the space of non-deterministic concurrency
bugs, but only in one path of the program’s execution. Besides, concurrent programs
suffer from the probe-effect. To solve these issues, we explore a debugging technique that
allows programmers to observe all possible states of a concurrent program at runtime
and is probe-effect free. We call this technique multiverse debugging.

In this chapter, we first define multiverse debugging, and we apply this technique to
a small language. Second, we apply multiverse debugging for a language based on the
Communicating Event-Loops actor model. We showcase a debugging session example
using our proof of concept of a multiverse debugger Voyager. Later, we describe Voyager
calculus, a formal operational semantics for debugging actor-based programs. Finally,
we explain a proof of non-interference for multiverse debugging and we compare our
approach to existing related work.

8.1 Multiverse Debugging

As we mentioned in Section 3.2 debugging tools have been categorized as online and
offline. Despite the presence of online debuggers in modern IDEs, a recent study showed
that debugging parallel applications remains very problematic [PSTH16] because debug-
gers do not account for the non-determinism of concurrent applications. Most of the
existing tools only provide support for deterministic debugging, i.e., they support the
debugging of only one parallel entity at a time rather than the program as a whole. This
means that one run of the debugger is very likely to miss the erroneous state in which the
bug manifests itself, requiring many debugging cycles before being able to reproduce the
bug. Even worse, the mere presence of a debugger may affect the order in which parallel
entities are executed, making the reproduction of a bug even rarer. This condition akin
to the Heisenberg uncertainty principle, is known as the probe-effect [Gai86] (see Sec-

173

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

tion 2.6). Apgar (see Section 5.2) is an example of an online debugger that only explores
one path of execution. Thus, in the presence of a heisenbug, it has the disadvantage that
developers using the debugger will need to run more than once the program to be able
to observe that bug again.

In addition to debugging techniques, another technique that has tried to solve the
mentioned issues without executing the program is static analyses, e.g., static analysis
to verify the boundedness of actor mailboxes [FGN+03], model checkers for concurrent
programs written in Erlang [CGS13a] or Scala [LDMA09], type systems to ensure type
safety on reciprocal communication channels [THK94]. These techniques detect synchro-
nization errors such as deadlocks [BLR02, FF00], incorrect ordering of locks [BPP14],
and incorrect interleaving of messages in actor systems [CGS13a]. However, they often
put severe restrictions on the way programs are organized (e.g., on how promises are
used in actor-based programs [GGL+13]). More importantly, they expect developers to
have a good understanding of what caused the bug as they verify a well-defined property
over a program, but they currently cannot be used interactively to explore and search
for a bug with an unknown cause. Finally, static analysis techniques are almost always
about approximations. When the analysis detects a bug, it might be impossible to find
a concrete execution path that triggered the bug.

The vision of multiverse debugging is to allow programmers to debug concurrent
non-deterministic programs with a debugging technique that allows them to observe
all possible states the program can exhibit at run time and to interactively explore
these states for bugs in a fashion similar to breakpoint-based debuggers while being
probe-effect free. Current debuggers for non-deterministic programming languages do not
allow such exploration because they only follow a single path of many possible execution
paths. In this paper, we provide a concrete recipe on how to build debuggers that allow
programmers to observe all possible states of a non-deterministic program. To this end,
multiverse debugging builds on the operational semantics of the language in which target
programs are written.

8.1.1 Recipe

We now give an overview of the basic recipe for defining the semantics of a multiverse
debugger:

1. Define the operational semantics of the base language, a language which can specify
programs that exhibit non-deterministic behavior.

2. Define the operational semantics of the debugger in terms of the base language
semantics. This implies to:

(a) define a debugger configuration, which includes the state the debugger needs
to maintain to debug a target program.

174

8.1. MULTIVERSE DEBUGGING

(b) define the debugging operations that the debugger offers to developers to
interactively explore the target program, e.g., by pausing/resuming program
execution on breakpoints, or performing step-by-step execution of the target
program.

We think that those two steps are general enough to be applicable to a wide range of
programming languages. Applying this recipe to other programming languages consists
of identifying where and how non-determinism originates. This is, however, tied to the
language’s concurrency model. Related work has distinguished concurrency concepts
of different models in the context of debugging [MLA+17]. We participated in that
work exploring concurrency concepts relevant for debugging actor-based programs (see
Table 5.8). The behavior and properties of concurrent entities (e.g., threads, transactions,
actors) differ, and hence these properties should be carefully considered when defining
the operational semantics of the multiverse debugger.

In the next section, we apply our multiverse debugging recipe for a small language,
and in Section 8.3 for a language based on the Communicating Event-Loops concurrency
model.

8.1.2 A Multiverse Debugger for a Small Language

In this section, we apply the multiverse debugging recipe to debug ambiguous programs
written in λamb. In section 8.1.2.1, we specify the base language semantics (step 1) and
section 8.1.2.2 defines the semantics of a multiverse debugger on top of it (step 2). To
simplify the exposition and focus on the core idea of multiverse debugging, we do not
model any breakpoints, stepping commands, nor user interaction with the debugger in
this section. They are detailed later when we apply the idea of multiverse debugging
for actor-based programs in section 8.3.1. There, we will specify the semantics of a base
language in which to write actor-based concurrent programs (step 1), and section 8.3.2
describes the semantics of a multiverse debugger on top of it, including multiverse break-
points and stepping commands (step 2).

8.1.2.1 Syntax and Operational Semantics of the Base Language λamb

We now show how the multiverse debugging idea can be applied to the λamb calcu-
lus, a small functional language. Non-determinism in this language is introduced by a
variation of McCarthy’s ambiguity operator [McC61] called amb which behaves as a non-
deterministic choice. Intuitively, when this operator is applied to a number of arguments,
it returns one of them in an unpredictable way.

Figure 8.1 gives an overview of the syntax and reduction rules of the λamb calculus.
Expressions consist of numbers, addition, and the amb operator. We define an evaluation
context E, which dictates a left to right evaluation order of the arguments. The only
values v in the language are numbers. The add rule shows how the addition of two

175

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

numbers reduces, and the amb rule shows the amb operator non-deterministically picks
one of its arguments.

e ::= (+ e e)|(amb e e)|number Expressions
E ::= (+ E e)|(+ v E)|(amb E e)|(amb v E) Context
v ::= number Values

(add)
n = ⌊n1 + n2⌋

E[(+ n1 n2)]→amb E[n]

(amb)
ex ∈ [e1, e2]

E[(amb e1 e2)]→amb E[ex]

Figure 8.1: Semantic entities and reduction rules of the λamb calculus.

To get an intuition of the λamb calculus, consider the evaluation graph of the program
(+ (amb 1 2) (amb 3 4)) shown in fig. 8.2. While in a deterministic evaluator, there is at
most one applicable rule for each expression in a non-deterministic evaluator, it is possible
that multiple reduction rules apply for the same expression. In our example, this is clearly
the case. In the start state, there are two possible reductions leading to two execution
paths the program could take. We denote a universe to each distinct state in which a
program can be. In this example, the top universe denotes the state in which the amb
operator selected the value 2 while in the bottom universe, it chose 1. For these two
universes, there are again two possible successor universes possible by choosing between
number 3 and 4. Finally, each of these universes can be reduced by applying the add
rule leading to three possible end universes.

am b

am b

am b

am b

am b

am b

add

add

add

add
6

5

4

(+ 2 4)

(+ 2 3)

(+ 1 4)

(+ 1 3)

(+ 2 (amb 3 4))

(+ 1 (amb 3 4))

(+ (amb 1 2) (amb 3 4))

Figure 8.2: Multiverse evaluation graph of a λamb program.

8.1.2.2 Syntax and Operational Semantics of the Debugger Damb

Having the semantics of our non-deterministic language λamb, we can now define a mul-
tiverse debugger for this base language, which allows us to pause a program and resume
its evaluation until it reaches an end state. Resuming a program corresponds to a user
stepping through the program, expression by expression. Figure 8.3 gives an overview of
Damb, the semantics of a debugger for the λamb calculus. We first define the debugger
configuration that keeps track of the state that the debugger needs to store to debug a

176

8.1. MULTIVERSE DEBUGGING

target λamb program. In this case, the debugger is either paused or has resumed execu-
tion, evaluating an expression at a time. The debugger configuration is thus a pair which
consists of a state label (either step or paused) and a λamb expression e.

The debugger operations are defined by two reduction rules. The Step rule takes one
evaluation step of the enclosing λamb expression e and transitions the debugger state by
changing the state label from step to paused. This means we take one evaluation step
and yield to the debugger, where a user could inspect the program. Though, for simplic-
ity, the only other operation our debugger has is the Resume rule, which transitions a
paused program back to the step state.

state ::= step | paused Debugger State
ed ::= (state, e) Debugger Configuration

(Step)
e →amb e′

(step, e)→debug (paused, e′)

(Resume)

(paused, e)→debug (step, e)

Figure 8.3: Semantic entities and reduction rules of the Damb calculus.

As an example of a multiverse debugging session, let us execute the program shown in
fig. 8.2 in Damb. The resulting session is shown in fig. 8.4. It starts by applying the Step
rule on the (+ (amb 1 2) (amb 3 4)) expression. The first step will cause the reduction of
the amb rule in λamb for the (amb 1 2) expression. This leads to two possible reductions
the debugger could take, i.e., one universe in which the amb rule reduces to 1 and one
in which it reduces to 2. This means stepping to the next state is non-deterministic. By
defining the debugger operations in terms of the non-deterministic evaluator of the base
language, we automatically obtain a multiverse debugger, i.e., a step does not lead to
one possible next universe but to a set of universes.

(debug step 4)

(debug step 5)

(debug step 6)

(debug paused 4)

(debug paused 5)

(debug paused 6)

(debug step (+ 1 4))

(debug step (+ 1 3))

(debug step (+ 2 3))

(debug step (+ 2 4))

(debug paused (+ 1 4))

(debug paused (+ 1 3))

(debug paused (+ 2 3))

(debug paused (+ 2 4))

(debug step (+ 1 (amb 3 4)))

(debug step (+ 2 (amb 3 4)))

(debug paused (+ 1 (amb 3 4)))

(debug paused (+ 2 (amb 3 4)))

(debug

 step

 (+ (amb 1 2) (amb 3 4)))

Figure 8.4: Multiverse debugging graph of a λamb program.

While this multiverse debugger is simplistic, it already shows two important charac-
teristics. First, all evaluation steps observed in the base-level semantic are also observed
in the multiverse debugger. This means that when programmers debug their programs
in the multiverse debugger, the error will manifest in the debugger. Second, there are no
states in the debugger which are not observed in the base-level semantics. This means
that debugging the program does not introduce any state (and thus also no bugs), which

177

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

are not observed in the base-level semantics. As such, a multiverse debugger is probe-
effect free.

8.1.3 Challenges

The main challenge of our approach is the growth in the number of states; the number
of possible states increases exponentially with every non-deterministic step that is cho-
sen in the program. This problem, called state explosion, is a well-researched problem
in the context of program analysis and verification [Val98]. Multiverse debugging also
suffers from this problem. It is, however, essential to make the complexity of these non-
deterministic programs explicit to the programmer so that actions can be taken. We
believe that providing a recipe on how to build multiverse debuggers is an important
first step that gives developers the tools to explore parts of this state space interactively.
After all, being able to inspect part of this enormous state space is better than having
a debugging tool that can only explore one execution path without any guarantees that
the path being explored triggers the bug.

Symbolic execution and model checking have studied scalable solutions for the state
explosion problem [CGJ+01, CS13, LPD+14, LHA18]. Future research is needed to inves-
tigate how to adopt those techniques in a debugging tool to increase the scale on which
multiverse debugging can be applied. In Section 8.4.1 we further compare multiverse
debugging with symbolic execution and model checking.

In our proof of concept implementation, we apply two techniques to help the pro-
grammer to keep an overview of the state space. First, we do not blindly explore all
the possible states but let the developer decide which states to explore next, either ex-
plicitly or by using multiverse breakpoints. We believe this makes multiverse debugging
comparable to bounded model checking [BCCZ99]. Second, whenever two states are syn-
tactically the same, we merge those states into one node. Depending on the programming
language, other means of equality could be applied to further reduce the number of states
exposed to the programmer.

8.2 Voyager, a Proof of Concept Multiverse Debugger for
Actors

Multiverse debugging borrows from breakpoint-based debuggers two features to enable an
interactive exploration of the program’s state, i.e., breakpoints and stepping operations.
As we mentioned before (see Section 5.1), a breakpoint defines a point of interest in a
program in which to pause execution for further inspection. Furthermore, developers can
follow a program’s execution through different points of interest using stepping operations
(see Section 5.1.2). We have applied the semantics of breakpoints and stepping operations
described in Section 5.1.1 and Section 5.1.2 to our multiverse debugger.

178

8.2. VOYAGER, A PROOF OF CONCEPT MULTIVERSE
DEBUGGER FOR ACTORS

At the moment of this research, the SOMns language does not have an implemen-
tation of its operational semantics. Thus, we have employed another Communicating
Event-Loops language for which already exists an operational semantics, namely Ambi-
entTalk. AmbientTalk is a CEL language for distributed programming in mobile peer-
to-peer networks. Its operational semantics is known as Featherweight AmbientTalk i.e.,
atf [VCGBS+14].

In this section, we show a proof of concept of a multiverse debugger for AmbientTalk
programs, named Voyager. Voyager1 features a web-based frontend and a backend im-
plemented on PLT-Redex language 2. Target programs are written with AmbientTalk
semantics in PLT-Redex and can be loaded in Voyager. Voyager then asks PLT-Redex to
reduce the program according to the debugger semantics, which results in the reduction
graph for the program. All states in this graph are stored in a graph database3 for easy
manipulation and exploration of the reduction graph.

In the next section, we showcase some debugging operations in Voyager through a
program written in AmbientTalk. Later, we give an overview of a debugging session in
Voyager.

8.2.1 Debugging a Sample Program

We now show a debugging session in Voyager for the SOMns program depicted in List-
ing 8.1. Appendix F shows the PLT-Redex program written in AmbientTalk semantics,
but for simplicity, we show it in SOMns syntax.

The program shows an interaction between 3 actors: a math actor (created in Line 42,
and two client actors, client1 (created in Line 44) and client2 (created in Line 45).
The math actor (Lines 5 to 16) understands the messages double, which doubles its
argument and stores the result for further operations, as well as the getResult message,
which returns the result of a number of operations. After creating the three actors,
the program sends a startWithResult message and start message to actors client1 and
client2, respectively (Lines 47 and 48). As a result, client1 sends a double(12) message
followed by a getResult one. Concurrently, client2 sends a double(33) message to the
math actor as well.

Despite being a simple program, it contains a bad message interleaving bug [LMBM18],
which is common for actor-based programs. It is possible that client1 gets the result of
doubling 33 instead of doubling 12. Table 8.1 shows all possible interleavings that the
program exhibits. It also depicts the message sender for each message. Line 27 would
print the result value, which is 24 for the correct interleavings and 66 for the faulty one.

1Voyager frontend is a web application implemented by our colleagues of the University of Ghent
[SLM+19], which is built on top of the debugging operational semantics we implemented in PLT-Redex,
i.e., Voyager backend [LSM+19].

2https://redex.racket-lang.org
3Voyager uses ArangoDB. https://www.arangodb.com/

179

https://redex.racket-lang.org
https://www.arangodb.com/

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

1 class DoubleApplication usingPlatform: platform = Value (
2 | private actors = platform actors. |
3)(
4

5 public class Math = (
6 | private result ::= 0. |
7)(
8

9 public double: x = (
10 ^ result :: x + x
11)
12

13 public getResult = (
14 ^ result
15)
16)
17

18 public class Client new: math name: name = (
19 | private math = math.
20 private name = name.
21 |
22)(
23

24 public startWithResult: x = (
25 math <-: double: x.
26 ^ math <-: getResult whenResolved: [:res |
27 (name +’ ’+res) println.
28].
29)
30

31 public start: x = (
32 ^ math <-: double: x.
33)
34

35)
36

37 public main: args = (
38 | completionPP client1 client2 p1 p2 math |
39

40 completionPP :: actors createPromisePair.
41

42 math:: (actors createActorFromValue: Math) <-: new.
43

44 client1 :: (actors createActorFromValue: Client) <-: new: math name: ’c1’.
45 client2 :: (actors createActorFromValue: Client) <-: new: math name: ’c2’.
46

47 p1:: client1 <-: startWithResult: 12.
48 p2:: client2 <-: start: 33.
49

50 p1, p2 whenResolved: [:r |
51 completionPP resolve: #ok.
52].
53

54 ^ completionPP promise
55)
56)

Listing 8.1: Double program containing a bad message interleaving bug in SOMns.

180

8.2. VOYAGER, A PROOF OF CONCEPT MULTIVERSE
DEBUGGER FOR ACTORS

Faulty Interleaving Correct Interleaving Correct Interleaving
client 1 - double(12) client 1 - double(12) client 2 - double(33)
client 2 - double(33) client 1 - getResult() →

24
client 1 - double(12)

client 1 - getResult() →
66

client 2 - double(33) client 1 - getResult() →
24

Table 8.1: Message interleavings for the program shown in Listing 8.1.

8.2.2 Overview of a Debugging Session

Taking the faulty interleaving of our example program of Listing 8.1 as an example, a
developer may choose to explore the issue in Voyager and identify why the unexpected
result is 66. Thus, the developer needs to find the cause of the bad message interleaving
exhibited by the program.

Figure 8.5: Overview of the Voyager tool.

Figure 8.5 shows the Voyager UI. The left panel allows developers to upload the target
program to debug (either by selecting an existing file or creating a new one directly),
and shows the information on the selected node in the “Node data” section. The right
panel shows the reduction graph for the target program. In this case, Voyager shows all
possible universes for the sample program. The end states of the program are shown in
red. As expected (see Section 8.2.1), there are three possible end states. “Node Data”
shows the information for the end state under the cursor. The selected state corresponds

181

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

...

A

B
client2-double

client1-getResult

Figure 8.6: A debugging session in Voyager for the program displayed in listing 8.1.

to the end state of an execution path with the faulty interleaving since the result stored
in res is 66.

Let us now start a debugging session to understand how we arrived at the result
being 66. Since math actor is the central point of synchronization in the program, we
set a breakpoint that pauses the program’s execution each time the math actor receives
a message (before processing it). In Voyager calculus, this is called a message receiver
breakpoint ; its semantics are shown in Section 8.3.2. With this breakpoint activated, we
run the program again in Voyager.

Figure 8.6(a) shows the new reduction graph, with the execution paused once the
breakpoint was reached. The blue nodes denote the state of a running debugger executing
the program. When the message receiver breakpoint on the math actor is reached, in
one of the universes, the debugger halts the execution (in that universe) and highlights
the node in pink. As a result, the evaluation of the underlying AmbientTalk program
pauses. The magnifier glass shows the pink node representing the triggering of the
Message-Receiver-Breakpoint rule (later detailed in Section 8.3.2). At this point in the
execution, a developer can click on the node to inspect the state, resume execution, or
execute one of the step commands. The debugging operations applicable at this point
are accessible by means of a radial menu.

For this example, we make Voyager step to the next turn of the math actor. Fig-
ure 8.6(b) shows the resulting graph after applying that stepping command. The first
pink node in Figure 8.6(b) corresponds to the node shown with the magnifying glass in
Figure 8.6(a). Notice that the dashed lines are used to indicate user interaction. The

182

8.3. VOYAGER CALCULUS, AN IMPLEMENTATION OF A
MULTIVERSE DEBUGGER FOR ACTOR-BASED PROGRAMS

new graph shows how the debugger stops again at all possible universes in which the
math actor receives the second message.

The initial expectation of a developer may be that the next message in the mailbox
of the math actor will always be the getResult message. However, in Figure 8.6(b), we
see that there are two possible kinds of universes the base level program can evolve to.
Inspecting the actor’s inbox4 reveals that in some universes, the next processed message is
from client2. As shown in the figure, the top universe corresponds to the interleaving in
which the double message from client2 arrives first, and the bottom universe corresponds
to the interleaving in which the getResult message from client1 correctly arrives after
the doubling message. At this point, a developer sees that the initial expectation does
not hold and a fix can be developed to account for this bad interleaving.

One might be tempted to think that the program could be debugged by a tradi-
tional concurrent debugger using a deterministic message order. While single-stepping
individual messages in a deterministic pattern would create a deterministic message or-
der, traditional concurrent debuggers only keep track of one universe. Because such a
debugger simply picks one of many universes determined by the execution order of mes-
sages, and it may not be the universe in which the bug manifests. Hence, traditional
concurrent debuggers do not avoid the probe-effect. In contrast, multiverse debugging al-
lows developers to explore all possible non-deterministic execution paths of a concurrent
application.

Furthermore, in order to steer the state exploration, our colleagues from University of
Ghent added query facilities to Voyager, based on computing the shortest path to all end
states [LSM+19]. Figure 8.7 (a) shows the original graph for the program. Figure 8.7(b)
shows a more simplified view on the multiverse after applying a query to the original
graph that filters all paths except the shortest path from the start node to all end nodes,
i.e., nodes that cannot be reduced any further.

The breakpoints and stepping operations combined with the query facilities of Voy-
ager provide an interactive experience of browsing the multiverse graph of a program to
find the root cause of bugs. It is important to note that in contrast to static analyses,
a multiverse debugger allows developers to explore and query states of the concrete pro-
gram execution interactively. This enables developers to focus on relevant elements and
thereby directly steer the state exploration.

8.3 Voyager Calculus, an Implementation of a Multiverse
Debugger for Actor-based Programs

In this section, we describe how we implemented a multiverse debugger for actor-based
programs. First, we used the operational semantics of the AmbientTalk language (step 1

4We consider the inbox as a synonym of the mailbox, i.e., the queue that stores the messages the
actor receives.

183

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local
CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al CEL-Step-Local

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Global

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL-Step-Local

CE
L-
St
ep
-G
lo
ba
l

CE
L-
St
ep
-G
lo
ba
l

CEL-Step-Global

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Local

CEL-Ste
p-Local

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Step-Global

CE
L-
St
ep
-G
lo
ba
l

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local
CEL-Step-Global

CEL
-St
ep-

Glo
bal

CEL-Step-Local

CEL
-Ste

p-G
lob
al

CEL
-St
ep-
Loc

al

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CE
L-S
te
p-
Lo
ca
l

CEL-Step-Local

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-LocalCEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-G
lob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Global

CEL
-St
ep-
Loc

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CE
L-S
te
p-
Lo
ca
l

CE
L-S
tep
-Gl
ob
al

CEL
-St
ep-
Loc

al

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Local

CE
L-S
tep

-Gl
ob
al

CEL-Step-Local

CE
L-S
tep
-G
lob
al

CEL-
Step

-Glo
bal

CE
L-S
tep
-Lo
ca
l

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local
CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Global

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Global

CEL
-St
ep-
Glo

bal

CE
L-S
tep

-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-G
lobal

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-S
tep-L

ocal

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Ste
p-Loca

l
CE
L-S
tep
-Gl
ob
al

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Loca
l

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-
Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-S
tep-L

ocal

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-Step-L
ocal

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL
-Ste

p-G
loba

l

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-S
tep-L

ocal
CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step
-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-Gl
oba

l

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-Lo
cal

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-
Step

-Loc
al

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
loba

l

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al
CEL-Ste

p-Local
CEL

-Ste
p-L

oca
l

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Local

CEL-Step-Local

CEL-Step
-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step
-Local

CEL-Step-Glo
bal

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-
Step

-Glo
bal

CEL-S
tep-Lo

cal
CEL

-Ste
p-L

oca
l

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Global

CEL-Step-Global

CEL-St
ep-Glo

balCEL-Step-Local

CEL-Step-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-
Step

-Loc
al

CEL-Step-Local

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-Step-Globa
l

CEL-Step-Local
CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-Step-Local

CEL-Step-
Local

CEL-Step-Local

CEL-Step-Loc
al

CEL-Step-
Local

CEL-Step-Global

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-St
ep-Loc

al

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Local

CEL-S
tep-L

ocal

CEL-Step-Local

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local
CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global
CEL-Step-Local

CEL-Ste
p-Globa

l

CEL-Step-L
ocal

CEL-Step-Glo
bal

CEL-Step-Local
CEL-Step-Global

CEL-Step-Global
CEL-Step-Global

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL
-Ste

p-L
oca

l

CEL
-Ste

p-G
loba

l

CEL-
Step

-Glob
al

CEL-S
tep-G

lobal

CEL-St
ep-Loc

al

CEL-Step
-Local

CEL-Step-G
lobal

CEL-Step-Glob
al

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global
CEL-Step-Local

A B

Figure 8.7: Application of a shortest-path-to-end-states query to the program displayed
in Listing 8.1.

of our multiverse debugging recipe, section 8.1.1)). Then, we defined Voyager calculus, a
debugger configuration and an operational semantics for our multiverse debugger (step
2 of our multiverse debugging recipe).

8.3.1 Syntax and Operational Semantics of the AmbientTalk Language

As we mentioned earlier, we employ the semantics of the AmbientTalk language, i.e.,
the Featherweight AmbientTalk (atf) semantics [VCGBS+14] which formalizes common
features of the CEL model such as actors, objects, blocks, promises (non-blocking futures
in AmbientTalk terminology) and asynchronous message sending. Non-determinism in
the CEL model is exhibited in the order in which actors process messages. Promises also
introduce additional non-determinism as messages are sent to promises, while promises
are not resolved, messages are forwarded to the result value once it is available.

The core calculus of atf consists of 30 evaluation rules (excluding helper functions).
Considering that Featherweight Java [IPW01], a minimal core calculus for Java and GJ
[BOSW98], only has 10 evaluation rules, we believe that the AmbientTalk semantics
should not be considered a small language but at least a mid-size one. For brevity, we
sketch only the parts of atf that are necessary to follow the contributions of this work
and refer to Van Cutsem et al. [VCGBS+14] for the complete semantics. In a nutshell,
atf specifies that actors evaluate messages as expressions to obtain a result value.5 It is
based on a small step operational semantics. This means that the representation of each
of the steps of the program execution is atomic, i.e., there are no intermediate execution
steps. This is useful because it is possible to get all possible states of the evaluation of a
non-deterministic program.

In the following description, we keep the AmbientTalk terms of future and inbox
queue. We consider these terms indistinctly from promise and mailbox.

5In this thesis, we use the subset of Featherweight AmbientTalk for concurrency, i.e., without the
notion of networks for distribution.

184

8.3. VOYAGER CALCULUS, AN IMPLEMENTATION OF A
MULTIVERSE DEBUGGER FOR ACTOR-BASED PROGRAMS

K ∈ Configuration ::= a Actor configurations
a ∈ Actor ::= A⟨ιa, O,Qin, e⟩ Actors

Object ::= O⟨ιo, t, F,M⟩ Objects
t ∈ Tag ::= o | i Object tags
Future ::= F⟨ιf , Qin, v⟩ Futures

Resolver ::= R⟨ιr, ιf ⟩ Resolvers
m ∈ Message ::= M⟨v,m, v⟩ Messages
Qin ∈ Queue ::= m Inbox queues
M ⊆ Method ::= m(x){e} Methods

F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ϵ Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References

e ∈ E ⊆ Expr ::= . . . | e← m(e) | r Runtime
Expressions

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιa ∈ ActorId, ιo ∈ ObjectId, ιn ∈ NetworkId

ιf ∈ FutureId ⊂ ObjectId, ιr ∈ ResolverId ⊂ ObjectId

Figure 8.8: Semantic entities of the atf calculus.

Figure 8.8 shows the semantic entities of the operational semantics of atf . A config-
uration K represents the set of actors that are executed concurrently in the program. An
actor is represented by an identity ιa, a set of objects O, an inbox queue Qin that stores
the messages to be processed and an expression e the actor is currently evaluating. An
object O consists of an identity ιo, a tag t and a set of fields F and methods M . The
tag distinguishes between objects passed by reference o, and passed by copy i. A future
consists of an identity ιf , a queue for the pending messages Qin, and a resolved value
v. A resolver object allows to assign a value to its unique paired future, and as such, it
consists of an identity ιr and the identity of its corresponding future ιf . A message m

is represented by an identifier ιm, a receiver value v, a method name m and a sequence
of arguments values v. References to objects r consist of an identifier for the actor ιa
owning the referenced value and a local component that can be ιo, ιf or ιr. The local
component indicates that the reference refers to either an object, a resolver, or a future.
An expression e can include references r or an asynchronous message send e← m(e) .

We needed to extend the AmbientTalk semantics shown in Figure 8.8 for Voyager.
In particular, Figure 8.9 shows how we extended two elements of the semantics.

• The first element corresponds to the message entity m, which we extended with an
id ιm to identify the message.

• The second element corresponds to the send expression e ←id m(e) that we ex-
tended also with an identifier id to determine which message is breakpointed. This
identifier is needed because different types of breakpoints can be set on the same
message.

185

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

m ∈ Message ::= M⟨ιm, v,m, v⟩ Messages

e ∈ E ⊆ Expr ::= . . . | e←id m(e)
Runtime
Expressions

Figure 8.9: Extended semantic entities in atf for debugging in Voyager calculus.

8.3.2 Syntax and Operational Semantics of the Voyager Debugger

In this section, we apply step 2 of the multiverse debugging recipe and describe the
syntax and operational semantics of our multiverse debugger, Voyager. We first describe
the general strategy of the debugger to be able to debug Communicating Event-Loops
programs, and we then detail the elements of the debugger configuration of Voyager (step
2a of the recipe in Section 8.1.1) and the key mechanisms for supporting breakpoints and
stepping operations as the one described in the previous section (step 2b of the recipe in
Section 8.1.1).

8.3.2.1 Syntax

The Voyager debugger keeps track of both the state of the underlying target program
and its own state. The semantics of the debugger consists of a set of reduction rules
which transition from one debugger state to the next one. In order to model the catalog
of breakpoints and stepping operations described in Chapter 5, we define the debugger
state D, which consists of six elements, Bp, Bc, ds, C,As,K.

• The first two elements Bp and Bc are respectively the list of pending breakpoints
and the list of already checked breakpoints.

• To keep track of which action the debugger is performing, the debugger configura-
tion contains a debugger state ds for representing the state run and pause. When
the debugger is in the run state it verifies whether there is an applicable break-
point. When a breakpoint hits, the debugger transitions itself to the pause state
and halts execution.

• To model the possible debugging operations offered to the user, e.g., stepping,
resume, and pause, the debugger state contains a list of commands C.

• To keep track of the state of the actor, the debugger configuration contains a map
As.

• Finally, K is the state of the actor configuration being debugged, i.e., the state of
the AmbientTalk program.

186

8.3. VOYAGER CALCULUS, AN IMPLEMENTATION OF A
MULTIVERSE DEBUGGER FOR ACTOR-BASED PROGRAMS

The general form of the reduction rules of the Voyager debugger consists of transitions
between debugger states:

D⟨Bp, Bc, ds, C,As,K⟩ →d D⟨B′
p, B

′
c, d

′
s, C

′, A′
s,K

′⟩

Note that the transition relation of the debugger is denoted by→d while the transition
rules of the base language are defined as →k. The evaluation strategy of the debugger
consists of traversing the list of pending breakpoints Bp one-by-one from left to right,
moving the debugger to a stopped state when a breakpoint hits. When a breakpoint
does not apply to the current state of the actor configuration, it is moved from the list of
pending breakpoints to the list of checked ones. When there are no pending breakpoints
left, the debugger instructs the actor configuration to take one step and swaps the checked
breakpoints with the pending breakpoints. This continues till either a breakpoint is hit
or an end state is reached.

d ∈ Debugger ::= D⟨Bp, Bc, ds, C,As,K⟩ Debugger configurations

Bp ∈ Pending breakpoint ::= bu | bt Pending breakpoints
Bc ∈ Checked breakpoint ::= bt Checked breakpoints

ds ∈ Debugger state ::= run | pause Debugger states
C ∈ Command ::= c Commands

As ∈ Actor state map ::= cs Actor state map

bu ∈ User breakpoint ::= B⟨tub, ιi⟩ User Breakpoints
bt ∈ Trigger breakpoint ::= B⟨ttb, ιa, ιi⟩ Trigger Breakpoints

c ∈ C ::= C⟨tc⟩ | C⟨tc, n⟩ Commands
cs ∈ Current actor state ::= CS⟨ιa, as⟩ Current actor state

as ∈ Actor state ::= run | pause | step n Actor states

tub ∈ User breakpoint tag ::= msb | mrb User breakpoint tags
ttb ∈ Trigger breakpoint tag ::= mrb-trigger Trigger breakpoint tags

tc ∈ Command tag ::= step-next-turn ιa | Command tags
resume |
pause

ιi ∈ BreakpointId

Figure 8.10: Semantic entities of the Voyager calculus.

Figure 8.10 shows an overview of the elements of the Voyager calculus. More con-
cretely, it includes all the entities of the semantics that are needed by the six elements
of the debugger configuration D, i.e., bu, bt, c, cs, as, tub, ttb, tc.

• To define a breakpoint bu we use a two-element tuple consisting of a breakpoint
tag tub and an expression id ιi.

187

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

• Additionally, we define breakpoints at the level of the debugger semantics, i.e.,
breakpoints which are defined by the semantics itself rather than by the developer
debugging a target program. We call these breakpoints trigger breakpoints to dis-
tinguish them from the user ones aforementioned. A trigger breakpoint bt consists
of a tuple of three elements, a breakpoint tag ttb, an actor id ιa, and an expression
id ιi.

• A command c is defined by a tag tc. In the case of a step to next turn we need to
define also the number of steps n the command needs to take in the evaluation of
the program, i.e. C⟨c, step n⟩.

• The map of actors As keeps a list of pairs CS⟨ιa, as⟩ consisting of the id of the actor
ιa and the current state as.

• An actor can be in run or pause state. In addition, an actor can have a state
step n.

• The breakpoint tags tub indicate the tags a user can identify when defining a break-
point (cf. Table 5.1).

• The trigger breakpoint tags ttb correspond to the tags built-in in the semantics to
actually trigger the breakpoint.

• The command tags tc refer to the debugging commands the user can specify to
debug the program, i.e., several stepping operations and resume/pause commands.

8.3.2.2 Operational Semantics

Having defined the syntax of the Voyager debugger and the debugger configuration (step
2a of the multiverse debugging recipe), we can now define the semantics of the debugger
operations that Voyager offers to developers to interactively explore the target program
(step 2b). The reduction rules of Voyager can be separated in five groups:

1. Reduction rules for modeling the connection of the debugger with the base level
language (see 8.3.2.2.1)

2. Reduction rules for breakpoints (see 8.3.2.2.2), including rules needed to model
breakpoints which require trigger breakpoints for their functioning.

3. Bookkeeping reduction rules (see 8.3.2.2.3), i.e., rules that are related to the actor
state when breakpoints are not applicable and when new actors are created.

4. Reduction rules for the stepping operations (see 8.3.2.2.4), consists of the rules
for stepping commands that can be applied on the level of messages, futures, and
turns.

188

8.3. VOYAGER CALCULUS, AN IMPLEMENTATION OF A
MULTIVERSE DEBUGGER FOR ACTOR-BASED PROGRAMS

5. Reduction rules for other debugging commands (see 8.3.2.2.5), i.e., rules that will
resume and pause the program’s execution.

8.3.2.2.1 Connection with the Base Level Language Recall that the semantics
of a multiverse debugger is defined in terms of the underlying base language semantics,
atf in the case of Voyager. Two reductions rules (shown below) manage the connection
of Voyager’s semantics with atf : cel-step-global and cel-step-local. The cel-
step-global rule transitions the actor configuration K to the actor configuration K ′

by applying the global AmbientTalk reduction relation (→k). This relation controls
all the actor transition rules that affect two or more actors, i.e., sending asynchronous
messages and creating new actors. The cel-step-local rule, on the other hand, non-
deterministically picks an actor a from the actor configuration K and transitions it to
an actor a′ by applying the local multi-step AmbientTalk relation ∗−→a. This reduction
relation applies one or more single-step local reductions, which can be applied to the
actor. All these single-step reductions are deterministic. Finally, we require that the
actor which we transition is in a local running state and update it accordingly, i.e., when
the actors local state is (step n) the update meta-function will update the actors state
to (step n− 1).

Both the cel-step-global and cel-step-local rule can only be triggered when all
the pending breakpoints are checked. Note that after taking a step in atf , the checked
breakpoints and the pending breakpoints are swapped. At certain points during the
execution, it could be that both cel-step-global and cel-step-local are applicable
at the same time. This is intentional and is part of the non-deterministic nature of
executing the AmbientTalk semantics that we want to capture in the debugger.

(cel-step-global)
K →k K ′

not− applicable− add− new − actor

D⟨(), Bc, run, C,As,K⟩ →d D⟨Bc, (), run, C,As,K
′⟩

(cel-step-local)

K = K ′∪̇{a} a
∗−→a a′ A′

s = update(As, a)

not− applicable− add− new − actor

D⟨(), Bc, run, C,As,K⟩ →d D⟨Bc, (), run, C,A
′
s,K

′∪̇a′⟩

8.3.2.2.2 Reduction Rules for Breakpoints As mentioned before, the Voyager
semantics features two families of breakpoints: user breakpoints denote breakpoints that
are activated by the user while trigger breakpoints denote breakpoints generated by the
debugger. As an example of user breakpoint, consider the message receiver breakpoint,
defined in Table 5.1, and we explained in the debugging session shown in section 8.2.

189

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

It halts the execution of an actor before it processes a message, which is identified by a
unique id.

Generally, we only know during program execution which actor hosts the receiver
object of a message. Therefore, the debugger monitors the program and inserts a new
trigger breakpoint when the id of the receiver actor becomes known. The trigger break-
point is used by the debugger semantics to later halt the execution when the message is
actually received at the receiver side.

The save-mrb reduction rule below controls the semantics of transforming a message
receiver breakpoint into a trigger message receiver breakpoint. When the message is
about to be sent, the user breakpoint B⟨mrb, ιi⟩ that is in the list of pending breakpoints,
the save-mrb is triggered if the actor id of the breakpoint corresponds to the actor id
of the receiver actor. In this case, the breakpoint is removed from the pending list, and
a trigger breakpoint B⟨mrb− trigger, ιa′ , ιi⟩ is added to the list of checked breakpoints.
Note that the sender and receiver actors of that message continue with run state, but
the addition of the trigger message breakpoint will make the execution of the debugger
pause at the receiver actor, i.e., the actor id ιa′ which is included in the trigger breakpoint
itself.

(save-mrb)
A⟨ιa, O,Qin, e□[ιa′ .ιo ←ιi m(v)]⟩ ∈ K

D⟨B⟨mrb, ιi⟩ ·Bp, Bc, run, C,As,K⟩ →d D⟨Bp, Bc · B⟨mrb− trigger, ιa′ , ιi⟩, run, C,As,K⟩

The next reduction rule is trigger-mrb and it controls the semantics of the trigger
breakpoint added for a message receiver breakpoint. Back in the example debugging
session, Figure 8.6 showed that the triggering of this rule resulted in the pink node under
the magnifying glass. In the trigger breakpoint, the id of the actor ιa is saved to identify
the actor the user wants to halt, and the ιi is saved to identify in which message. When
the message arrives in the queue of the receiver actor, the trigger breakpoint is removed
from the pending list Bp and the debugger and the receiver actor change their state to
pause. Note that the receiver actor cannot process local operations, but it can execute
global ones, e.g., receive a new message from another actor. Then, to enable the message
receiver breakpoint, we need two operations, first saving the information needed when
the message is about to be sent and triggering the breakpoint. These operations are
declared in the reduction rules save-mrb and trigger-mrb.

(trigger-mrb)
A⟨ιa, O,m ·Qin, v⟩ ∈ K A′

s = As ∪̇ {CS⟨ιa, pause⟩}
D⟨B⟨mrb− trigger, ιa, ιi⟩ ·Bp, Bc, run,C,As,K⟩ →d D⟨Bp, Bc, pause, C,A

′
s,K⟩

If the user would like to define a message sender breakpoint, i.e., to halt the program
before the message is sent, there is no need to save additional information, as we did

190

8.3. VOYAGER CALCULUS, AN IMPLEMENTATION OF A
MULTIVERSE DEBUGGER FOR ACTOR-BASED PROGRAMS

for the message-receiver breakpoint. The information we need is available at the current
evaluation of the actor configuration K. To trigger a message sender breakpoint, there
needs to be an actor in the configuration K that is about to send a message. The id
of the message send operator ιi needs to be the same as the identifier of the breakpoint
corresponding to the message sender. When this is the case, the breakpoint is removed
from the list of pending breakpoints Bp. Note that a breakpoint at the sender side of
the message sent reduces the debugger to a pause state just after the message is created.
The sender actor change its state from run to pause. The reduction rule that expresses
the semantics for a message sender breakpoint is trigger-msb.

(trigger-msb)
A⟨ιa, O,Qin, e□[ιa′ .ιo ←ιi m(v)]⟩ ∈ K A′

s = As ∪̇ {CS⟨ιa, pause⟩}
D⟨B⟨msb, ιi⟩ ·Bp, Bc, run, C,As,K⟩ →d D⟨Bp, Bc,pause, C,A

′
s,K⟩

8.3.2.2.3 Bookkeeping Reduction Rules For each of the breakpoint triggering
rules, there should be a rule which instructs the debugger to move the breakpoint to the
list of checked breakpoints when the breakpoint does not hit. Instead of listing all these
individual rules, we compressed them into one rule called not-applicable-breakpoint
which should be triggered when the breakpoint at the head of the list is not applicable.

(not-applicable-breakpoint[trigger-msb,save-mrb,trigger-mrb])
not− applicable− breakpoint

D⟨B⟨tub, ιi⟩ ·Bp, Bc, run, C,As,K⟩ →d D⟨Bp, Bc · B⟨tub, ιi⟩, run, C,As,K⟩

The reduction rule add-new-actor is declared for the creation of new actors. This
rule basically updates the As map when an actor is created, with a pair for the actor
state, which consists of the new actor id ιnew and run state.

(add-new-actor)

A⟨ιa, O,Qin, e□[actor{f := e,m(x){e}}]⟩ ∈ K CS⟨ιnew, as⟩ ̸∈ As

D⟨Bp, Bc, run, C,As,K⟩ →d D⟨Bp, Bc, run, C,As · CS⟨ιnew, run⟩,K⟩

8.3.2.2.4 Reduction Rules for Stepping Operations Similar to the formaliza-
tion of the message sender breakpoint, some stepping commands need to be encoded
with several reduction rules. For example, the step to next turn command employed in
debugging session in section 8.2, is formalized with two reduction rules: prepare-step-
next-turn and trigger-step-next-turn. The prepare-step-next-turn rule is
triggered when the debugger is in the paused state and transitions a particular actor with
id ιa from the paused state to the (step 1) state indicating that the actor is allowed to
take exactly one local step (see cel-step-local in 8.3.2.2.1).

191

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

The trigger-step-next-turn rule is triggered when a particular actor with id ιa
is in the state (step 0). When this rule is triggered, the debugger moves form the run

state to the paused state. At the same time, the local actor state is also changed to the
pause state. Note that other breakpoints and stepping commands can be encoded in a
similar way as we have shown for the message receiver breakpoint and step to next turn.

(prepare-step-next-turn)
A⟨ιa, O,m ·Qin, e⟩ ∈ K A′

s = As ∪̇ {CS⟨ιa, (step 1)⟩}
D⟨Bp, Bc,pause, (StepNextTurn ιa) · C,As ∪̇ CS⟨ιa, (pause)⟩,K⟩ →d

D⟨Bp, Bc, run, (StepNextTurn ιa) · C,A′
s,K⟩

(trigger-step-next-turn)
A⟨ιa, O,m ·Qin, v⟩ ∈ K A′

s = As ∪̇ {CS⟨ιa, pause⟩}
D⟨Bp, Bc, run, (StepNextTurn ιa) · C,As ∪̇ CS⟨ιa, (step 0)⟩,K⟩ →d D⟨Bp, Bc, pause, C,A

′
s,K⟩

8.3.2.2.5 Reduction Rules for Basic Debugging Commands Finally, we show
below the rules for basic debugging commands to control the execution of a program,
namely pause and resume.

The resume-execution rule guarantees that the execution of the program continues
from any pause state of the debugger. As such, the debugger state transits from pause

to run. The rule updates the state of the local actors to run.
The pause-execution rule halts the execution of all actors in the actor configura-

tion, transitioning the debugger state from run to pause. The rule updates the state of
the local actors to pause.

(resume-execution)
A′

s = run(As)

D⟨Bp, Bc,pause, Resume · C,As,K⟩ →d D⟨Bp, Bc, run, C,A
′
s,K⟩

(pause-execution)
A′

s = pause(As)

D⟨Bp, Bc, run, Pause · C,As,K⟩ →d D⟨Bp, Bc,pause, C,A
′
s,K⟩

8.4 Discussion

There are a number of design decisions and limitations worth discussing. First, in our
early prototype of the debugger semantics [TLGBS+17], we did not separate the global
from the local atf reduction rules. This turned out to be problematic because it makes it
hard to pause a specific actor from processing messages while still allowing it to receive

192

8.4. DISCUSSION

messages in its inbox. Separating the global from the local semantics simplified the
semantics significantly.

Second, the early prototype used the single-step operational semantics to transition
the local actor semantics [TLGBS+17], while in the final version reported here, we are
using a multi-step relation. As previously mentioned, in the actor model, the only point
where non-determinism matters are when messages are being exchanged between the
actors. However, when using the single-step local reduction relation, a lot of additional
and irrelevant non-determinism is introduced. This made working with the Voyager
debugger very tedious and reduced its usefulness for larger programs. By switching
to the local multi-step relation, the amount of states being shown to the end-user is
significantly reduced, while the non-deterministic behavior due to message passing is
completely preserved.

Finally, it is worth noting that even though the multi-step relation alleviates the
problem of a growing number of states, the number of states still grows depending on the
program size, as previously mentioned. Further research is needed to investigate ways
to reduce the number of states without removing relevant sources of non-determinism
in the program. To this end, advances in the context of static techniques like symbolic
execution and model checking can be employed as starting points. We believe that with
the current hardware evolution of multicore machines, the size of programs that can
be debugged with multiverse debugging is steadily growing as well. At this point, we
have used the Voyager tool to debug programs of the size of dining philosophers. Of
course, applying multiverse debugging to industrial-strength languages will also require
further work. But the goal would be that a traditional breakpoint-based debugger can
be a foundation for such multiverse debugging. Recently, the operational semantics we
proposed here was extended with remote debugging constructs to facilitate debugging of
WebAssembly programs for Arduino microcontrollers [SLM+19].

8.4.1 Static Analysis and Multiverse Debugging

Since multiverse debugging allows developers to explore all possible paths of execution of
an application, it can be considered closely related to static analysis techniques such as
model checking and symbolic execution. In Section 3.3.4, we provide an overview of such
techniques, with a focus on actor-based approaches. Here we compare them to multiverse
debugging.

Model checking tools excel at finding a set of bugs of which the programmer knows
exactly how to describe them. Multiverse debugging is meant for debugging and inter-
actively exploring the state space in order to discover bugs for which the programmer
may not have a good description. Similar to model checking, multiverse debugging can
suffer from the state explosion problem. As mentioned before (see Section 8.1.3), our ap-
proach does not blindly explore all the possible states but lets the developer decide which
states to explore next, either explicitly or by using multiverse breakpoints, which makes
multiverse debugging similar to bounded model checking [BCCZ99]. Other techniques

193

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

in model checking have been proposed to handle the state explosion problem, including
symbolic model checking with binary decision diagrams, partial order reductions, and
counterexample guided abstraction refinement [CGJ+01]. In short, the main difference
of model checking with our approach is that the user knows in advance what is the prop-
erty to be checked for a given program state. Our approach addresses the case when the
user does not have any information regarding the bug, but the user knows there is a bug
in the program.

Like multiverse debugging, the technique of symbolic execution can explore all pos-
sible execution paths of a program. While the use of abstract states alleviates the state
explosion problem, that may imply missing execution paths (i.e., universes) containing a
bug due to under approximation. In contrast to symbolic execution, multiverse debug-
ging models the program execution only with concrete values and can not miss execution
paths. While multiverse debugging does not solve the state explosion problem, devel-
opers can pause and resume the program and select themselves the different execution
paths to explore.

8.5 Proof of Non-Interference for a Multiverse Debugger

In this section, we provide a proof of non-interference for the semantics of the Voyager
debugger. More specifically, we prove observational equivalence between the debugger
and the base language semantics. Intuitively, this means that any execution of the
Voyager debugger corresponds to an execution of an AmbientTalk program, and any
execution of an AmbientTalk program is observed by Voyager. Formally,

Theorem 1. (Equivalence of evaluation steps) Let K be an actor configuration in the
atf semantics, for which there exists a transition to an actor configuration K ′. Let D

be a debugging configuration for K and Bp, Bc, ds, C,As elements of D such that the
commands C resume all the paused actors then:

(K →k K ′) ⇐⇒ (D⟨Bp, Bc, ds, C,As,K⟩ →dk D⟨B
′
p, B

′
c, d

′
s, C

′, A′
s,K

′⟩)

The left-hand side of the biconditional relation represents the evaluation of the pro-
gram in the AmbientTalk semantics atf , i.e., the configuration of actors K, to another
program state K ′. Where→k corresponds to the evaluation regarding the reduction rules
of the base language.

The right-hand side of the biconditional relation represents the evaluation of the
program in the debugger semantics D⟨Bp, Bc, ds, C,As,K⟩, which yields in an another
debugger configuration D⟨B′

p, B
′
c, d

′
s, C

′, A′
s,K

′⟩. Where→dk represents one or more eval-
uation steps taken by the debugger transition rules in K, until the debugger configuration
D⟨B′

p, B
′
c, d

′
s, C

′, A′
s,K

′⟩ is reached.
To prove the biconditional relation of Theorem 1, we divide our proof into two parts,

which corresponds to the two implications of the relation.

194

8.6. RELATED FORMAL SPECIFICATIONS FOR DEBUGGING

Implication 1. An evaluation step in the AmbientTalk semantics implies
equivalent evaluation steps in the debugger semantics

Proof sketch: We proceed by induction over the set of pending breakpoints Bp.
Base case: In this case the list Bp is empty. Either the actor is in the running or in

the paused state. By assumption, when the debugger configuration is in a pause state,
the commands C will un-pause (i.e., resume) the debugger.

In general, a step in the base-level language can be done in two modes. In case the
base level semantics performed a global reduction, there is a corresponding transition in
the debugger by taking a step with cel-step-global. Similarly, if it was a local rule,
there is a possible transition with the cel-step-local rule.

Inductive case: Assuming that there is a list of pending breakpoints Bp leading to
the actor configuration K ′. When adding one breakpoint to that list, we need to consider
two cases. Either the breakpoint is applicable, or it is not. When the breakpoint does not
apply, the corresponding not-applicable-breakpoint rule will move the breakpoint
to the list of checked breakpoints, and the induction hypothesis applies. In the other
case, the breakpoint applies, in which by assumption the commands C will transition the
debugger back to the run state, at which point the induction hypothesis can be applied.

Implication 2. An evaluation step in the debugger semantics implies an
equivalent evaluation step in the AmbientTalk semantics

Proof sketch: By construction, the only two rules cel-step-local and cel-step-
global where the debuggers K field transitions to K ′ directly rely on the underlying
AmbientTalk semantics.

8.6 Related Formal Specifications for Debugging

We now compare Voyager to existing formalization efforts of debugging techniques.
The first formal specification for debuggers was proposed by Da Silva [da 92]. He used

a structural operational semantics that considers a debugger as a system, which tran-
sitions from one state to another using an evaluation history. He defines the semantics
of his debugging approach on top of a deterministic relation specification of a program-
ming language. To prove debugger correctness, Da Silva presented a proof of equivalence
between two debugger approaches. This work served as inspiration for multiverse de-
bugging, but we focus on proving the equivalence between the base language and the
debugger, i.e., their non-interference. While Da Silva does not address non-deterministic
languages, he argues that non-repeatability of evaluation can be avoided by recording all
choices where more than one evaluation rule could be chosen. However, to the best of
our knowledge, Da Silva never put this theory into practice. Our approach differs from
Da Silva by embracing the non-deterministic nature of the base language and using it to
derive a non-deterministic debugger.

195

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

Bernstein et al. [BS95] developed a debugging semantics based on transitions for a
deterministic functional programming language. The evaluation steps in the debugging
session correspond to executing subexpressions of the program. Similar to Voyager,
developers can select terms (represented as nodes in the graph) corresponding to the
program states and create new programs from them to debug. Bernstein et al. did not
apply their techniques to non-deterministic languages.

In the context of distributed systems, Ferrari et al. [FT01] proposed a debugging
calculus for mobile ambients. Similar to our approach, they model a debugger as an
extension of the operational semantics of an underlying programming language. Their
operational semantics is a causal model of behaviors that they represent using Petri nets.
In a later work, Ferrari et al. [FGST08] proposed Causal Nets, which allows the developer
to query a causal message graph generated by the execution of a set of distributed
processes. We have experimented with converting the multiverse execution graph into a
Petri net, but due to the size of the execution graphs, the resulting Petri nets offered a
few additional insights into the program behavior.

In the context of algorithmic debugging, Luo et al. [LC06] proposed a formal model
of tracing for functional programs. The authors proved the correctness of evaluation
dependency trees to identify faulty nodes, i.e., a node with erroneous computation. They
consider correctness when the debugging algorithm detects a faulty node that matches
the answer of the user. In contrast to multiverse debugging, this approach does not show
an exploration of different non-deterministic paths but the exploration of one path of
execution of a functional program based on a trace.

Similarly, Caballero et al. [CMMRT18] uses a technique of algorithmic debugging to
detect liveness issues in Erlang programs. Their approach can analyze sequential and
concurrent programs using a calculus based on proofs to build execution trees.

Li et al. [LLL14] introduced a formal semantics for debugging synchronous message-
passing programs, e.g., MPI, Occam, and JCSP. They propose a structural operational
semantics for a tracing procedure and bug/fix locating procedure. The goal of these
procedures is to record useful information that helps to build the execution history of
the program. More concretely, the tracing procedure records to one execution path in
the evaluation of the program, ignoring non-determinism. In contrast, our approach
considers all possible execution paths.

Giachino et al. [GLM14] provide a causal consistent reversible semantics for the µOz
language, featuring thread-based concurrency and asynchronous communication over
ports. These semantics, however, do not explore different paths of the execution of a
concurrent program. Following the idea of reversible semantics, Lanese et al. [LNPV18]
proposed a causal consistent reversible debugger for Erlang processes. More concretely,
they use a reversible semantics for Erlang [NPV16], in which they record a history of all
the computed expressions corresponding to each execution step. In contrast, our seman-
tics only keep track of the state of actors and breakpoint information. In addition, the

196

8.7. CONCLUSION

rules related to the reversible semantics are said to be non-deterministic, but no concrete
exploration examples of different execution paths are included in the paper.

In the context of Petri nets, Van Mierlo et al. [VMV17] proposed a debugging tool
for observing erroneous states of non-deterministic behavior. The tool takes a model of
a system as input and builds a Petri net reachability graph which can be debugged in
an interactive way. Similar to our approach, they provide online debugging operations,
e.g., breakpoints and stepping, to explore specific program states. Multiverse debugging,
however, takes as input programs based on the operational semantics of the programming
language and allows to debug the execution graph of the program.

8.7 Conclusion

In this chapter, we proposed multiverse debugging as a new debugging approach to
tackle the problem of non-determinism in concurrent and parallel programs. Contrary to
traditional concurrent debugging approaches, multiverse debugging allows developers to
explore non-deterministic execution paths corresponding to the evaluation of a program.
This is meant to simplify the reproduction and inspection of concurrency bugs, because it
removes chance and probability from the equation of hitting the problematic interleaving.
Instead, an execution path that can lead to a bug can be explored interactively , and a
developer can see the state in all possible universes.

To build a multiverse debugger, we provided a recipe with two steps. First, we need
to define the operational semantics of a non-deterministic base language. Second, we
need to define a debugger configuration and its operational semantics in terms of the
base language semantics. In this thesis, we have applied this recipe to provide a proof-
of-concept multiverse debugger for actor-based programs called Voyager. Voyager uses
as input a PLT-Redex program implemented in the AmbientTalk operational semantics
and gives as output the reduction graph corresponding to all possible universes of the
program. To make this exploration manageable, the graph can be explored interactively
as one would do in a classic breakpoint-based debugger. Besides providing the semantics
of a multiverse debugger, we also demonstrate that there is no interference between
the debugger and the target program by proving non-interference. This shows that the
debugger is probe-effect free.

197

CHAPTER 8. ONLINE DEBUGGING TECHNIQUES
PROBE-EFFECT FREE

198

Chapter 9

Conclusion and Future Work

This dissertation presented novel interactive debugging techniques for identifying the
root cause of concurrency bugs in actor-based programs. This chapter concludes the
dissertation by revisiting our research goals and our contributions. We also discuss some
limitations of our approach, and we mention paths for future research.

9.1 Research Goals Revisited

We have stated our research goals in Section 1.3, here we discuss to which extend they
have been achieved.

We investigate which kinds of concurrency bugs appear in actor-based pro-
grams Chapter 2 and Chapter 3 approached this goal. We did a study of bugs
reported in the literature, and we created a taxonomy of concurrency bugs for
actor-based applications. Our taxonomy consists of two groups of categories, lack
of progress issues and message protocol violations. In the first group, we found com-
munication deadlocks, behavioral deadlocks, and livelocks. In the second group, we
found message order violations, bad message interleavings, and memory inconsis-
tencies. Based on this taxonomy, we analyzed the state of the art of techniques to
handle concurrency bugs, including static techniques, testing and debugging tech-
niques. The insights from that study was used to improve debugging support for
actor-based programs.

We investigate debugging techniques for actor-based programs to find the
root cause of concurrency bugs Chapter 5 and Chapter 6 approached this goal.
We proposed a set of advanced online debugging techniques based on catalogs of
breakpoints, and stepping operations at the level of messages, which can be com-
bined with sequential operations. We designed several visualizations to improve the
understanding of actor-based programs, including (1) a graph visualization based
on space-time diagrams that shows the happened-before relation of messages in

199

CHAPTER 9. CONCLUSION AND FUTURE WORK

an actor-based program, (2) actor mailbox visualization, and (3) an asynchronous
stack trace which combines information at message level (e.g., asynchronous mes-
sages sent, and promise resolutions) and sequential method activations. Finally, we
extended the Kómpos protocol with new debugging messages for online debugging
and new trace events to enable the implementation of the proposed visualisations.
We prototyped our novel techniques in Apgar, a message-oriented debugger for the
SOMns language and we evaluated them through a user study. We concluded that
the online debugging techniques proposed, combined with our trace-based visu-
alizations, may be helpful in the context of actor-based programming to identify
concurrency bugs.

We investigate interactive debugging techniques which do not suffer from
probe-effect Chapter 8 approached this goal. We proposed multiverse debugging
as a novel technique that allows developers explore all the possible states of an
actor-based program. We defined the basic recipe for defining the semantics of
a multiverse debugger in terms of the base language semantics. We implemented
Voyager calculus as a proof of concept debugger of a multiverse debugger for actor-
based programs. We proved that the debugger does not interfere with the program
behavior and vice versa. We concluded that multiverse debugging establishes a
foundation for building online debugging tools which are probe-effect free for actor-
based programs.

9.2 Restating the Contributions

In this section, we summarize and restate our contributions.

• We have proposed a taxonomy of concurrency bugs for actor-based pro-
grams (see Chapter 2). To the best of our knowledge, this is the first taxonomy
of concurrency bugs proposed for actor-based programs. The taxonomy consists of
two main categories: lack of progress issues and message protocol violations. We
defined three subcategories of lack of progress issues, i.e., communication deadlock,
behavioral deadlock, and livelock. In the category of message protocol violations,
we also defined three subcategories, i.e., message order violation, bad message inter-
leaving, and memory inconsistency. Also, we created a catalog of 24 bugs that we
found in the literature of tools to find concurrency bugs in actor-based programs.
In our study, we classified those bugs according to our taxonomy, we specify the bug
patterns that cause the failure in the program, and we described the observable be-
havior of each of them. This taxonomy not only has provided a new understanding
of the kinds of bugs that can be seen in actor-based programs, but it has planted
the seeds for further studies of concurrency bugs in programs written with main-
stream actor languages. We conclude that our taxonomy will give developers the
proper knowledge to build better tools for identifying and solve concurrency bugs.

200

9.2. RESTATING THE CONTRIBUTIONS

• We have designed and implemented interactive debugging techniques for
actor-based programs (see Chapter 5 and Chapter 6). First, we designed a
breakpoint catalog that allows developers to pause the program’s execution at four
different halting locations in the context of an asynchronous message send. Sec-
ond, we designed a stepping catalog that allows developers to inspect actor state
interactively at the level of messages, promises, turns and can be combined with
sequential stepping. Third, we designed visualizations to enhance the inspection of
the actor state and the inspection of message causality information in the debugged
program. Fourth, we designed an asynchronous stack trace to show control and
data flow information. Finally, we extended the Kómpos protocol to enable the
implementation of online debugging features (such as pause and resume activities)
and novel visualizations. We conclude that the combination of message-oriented
breakpoints and stepping operations with sequential operations, together with the
novel visualizations for causality and asynchronous stack traces, can assist devel-
opers in identifying lack of progress issues and message protocol violations. Since
the extensions made to the Kómpos protocol are concurrency agnostic, we consider
that they enable the implementation of similar visualizations for other concurrency
models.

• We conducted a user study to evaluate the proposed advanced debugging
techniques for actor-based programs (see Chapter 7). Our study gathered
28 participants (in two groups) who solved debugging assignments using our novel
debugging techniques. Although we cannot generalize our user study results (be-
cause time measurements were not statistically significant), we obtained positive
assessments regarding participants’ perception of the debugging techniques. From
our results, we can conclude that the advanced debugging techniques proposed
may be helpful in the context of developing actor-based programming. Partici-
pants valued message breakpoints and stepping operations and the combination of
sequential and message-oriented stepping. Using the data correlation between par-
ticipants’ expertise and the quantitative and qualitative measures, we derived that
the expertise of developers of actor-based programs is important to use advanced
debugging techniques. To the best of our knowledge, our user study is the first
one conducted using a mixed methods experimental research design approach for
validating debugging techniques.

• We introduced multiverse debugging as a novel online probe-effect free
technique for debugging actor-based programs (see Chapter 8). This is the
first online debugging approach that tackles the non-determinism problem in con-
current programs. Multiverse debugging enables developers to interactively explore
the space of all non-deterministic execution paths of a concurrent program. We
provided a recipe for building multiverse debuggers based on a debugger config-
uration and its operational semantics in terms of the base language semantics.
Besides, we have proved that observing the program behavior with the debugger

201

CHAPTER 9. CONCLUSION AND FUTURE WORK

does not affect the target program and vice versa, i.e., our approach is probe-effect
free. We conclude that this technique can simplify the reproduction and inspection
of bugs because it removes chance and probability from the equation of hitting the
problematic scheduling of messages while offering online features for exploring all
possible paths interactively.

9.3 Discussion

In this section, we discuss some limitations of the debugging techniques proposed in this
dissertation.

Concurrency Bugs and Apgar To provide better debugging support for identifying
lack of progress issues and message protocol violations, we have proposed a set
of interactive debugging techniques in our research. Apgar addresses concurrency
bugs that can be seen in the CEL concurrency model, i.e., behavioral deadlocks,
livelocks, bad message interleavings, and message order violations. Since CEL does
not feature blocking operations, further experiments are needed to validate if Ap-
gar can help to find the root cause of bugs such as communication deadlocks. It
may still be difficult in Apgar to debug applications that suffer from bugs caused by
timing issues. For this kind of time-dependent bugs, we think multiverse debugging
could be helpful because it can show wrong schedulings of concurrent operations.
Furthermore, while Apgar incorporates offline features such as visualization of mes-
sage causality, bugs in which the distance between the root cause and the failure is
long can benefit from other techniques such as reverse debugging (see Section 9.4).

Apgar Frontend From the results we obtained in our user study, we identified some
technical limitations in the current Apgar prototype, which may have influenced
the perception of the features users used during the experiments. For example,
we would like to explore alternative graphic frameworks for the turns visualiza-
tion to search for better layouts that avoid the message’s arrows overlapping. In
the asynchronous stack trace implementation, a code revision needs to be done
regarding the data flow of promises resolution and the actors’ id shown by frames.
Regarding the visualization of the asynchronous stack trace, we consider it relevant
to incorporate the variables state for the asynchronous frames, i.e., asynchronous
messages sent and promise resolution frames. Besides, we do not explicitly show a
list of unresolved promises. We only show the state for a promise in the Variables
view and in the Mailbox view. This is a limitation we would like to address also as
future work, starting with the insights we obtained from our experiences applying
interrogative debugging techniques. Moreover, for future work, we would like to
test our proof of concept debugger in more complex actor-based programs.

User Study Experiments As we concluded in Chapter 7 we cannot generalize our
results because time measurements were not significant statistically. For future

202

9.4. FUTURE WORK

user study experiments, we would consider gathering participants only with scores 2
and 3, i.e., with intermediate and advanced knowledge in concurrent programming,
mainly with experience with the actor model. We consider that executing the
experiments with expert participants will provide better time results because from
the correlations of the expertise of participants of our study and the quantitative
and qualitative measures, we obtained better results in the assessments of Apgar
debugging features made by expert participants. Also, one or two days before
the experiment, we recommend giving participants a lab session demonstration
about the debugging features, in which they can interact with the tool in advance.
We think this is important because, as they referred in their comments, some
participants expressed their lack of experience with the tool makes them perform
the assignments in more time.

Practical Multiverse Debugging The main open research question of our multiverse
debugging technique is how to make it practical for complex concurrent applica-
tions. Research is needed to guide the exploration of the state graph, e.g., novel
stepping semantics that works at the level of universes. First, we would like to
extend the Voyager calculus with the whole catalog of breakpoints and stepping
operations from Section 5.1.1 and Section 5.1.2. Besides, we think it would be
interesting to include in the semantics tracking the happened-before relation of
messages. This can be useful, for example, for implementing advanced stepping
on the level of the turns, e.g., stepping to the end of the turn after a message
sender breakpoint is triggered. Second, we foresee the investigation of techniques
to reduce the exploration of the state space, e.g., to allow developers to filter out
non-deterministic paths non-related directly to the fault. Furthermore, in order
to make this debugging technique practical, it needs to be applied to a concrete
language implementation beyond a PLT-Redex-based formalism. In particular, we
aim to investigate techniques that allow us to integrate multiverse debugging in an
IDE visualization. Also, it will be interesting to consider using the semantics to
prove other properties of the debugging operations, e.g., to prove the correctness
of the stepping commands.

9.4 Future Work

Here we present ideas derived from our research that we think can be extended further.

Language and Concurrency-agnostic Debugging APIs In this work, we experi-
mented with the implementation of a debugger as part of a self-optimizing AST-
interpreter on the Truffle/GraalVM platform. As we mentioned in Section 4.4
currently, Truffle Debug API is language-agnostic, but it does not provide support
for concurrency. Our work has overcome this by using Truffle Instrumentation API
to create wrapper nodes and implementing additional stepping strategies based on

203

CHAPTER 9. CONCLUSION AND FUTURE WORK

node metadata. Wrapper nodes allow access and update the state of breakpoints
defined for certain nodes in the program AST. And stepping strategies use syn-
tactic tags and source coordinates to tell Truffle sequential debugger until which
AST node resume execution. We think that the implementation strategies we have
followed to enable breakpoints and stepping operations at the level of messages
could be used as a foundation to support language-agnostic tools for concurrent
languages build on top of Truffle. However, further investigation is needed to ab-
stract breakpoints and stepping semantics from different concurrency models and
integrate them in Truffle Debug API. Our work and the work on the Kómpos
concurrency-agnostic protocol [MLA+17], could serve as starting point to leverage
Truffle debugging support for concurrent languages.

Offline Debugging We aim as future work to incorporate offline features in Apgar
such as reverse debugging. As we mentioned before (Section 3.3.2), recent works
have explored reverse debugging in the context of actor-based programs [BMM+16,
VBMM18, MOM18]. Our catalogs of breakpoints and stepping operations have not
been designed for backward step-by-step execution. We would like to investigate
support for reverse debugging in combination with our catalogs and novel visual-
izations. Considering our stepping catalog, an idea could be to step backward from
the points’ locations proposed in Figure 5.1, i.e., from point 4 to 3, from 3 to 2,
and from 2 to 1, and ideally continue forward when requested by the developer.
To achieve this, we will need to investigate how possible it is to obtain state infor-
mation from the snapshots and enable developers’ interaction with the debugger
in an offline mode without losing the previous online debugging session. Creating
snapshots has already been investigated for SOMns programs [AMGBM19] which
could be integrated with Medeor and Apgar. However, it remains to be seen how
to enable efficiently and seamlessly backward and forward step-by-step execution.
Replaying snapshots will require a decoupling of the two debugging sessions, i.e.,
online and offline. In particular, we will need to investigate, if additional Truffle
instrumentation is needed at the level of AST nodes to enable the offline debugging
session and allowing interactive backward stepping. Furthermore, enabling the ac-
tor’s state inspection and modification in the past requires invalidating (subsets of)
snapshots and re-executing parts of the program.

9.5 Concluding Remarks

In the last two decades, computers have changed our world at a fast pace. There has been
indeed a revolution for concurrent software, as Herb Sutter foresaw 16 years ago. How-
ever, tools support for concurrent software has emerged at a slow pace. This dissertation
aims to push forward the development of debugging tools for identifying concurrency
bugs in actor-based programs with novel techniques.

204

9.5. CONCLUDING REMARKS

We first have contributed a taxonomy of concurrency bugs that aims to give develop-
ers a better understanding of the issues that can occur when programming actor-based
applications.

We have then designed and implemented advanced debugging techniques based on
the combination of online and offline techniques that allows developers to interactively
explore an actor-based program execution. Evaluation of our proof of concept debugger
shows that the proposed debugging techniques may be beneficial to aid expert developers
in finding concurrency bugs and comprehend the program behavior.

Finally, we have proposed a new debugging technique based on a formal operational
semantics that focuses on exploring all non-deterministic paths of an actor-based program
execution interactively. Proof of non-interference for our operational semantics shows
that any evaluation step in the execution of our debugger is equivalent to an evaluation
step in the target program, and the debugger observes any step of the target program
without interference.

Although our tools are still research prototypes, we consider our contributions the
foundation for future debugging tools for actor-based applications.

205

CHAPTER 9. CONCLUSION AND FUTURE WORK

206

Appendices

207

Appendix A

Catalog of Bugs Found in
Actor-based Programs

A.1 Catalog of bugs found in actor-based programs

Bug Type Id Bug Pattern Observable Be-
havior

Source Report-
ing the Bug

Language

Message or-
der violation

bug-1 incorrect exe-
cution order of
two processes
when registering
a name for a pid
in the Process
Registry

runtime excep-
tion

Fig. 1 in [CS10] Erlang

Memory
inconsistency

bug-2 insert and write
in tables of Er-
lang Term Stor-
age with public
access

inconsistency
of values in the
tables

Fig. 2 in [CS10] Erlang

Memory
inconsistency

bug-3 insert and write
in tables (dirty
operations in
Mnesia database)

inconsistency
of values in the
tables

Fig. 2 in [CS10] Erlang

Communi-
cation dead-
lock

bug-4 receive statement
with no messages

process in waiting
state due to an
orphan message

Fig. 1 in
[CS11b]

Erlang

Memory
inconsistency

bug-5 testing insert
operations in
parallel (Mnesia
database)

exception or in-
consistent return
values

Sec. 5 of [HB11] Erlang

209

APPENDIX A. CATALOG OF BUGS FOUND IN ACTOR-BASED
PROGRAMS

Memory
inconsistency

bug-6 testing open_file
in parallel with
other opera-
tions of dets
API (Mnesia
database)

inconsistency
when visualiz-
ing the table’s
contents

Sec. 5 of [HB11] Erlang

Memory
inconsistency

bug-7 open, close and
reopen the file,
besides running
three processes in
parallel (Mnesia
database)

integrity checking
failed due to pre-
mature_eof error

Sec. 5 of [HB11] Erlang

Memory
inconsistency

bug-8 changes in the
dets server state

integrity checking
failed (Mnesia
database)

Sec. 5 of [HB11] Erlang

Communi-
cation dead-
lock

bug-9 receive statement
with no messages

process in wait-
ing state due to
an orphan mes-
sage (server waits
for ping requests)

Program 2 and
Test code 2 in
[GCS11]

Erlang

Communi-
cation dead-
lock

bug-10 message sent to a
finished process,
the finished pro-
cess exit without
replying

process blocks
due to an orphan
message

Test code 5 in
[GCS11]

Erlang

Message or-
der violation

bug-11 spawned process
that terminates
before its Pid is
register by the
parent process

process will crash
and exits abnor-
mally due to an
orphan message

Fig. 1 in
[CGS13b]

Erlang

Bad message
interleaving

bug-12 actor execute a
third message be-
tween two consec-
utive messages

inconsistent val-
ues of variables

Fig. 2 in
[LDMA09]

ActorFo-
undry,
Scala

Message or-
der violation

bug-13 incorrect order of
execution of two
message receives

the program
throws an excep-
tion because of a
null value

Listing 1 in
[TPLJ13]

Scala

Message or-
der violation

bug-14 the second mes-
sage is executed
with the value of
the first message

actions are per-
formed over the
wrong variable

Fig. 4 in
[ZBZ11]

JavaScript

210

A.1. CATALOG OF BUGS FOUND IN ACTOR-BASED PROGRAMS

Bad message
interleaving

bug-15 use of a variable
not initialized by
other methods
before it was
defined

out of bounds ex-
ception

Fig. 4 in
[ZBZ11]

JavaScript

Message or-
der violation

bug-16 race between
HTML parsing
and user actions

application crash Fig. 1 in
[RVS13]

JavaScript

Message or-
der violation

bug-17 race between exe-
cution of a script
and rendering of
an input text box

inconsistency in
the value of the
variable (storing
text the user
entered)

Fig. 2 in
[PVSD12]

JavaScript

Message or-
der violation

bug-18 race between cre-
ation of HTML
element and us-
ing the element

throw an excep-
tion that can lead
the application to
crash

Fig. 3 in
[PVSD12]

JavaScript

Message or-
der violation

bug-19 invocation of a
function before
parsing of the
same function

application crash Fig. 4 in
[PVSD12]

JavaScript

Message or-
der violation

bug-20 iframe’s load
event fires be-
fore the script
executes

event handler will
never run

Fig. 5 in
[PVSD12]

JavaScript

Bad message
interleaving

bug-21 execution of
an operation
(changing the
workspace)
between two
other operations
(starting the file
transmission and
the completion of
the transmission)

exception of vari-
able undefined

Fig. 6 in
[HPK14]

JavaScript

Bad message
interleaving

bug-22 event handler up-
dates DOM be-
tween two input
events that ma-
nipulate the same
DOM element

error because of a
null value

Fig.3 in
[HPK14]

JavaScript

Message or-
der violation

bug-23 user input in-
vokes a function
before it has been
defined/loaded

application
crashes (due to
unexpected turn
termination)

Fig. 2 in
[HPK14]

JavaScript

211

APPENDIX A. CATALOG OF BUGS FOUND IN ACTOR-BASED
PROGRAMS

Bad message
interleaving

bug-24 interleaving of
callbacks

undefined or
overwritten
variable

Fig.2 in
[CDG+19]

Node.js

Table A.1: Catalog of bugs found in actor-based programs

212

Appendix B

SOMns Cheat Sheet

This section includes a summary of the main elements of the SOMns programming language given to
the participants of our user study.

213

A
P

P
E

N
D

IX
B

.
SO

M
N

S
C

H
E

A
T

SH
E

E
T

Collections
Array
(* Array is passed by far reference to

other actors *)
numbersArray1:: Array new: 10.
(* TransferArray is passed by copy to other

actors *)
numbersArray2:: TransferArray new: 10.
(* ValueArray denotes an immutable array *)
numbersArray3:: ValueArray new: 10 withAll:

[:i | i*i].

(* all types of arrays have the same API *)
1 to: 10 do:[:i | numbersArray1 at: i put:

i.].
numbersArray1 at: 1 −→ 1
numbersArray1 size −→ 10

Vector
studentsVector:: Vector new: 10.
studentsVector append: 'Joe'.
(studentsVector at: 1) println. −→ Joe
(* iterating *)
studentsVector do: [:s | ('Student ' + s)

println.].
studentsVector doIndexes: [:i |

('Student '+ (studentsArray at: i))
println.].

Dictionary
dictionary := Dictionary new: 10.
dictionary at: 'somns' put: 80.
dictionary containsKey: 'somns' −→ true
dictionary at: 'somns' −→ 80

4. Concurrency
Actor Definition
(* createActorFromValue message creates an

actor from Math value; it returns a far

reference to the actor Math *)

mathFarRef:: (actors createActorFromValue:

Math).

(* new message creates a new instance of

the Math actor *)

mathActor:: mathFarRef <--: new.
5

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Implicit Promises
result:: mathActor <--: division: 27 and: 5.
(* Registering a callback for a promise;

whenResolved: is applied when the result
is available, onError: when an error

happens; onError: is optional*)
result whenResolved:[:div |
('Division result: '+ div) println.

] onError:[:error |
('DivisionZeroError' + error) println.].

Promise Group
squareA:: mathActor <--: square: sideA.
squareB:: mathActor <--: square: sideB.
(* registers a promise for a group of

promises stored in a table *)
squareA, squareB whenResolved:[

:squaresVector | ...].
, −→ concat. operator returns a table

Explicit Promises
(* explicit promise creation *)
promisePair:: actors createPromisePair.
(* resolves the promise with a value *)
promisePair resolve: perimeter.
(* resolves the promise with an error *)
promisePair error: e.
(* accessing the promise object *)
promisePair promise
(* accessing the resolver object *)
promisePair resolver

References
1. SOMns: https://github.com/smarr/SOMns
2. Setup guide: https://somns.readthedocs.

io/

3. Sample programs: https://github.com/
ctrlpz/somns-sample-programs

4. The standard language library is accessible in the
SDK of the project opened in IntelliJ: core-lib.

This cheat sheet has been adapted from the Smalltalk
one at http://sdmeta.gforge.inria.fr/
Teaching/0809Turino/st-cheatsheet.pdf

6

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

SOMns Cheat Sheet
Software Languages Lab

Vrije Universiteit Brussel
November 2020

1. The SOMns IntelliJ plugin

Figure 1: The SOMns IntelliJ plugin

Run it: (CTRL+FN+SHIFT+F10) Evaluate selected .ns
file.

Debug it: (CTRL+FN+SHIFT+F9) Evaluate selected
.ns file step-by-step with the integrated debugger.

Stop it: (CMD+FN+F2) Stop program’s execution, in
run or debug mode.

2. The SOMns Language
• Class-based OO inspired by Smalltalk: everything is

an object. Everything happens by sending messages.
• Communicating Event-Loops actor model.
• Messages between objects within the same actor are

sent synchronously and return a promise.
• Messages between objects in different actors are sent

asynchronously. 1

214

Keywords
• self, the receiver.
• super, the receiver, method lookup starts in super-

class.
• nil, the unique instance of the class Nil.
• true, the unique instance of the class True.
• false, the unique instance of the class False.

Literals
• Integer: 123
• Double: 123.4
• Boolean: true, false
• String: 'abc'
• Symbol: #ok
• Array:

obj:: Object new.

array:: { nil. false. #rr. obj }.
(array at: 1) −→ nil.

(array at: 2) −→ false.

(array at: 3) −→ rr.

(array at: 4) −→ instance of Object.

Message Sends
1. Unary messages take no argument.

25 sqrt sends the message sqrt to the object 25.
2. Binary messages take exactly one argument.

3 + 4 sends message + with argument 4 to the
object 3. Binary selectors are built from one or
more of the characters +, --, *, =, <, >, etc.

3. Keyword messages take one or more arguments.
2.0 pow: 6.0 sends the message named pow: with
argument 6 to the object 2.

Unary messages are sent first, then binary messages
and finally keyword messages:
2.0 pow: 2 + 16 sqrt −→ 64

Messages are sent left to right. Use parentheses to
change the order:
1 + 2 * 3 −→ 9

1 + (2 * 3) −→ 7 2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Syntax
• Comments

(* Comments are enclosed in parentheses

and asterisks *)

• Temporary variables
| var1 var2 |

• Mutable variable declaration
var ::= aStatement

• Immutable variable declaration
var = aStatement

• Variable assignment
var:: aStatement

• Statements
aStatement1. aStatement2

• Synchronous messages
receiver message (unary msg)
receiver + argument (binary msg)
receiver message: argument (keyword msg)
receiver message: arg1 with: arg2

• Asynchronous messages
receiver <--: message (unary msg)
receiver <--: message: arg (keyword msg)
receiver <--: message: arg1 with: arg2

• Blocks
[aStatement1. aStatement2]

[:argument1| aStatement1. aStatement2]

[:arg1 :arg2| | temp1 temp2 | statement]

• Return statement
^ aStatement

• Main class definition
public class MainClassName usingPlatform:

platform = Value (
| slots |

)(
(* classes definitions and method

definitions *)

public main: args = (^ (* returns an
integer as error code or a promise
for program completion *))

)

3

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

• Class definition
public class ClassName new: parameter1

param2: parameter2 = (
| slots |

)(body)

• Method definition
messageSelectorAndArgumentNames = (
(* comment stating purpose of message *)

| temporary variable names |
statements)

3. Standard Classes
Logical Expressions
true not −→ false
1 = 2 or: [2 = 1] −→ false
1 < 2 and: [2 > 1] −→ true

Conditionals
1 = 2 ifTrue: ['1 is equal to 2' println.]
1 = 2 ifFalse: ['1 is not equal to 2'

println.]

Loops
(* conditional iteration *)
[student notNil] whileFalse: ['student

nil']
[student notNil] whileTrue: [(student

name) println.]

(* fixed iteration *)
sum:: 0.
100 timesRepeat: [

sum:: sum + 1.].

(* another fixed iteration *)
1 to: 100 do: [:index | index println.].

Blocks (anonymous functions)
[1 + 2] value −→ 3
[:x | x + 2] value: 1 −→ 3
[:x :y| x + y] value: 1 value: 2 −→ 3

4

215

APPENDIX B. SOMNS CHEAT SHEET

216

Appendix C

Sample Programs in SOMns

C.1 Prime number
The program creates one Math actor and one Platform actor. The Platform actor randomly computes
10 numbers, which are sent to the Math actor, to check if they are prime numbers or not. The Platform
actor prints the result. Figure C.1 shows a conceptual representation of this program.

Platform Actor (1) Math Actor (1)

isPrime

pIsPrime isPrime

math

promise msg

platform

Figure C.1: Conceptual diagram of the prime number program. For simplicity the
isPrime message is represented as a message sent to a far reference in the diagram,
however, in the implementation shown in listing C.1 this message is sent to promise
math, the instance created for the Math actor.

1 class PrimeNumber usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private TransferArray = platform kernel TransferArray.
4 private harness = (platform system loadModule:
5 ’core -lib/Benchmarks/Harness.ns’ nextTo: self) usingPlatform: platform.
6 private Random = harness Random.
7 |)(
8

9 public class Math = ()(
10

11 public isPrime: number = (
12 | limit |
13 number > 1
14 ifTrue :[

217

APPENDIX C. SAMPLE PROGRAMS IN SOMNS

15 limit :: number /2.
16 2 to: limit do: [: counter|
17 number%counter = 0
18 ifTrue :[
19 ^ false
20]
21].
22

23 ^ true
24]
25 ifFalse :[
26 (’ERROR in Math: Prime numbers should be greater than 1,
27 number received: ’ + number) println.
28 ^ false
29].
30)
31)
32

33 public main: args = (
34 | math numbers completionPP rand |
35

36 completionPP :: actors createPromisePair.
37 numbers :: TransferArray new: 10.
38

39 1 to: 10 do:[:i |
40 rand:: Random new: i + 73425.
41 numbers at: i put: (1 + (rand next % 100)).
42].
43

44 math:: (actors createActorFromValue: Math) <-: new.
45

46 numbers do:[:n |
47 | pIsPrime pWR |
48 pIsPrime :: math <-: isPrime: n.
49 pWR:: pIsPrime whenResolved :[: isPrime |
50 isPrime ifTrue :[(’Number ’+ n + ’ is prime’) println .].
51 isPrime ifFalse :[(’Number ’+ n + ’ is not prime ’) println .].
52

53 n = (numbers at: (numbers size))
54 ifTrue :[
55 completionPP resolve: true.
56]
57].
58

59 pWR <-: println.
60].
61

62 completionPP promise <-: println.
63

64 ^ completionPP promise
65)
66)

Listing C.1: Implementation of a prime number program in SOMns.

218

C.2. INSTANT MESSENGER

C.2 Instant messenger
The program creates three actors, one instance of Platform class and two more actors instances of the
InstantMessenger class. Each instant messenger actor will host one user and their list of chat buddies.
Each user can send simple text messages to a buddy. The instant messenger should only display the
message in its own chat window after it has received an acknowledgement from the remote user that the
message was successfully received. In short, the protocol is: when two messengers discover one another,
they ask one another user names. In this solution both messengers sends a ’Hello’ message to each other
and acknowledge its reception (sendMessage method). A second method should allow the messenger to
accept a text message from a remote user (receive method). It will print the message to the screen and
send an acknowledgement message to the sender user. Figure C.2 shows a conceptual representation of
this program.

Platform Actor (1) InstantMessenger Actor (2)

startChat

receiverActor

messenger

platform

pDiscover

name

receive

displayMessage

Figure C.2: Conceptual diagram of the Instant messenger program. For simplicity of
the diagram we only show one promise message, i.e., name. Besides, the startChat
message is represented as a message sent to a far reference in the diagram, however, in
the implementation shown in listing C.2 this message is sent to promise messenger1 and
messenger2, which are instances created for the InstantMessenger actor.

1 class InstantMessengerApplication usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private Array = platform kernel Array.
4 private Dictionary = platform collections Dictionary.
5 |)(
6 class TextMessage new: content sender: senderName = Value (
7 | public content = content.
8 public sender = senderName.
9 |)()

10

11 public class InstantMessenger new: name total: size = (
12 | private buddyMap = Dictionary new: size.
13 public name = name.
14 private textMessage ::= nil.
15 |)(
16

17 public startChat: remoteMessenger = (
18 | pDiscover pName pSend msg pp array |
19 pp:: actors createPromisePair.
20

21 (* r e t u r n s a f a r r e f e r e n c e o f t h e r e m o t e m e s s e n g e r *)

22 pDiscover :: self addMessenger: remoteMessenger.
23

24 pName :: pDiscover <-: name.

219

APPENDIX C. SAMPLE PROGRAMS IN SOMNS

25 pName whenResolved: [: remoteName |
26 msg:: ’Hello ’ + remoteName.
27 pSend :: sendMessage: remoteName contentMsg: msg.
28

29 pSend whenResolved: [: result |
30 result = #ok
31 ifTrue: [
32 pp resolver resolve: (TextMessage new: msg sender: name)]
33 ifFalse :[
34 pp resolver resolve: nil]]].
35

36 ^ pp promise
37)
38

39 public sendMessage: receiverName contentMsg: content = (
40 | receiverActor pReceive |
41 textMessage :: TextMessage new: content sender: name.
42

43 receiverActor :: buddyMap at: receiverName.
44 pReceive :: receiverActor <-: receive: textMessage.
45 pReceive whenResolved :[: r|
46 (’Receive message ’+ r) println.
47].
48

49 ^ pReceive
50)
51

52 public displayMessage: msg = (
53 (name + ’ screen > ’ + msg) println
54)
55

56 public addMessenger: messenger = (
57 | p pName buddy pWRError |
58 p:: actors createPromisePair.
59

60 pName:: messenger <-: name.
61 pWRError :: pName whenResolved: [:n |
62 buddyMap at: n put: messenger.
63

64 (buddyMap containsKey: n)
65 ifTrue: [
66 (name + ’ updated the far reference to buddy: ’ + n) println.]
67 ifFalse: [
68 (name + ’ discovered a new messenger buddy: ’ + n) println].
69

70 p resolver resolve: (buddyMap at: n).
71] onError: [:e |
72 (’-Error adding the messenger: ’ + e) println.
73 p resolver resolve: nil.
74].
75 pWRError <-: println.
76

77 ^ p promise
78)
79

80 public receive: textMessage = (
81 | sender content |
82 content :: textMessage content.
83 sender :: textMessage sender.

220

C.3. PYTHAGORAS CALCULATOR

84

85 self displayMessage: sender + ’: ’ + content.
86

87 ^ #ok
88)
89)
90

91 public main: args = (
92 | completionPP1 completionPP2 users messenger1 messenger2 pResult1

pResult2 |
93 completionPP1 :: actors createPromisePair.
94 completionPP2 :: actors createPromisePair.
95

96 ’[INSTANT MESSENGER APPLICATION] Starting ’ println.
97

98 users:: Array new: 2.
99 users at: 1 put: ’Joe’.

100 users at: 2 put: ’Marie’.
101

102 messenger1 :: (actors createActorFromValue: InstantMessenger) <-: new: (
users at: 1) total: users size.

103 messenger2 :: (actors createActorFromValue: InstantMessenger) <-: new: (
users at: 2) total: users size.

104

105 pResult1 :: messenger1 <-: startChat: messenger2.
106 pResult1 whenResolved: [: result |
107 result ifNotNil: [
108 messenger1 <-: displayMessage: result sender + ’: ’ + result content.
109 completionPP1 resolver resolve: 0. (* e n d a p p l i c a t i o n *)

110]].
111

112 pResult2 :: messenger2 <-: startChat: messenger1.
113 pResult2 whenResolved: [: result |
114 result ifNotNil :[
115 messenger2 <-: displayMessage: result sender + ’: ’ + result content.
116 completionPP2 resolver resolve: 0. (* e n d a p p l i c a t i o n *)

117]].
118

119 ^ completionPP1 promise whenResolved: [: result1 |
120 completionPP2 promise whenResolved: [: result2 |
121 ’\n\n[INSTANT MESSENGER APPLICATION] Ending ’ println]].
122)
123)

Listing C.2: Implementation of an instant messenger application in SOMns.

C.3 Pythagoras calculator
The program creates four actors: one Platform, two Calculator and one Math. Platform actor contains
an array of Calculator actors. Each Calculator represents a student assignment, which computes the
perimeter of the right triangle knowing only two of its sides. In response to the computePerimeter
message the Calculator actor applies the Pythagoras theorem c =

√
a2 + b2 to get the longest side of

the triangle, i.e., the hypotenuse. The Calculator actor sends square and add messages to the Math
actor to compute the sum of the sides square. When the square root of the result is computed by the
Calculator actor, the message trianglePerimeter is sent. Program that computes the triangle perimeter
given the length of two of its sides. All triangles are considered to be right triangles. Then, we applied

221

APPENDIX C. SAMPLE PROGRAMS IN SOMNS

the Pythagoras theorem to compute the third side. Figure C.3 shows a conceptual representation of this
program.

Calculator Actor (2)Platform Actor (1)

computePerimeter

Math Actor (1)

square

add

square

sqrt

sumSquareP

trianglePerimeter

platform calculator math

Figure C.3: Conceptual diagram of the Pythagoras calculator program. For sim-
plicity of the diagram we only show one promise message, i.e., sqrt. Besides, the
computePerimeter message is represented as a message sent to a far reference in the
diagram, however, in the implementation shown in listing C.3 this message is sent to
promise c, the instance created for the Calculator actor.

1 class PythagorasCalculator usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private Array = platform kernel Array.
4 private harness = (platform system loadModule:
5 ’core -lib/Benchmarks/Harness.ns’ nextTo: self) usingPlatform: platform.
6 private Random = harness Random.
7 private Exception = platform kernel Exception.
8 private numberStudents = 2.
9 |)(

10 public class DivisionZeroError = Exception (
11 self signal.
12)(
13 public asString = (
14 ^ ’DivisionZeroError ’.
15)
16)
17

18 public class Math = (
19)(
20 public add: x and: y = (
21 ^ x + y
22)
23

24 public square: x = (
25 ^ x * x
26)
27

28 public trianglePerimeter: a b: b c: c = (
29 ^ add: (add: a and: b) and: c.
30)
31

32 public division: x and: y = (
33 (y > 0)
34 ifTrue :[
35 ^ x / y
36]
37 ifFalse :[

222

C.3. PYTHAGORAS CALCULATOR

38 DivisionZeroError signal
39]
40)
41)
42

43 public class Calculator new: studentId math: math = (
44 | private studentId ::= studentId.
45 private math = math.
46 private rand = Random new: studentId + 73425.
47 |
48)(
49 public computePerimeter = (
50 | sideA sideB squareA squareB perimeterPP |
51 perimeterPP :: actors createPromisePair.
52

53 sideA :: 1 + (rand next % numberStudents).
54 sideB :: 1 + (rand next % numberStudents).
55

56 squareA :: math <-: square: sideA.
57 squareB :: math <-: square: sideB.
58

59 squareA , squareB whenResolved :[: squares |
60 | squareSumP hypotenusePromise |
61 squareSumP :: math <-: add: (squares at: 1) and: (squares at: 2).
62 hypotenusePromise :: squareSumP <-: sqrt.
63 hypotenusePromise whenResolved :[: sideC |
64 | perimeterPromise |
65 perimeterPromise :: (math <-: trianglePerimeter: sideA
66 b: sideB
67 c: sideC).
68 perimeterPromise whenResolved :[: perimeter |
69 (’Student assignment: ’+ studentId + ’,
70 Triangle sides: A = ’+sideA+’,
71 B = ’+sideB+ ’,
72 C = ’+sideC + ’,
73 Perimeter: ’+perimeter) println.
74 perimeterPP resolve: perimeter.
75].
76].
77].
78

79 ^ perimeterPP promise
80)
81)
82

83 public main: args = (
84 | math a b completionPP calculators counter |
85 completionPP :: actors createPromisePair.
86 math:: (actors createActorFromValue: Math) <-: new.
87

88 calculators :: Array new: numberStudents.
89 counter :: 0.
90

91 ’[PYTHAGORAS CALCULATOR] Starting ...\n’ println.
92

93 calculators doIndexes: [:i |
94 | c |
95 c:: (actors createActorFromValue: Calculator) <-: new: i math: math.
96 calculators at: i put: c

223

APPENDIX C. SAMPLE PROGRAMS IN SOMNS

97].
98

99 calculators do: [:c |
100 c <-: computePerimeter whenResolved :[:p |
101 counter :: counter + 1.
102 counter = numberStudents
103 ifTrue: [
104 completionPP resolve: true.
105].
106].
107].
108

109 ^ completionPP promise whenResolved :[:r |
110 ’\n[PYTHAGORAS CALCULATOR] Ending.’ println.
111]
112)
113)

Listing C.3: Implementation of the Pythagoras calculator program in SOMns.

224

Appendix D

Apgar Implementation Details

D.1 Medeor Implementation Classes
This section details the implementation classes of Medeor, the backend of our proof of concept debugger
Apgar.

D.1.1 Debugger Tool in Medeor
To create a debugger tool for Truffle we created the WebDebugger class, which extends from TruffleInstru-
ment class 1. As mentioned in Section 4.4.1, TruffleInstrument is an interface for Truffle clients that
may observe and inject behavior into interpreters written using the Truffle framework, as in our case
of the SOMns interpreter. The WebDebugger class connects the Truffle debugging features with the
debugger frontend using web sockets2.

The WebDebugger class has an instance of the FrontendConnector class, which awaits for the web
sockets to complete the connection and handles the requests from the debugger frontend. Also, the
FrontendConnector manages the sending of the protocol messages to the frontend through the web
sockets when a suspension occurs. The JSON format is used to encode the messages sent between the
debugger frontend and the backend. In the next section, we detail the messages exchanged for debugging.

The WebSocketHandler is the class to instantiate a web socket server, for example, Medeor have two
web socket instances, implemented as fields in the FrontendConnector class, i.e., messageHandler and
traceHandler. The first one to send debugger messages, and the second one to send trace events.

The Suspension class controls the interaction between the debugger frontend and the application
thread. It provides a mechanism to ask the application thread to perform tasks on behalf of the frontend,
e.g., to walk the stack and obtain the relevant data for the debugger. Here we describe the class fields:

• activityId identifier of the actor that has been suspended.

• activity instance of the suspended actor.

• activityThread thread in the fork join pool executing an actor.

• suspendedEvent gives access to the state of a guest language execution thread that has been
suspended, for example, by a breakpoint or stepping operation.

• stack keeps information on the runtime stack of an application thread for requests from the
frontend.

1https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/
TruffleInstrument.html

2WebSockets https://tools.ietf.org/html/rfc6455

225

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/TruffleInstrument.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/instrumentation/TruffleInstrument.html
https://tools.ietf.org/html/rfc6455

APPENDIX D. APGAR IMPLEMENTATION DETAILS

TruffleInstrument

WebDebugger WebSocketHandler

FrontendConnector
breakpoints: Breakpoints
webDebugger: WebDebugger
messageHandler: WebSocketHandler
traceHandler: WebSocketHandler

Suspension

ApplicationThreadStack

ApplicationThreadTask
activityId: long
activity: Activity
activityThread: TracingActivityThread
suspendedEvent: SuspendedEvent
stack: ApplicationThreadStack
tasks:
ArrayBlockingQueue<AppThreadTask>

stackFrames:
List<StackFrame>
suspension: Suspension

connector: FrontendConnector
instrumenter: Instrumenter

breakpoints: Breakpoints

WebSocketServer

Figure D.1: Class diagram of the main classes of Medeor. Classes in gray color belongs
to the Truffle framework and the WebSocket API.

• tasks is a collection of tasks that need to be executed by the application thread while it is in a
suspension.

D.1.2 Breakpoints and Stepping
Figure D.2 shows the main implementation classes related to breakpoints in Medeor3. On the one hand,
instances of LineBreakpoint class implement traditional breakpoints defined in line numbers in the
frontend. Line breakpoints need only the definition of the uri, line number, and if the breakpoint is
enabled or not. On the other hand, instances of the SectionBreakpoint class, correspond to the message-
oriented breakpoints that we proposed in the breakpoint catalog of Section 5.1.1. As we observed in
the breakpoint examples shown in Section 5.1.1 message breakpoints are defined by a source coordinate
object that consists of a line number, a column number and a char length. The coordinate also has
information about the program file uri. A section breakpoint contains also a breakpoint type bpType,
e.g., message sender, message receiver, etc., and if it is enabled or not.

The Breakpoints class contains an instance of the Truffle DebuggerSession class and two maps
of breakpoints, the ones managed by Truffle, i.e., truffleBreakpoints, and the ones created using
wrapper nodes, i.e., breakpoints. The DebuggerSession class from Truffle Debug API represents a
single debugging session of a debugger.

Moreover, the BreakpointEnabling class checks if a breakpoint is active or a stepping target has
been reached. This class is used for breakpoints and stepping operations that are not managed by the
Truffle framework, i.e., that used wrapper nodes.

As mentioned before, the BreakpointType class is needed to specify the type of breakpoint when
creating a section breakpoint, i.e., a message-oriented breakpoint. This class is defined by the name of
the breakpoint, the applicable node tags, and a stepping type (see Section 5.1.2).

Similarly, in SteppingType class, each type of stepping is defined by a name and the possible node
tags to which the stepping operation is applicable.

3These classes are available at https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/
src/tools/debugger/breakpoints and https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.
5/src/tools/debugger/nodes

226

https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger/breakpoints
https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger/breakpoints
https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger/nodes
https://github.com/ctrlpz/SOMns/tree/somns-intellij-4.5/src/tools/debugger/nodes

D.1. MEDEOR IMPLEMENTATION CLASSES

LineBreakpoint

SectionBreakpoint

Breakpoints

BreakpointEnabling

debuggerSession: DebuggerSession
truffleBreakpoints: Map<BkpInfo,
Breakpoint>
breakpoints: Map<SectionBkp,
BkpEnabling>

sourceUri: URI
line: int
enabled: boolean

coordinate: FullSourceCoordinate
bpType: BreakpointType
enabled: boolean

enabled: boolean
unchanged: Assumption
breakpointInfo: SectionBreakpoint

AbstractBreakpointNode

BreakpointNode

DisabledBreakpointNode

breakpoint: BreakpointEnabling

Node

TracingActors

BreakpointType

SteppingType

activityId: long
stepNextTurn: boolean
allActors: Map<Long, Actor>
traceBufferId: long

name: String
applicableTo: Tag[]

name: String
applicableTo: Tag[]
steppingType: SteppingType

SteppingStrategy
consumed: boolean
type: SteppingType

Tags

Tag

DebuggerSession

SteppingStrategy

Assumption

Figure D.2: Main classes related to the breakpoints and stepping operations.

The SteppingStrategy class indicates if a stepping command has been consumed or not in the
current thread and keeps the stepping type defined for an actor.

The TracingActors class which extends from the SOMns Actor class, corresponds to an actor in
the Kómpos trace (see Section 6.1.3). This class is responsible for checking the flags for debugging
commands, e.g., if the message has a flag enable for halting at the receiver side or on promise resolution.
TracingActors is defined by the following fields:

• activityId actor identifier.

• stepNextTurn flag to enable a step to next turn command.

• allActors map with all the actors created in the program, which is needed when the developer
wants to pause actors without declaring breakpoints explicitly in the frontend.

• traceBufferId buffer identifier used in the Kómpos trace to record the events of the current
actor.

Assumption class represents the implementation of a boolean flag that starts always in true. Once in-
validated, an assumption cannot be valid again. A field instance of this class is declared in BreakpointEna-
bling class, which is needed to know if a breakpoint was enabled or disable.

As mentioned before, wrapper nodes are created using the AbstractBreakpointNode class. We have
two subclasses, BreakpointNode and DisabledBreakpointNode. The first one contains the specializations
to change the breakpoint state, i.e., enable or disable. The second one is a node that always returns
false, which is needed when the Truffle debugger is not enabled.

Tags class contains the implementation for all the syntactic tags used in SOMns to annotate nodes
for enabling breakpoints, e.g., ExpressionBreakpoint. This class extends from the Tag class of the
Truffle Instrumentation API.

SteppingStrategy class from Truffle Debug API provides an implementation of different stepping
commands, that allows execution to continue until it reaches another location, e.g., step into, step over,
etc. There we implemented two additional stepping strategies, i.e., step next and step end turn, which
are used for the breakpoints that implement wrapper nodes and the step to end turn command (see
Section 5.1.2).

227

APPENDIX D. APGAR IMPLEMENTATION DETAILS

D.1.3 Trace Events for Actor State Inspection
We described here how we obtain information to visualize the mailbox for a paused actor showed in
Section 5.1.3.1.

An actor of the program is recorded in the Kómpos trace when the actor is created, with an id, name
and source location (see Figure 5.14). The activity completion event is recorded by the KomposTrace
class for other concurrent activities different from actors. To inspect the actor state, we need to record
information when a message is about to be sent to that actor (i.e., send operations) and when that mes-
sage arrives in the actor’s mailbox (i.e., message receptions). Furthermore, we also need the information
related to messages and promises (i.e., passive entities) and turns (i.e., dynamic scopes).

Passive entities are recorded when they are created in SPromise class. Dynamic scopes are recorded
when the node corresponding to the body of the invoked method is about to be executed, i.e., in
ReceivedRootNode class.

From the SendOperation event, we obtain the type of the message, using the marker property, i.e., if
it is a message sent to a far reference, a message sent to a promise or if the send operation corresponds to
the resolution of a promise. The information about the target of the message that we show in Figure 5.2
corresponds to the targetId, i.e., the id of the actor or the id of the promise to which the message
was sent. As we showed in Figure 5.14 we added other properties to the SendOperation event for the
mailbox visualization:

• msgSelector selector of the message, i.e., the message name.

• targetSource source section where the message was sent, i.e., the origin property shown in the
mailbox of Figure 5.2.

• targetActivity this is needed to identify the actor that resolves a promise. For visualizing a
message sent to a promise in the actor’s mailbox, we need the information of the actor that
resolves that promise to show the message as sent to the paused actor. We explain the details of
our implementation in Section 6.2.1.1.

• length indicates de string length of the resolution value for a promise. This field is recorded for
all promise resolution messages (i.e., when the promise is resolved with a value or an error). In the
case of chained promises we record only the id of the promise that is used to resolve the chained
promise.

• resolutionValue corresponds to the value or the error that is used to resolve a promise when a
promise is resolved.

Then, every time an eventual message is created in the backend send operation events are recorded
in the trace, i.e., in EventualSendNode.SendNode class and classes related to promise primitives e.g.,
PromisePrims.WhenResolvedPrim class. We obtain the turn information for a message when parsing the
events in the frontend (see details in Section 6.2).

For the mailbox visualization shown in Figure 5.2 we need to record also the MessageReception
event. We use the notion of messages received by the actor to guarantee that the order of messages
visualized in the mailbox corresponds to the messages that will be executed by the actor, i.e., messages
are shown in order of arrival. In particular, we record message reception at two points in the Actor class
in the debugger backend, i.e., when the actor appends the received message in its mailbox, and when
the actor is about to process the messages of its mailbox. We need both recordings because the actor
can be paused and still received messages.

Actors in Medeor execute on a thread of the fork join pool when they have messages in their
mailbox, i.e., instances of ActorProcessingThread which extends from TracingActivityThread class.
Each thread executes the events of one actor at a time, and each thread contains one buffer. The
recording of trace events in KomposTrace happens in the buffer of the current actor thread. Thus, if the
actor is not running, e.g., is not processing messages because it is idle, this means there is no thread
processing the messages for that actor yet, then no message recording is possible. If the actor is paused

228

D.2. APGAR FRONTEND IMPLEMENTATION CLASSES

due to a breakpoint or a stepping, is not processing any messages but new messages can arrive in its
mailbox sent by other actors that are running in the program. In this case, the thread in which this
paused actor is executed is available and we can record information about these messages:

• messageId identifier of the message received.

• activityId identifier of the current actor processing the message.

If the actor is not idle, neither paused due to a debugging operation, the actor can receive messages
and process them immediately. Then we need to avoid recording the message twice in the trace. We
keep a map of messages received by each actor in KomposTrace class that we check before saving new
message information.

D.1.4 Asynchronous Stack Trace
Figure D.3 shows the main classes related to the asynchronous stack trace support in SOMns.

The ShadowStackEntryLoad class represents the node that is declared as a child for every node of
the AST where the instrumentation is going to take place, i.e., where the new entry is created to be
saved in the shadow stack.

The StackIterator class traverses the run time stack and all available calling context information. It
manages the iteration for the two available types of stacks, i.e., synchronous stack, and the asynchronous
stack. If the stack trace request corresponds to an asynchronous stack, the shadow stack iterator only
uses the first frame and then it relies on the shadow stack entry to get the next stack entries.

ShadowStackEntry

ShadowStackEntryLoad

StackIterator

Node

previous: ShadowStackEntry
expression: Node
actorId: long

EntryAtMessageSend

EntryForPromiseResolution

Figure D.3: Main classes related to the asynchronous stack trace support in SOMns.
Node is the abstract base class for all Truffle nodes.

D.2 Apgar Frontend Implementation Classes
Figure D.4 shows the main classes related to the implementation of the Apgar frontend. Here we describe
each of them.

The SomnsDebugProcess is the main class of the debugger implementation which defines a debug-
ging session. It provides the debugging capabilities for the SOMns language as an extension to the
XDebugProcess from IntelliJ Debug API. SomnsDebugProcess it is defined by:

• processHandler defines the handler to manage the execution process and capture its output.

• debuggerController handles the data exchange between the debugger frontend and the backend.
Besides, it manages the interaction between the model and the view.

• connection creates the connection with the backend through WebSockets clients.

• tabController registers the components for the new tabs in the Debug Tab of IntelliJ.

229

APPENDIX D. APGAR IMPLEMENTATION DETAILS

• lineBreakpoints map that saves the line breakpoints source location in the editor for sending it
to the backend.

• sectionBreakpoints map that saves the section breakpoints by their source location in the editor
for sending it to the backend.

• actorDebugList list of all the actor paused in a debugging session. For each actor, we keep the
debugging information of its last suspension, e.g., due to a breakpoint or a stepping operation.

• scheduleFuture schedule the task of requesting trace information every 1000ms to the backend.

The SomnsDebuggerRunner class extends from the IntelliJ GenericProgramRunner class to start the
debugging session defined by the implementation in SomnsDebugProcess class.

The SomnsDebuggerSupport class extends the IntelliJ DebuggerSupport class with stepping handlers
to support new custom stepping commands, i.e., message-based stepping. The stepping commands
are implemented as actions that extend from XDebuggerSuspendedActionHandler class of IntelliJ and
correspond to buttons in the toolbar of the Debug tab.

The ClientMessageHandler and ClientTraceHandler classes implement the web sockets clients
for the connection with the backend, i.e., for receiving the debugger messages and the trace events,
respectively. The SomnsVMConnection manages the connection with the debugger backend through web
sockets clients.

The DebuggerController is the class that handles the data exchanged between the debugger and
the interpreter. Additionally, it manages the interaction between the model and the view in the plu-
gin. The SomnsDebugTabController class registers the components for the new tabs in the Debugger
Tab. There we added new views for showing actors, mailbox, turns, and sentbox. And the class
SomnsDebugViewModel updates the data received from the Kómpos protocol in the debugger views. We
declare five maps that keep updated the data related to actors, send operations, dynamic scopes, passive
entities, and received messages in the instance of SomnsDebugTabController for visualization.

TraceParser class parse the trace events received from the backend through the Kómpos protocol.
This class defines the following fields:

• parseTable contains the markers for each trace event of the Kómpos protocol.

• typeCreation contains the entity types of the Kómpos protocol and its creation marker, i.e.,
actor, promises, messages, and turns.

• sendOps contains the send operations and its markers, i.e., message to a far reference, message to
a promise, and promise resolutions.

• metaModel the KomposMetaModel keeps track of all data send by the backend corresponding to the
Kómpos protocol meta model. We check that the markers received for each entity in the buffer
match with the markers defined in the meta model.

• executionData manages data about the program execution, which is used for processing the trace
events for visualization in the UI. Similar as to the Kómpos debugger [MLA+17] we needed to
handle data races between the frontend and the backend, e.g., in the ExecutionData class, we
implement promises for symbol ids, in order to wait for all dependent data elements before a trace
event can be used further in the frontend.

• eventsByActor keep all events by actorId and bufferId in order to resolve the turn’s events after
the parsing of the trace. This is needed because events in Kómpos trace can be recorded out-of-
order (see Section 6.2.1.2).

• currentTurn keeps the identifier of the current executing turn received in the trace. It is reset
when the end of the turn is reached.

• currentBufferId keeps the identifier of the buffer where the events received were recorded.

• currentActivityId keeps the identifier of the current executing actor.

230

D.3. INTERACTIONS BETWEEN APGAR FRONTEND AND
BACKEND

ClientMessageHandler ClientTraceHandler

DebuggerController

SomnsDebuggerRunnerSomnsDebugProcess SomnsDebuggerSupport

SomnsDebugTabController

SomnsDebugViewModel

XDebugProcess

TraceParser

DebuggerSupportGenericProgramRunner

WebSocketClient

parseTable: Map<byte, TraceRecords>
typeCreation: Map<byte, EntityType>
sendOps: Map<byte, SendOperationType>
metaModel: KomposMetaModel
executionData: ExecutionData
eventsByActor: SortedMap<Long,
SortedMap<Integer, List<RawEntity>>>
currentTurn: long
currentBufferId: int
currentActivityId: long

processHandler: SomnsProcessHandler
debuggerController: DebuggerController
connection: SomnsVMConnection
tabController: SomnsDebugTabController
lineBreakpoints: Map<SourcePosition,
XLineBreakpoint>
sectionBreakpoints: Map<SourcePosition,
XBreakpoint>
actorDebugList: List<SomnsActorDebug>
scheduleFuture: ScheduledFuture

connection: SomnsVMConnection
debugViewModel: SomnsDebugViewModel
dataUpdate: TraceDataUpdate
executionData: ExecutionData

project: Project
session: XDebugSession
layoutUI: RunnerLayoutUi
actorView: ActorView
mailboxView: MailboxView
turnView: TurnView
sentboxView: SentboxView

tabController: SomnsDebugTabController
actors: Map<Long, Activity>
sendOperation: Map<Long, SendOperation>
scopes: Map<Long, DynamicScope>
passive: Map<Long, PassiveEntity>
receivedMsg: Map<Long, List<Long>>

SomnsVMConnection
controller: DebuggerController
messageHandler: ClientMessageHandler
traceHandler: ClientTraceHandler

Figure D.4: Class diagram of the main classes of Apgar debugger frontend. In gray color
are represented classes from the IntelliJ platform and the WebSocket API.

D.3 Interactions between Apgar Frontend and Backend
Here we explain the interaction of Apgar frontend with Apgar backend for the requests of breakpoint
activation, trace information, and asynchronous stack information.

D.3.1 Setup and Breakpoint Activation
First, we explain the setup of a debugging session in Apgar through the sequence diagram of Figure D.5.
In an online debugging scenario, we assume the developer has set a breakpoint(s) in the program before
starting the debugging session. Once the debugging session starts (1), the web sockets clients are
initialized (2), and the method runSomnsWebDebugger creates the external process that starts the SOMns
interpreter using command line arguments defined in the debug configuration (3). When the SOMns
language starts, it enables the Truffle language context (4) and starts the debugger backend connection,

231

APPENDIX D. APGAR IMPLEMENTATION DETAILS

i.e., in the WebDebugger class (5). The WebDebugger creates an instance of the FrontendConnector
class, which is initialized with the breakpoint defined by the developer in the debugger frontend. In the
FrontendConnector class, breakpoints are saved (6) according to their type (7) and later installed in the
Truffle debugging session (8).

Frontend.Somns
DebugProcess Medeor.BreakpointsMedeor.Web

Debugger
Medeor.Frontend

Connector
Truffle.Debug
gerSession

startSession
(…)

runSomnsWeb
Debugger(…)

1

2

startServer(…)

3 registerOrUp
dateBkp(…)5

addOrUpdate
Bkp(…)

6

7

8
installBkp(…)

initSockets
(…)

Frontend.ClientM
essageHandler SOMns.VM

setupIns
truments
(…)

4

Figure D.5: Sequence diagram corresponding to the setup of an online debugging session
in Apgar. Classes in blue color denote classes of the debugger frontend, classes in yellow
color denote classes of the SOMns interpreter and the class in pink color belongs to the
Truffle Debug API.

Now we explain the class interactions when a breakpoint is reached using the sequence diagram of
Figure D.6. The DebuggerSession4 class handles the suspension request of the guest language execution
thread, when it receives a notification that the thread has reached an AST location (1). Then, the web
debugger, which is implemented as a Truffle SuspendedCallback receives the event of the suspension
(2) and sends a StoppedMessage to the frontend (3). The actual suspension of the current thread is
done in the Suspension class (4), through a blocking operation that waits for the execution of the
next available task, i.e., resuming or sending a stack trace to the frontend. In the frontend, the class
ClientMessageHandler listens for the messages sent by the interpreter (5). When a StoppedMessage is
received (6), the controller class sends a notification to the debug process, which does the corresponding
data update in the debugger UI (7).

The described interaction of Figure D.6 can occur due to a breakpoint, a stepping operation, or
pausing explicitly an actor in the frontend. These actions trigger the sending of a Stopped message to
the frontend indicating a suspension in the program.

4The Truffle Debug API is available at https://www.graalvm.org/truffle/javadoc/index.html?
com/oracle/truffle/api/debug/

232

https://www.graalvm.org/truffle/javadoc/index.html?com/oracle/truffle/api/debug/
https://www.graalvm.org/truffle/javadoc/index.html?com/oracle/truffle/api/debug/

D.3. INTERACTIONS BETWEEN APGAR FRONTEND AND
BACKEND

1

doSuspend(…)

onSuspend(…)2

sendStoppedMe
ssage(…)

3

4 suspend(…)

onMessage(…)
5

onStopMes
sage(…)6

notifyStop
Message(…)

7

1

Frontend.Somns
DebugProcess

Medeor.Web
Debugger

Medeor.Frontend
Connector Medeor.SuspensionTruffle.Debug

gerSession
Frontend.Debug
gerController

Frontend.ClientM
essageHandler

Figure D.6: Sequence diagram of a breakpoint activation.

D.3.2 Trace Information Request
We now detail the debugger interactions in response to a trace information request. Figure D.7 shows a
sequence diagram of the classes we implemented to get the trace information in the frontend 5.

5This implementation is based on one of the Kómpos debugger, which has an initial version of a
process order visualization for actors using the trace.

233

APPENDIX D. APGAR IMPLEMENTATION DETAILS

process(…)
1

2

4

Medeor.TraceData
Request

Medeor.Frontend
Connector

3

Medeor.Tracing
Backend

Medeor.TraceWorker
Thread

Frontend.ClientTrace
Handler

Frontend.DebuggerC
ontroller

Frontend.Execution
Data Frontend.TraceParser

sendTracing
Data(…) forceSwapBu

ffers(…)
processTrace
Data(…)

sendTracingData
(ByteBuffer b)

5

onMessage(Byte
Buffer)

6

7

onTracingData(…) receiveBuffer
(…)8 processBuffers

(…)

updateTra
ceData(…)

parseTrace(…)11

10

9

resolveTurnsForE
ventsByBuffer(…) 12

13

resolveData(…)

14

15

getNewestTra
ceData(…)

updateTra
ceDataInV
iew(…)

Figure D.7: Sequence diagram for trace data request. Classes in blue color denote classes
of the debugger frontend, classes in yellow color denote classes of the SOMns interpreter.
The goal of this interaction is to return the Kómpos protocol trace events recorded for
the program being debugged.

First, the debugger frontend requests the trace information to the SOMns interpreter. This request
has been implemented with a pull strategy for requesting the trace data periodically (i.e., every 1000ms)
to the backend. The request task is canceled once the debugging session stops.

Once Medeor receives the TraceDataRequest message (1), the FrontendConnector requests swapping
the buffers (2). Swapping the buffers consist of creating new buffers for the current executing threads.
One buffer represents a subtrace of the events of an actor when it starts executing on a thread [AMB+18]6.
The TracingBackend manages the swapping of the buffers for all executing threads, which are instances of
TracingActivityThread class (3). Instances of the TraceWorkerThread class, correspond to the threads
that write events in the trace. These threads capture the available data periodically from the available
buffers (4), e.g., after the swapping, and send the buffers’ data to the debugger (5).

After the debugger frontend receives a trace message (6), the DebuggerController passes this in-
formation (7) to the ExecutionData class (8), which manages the processing of the buffers (9, 10). The
TraceParser class parses the new buffer data received (11), and afterward, it resolves each parsed event
to their corresponding turn (12).

As mentioned in [MLA+17] concurrent debugging interactions between the backend and frontend
need to handle data races. Remember from section 6.1 that the web debugger implementation in Medeor
has two web socket instances. Hence, the order in which messages are exchanged in these two connections
is not guaranteed. To handle these races, we wait for all dependent trace events.The method in step
(13) of the diagram resolves this dependent data, using promises to wait, for example, for symbols
information, such as file uri ids. After the processing of the buffer information we get the lists of all

6Buffers are created once, and recycled after being emptied.

234

D.3. INTERACTIONS BETWEEN APGAR FRONTEND AND
BACKEND

the new events parsed (14), i.e., all the activities, dynamic scopes, passive entities, send operations and
received messages. With this new information, we update the trace-based debugger views in the frontend
(15). These views are described in sections 5.2.2.1 and 5.2.2.2.

D.3.3 Stack Trace Information Request
So far, we have shown the debugger frontend interactions and backend using the two web sockets, for ex-
ample, to send debugger messages (e.g., Stop message) and to send trace events. The interaction we show
in Figure D.8 responds to another debugger message of the Kómpos protocol, i.e., StackTraceResponse,
which uses the same web socket connection as for the Stop message.

When the DebuggerController class in the frontend receives the debugger message Stopped, it re-
quests the stack trace information to the backend. The SOMns interpreter receives the StackTraceRequest
message (1), and then it requests to the FrontendConnector the suspension object corresponding to the
paused actor (2). With the suspension information, the task SendStackTrace is submitted (3, 4) to
be processed (5). When the task SendStackTrace is processed (6, 7), the FrontendConnector requests
the creation of a new instance of the message StackTraceResponse (8). For creating this response, the
stack frames are requested to the ApplicationThreadStack (9, 10). To build the stack iterator the
ApplicationThreadStack asks Truffle SuspendedEvent for the list of guest language stack frame objects
(11). With this list of frame objects a new suspension iterator is created for the suspended event and
the paused actor (12). Here, the interpreter checks if the flag corresponding to the asynchronous stack
is enabled. In this case, the suspension iterator uses the stack frames of the shadow stack. Otherwise,
the ApplicationThreadStack returns a list of frames built by Truffle, i.e., a stack without asynchronous
information. By default, the asynchronous stack trace is enabled in the debugging configuration in the
frontend. For changing the stack type, the developer can specify the following commands: -sst for
synchronous stack and -asts -astic for an asynchronous stack.

Thus, a new response object is created with the stack frames information (13) and send to the
frontend (14). At the frontend, the DebuggerController class receives the StackTraceResponse message
and requests the scopes and variables information for each frame (15, 16).

235

APPENDIX D. APGAR IMPLEMENTATION DETAILS

1

Medeor.StackTrace
Request

Medeor.Suspension

process(…)

Medeor.Frontend
Connector

Medeor.StackTrace
Response

Medeor.Application
ThreadStack Medeor.StackIterator

2 getSuspension(…)

3 sendStackTra
ce(…)

submitTask(…)

suspend(…)

4

5 7 sendStack
Trace(…)

create(…)8

getFrames(…)9

get(…)10

createSuspensi
onIterator(…)

12

SuspensionIte
rator(…)

alt

List<StackFrame> stackFrames

new(…)13

send(…)14

response

Medeor.SendStack
Trace

execute(…)

7

6

SuspensionShad
owIterator(…)

Truffle.Suspended
Event

getStackFrames
(…)11

frames

Frontend.Debug
gerController

Frontend.ClientM
essageHandler

onMessage(…)

onStackTrace
(…)

15

16

Figure D.8: Sequence diagram for stack trace information request. Classes in blue color
denote classes of the debugger frontend, classes in yellow color denote classes of the
SOMns interpreter and the class in pink color belongs to the Truffle Debug API.

236

Appendix E

User Study Material

E.1 Code of conduct for the online experiment
To not threaten the validity of the results participants of the experiment are required to understand and
respect the following rules:

• Do not ask questions concerning the assignments out loud during the experiment. If you have
a question concerning the assignments, write them to the host (Carmen) in private mode (chat
message via Zoom). If you want to talk with the host you can ask her to assign you to a breakout
room.

• During the experiment you are not allowed to communicate via chat messages, phone and mail
with another participant.

• Use only the provided material. As soon as you have an answer for an assignment, please send
it to the host (privately). We plan the experiment to be approximately 90 minutes, but we will
measure the time you spend solving the assignments. For each assignment you have a time limit
of 30 - 45 minutes approximately.

• Do not leave the Zoom room until you have finish the experiment. We will apply the experiment
for groups at different times, then, after you finish the experiment, please do not comment on
information about it to other participants.

Do you agree with the rules I have read?

E.2 Steps for random assignment
Here we summarize the steps of a procedure mentioned in [CJT15], to randomly assign (e.g., 28) partic-
ipants to two groups, i.e., one group to receive the experimental treatment condition and one group to
receive the control condition. In the following steps is not described the individual matching technique.

• Step 1. Create a table of random numbers (e.g., 28 rows x 14 columns). Generate a random
number for each cell in the range of 0-9.

• Step 2. Number the participants from 0 to 27 (participants’ IDs).

• Step 3. Block the list of IDs into columns of two, because the maximum number of participants
you have is a two-digit number.

• Step 4. Randomly select the first group of 10 participants by reading down the first two columns
(in the table of step 1) until you come to a number less than 28. The read number from the table

237

APPENDIX E. USER STUDY MATERIAL

will represent the ID of the participant selected for the first group. Continue reading until we
have the required amount of participants for the first group.

• Step 5. Do the same procedure as step 4 for the second group (from where we stop the reading
for group 1). The second group will be the remaining participants in the table.

• Step 6. After we have obtained the same number of groups as there are treatment conditions,
the groups should ideally be randomly assigned to the treatment conditions. In this case, this is
accomplished by using only one column of the table of random numbers because there are only
two groups of participants. The two groups are numbered 0 and 1. e.g., if the first number
encountered that is less than 2 is 0, so group 0 (the first group of participants) is assigned to the
first treatment group. Then, group 2 is assigned to the second treatment group.

E.3 Debugging assignments
The purpose of these debugging assignments is to get familiar with the SOMns debugger in IntelliJ IDE
and to find concurrency bugs often present in actor-based programs. This plugin provides debugging
support for SOMns programs that feature actors as concurrent entities. To this end, each program of
the debugging assignments contains one error. Using the debugger features, you should try to find the
cause of the error.

E.3.1 Assignment 1: FlightBooking
Description: The flight booking program handles new booking of flights. The SOMns implementation
corresponds to a minimized version of a web application, in which customers can book flights through a
website.

Figure E.1 shows the actors created in the program: Platform, Customer, Website and Database.
The Platform actor starts the program and manages the runtime system of SOMns.
In response to the bookFlight message, the Customer actor requests to the Website actor the flight

prices (requestFlightPrices message). The program generates randomly the flight id and the seat id
that the Customer will select for the booking, and with this information, the Customer actor sends the
createBooking message to the Website actor. Before adding a new booking in the bookings array, the
Website actor sends the message checkSeat to the Database actor to check if the Customer’s seat id is
available in the specified flight. The Website actor can change flight prices.

Once the booking is created, the Customer sends the message pay, corresponding to the payment of
the flight. When the payment is executed, the Customer receives a confirmation of the booking created
from the Website actor, through the confirmBooking message. Finally, the Customer sends a done
message to indicate to the Website actor that the Customer finished his/her booking.

The solution is parametrized by the number of customers (3), the number of flights (2) and the
number of available seats by flight(2).

Assignment: Running FlightBooking.ns should show the output of figure E.2 a), in which all
customers have their booking confirmed. However, figure E.2 b) shows an error in the output.
Note: You should comment the timeout in the main method of the program to be able to debug without
timeout restrictions (from line 118 - 121). A comment in SOMns is declared like this (* commented
code *).

Your task is: Use SOMns debugger to find the cause of the problem. When you have the answer,
send a private chat message via Zoom with the line number of the fault to Carmen.

238

E.3. DEBUGGING ASSIGNMENTS

Customer Actor (3)

flightPrices

Platform Actor (1)

bookFlight

Website Actor (1)

requestFlightPrices

createBooking

pay

done

bookings

confirmBooking

Database Actor (1) checkSeat

customers

Figure E.1: Conceptual diagram for the flight booking program.

(a): Expected output
(b): Observable output

Figure E.2: Flight booking program output.

1 class FlightBooking usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private Array = platform kernel Array.
4 private TransferArray = platform kernel TransferArray.
5 private harness = (platform system loadModule: ’core -lib/Benchmarks/Harness.ns’

nextTo: self) usingPlatform: platform.
6 private Random = harness Random.
7 private Pair = platform kernel Pair.
8

9 private numCustomers = 3.
10 private numFlights = 2.
11 private numSeats = 2. (* n u m b e r o f s e a t s t h a t c a n b e r e s e r v e d b y p l a n e *)

12 |)(
13

14 public class Database = ()(
15

16 public checkSeat: flightId seat: seatId = (
17 ^ seatId = 1 or:[seatId = 2].
18)
19)
20

21 public class Website new: completionRes db: database = (
22 | private completionRes = completionRes.
23 private database = database.
24 private finishedCustomers ::= 0.
25 private flightPrices = TransferArray new: numFlights withAll: 50.
26 private bookings = TransferArray new: numCustomers.

239

APPENDIX E. USER STUDY MATERIAL

27 private resolved ::= false.
28 |)(
29

30 public requestFlightPrices = (
31 ^ flightPrices.
32)
33

34 public createBooking: customerId flight: flightId seat: seatId = (
35 | price pSeat completionPP |
36 completionPP :: actors createPromisePair.
37

38 pSeat :: database <-: checkSeat: flightId seat: seatId.
39 pSeat whenResolved :[: seatAvailable|
40 seatAvailable ifTrue :[
41 price :: (flightPrices at: flightId).
42 bookings at: customerId put: (Pair withKey: flightId andValue: price).
43 flightPrices at: flightId put: (price + 10). (* i n c r e a s e f l i g h t p r i c e *)

44 completionPP resolver resolve: price.
45]
46].
47

48 ^ completionPP promise
49)
50

51 public pay: customer customerId: customerId flight: flightId
52 amount: amount = (
53 | customerBooking |
54 customerBooking :: bookings at: customerId.
55 (flightId = (customerBooking key) and:[amount = (customerBooking value)])
56 ifTrue :[
57 customer <-: confirmBooking: flightId amount: amount.
58]
59 ifFalse :[
60 (’ERROR in Website: Payment FAILED for customer ’+ customerId) println.
61 resolved ifFalse :[
62 completionRes resolve: false.
63 resolved :: true]
64].
65)
66

67 public done = (
68 finishedCustomers :: finishedCustomers + 1.
69 finishedCustomers = numCustomers ifTrue :[
70 resolved ifFalse :[
71 completionRes resolve: true.
72 resolved :: true]
73]
74)
75)
76

77 public class Customer new: customerId website: web = (
78 | private customerId = customerId.
79 private web = web.
80 private rand = Random new: customerId + 73425.
81 |)(
82 public bookFlight = (
83 | flightId seatId bookingPromise |
84 (web <-: requestFlightPrices) whenResolved :[: flights |
85 flightId :: 1 + (rand next % numFlights).

240

E.3. DEBUGGING ASSIGNMENTS

86 seatId :: 1 + (rand next % numSeats).
87

88 bookingPromise :: web <-: createBooking: customerId
89 flight: flightId
90 seat: seatId.
91 bookingPromise whenResolved :[: price |
92 | paymentPromise |
93 paymentPromise :: web <-: pay: self
94 customerId: customerId
95 flight: flightId
96 amount: (flights at: flightId).
97].
98].
99)

100

101 public confirmBooking: flightId amount: amount = (
102 (’Booking confirmed for customer ’ + customerId) println.
103 web <-: done
104)
105)
106

107 public main: args = (
108 | customers website database payment completionPP timeout |
109 timeout :: 3000.
110

111 ’[FLIGHT BOOKING APPLICATION] Starting ...\n’ println.
112

113 completionPP :: actors createPromisePair.
114 database :: (actors createActorFromValue: Database) <-: new.
115 website :: (actors createActorFromValue: Website) <-: new: completionPP

resolver db: database.
116

117 customers :: Array new: numCustomers.
118 customers doIndexes: [:i |
119 | c |
120 c:: (actors createActorFromValue: Customer) <-: new: i website: website.
121 customers at: i put: c].
122

123 customers do: [:c | c <-: bookFlight].
124

125 actors after: timeout do: [
126 ’Program exit due to TIMEOUT ’ println.
127 completionPP resolve: 1.
128].
129

130 ^ completionPP promise whenResolved :[: r|
131 ’\n[FLIGHT BOOKING APPLICATION] Ending.’ println.
132].
133)
134)

Listing E.1: Flight booking program in SOMns.

E.3.2 Assignment 2: OrderPurchase
Description: The order purchase program handles new purchase of orders. Figure E.3 shows the actors
created in the program: Platform, Customer, Website, Store, Account, Shipper and Database.

241

APPENDIX E. USER STUDY MATERIAL

The Platform actor starts the program and manages the runtime system of SOMns. First, the Platform
actor sends a buy message to the Customer actor, with all the product items he/she wants to buy. Then,
in response to the buy message, the Customer actor sends the message checkoutShoppingCart to the
Website actor.
Before the order is acknowledged, the Website actor must verify three services which are represented by
three actors in the program:

• whether the requested items are still in stock (service managed by the Store actor)

• whether the customer has provided valid payment information (service managed by the Account
actor)

• whether a shipper is available to ship the order in time (service managed by the Shipper actor)

Consequently, the Website actor sends the messages productInStock, checkCredit and canDeliver to
the actors Store, Account and Shipper respectively. Each service sends messages to the Database actor
to retrieve and manage the needed information and send a reply to the Website actor. To collect the
answer of the three services, a promise group is used.

Website Actor (1)

Store Actor (1) Account Actor (1)Shipper Actor (1)

checkCredit

canDeliver

Platform Actor (1) Customer Actor (1)

buy checkoutShoppingCart

stockPromise

productInStock

Database Actor (1)
isShipperAvailable

isValidPayment

getStock

stock

contains

remove

Figure E.3: Conceptual diagram for the order purchase program.

Assignment: Running OrderPurchase.ns should show the output of figure E.4 a), in which all
requirements are satisfied and the order is placed successfully. However, figure E.4 b) shows a timeout
in the output.
Note: You should comment the timeout in the main method of the program to be able to debug without
timeout restrictions (from line 159 - 162). A comment in SOMns is declared like this (* commented
code *).

Your task is: Use SOMns debugger to find the cause of the problem. When you have the answer, send
a private chat message via Zoom with the line number of the fault to Carmen.

242

E.3. DEBUGGING ASSIGNMENTS

(a): Expected output (b): Observable output

Figure E.4: Order purchase program output.

1 class OrderPurchase usingPlatform: platform = Value (
2 | private actors = platform actors.
3 private Vector = platform kernel Vector.
4 private TransferArray = platform kernel TransferArray.
5 |)(
6

7 public class Customer new: customerId website: web = (
8 | private customerId = customerId.
9 private website = web.

10 |)(
11

12 public buy: items = (
13 | checkoutPromise |
14 checkoutPromise :: website <-: checkoutShoppingCart: customerId
15 items: items.
16

17 ^ checkoutPromise whenResolved: [: result |
18 result > 1
19 ifTrue :[(’- The order has been placed for ’+
20 result + ’ products.’) println .]
21 ifFalse :[(’- The order has been placed for ’+
22 result + ’ product.’) println .].
23]
24)
25)
26

27 public class Website new: store account: account shipper: shipper
28 db: database = (
29 | private store = store.
30 private account = account.
31 private shipper = shipper.
32 private database = database.
33 |)(
34

35 public checkoutShoppingCart: customerId items: items = (
36 | shoppingCart completionPP accountPromise shipperPromise productsPP
37 productsInStock resolved |
38 completionPP :: actors createPromisePair.
39 productsPP :: actors createPromisePair.
40 productsInStock :: Vector new.
41 resolved :: false.
42

43 shoppingCart :: items.
44 (’- You will buy ’+ (shoppingCart size) + ’ products. ’) println.
45

46 shoppingCart do:[: product |

243

APPENDIX E. USER STUDY MATERIAL

47 | existPromise |
48 existPromise :: store <-: productInStock: product database: database.
49 existPromise whenResolved :[: available |
50 available ifTrue :[
51 productsInStock append: product.
52 productsInStock size = shoppingCart size
53 ifTrue :[
54 resolved ifFalse :[
55 resolved :: true.
56 productsPP resolve: true
57]
58]
59]
60 ifFalse :[
61 resolved ifFalse :[
62 resolved :: true.
63 productsPP resolve: false
64]
65]
66].
67].
68

69 accountPromise :: account <-: checkCredit: customerId database: database.
70 shipperPromise :: shipper <-: canDeliver: customerId database: database.
71

72 productsPP promise , accountPromise , shipperPromise whenResolved :[: answer |
73 ((answer at: 1) and: [(answer at: 2) and: [(answer at: 3)]])
74 ifTrue :[completionPP resolver resolve: productsInStock size]
75].
76

77 ^ completionPP promise
78)
79)
80

81 public class Store = ()(
82

83 public productInStock: item database: database = (
84 | stockPromise existPP flag ::= false. |
85

86 existPP :: actors createPromisePair.
87

88 stockPromise :: database <-: getStock.
89 (stockPromise <-: contains: item) whenResolved :[: exist |
90 exist ifTrue :[
91 stockPromise <-: remove: item.
92 flag:: false.
93].
94 existPP resolve: flag.
95].
96

97 ^ existPP promise
98)
99)

100

101 public class Account = ()(
102

103 public checkCredit: customerId database: database = (
104 ^ database <-: isValidPayment: customerId
105)

244

E.3. DEBUGGING ASSIGNMENTS

106)
107

108 public class Shipper = ()(
109

110 public canDeliver: customerId database: database = (
111 ^ database <-: isShipperAvailable: customerId
112)
113)
114

115 public class Database = (
116 | private stock = init. |
117)(
118

119 private init = (
120 | s |
121 s:: Vector new.
122 s append: ’hdd’.
123 s append: ’ipad’.
124 s append: ’phone’.
125 s append: ’screen ’.
126 s append: ’laptop ’.
127 ^ s
128)
129

130 public getStock = (
131 ^ stock
132)
133

134 public isValidPayment: customerId = (
135 ^ true
136)
137

138 public isShipperAvailable: customerId = (
139 ^ true
140)
141

142)
143

144 public main: args = (
145 | customer store account shipper website database items buyPromise
146 timeout completionPP |
147 timeout :: 3000.
148

149 completionPP :: actors createPromisePair.
150

151 ’[ORDER PURCHASE APPLICATION] Starting ...\n’ println.
152 items :: TransferArray new: 2.
153 items at: 1 put: ’phone’.
154 items at: 2 put: ’laptop ’.
155

156 store :: (actors createActorFromValue: Store) <-: new.
157 account :: (actors createActorFromValue: Account) <-: new.
158 shipper :: (actors createActorFromValue: Shipper) <-: new.
159 database :: (actors createActorFromValue: Database) <-: new.
160 website :: (actors createActorFromValue: Website) <-: new: store
161 account: account shipper: shipper db: database.
162 customer :: (actors createActorFromValue: Customer) <-: new: ’Joe’
163 website: website.
164

245

APPENDIX E. USER STUDY MATERIAL

165 buyPromise :: customer <-: buy: items.
166

167 actors after: timeout do: [
168 ’Program exit due to TIMEOUT ’ println.
169 completionPP resolve: 1.
170].
171

172 completionPP resolve: buyPromise.
173

174 ^ completionPP promise whenResolved: [: result |
175 ’\n[ORDER PURCHASE APPLICATION] Ending.’ println.
176]
177)
178)

Listing E.2: Order Purchase program in SOMns.

E.4 Questionnaire
Dear participant,
As part of our experiment we would like you to fill this questionnaire. Questions are divided into two
categories, the first one consists of questions about you and your work as software developer. Second
category shows questions regarding your experience with the debugging assignments and the debugger.
Thank you for participate in this study!

1. About you
1. How old are you?

2. Where do you work/study?

3. What is your scholar degree? # Bachelor. # Master. # PhD.

4. How many years have you been developing software?

less than 2. # 3 to 5. # 6 to 10. # more than 10.

5. Which programming languages have you more experience with? (write at most 3
languages)

6. If you have experience in concurrent programming with actors, mention the actor
language(s) in which you have more experience.

7. Which one(s) of these debugging techniques have you used when developing actor-
based programs?

□ print statements □ log diff □ assertions □ a debugger

8. Which debugger(s) have you experience with?

246

E.4. QUESTIONNAIRE

2. About the experiment
9. In which group did you perform the experiment?

Control group # Experimental group

10. To what extend do you agree with the following statements? Rate in this scale 1
(Strongly disagree) 2 (Disagree) 3 (Neutral) 4 (Agree) 5 (Strongly agree). If you
belong to the control group please answer neutral in statements c-d-e-f.

(a) The debugging assignments were difficult. 1 2 3 4 5
(b) The debugging assignments are representative of common bugs
I have seen in actor-based programs.

1 2 3 4 5

(c) Message breakpoints and stepping operations help to
reduce the effort when searching the root cause of concurrency bugs.

1 2 3 4 5

(d) The combination of sequential and message stepping is effective
to inspect actor’s turn.

1 2 3 4 5

(e) Visualization of message causality is useful for understanding the
program while debugging.

1 2 3 4 5

(f) The asynchronous stack trace is useful for identifying message
ordering problems.

1 2 3 4 5

(g) The plugin debugging views are useful to inspect actor’s state. 1 2 3 4 5
(h) The debugging techniques used in the experiment assist developers
not only to discover program faults but to comprehend program behavior.

1 2 3 4 5

11. Select the assignments you solved: □ Assignment 1. □ Assignment 2.

12. Did you feel time pressure during the exercises?.
Yes. # No.

13. How long did you spend for solving assignment 1? (ask the host for the exact value).

14. How long did you spend for solving assignment 2? (ask the host for the exact value).

15. What other features would you like to see in the Debugger tabs?.

16. Please write here any additional comment you have about the experiment.

17. Please do the following steps to convert and upload the log file:
1. Open the QTerminal that you can find in the desktop.

247

APPENDIX E. USER STUDY MATERIAL

2. Execute command: cd IdeaProjects/somnsProject/
3. Execute command: enscript -p log.ps log.txt
4. Execute command: ps2pdf log.ps log.pdf
Finally, rename log.pdf file with your name (e.g., log-CarmenTorres.pdf) and upload
it here.

E.5 Additional user study results
The following are additional charts corresponding to the experiment results.

E.5.1 Participants profile
Figure E.5 shows that most of the participants of the user study worked at the VUB, for control and
experimental group.

Figure E.5: Participants workplace.

Figure E.6 shows the scholar degree of participants. Most of the part of participants in both groups are
master. In the experimental group we can observe more participants with the PhD degree.

248

E.5. ADDITIONAL USER STUDY RESULTS

Figure E.6: Participants scholar degree.

Figure E.7 shows that both control and experimental groups are approximately balanced in the number
of participants, in particular from 6 to 10 years of experience developing software.

249

APPENDIX E. USER STUDY MATERIAL

Figure E.7: Years of experience developing software.

Figure E.8 shows that most of the participants in both groups have experience with JetBrains IDEs
debuggers.

250

E.6. THREATS TO VALIDITY IN THE QUALITATIVE STUDY

Figure E.8: Debuggers.

E.6 Threats to Validity in the Qualitative Study
Together with the validity threats summarized by Creswell et al. [CC17] for mixed methods experimental
studies, we followed also Christensen et al. [CJT15] advise of checking that all components of the research
design are conducted appropriately. This idea is considered by the multiple validities threat in mixed
methods research, i.e., analyze the relevant validity types for both studies. Table E.1 shows threats to
validity that we analyze for our qualitative study when collecting data in the posttest questionnaire.
The column Strategy refers to the strategy we selected to minimize the threat in our study. Regarding
threats 1 and 3, we want to add that one researcher conducted the experiment, but two more researchers
helped interpret and discuss the data. For threat 2 we added an explicit question in the questionnaire
(question 16). For threat 4, we analyzed the results using methods and measures of descriptive statistics
and percentage representations for the different related variables.

251

APPENDIX E. USER STUDY MATERIAL

Validity threat Description Strategy Description
1. Descriptive Provide an accurate descrip-

tion of a particular phe-
nomenon, situation, or group

Investigator trian-
gulation strategy

Use of multiple investigators
to interpret the data

2. Interpretative Report how people subjec-
tively think and feel about
phenomena

Participant feed-
back, low-inference
descriptors

Ask participants their find-
ings and include quite a few
quotes from the participants

3. Theoretical Degree that the theoretical
explanation provided by the
researcher accurately fits the
data

Peer review Discuss your interpretations,
conclusions, and explanations
with your colleagues who can
provide a different perspec-
tive

4. Internal Describe how each group op-
erates during the experiment
and understand how variables
are causally related

Researcher as de-
tective

Examine each possible “clue"
to draw conclusions about
cause and effect. Use descrip-
tive statistics measures.

Table E.1: Threats in qualitative research, from [CJT15].

252

Appendix F

Debugger Configuration in
PLT-Redex

The code in Listing F.1 shows the Double program with a bad message interleaving written in PLT-Redex
language. We use the traces function of PLT-Redex to explore the sequences of terms of the program
in Racket GUI 1. The program in the listing is represented by K in a debugger configuration in the form
D⟨Bp, Bc, ds, C,As,K⟩, which is described in Section 8.3. In this case, we start the debugging session
putting a message receiver breakpoint for the asynchronous message from client1 actor to the math
actor, i.e., denoted by c1-double-to-math. Here we detail each element of the debugger configuration:

• Line 3 shows the list of pending breakpoints (Bp) with a message receiver breakpoint.

• Line 4 shows the list of checked breakpoints (Bc), which is empty.

• Line 5 shows the state of the debugger (ds), which is run.

• Line 6 shows the list of commands (C), which contains two operations, step to next turn and
resume execution.

• Line 7 shows a map of the actors of the program with its state (As), in this case client1 has run
state.

• Line 8 - Line 26 shows the actor configuration (K), which contains the Double program written
in the AmbientTalk operational semantics.

As mentioned in Section 8.3.1, an actor configuration in the AmbientTalk semantics has the form
A⟨ιa, O,Qin, e⟩. In this case, the actor with id client1 has defined the expression to be evaluated
e from Line 12 to Line 25, which corresponds to the sample program to compute double numbers (cf.
Section 8.2.1).

1https://docs.racket-lang.org/redex/reference.html

253

https://docs.racket-lang.org/redex/reference.html

APPENDIX F. DEBUGGER CONFIGURATION IN PLT-REDEX

1 (traces dstep
2 (term
3 (((Msg -Receiver c1-double -to -math))
4 ()
5 run
6 ((Step -Next -Turn id_new) (Resume -Execution))
7 ((client1 run))
8 ((actor
9 client1

10 ()
11 ()
12 (let (math (actor (field result 0) (method double x (set! (this $ result) (+

x x))) (method result p (this $ result))))
13 in
14 (let (client2 (actor (method start math (send math double (12) c2-double -to

-math))))
15 in
16 (let (a (send client2 start (math) c1-start -to-c2))
17 in
18 (let (b (send math double (33) c1-double -to -math))
19 in
20 (let (x_f x_r)
21 future
22 in
23 (let (x_l (let (some -var 5) in (object (method apply x ((x_r $

resolve -mu) x)))))
24 in
25 (let (var (send (let (x_f1 x_r1) future in (let (var (send math

result (0 x_r1) c1 -result -to-math)) in x_f1)) register -mu (x_l) c1-result -to -
math)) in x_f)))))))

26))
27)
28))

Listing F.1: PLT-Redex version of the Double program containing a bad message
interleaving bug.

254

Bibliography

[AAGZ15] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Test case gen-
eration of actor systems. In Bernd Finkbeiner, Geguang Pu, and Lijun
Zhang, editors, ATVA, volume 9364 of Lecture Notes in Computer Sci-
ence, pages 259–275. Springer, 2015.

[AAGZ18] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Systematic
testing of actor systems. Softw. Test., Verif. Reliab., 28(3), 2018.

[AASE+17] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hans-
son, and Wasif Afzal. 10 years of research on debugging concurrent and
multicore software: a systematic mapping study. Software Quality Jour-
nal, 25(1):49–82, Mar 2017.

[AB20] Ericsson AB. Erlang debugger user’s guide. http://erlang.org/
doc/apps/debugger/debugger_chapter.html, 2020. Online; accessed 5
March 2021.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, MA, USA, 1986.

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.
Softw. Test., Verif. Reliab., 13(4):207–227, 2003.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secur. Comput., 1(1):11–33, January
2004.

[AMB+18] Dominik Aumayr, Stefan Marr, Clément Béra, Elisa Gonzalez Boix, and
Hanspeter Mössenböck. Efficient and deterministic record & replay for
actor languages. In Proceedings of the 15th International Conference on
Managed Languages & Runtimes, ManLang ’18, New York, NY, USA,
2018. Association for Computing Machinery.

255

http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html

BIBLIOGRAPHY

[AMGBM19] Dominik Aumayr, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. Asynchronous snapshots of actor systems for latency-
sensitive applications. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Managed Programming Languages and Runtimes,
MPLR 2019, pages 157–171, New York, NY, USA, 2019. Association for
Computing Machinery.

[AS17] Stavros Aronis and Konstantinos Sagonas. The shared-memory inter-
ferences of erlang/otp built-ins. In Natalia Chechina and Scott Lystig
Fritchie, editors, Erlang Workshop, pages 43–54. ACM, 2017.

[Av16] Akka-viz. A visual debugger for akka actor systems. https://github.
com/lustefaniak/akka-viz, 2016. Online; accessed 12 April 2021.

[AVWW93] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in ERLANG. Prentice Hall, 1993.

[AZMT18] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding bro-
ken promises in asynchronous javascript programs. Proc. ACM Program.
Lang., 2(OOPSLA), October 2018.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Proceedings of the 5th Inter-
national Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, TACAS ’99, pages 193–207, Berlin, Heidelberg, 1999.
Springer-Verlag.

[BCD+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,
and Irene Finocchi. A survey of symbolic execution techniques. ACM
Comput. Surv., 51(3):50:1–50:39, May 2018.

[BFSK20] Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi
Khatchadourian. Actor concurrency bugs: A comprehensive study on
symptoms, root causes, api usages, and differences. Proc. ACM Program.
Lang., 4(OOPSLA), November 2020.

[BFSS10] Maria Brito, Katia R Felizardo, Paulo Souza, and Simone Souza. Con-
current software testing: A systematic review. On testing software and
systems: Short papers, page 79, 2010.

[BJC+13] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. Reversible debugging software: Quantify the time and
cost saved using reversible debuggers, 2013.

256

https://github.com/lustefaniak/akka-viz
https://github.com/lustefaniak/akka-viz

BIBLIOGRAPHY

[Blo12] Chromium Blog. Debugging web workers with chrome developer
tools. http://blog.chromium.org/2012/04/debugging-web-workers-
with-chrome.html, April 2012. Online; accessed 5 March 2021.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In Pro-
ceedings of the 17th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA ’02, pages
211–230, New York, NY, USA, 2002. ACM.

[BM14] Earl T. Barr and Mark Marron. Tardis: Affordable time-travel debug-
ging in managed runtimes. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’14, pages 67–82, New York, NY, USA, 2014.
Association for Computing Machinery.

[BMM+16] Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth.
Time-travel debugging for javascript/node.js. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, pages 1003–1007. ACM, 2016.

[BMP18] F. A. Bianchi, A. Margara, and M. Pezzé. A survey of recent trends
in testing concurrent software systems. IEEE Transactions on Software
Engineering, 44(8):747–783, 2018.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the java pro-
gramming language. In Proceedings of the 13th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA ’98, pages 183–200, New York, NY, USA, 1998. Asso-
ciation for Computing Machinery.

[BPP14] Thibaut Balabonski, Francois Pottier, and Jonathan Protzenko. Type
soundness and race freedom for mezzo. In Michael Codish and Eijiro
Sumii, editors, Functional and Logic Programming, pages 253–269, Cham,
2014. Springer International Publishing.

[Bra09] Gilad Bracha. Newspeak programming language draft specification ver-
sion 0.06. Technical report, Technical report, Ministry of Truth, 2009.

[Bri20] T. Editors of Encyclopaedia. Britannica. Uncertainty principle. https:
//www.britannica.com/science/uncertainty-principle, May 2020.
Online; accessed 3 March 2021.

[BS95] Karen L. Bernstein and Eugene W. Stark. Operational semantics of a
focusing debugger. Electronic Notes in Theoretical Computer Science,

257

http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
http://blog.chromium.org/2012/04/debugging-web-workers-with-chrome.html
https://www.britannica.com/science/uncertainty-principle
https://www.britannica.com/science/uncertainty-principle

BIBLIOGRAPHY

1:13 – 31, 1995. MFPS XI, Mathematical Foundations of Programming
Semantics, Eleventh Annual Conference.

[BWBE16] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. De-
bugging distributed systems. Commun. ACM, 59(8):32–37, July 2016.

[CBKB19] Tony Clark, Balbir Barn, Vinay Kulkarni, and Souvik Barat. Making
sense of actor behaviour: An algebraic filmstrip pattern and its imple-
mentation. In Proceedings of the 12th Innovations on Software Engineer-
ing Conference (Formerly Known as India Software Engineering Confer-
ence), ISEC’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. Association for Computing Machin-
ery.

[CC17] John W Creswell and Vicki L Plano Clark. Designing and conducting
mixed methods research. Sage publications, 2017.

[CC19] A. Colak and M. A. Cuvic. An educational tool for visualising actor
programs. In 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO),
pages 605–610, 2019.

[CDG+19] X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang. De-
tecting atomicity violations for event-driven node.js applications. In
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE), pages 631–642, 2019.

[CFL95] Patrick Coscas, Gilles Fouquier, and Agnes Lanusse. Modelling Actor
Programs using Predicate/Transition Nets. In Proceedings Euromicro
Workshop on Parallel and Distributed Processing, pages 194–200, January
1995.

[CGJ+01] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Progress on the state explosion problem in model checking. In
Reinhard Wilhelm, editor, Informatics, volume 2000 of Lecture Notes in
Computer Science, pages 176–194. Springer, 2001.

[CGS13a] M. Christakis, A. Gotovos, and K. Sagonas. Systematic testing for de-
tecting concurrency errors in erlang programs. In 2013 IEEE Sixth In-

258

BIBLIOGRAPHY

ternational Conference on Software Testing, Verification and Validation,
pages 154–163, March 2013.

[CGS13b] Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. System-
atic testing for detecting concurrency errors in erlang programs. In ICST,
pages 154–163. IEEE Computer Society, 2013.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018.

[CJT15] Larry B. Christensen, R. Burke Johnson, and Lisa A. Turner. Research
Methods, Design, and Analysis; 12th Edition, Global Edition. Pearson /
Addison Wesley, 2015.

[CMMRT18] Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador
Tamarit. Declarative debugging of concurrent erlang programs. Journal
of Logical and Algebraic Methods in Programming, 101:22 – 41, 2018.

[CPS97] J-L. Colaco, M. Pantel, and P. Sallé. A Set-Constraint-based analysis of
Actors, pages 107–122. Springer, 1997.

[CPS+09] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans
Svensson, Thomas Arts, and Ulf Wiger. Finding Race Conditions in
Erlang with QuickCheck and PULSE. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’09, pages 149–160. ACM, 2009.

[CS63] Donald T. Cambell and Julian Stanley. Experimental and quasi-
experimental designs for research. Rand McNally & Company, Chicago,
IL, 1963.

[CS10] Maria Christakis and Konstantinos Sagonas. Static Detection of Race
Conditions in Erlang. PADL 2010, pages 119–133, January 2010.

[CS11a] Maria Christakis and Konstantinos Sagonas. Detection of Asynchronous
Message Passing Errors Using Static Analysis. In Ricardo Rocha and John
Launchbury, editors, Practical Aspects of Declarative Languages: 13th
International Symposium,, PADL 2011, pages 5–18. Springer, January
2011.

[CS11b] Maria Christakis and Konstantinos Sagonas. Static Detection of Dead-
locks in Erlang. Technical report, June 2011.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
Three decades later. Commun. ACM, 56(2):82–90, February 2013.

259

BIBLIOGRAPHY

[da 92] Fabio Q. B. da Silva. Correctness proofs of compilers and debuggers: an
approach based on structural operational semantics. PhD thesis, Univer-
sity of Edinburgh, UK, 1992. British Library, EThOS.

[DF98] Mads Dam and Lars-ρ ake Fredlund. On the Verification of Open Dis-
tributed Systems. In Proceedings of the 1998 ACM Symposium on Applied
Computing, SAC ’98, pages 532–540. ACM, 1998.

[Dij65] Edsger Wybe Dijkstra. Cooperating sequential processes, technical report
ewd-123. Technical report, 1965.

[Dij68] Edsger Wybe Dijkstra. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages: NATO Advanced Study Institute, pages
43–112. Academic Press, 1968.

[DKO13] Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Au-
tomatic verification of erlang-style concurrency. In Francesco Logozzo
and Manuel Fähndrich, editors, 20th International Symposium on Static
Analysis, SAS 2013, pages 454–476. Springer, June 2013.

[DKVCDM16] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years
of actors: A taxonomy of actor models and their key properties. In
Proceedings of the 6th International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE 2016, pages 31–40.
ACM, 2016.

[Doc21] ScalaIDE Documentation. Asynchronous debugger. http://scala-ide.
org/docs/current-user-doc/features/async-debugger/index.html,
2021. Online; accessed 21 March 2021.

[DP02] Fabien Dagnat and Marc Pantel. Static analysis of communications in
erlang programs, November 2002.

[Dra13] Iulian Dragos. Stack Retention in Debuggers For Concurrent Programs,
July 2013.

[dVSH+18] Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian
Humer, and Thomas Würthinger. Fast, flexible, polyglot instrumenta-
tion support for debuggers and other tools. Art Sci. Eng. Program., 2:14,
2018.

[Eng12] J. Engblom. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference, pages 1–6, 2012.

[fED] Scala IDE for Eclipse Documentation. Asynchronous debugger.
http://scala-ide.org/docs/current-user-doc/features/async-
debugger/index.html. Online; accessed 5 March 2021.

260

http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html

BIBLIOGRAPHY

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for
java. In Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation, PLDI ’00, pages 219–232,
New York, NY, USA, 2000. ACM.

[FGN+03] Lars-Ake Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas
Arts, and Gennady Chugunov. A verification tool for erlang. STTT,
4(4):405–420, 2003.

[FGST08] Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and Emilio Tu-
osto. Debugging distributed systems with causal nets. ECEASST, 14:1–
10, 2008.

[FT01] Gian Luigi Ferrari and Emilio Tuosto. A debugging calculus for mobile
ambients. In Proceedings of the 2001 ACM Symposium on Applied Com-
puting, SAC ’01, page 2, New York, NY, USA, 2001. ACM.

[Gai86] Jason Gait. A probe effect in concurrent programs. Softw. Pract. Exp.,
16(3):225–233, 1986.

[GBNDM14] Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. Dis-
tributed debugging for mobile networks. Journal of Systems and Software,
90:76–90, 2014.

[GCS11] Alkis Gotovos, Maria Christakis, and Konstantinos Sagonas. Test-driven
development of concurrent programs using concuerror. In Proceedings of
the 10th ACM SIGPLAN workshop on Erlang, pages 51–61. ACM, 2011.

[GGL+13] Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt,
and Peter Y. H. Wong. Deadlock analysis of concurrent objects: Theory
and practice. In Einar Broch Johnsen and Luigia Petre, editors, Integrated
Formal Methods, pages 394–411, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[GLM14] Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina. Causal-
consistent reversible debugging. In Stefania Gnesi and Arend Rensink,
editors, FASE, volume 8411 of Lecture Notes in Computer Science, pages
370–384. Springer, 2014.

[glo90] Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84, 1990.

[GPT06] Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Static safety for
an actor dedicated process calculus by abstract interpretation. In Roberto

261

BIBLIOGRAPHY

Gorrieri and Heike Wehrheim, editors, Formal Methods for Open Object-
Based Distributed Systems, FMOODS 2006, pages 78–92. Springer, June
2006.

[Gra86] Jim Gray. Why do computers stop and what can be done about it? In
Fifth Symposium on Reliability in Distributed Software and Database Sys-
tems, SRDS 1986, Los Angeles, California, USA, January 13-15, 1986,
Proceedings, pages 3–12. IEEE Computer Society, 1986.

[Gra21] GraalVM. Getting started with instruments in graalvm.
https://www.graalvm.org/graalvm-as-a-platform/implement-
instrument/#simple-tool, 2021. Online; accessed 15 March 2021.

[Hal15] Philipp Haller. High-level concurrency libraries: Challenges for tool sup-
port, October 2015.

[HB11] John M. Hughes and Hans Bolinder. Testing a database for race condi-
tions with quickcheck. In Proceedings of the 10th ACM SIGPLAN Work-
shop on Erlang, Erlang ’11, pages 72–77. ACM, 2011.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd In-
ternational Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245. Morgan Kaufmann Publishers Inc., 1973.

[Hei27] W. Heisenberg. Über den anschaulichen inhalt der quantentheoretischen
kinematik und mechanik. Zeitschrift für Physik, 43(3):172–198, 1927.

[HO09] Philipp Haller and Martin Odersky. Scala Actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 410(2-
3):202–220, February 2009.

[Hol18] Yan Holtz. Boxplot. https://www.r-graph-gallery.com/boxplot.
html, 2018. Online; accessed 4 April 2021.

[HPK14] Shin Hong, Yongbae Park, and Moonzoo Kim. Detecting Concurrency
Errors in Client-Side Java Script Web Applications. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation
(ICST), pages 61–70. IEEE, March 2014.

[HPR16] Thomas Haigh, Mark Priestley, and Crispin Rope. ENIAC in Action:
Making and Remaking the Modern Computer. The MIT Press, 2016.

[HS11] Philipp Haller and Frank Sommers. Actors in Scala - concurrent pro-
gramming for the multi-core era. artima, 2011.

262

https://www.graalvm.org/graalvm-as-a-platform/implement-instrument/#simple-tool
https://www.graalvm.org/graalvm-as-a-platform/implement-instrument/#simple-tool
https://www.r-graph-gallery.com/boxplot.html
https://www.r-graph-gallery.com/boxplot.html

BIBLIOGRAPHY

[Huc99] Frank Huch. Verification of erlang programs using abstract interpreta-
tion and model checking. In Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’99, pages
261–272, New York, NY, USA, 1999. ACM.

[HZ18] Brandon Hedden and Xinghui Zhao. A comprehensive study on bugs in
actor systems. In Proceedings of the 47th International Conference on
Parallel Processing, ICPP 2018, New York, NY, USA, 2018. Association
for Computing Machinery.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for java and gj. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[KG76] A. Kay and A. Goldberg. SMALLTALK-72 Instruction Manual. Technical
Report SSL 76-6, Xerox Palo Alto Research Center, Palo Alto, California,
1976.

[KM08] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and
answering why and why not questions about program behavior. ICSE ’08,
pages 301–310, New York, NY, USA, 2008. Association for Computing
Machinery.

[KM10] A. J. Ko and Brad A. Myers. Extracting and answering why and why not
questions about java program output. ACM Trans. Softw. Eng. Methodol.,
20(2):4:1–4:36, 2010.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[LBL+16] Yuheng Long, Mehdi Bagherzadeh, Eric Lin, Ganesha Upadhyaya, and
Hridesh Rajan. On ordering problems in message passing software. In
Proceedings of the 15th International Conference on Modularity, pages
54–65. ACM, 2016.

[LBM15] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. Accurate
and efficient object tracing for java applications. In Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering,
ICPE ’15, pages 51–62, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[LC06] Yong Luo and Olaf Chitil. Proving the correctness of algorithmic de-
bugging for functional programs. In Henrik Nilsson, editor, Trends in
Functional Programming, volume 7 of Trends in Functional Programming,
pages 19–34. Intellect, 2006.

263

BIBLIOGRAPHY

[LDMA09] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A frame-
work for state-space exploration of java-based actor programs. In Pro-
ceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 468–479, Washington, DC, USA,
2009. IEEE Computer Society.

[LHA18] Sihan Li, Farah Hariri, and Gul Agha. Targeted test generation for actor
systems. In Todd D. Millstein, editor, ECOOP, volume 109 of LIPIcs,
pages 8:1–8:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[Lig21] Lightbend. Cinnamon 2.6 released, now supports vizceral. https://
www.lightbend.com/blog/lightbend-cinnamon-viczeral, 2021. On-
line; accessed 12 April 2021.

[LKMA10] Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha.
Basset: A Tool for Systematic Testing of Actor Programs. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE ’10, pages 363–364. ACM, 2010.

[LLL14] He Li, Jie Luo, and Wei Li. A formal semantics for debugging synchronous
message passing-based concurrent programs. Science China Information
Sciences, 57(12):1–18, Dec 2014.

[LLLG16] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and
Haryadi S. Gunawi. Taxdc: A taxonomy of non-deterministic concurrency
bugs in datacenter distributed systems. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 517–530, New
York, NY, USA, 2016. Association for Computing Machinery.

[LM18] Maya Lekova and Benedikt Meurer. Faster async functions and promises.
https://v8.dev/blog/fast-async, November 2018. Online; accessed
21 March 2021.

[LMBM18] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. A study of concurrency bugs and advanced development
support for actor-based programs. In Alessandro Ricci and Philipp Haller,
editors, Programming with Actors - State-of-the-Art and Research Per-
spectives, volume 10789 of Lecture Notes in Computer Science, pages
155–185. Springer, 2018.

[LNPV18] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal.
CauDEr: A Causal-Consistent Reversible Debugger for Erlang. In John P.
Gallagher and Martin Sulzmann, editors, Functional and Logic Program-
ming, volume 10818 of FLOPS’18, pages 247–263, Cham, 2018. Springer.

264

https://www.lightbend.com/blog/lightbend-cinnamon-viczeral
https://www.lightbend.com/blog/lightbend-cinnamon-viczeral
https://v8.dev/blog/fast-async

BIBLIOGRAPHY

[LPD+14] Kasper Soe Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio
Filieri, and Willem Visser. Exact and approximate probabilistic sym-
bolic execution for nondeterministic programs. In Ivica Crnkovic, Mar-
sha Chechik, and Paul Grünbacher, editors, ASE, pages 575–586. ACM,
2014.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: A comprehensive study on real world concurrency bug charac-
teristics. SIGOPS Oper. Syst. Rev., 42(2):329–339, March 2008.

[LSM+19] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gon-
zalez Boix, and Christophe Scholliers. Multiverse Debugging: Non-
Deterministic Debugging for Non-Deterministic Programs (Brave New
Idea Paper). In Alastair F. Donaldson, editor, 33rd European Conference
on Object-Oriented Programming (ECOOP 2019), volume 134 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 27:1–27:30,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[LSX+17] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jin Song Dong. Feedback-
based debugging. In Sebastián Uchitel, Alessandro Orso, and Martin P.
Robillard, editors, ICSE, pages 393–403. IEEE / ACM, 2017.

[MAS92] Shakuntala Miriyala, Gul Agha, and Yamina Sami. Visualizing actor
programs using predicate transition nets. Journal of Visual Languages &
Computing, 3(2):195–220, 1992.

[McC61] John McCarthy. A basis for a mathematical theory of computation,
preliminary report. In Papers Presented at the May 9-11, 1961, West-
ern Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’61
(Western), pages 225–238, New York, NY, USA, 1961. ACM.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurrent
programs. ACM Comput. Surv., 21(4):593–622, December 1989.

[Mic21] Microsoft. Debug adapter protocol. https://github.com/Microsoft/
vscode-debugadapter-node/tree/main/protocol, 2021. Online; ac-
cessed 22 March 2021.

[MLA+17] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonza-
lez Boix, and Hanspeter Mössenböck. A concurrency-agnostic protocol
for multi-paradigm concurrent debugging tools. CoRR, abs/1706.00363,
2017.

[MM15] Stefan Marr and Hanspeter Mössenböck. Optimizing communicating
event-loop languages with truffle, October 2015.

265

https://github.com/Microsoft/vscode-debugadapter-node/tree/main/protocol
https://github.com/Microsoft/vscode-debugadapter-node/tree/main/protocol

BIBLIOGRAPHY

[MOM18] Aman Shankar Mathur, Burcu Kulahcioglu Ozkan, and Rupak Majum-
dar. Idea: An immersive debugger for actors. In Proceedings of the 17th
ACM SIGPLAN International Workshop on Erlang, Erlang 2018, pages
1–12, New York, NY, USA, 2018. Association for Computing Machinery.

[MTS05] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. Concurrency
among strangers. In Rocco De Nicola and Davide Sangiorgi, editors,
Trustworthy Global Computing, International Symposium, TGC 2005,
Edinburgh, UK, April 7-9, 2005, Revised Selected Papers, volume 3705
of Lecture Notes in Computer Science, pages 195–229. Springer, 2005.

[NA96] Brian Nielsen and Gul Agha. Semantics for an actor-based real-time
language. In Proceedings of the 4th International Workshop on Parallel
and Distributed Real-Time Systems, WPDRTS ’96, page 223, USA, 1996.
IEEE Computer Society.

[Not17] W3C Working Group Note. Web workers. https://www.w3.org/TR/
workers/, 2017. Online; accessed 14 February 2017.

[NPV16] Naoki Nishida, Adrián Palacios, and Germán Vidal. A reversible seman-
tics for erlang. In Manuel V. Hermenegildo and Pedro López-García,
editors, LOPSTR, volume 10184 of Lecture Notes in Computer Science,
pages 259–274. Springer, 2016.

[Pac11] David Pacheco. Postmortem debugging in dynamic environments. https:
//queue.acm.org/detail.cfm?id=2039361, October 2011. Online; ac-
cessed 26 April 2021.

[PGB+05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and
David Holmes. Java Concurrency in Practice. Addison-Wesley Profes-
sional, 2005.

[PGR+15] Sushil K. Prasad, Anshul Gupta, Arnold L. Rosenberg, Alan Sussman,
and Charles C. Weems. Topics in Parallel and Distributed Computing:
Introducing Concurrency in Undergraduate Courses. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2015.

[PSTH16] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. Studying the advancement in debugging practice of profes-
sional software developers. Software Quality Journal, 25(1):83–110, 2016.

[PVSD12] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race
detection for web applications. In ACM SIGPLAN Notices, volume 47,
pages 251–262. ACM, 2012.

266

https://www.w3.org/TR/workers/
https://www.w3.org/TR/workers/
https://queue.acm.org/detail.cfm?id=2039361
https://queue.acm.org/detail.cfm?id=2039361

BIBLIOGRAPHY

[RVS13] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race de-
tection for event-driven programs. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’13, pages 151–166. ACM,
2013.

[SA06] Koushik Sen and Gul Agha. Automated systematic testing of open
distributed programs. In Luciano Baresi and Reiko Heckel, editors,
FASE, volume 3922 of Lecture Notes in Computer Science, pages 339–
356. Springer, 2006.

[Sag05] Konstantinos Sagonas. Experience from developing the dialyzer: A static
analysis tool detecting defects in erlang applications. In Proceedings of
the ACM SIGPLAN Workshop on the Evaluation of Software Defect De-
tection Tools, 2005.

[Sag10] Konstantinos Sagonas. Using static analysis to detect type errors and
concurrency defects in erlang programs. In International Symposium on
Functional and Logic Programming, pages 13–18. Springer, 2010.

[SBSB19] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. Rea-
soning about the node.js event loop using async graphs. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2019, pages 61–72. IEEE Press, 2019.

[SCC01] W. R. Shadish, T. D. Cook, and Donald T. Campbell. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Houghton
Mifflin, 2 edition, 2001.

[SCM09] Terry Stanley, Tyler Close, and Mark Miller. Causeway: A message-
oriented distributed debugger. Technical report, HP Labs, April 2009.

[sig83] SIGSOFT ’83: Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High-Level Debugging, New York, NY, USA,
1983. Association for Computing Machinery.

[SLM+19] Robbert Gurdeep Singh, Carmen Torres Lopez, Stefan Marr, Elisa Gon-
zalez Boix, and Christophe Scholliers. Multiverse Debugging: Non-
Deterministic Debugging for Non-Deterministic Programs (Artifact).
Dagstuhl Artifacts Series, 5(2):4:1–4:3, 2019.

[SM16] Guido Salvaneschi and Mira Mezini. Debugging for reactive programming.
In Laura K. Dillon, Willem Visser, and Laurie Williams, editors, ICSE,
pages 796–807. ACM, 2016.

267

BIBLIOGRAPHY

[SNDMDR17] Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, and Coen
De Roover. Mailbox abstractions for static analysis of actor programs
(artifact). DARTS, 3(2):11:1–11:2, 2017.

[Sut05] Herb Sutter. The free lunch is over. http://www.gotw.ca/
publications/concurrency-ddj.htm, March 2005. Online; accessed 25
April 2021.

[SW17] Kazuhiro Shibanai and Takuo Watanabe. Actoverse: A reversible debug-
ger for actors. 2017.

[TGMJ11] Samira Tasharofi, Milos Gligoric, Darko Marinov, and Ralph Johnson.
Setac: A Framework for Phased Deterministic Testing Scala Actor Pro-
grams, 2011.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In Costas Halatsis, Dimitrios Marit-
sas, George Philokyprou, and Sergios Theodoridis, editors, PARLE’94
Parallel Architectures and Languages Europe, pages 398–413, Berlin, Hei-
delberg, 1994. Springer Berlin Heidelberg.

[TKL+12] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay,
Darko Marinov, and Gul Agha. TransDPOR: A Novel Dynamic Partial-
Order Reduction Technique for Testing Actor Programs. In Holger Giese
and Grigore Rosu, editors, Formal Techniques for Distributed Systems:
Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and
32nd IFIP WG 6.1 International Conference, FORTE 2012, Stockholm,
Sweden, June 13-16, 2012. Proceedings, pages 219–234. Springer, 2012.

[TLGBS+17] Carmen Torres Lopez, Elisa Gonzalez Boix, Christophe Scholliers, Ste-
fan Marr, and Hanspeter Mössenböck. A principled approach towards
debugging communicating event-loops. In Proceedings of the 7th ACM
SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE!’17, pages 41–49. ACM, Oc-
tober 2017.

[TLMMGB16] Carmen Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and Elisa
Gonzalez Boix. Towards Advanced Debugging Support for Actor Lan-
guages: Studying Concurrency Bugs in Actor-based Programs, October
2016.

[TLSZ19] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding
real-world concurrency bugs in go. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, pages 865–878, New York,
NY, USA, 2019. Association for Computing Machinery.

268

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

BIBLIOGRAPHY

[TPLJ13] Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph E. Johnson. Bita:
Coverage-guided, automatic testing of actor programs. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE’13, pages 114–124, November 2013.

[TV10] Stefan Tilkov and Steve Vinoski. Node.js: Using javascript to build high-
performance network programs. IEEE Internet Computing, 14(6):80–83,
Nov 2010.

[Val98] Antti Valmari. The state explosion problem, chapter 9, pages 429–528.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[VBMM18] John Vilk, Emery D. Berger, James Mickens, and Mark Marron. Mcfly:
Time-travel debugging for the web. CoRR, abs/1810.11865, 2018.

[VCGBS+14] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni
Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter.
Ambienttalk: programming responsive mobile peer-to-peer applications
with actors. Computer Languages, Systems & Structures, 40(3-4):112–
136, 2014.

[Ver20] Louise Van Verre. Interrogative debugging for somns programs, 2020.
Bachelor thesis.

[VMG+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker,
and Wolfgang De Meuter. Ambienttalk: object-oriented event-driven pro-
gramming in mobile ad hoc networks. In Inter. Conf. of the Chilean
Computer Science Society (SCCC), pages 3–12. IEEE Computer Society,
2007.

[VMV17] Simon Van Mierlo and Hans Vangheluwe. Debugging non-determinism:
a petrinets modelling, analysis, and debugging tool. In CEUR workshop
proceedings, volume 2019, pages 460–462, 2017.

[VRH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming, volume 19. 01 2004.

[WDG+17] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei. A com-
prehensive study on real world concurrency bugs in node.js. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 520–531, 2017.

[web16] akka-visualmailbox. https://github.com/ouven/akka-visualmailbox,
2016. Online; accessed 12 April 2021.

269

https://github.com/ouven/akka-visualmailbox

BIBLIOGRAPHY

[Wis97] Roland Wismüller. Debugging message passing programs using invisible
message tags. In Marian Bubak, Jack Dongarra, and Jerzy Waśniewski,
editors, Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, pages 295–302, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[WWH+17] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and
Matthias Grimmer. Practical partial evaluation for high-performance dy-
namic language runtimes. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, pages 662–676, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[WWS+12] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug
Simon, and Christian Wimmer. Self-optimizing ast interpreters. In Pro-
ceedings of the 8th Symposium on Dynamic Languages, DLS ’12, pages
73–82, New York, NY, USA, 2012. Association for Computing Machinery.

[WWW+13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One vm to rule them all. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2013, pages 187–204, New York,
NY, USA, 2013. Association for Computing Machinery.

[XBLL16] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. "automated debug-
ging considered harmful" considered harmful: A user study revisiting the
usefulness of spectra-based fault localization techniques with profession-
als using real bugs from large systems. In ICSME, pages 267–278. IEEE
Computer Society, 2016.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in abcl/1. In Conference Proceedings
on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA ’86, pages 258–268, New York, NY, USA, 1986. Association for
Computing Machinery.

[ZBZ11] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically Locating Web
Application Bugs Caused by Asynchronous Calls. In Proceedings of the
20th International Conference on World Wide Web, WWW ’11, pages
805–814. ACM, 2011.

270

BIBLIOGRAPHY

[Zel09] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to System-
atic Debugging. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2nd edition, 2009.

[ZWCZ15] Mingxing Zhang, Yongwei Wu, Kang Chen, and Weimin Zheng. What is
wrong with the transmission? a comprehensive study on message passing
related bugs. In ICPP, pages 410–419. IEEE Computer Society, 2015.

271

BIBLIOGRAPHY

272

Glossary

actor an actor can be defined as a four-tuple: an execution context, an inbox, an inter-
face and its state. An actor perpetually takes messages from its inbox and processes
them in a new execution context with respect to that actor’s interface and state.
This continues until the inbox is empty after which the actor goes to an idle state
until a new message arrives in its inbox [DKVCDM16].

behavior denote the combination of an actor’s interface an its state. Some actor systems
enable an actor to modify its entire behavior in one single operation. [DKVCDM16].

calling context history of synchronous message calls that lead to a pausing state in a
program.

concurrent a concurrent program has multiple logical threads of control. These threads
may or may not run in parallel [?].

cyclic debugging cyclic debugging is the debugging process of stopping the program’s
execution, inspect the variables state and resume execution, or stop again in another
execution point [MH89].

dependent variable is a presumed effect or outcome. The dependent variable is influ-
enced by one or more independent variables [CJT15].

dynamic deoptimization occurs when specialization fails, i.e., the type of the node is
not longer valid, then compiled code is reverted to the AST interpreter [WWW+13].

experimental condition is defined by one level of manipulation of the independent
variable, is also referred as treatment condition in experimental research [CJT15].

far reference object that references another object within another actor. These objects
communicate through asynchronous messages [MTS05].

independent variable is the presumed cause of another variable [CJT15].

273

Glossary

interface at any given point in time, an actor’s interface defines the list and types of
messages it understands. An actor can only process incoming messages that fit this
interface. For some actor systems this interface is fixed while other actor systems
allow an actor to change its interface, thus allowing it to process different types of
messages at different points in time [DKVCDM16].

mailbox stores an ordered set of messages received by an actor [DKVCDM16].

near reference object that references another object within the same actor (aka, a di-
rect reference). These objects communicate through synchronous messages [MTS05].

node specialization means that when the nodes are executed, i.e., during interpreta-
tion, they are replaced by type-specific nodes, e.g., integer nodes, double nodes
[WWW+13].

parallel parallel programming is about using additional computational resources to pro-
duce an answer faster [?]. A parallel program potentially runs more quickly than a
sequential program by executing different parts of the computation simultaneously
(in parallel). It may or may not have more than one logical thread of control [?].

partial evaluation is the process of creating the initial high-level compiler interme-
diate representation (IR) for a guest language function from the guest language
interpreter methods (code) and the interpreted program (data) [WWH+17].

reverse debugging a debugging technique in which a history of program execution
is recorded and then replayed under the user’s control, in either the forward or
backward direction [glo90].

send context history of asynchronous message calls that lead to a pausing state in a
program.

state all the state that is synchronously accessible by an actor (i.e., state that can
be read or written without blocking its thread of control). Depending on the
implementation, that state can be mutable or immutable, and isolated or shared
between actors [DKVCDM16].

turn a turn is defined as the processing of a single message by an actor. In other words, a
turn defines the process of an actor taking a message from its inbox and processing
that message to completion [DKVCDM16].

274

	1 Introduction
	1.1 Research Context
	1.2 Problem Statement
	1.3 Research Goals
	1.4 Research Approach
	1.5 Contributions
	1.5.1 Technical Contributions
	1.5.2 Supporting Publications

	1.6 Dissertation Outline

	2 Concurrency Bugs in Actor-based Programs
	2.1 The Actor Model
	2.1.1 Processes Model
	2.1.2 Communicating Event-Loops Model

	2.2 Terminology about Concurrency Bugs
	2.3 Taxonomy of Concurrency Bugs for Actor-based Programs
	2.3.1 Lack of Progress Issues
	2.3.2 Message Protocol Violations
	2.3.3 Comparison with Existing Terminology in Literature
	2.3.4 Issues Mixing Actor Libraries with other Concurrency Models

	2.4 Study of Concurrency Bugs in Actor-based Programs
	2.4.1 Lack of Progress Issues
	2.4.2 Message Protocol Violations
	2.4.3 Concurrency Bugs by Actor Variants

	2.5 Related Studies of Concurrency Bugs in Actor-based Programs
	2.5.1 Field Studies in Akka programs
	2.5.2 Field Study in Node.js programs
	2.5.3 Conclusion from the Related Field Studies

	2.6 Heisenbugs and Probe-Effect
	2.7 Conclusion

	3 State of the Art of Techniques to Handle Concurrency Bugs in Actor-based Programs
	3.1 Identifying and Solving Concurrency Bugs
	3.2 Debugging Techniques
	3.2.1 Online Debugging Techniques
	3.2.2 Offline Debugging Techniques

	3.3 State of the Art Techniques to Handle Concurrency Bugs
	3.3.1 Online Debuggers
	3.3.2 Offline Debuggers
	3.3.3 Visualization Techniques
	3.3.4 Static Analysis
	3.3.5 Testing
	3.3.6 Discussion based on our Taxonomy of Concurrency Bugs

	3.4 Conclusion

	4 SOMns: a Concurrent Actor-based Language
	4.1 The SOMns Programming Language
	4.2 Object-oriented Programming in SOMns
	4.2.1 Classes
	4.2.2 Objects
	4.2.3 Synchronous Messages
	4.2.4 Block Closures

	4.3 Concurrent Programming in SOMns
	4.3.1 Actor Creation
	4.3.2 Asynchronous Messages
	4.3.3 Promises

	4.4 SOMns: a Language Implemented on Top of Truffle
	4.4.1 Building Tools with Truffle Instrumentation API
	4.4.2 Implementation of Asynchronous Message Passing in SOMns

	4.5 Conclusion

	5 Online Debugging Techniques for Actor-based Programs
	5.1 Design of Online Debugging Techniques for Actor-based Programs
	5.1.1 Message Breakpoints
	5.1.2 Message Stepping
	5.1.3 Trace-based Visualizations
	5.1.4 Asynchronous Stack Trace
	5.1.5 Advanced Visualization Techniques

	5.2 Apgar, a Proof of Concept Online Message-oriented Debugger for SOMns
	5.2.1 Architecture Overview
	5.2.2 Apgar Frontend

	5.3 Extension to Kómpos Protocol
	5.3.1 Meta Model
	5.3.2 Debugger Messages
	5.3.3 Trace Events

	5.4 Comparison to Related Work
	5.5 Conclusion

	6 Implementation of Online Debugging Techniques for SOMns
	6.1 Apgar Backend (Medeor), Debugging Support in SOMns
	6.1.1 Message Breakpoints
	6.1.2 Message Stepping
	6.1.3 Trace-based Visualizations
	6.1.4 Asynchronous Stack Trace

	6.2 Apgar Frontend, an IntelliJ Plugin
	6.2.1 A Custom Language Support Plugin

	6.3 Conclusion

	7 Evaluation of Online Debugging Techniques for Actor-based Programs
	7.1 Design of the User Study
	7.1.1 A Mixed Methods Experimental Research Design
	7.1.2 Experiment Planning

	7.2 A Between-Subjects Research Design
	7.2.1 Random Assignment of Matched Participants
	7.2.2 Debugging Assignments
	7.2.3 Posttest Design

	7.3 Results
	7.3.1 Participants Profile
	7.3.2 Quantitative Results
	7.3.3 Qualitative Results
	7.3.4 Overview of the Results

	7.4 Threats to Validity in Mixed Methods Experimental Research
	7.4.1 Internal Validity Threats

	7.5 Discussion
	7.6 Conclusion

	8 Online Debugging Techniques Probe-Effect Free
	8.1 Multiverse Debugging
	8.1.1 Recipe
	8.1.2 A Multiverse Debugger for a Small Language
	8.1.3 Challenges

	8.2 Voyager, a Proof of Concept Multiverse Debugger for Actors
	8.2.1 Debugging a Sample Program
	8.2.2 Overview of a Debugging Session

	8.3 Voyager Calculus, an Implementation of a Multiverse Debugger for Actor-based Programs
	8.3.1 Syntax and Operational Semantics of the AmbientTalk Language
	8.3.2 Syntax and Operational Semantics of the Voyager Debugger

	8.4 Discussion
	8.4.1 Static Analysis and Multiverse Debugging

	8.5 Proof of Non-Interference for a Multiverse Debugger
	8.6 Related Formal Specifications for Debugging
	8.7 Conclusion

	9 Conclusion and Future Work
	9.1 Research Goals Revisited
	9.2 Restating the Contributions
	9.3 Discussion
	9.4 Future Work
	9.5 Concluding Remarks

	Appendices
	Appendix A Catalog of Bugs Found in Actor-based Programs
	A.1 Catalog of bugs found in actor-based programs

	Appendix B SOMns Cheat Sheet
	Appendix C Sample Programs in SOMns
	C.1 Prime number
	C.2 Instant messenger
	C.3 Pythagoras calculator

	Appendix D Apgar Implementation Details
	D.1 Medeor Implementation Classes
	D.1.1 Debugger Tool in Medeor
	D.1.2 Breakpoints and Stepping
	D.1.3 Trace Events for Actor State Inspection
	D.1.4 Asynchronous Stack Trace

	D.2 Apgar Frontend Implementation Classes
	D.3 Interactions between Apgar Frontend and Backend
	D.3.1 Setup and Breakpoint Activation
	D.3.2 Trace Information Request
	D.3.3 Stack Trace Information Request

	Appendix E User Study Material
	E.1 Code of conduct for the online experiment
	E.2 Steps for random assignment
	E.3 Debugging assignments
	E.3.1 Assignment 1: FlightBooking
	E.3.2 Assignment 2: OrderPurchase

	E.4 Questionnaire
	E.5 Additional user study results
	E.5.1 Participants profile

	E.6 Threats to Validity in the Qualitative Study

	Appendix F Debugger Configuration in PLT-Redex
	Bibliography
	Glossary

