Mining for Graph-Based Library Usage Patterns in
COBOL Systems

Ruben Opdebeeck®, Johan FabryT, Tim Molderez*, Jonas De Bleser®, Coen De Roover*
*Vrije Universiteit Brussel, Belgium, {ropdebee, tmoldere, jdeblese, cderoove}@vub.be
tRaincode Labs, Belgium, johan@raincode.com

Abstract—When migrating legacy systems to more contem-
porary platforms, it is not always feasible to migrate their
external library dependencies as well. A workaround can be
to partially reimplement the library dependencies on the new
platform, limiting oneself to the features that are used by the
migrated system. For contemporary programming languages,
several approaches to mining for library usage patterns have
been proposed. For legacy programming languages, in contrast,
such tools are lacking. This encumbers establishing what parts
of a library need to be rewritten during a migration project,
especially when considering large-scale systems.

In this industry track paper, we present an approach to mining
library usage patterns in COBOL code. We describe a library
usage extractor for COBOL, which produces graphs that capture
the control and data flow involved in library calls. The extractor
supports legacy control flow features, such as GO TO. We use
these graphs as input to two state-of-the-art frequent subgraph
mining algorithms, and report on the scalability of their use for
mining common library usage patterns in two industrial COBOL
systems. The mined library usage patterns can help assess and
subsequently steer the migration effort.

Index Terms—Ilegacy code; software renovation; library usage
pattern mining

I. INTRODUCTION

When migrating a legacy system to a new platform, its exter-
nal dependencies need to be migrated along. For COBOL, for
instance, such a dependency can be a set of separate COBOL
programs that are called from programs of the system being
migrated. For technical or legal reasons, it might not always
be possible to migrate such libraries of programs to the target
platform. One possible alternative is to reimplement them
partially. Indeed, only the subset of the library that is used by
the system under migration needs to be reimplemented. Hence
knowing how the library is used, i.e., what are the patterns of
calls to the external programs and their arguments, enables
assessing and planning the reimplementation effort.

It is infeasible to inspect legacy COBOL systems for library
usage patterns manually. Systems under migration typically
consist of thousands of COBOL files, where each file may be
nontrivial in terms of the control and data flow between calls
to the external programs that comprise a library. An automated
means of mining for control and data flow patterns in library
calls is required. Moreover, it is crucial that this mining scales
to thousands of COBOL programs and potentially tens of
thousands of library calls.

Fortunately, several automated approaches to library usage
pattern mining have been proposed — but only for the context

of more modern and object-oriented programming languages.
The most notable capture the patterns in so-called Groums
(short for Graph-based Object Usage Models), for which
at least two different graph mining algorithms have been
proposed [1], [2]. Moreover, the second work has shown that it
scales to large corpora of software. As these algorithms take a
graph of control and data dependencies as input, they should
be equally applicable to legacy languages such as COBOL,
provided that similar graphs can be constructed.

To enable mining of library usage patterns in COBOL,
we propose a Groum extractor for COBOL. Most notably,
it comprises a definition of COBOL library calls, and takes
into account particularities with regard to control flow. To
establish the feasibility and scalability of Groum-based mining
of typical COBOL systems, we mined for usage patterns in
two industrial systems: A small system of 305 programs, and
a medium-size system of 3926 programs.

To the best of our knowledge, we are the first to consider
Groum-based library usage pattern mining in a legacy context.
Our results show that the approach is feasible, but that the
large size of our Groums severely inhibits the scalability of
the mining algorithms. Surprisingly, of the two approaches that
have previously been proposed, the one that was shown to be
more efficient [2] for contemporary OO languages, is actually
less so on our corpus.

II. BACKGROUND

The purpose of library usage pattern mining is to describe
common usages of a programming library in a corpus of source
code. Library usages and their patterns can be described using
various representations, of which the graph-based object usage
model, or Groum [1], is a prominent example. This representa-
tion describes a program unit as a graph consisting of control
and data flow information that relates to the usage of OO
libraries. Groums and their derivatives have previously been
applied to find best practices in the Android framework [2],
as well as to detect defective usages of Java libraries [3].

Figure 1 depicts an example of a Groum representing a
typical usage of a Java stream. Groums use two types of
nodes to show how libraries are used in a method. Call nodes,
the rectangles in the figure, represent a method call. Their
node labels are the called method’s signature, including the
method name, receiver type, and parameter types. Data nodes,
depicted as ellipses in the figure, represent a unique data value
in the program, and are labelled with the value’s type. The

Fig. 1. An example of a Groum representing the usage of a Java stream.

nodes in the graph can be connected by one of three types of
edges. First, control-flow edges, dashed and labelled “order”
in the figure, link two call nodes in the order in which they
would be executed. They thus represent the control-flow graph
(CFG) of the method. Second, use data-flow edges, labelled
“use”, link a data node to a call node where it is consumed,
either as argument or as receiver. Third, definition data-flow
edges, labelled “def”, link a call node to the data it produces.
Formally, Groums also contain transitive control-flow edges,
representing the transitive closure over the CFG. For clarity
and brevity of the figures, we omit these here.

Uncovering library usage patterns in a corpus of OO
programs proceeds according to two phases. First, in the
extraction phase, a Groum is created for each method. Then,
in the mining phase, the Groums are subjected to a frequent
subgraph mining algorithm to discover popular subgraphs,
which are considered patterns. The algorithms use a support
parameter, which specifies how often a subgraph needs to
occur in the corpus of Groums for it to be considered popular,
and thus, a pattern.

Two algorithms have been proposed to this end. The first,
by Nguyen et al. [1], is an apriori pattern-growth algorithm.
It continually generates candidate patterns as extensions of
previously-generated frequent patterns, until the support of the
candidate pattern becomes too low. To calculate the support
of a candidate extension, it needs to be compared to all other
candidates for isomorphism. Since isomorphism checking for
graphs is expensive, the algorithm approximates these checks
using a vector-based approximation. The second algorithm,
used in BigGroum [2], first partitions the corpus of Groums
using frequent itemset mining on the call labels used in each
Groum. It then slices each of the Groums in a partition to
remove nodes that are irrelevant to the method calls in the
partition. Finally, it decides whether a sliced Groum is frequent
by calculating how often it appears as a subgraph of the sliced
Groums in the partition. The subgraph checks are encoded as
SAT formulae, enabling BigGroum to outperform GrouMiner
on large corpora of Groums [2].

As Groums essentially contain only control and data flow
information, and are not inherently limited to OO programs,
it should be possible to represent COBOL library usages as
Groums. Furthermore, given the promising results reported by
Mover et al. on BigGroum [2], their back-end may be able
to scale to the size of corpora we wish to mine. We hence

‘ IC102A }> ----- ‘-{ IC102A }> ----- ‘-{ IC102A ‘
order order T

order
order order
‘ STOP RUN }-' ----- { IC102A }-' ----- { 1C102A ‘

use use

DN2 (Group)

Fig. 2. Groum for the program IC101A of the COBOLSS test suite [4].

developed a compatible Groum extractor for COBOL source
code, so that we can reuse this back-end to mine for library
usage patterns in COBOL. We present our extractor next.

III. EXTRACTING GROUMS FROM COBOL SOURCE CODE

Groum mining has been developed for object-oriented
languages, which precludes its straightforward transposition
to non-OO (legacy) languages like COBOL. We describe
the challenges encountered while extracting Groums from
COBOL programs, and provide an overview of our solutions.

Figure 2 depicts a Groum extracted from the IC101A
program from the UK National Computing Centre Cobol-
85 compliance test suite [4]. It shows a sequence of five
calls, where the first three use a variable named DN1 as
the argument, while the last two use DN2. The last node of
the Groum indicates that the program terminates through the
STOP RUN statement.

a) Definition of library usages: Since Groums describe
library usages, it is necessary to define what constitutes a
library. In languages that support packages, this is straightfor-
ward. For example, a user could mark a package as a library,
and any call to a method defined in that package could be
considered part of a usage of that library.

As COBOL does not have support for packages, this
strategy is not applicable. Instead, we allow the user to
specify which COBOL programs should be treated as library
programs. Thus, interactions with a library take the form of a
CALL statement into a library program. Such statements are
modelled as call nodes in our Groums, labelled with the name
of the called program. Alternatively, the user can specify that
all CALL statements should be considered library invocations.
This is useful when it is not known upfront which programs
are part of a library.

COBOL also provides the CANCEL statement, which resets
the state of an external program and is thus important for
library usages. We also model such statements as call nodes,
but prefix their label with “CANCEL”.

Another complicating factor is that COBOL’s CALL and
CANCEL statements can take the name of the program in a
variable, rather than as a string literal. Rather than attempting
to determine the run-time value of this variable through a
data flow analysis, we choose to encode such instances as
a combination of the variable name and its initial value.
This allows us to consider such cases during pattern mining,

while also distinguishing between the two formats. Of course,
call destinations computed through later assignments to the
variable might be missed in this manner.

b) Control flow: The default control flow in COBOL is
to execute the program statements in lexical order, but control
can also jump to different places in the program. To allow
this, COBOL programs can consist of multiple sections and
paragraphs. For the purpose of this text, we can consider
these as labelled sequences of statements, and use the term
“paragraph” to mean “paragraph or section”.

The control flow of a program can jump between paragraphs
in two ways. First, a statement of the form PERFORM A
THRU Z will jump to a paragraph named A and sequentially
execute all of the subsequent statements up to, and including,
the statements of paragraph Z. When control flow reaches
the end of Z, the program execution jumps back to the
statement following the original PERFORM statement. Second,
a statement of the form GO TO X jumps to a paragraph named
X, where it continues sequentially. These two types of jumps
can be mixed arbitrarily. For example, if a GO TO statement is
executed while a PERFORM statement is ‘active’, and control
eventually reaches the boundary of the PERFORM, control
will then be passed back to the statement after the PERFORM
statement. This allows for complex control flow jumps during
the execution of a COBOL program, which is not possible in
languages for which Groums were designed.

c) Inter-paragraph Groums: Paragraphs can be fairly
small, and in those cases constructing a Groum for each para-
graph individually does not sufficiently describe the program’s
control flow. Therefore, we need to construct “inter-paragraph”
Groums that represent the control flow of the whole program,
and thus need to account for inter-paragraph control flow
jumps. We do this using a two-phase construction approach.

First, we create intra-paragraph Groums that contain auxil-
iary nodes to indicate the presence of GO TO or PERFORM
statements and the target labels to which they jump. These
intra-paragraph Groums also contain an implicit jump node
as their last node, whose target depends on whether or not a
PERFORM statement is active.

Second, we perform graph inlining on these auxiliary jump
nodes, i.e., we replace each of these nodes by the paragraph(s)
that it would execute. When a PERFORM node is encountered,
the implicit end-of-paragraph jump node of its last paragraph
is adjusted to jump back to the node following the PERFORM.
Thus, the inliner can straightforwardly replace any jump node
by the paragraph to which is jumped, and recursively inline
the inlined subgraph.

d) Iterative control flow: Programs may execute the
same statements repeatedly through iteration. However, since
Groums are DAGs, it is impossible to add a back-edge to
represent this. We therefore represent iterative control flow
structures by approximating them as executing the statements
at most once, which is equivalent to the strategy employed for
Java Groums [1].

Inter-paragraph control flow jumps are another source of
potential iteration, e.g., a GO TO statement may jump back to

a paragraph that was executed before, which would eventually
reach the same statement once again. We detect such cases by
keeping track of each inlined paragraph for each path down
the Groum. When the inliner encounters a jump to a paragraph
that was already inlined in this path, it prevents any further
inlining down that path, yet continues to inline down other
paths. Note that we cannot simply skip the jump and proceed
to inline the subsequent statements. Since a GO TO statement
does not return control, we do not know which statements
these may be.

e) Program termination: COBOL offers multiple state-
ments that terminate a program, e.g., STOP RUN or GOBACK.
Additionally, certain programs may terminate the caller pro-
gram, akin to Java’s System.exit. We therefore allow
the user to specify a set of termination-inducing programs.
When the extractor encounters a statement that would lead to
program termination, it halts the construction of that path in
the Groum. Both types of program termination are represented
as call nodes. This enables representing how a program termi-
nates, while retaining compatibility with BigGroum’s backend.

f) Data flow information: Groums also contain data flow
information related to library calls. This includes arguments
used in the invocations, as well as data returned by the library
call. However, program calls in COBOL typically do not return
data, rather, they mutate values in the memory space shared be-
tween the caller and callee. Consequently, determining which
data is “returned” by a program call constitutes running a data
flow analysis on the called program. This may be impossible
for the purpose of library re-engineering, where the source
code of the called program may not be available. Thus, we
do not extract data definitions from the library calls, and the
Groums only contain data usages.

g) Language support tradeoffs: COBOL has a very rich
and complex syntax, yet we do support Groum extraction for
all programs that we can successfully compile with the Rain-
code Labs compiler. This is done by focusing on statements
that have an inherent effect on control flow. Statements that do
not relate to control flow (e.g., MOVE to assign a variable) are
handled generically, by traversing their constituents in search
of relevant statement types.

We handle all forms of conditionals, iterative structures,
and control flow jumps, except for the ALTER statement. This
statement can be used to dynamically change a label to point
to another paragraph, and thus may affect the target of a GO
TO or PERFORM statement. Although this statement could be
supported through a data flow analysis, we believe it would
significantly complicate the extractor for limited gains. Thus,
support for this statement is left for future work.

IV. EVALUATION

To validate that we are able to mine graph-based library
usage patterns for large COBOL codebases in reasonable time,
we devised two experiments. We measured the time taken to
extract and mine patterns in two industrial COBOL codebases
from Raincode Labs clients.

Programs # KLOC Min. support

Case 1 305 662.2 30
Case 2 3926 22889 400
TABLE I

SUMMARY OF THE TWO INDUSTRIAL COBOL CODEBASES.

Targeting industrial COBOL codebases, we posit the fol-
lowing research questions:

RQ1 Does the COBOL Groum extractor scale?
RQ2 Can the extracted Groums be mined for patterns in a
reasonable time?

A. Experimental Setup

To answer these research questions, we selected two in-
dustrial COBOL codebases. Their properties are described in
Table I. The first case is a system of 305 COBOL programs
and the second case is nearly 4000 COBOL programs. We
chose a minimum support threshold of around 10% for each.

We have run our COBOL Groum extractor on both of these
cases, measuring the time it takes to construct Groums from
their abstract syntax trees. The extractor was configured to
consider all CALL statements to be library calls. We then
fed the constructed Groums into the two Groum mining
algorithms described in Section II. We reused the BigGroum
algorithm implementation provided by Mover et al. [2] and we
implemented an adaptation of the GrouMiner algorithm [1].
The latter is based on the version presented by Amann et
al. [3], which is itself based on GrouMiner’s implementation.
Our custom GrouMiner algorithm contains a number of opti-
misations, mainly intended to reduce its memory footprint to
allow it to mine larger graphs. However, the fundamentals of
the algorithm remain the same. To emphasise the difference
between the original implementation and ours, we will refer
to our implementation as GrouMiner*.

Recall that the support of a potential pattern is the number
of unique Groums in which it occurs as a subgraph. The
minimum support value for pattern mining in both cases was
set to roughly 10% of the programs in the case. For BigGroum,
we used the same support value for Groum partitioning as for
pattern mining. Lastly, we instructed both pattern miners to
produce patterns that contain at least 2 call nodes.

All experiments were performed on a machine with 32GB
RAM and a 6-core, 2.6GHz CPU. For GrouMiner*, the
maximum JVM heap space is set to 32GB, whereas BigGroum
was allowed to use all available memory. All of the timing
values were obtained from sequential implementations.

B. RQI: Is the COBOL Groum Extractor Scalable?

Table II summarises the results of our first experiment.
We measured the full time taken to extract COBOL Groums,
including the construction and inlining phases. The table also
lists the average size and maximum size of the extracted
Groums, which includes all its nodes and edges.

These results show that our Groum extractor for COBOL
can indeed efficiently handle both small and medium-sized
COBOL codebases. For the small codebase, extraction takes

Case Time (s) # Groums Avg. size Max. size

Case 1 43.8 273 244 4634

Case 2 (full) 1019 3925 4769 1217422

Case 2 (limited) N/A 3573 125 9644
TABLE 11

RESULT OF EXTRACTING GROUMS ON THE TWO CODEBASES.

GrouMiner* BigGroum
Corpus Time (min) #P Time (min) # Part. #P
Corpus 1 0.95 3 10.4 3 4
Corpus 2 121.8 7 618.2 1 0
TABLE III

RESULT OF MINING GROUMS FROM THE CORPORA.

less than a minute, whereas for the medium-sized project,
extraction takes roughly 17 minutes. Although these figures do
not scale linearly with the number of programs, we note that
the extracted Groums are significantly larger in the medium-
sized case. Thus, we believe that our extractor will be able to
scale to large COBOL codebases.

It is worth noting that the size of the Groums we extract
significantly differs from the size of the Groums extracted for
contemporary OO languages. For example, even for the small
case, our average graph size is larger than the largest Groum
of any case studied by Nguyen et al. [1]. This is a natural
consequence of the fact that our Groums are extracted for
whole COBOL programs, whereas OO Groums are extracted
for a single method. It is also interesting to highlight the largest
Groum extracted from the medium-size codebase. The Groum
contains over 16.000 nodes, and more than a million edges, a
graph size unseen by any of the two mining algorithms. Al-
though this may appear to be an abnormally large graph, it can
be expected that the interplay of inter-paragraph control flow
jumps and conditional control in complex COBOL programs
produces graphs of such sizes.

Such large graph sizes may have a significant effect on
the performance of a Groum miner. Preliminary experiments
showed that neither of the two algorithms is able to handle the
medium-sized codebase on our machine. BigGroum crashed
after two hours with an overflow error in the SAT solver,
whereas GrouMiner* quickly exhausted the allotted 32GB of
JVM heap space. Therefore, we derived a new Groum corpus
for the second case, depicted in the third row of Table II. In
this new corpus, we discarded any Groum that has more than
100 call nodes, significantly reducing the average size of the
graphs while only slightly lowering the number of Groums in
the corpus. We will thus perform Groum mining only on the
corpus of the first case, and the reduced corpus of the second.

C. RQ2: Can the Groums be Mined in Reasonable Time?

Table III depicts the results of mining the extracted Groums
with the GrouMiner* and BigGroum algorithms. The column
labelled “# P” indicates the number of patterns that were
discovered. For BigGroum, the column labelled “# Part.”
contains the number of partitions it generated.

use P
order 03
vilcil r----- CANCEL V1[C1]-----
use

Fig. 3. An example of a pattern extracted by GrouMiner.

We find that GrouMiner* outperformed BigGroum on both
corpora by a large margin. Moreover, the patterns produced by
GrouMiner* are generally more descriptive than BigGroum’s
patterns. For example, in the first case, BigGroum produced
patterns that consist of few call nodes, with no edges relating
them to one another. In the second case, BigGroum produced
no patterns, even though it ran for over 10 hours.

Figure 3 depicts an anonymised version of a pattern ex-
tracted by GrouMiner* from the first corpus of Groums. This
pattern succinctly shows that the COBOL programs in the
codebase often call and afterwards reset another program
through a variable named V1, whose initial value is C1.
Afterwards, they optionally call a program C2 directly, and
terminate via the GOBACK statement. This pattern has a
support of 79 instances, and thus occurs in nearly 30% of
the programs. The V1 call is responsible for a particular
user interface screen, specified through the provided argument
variable. For subsequent uses, this program needs to be reset
to its initial state after use, hence requiring the CANCEL call.
The C2 program is a generic database invocation routine that
is configured through its different arguments.

This experiment demonstrates that the size of the extracted
Groums has a significant impact on the scalability of the
pattern mining algorithms, as is to be expected. Perhaps sur-
prisingly, we also find that on our codebases BigGroum scales
worse than GrouMiner*. We hypothesise potential causes for
this observation in the next section.

V. DISCUSSION

In Section IV-C, we found that BigGroum fails to out-
perform GrouMiner* in both of our case studies. This is a
surprising observation given that BigGroum has previously
been shown to scale better than GrouMiner on large corpora
of Groums [2].

Closer inspection of the second corpus reveals that among
the more than 60.000 call nodes in the corpus, there are
less than 15 unique labels. Moreover, most of the Groums
in this corpus contain all of these labels. This means that
when BigGroum partitions the Groums into clusters, it creates
a single cluster for all of these labels. Consequently, when
it slices the Groums, the Groums only decrease in size
marginally, since most of the nodes are relevant to the cluster.
As a result, BigGroum has to check many large graphs for
subgraph isomorphism, which involves expensive SAT solver
calls. Indeed, BigGroum spent roughly half of its mining time
(5.2h) inside of the SAT solver.

In contrast, the GrouMiner and GrouMiner* algorithms
do not have to check for subgraph isomorphism of such
large graphs. Instead, they only have to check for graph

isomorphism of smaller candidate pattern graphs. On the other
hand, they often have to check more graphs for isomorphism,
as they may generate several potential candidate extensions.
Moreover, the pattern growth strategy employed allows them
to find common subgraphs in these large graphs. BigGroum
cannot find these, since it requires that Groum slicing reduces
the graphs sufficiently to make the sliced graphs themselves
frequent. Since slicing does not reduce the size of our Groums
significantly, this does not happen.

We suspect that for BigGroum to be efficient, the corpus
of Groums needs to either contain relatively small graphs, or
contain a large and varied set of call labels. For contemporary
OO languages, where library usage is prevalent and Groums
can be extracted for single methods, both of these conditions
likely hold. However, for COBOL Groums, neither assumption
holds. Because our Groums are extracted for a whole program,
they tend to be very large. Moreover, as is evident from the
small set of call labels, COBOL programs use only a small
set of libraries. We conclude that the BigGroum algorithm is
not applicable to Groums that have properties similar to ours:
large graphs or a small set of call labels.

VI. CONCLUSION

In this industry track paper, we have presented an approach
to mining graph-based library usage patterns in COBOL
codebases. The mined patterns can be used to assess and
steer the effort of reimplementing legacy dependencies of a
system under migration. The approach can be instantiated
with the frequent subgraph mining algorithms that have proven
themselves in the context of OO software.

To evaluate the scalability of our approach, we compare two
such instantiations on a COBOL codebase of 660 KLOC and
on one of 22.9 MLOC. The results demonstrate the feasibility
of our approach, but also that the large graph sizes render
mining expensive. Surprisingly, the best-performing algorithm
for OO library usage patterns performs the worst when applied
to COBOL library usage.

ACKNOWLEDGEMENTS

This research was partially funded by the Belgian Innoviris
TeamUp project INTIMALS (2017-TEAM-UP-7).

REFERENCES

[1] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Graph-Based Mining of Multiple Object
Usage Patterns. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE ’09),
pages 383-392. ACM, 2009.

Sergio Mover, Sriram Sankaranarayanan, Rhys Braginton Pettee Olsen,
and Bor-Yuh Evan Chang. Mining Framework Usage Graphs from App
Corpora. In Proceedings of the 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER ’'18), pages 277-289.
IEEE, 2018.

Sven Amann, Hoan Ahn Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira
Mezini. Investigating Next-Steps in Static API-Misuse Detection. In
Proceedings of the 16th International Conference on Mining Software
Repositories (MSR '19), pages 265-275. 1EEE, 2019.

National Computing Centre, UK. COBOLS5 test
https://www.itl.nist.gov/div897/ctg/cobol_form.htm.

[2

—

3

—_

4 suite.

—

