
On the Usage of JavaScript , Python and Ruby
Packages in Docker Hub images

Ahmed Zeroualia, Tom Mensb, Coen De Roovera

a Software Languages Lab - Vrije Universiteit Brussel
ahmed.zerouali@vub.be, coen.de.roover@vub.be

b Software Engineering Lab - University of Mons
tom.mens@umons.ac.be

Abstract

Docker is one of the most popular containerization technologies. A Docker
container can be saved into an image including all environmental packages re-
quired to run it, such as system and third-party packages from language-specific
package repositories. Relying on its modularity, an image can be shared and
included in other images to simplify the way of building and packaging new
software. However, some package managers allow to include duplicated pack-
ages in an image, increasing its footprint; and outdated packages may miss new
features and bug fixes or contain reported security vulnerabilities, putting the
image in which they are contained at risk. Previous research has focused on
studying operating system packages within Docker images, but little attention
has been given to third-party packages. This article empirically studies installa-
tion practices, outdatedness and vulnerabilities of JavaScript, Python and Ruby
packages installed in 3,000 popular community Docker Hub images. In many
cases, these installed packages missed important releases leading to potential
vulnerabilities of the images. Our findings suggest that maintainers of Docker
Hub community images should invest more effort in updating outdated packages
contained in those images in order to significantly reduce the number of vul-
nerabilities. In addition to this, Python community images are generally much
less outdated and much less subject to vulnerabilities than NodeJS and Ruby
community images. Specifically for NodeJS community images, elimination of
duplicate package releases could lead to a significant reduction in their image
footprint.

Keywords: software containerization, package management, software
vulnerability, outdated software, Docker Hub, third-party library

1. Introduction

In order to cope with continuous changes in the software development pro-
cess and the need to accelerate the release time, software containerization has
emerged as an easy and efficient approach to wrap and ship software in a

Preprint submitted to Science of Computer Programming April 2, 2021

lightweight way. Containerization enables provisioning several applications on a
single host, sharing and packaging system packages, binaries and configuration
files [1]. Today, Docker [2] is the most widespread containerization technol-
ogy [3]. Practitioners around the world rely on it to package and distribute their
software and its dependencies as images via services like GitHub and Docker
Hub. With more than 4.1M image repositories in October 2020 1, the latter is
the world’s leading service for finding and sharing container images.

Docker Hub categorizes images into two types. Official images are created
by official organizations like Debian 2 and they are inspected and designed to be
used as base images for other images. Community images are created by regular
users and can be published without any inspection. In most cases, Docker Hub
images do not only include packages for operating systems (e.g., Debian and
Alpine) but also contain third-party packages from language-specific package
repositories (e.g., Python packages from PyPI , JavaScript packages from npm,
and Ruby packages from RubyGems). Some of these packages are required by
other packages and applications as development or runtime dependencies (e.g.,
the PyPI package six helps to develop Python code that is compatible with
Python 2 and Python 3), while other packages are stand-alone programs that
can be executed from the command line to provide specific services (e.g., the
npm package elasticdump is used to dump data from Elasticsearch to json files,
etc). Such packages should be treated with care since non-useful ones will lead
to a larger image footprint which could reduce the performance of images and
affect the scalability of their services [4, 5]. Moreover, these packages can be
outdated, implying that they may miss the newest features and bug fixes, and
can contain known security vulnerabilities that can be exploited by hackers to
abuse the image when it is running or to abuse the host system in which the
image is deployed [6]. A survey with Docker users showed that security is a top
concern when deciding whether to deploy Docker images [7]. Another survey
showed that in addition to security, Docker users are concerned about other
software package checks like verifying whether third-party software versions are
up-to-date [8]. Studying the usage of packages within Docker containers will
help practitioners to provide and deploy better containers.

Previous studies [9, 10, 11] have focused on the security of system packages
within Docker images, overlooking third-party packages. Given the increasing
use of the latter, it is important to study the usage and impact of outdated and
vulnerable releases of such third-party packages.

In prior work we provided preliminary evidence of outdated and vulnerable
JavaScript packages in only three official Docker Hub image repositories [12].
This article significantly extends upon that work by studying the usage of third-
party node JavaScript , Python and Ruby packages provided by their respective
package repositories npm, PyPI and RubyGems in a large dataset of community
Docker Hub repositories. In particular, we compare third-party package instal-

1https://hub.docker.com/search?q=&type=image
2https://hub.docker.com/_/debian

2

https://hub.docker.com/search?q=&type=image
https://hub.docker.com/_/debian

lation practices across different community Docker Hub images. In addition, we
assess the outdatedness and vulnerabilities of packages contained within Docker
images at two time points:

• Analysing Docker images at their last observed modification date (within
an observation period from June 2016 until December 2019) allows us to
assess how much Docker maintainers care about the outdatedness and
vulnerabilities of their images when they release them. This helps to
provide recommendations to container maintainers on how to improve
their images.

• Inspecting Docker images at their extraction date (12 December 2019) al-
lows us to reflect upon the state of images as if they were deployed at the
moment when we performed our study. This helps to provide recommen-
dations to image users, allowing them to choose the most appropriate and
most secure images.

To do so, we rely on the inheritance mechanism of Docker and analyse the
top downloaded community images that are based and built on top of the official
Docker images for node, Python and Ruby . More specifically, we focus on six
main research questions:
RQ0 How prevalent are installed third-party packages in Docker Hub
images? This research question compares package installation practices be-
tween different community images. It helps users of these images to know what
to expect when they install a node, Python or Ruby image.
RQ1 Do image maintainers add additional packages to their base
Docker Hub images? We study this question for two types of third-party
packages: (1) core packages that are essential and inherited from the base im-
ages, and (2) non-core packages that maintainers add on top of those included
in the base image. It helps the community to know which packages are most
frequently installed within Docker images, as their maintainers can focus their
attention on them.
RQ2 Do image maintainers include outdated third-party packages in
their last image update? We assess the outdatedness of Docker Hub images
at their last observed modification date. The answer to this question helps com-
munity maintainers to shape their best practices by knowing the outdatedness
of the images they produce, which will allow them to know how to improve these
images and eventually create more up-to-date ones.
RQ3 How outdated are third-party packages in Docker Hub images?
We show the state of Docker Hub community images at their extraction date,
which helps users of such images to know how outdated the most downloaded
images are and how they could be improved to become more up-to-date.
RQ4 Do image maintainers include third-party packages with known
vulnerabilities in their images? We identify the vulnerabilities that were
known in each image at its last observed modification date and were affecting
its installed third-party packages. This allows us to understand how concerned
image maintainers are about vulnerable third-party packages.

3

RQ5 How vulnerable are third-party packages in Docker Hub images?
We identify which and how many vulnerable third-party packages are present in
community images at their extraction date. This will help users of such images
to know which actions to take when they rely on them.

All along these research questions, we compare the results of Docker Hub
images derived from the official base images node, Python and Ruby . In general,
we found that the number of installed core and non-core packages is related to
the used base image. For example, node images tend to have a higher number of
packages installed compared to Ruby images, because npm packages have higher
numbers of transitive dependencies compared to RubyGems [13]. Python images
have the lowest numbers of installed packages because they do not have any extra
packages (i.e., core packages) already inherited from the base images. We found
that core packages are more outdated than non-core ones. However, both types
of packages suffer from security vulnerabilities, endangering the environments
where the image can be deployed.

The remainder of this article is structured as follows: Section 2 discusses
related work. Section 3 explains the research method and data extraction pro-
cess, and presents a preliminary analysis of the considered dataset. Section 4
empirically studies the research questions and presents the results of this paper.
Section 5 highlights the novel contributions, discusses our findings, and outlines
possible directions for future work, while Section 6 discusses the limitations of
this work. Section 7 concludes.

2. Related work

2.1. Docker related studies

Due to its lightweight, self-sufficient and portable containers [14, 15], Docker
has become one of the most popular and largely used containerization technolo-
gies. According to the 2020 Stack Overflow Developer Survey [3], Docker is the
most wanted platform and the second most loved platform. For this reason,
it has been subject to many research studies covering multiple aspects such as
security, quality and evolution of Docker containers.

Cito et al. [16] characterized the Docker ecosystem by discovering prevalent
quality issues and studying the evolution of Docker images. Using a dataset of
over 70,000 Dockerfiles they contrasted the general population with samplings
containing the top 100 and top 1,000 most popular projects using Docker . They
observed that the most popular projects change more often than the rest of
the Docker population. Moreover, based on a representative sample of 560
projects, they observed that 34% of all Docker images could not be built from
their Dockerfiles. Lu et al. [4] offered another perspective on the quality of
Docker images, by focusing on what they refer to as temporary file smells. In
the building process of Docker images, temporary files are often used. If such
temporary files are imported and subsequently removed in different layers by a
careless developer, it leads to the presence of unneeded files, resulting in larger
images. This restricts the efficiency and quality of image distribution and thus

4

affects the scalability of services. Through an empirical case study on 3,242
real-world Dockerfiles on Docker Hub the presence of this temporary file smell
was observed in a wide range of Dockerfiles. Henkel et al. [17] advocate for
more effective semantics-aware tooling for Dockerfiles in order to reduce the
quality gap between Dockerfiles written by experts and those found in GitHub
repositories. They found that on average, Dockerfiles on GitHub have nearly
five times more rule violations than those written by Docker experts. They
observed that best practices and rules for Docker have arisen, but that Docker
developers are often unaware of them.

Beyond quality and evolution aspects, several studies focused on the security
of Docker image containers. Gummaraju et al. [10] analysed Docker Hub im-
ages in order to understand how vulnerable they are to security threats. One of
their main findings is that over 30% of the official images contain high priority
security vulnerabilities. Shu et al. [9] carried out a larger-scale analysis from
both community and official repositories. They found that both types of images
contain more than 180 vulnerabilities on average; many images have not been
updated for hundreds of days; and vulnerabilities commonly propagate from
parent to child images. Socchi et al. [18] carried out an empirical analysis of
Docker Hub’s security landscape. They extracted and analyzed a large amount
of metadata and vulnerability reports about certified3 and verified4 image repos-
itories on Docker Hub. They observed that the introduction of these two kinds
of images do not lead to a significant improvement of the overall security of
images on Docker Hub. They predicted that the average number of unique vul-
nerabilities caused by system packages contained in images is expected to grow
with a rate of approximately 105 vulnerabilities per year between 2019 and 2025
if Docker Hub continues evolving the same way.

In earlier work, we conducted an empirical analysis in which we studied the
relation between outdated system packages in Debian-based image containers,
their severity vulnerabilities, and their bugs [11]. Using the concept of technical
lag [19], we computed the difference between the outdated system packages
and their latest available releases in terms of versions, vulnerabilities and bugs.
We found that no Debian-based image is free of vulnerabilities and bugs, so
deployers cannot avoid them even if they deploy the most recent packages in
these images. We also concluded that Docker image scanning tools should
include metrics like the number of bugs and outdated packages to evaluate the
health of the Docker images. Later in [12], we evaluated how outdated and
vulnerable third-party packages are in 961 official node-based images coming
from three Docker Hub repositories node, ghost and mongo-express. We found
that the presence of outdated npm packages in official node images increases
the risk of security vulnerabilities, suggesting that maintainers of official Docker

3Certified images are built with best practices, tested and validated against the Docker
Enterprise Edition and pass security requirements.

4Verified images are high-quality images from verified publishers. These products are
published and maintained directly by a commercial entity.

5

images should keep their installed JavaScript packages up to date, since official
images are used as the basis for creating community images. However, we found
that most of the npm packages in official images are up-to-date.

2.2. Novel Contributions

The current study differs from previous work in several ways. While most
of the previous studies focused on assessing system packages in Docker Hub,
we focus on the usage of third-party packages that are not related to a par-
ticular operating system. Our study significantly extends [12] where we only
studied node images coming from three official Docker repositories, considering
a smaller number of vulnerability reports, i.e., 1,099 compared to 3,967 vulnera-
bility reports considered in this study. Moreover, in this article we focus mainly
on community images since official images are supposed to be maintained by
official organizations and are thus expected to be more secure and well main-
tained. Therefore, the number of vulnerabilities found in the official images is
an underestimation of the real number of vulnerabilities that might be found in
community images (that depend on them), where more dependencies, activity
and development are expected.

Furthermore, we study community images that are based on three base im-
ages node, Python and Ruby , and use different datasets to analyze them. For
example, to gather package release histories, we rely on the official registries of
the package manager and to study the link between different packages within
the same image, we rely on libraries.io dataset. We also report on installation
practices (RQ0 and RQ1) and study the images at two time points: (1) at
their last observed modification date (RQ2 and RQ4); and (2) at the date of
their extraction (RQ3 and RQ5). The former time point is a good indicator of
how maintainers care about the outdatedness and vulnerabilities of their images
when they produce them. Therefore, the analysis at that time point informs
on how much better the producers of those images could have performed. The
latter time point reflects the state of those images at production time. This is
a good measure of the quality of contained third-party packages if the images
were to be used for production at the moment we extracted them.

3. Considered Dataset

This section presents the method used to obtain a representative dataset of
community Docker Hub images and the third-party packages used within them.
The followed process is depicted in Figure 1. More specifically, the steps are:

1. Identifying candidate images: as it is our goal to analyze community
images containing third-party packages coming from the repositories npm,
PyPI and RubyGems, we have to assure that the considered images run
and make use of such packages.

2. Extracting the installed packages: we pull and run the candidate
images locally and extract the installed third-party package releases.

6

3. Collecting package releases history: to be able to assess the outdat-
edness of images, we use the registries of npm, PyPI and RubyGems and
collect the list of all package releases found through the previous step.

4. Collecting security vulnerabilities: using a snapshot of vulnerabil-
ity reports obtained with permission from Snyk 5, we identify all known
vulnerabilities that affect the package releases installed in the analyzed
images.

Extracting installed
packages

Extracting image
layers from

DockerHub's API

Identifying
 candidate images

Running candidate
images

Collecting package
release history

Collecting security
vulnerabilities

 Analysis

Figure 1: Process and setup followed to obtain a representative dataset of community Docker
Hub images and their installed third-party packages.

3.1. Identifying Candidate Images

The candidate Docker Hub images for this study are the community im-
ages that make use of npm, PyPI or RubyGems packages. We focus on these
packages for three reasons: (1) their widespread use (e.g., npm is by far the
largest package manager in terms of number of hosted packages and Python
is the most wanted programming language in 2020 [3]) and prevalence among
Docker Hub images; (2) their usage of semantic versioning [20] which allows us
to compare between installed and released package version numbers; and (3)
their releases have sufficient vulnerability reports in the Snyk database. To
ensure that we only download images with such packages, we rely on Docker ’s
inheritance mechanism used by previous studies [11, 12]. Every Docker image is
built from a Dockerfile which contains a set of instructions (e.g., FROM, RUN),
each creating a layer that represents an intermediate image that is defined by a
unique ID (i.e., layer signature). When an image is derived from another image
(using FROM), it inherits all its layers with their IDs.

To retrieve candidate images, we identify the layers of all images available
in the official repositories of node [21], Python [22] and Ruby [23] using Docker
Hub’s API. We extract the layers of all available community images tagged
with latest on Docker Hub’s registry and check whether these images contain

5https://snyk.io

7

https://snyk.io

the layers of the predefined base images. We found 86, 248 images with such
characteristics, of which 61, 007 node images, 21, 774 Python images and 3, 467
Ruby images. To do a fair comparison, we only consider the top-1, 000 most
frequently pulled (i.e., most downloaded using “docker pull”) images from each
group (3,000 in total). These images are representative since they were last
updated between June 2016 and December 2019 and they cover 86% of the
total number of pulls for node images, 96% for Python images, and 92% for
Ruby images. In total, this corresponds to 878M pulls out of a total of 972M
pulls for all candidate images. All selected images make use of either the Debian
or the Alpine operating system, with the exception of 8 images that make use
of Ubuntu. Because of their small number, we therefore replaced these 8 Ubuntu
images by other popular images that make use of Debian or Alpine. Table 1
shows the number of images considered for this analysis per base image and
operating system.

Table 1: Considered Docker Hub images grouped by base image and operating system.

OS
Base image

node Python Ruby
Debian 597 554 748
Alpine 403 446 252

We also found that the number of considered Docker images increases over
the years because of the increasing popularity of npm, PyPI and RubyGems
packages. Nearly half of the considered images (457 for node, 534 for Python
and 457 for Ruby) were last updated in 2019.

3.2. Extracting the Installed Packages

To determine the installed packages in considered images, we pulled and ran
them locally on 12 December 2019. Afterwards, we executed the appropriate
commands to list the installed packages from each considered package manager.
More specifically, to identify which npm packages are installed in node-based
images, we used the command “npm ls -g” [24]. To identify PyPI packages in-
stalled in Python-based images we used the command “pip freeze” [25] with ver-
sions pip2 and pip3 of the pip package manager. To extract installed RubyGems
packages from Ruby-based images, we used the command “gem list” [26].

3.3. Collecting Package Release History

Each package manager usually has a reference package repository such as
npm 6 for npm, PyPI 7 for pip and RubyGems 8 for RubyGems, where all
package releases are stored. To determine if an installed package release is

6https://registry.npmjs.org/{PACKAGE}
7https://pypi.org/pypi/{PACKAGE}/json
8https://rubygems.org/api/v1/versions/{PACKAGE}.json

8

https://registry.npmjs.org/{PACKAGE}
https://pypi.org/pypi/{PACKAGE}/json
https://rubygems.org/api/v1/versions/{PACKAGE}.json

outdated, we compared it against the list of all package releases available in the
corresponding package repository. To do so, we used the API of each package
repository and extracted the available package releases.

We found that the considered Docker Hub images make use of 28,363 dis-
tinct package releases coming from 12,208 distinct packages. Table 2 shows the
breakdown of these packages and their installed releases by package repository.

Table 2: Number of distinct packages and package releases found installed in Docker Hub
images, grouped by package repository.

npm PyPI RubyGems
distinct packages 5,123 3,867 3,218

distinct package releases 10,435 8,656 9,272

3.4. Collecting Security Vulnerabilities

To identify whether Docker Hub images suffer from vulnerabilities affecting
third-party packages installed in them, we use the database of vulnerability re-
ports collected by Snyk 9, a continuous security monitoring service which has
the biggest database of third-party package vulnerabilities. More specifically,
we rely on vulnerability reports that are discovered and published before April
12th 2020, the day when we received a snapshot of the vulnerability database
from Snyk. Note that this dataset also includes vulnerabilities that were pub-
lished after the date when we extracted the installed packages (December 12th
2019). We include these vulnerabilities since they are not different from the
other vulnerabilities, except that they were published or discovered after the
package extraction date. Each vulnerability report contains information about
the affected package, the range of affected releases, the severity of the vulnera-
bility, its origin (i.e., the package manager of the vulnerable package), the date
of its disclosure, and the date when it was published in the database.

To determine if an installed package release is vulnerable, we compare its
version number to the range of version numbers affected by a certain vulner-
ability and specified in the vulnerability reports. From an original dataset of
3,967 vulnerabilities (i.e., 55.6% affecting npm packages, 27.1% affecting PyPI
packages and 17.3% affecting RubyGems packages), we only found 632 vulner-
abilities (i.e., 16% of the entire dataset) that affect the packages installed in
Docker Hub images. Of these vulnerabilities, 272 affect npm packages, 152 af-
fect PyPI packages and 208 affect RubyGems packages. Figure 2 shows the
number of vulnerabilities with respect to their severity (low, medium, high,
critical) and package repository.

9https://snyk.io/vuln

9

https://snyk.io/vuln

npm PyPi RubyGems
0

50

100

150

200

250

300

#
vu

ln
er

ab
ili

ti
es low

medium

high

critical

Figure 2: Number of vulnerabilities affecting 5.4%, 3.7% and 6% of distinct npm, PyPI and
RubyGems package releases installed in Docker Hub images, grouped by severity and package
repository.

4. Empirical Analysis Results

This section answers the research questions defined in Section 1 by means
of empirical analyses and comparisons between third-party packages installed
in node-based, Python-based and Ruby-based community Docker Hub images.
As part of the analyses, we carry out statistical comparisons using the Mann-
Whitney U test, a non-parametric test where the null hypothesis H0 states
that there is no difference between two distributions. For all statistical tests,
we set a global confidence level of 99%, corresponding to a significance level of
α = 0.01. To achieve this overall confidence, the p-value of each individual test
is compared against a lower α value, following a Bonferroni correction10.

If the null hypothesis can be rejected, we report the effect size with Cliff’s
delta d, a non-parametric measure that quantifies the difference between two
populations beyond the interpretation of p-values. Following the guidelines
of [27], we interpret the effect size to be negligible if |d| ∈ [0, 0.147[, small if
|d| ∈ [0.147, 0.33[, medium if |d| ∈ [0.33, 0.474[and large if |d| ∈ [0.474, 1].

All code and data required to reproduce the analysis in this article is available
in a replication package 11.

RQ0 : How prevalent are installed third-party packages in Docker Hub images?

This research question analyses and compares how many package releases
are installed in Docker Hub images. The violin plots in Figure 3 show the
distribution of the number of installed package releases in community images.
node-based images have many more installed package releases than the other
images, with a median number of 717 installed package releases, compared to
17 for Python and 42 for Ruby images.

10If n different tests are carried out over the same dataset, for each individual test one can
only reject H0 if p < 0.01

n
. In our case n = 18, i.e., p < 0.00055.

11https://doi.org/10.5281/zenodo.4075073

10

https://doi.org/10.5281/zenodo.4075073

The violin plots do not reveal a clear difference between Alpine and De-
bian images in terms of installed package releases. To confirm our observation,
we carry out a Mann-Whitney U test. The null hypothesis assumes that the
installed package releases distributions in Alpine and Debian images are identi-
cal. For the pairs of (node-Alpine, node-Debian) and (Python-Alpine, Python-
Debian) images, H0 was rejected with small effect size (|d| ≤ 0.22) when com-
paring the distributions of their installed package releases. However, H0 could
not be rejected for the pair of (Ruby-Alpine, Ruby-Debian) images. Given that,
at best, we only found a small effect size, the number of installed third-party
package releases does not seem to be related to the used operating system.

node Python Ruby
0

300

600

900

1200

1500

1800

#
p

ac
ka

ge
re

le
as

es

Debian

Alpine

Figure 3: Distribution of the number of installed package releases in Docker Hub community
images, grouped by base image and image operating system.

We also investigated whether some package releases are installed multiple
times in community images. We did not find duplicated package releases in
Ruby and Python images. However, nearly half (47%) of the installed package
releases in node images are duplicated ones. After removing duplicates, we
obtained a median number of 377 distinct installed npm package releases in
node-based images. This is much lower than the median number of 717 when
considering all releases. The top four npm packages that have duplicate package
releases in nearly all images (i.e., in more than 92.8% of the images) are glob,
core-util-is, minimatch and readable-stream.

This difference in number of duplicate installed package releases is explained
by the installation approach followed by the package managers. npm allows
installing the dependencies of a package release under a nested sub-directory
independently of the other installed package releases, even if there are some
package releases that share the same set of dependencies 12. This is not allowed
by pip and RubyGems. However, there is a way to flatten the npm dependency
tree of installed packages by sharing the common dependencies and removing
the duplicated ones using the command “npm dedupe” 13. For the rest of the

12For more details: https://medium.com/learnwithrahul/understanding-npm-dependency-
resolution-84a24180901b

13https://docs.npmjs.com/cli/dedupe

11

https://docs.npmjs.com/cli/dedupe

article, installed package releases will be computed and considered only once,
ignoring duplicates. Table 3 reports the number of installed package releases.

Table 3: Characteristics of the number of installed package releases in Docker Hub images,
grouped by base image.

base image mean min median max
node 705.5 127 717 5,129
node (distinct package releases) 373.0 101 377 1,401
Python 45.2 1 17 939
Ruby 65.3 7 42 410

Note that Docker images containing duplicate identical package releases are
different from images containing multiple distinct releases of its installed pack-
ages. The latter might exist and be necessary in order to avoid conflicts between
required dependencies. We found that 862 of all installed npm packages (16.8%),
190 of Ruby packages (5.9%) and only 15 of PyPI packages (0.4%) have been
installed with distinct releases within the same images.

To better understand how the same packages are installed with different
releases, we computed the number of distinct packages installed in each image,
without considering whether they are installed with different releases or not.
Table 4 reports the distribution of distinct third-party packages in Docker Hub
images. The median number of installed packages in node images is 7.2% less
compared to installed package releases (350 versus 377). We found that all
node images, 52.1% of Ruby images and only 1.3% of Python images had the
same packages installed with distinct releases. This explains a lower median
number of installed node and Ruby packages (Table 4) compared to the number
of installed package releases (Table 3). It is expected to find the same packages
installed with different releases in node and Ruby images, as it is allowed by
the package managers npm and RubyGems. It is more surprising to find such
cases for PyPI images, since the package manager pip does not allow installing
the same package with multiple releases. A deeper investigation showed that
this small proportion (i.e., 0.4%) of PyPI packages were installed using different
versions of the pip package manager (i.e., pip2 and pip3). This is possible since
it is permitted to have the two major versions of pip installed within the same
image.

Table 4: Characteristics of the number of installed distinct packages in Docker Hub images,
grouped by base image.

base image mean min median max
node 340.8 100 350 1,108
Python 45.17 1 17 939
Ruby 63.8 7 41 406

12

Findings

node images have over eight times more installed package releases than
Python or Ruby images. The number of installed third-party packages
is not related to the used operating system. Every node image includes
several distinct releases of a same package.

RQ1 Do image maintainers add additional packages to their base Docker Hub
images?

To create a properly working community image, maintainers tend to add
additional packages to the base images from which they derive their community
images, allowing them to satisfy all dependencies that are required by the soft-
ware applications that their images are packaging. RQ1 therefore aims to study
this subset of added packages in community Docker Hub images, distinguishing
between two kinds of third-party packages: core and non-core. Core packages
refer to those packages that are inherited by the community image from its of-
ficial base image, while non-core packages refer to the subset of packages that
are added on top of the base image.

We identified the core packages installed in the base images node:latest,
python:latest and ruby:latest. We found 370 core packages for node:latest, while
ruby:latest contains 55 core packages, which are the standard ones that come
with Ruby 14. The only core packages that were installed in python:latest are
the default ones: pip, wheel and setuptools.

Figure 4 shows the distribution of the number of non-core package releases
that remain in the community images after removing all releases corresponding
to the aforementioned core packages. The violin plots reveal that the distribu-
tions for node, Python and Ruby are much more similar, different from what
we observed in Figure 3. The median number of non-core package releases is 26
for node, 17 for Python and 15 for Ruby images. We also found 69 node images
and one Ruby image that did not add any non-core package.

We performed pairwise comparisons of these three distributions with a Mann-
Whitney U test and could reject the null hypothesis in all cases (after Bonfer-
roni correction) implying that the distributions are statistically different. As
summarised in Table 5, the effect size was, however, negligible to small for all
conducted comparisons. In the comparison between Python and Ruby images,
the effect size is in favour of Python images. This is different from what we no-
ticed in RQ0 where Ruby images appeared to have more package releases than
Python images.

Next, we investigated whether the number of non-core package releases in
community images relates to the year when the image was last updated. Figure 5
shows the distribution of the number of non-core package releases in community
images, grouped by base image and last update year. In the case of Python

14This set of packages is maintained by Ruby core: https://stdgems.org/

13

https://stdgems.org/

node Python Ruby

0

100

200

300

400

#
p

ac
ka

ge
re

le
as

es Debian

Alpine

Figure 4: Distribution of the number of non-core package releases in Docker Hub community
images, grouped by base image and operating system.

Table 5: Mann-Whitney U test and effect size results for pairwise comparisons between dis-
tributions of number of non-core package releases used in node, Ruby and Python images.

population A direction population B effect size |d|
node > Python negligible 0.06
node > Ruby small 0.19

Python > Ruby negligible 0.12

and Ruby images, the number of added package releases is slightly increasing
over time. For node images, however, we observe that the number of non-core
npm package releases is decreasing over time. This is surprising since the npm
repository is getting larger each day; by June 2019 npm contained over one
million packages. An in-depth investigation 15 reveals that, over time, more
and more npm packages are being included as core packages in the node base
image. It is likely that maintainers of older images needed to add more non-
core packages themselves, while maintainers of recent images found most of
these packages already installed in the base image, reducing their need to add
them manually to their images.

Table 6 shows the top three non-core third-party packages that we found
installed by most of the community Docker images, grouped by their package
repository. The npm package fstream is one of the Streams packages in npm that
handle end-to-end information exchange (e.g., writing files), and it is maintained
by npm. The PyPI package six is a package that helps to create Python code
that is compatible on both Python 2 and Python 3 versions. The most used
RubyGems package did you mean is a package that helps developers to avoid
typos when creating code.

When installing a package release in a Docker image, all its required depen-
dencies will be installed within the image as well. For this reason, we computed
how many of the added non-core packages might have been installed without

15This extra analysis can be found in the replication package of this paper.

14

2016 2017 2018 2019
0

20

40

60

80

100
#

p
ac

ka
ge

re
le

as
es

node Python Ruby

Figure 5: Distribution of the number of non-core package releases in Docker Hub community
images, grouped by base image and the year of last update to the image.

Table 6: Top three of third-party packages and the proportion of Docker images that make
use of them, grouped by package repository.

package repository package % images

npm
fstream 90.3

block-stream 90.2
builtin-modules 85.2

PyPI
six 73.3

requests 63.1
urllib3 62.6

RubyGems
did you mean 90.4

rubygems-update 84.8
rack 40.5

being dependencies of other packages. This allows us to know which packages
are installed individually by the maintainers as top-level packages and not au-
tomatically by the package manager as dependencies of other packages 16. To
do so, we relied on (the latest) version 1.6.0 of the Libraries.io Open Source
Repository and Dependency Dataset [28] containing metadata of all package
dependencies from 37 different package repositories, including npm, PyPI and
RubyGems. We found that from 11,607 non-core packages, 5,495 (47%) might
have been installed as top-level packages. More specifically, the median number
of top-level packages is 9 for node images, 8 for Python images and 4 for Ruby
images.

16Note that a dependency that is automatically installed is also mandatory in the image
since it is required by the package that has been manually installed.

15

Findings

The number of non-core packages in community images is similar for
node, Python and Ruby images. Over time, Python and Ruby images
have included more non-core packages, while node images have included
fewer of them, due to an increasing number of core packages offered by
the node base image.

RQ2 Do image maintainers include outdated third-party packages in their last
image update?

This research question investigates whether image maintainers release com-
munity images with outdated packages. For each image, we collect the package
releases that were installed in it when it was last updated and compare them to
the list of available package releases at that time.

Figure 6 shows the proportion of outdated third-party packages in the com-
munity images, grouped by their type (core or non-core). We observe similar
distributions of outdated packages, with a median proportion of 50% outdated
non-core packages and a total of 323 images having all their non-core packages
outdated; whereas a median of 58% of core packages were outdated, and 201
images had all of their core packages outdated. For all images (with the ex-
clusion of Python images that do not have core packages) at least 20% of their
included core packages were outdated when they were last updated. This sug-
gests that maintainers ship their community images with outdated (core and
non-core) third-party packages. It also suggests that image maintainers do not
update their inherited core packages when they rely on other (base) images. We
used a Mann-Whitney U test to verify if the proportions of outdated core and
non-core packages were statistically different. H0 was rejected with small effect
size (|d| = 0.26) in favour of outdated core packages. We therefore conclude
that Docker images tend to have more outdated core packages than non-core
ones.

Non-core Core

0.0

0.2

0.4

0.6

0.8

1.0

%
ou

td
at

ed
p

ac
ka

ge
s

Figure 6: Boxen plots of the distribution of the proportion of outdated third-party packages
in community images (computed at the date of the last image update), grouped by their type
(core or non-core).

16

Since more than half of the (combined core and non-core) packages in com-
munity images are outdated, we aimed to quantify how much outdated they
are. To gain insights about the type of changes missed by such outdated pack-
ages, we define four degrees of outdatedness based on the semantic versioning
policy [20]:

1. up-to-date: the package is up-to-date;

2. patch: the package is only missing patch updates;

3. minor : the package is missing at least one minor but no major updates;

4. major : the package is missing at least one major update.

Figure 7 shows the distribution of the proportion of non-core packages
according to their degree of outdatedness, grouped by base image. We observe
a higher proportion of up-to-date packages for Python images (median of 66.5%)
compared to node and Ruby images (median of 48.6% and 41.2%, respectively).
We also observe that the majority of outdated non-core packages in node images
are missing a major update (median of 40% of installed packages), against 4.1%
that are missing a minor update and 4.4% that are missing a patch update.
For Python and Ruby images, the highest proportions are for minor outdated
packages with a respective median of 20% and 22% of the packages installed in
a community image.

node Python Ruby
0.0

0.2

0.4

0.6

0.8

1.0

%
p

ac
ka

ge
re

le
as

es

degree of outdatedness

major minor patch up-to-date

Figure 7: Boxen plots of the distribution of the proportion of third-party non-core package
releases in community images (computed at the date of the last observed image’s update) per
degree of outdatedness, grouped by base image.

Similarly, Figure 8 shows the distribution of the proportion of core pack-
ages according to their degree of outdatedness, grouped by base image (node or
Ruby). We do not show the distribution of Python core packages since, as previ-
ously mentioned, Python images do not have any core packages. We observe that
node core packages have similar degrees of outdatedness as non-core packages
(Figure 7), while more differences can be observed between core and non-core

17

packages for Ruby . node images have a much higher proportion of up-to-date
core packages (median of 50.8%) compared to Ruby images (median of 18.1%).
We also observe that the majority of outdated core packages in node images are
missing a major update (median of 26.1% of installed packages), against 10.1%
that are missing a minor update and 9.9% that are missing a patch update. For
Ruby images, the highest proportions are for minor outdated packages with a
median of 37.5% of the packages installed in a community image. This reveals
that the difference in outdatedness that we can see in Figure 6 is caused by
Ruby packages.

node Ruby
0.0

0.2

0.4

0.6

0.8

1.0

%
p

ac
ka

ge
re

le
as

es

degree of outdatedness

major minor patch up-to-date

Figure 8: Boxen plots of the distribution of the proportion of third-party core package re-
leases in community images (computed at the date of the image’s last update) per degree of
outdatedness, grouped by base image.

In a similar way we analyzed package outdatedness based on the time of the
last update to the image 17. Older node images tend to have more up-to-date
packages than recent ones, while Ruby images follow an opposite trend. We
also observed that the proportion of outdated major packages is increasing over
time in the case of node images. We could not observe any clear trend in the
case of Python images.

Findings

The majority of third-party packages in community images were already
outdated at the time of the last update to the image. Core packages in
images are more outdated than non-core ones. At their last modification,
older node images contained fewer outdated packages than more recent
ones, while the opposite was observed for Ruby images.

17Figures and detailed results of this analysis of the evolution of package outdatedness over
time, can be found in our replication package.

18

RQ3 How outdated are third-party packages in Docker Hub images?

While the analysis of RQ2 helps to create awareness about outdatedness
among maintainers of community images at the time they last updated their
images, RQ3 helps the users of such images to assess the outdatedness of the
available (and popular) images they can rely on now. More specifically, RQ3

studies how outdated third-party packages are in images as if they were deployed
at the date the analysis was conducted (i.e., 12 December 2019).

Figure 9 shows the median proportion of packages in community images per
degree of outdatedness, grouped by the year in which their image was last up-
dated and by the base image. We observe a difference in the proportions of
up-to-date and outdated packages between images derived from different base
images. node images seem to have higher proportions of up-to-date packages
than the other images, except in 2019 when all images seem to have similar pro-
portions of up-to-date packages. Older images have higher proportions of out-
dated packages, which is expected since they are missing new package releases
that were created after their last update. Considering the whole period (and
without differentiating between outdated packages), we found a median propor-
tion of up-to-date packages of 33.6% for node, 21% for Python and 15.4% for
Ruby images. This shows that Ruby images have higher proportions of outdated
packages than the other images. However, it is important to mention that, while
node images have more up-to-date packages, they also have the highest propor-
tion of packages missing major updates. In contrast, the majority of outdated
packages in Python and Ruby images only miss minor updates.

Findings

Older community images have more outdated third-party packages than
recent images. node images have the highest proportions of packages
missing major updates.

RQ4 Do image maintainers include third-party packages with known vulnerabil-
ities in their images?

Security vulnerabilities can be exploited to abuse Docker images or the en-
vironment in which these images are deployed. Fixing them typically requires
experienced developers [29]. Verifying Docker images for vulnerabilities is there-
fore essential. RQ4 relies on our dataset of vulnerability reports to study if the
images that Docker maintainers create contain vulnerable third-party packages
with known vulnerabilities at their last modification date.

To identify which vulnerabilities were known before the last update to an
image, we rely on the disclosure date of the vulnerability. We consider all
vulnerabilities that are affecting the package releases installed in Docker images
and that have been disclosed before the date of the image last update.

In total, the analyzed packages in Docker images suffered from 441 known
vulnerabilities when images were last updated, 165 for npm, 95 for PyPI and
181 for RubyGems packages. 30 of these vulnerabilities were of low severity,

19

0.0

0.5

1.0
node

0.0

0.5

1.0

%
p

ac
ka

ge
re

le
as

es Python

2016 2017 2018 2019
0.0

0.5

1.0
Ruby

major minor patch up-to-date

Figure 9: Median proportion of third-party packages per degree of outdatedness in community
images on 12 December 2019, grouped by image last update year and base image.

216 medium, 166 high and 29 were critical. These vulnerabilities were affecting
245 of the installed packages (and a total of 789 distinct package releases), 111
from npm, 49 from PyPI and 85 from RubyGems. We also found that 74%
(i.e., 2,219) of the images were affected by these vulnerabilities, 42.8% of node,
12.2% of Python and 45% of Ruby images.

Figure 10 shows the distribution of the number of known vulnerabilities
found in community images and affecting third-party packages, grouped by base
image and vulnerability severity. We observe that node images have the highest
numbers of vulnerabilities while Python images have the lowest numbers. We
also observe that most of the vulnerabilities affecting images are of a medium or
high severity. Without differentiating between vulnerabilities, node, Python and
Ruby images have a median number of 4, 1 and 6 vulnerabilities, respectively.

We compared the vulnerability distributions in node, Python and Ruby im-
ages using a Mann-Whitney U test. We found a statistically significant differ-
ence (after Bonferroni correction) between the pairs of distributions (Python,
node) and (Python, Ruby) in terms of number of vulnerabilities. As summarised
in Table 7 we found a large effect size for these pairs. This indicates that Python
images have significantly less vulnerabilities than node or Ruby images. For the

20

node Python Ruby
0

2

4

6

8

10

12
#

vu
ln

er
ab

ili
ti

es
critical high medium low

Figure 10: Distribution of the number of known vulnerabilities affecting community images
when they were last updated, grouped by base image and vulnerability severity.

pair (node, Ruby), H0 was rejected with a negligible effect size, implying that
we could not observe a difference in number of vulnerabilities between node and
Ruby images when they are last updated.

Table 7: Mann-Whitney U test and effect size results for pairwise comparisons between vul-
nerability distributions of node, Ruby and Python images.

population A direction population B effect size |d|
node > Python large 0.74
Ruby > Python large 0.69
Ruby node negligible 0.06

Findings

At their last modification date, Python images had considerably fewer
vulnerabilities than node and Ruby images.

We found that Docker community images suffer from 103 types of vulnera-
bilities. Table 8 shows the most prevalent vulnerability types that were affecting
Docker images when they were last updated. We observe that the vulnerabil-
ity Arbitrary Code Execution (ACE) affects nearly all of Ruby images, while
the most prevalent vulnerability in the case of node images is Denial of Service
(DoS) affecting nearly two thirds of the images. For Python, we could not find
any vulnerability types affecting more than 8% of the images, the most preva-
lent vulnerability is Information Exposure affecting only 7.7% of Python images.
We have also found that Denial of Service (DoS) is the only common prevalent
vulnerability between node, Python and Ruby images. As can be noticed in the
table, there are some cases where only a small number of packages is responsi-
ble for high proportion of images, e.g., 40.3% of node images are suffering from
the Time of Check Time of Use (TOCTOU) vulnerability because of only one
unique core package chownr.

21

Table 8: Top three vulnerability types affecting most images with the number of unique
packages inducing them and the proportion of Docker images that were suffering from them
at their last update, grouped by base image.

base image vulnerability type % images # packages

node
Denial of Service 64.7 11

Regular Expression DoS 54.2 38
Time of Check Time of Use 40.3 1

Python
Information Exposure 7.7 8

Arbitrary Code Execution 5.2 7
Denial of Service 4.8 8

Ruby
Arbitrary Code Execution 99.3 5

Cross-site Scripting 39.2 23
Arbitrary Command Execution 35.2 1

Comparing core and non-core third-party packages, we found that only 26 of
the core packages are suffering from the vulnerabilities, while they are responsi-
ble for 49.3% of the propagated vulnerabilities in the community images. This is
different from non-core packages where 221 of them cause the rest (i.e., 50.7%)
of the propagated vulnerabilities in the images. This difference is explained by
the fact that core packages are used by almost all images, therefore a vulnera-
bility affecting only one core package release will affect all images making use
of it.

Findings

Because of their widespread use across all images, core packages are
responsible for nearly half of the vulnerabilities in community images.

We found that outdated packages are responsible for the majority of vulner-
abilities present in the studied Docker images. We inspected the latest package
releases for vulnerabilities and compared them to the package releases used in
Docker images. We found that 69.9% of the vulnerabilities in images could
have been avoided if the concerned images would have used the latest available
releases of their outdated packages. Indeed, more recent package releases come
with bug and vulnerability fixes and thus tend to have less vulnerabilities than
older ones [30, 11, 31].

Recommendation

Maintainers of Docker Hub images could reduce more than two thirds
of the vulnerabilities by updating their outdated packages to the latest
available releases before publishing their images.

RQ5 : How vulnerable are third-party packages in Docker Hub images?

While RQ4 only studied vulnerabilities that were known before images last
update, RQ5 evaluates how vulnerable images are if they were deployed at

22

their extraction date. Using the same vulnerability dataset, we analyzed the
vulnerable package releases (both core and non-core) installed in community
images and identified the most prevalent vulnerabilities.

In total, the analyzed packages in community images suffer from 632 distinct
reported vulnerabilities, of which 272 for npm packages, 152 for PyPI and 208
for RubyGems. 39 of these reported vulnerabilities are of a low severity, 305 are
medium, 245 are high and only 43 are critical. The vulnerabilities are affecting
a total of 317 installed packages (and a total of 1,442 distinct package releases),
of which 158 from npm, 65 from PyPI and 94 from RubyGems. All node and
Ruby images are affected by these vulnerabilities, while only 814 (i.e., 81.4%)
Python images are affected. Table 9 summarises these results.

Table 9: Breakdown of distinct number of reported vulnerabilities, their severity, the number
of installed packages affected, the number of package releases affected and the number of
community images affected by the vulnerabilities.

metric node Python Ruby All
low vulnerabilities 25 8 6 39

medium vulnerabilities 117 74 114 305
high vulnerabilities 110 57 78 245

critical vulnerabilities 20 13 10 43
all vulnerabilities 272 152 208 632

affected packages 158 65 94 317
affected package releases 562 325 555 1,442

affected community images 1,000 1,000 814 2,814

For each image, we computed the number of vulnerabilities that its installed
packages are suffering from. Figure 11 shows the distribution of the number of
vulnerabilities found in community images and affecting third-party packages,
grouped by base image and vulnerability severity. Similar to Figure 10 we ob-
serve that node images have the highest numbers of vulnerabilities while Python
images have the lowest numbers. We also observe that most of the vulnerabil-
ities affecting images are of medium or high severity. Without differentiating
between vulnerability severities, we found that node, Python and Ruby images
have a median number of 19, 2 and 14 vulnerabilities, respectively.

We performed a pairwise comparison between the distributions of number of
vulnerabilities in installed node, Python and Ruby images. The Mann-Whitney
U test was rejected in all cases (after Bonferroni correction), revealing a statis-
tically significant difference between all pairs of distributions. As summarised in
Table 10, there was a large effect size for the pairs (Python, node) and (Python,
Ruby), and a medium effect size for the pair (node, Ruby). This shows how
node images accumulate more vulnerabilities compared to Ruby images, since
we could not find a statistical difference in number of vulnerabilities between
these two populations of images when they were last updated (see RQ4).

Several months after their last update, community images have been shown
to accumulate more outdated packages and thus suffer from more vulnerabili-
ties [11, 30]. For this reason we observed a higher number of vulnerabilities in

23

node Python Ruby
0

4

8

12

16

20
#

vu
ln

er
ab

ili
ti

es
critical high medium low

Figure 11: Distribution of the number of vulnerabilities affecting community images, grouped
by base image and vulnerability severity.

Table 10: Mann-Whitney U test and effect size results for pairwise comparisons between
distributions of number of vulnerabilities in installed node, Ruby and Python images.

population A direction population B effect size |d|
node > Python large 0.96
Ruby > Python large 0.88
node > Ruby medium 0.37

RQ5 compared to what was found in RQ4. Moreover, we found that community
images suffer from 125 distinct types of vulnerabilities (22 more than RQ4). Ta-
ble 11 shows the most prevalent vulnerability types affecting images 18. All node
images suffer from the Prototype Pollution vulnerability and nearly all of Ruby
images suffer from the Arbitrary Code Injection and Arbitrary Code Execution
vulnerabilities, while the most prevalent vulnerability type in Python images is
Denial of Service affecting 39.3% of the images.

Similarly to RQ4, only a small number of 31 core packages is affected by the
vulnerabilities. These packages are responsible for 50.4% of the vulnerabilities
in community images, while the remaining 49.6% of vulnerabilities are found in
the 287 non-core packages.

Findings

At their extraction date, node images exhibit the most vulnerabilities
while Python images exhibit the fewest. Community images without new
updates may accumulate more outdated packages over time, and thus
suffer from more vulnerabilities than at their last update. Core packages
are responsible for 50.4% of the vulnerabilities in community images.
node, Python and Ruby images have different types of vulnerabilities.

18Note that the vulnerabilities in Table 11 are different from the ones in Table 8

24

Table 11: Top three vulnerability types affecting most images, and the proportion of commu-
nity images that are suffering from them, grouped by base image.

base image vulnerability type % images # packages

node
Prototype Pollution 100.0 17

Arbitrary File Overwrite 99.7 6
Arbitrary File Write 99.5 3

Python
Denial of Service 39.3 14

Information Exposure 27.0 8
Insufficient Randomness 21.7 1

Ruby
Arbitrary Code Injection 99.6 5
Arbitrary Code Execution 99.6 5

Denial of Service 94.6 13

The proportion of vulnerabilities in images could be reduced by 79.1% of
all vulnerabilities if these images would update their outdated packages to the
latest available releases. Broken down by base image, this would be 86.8% for
node images, 64% for Python and 71.4% for Ruby images.

Recommendation

Maintainers of community images could reduce nearly 80% of their vul-
nerabilities by updating their outdated packages to the latest available
releases before publishing their images.

5. Discussion

In addition to operating system packages, Docker images include other third-
party packages that are needed by the software they ship as a container. Usually,
these third-party packages come from language-specific package repositories such
as npm, PyPI and RubyGems. Including these packages in Docker images
should be treated with care since non-useful and harmful ones could lead to
larger-sized and more vulnerable images. For this reason, we decided to study
the usage of third-party packages of three popular programming languages in
community Docker Hub images.

In response to RQ0 we found that node images have more installed packages
than Python and Ruby images, and contain many duplicate package releases.
This might be explained by the observation [13] that JavaScript applications
tend to require more dependencies than applications written in Python or Ruby .
The same observation might also explain why node images tend to have a larger
size [32].

25

Recommendation

Maintainers of Docker Hub node images could reduce the relatively large
number of installed npm packages by eliminating duplicate package re-
leases.

Our study also showed that while Alpine is a lightweight Linux operating
system, maintainers that make use of it include a similar number of packages
as maintainers that use Debian. This implies that empirical studies on Docker
images should consider packages from third-party package managers in addition
to the system packages inherited from the relatively small base images.

Lesson learned

Choosing a community image with a different operating system will not
affect the number of third-party packages.

After ignoring core packages installed in community images in RQ1, we found
a similar number of installed packages in node, Ruby and Python images. This
suggests that the effort spent on these packages by community maintainers could
be similar as well, whether they are maintaining a node, Ruby or Python image.
We also noticed that the number of core packages is the highest in node images.
This relates to the lack of a standard library for JavaScript , requiring many
packages to be included as core packages. According to its creator Brendan
Eich, JavaScript is not maintained by “a single person or pair of people who
design well like the founders of Unix were or the creators of Perl, Python, and
Ruby are.” Instead, there are “a bunch of people from different companies. They
would do a terrible job if they were in charge of building a big standard library.”19

We also noticed that core packages are more used over time in the case of
node images, since older images required more dependencies to be added by
community maintainers than recent ones. Even if JavaScript does not have an
extensive standard library, the node community seems to keep track of the most
useful packages and offers them as core packages in its official images.

Recommendation

Maintainers of official repositories should offer images with the most
prevalent dependencies for maintainers of community images to derive
from.

In response to RQ2, nearly half of all (core and non-core) third-party pack-
ages in community images were found to be outdated already at the time of
the last update to the image. Core packages were more outdated than non-core
ones, suggesting that maintainers of community images often forget to update
the packages they inherit from their official base images. The proportion of out-

19https://www.infoworld.com/article/3048833/brendan-eich-javascript-standard-package-
will-stay-small.html

26

dated packages increases over time as new package releases become available.
Indeed, RQ3 showed that if Docker Hub images were deployed at the analysis
date, they would suffer from higher proportions of outdated packages. In many
cases, and especially in node images, several packages are outdated by at least
one major release. Our findings show that community images are less concerned
about having up-to-date third-party packages than official images, since previ-
ous studies showed that outdated npm packages in official node images have a
median of only one missing patch update [12].

Reasons behind this large number of outdated packages in Docker Hub im-
ages could be related to the nature of Docker containers, since by definition
the use of container images provides isolation from evolving dependencies and
changes in packages that may break working systems. It could be also possi-
ble that image maintainers stick to package releases that “just work”, even if
they are outdated, since upgrading to new versions may by risky and requires
effort [33]. In fact, previous studies [34, 35] on other ecosystems showed that
developers are not likely to prioritize a library update, as it is perceived as ad-
ditional work and in many cases developers ignore updates because of a poor
awareness of the benefits.

Comparing outdated packages across Docker images in RQ3, we found that
most of the outdated packages in node images miss at least one major release.
For this reason we looked at the history of releases of all packages installed in
Docker images, and found that npm packages have more major updates than
PyPI or RubyGems packages. 4.8% of npm package releases are major releases,
against 2.9% and 2.8% for PyPI and RubyGems. We also noticed that PyPI
and RubyGems have higher proportions of pre-1.0.0 version releases (i.e., 0.y.z).
25.6% of npm package releases have a pre-1.0.0 version number against 45.8%
and 37.6% of PyPI and RubyGems package releases. This suggests that the
difference we found between Docker images in terms of major outdated packages
could be related to the updating and development procedures of third-party
package developers in each ecosystem 20.

Recommendation

Docker Hub users should inspect the outdatedness of packages they in-
herit from base images before they include packages themselves. Image
maintainers should reflect on their updating practices so fewer outdated
packages are provided through Docker Hub.

Having outdated packages in community images is not necessarily a prob-
lem for image users, since by default Docker provides isolation from evolving
dependencies and changes in packages that may break working systems. On the
other hand, outdated packages may miss vulnerability fixes and thus put Docker
images and the systems they provide at risk. RQ4 studied if image maintain-
ers ship their software in images with known vulnerable package releases. We

20E.g., packages still in the 0.x.y phase cannot be outdated missing major releases.

27

found 74% of the images to suffer from vulnerabilities. 69% of these vulnerabil-
ities could have been avoided if maintainers would have updated their packages
to the latest available releases before publishing their images on Docker Hub.
Image maintainers should therefore invest more effort in updating packages to
provide more secure images. We also noticed that Python images had less vul-
nerabilities than the other images. This could be explained by the absence of
core packages for Python images (see RQ1) and the low proportions of outdated
PyPI packages (see RQ2), or this could simply mean that Python maintainers
pay more attention to the security of their packages.

Recommendation

Image maintainers should invest more effort in updating packages to
provide more secure community images. Python images are less outdated
and hence less vulnerable than other images.

We found that only a small number of non-core packages might have been
manually installed as top-level packages in community images (see RQ1). We
therefore think that most of the vulnerabilities come from transitive dependen-
cies. In fact, the security team of Snyk has already shown in the 2020 State of
Open Source Security Report that the majority of open source vulnerabilities
continue to be discovered in indirect dependencies, i.e., 86% in npm and 81%
in RubyGems. While only 11% of the vulnerabilities have been found in the
indirect dependencies of PyPI . This is in line with our findings since we found
fewer vulnerabilities in Python images.

Furthermore, reflecting on the results reported in Table 4 and RQ1, we only
found a median of 2.4% and 9.5% of the npm and RubyGems (non-core) packages
in images that were manually installed by the image maintainers, while Python
images have a median of 47% of manually installed packages.

Recommendation

Transitive dependencies come with a high number of vulnerabilities. Im-
age maintainers should reduce the number and depth of their transitive
dependencies or monitor them alongside the top-level packages.

RQ5 showed that vulnerable packages were present in nearly all of the stud-
ied images at the date of the analysis. This is expected since, as time passes by,
images accumulate more outdated packages and more disclosed vulnerabilities.
Because of their widespread use and despite their small number, core packages
inherited from official base images are responsible for 50% of the vulnerabilities
in derived community images. Developers of such packages should therefore
be aware that abandoning or not maintaining these packages may have a big
impact on community images.

RQ4 and RQ5 only revealed a minority of outdated core packages as be-
ing vulnerable. This is not surprising since there are many other reasons why
packages receive updates: to fix bugs, improve performance, add new function-
ality, change package metadata and licensing, improve documentation, and so

28

on. Moreover, the number of reported vulnerable outdated packages is an un-
derestimation, as packages may also have vulnerabilities that have not yet been
discovered or been included in the vulnerability database.

Recommendation

Docker Hub users should inspect third-party packages for vulnerabilities
before relying on community images. Updating third-party packages will
reduce the number of vulnerabilities in Docker images.

6. Threats to validity

The empirical nature of our research exposes to potential threats to valid-
ity. We present them following the classification and recommendations of [36].
The main threat to construct validity comes from imprecision in, or incom-
pleteness of, the data source we used to identify vulnerabilities. We assumed
that the Snyk.io vulnerability database represents a sound and complete list of
vulnerability reports for third-party packages. This may have lead to an under-
estimation of our results since some vulnerabilities may not have been disclosed
yet and therefore are missing from the database.

Another threat to construct validity stems from how we identified installed
packages in Docker images. We relied on the list of package releases available
in npm, PyPI and RubyGems, and we considered a package release in this
list as “installed” in an image if it was marked as such by the corresponding
package manager i.e., npm, pip and RubyGems. Consequently, we did not
identify package releases that are compiled from source code, installed in virtual
environments or installed via other package managers like Yarn 21. As such, we
may have underestimated the number of installed packages. We do not expect
this threat to affect our findings much since we expect most users to install
packages via the default package managers of the base images they use.

A third threat to construct validity concerns our choice to remove dupli-
cated package releases installed in images. Not removing such package releases
could have led to higher number of (non distinct) vulnerabilities, especially in
node images. Another similar threat to validity concerns our method to iden-
tify which packages could have been installed automatically or manually by the
image maintainers. We relied on an analysis of the dependency network of in-
stalled packages, however, there is a possibility of developers requiring a package
that was already installed as a dependency for another package, or was already
installed as a top package in a parent image.

As a threat to internal validity, we only relied on a sample of 3,000 Docker
Hub images for our observations on the usage of third-party packages. These
images were the most popular ones in terms of number of pulls. While one may
argue that this sample is not representative of all community images making

21https://yarnpkg.com/

29

https://yarnpkg.com/

use of the considered third-party packages, the selected images represent 90% of
the total number of pulls of all possible image candidates that make use of the
considered third-party packages. As a result, we consider the chosen sample of
community images to be representative for most users of Docker Hub images.

As a threat to external validity we cannot claim that our findings generalise
to other third-party packages (e.g., Maven or CRAN). Similarly, our findings
cannot be generalised to containerization systems beyond Docker and Docker
Hub, such as rkt 22 and Linux containers 23, because technology-specific mecha-
nisms (such as layering and inheritance) may have played a role in the observed
findings. Nevertheless, because Docker is more popular than its competitors24,
our study is relevant and potentially useful to a large community of container
users. Still, it would be interesting to compare Docker to other containerization
technologies in future studies. It would also be interesting to study other pack-
aging technologies that offer the possibility to create an isolated environment in
which users can run application software in isolation from the rest of the system
like flatpak 25.

7. Conclusion

This paper empirically analysed the usage of third-party JavaScript , Python
and Ruby packages in Docker Hub images. We studied how prevalent, outdated
and vulnerable these packages are in community images that are based on node,
Python and Ruby base images. We studied 3,000 popular images, i.e., 1,000
from each group of images. We observed that the number of installed third-
party packages is not related to the used operating system. However, it is
related to the considered base image, i.e., node, Python or Ruby . The installed
packages were grouped into two categories, core packages offered by the base
image, and non-core packages added by community maintainers.

We found that when community images were last updated, they had more
outdated and vulnerable core packages than non-core ones. After some time,
these core and non-core packages missed more updates leading to more vulner-
abilities present in Docker Hub community images. The presence of such vul-
nerable packages is considerably more pronounced for node and Ruby images,
which tend to be more outdated and more vulnerable than Python images. In
addition to this, node images tend to have the highest proportion of packages
missing major updates, as well as a high number of duplicate package releases.

Maintainers of community images in general, of node images in particular,
and to a lesser extent of Ruby images, should invest more effort in updating their
outdated packages in order to reduce their number of vulnerabilities. Services

22https://coreos.com/rkt/
23https://linuxcontainers.org/
24Although the containerisation landscape is likely to evolve, at the time of writing the

biggest competitor of Docker , namely rkt, has been archived (https://github.com/rkt/rkt/
issues/4024)

25https://flatpak.org/

30

https://coreos.com/rkt/
https://linuxcontainers.org/
https://github.com/rkt/rkt/issues/4024
https://github.com/rkt/rkt/issues/4024
https://flatpak.org/

for monitoring the freshness and security of container images should be used,
and should be improved further to include dedicated monitoring of third-party
packages to support this effort.

Acknowledgements

We express our gratitude to the security team of Snyk.io for providing us
with the full dataset of vulnerability reports. This research was partially funded
by the Excellence of Science project 30446992 SECO-Assist financed by FWO-
Vlaanderen and F.R.S.-FNRS.

[1] D. Bernstein, Containers and cloud: From LXC to Docker to Kubernetes,
IEEE Cloud Computing 1 (3) (2014) 81–84.

[2] J. Turnbull, The Docker Book: Containerization is the new virtualization,
2014.

[3] Stack Overflow, 2020 stack overflow developer survey,
https://insights.stackoverflow.com/survey/2020, accessed: 12/02/2021
(2020).

[4] Z. Lu, J. Xu, Y. Wu, T. Wang, T. Huang, An empirical case study on the
temporary file smell in Dockerfiles, IEEE Access.

[5] M. A. Oumaziz, J.-R. Falleri, X. Blanc, T. F. Bissyandé, J. Klein, Handling
duplicates in dockerfiles families: Learning from experts, in: 2019 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
IEEE, pp. 524–535.

[6] A. Martin, S. Raponi, T. Combe, R. Di Pietro, Docker ecosystem–
vulnerability analysis, Computer Communications 122 (2018) 30–43.

[7] A. Bettini, Vulnerability exploitation in Docker container environ-
ments, https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-
Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf,
accessed: 12/02/2021 (2015).

[8] Anchore.io, Snapshot of the container ecosystem, https://anchore.com/wp-
content/uploads/2017/04/Anchore-Container-Survey-5.pdf, accessed:
12/02/2021 (2017).

[9] R. Shu, X. Gu, W. Enck, A study of security vulnerabilities on Docker
Hub, in: International Conference on Data and Application Security and
Privacy, ACM, 2017, pp. 269–280.

[10] J. Gummaraju, T. Desikan, Y. Turner, Over 30% of official images in
Docker Hub contain high priority security vulnerabilities (2015).

31

[11] A. Zerouali, T. Mens, G. Robles, J. M. Gonzalez-Barahona, On the relation
between outdated Docker containers, severity vulnerabilities, and bugs, in:
International Conference on Software Analysis, Evolution and Reengineer-
ing, IEEE, 2019, pp. 491–501. doi:10.1109/SANER.2019.8668013.

[12] A. Zerouali, V. Cosentino, T. Mens, G. Robles, J. M. Gonzalez-Barahona,
On the impact of outdated and vulnerable JavaScript packages in Docker
images, in: International Conference on Software Analysis, Evolution and
Reengineering, IEEE, 2019, pp. 619–623.

[13] A. Decan, T. Mens, P. Grosjean, An empirical comparison of depen-
dency network evolution in seven software packaging ecosystems, Em-
pirical Software Engineering 24 (1) (2019) 381–416. doi:10.1007/

s10664-017-9589-y.

[14] Z. Li, M. Kihl, Q. Lu, J. A. Andersson, Performance overhead compar-
ison between hypervisor and container based virtualization, in: Interna-
tional Conference on Advanced Information Networking and Applications
(AINA), IEEE, 2017, pp. 955–962.

[15] A. Acharya, J. Fanguède, M. Paolino, D. Raho, A performance benchmark-
ing analysis of hypervisors containers and unikernels on ARMv8 and x86
CPUs, in: 2018 European Conference on Networks and Communications
(EuCNC), IEEE, 2018, pp. 282–289.

[16] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, H. C. Gall,
An empirical analysis of the Docker container ecosystem on GitHub, in:
International Conference on Mining Software Repositories, IEEE Press,
2017, pp. 323–333.

[17] J. Henkel, C. Bird, S. K. Lahiri, T. Reps, Learning from, understanding,
and supporting DevOps artifacts for Docker, in: International Conference
on Software Engineering, ACM, 2020.

[18] E. Socchi, J. Luu, A deep dive into Docker Hub’s security landscape – A
story of inheritance?, Master’s thesis, Department of Informatics, Univer-
sity of Oslo (2019).

[19] A. Zerouali, T. Mens, J. Gonzalez-Barahona, A. Decan, E. Constantinou,
G. Robles, A formal framework for measuring technical lag in component
repositories—and its application to npm, Journal of Software: Evolution
and Process.

[20] T. Preston-Werner, Semantic versioning 2.0.0, https://semver.org/, ac-
cessed: 12/02/2021 (2013).

[21] Node.js Docker Team, node, https://hub.docker.com/ /node, accessed:
12/02/2021.

32

http://dx.doi.org/10.1109/SANER.2019.8668013
http://dx.doi.org/10.1007/s10664-017-9589-y
http://dx.doi.org/10.1007/s10664-017-9589-y

[22] Docker Community, python, https://hub.docker.com/ /python, accessed:
12/02/2021.

[23] Docker Community, ruby, https://hub.docker.com/ /ruby, accessed:
12/02/2021.

[24] npm, npm-ls: List installed packages, https://docs.npmjs.com/cli/ls, ac-
cessed: 12/02/2021.

[25] Python Packaging Authority, pip freeze,
https://pip.pypa.io/en/stable/reference/pip freeze/, accessed:
12/02/2021.

[26] Ruby Community, gem list, https://guides.rubygems.org/command-
reference/, accessed: 12/02/2021.

[27] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, L. Devine, Exploring
methods for evaluating group differences on the NSSE and other surveys:
Are the t-test and Cohen’s d indices the most appropriate choices?, in:
Annual Meeting of the Southern Association for Institutional Research,
2006.

[28] J. Katz, Libraries.io Open Source Repository and Dependency Metadata
(Jan. 2020). doi:10.5281/zenodo.3626071.

[29] S. Zaman, B. Adams, A. E. Hassan, Security versus performance bugs: a
case study on Firefox, in: Working Conference on Mining Software Repos-
itories, ACM, 2011, pp. 93–102.

[30] J. Cox, E. Bouwers, M. van Eekelen, J. Visser, Measuring dependency
freshness in software systems, in: International Conference on Software
Engineering, IEEE Press, 2015, pp. 109–118.

[31] A. Decan, T. Mens, E. Constantinou, On the impact of security vulnerabil-
ities in the npm package dependency network, in: International Conference
on Mining Software Repositories, 2018.

[32] M. H. Ibrahim, M. Sayagh, A. E. Hassan, Too many images on Docker-
Hub! How different are images for the same system?, Empirical Software
Engineering (2020) 1–32.

[33] A. Zerouali, A measurement framework for analyzing technical lag in open-
source software ecosystems, Ph.D. thesis, University of Mons (September
2019).

[34] R. G. Kula, D. M. German, A. Ouni, T. Ishio, K. Inoue, Do developers
update their library dependencies?, Empirical Software Engineering 23 (1)
(2017) 384–417.

33

http://dx.doi.org/10.5281/zenodo.3626071

[35] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, F. Ferrucci, Do
developers update third-party libraries in mobile apps?, in: Proceedings of
the 26th Conference on Program Comprehension, 2018, pp. 255–265.

[36] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering - An Introduction, Kluwer, 2000.

34

	Introduction
	Related work
	Docker related studies
	Novel Contributions

	Considered Dataset
	Identifying Candidate Images
	Extracting the Installed Packages
	Collecting Package Release History
	Collecting Security Vulnerabilities

	Empirical Analysis Results
	Discussion
	Threats to validity
	Conclusion

