
Deriving Static Security Testing from Runtime Security Protection
for Web Applications

Angel Luis Scull Pupoa, Jens Nicolaya, and Elisa Gonzalez Boixa
a Software Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract Context: Static Application Security Testing (SAST) and Runtime Application Security Protection
(RASP) are important and complementary techniques used for detecting and enforcing application-level se-
curity policies in web applications.

Inquiry: The current state of the art, however, does not allow a safe and efficient combination of SAST and
RASP based on a shared set of security policies, forcing developers to reimplement and maintain the same
policies and their enforcement code in both tools.

Approach: In this work, we present a novel technique for deriving SAST from an existing RASP mechanism
by using a two-phase abstract interpretation approach in the SAST component that avoids duplicating the effort
of specifying security policies and implementing their semantics. The RASP mechanism enforces security
policies by instrumenting a base program to trap security-relevant operations and execute the required policy
enforcement code. The static analysis of security policies is then obtained from the RASP mechanism by
first statically analyzing the base program without any traps. The results of this first phase are used in a
second phase to detect trapped operations and abstractly execute the associated and unaltered RASP policy
enforcement code.

Knowledge: Splitting the analysis into two phases enables running each phase with a specific analysis
configuration, rendering the static analysis approach tractable while maintaining sufficient precision.

Grounding:We validate the applicability of our two-phase analysis approach by using it to both dynamically
enforce and statically detect a range of security policies found in related work. Our experiments suggest that
our two-phase analysis can enable faster and more precise policy violation detection compared to analyzing
the full instrumented application under a single analysis configuration.

Importance: Deriving a SAST component from a RASP mechanism enables equivalent semantics for the
security policies across the static and dynamic contexts in which policies are verified during the software
development lifecycle. Moreover, our two-phase abstract interpretation approach does not require RASP de-
velopers to reimplement the enforcement code for static analysis.

ACM CCS 2012
Security and privacy→ Information flow control; Web application security;

Keywords security, JavaScript, web application, runtime monitoring, static analysis, abstract interpretation

The Art, Science, and Engineering of Programming

Submitted October 1, 2020

Published July 15, 2021

doi 10.22152/programming-journal.org/2022/6/1

© Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 6, no. 1, 2022, article 1; 41 pages.

https://doi.org/10.22152/programming-journal.org/2022/6/1
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Deriving Static Security Testing from Runtime Security Protection for Web Applications

1 Introduction

JavaScript has become the language for building web applications partially due to its
dynamic nature, featuring prototype-based inheritance and dynamic typing where
objects can change shape and type freely. JavaScript also follows a no crash philosophy,
as the language will try to execute operations andmake the necessary type adjustments
where other dynamically typed languages would typically halt the program’s execution.
While these features make JavaScript suitable for fast prototyping and development,
they complicate reasoning about an application’s behavior and potential vulnerabilities
in its source code.
Since most of the common JavaScript vulnerabilities cannot be prevented or re-

solved with browser-level security (which can be omitted, wrongly configured, or
bypassed [11, 29, 38]), a variety of static [15, 22, 23, 33] and dynamic [5, 7, 13, 25, 32,
35, 36, 37, 39, 41] analyses have been proposed to make applications more secure.
On the one hand, a static analysis reason about the program’s source code, allowing
developers to detect and resolve security issues in the early stages before deploying
or executing the application. Since the analysis happens offline, it does not add any
performance overhead to the application. However, reasoning only about the source
code may force the analysis to make conservative assumptions that often result in
reporting vulnerabilities or bugs that will not occur in practice. On the other hand,
a dynamic analysis reasons about the specific input and program values, resulting
in a precise reporting of vulnerabilities. However, the discovered vulnerabilities are
limited to the ones present in the specific path of execution analysed, and the analysis
adds overhead to the application’s performance. Nevertheless, dynamic analysis is
used as the last barrier to enforce application-level security policies, given the fact
that whole-program static analyses are unsound [30].
Therefore, in the software development cycle of web applications, developers use

both static and dynamic approaches for JavaScript security testing [10, 17, 26].
In the context of secure application development life cycle, Static Application Se-

curity Testing (SAST) refers to tools that statically verify the application against
predefined security policies and are used in the early stages of development. Runtime
Application Security Protection (RASP) refers to tools that monitor the application at
runtime for detecting and preventing policy violations. Because of their importance,
it could be reasonably expected to find approaches able to statically verify and dy-
namically enforce the same set of security policies in an efficient and safe way. The
safest way to derive SAST from RASP is using JavaScript itself (even if generated from
a different specification language) and metaprogramming. What is then needed is
some way of reusing the policies specification and their runtime enforcement code for
SAST. However, there is no such approach.

Our Approach In this paper, we propose an approach to safely and efficiently derive
a static analysis from a given dynamic analysis. Starting from a dynamic analysis
component that relies on source code instrumentation, our approach derives the static
analysis component for statically verifying the same set of policies, thereby avoiding
the re-implementation of policy specifications and, more importantly, enforcement

1:2

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

code. Reusing the policy enforcement code prevents semantic mismatches between
the static and dynamic context in which the policies are enforced. Moreover, it offers
developers a static analysis implementation for free, relieving them from the hurdles
of writing any specification and code on top of static analysis tools themselves.

We focus on exploring such an approach for securing web applications. Specifically,
we derive the SAST components from two RASP components which enforce access
control (AC) and Information Flow Control (IFC) security policies, respectively. The
core idea of our approach is to use a two-phase abstract interpretation in the static
component (i.e., SAST) that statically analyzes the target application in a first phase
and then abstractly executes the policy enforcement in a second phase. Applying our
two-phase static analysis results in a set of code locations of expressions that violate the
policies. These code locations can, for example, be integrated into a “security linter”
to assist developers with verifying their application. Splitting the analysis into two
phases avoids the complexity of analyzing the full instrumented application in one go.
More importantly, it enables the use of separate and different analysis configurations
for each phase for striking the right balance between performance and precision. To
keep the static analysis tractable, the base program typically is analyzed with lower
precision than the precision with which the policy enforcement code is abstractly
executed.

The key contributions of this paper are, therefore:
An approach to safely and efficiently derive a static analysis from dynamic analysis
for a single set of policy specifications (enforced via code instrumentation).
A two-phase abstract interpretation for statically analyzing a base program (phase 1)
and its instrumentation (phase 2) that enables a better trade-off between precision
and performance than a single static analysis of the instrumented code.
The instantiation of our approach for specifying, enforcing, and verifying AC and
IFC security policies for JavaScript web applications from related work.

2 Motivation

In this section, we motivate the need for deriving a static analysis from the security
analysis perspective. To this end, we introduce an example client-side web application
to illustrate the need for application security testing and protection tools. Finally, we
describe the main challenges faced when deriving a static analysis from a dynamic
analysis.

2.1 Running Example

Consider a web-based application that uses a password strength checker component
to enforce a password policy. Listing 1 shows the JavaScript code corresponding to

1:3

Deriving Static Security Testing from Runtime Security Protection for Web Applications

such a component.1 The chkpass function (lines 5 to 17) enforces that a password has a
minimum length and contains both numbers and symbols. When the password meets
the requirements, the checker returns true, indicating a quality password; if not, then
the checker returns false.
Clearly, the application developer expects the component to assess the password

strength and nothing else. However, in this case, it also makes a request that sends
the password to a third-party server using function fetch(line 9), leaking sensitive
information.

Listing 1 Password checker component in JavaScript.
1 <html><body><script>
2 const hasDigit = p => /\d/.test(p);
3 const hasSymbol= p => /\W/.test(p);
4

5 function chkPass(pass) {
6 if (pass.length >= 8) {
7 const flags = hasDigit(pass) && hasSymbol(pass);
8 if (flags){
9 fetch(”http://evil.com?payload=”+pass);
10 return true;
11 }
12 else {
13 return false;
14 }
15 }
16 return false;
17 }
18 function check(event) { chkPass(document.getElementById(”pass”).value); }
19 </script>
20 ...
21 <input type=”password” id=”pass” onchange=”check(event)” />
22 ...
23 </form></body></html>

Preventing the component from making this request can be achieved by specifying
a security policy that “disallows calling fetch” and using a RASP tool to enforce this
policy. However, RASP enforces policies at runtime, and therefore it can only cover
certain execution paths. For example, function fetch is only executed when the length
of the password is greater than 8 and symFlag and numFlag are true (lines 6–8). The
RASP component will stop the application’s execution if line 9 is reached and report a
policy violation, but it will not stop and report it if the control flow does not reach
that line (e.g., a run of the application in which a user inputs a 7-character password),
even though the security vulnerability is present in the source code of the application.
On the other hand, a SAST tool is capable of exploring all application execution

paths, but SAST alone cannot always precisely detect errors as static analyses typically
overapproximate. For example, changing fetch line 9 by window[’f’+(+[])[4]+’t’+’c’+’h’],
where the value of the property being accessed cannot be statically determined, may

1 For clarity, the component is implemented as part of the application, but it could be included
through a script tag pointing to the component’s implementation on a third-party server.

1:4

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

result in a false negative. Worse, most static analyzers for JavaScript are intentionally
unsound to some degree in order to remain tractable [30]. Since a SAST tool may
miss certain policy violations, sound analysis are pushed into a dynamic discipline
in RASP components. Nevertheless, static analyses help developers detect and fix as
many security vulnerabilities as possible (amend false positives) at the early stages of
the software development cycle. In conclusion, developers need both RASP and SAST
for the verification and enforcement of application-level security policies.

2.2 Challenges for RASP and SAST Integration

The main challenge to derive a SAST from RASP is ensuring that security policies
have identical semantics in both the static and dynamic contexts in which they are
verified. Specifying the same policies in two different tools, once for SAST and once
for RASP, may unnoticeably introduce subtle differences in semantics. This is also
cumbersome as developers must learn multiple different policy specification languages.
More importantly, the dynamic policy enforcement code and its static counterpart
have to be maintained in parallel.
Reimplementing SAST and RASP tooling, or attempting to reuse parts of their

underlying implementation, is also not a viable option: the result of a static analysis is
some finite, abstract model of the runtime behavior of an input program, which is sig-
nificantly different from the information available in a browser runtime. Furthermore,
reimplementation also may introduce semantic mismatches or other errors between
implementations for the two different contexts.

In the context of security, some approaches [28, 41, 48] decouple policy specification
from actual verification and enforcement through the use of some security policy lan-
guage. However, this decoupling does not facilitate the development of complementary
SAST and RASP tools, because any additional or reused implementation still faces
the same aforementioned problems.
Approaches that rely on source code instrumentation [4, 41, 42] could allow the

derivation of SAST from RASP by analyzing the base program with the runtime
enforcement code included. However, analyzing the instrumented application makes
the task of the static analyzer even harder, as the code to be analyzed contains both
the policy enforcement code and the target application. More importantly, both the
logic contained in the target application and the enforcement code are analyzed
under the same configuration, precluding the experimentation with different analysis
configurations to obtain a suitable trade-off between soundness, precision, and speed.
All of this makes the static analysis of an instrumented application impractical.

3 Deriving SAST from RASP

The core of our approach is a novel two-phase abstract interpretation technique that
enables developers to configure a suitable trade-off between speed and precision
when using the derived SAST component. Deriving a static analysis through abstract
interpretation is safe, because both the dynamic analysis and the (derived) static

1:5

Deriving Static Security Testing from Runtime Security Protection for Web Applications

analysis are based on the same specification code in JavaScript, so no semantic
mismatches between the two arise. It is also efficient because analysis developers
do not need to reimplement the analysis, as the dynamic analysis implementation is
reused without requiring developers to adapt it for static analysis. Before delving into
the details of our two-phase abstract interpretation technique, we will describe the
main features of the RASP component, using AC and IFC as policy libraries of such
component.

3.1 RASP through Metaprogramming

Since dynamic analyses for securing web applications can be implemented by inter-
cepting program operations such as function calling, accessing properties, and so on,
we explore a RASP component built using metaprogramming. In what follows, we will
refer to the policy enforcement mechanism as meta code, and the target JavaScript
application to be secured as the base program.

In our RASP component, the base program includes the meta program providing the
enforcement mechanism.2 The meta program also defines a set of traps on a handler
object. We assume that the handler object can be accessed in some well-defined
manner; in our implementation, we use a property named META on JavaScript’s global
object. A trap is a method that encapsulates the behavior that must be executed when
a specific program operation occurs, e.g., a function call, a binary operation, etc.
Even though the base program includes and configures the meta program that

defines traps for program operations, these traps still need to be explicitly linked to the
base program at run time. This can be done with metaprogramming techniques such
as AOP [27] or proxies. However, in this paper, we rely on source code instrumentation.
As a result of the instrumentation, the base program is translated into an equivalent
instrumented program with an inline Execution Monitor (EM). The EM is responsible
for calling the traps and performing the base program operations.
We assume that the meta program does not influence the behavior of the base

program in any way except for halting the application’s execution. The meta program
should not, for example, change the state of the base program by changing the value
of variables or object fields. However, this does not preclude it from maintaining its
own state and performing additional side effects such as logging, assigning a variable,
etc.

Most of the dynamic analyses for securing web application are designed to enforce
Access Control (AC) and Information Flow Control (IFC) policies. In the following,
we describe two RASP components for enforcing these two well-known application
security families. These RASP components will be used for deriving the abstract
interpretation-based SAST component used for the experiments and evaluation of our
approach in section 6.

2 Note that the base program may also perform additional initialization and configuration
(i.e., add security policy specifications) before executing any code.

1:6

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Access Control RASP Consider a more interesting version of the policy described
during the motivation in section 2.1. Here, the program should “Disallow calling fetch
more than three times”. An application developer can specify this policy in a RASP
mechanism such as Guardia [40] using the code shown in listing 2. listing 3 shows
an example implementation of the enforcement for the policy specification shown
in listing 2. In the enforcement implementation, the META object is the handler object
that defines an apply trap for intercepting function calls. This trap is invoked whenever
a function call is performed in the instrumented base program, and its body provides
the meta behavior for enforcing the policy specification. In this example, the meta
behavior checks whether the fetch function is being applied and if so, it increments
the counter property, which is used as the internal state of the policy. If counter is
equal or larger than 3, then the meta code signals that program execution should
halt, otherwise the execution proceeds.

Listing 2 Specification using
Guardia [41] of “Disal-
low calling fetch more
than three times” policy.

1 GG.onCall(fetch).moreThan(3).deny();

Listing 3 Example enforcement code for
the policy declared in listing 2.

1 const META = {
2 PROCEED: true,
3 HALT: false,
4 counter: 0;
5 apply: function (fn, args) {
6 if(fn === fetch && this.counter++ >= 3){
7 return META.HALT; }
8 return META.PROCEED; }}

We can now include the described AC policy library in the password checker from
section 2. Consider as base program a subset of this password checker application
(shown in listing 4). Applying the RASP component results in the instrumented base
program as shown in listing 5.

Listing 4 Snippet from list-
ing 1.

1 ...
2 if (flags) {
3 fetch(”evil.com?payload=”+pass);
4 return true;
5 }
6 ...

Listing 5 Instrumented version of listing 4.
1 ...
2 if (flags) {
3 EM.apply(fetch, window, [”evil.com?payload=”+pass]);
4 return EM.return(true);
5 }
6 ...

Instrumenting the base program syntactically links the program operations to the
operations defined on the EM. The EM is then responsible for calling the corresponding
trap on the META object. For example, listing 6 defines the ”monitoring” operation
apply for function calls. The function is responsible for applying the trap (line 3) and
executing the base program operation (line 4).
Note that the meta code in listing 3 performs side-effects to maintain its internal

state at line 6. However, those side-effects are transparent to the base program except
when the policy is violated.

1:7

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Listing 6 Example implementation of the EM.
1 const EM = {
2 apply: function(fn, ths, arg){
3 if(META.apply(fn, args)){
4 return fn.apply(ths, args);
5 }else{
6 throw new Error();
7 }
8 }
9 }

Information Flow Control RASP We now describe the main features of our IFC RASP
component, also based on source code instrumentation. The code of listing 7 shows
an excerpt of an IFC policy library for tracking information flow for binary operations,
function applications, and variable writes based on a technique called taint analy-
sis [45]. In the shadow execution (i.e., meta program execution), values carry the
taintness (i.e., the security level) of their corresponding concrete values in the base
program execution. Booleans are the only shadow values allowed, representing secret
and public information, respectively. In this case, functions binary, apply and write are
examples of the traps that are called when the corresponding program operation is
about to be executed in the base program. Functions are the only values that can be
considered sinks in this policy library. Therefore, the apply trap has to enforce the IFC
policy on each function call.

Listing 7 IFC policy library example.
1 META = {
2 stack:[],
3 binary: function(op, l, r) {
4 let right = this.stack.pop();
5 let left = this.stack.pop();
6 this.stack.push(left || right)
7 },
8 literal: function(l) { this.stack.push(false) }
9 write: function(vName, value) { this.writeVar(vName, this.stack.pop()) },
10 apply: function(fn, args) {
11 let taint = false;
12 for (let a of args) { taint = taint || this.stack.pop() }
13 return !(isSink(fn) && taint)
14 }
15 }

In this RASP component for enforcing IFC policies, the base program interacts with
the policy library (i.e., meta code) using an interface consisting of two functions:
taint(x) and sink(x). The taint(x) tags its argument as sensitive, while sink(x) register
its argument as a public sink of information. For example, sink(fetch) will prevent
the release of any tainted data used as argument of a fetch call. Similar to the AC
policy library previously described, the state of an IFC policy is maintained as the
internal state of the library. The IFC policy library used in this work does not cover
JavaScript features that can cause hidden implicit flows. We further discuss implicit
flows in section 7.

1:8

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

3.2 Deriving SAST from RASP Using a Two-Phase Abstract Interpretation Approach

The previous section explained how AC and IFC policies could be enforced by runtime
monitors that intercept program operations to determine whether they violate a
policy. In order to derive a SAST component from a RASP component, we designed a
novel two-phased abstract interpretation approach that consists of a static analysis of
the base program in the first phase and the triggering and abstract execution of the
associated meta program (i.e. enforcement code) in the second phase. The key benefit
of our approach is that the enforcement source code from the RASP component
is reused without modification within the SAST implementation. This is the core
contribution of this work.

We now discuss the two phases in more detail using the password checker from sec-
tion 2 as a running example. We use listing 4 as base program and the AC policy library
from the previous section as meta program (the core of which was shown in listing 5).
Section 4 and section 5 formally describe each phase using a small-step operational
semantics.

The First Phase of our approach performs an abstract interpretation of the base
program, resulting in a control-flow graph of the base program (called flow graph
in the remainder of the paper). To illustrate the concept of a flow graph, consider
figure 1 and figure 2 showing the flow graph of the concrete and abstract evaluation
of the base program in listing 4. The graph nodes (depicted as ovals) denote the
different program states transitioned by the concrete machine to evaluate the base
program. Pink ovals represent states where the abstract machine is about to perform
a program operation. Green ovals represent states where the machine just computed
a value, and is ready for continuing the evaluation with that value. For example,
state 12 in figure 1 and state 19 in figure 2, represent the memory address of the
function fetch for the concrete and abstract evaluation of the program. Yellow ovals
are terminal states holding program result values. Each graph state in a flow graph
can be considered a snapshot of the program (syntactic node being evaluated, store,
stack, ...) resulting from the application of the different transition rules from our
small-step operational semantics. For example, the figures show the rules E-Simple
and E-Fun-Call describing the pre and post conditions of the machine transitions.
Dashed edges represent additional states transitioned by the machine during the
program evaluation.

The Second Phase explores the flow graph resulting from the first phase to detect
security-relevant operations that must be trapped, and for which the appropriate
handlers must be triggered. In our running example in listing 4, this entails detecting
function calls of fetch to enforce that the AC policy from listing 2. We call the component
that examines the flow graph for detecting policy violations Execution Explorer (EE).
From a flow graph, security-relevant program operations can be identified by

inspecting the syntactic information contained in the states. Because the base program
includes the analysis library (i.e., the meta code) and a graph state is a snapshot

1:9

Deriving Static Security Testing from Runtime Security Protection for Web Applications

6: if(flags){fetch('evil.com?payload' + pass)}

7: flags

8: true

 E-Simple

9: {fetch('evil.com?payload' + pass)}

10: fetch('evil.com?payload' + pass);

11: fetch

 E-Fun-Call

12: <addr 16>

 E-Simple

13: 'evil.com?payload' + pass

14: 'evil.com?payload'

15: 'evil.com?payload'

 E-Simple

20: undefined

Figure 1 Flow graph schematics for the con-
crete evaluation of listing 4.

12: if(flags){fetch('evil.com?payload' + pass)}

13: flags

14: {Bool}

E-Simple

16: {fetch('evil.com?payload' + pass)}

15: undefined

17: fetch('evil.com?payload' + pass)

18: fetch

E-Fun-Call

19: {{set:70}}

E-Simple

20: 'evil.com?payload' + pass

25: {Str}

26: undefined

Figure 2 Flow graph schematics for the ab-
stract evaluation of listing 4.

of the base program execution, the handler object (META in our implementation) is
contained and available in each state.

To ensure that the abstract interpretation of meta code results in a useful approxi-
mation of the concrete execution of the meta code in the handlers at run time, the
Execution Explorer (EE) must be modeled after the Execution Monitor (EM). There-
fore, every operation that is intercepted at runtime by the EM should be statically
detected by the EE as well.

Identifying security-relevant operations and the availability of META are necessary
conditions to fulfill our safety property. However, to reach a sufficient condition, the
meta program semantics (i.e., the policy library enforcement) must be identical in
the static and dynamic contexts.

Whenever the EE reaches a trap, its abstract interpretation is triggered, correspond-
ing to concretely executing the trap in a RASP mechanism. This abstract interpretation
is parameterized with the program operation information that is extracted from the
current state. For example, figure 3 shows a procedural view of the second phase of
our abstract interpretation for the example of listing 4(figure 1). When the EE reaches
a function call state, a new abstract interpretation of META.apply is triggered (see 2
in figure 3). This interpretation is given the function pointer (fetch), the this value,
and the arguments of the call ([url]), resulting in a new flow graph in which the

1:10

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Figure 3 Procedural view of the second phase abstract interpretation.

terminal state represents the value resulting from the abstract execution of the meta
program. When a policy is violated, the result subsumes META.HALT, and the EE
collects the source code location from the current state’s syntactic information.

Central to our approach is the fact that the meta program is abstractly interpreted
using a different configuration than the configuration used for the analysis of the
base program. This is crucial for enabling suitable trade-offs between analysis speed
and precision than when analysing the instrumented application in a single phase.
Precision and speed can vary according to the development stage in which the static
analysis component is used. For example, when used in an IDE, developers would like
violations or bugs to be reported faster than when analysis is applied during a nightly
build, when higher precision may be desired instead.

4 Phase 1: Static Analysis of Base Programs

We now elaborate on our two-phase abstract interpretation approach based on the
calculus presented in prior work [34]. That work presented js0, a core functional
language that models a subset of JavaScript, and a static analysis that models the
execution of js0 programs as a flow graph from which information about control and
value flow, and effects can be extracted. In this section, we present the syntax and
semantics of js0 based on its original specification in [34]. We focus on the relevant
features to understand the contributions of this work and include the details on the
components and operations of the abstract machine in appendix D.

4.1 Syntax of js0

js0 is a core functional language that features objects as maps, higher-order functions,
assignment, and prototype-based inheritance. The original syntax of js0 is depicted

1:11

Deriving Static Security Testing from Runtime Security Protection for Web Applications

e ∈ Exp ::=s | f | v(s) | s0.v(s1) | new v(s) | return s | v=e | s.v | s.v=e
s ∈ Simple ::=v | this

f ∈ Fun ::=function (v){var vh; e}

v ∈ Var = a set of identifiers

Figure 4 Input language js0.

in figure 4. Focusing on essential JavaScript features simplifies the presentation of
our approach, although the features of js0 still are sufficient to show the applicability
and generality of our approach. For validating our approach (section 6), we used an
implementation of js0 that supports a substantially larger subset of JavaScript features
such as conditionals, variable declarations, loops, exceptions, and type coercion. This
implementation also defines parts of the standard built-in Javascript objects and
functions.

In js0, all elements have a unique label to distinguish between different occurrences
of the same syntactic expression (for example, to differentiate between the two
references to pass in line 7 in listing 1).

4.2 Semantics of js0

We define the small-step semantics of js0 as an abstract machine [18] that transitions
between states. This machine, based on the CESIK?Ξ abstract machine introduced
in Johnson and Van Horn [19], operates on abstract values but can be configured to
express concrete semantics.

State-space Components The space-state of the abstract machine semantics is shown
in figure 5. We now describe its main components. A machine state is either an
evaluation state (ev) or a continuation state (ko). In an evaluation state, the machine
evaluates an expression e in an environment ρ. In a continuation state (ko), the
machine is ready to continue evaluation with a value tex t it has just computed.
An environment ρ maps variables to addresses. A store (σ) maps addresses (a) to
values. In our formalism, we only consider two types of values: pointer values that
correspond to addresses (i.e., pointers to an object), and primitive values undef, true,
and false. Other primitive value types, such as numbers, strings, etc., can be added
by extending the set Prim. P (X) denotes the power domain of set X . An object (ω) is
represented as a map from properties to values. Two internal object properties “call”
and “proto”, distinct from regular properties, exist to implement function objects and
object prototypes, respectively.

The stack is modeled as a combination of an intraprocedural continuation (ι) and
either an interprocedural continuation (κ) or the empty continuation (ε). Interproce-
dural continuations play the role of execution contexts that are generated at call sites.
An intraprocedural continuation also serves as a stack address pointing to underlying

1:12

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

ς ∈ State ::= ev(e,ρ,σ, ι,κ,Ξ) [eval state]
| ko(tex t,σ, ι,κ,Ξ) [kont state]

ρ ∈ Env= Var* Addr [environment]
σ ∈ Store= Addr* (D+Obj) [store]
tex t ∈ D =P (Addr+ Prim) [value]
δ ∈ Prim= {undef, true, false} [primitive value]
ω ∈ Obj= (Var* D)× (“proto” 7→ D)

× (“call” 7→ P (Callable)) [object]
c ∈ Callable ::= (f ,ρ) [callable]
ι ∈ LKont= Frame∗ [frame]
φ ∈ Frame ::= as(v,ρ) [assignment frame]

| st(s, v,ρ) [property store frame]
κ ∈ Kont ::= (e, c, tex targ, athis,σ) [meta-continuation]
Ξ ∈ KStore= Kont*P (LKont×Kont) [stack store]

a ∈ Addr is a set of addresses [address]

Figure 5 State-space of the abstract machine semantics.

stacks in a stack store (Ξ). The empty continuation corresponds to the root context,
which is created at the start of the program evaluation.

Transition Relation The semantics of the different syntactic elements of js0 are im-
plemented as transition rules from evaluation states (ev). For example, the semantics
of a method call, implemented by the E-method-call rule, is applied whenever the
machine reaches a state where e is a method call expression. Transition rules may also
use auxiliary relations or evaluation functions. For example, the function evalSimple is
used to evaluate different types of simple expressions in js0, like literals, references
and the this expression. The full specification of js0 rules, auxiliary functions and
relations can be found in appendix D.

Concrete and Abstract Evaluation A program can be evaluated by calling the func-
tion eval with three arguments: eval(e, α, alloc). e is the expression or program to
evaluate. This expression is injected into an initial evaluation state, from which all
other reachable states will be computed by the abstract machine. Function α converts
concrete values into abstract values. Function alloc is used for generating addresses
for allocation into the value store (σ). The result of evaluating e is a flow graph
in which nodes are reachable states, and edges are transitions between states. The
flow graph, therefore, represents the steps taken by the machine during the abstract
interpretation.

1:13

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Functions α and alloc can be used to control the precision of evaluation and enable
the machine to express concrete and abstract semantics.
For concrete semantics, function α is the identity function, so that the machine

operates on concrete values. Additionally, the store allocator function σ must always
return fresh (i.e., unused) addresses. This configuration yields an abstract machine
that computes a concrete interpretation of the given program. Analysing a program
using concrete semantics is equivalent to the execution of the same program in a
standard interpreter.
Because concrete semantics can yield large or infinite executions (and, therefore,

large or infinite flow graphs), abstract semantics are used when performing static
analysis to guarantee finite and tractable flow graphs. In abstract semantics, abstraction
functionαmaps concrete values onto elements of a (bounded) lattice, which represents
the (finite) abstract domain of those values. For example, function α can map concrete
values to their type. The store allocator function σ additionally must choose addresses
from a finite set and may therefore return addresses that are already used in the store.

To illustrate parameterization for concrete and abstract semantics, consider again
the base program in listing 4 as an example. Analysing this program using concrete
semantics with variable flags equal to true, results in the graph shown in figure 1. The
flow graph only includes the states reached by the machine during the analysis of if
statement test expression and the consequent branch (which is the branch taken by
the machine after the test expression).

As the figure shows, transition rule E-simple (defined in figure 9 in appendix D.2)
is applied to state 7, meaning that the program is about to perform an evaluation of a
simple expression (i.e., identifier operation in this case). The transitions relations of
our abstract machine (described in appendix D.2) are expressed in sufficiently small
steps, allowing us to obtain a very detailed graph in which program operations can be
easily identified. Figure 2 is the flow graph resulting from the analysis of listing 4 using
abstract semantics. As figures 1 and 2 make clear, different machine parameterizations
influence the number of reachable states and the transitions between these states, but
not the different kind of program operations and the manner in which they can be
detected in the resulting flow graph.

5 Phase 2: Static Analysis of Meta Operations

The second phase of our two-phase (2PH) approach explores the flow graph resulting
from the first phase to perform the target analysis embedded in the meta program (i.e.,
policy enforcement code for verifying AC and IFC policies). Exploring the flow graph
for evaluating the appropriate meta program operations is the Execution Explorer
(EE) responsibility, first described in section 3.2. The same abstract machine evaluator
used for generating the flow graph in the first phase is used for abstractly executing
the meta code (which is also JavaScript). The semantics of js0 therefore not only
form an operational foundation for a static analysis of the base program but also
for a result-oriented abstract interpretation of the meta code in this second phase to
determine the outcome of the analysis (appendix E).

1:14

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Although the same abstract machine is used for performing abstract interpretation,
the key idea of splitting the abstract interpretation into two phases is to enable
the use of a different parameterization for each individual phase. In terms of code
size and complexity, the base program is usually significantly larger, and therefore
typically is analyzed with lower precision than the meta program. The meta program
containing the analysis code, on the other hand, is usually significantly smaller and
less complex than the base program and is also under tighter control of the analysis
developer. To remain faithful to the intended analysis semantics, the meta code
therefore, typically is evaluated with significantly higher precision than the base code.
In fact, in our experiments we configured the second phase to be as precise as possible.
More concretely, this configuration is as close as possible to concrete semantics (e.g.,
with full precision), only losing precision due to control and value flow imprecisions
introduced in the first phase.
In the rest of this section, we describe how our analysis intercepts base program

operations and invokes meta program operations (i.e., performs the target analysis)
from a given flow graph. We also discuss the treatment of a meta store for enabling
stateful analysis of stateful policies.

5.1 Intercepting Base Program Operations and Invoking Traps

The second phase involves exploring the flow graph that resulted from the first phase.
The Execution Explorer (EE), which is the static counterpart of the Execution Monitor
(EM) for RASP, visits every state in the flow graph. For every state, the EE checks
whether it represents a program operation that is trapped. In our running example,
this may be calls to functions check, fetch, etc. in listing 1. Other examples include
reading and writing object properties.

Intercepting base program operations is relatively straightforward when looking into
the transition relation for js0 (shown in appendix D.2). Considering the interception of
function calls as an example, we can observe that states in which state transition rules
E-fun-call, E-method-call, and E-ctr-call apply, are states in which a function is
about to be called. For example, state 17 in figure 2 is such a state. In our semantics,
we define a relation handle that the EE applies to every state when exploring a base
program’s flow graph. This relation is formalized in appendix E.2. Relation handle
takes a state and a meta store (we explain the latter below) and checks whether there
is a trap method that corresponds to the evaluation step represented by that state;
if so, it executes the trap method. The result of executing a trap method is a tuple
consisting of the return value (META.HALT or META.PROCEED for our AC and IFC security
analyses) and a meta store. We discuss obtaining and executing trap methods next.

5.1.1 Obtaining Trap Methods
If a trapped operation is detected for a state, relation handle first obtains the reference
to the META handler object that represents the access point to the analysis code. Recall
that in our implementation, we make META a property of the global object, so obtaining
this reference amounts to performing a straightforward property lookup on the global
object within a state. Next, handle looks up the trap method that corresponds to the

1:15

Deriving Static Security Testing from Runtime Security Protection for Web Applications

trapped operation by using the name of the trapped operation (e.g., apply, get, set,
etc.). Looking up this method again amounts to a property lookup, this time on the
META handler object that is reachable in each state. Continuing the previous example,
if in state 17 in figure 2) a function call is intercepted, then handle will look up method
META.apply in that state. The step of obtaining a trap method is formalized as the trap
relation, given in appendix E.1. In particular, Trap-Callable specifies how to obtain
the trap method META.apply.

5.1.2 Executing Trap Methods
Finally, relation handle will abstractly execute the trap method, which corresponds to
invoking the associated meta operation of the handler object. Remember that, even
though the input base program application already included META as a library, the meta
operations were never called during the first phase. It is only in the second phase that
the abstract execution of the meta code (i.e., the enforcement of the security policy) is
performed by obtaining and abstractly executing the appropriate trap methods. If the
value resulting from executing a trap method subsumes the abstract value META.HALT,
then this indicates that, according to the target analysis, a base program operation
was intercepted that must halt the execution.

Since the abstract interpretation of trap methods is not an “analysis” but rather
result-oriented abstract execution, trap methods are always executed with the highest
possible precision that is bounded by the precision obtained during the abstract
interpretation of the first phase. The reason for that is that the resulting precision of
each abstract execution of each trap method is affected by the imprecision of the base
program analysis. For example, analysing META.apply({{set:70}}, {Str}) in the second
phase may introduce imprecision if the second argument ({St r}) is used.
The abstract execution of the same trap methods that are used in the dynamic

analysis is what makes our approach safe and efficient because the same analysis
specification (meta code) and semantics (abstract machine) are used for both the
static and dynamic analysis.

5.2 Maintaining Analysis State

So far, we have ignored the issue of stateful analysis code, i.e. a meta program that
maintains state of its own by performing side-effects on it. The AC policy enforcement
code in listing 3 is an example of a stateful analysis because it performs side-effects
to update a counter variable. Likewise, the IFC policy enforcement from listing 7 is
stateful because it maintains a shadow stack.

In case the analysis is stateless, it suffices for the Execution Explorer (EE) to visit all
flow graph states once in an unspecified order and handle these states as described in
section 5.1. In case the analysis is stateful. However, meta state has to be maintained
as well. The meta store is the component that is responsible for maintaining the meta
state in our approach. As mentioned before, the relation handle takes a state and
a meta store as input and returns a value and a meta store. The input meta store
represents the meta state that a trap method has access to, and any modifications
that a trap method makes to this meta state are captured in the returned meta store.

1:16

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

At the start of a trap method’s execution, the meta store is merged into the base store
contained in the state that represents the trapped operation. When the trap method
returns, the meta store is obtained by collecting all heap information reachable from
the META object. Function R in appendix E.2 formalizes the concept of reachability in
a store.
Any meta state changes resulting from the execution of trap methods in a certain

state ς must be propagated to subsequent executions of traps in states reachable from
ς. Because the flow graph may contain cycles, this means that handling states using
handle now must be expressed as a fixed point computation over the flow graph. The
fixed point is reached when handling each state adds no new information to either the
return value or the meta store for that particular state in comparison to the previous
call to handle.
In our semantics, the transition rule EE-Trans, detailed in appendix E.2, formally

describes a transition from a reachable triple representing a state, a trap’s return
value, and a meta store, to triples for successor states in the flow graph. The transitive
closure of this relation represents the fixed point that the EE computes.

6 Evaluation

In this section, we evaluate the applicability of our overall solution for deriving a
SAST component from a RASP component (section 6.1) and empirically compare
the precision and performance of the two-phase abstract interpretation approach
compared to the single-phase approach (section 6.2).

Setup We use JIPDA [34] as a configurable abstract interpreter to perform static
analysis of JavaScript programs and abstractly execute policy code. We employed
JIPDA because it is possible to steer the abstract interpreter for implementing our
2-phase approach, and it implements a version of the syntax and semantics presented
in section 4. Therefore the evaluation of a JavaScript program with JIPDA outputs a
flow graph that approximates the behavior of that program for all its possible execution
paths. JIPDA and the flow graphs it produces fulfill the assumptions discussed before.
For RASP, we use a revised version of Guardia [41] for AC policies, which we load as
a library before analysing a particular application.
Overall, the kind of JavaScript applications that our integrated RASP and SAST

toolchain can analyse is tight to the underlying source code instrumenter employed
in the RASP component. In our current prototype, this means JavaScript code mostly
compatible with ECMAScript 5 as we currently do not support the following features:
import/export, classes, generator functions, promises, and async/await functions.

6.1 Evaluation of Applicability

We evaluated the applicability of our approach by statically verifying a set of Access
Control (AC) and Information Flow Control (IFC) policies from the literature. The
goal is to demonstrate that our approach is general enough to dynamically enforce

1:17

Deriving Static Security Testing from Runtime Security Protection for Web Applications

and statically verify the two most well-known types of security policies starting from
only the specification of the policies and without requiring the reimplementation of
the enforcement code for the static analysis.

6.1.1 Access Control Policies
We verified a set of twelve AC policies from the literature summarized in table 2 (in
appendix A). The policies were defined in a revised version of Guardia [41]. An
example of how programmers would write a policy to “prevent dynamic creation of
iframe elements” is shown in listing 8.

Listing 8 Example policy written with Guardia (revised version) to prevent dynamic
creation of iframe elements.

1 GG.onCall(iframe).with(GG.arg(GG.equals(0,’iframe’))).deny()

For each of the policies in table 2, we designed a test program that attempts to
bypass the policy. Each test program was first executed with the RASP component.
Then the derived SAST component using our two-phase approach was executed on the
same set of programs to determine the number of policy violations it would detect. We
found that the SAST component effectively detected all the intended policy violation
for all tests.

6.1.2 Information Flow Control Policies
table 3 shows the results of analyzing 14 programs without hidden implicit flows, out
of 28 IFC test programs in Sayed et al. [39]. The derived SAST component was able to
detect policy violations in all 14 test programs. We believe that support for implicit
control flows would improve the security guarantees of our IFC monitor. However, it
has been shown previously [43] that tracking explicit flows is sufficient to enforce
integrity IFC policies, while for privacy-related IFC policies tracking hidden flows may
be required. Therefore, from a software development point of view, the application
developer can use our two-phase approach to know when sensitive components in an
application may be affected by untrusted data (i.e., for integrity).

6.2 Evaluation of Performance and Precision

In this section, we validate our two-phase static analysis approach (2PH) by comparing
it with the analysis of the instrumented version of the application (1PH) in terms of
precision and analysis speed. The goal of this evaluation is two fold:

Validate a key property of our approach: when the runtime enforcement of security
policies is provided through metaprogamming in JavaScript, the static verifica-
tion can be automatically obtained through a two-phase abstract interpretation
approach, without the need to analyze the entire instrumented program.
Confirm our hypothesis that, under the same analysis configuration, two-phase
2PH performs better than 1PH in terms of speed and precision.

Methodology We evaluate the performance and precision based on 8 small experimen-
tal client-side web applications, ranging from 46 to 110 LOC of HTML and JavaScript.

1:18

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

All applications were subject to the policy in listing 2. Despite the experimental appli-
cations being small compared to real-world applications, they do contain a substantial
set of features from JavaScript and browsing environment (including DOM elements
and events). Because the applications are not deliberately vulnerable, we randomly
inserted calls to fetch() in their source code to perform the experiments. For each
experimental application, we generated an instrumented version as a counterpart in
which all function calls are instrumented.

For the analysis of uninstrumented applications using our 2PH, we use a tunable
lattice that allows changing the precision of the abstraction function α (i.e., high
and low) during the analysis. However, during an application analysis, the analysis
program will lower the lattice’s precision based on a threshold to produce values
that are more abstract to ensure termination. Each uninstrumented application was
analyzed twice using the 2PH approach. First, the application was analyzed using a
high precision α for the first stage of our approach. For the second run, the application
was analyzed with a low precision α for the first stage of our approach. Independent
of the α function used during the first stage of the analysis, we always use a high
precision α function for the second phase of our 2PH. The instrumented applications
were also analyzed twice. For the first analysis, we used a high precision α for the
lattice, while for the second, we used a low precision α.

6.2.1 Precision
Table 1 shows the results of the analysis of all experimental applications using the
configurations explained before. Each row of the table is the result of analyzing a
program, using an approach (i.e 1PH or 2PH). For the 1PH approach the instrumented
version of the benchmark program was analyzed. As shown in the table, 2PH outper-
forms 1PH for all pairs of equivalent applications using the same lattice configuration.
This experimentally validates the claim that a two-phase abstract interpretation for
statically analyzing a base program (phase 1) and its instrumentation (phase 2) enables
a better trade-off between precision and performance than a single static analysis
of the instrumented code. This is because our 2PH approach runs with a high preci-
sion configuration in the second phase for the lattice. We did not observe any false
negatives during our experiments because the experimental programs are simple.
However, false negatives can occur in larger or more complex programs given the
fact that our analysis is unsound. As mentioned before, practical static analyses of
non-trivial JavaScript applications using dynamic features is always unsound to some
degree, so we envision our 2PH approach to be used early during the development
phase, or as part of a building pipeline to help catch vulnerabilities introduced by
developers of an application, or the third-party code they include.

6.2.2 Performance
To measure performance, we use the same setup as for measuring precision. Figure 6
shows the analysis speed in seconds for all applications using the four different
combinations (2PHH , 2PHL , 1PHH , 1PHL). The broken bars show the analyses that
did not finish in a predefined time window (430 seconds).

1:19

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Table 1 Precision comparison between the single-phase approach (1PH) and our two-phase
approach (2PH) for statically detecting AC policy violations. Column Precision
indicates the analysis precision: H for high precision, L for low precision. Columns
TP, FP, and FN denote the number of true positives, false positives, and false
negatives, respectively, with respect to reported policy violations by each approach.
“-” denotes the absence of a value due to analysis timeout.

Program Precision
1PH 2PH

TP FP FN TP FP FN

sequential
H 3 0 0 3 0 0
L - - - 3 0 0

branches
H 0 4 0 0 4 0
L 0 7 0 0 4 0

iterative
H 0 3 0 0 0 0
L 0 4 0 0 2 0

safe
H 0 4 0 0 0 0
L 0 6 0 0 2 0

recursive
H - - - 1 0 0
L 1 3 0 1 0 0

fib
H - - - 1 0 0
L 1 3 0 1 0 0

passStrength
H - - - 2 1 0
L - - - 2 3 0

steal
H 0 3 0 0 0 0
L - - - 0 1 0

As shown in the figure, the 2PH approach performs better than the 1PH for both
lattice configurations. Performance is influenced by how the fixed point is computed,
which in the second phase is affected by only the meta store. There is a similar
performance for the configurations 1PHH and 2PHH for the sequential, branches,
iterative and safe programs. Most likely, this is because the values remained under the
configured threshold for the lattice during the analyses. From our experimental data,
we also observe that high analysis precision often results in better performance than
low analysis precision. Although the speed–precision trade-off for a static analysis
depends on many factors and is generally unpredictable, lowering precision tends to
slow down an analysis because this increases the number of spurious paths explored.
However, more experimental data is needed to draw a general conclusion about this.

The performance can also be measured in function of the number of states generated
during the analysis. Figure 7 shows the relation of states produced by the 1PH and 2PH
approaches for our set of programs evaluated in both high and low precision lattice
configurations. As the figure shows, our 2PH approach performs better than the 1PH
for most of the programs in terms of states generated (with more states representing
more explored paths). For the examples iterative (H and L), recursive (L) and fib (L)

1:20

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

seq
ue
nti
al

br
an
ch
es

ite
rat
ive saf

e

rec
ur
siv
e fib

pa
ssS
tre
ng
th

ste
al

0

100

200

300

400

Ti
m
e
in

se
co
nd

s

2PHH 1PHH 2PHL 1PHL

Figure 6 Speed comparison between the 1PH approach and our (2PH) approach for stati-
cally detecting AC policy violations with high precision (H) and low (L) precision.
Each application is thus analysed using four different configurations (2PHH , 2PHL ,
1PHH , 1PHL).

the 1PH performs slightly better than our 2PH, however, at the cost of precision. The
broken bars means that the analysis generated more than 100000 states.

7 Discussion

We now discuss some of the properties of our two-phase abstract interpretation
approach for deriving SAST from RASP, as well as future work.

Efficiently Deriving SAST Our goal is to derive a static analysis from an already existing
dynamic analysis mechanism with the least effort. Although our two-phase approach
avoids the reimplementation of the meta program (i.e., policy enforcement code) when
deriving the static analysis from the dynamic enforcement, the triggering mechanism
used in the second analysis phase is not reused from the dynamic enforcement
mechanism and therefore still has to be reimplemented. However, typically the policy
code is much larger and more complex than the triggering code. For instance, the
code for monitoring a specific application behavior, such as function calls and value
creation, is similar in both structure in the runtime and the static implementation.
Therefore, we believe that the advantages of performing static analysis in two phases

1:21

Deriving Static Security Testing from Runtime Security Protection for Web Applications

seq
ue
nti
al

br
an
ch
es

ite
rat
ive saf

e

rec
ur
siv
e fib

pa
ssS
tre
ng
th

ste
al

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r
of

st
at
es

2PHH 1PHH 2PHL 1PHL

Figure 7 Comparison between the number of states generated by 1PH approach and our
2PH during analysis using low (L) and high (H) precision lattice configurations.
Each application is thus analysed using four different configurations (2PHH , 2PHL ,
1PHH , 1PHL).

as described in section 3.2 outweighs the downside of having to reimplement (only)
the triggering mechanism.
Performing static analysis in two phases can also bring benefits in terms of speed

and precision (as we showed in section 6). Since precision is one of the most important
properties of any static analysis, it deserves some discussion. We would like to empha-
size that our goal is not to improve the precision of our 2PH static analysis over other
custom static analyses. Instead, the goal is to avoid writing the policies’ semantics
for the static analysis by reusing the policies’ semantics already implemented by the
runtime monitor. As explained in section 5, the precision of our analysis depends on
the flow graph resulting from the first phase. As such, abstracted base program values
in the first phase can introduce imprecision to our security analysis during the second
phase.

What the meta code does is independent of the static analysis. In contrast, it does
matter how the meta code is implemented. Therefore, it is a reasonable assumption
that analysis developers should avoid features that the abstract interpreter cannot
soundly or precisely handle (e.g., eval, the Function constructor, etc.).

1:22

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Implicit Flows As mentioned in section 3.1, the IFC monitor used in this work cannot
handle language features that cause hidden implicit flows. We would like to stress that
this is not a limitation of our two-phase approach but a limitation of the employed IFC
monitor. Actually, this is a challenge for dynamic IFC monitors in general. In previous
work, we developed an IFC monitor, Gifc [40], which covers implicit flows. While
Gifc is an example of a security policy library that instruments a program by trapping
operations so they can be checked against an IFC policy, this cannot be used as a
RASP component because its implementation relies on JavaScript proxies which are
not currently supported in JIPDA.
Other work that has explored the precise handling of hidden implicit flows in

an IFC monitor relies on a static analysis for control flow statements prior to the
execution of the program [6, 12]. Combining such a technique into our approach
requires adding yet another static analysis phase which is not trivial. For example,
statements such as continue, break, and non-tail return create implicit flows when they
are used conditionally in expressions that include tainted information. It would be
interesting to explore a solution to support IFC policies that at runtime also require a
static approximation of the program runtime behavior to correctly deal with hidden
implicit flows.

Applicability toOther Analyses beyond Security We believe that the two-phase abstract
interpretation approach presented in this paper is more broadly applicable than just
security. As future work, we would like to explore its applicability to other dynamic
analysis that can be implemented with runtime monitors based on metaprogramming
akin to the RASP components used in this work. For example, Gong et al. [21] developed
a dynamic linter (DLint) to detect violations of code quality rules dynamically. In their
framework, a rule is specified as a predicate over program events (i.e. function calls,
variable writes, etc.) to check common quality issues in JavaScript, like inheritance
and type inconsistency problems, APIs misuse, etc. Another kind of dynamic analyses
that could be implemented are profilers. For example, JITProf [20] is a profiling
framework to dynamically identify code locations that prohibit JIT optimizations. In
JITProf, the information of program events is used to maintain metadata associated
with the source location of those events. The metadata is then used to pinpoint those
locations that prohibit JIT (i.e., just-in-time) optimisations.

8 Related Work

To the best of our knowledge, this is the first work that derives a static analysis
mechanism from a dynamic security policy enforcement mechanism. In this section,
we discuss previous efforts to unify or combine static and dynamic analysis.

JNuke [3] integrates static and dynamic analysis through an architecture that en-
ables the use of a generic algorithm in both contexts. The dynamic analysis instrument
the virtual machine to record a trace of events of interest. On the other hand, static
analysis is implemented as a graph-free analysis through abstract interpretation, which
allows the analysis to be close to a dynamic execution. To achieve the integration, the

1:23

Deriving Static Security Testing from Runtime Security Protection for Web Applications

framework executes the algorithm in an environment that abstracts the differences
between the program states generated from static and dynamic environments on
which the application is executed.

Bodden et al. [8, 10] develop a system to verify runtime monitors ahead of time.
Their solution is tailored to the syntax and semantics of the language used to express
the monitor. In contrast, our SAST component is agnostic and can therefore support
different policy specification languages and their semantics (e.g., the AC and IFC
policy specifications described in section 6) without additional effort.
The CLARA [9] framework enables the partial evaluation of finite-state runtime

monitors ahead of time. CLARA’s static analysis can detect possible violations that
may occur at runtime. Its monitor only observes events triggered by program locations
for which the static analysis failed to prove safety. In contrast to our approach, CLARA
does not derive static analysis from the monitor. However, it applies a series of ad-hoc
pluggable static analyses to iteratively prune unnecessary instrumentation points.

Tripp and Weisman [46] develop a hybrid analysis for performing a security assess-
ment of client-side JavaScript code. In their approach, a web crawler retrieves and
executes a web page to record useful runtime information. The resulting JavaScript
code and recorded information are passed to a static taint analysis component for
performing the actual security assessment. Hybrid analyses such as this one combine
static and dynamic analysis in such a way that they rely on each other for their opera-
tion. In contrast, the dynamic enforcement in our approach can be used independently
from any static analysis. Once a static analysis is derived, it can be applied without
executing the dynamic enforcement.

Some related work that targets the development stage of the software development
cycle complements static verification with dynamic information, e.g. [44, 47]. The
number of false alarms produced by such an analysis could, in theory, be reduced since
they have runtime information available during static analysis. However, their ability
to improve the reporting of violations is constrained to the program coverage offered
by the dynamic information and the actual runtime information that is recorded.
Our approach covers the two extremes of the software development cycle (SAST
and RASP), and as such, policies are verified ahead of time and are also enforced at
runtime.

Ahrendt et al. [1, 2] developed a framework that unifies static and runtime verifica-
tion of Java applications. The instantiation of their framework unifies two unrelated
tools (KeY, a deductive verification system, and Larva, a logical automaton for runtime
verification) through a unified language (ppDATEs) specially designed for the specifi-
cation of static and runtime properties. The final instrumented application benefits
from the proofs obtained by the static verification, enabling the monitor to make
assumptions that prevent it from performing too many checks at runtime. In contrast,
due to the unsound static analysis, our RASP component must always perform all
checks.
Dufour et al. [16], describe a framework for blended analysis. The overall idea

behind the framework is to apply an interprocedural static analysis on a calling
structure obtained through dynamic analysis, therefore, capturing properties of a

1:24

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

single execution. Wei and Ryder [47], use this framework to detect vulnerabilities on
JavaScript applications through taint analysis.

Chugh et al. [14], develop a staged IFC analysis. In their approach, an offline
analysis is performed in the application source code to compute a residual policy
that is then enforced at runtime. The goal of the residual policy is to enforce the
information flow policy in places where the application executes code dynamically
generated (e.g. eval).

9 Conclusion

We presented an approach for performing both Static Application Security Testing
(SAST) and Runtime Application Security Protection (RASP) using a single security
policy library in a safe and efficient manner. Our approach starts from a set of declar-
ative security policies, from which a runtime enforcement mechanism is generated by
instrumenting the target application for trapping security-relevant program operations
and forwarding them to policy enforcement code. Next, a static analysis mechanism
is derived from the runtime enforcement mechanism without reimplementing any of
the policy enforcement code. Our approach reduces the effort of combining SAST and
RASP, offering strong guarantees that the policy semantics are identical between their
static verification and their runtime enforcement. We demonstrated the applicability
of our approach by detecting and enforcing 12 access control and 14 information flow
control policies originating from related work.

References

[1] Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo
Schneider. “A Specification Language for Static and Runtime Verification of Data
and Control Properties”. In: FM 2015: Formal Methods. Edited by Nikolaj Bjørner
and Frank de Boer. Volume 9109. LNCS. Springer International Publishing, 2015,
pages 108–125. isbn: 978-3-319-19248-2. doi: 10.1007/978-3-319-19249-9_8.

[2] Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider. “A Unified Ap-
proach for Static and Runtime Verification: Framework and Applications”. In:
Leveraging Applications of Formal Methods, Verification and Validation. Technolo-
gies for Mastering Change. Edited by Tiziana Margaria and Bernhard Steffen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pages 312–326. isbn:
978-3-642-34026-0.

[3] Cyrille Artho and Armin Biere. “Combined Static and Dynamic Analysis”. In:
Electronic Notes in Theoretical Computer Science 131 (2005), pages 3–14. issn:
1571-0661. doi: 10.1016/j.entcs.2005.01.018.

[4] Thomas H. Austin, Tim Disney, and Cormac Flanagan. “Virtual Values for Lan-
guage Extension”. In: Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications. OOPSLA ’11.

1:25

https://doi.org/10.1007/978-3-319-19249-9_8
https://doi.org/10.1016/j.entcs.2005.01.018

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Portland, Oregon, USA: Association for Computing Machinery, 2011, pages 921–
938. isbn: 9781450309400. doi: 10.1145/2048066.2048136.

[5] Thomas H. Austin and Cormac Flanagan. “Efficient Purely-Dynamic Informa-
tion Flow Analysis”. In: Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security. PLAS ’09. Dublin, Ireland: As-
sociation for Computing Machinery, 2009, pages 113–124. isbn: 9781605586458.
doi: 10.1145/1554339.1554353.

[6] Abhishek Bichhawat. “Exception Handling for Dynamic Information Flow Con-
trol”. In: Companion Proceedings of the 36th International Conference on Software
Engineering. ICSE Companion 2014. Hyderabad, India: Association for Com-
puting Machinery, 2014, pages 718–720. isbn: 9781450327688. doi: 10.1145/
2591062.2591195.

[7] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer.
“Information Flow Control in WebKit’s JavaScript Bytecode”. In: Principles of
Security and Trust. Edited byMartín Abadi and Steve Kremer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pages 159–178. isbn: 978-3-642-54792-8. doi:
10.1007/978-3-642-54792-8_9.

[8] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. “A Staged Static Program
Analysis to Improve the Performance of Runtime Monitoring”. In: ECOOP
2007 – Object-Oriented Programming. Edited by Erik Ernst. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pages 525–549. isbn: 978-3-540-73589-2. doi:
10.1007/978-3-540-73589-2_25.

[9] Eric Bodden, Patrick Lam, and Laurie J. Hendren. “Clara: A Framework for
Partially Evaluating Finite-State Runtime Monitors Ahead of Time”. In: Runtime
Verification. Edited by Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus
Havelund, Insup Lee, Gordon J. Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai
Tillmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pages 183–197.
isbn: 978-3-642-16612-9. doi: 10.1007/978-3-642-16612-9_15.

[10] Eric Bodden, Patrick Lam, and Laurie J. Hendren. “Finding Programming
Errors Earlier by Evaluating Runtime Monitors Ahead-of-Time”. In: Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. SIGSOFT ’08/FSE-16. Atlanta, Georgia: Association for Computing
Machinery, 2008, pages 36–47. isbn: 9781595939951. doi: 10.1145/1453101.
1453109.

[11] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben
Stock. “Reining in the Web’s Inconsistencies with Site Policy”. In: Network and
Distributed Systems Security (NDSS) Symposium 2021. Feb. 2021. url: https:
//publications.cispa.saarland/3214/.

[12] Andrey Chudnov and David A. Naumann. “Information Flow Monitor Inlining”.
In: 2010 IEEE 23rd Computer Security Foundations Symposium (CSF). 2010,
pages 200–214. isbn: 978-1-4244-7510-0. doi: 10.1109/csf.2010.21.

1:26

https://doi.org/10.1145/2048066.2048136
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/2591062.2591195
https://doi.org/10.1145/2591062.2591195
https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-540-73589-2_25
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1145/1453101.1453109
https://doi.org/10.1145/1453101.1453109
https://publications.cispa.saarland/3214/
https://publications.cispa.saarland/3214/
https://doi.org/10.1109/csf.2010.21

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

[13] Andrey Chudnov and David A. Naumann. “Inlined Information FlowMonitoring
for JavaScript”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. CCS ’15. Denver, Colorado, USA: Association
for Computing Machinery, 2015, pages 629–643. isbn: 9781450338325. doi:
10.1145/2810103.2813684.

[14] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. “Staged Informa-
tion Flow for Javascript”. In: Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’09. Dublin, Ireland:
Association for Computing Machinery, 2009, pages 50–62. isbn: 9781605583921.
doi: 10.1145/1542476.1542483.

[15] Charlie Curtsinger, Benjamin Livshits, Benjamin G. Zorn, and Christian Seifert.
“ZOZZLE: Fast and Precise In-Browser JavaScript Malware Detection.” In:
USENIX security symposium. San Francisco. 2011, pages 33–48.

[16] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. “Blended Analysis for
Performance Understanding of Framework-Based Applications”. In: Proceedings
of the 2007 International Symposium on Software Testing and Analysis. ISSTA
’07. London, United Kingdom: Association for Computing Machinery, 2007,
pages 118–128. isbn: 9781595937346. doi: 10.1145/1273463.1273480.

[17] Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth
Breu, and Alexander Pretschner. Security Testing: A Survey. Edited by Atif
Memon. Volume 101. Advances in Computers. Elsevier, 2016, pages 1–51. doi:
https://doi.org/10.1016/bs.adcom.2015.11.003.

[18] Mattias Felleisen and Daniel P. Friedman. “A Calculus for Assignments in
Higher-Order Languages”. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL ’87. Munich, West
Germany: Association for Computing Machinery, 1987, pages 314–345. isbn:
0897912152. doi: 10.1145/41625.41654.

[19] Dionna Glaze and David Van Horn. “Abstracting Abstract Control”. In: Proceed-
ings of the 10th ACM Symposium on Dynamic Languages. New York, NY, USA:
Association for Computing Machinery, 2014, pages 11–22. isbn: 9781450332118.
doi: 10.1145/2661088.2661098.

[20] Liang Gong, Michael Pradel, and Koushik Sen. “JITProf: Pinpointing JIT Un-
friendly JavaScript Code”. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2015. Bergamo, Italy: Associ-
ation for Computing Machinery, 2015, pages 357–368. isbn: 9781450336758.
doi: 10.1145/2786805.2786831.

[21] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. “DLint: Dy-
namically Checking Bad Coding Practices in JavaScript”. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis. ISSTA 2015.
Baltimore, MD, USA: Association for Computing Machinery, 2015, pages 94–105.
isbn: 9781450336208. doi: 10.1145/2771783.2771809.

1:27

https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/1542476.1542483
https://doi.org/10.1145/1273463.1273480
https://doi.org/https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/2661088.2661098
https://doi.org/10.1145/2786805.2786831
https://doi.org/10.1145/2771783.2771809

Deriving Static Security Testing from Runtime Security Protection for Web Applications

[22] Salvatore Guarnieri and Benjamin Livshits. “GULFSTREAM: Staged Static
Analysis for Streaming JavaScript Applications”. In: Proceedings of the 2010
USENIX Conference on Web Application Development. WebApps’10. Boston, MA:
USENIX Association, 2010, page 6. doi: 10.5555/1863166.1863172.

[23] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. “Saving the World Wide Web from Vulnerable JavaScript”. In:
Proceedings of the 2011 International Symposium on Software Testing and Analysis.
ISSTA ’11. Toronto, Ontario, Canada: Association for Computing Machinery,
2011, pages 177–187. isbn: 9781450305624. doi: 10.1145/2001420.2001442.

[24] Oystein Hallaraker and Giovanni Vigna. “Detecting malicious JavaScript code
in Mozilla”. In: 10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’05). IEEE, June 2005, pages 85–94. doi: 10.1109/
ICECCS.2005.35.

[25] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. “JSFlow:
Tracking Information Flow in JavaScript and Its APIs”. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. SAC ’14. Gyeongju, Republic
of Korea: Association for Computing Machinery, 2014, pages 1663–1671. isbn:
9781450324694. doi: 10.1145/2554850.2554909.

[26] Michael Howard and Steve Lipner. The security development lifecycle. 1. Microsoft
Press, June 2006. isbn: 9780735622142.

[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-oriented programming”.
In: ECOOP’97 — Object-Oriented Programming. Edited by Mehmet Akşit and
Satoshi Matsuoka. Volume 1241. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pages 220–242. isbn: 978-3-540-
69127-3. doi: 10.1007/BFb0053381.

[28] Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura, and Igor Serikov.
“JavaScript Instrumentation in Practice”. In: Programming Languages and Sys-
tems. Edited by G. Ramalingam. Volume 5356. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pages 326–341.
isbn: 978-3-540-89330-1. doi: 10.1007/978-3-540-89330-1_23.

[29] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava,
and Martin Johns. “Code-Reuse Attacks for the Web: Breaking Cross-Site
Scripting Mitigations via Script Gadgets”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17. Dallas,
Texas, USA: Association for Computing Machinery, 2017, pages 1709–1723. isbn:
9781450349468. doi: 10.1145/3133956.3134091.

[30] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. “In defense of soundiness: A manifesto”. In:
Communications of the ACM 58.2 (2015), pages 44–46. doi: 10.1145/2644805.

1:28

https://doi.org/10.5555/1863166.1863172
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1109/ICECCS.2005.35
https://doi.org/10.1109/ICECCS.2005.35
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-540-89330-1_23
https://doi.org/10.1145/3133956.3134091
https://doi.org/10.1145/2644805

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

[31] Leo A. Meyerovich and Benjamin Livshits. “ConScript: Specifying and Enforcing
Fine-Grained Security Policies for JavaScript in the Browser”. In: 2010 IEEE
Symposium on Security and Privacy. IEEE, 2010, pages 481–496. doi: 10.1109/
SP.2010.36.

[32] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo,
and Thomas Schmitz. “A Better Facet of Dynamic Information Flow Control”.
In: Companion Proceedings of the The Web Conference 2018. WWW ’18. Lyon,
France: International World Wide Web Conferences Steering Committee, 2018,
pages 731–739. isbn: 9781450356404. doi: 10.1145/3184558.3185979.

[33] Jens Nicolay, Valentijn Spruyt, and Coen De Roover. “Static Detection of User-
Specified Security Vulnerabilities in Client-Side JavaScript”. In: Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for Security.
PLAS ’16. Vienna, Austria: Association for Computing Machinery, 2016, pages 3–
13. isbn: 9781450345743. doi: 10.1145/2993600.2993612.

[34] Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen De Roover.
“Purity analysis for JavaScript through abstract interpretation”. In: Journal of
Software: Evolution and Process 29.12 (2017). issn: 2047-7481. doi: 10.1002/smr.
1889.

[35] Phu H. Phung, Abhinav Mohanty, Rahul Rachapalli, and Meera Sridhar. “Hy-
bridGuard: A Principal-Based Permission and Fine-Grained Policy Enforcement
Framework for Web-Based Mobile Applications”. In: 2017 IEEE Security and
Privacy Workshops (SPW) (2017), pages 147–156. doi: 10.1109/SPW.2017.34.

[36] Phu H. Phung, Huu-Danh Pham, Jack Armentrout, Panchakshari N. Hiremath,
and Quang Tran-Minh. “A User-Oriented Approach and Tool for Security and
Privacy Protection on the Web”. In: SN Computer Science 1.4 (2020), page 222.
issn: 2662-995X. doi: 10.1007/s42979-020-00237-5.

[37] Phu H. Phung, David Sands, and Andrey Chudnov. “Lightweight Self-Protecting
JavaScript”. In: Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security. ASIACCS ’09. Sydney, Australia: Asso-
ciation for Computing Machinery, 2009, pages 47–60. isbn: 9781605583945.
doi: 10.1145/1533057.1533067.

[38] Gregor Richards, Christian Hammer, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Jan Vitek. “Flexible Access Control for Javascript”. In: Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications. OOPSLA ’13. Indianapolis, Indiana, USA: As-
sociation for Computing Machinery, 2013, pages 305–322. isbn: 9781450323741.
doi: 10.1145/2509136.2509542.

[39] Bassam Sayed, Issa Traoré, and Amany Abdelhalim. “If-transpiler: Inlining of
hybrid flow-sensitive security monitor for JavaScript”. In: Computers & Security
75 (June 2018), pages 92–117. doi: 10.1016/j.cose.2018.01.017.

1:29

https://doi.org/10.1109/SP.2010.36
https://doi.org/10.1109/SP.2010.36
https://doi.org/10.1145/3184558.3185979
https://doi.org/10.1145/2993600.2993612
https://doi.org/10.1002/smr.1889
https://doi.org/10.1002/smr.1889
https://doi.org/10.1109/SPW.2017.34
https://doi.org/10.1007/s42979-020-00237-5
https://doi.org/10.1145/1533057.1533067
https://doi.org/10.1145/2509136.2509542
https://doi.org/10.1016/j.cose.2018.01.017

Deriving Static Security Testing from Runtime Security Protection for Web Applications

[40] Angel Luis Scull Pupo, Laurent Christophe, Jens Nicolay, Coen de Roover, and
Elisa Gonzalez Boix. “Practical Information Flow Control for Web Applications”.
In: Runtime Verification. Edited by Christian Colombo and Martin Leucker.
Volume 11237. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pages 372–388. isbn: 978-3-030-03769-7. doi: 10.1007/978-3-
030-03769-7_21.

[41] Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix. “GUARDIA:
Specification and Enforcement of Javascript Security Policies without VM Mod-
ifications”. In: Proceedings of the 15th International Conference on Managed
Languages and Runtimes. ManLang ’18. Linz, Austria: Association for Comput-
ing Machinery, 2018. isbn: 9781450364249. doi: 10.1145/3237009.3237025.

[42] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. “Jalangi:
A Selective Record-Replay and Dynamic Analysis Framework for JavaScript”. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2013. Saint Petersburg, Russia: Association for Computing Machinery,
2013, pages 488–498. isbn: 9781450322379. doi: 10.1145/2491411.2491447.

[43] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel,
and Andrei Sabelfeld. “An Empirical Study of Information Flows in Real-World
JavaScript”. In: Proceedings of the 14th ACM SIGSAC Workshop on Programming
Languages and Analysis for Security. PLAS’19. London, United Kingdom: Associ-
ation for Computing Machinery, 2019, pages 45–59. isbn: 9781450368360. doi:
10.1145/3338504.3357339.

[44] Omer Tripp, Pietro Ferrara, and Marco Pistoia. “Hybrid Security Analysis of
Web JavaScript Code via Dynamic Partial Evaluation”. In: Proceedings of the
2014 International Symposium on Software Testing and Analysis. ISSTA 2014.
San Jose, CA, USA: Association for Computing Machinery, 2014, pages 49–59.
isbn: 9781450326452. doi: 10.1145/2610384.2610385.

[45] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. “TAJ: Effective Taint Analysis of Web Applications”. In: Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’09. Dublin, Ireland: Association for Computing Machinery,
2009, pages 87–97. isbn: 9781605583921. doi: 10.1145/1542476.1542486.

[46] Omer Tripp and Omri Weisman. Hybrid analysis for JavaScript security assess-
ment. Distributed at the 8th European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering. 2011.

[47] ShiyiWei and Barbara G. Ryder. “Practical Blended Taint Analysis for JavaScript”.
In: Proceedings of the 2013 International Symposium on Software Testing and
Analysis. ISSTA 2013. Lugano, Switzerland: Association for Computing Machin-
ery, 2013, pages 336–346. isbn: 9781450321594. doi: 10.1145/2483760.2483788.

[48] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. “JavaScript in-
strumentation for browser security”. In: ACM SIGPLAN Notices 42.1 (Jan. 2007),
pages 237–249. doi: 10.1145/1190215.1190252.

1:30

https://doi.org/10.1007/978-3-030-03769-7_21
https://doi.org/10.1007/978-3-030-03769-7_21
https://doi.org/10.1145/3237009.3237025
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.1145/2610384.2610385
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/2483760.2483788
https://doi.org/10.1145/1190215.1190252

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

A Access Control Policies

The table 2 list a set of access control policies appearing in the related of language-
based security mechanisms for client-side web applications.

Table 2 Description of the 12 AC policies from related work for which we derived a static
verification from their dynamic enforcement.

Policy Description

1 limit the number of popup windows [24]
2 disallow popup windows without location and status bar [24]
3 prevent abuse of resources like modal dialogues [24]
4 disallow dynamic iframe creation [37]
5 disable page redirects after document.cookie read [24]
6 only redirect to whitelisted URLs [37]
7 restrict XMLHttpRequest (XHR) to secure connections and whitelisted URLs [31]
8 disallow setting of src property on dynamic images [37]
9 disallow open and send methods of XHR object [37]
10 postMessage can only send to the whitelisted URLs [31]
11 disallow string arguments to setInterval [31]
12 disable geoposition API [41]

B Information Flow Control Policies

Table 3 shows the IFC test cases originated from the related work used during the
evaluation of our 2PH approach.

C Comparison of Number of States Generated by 1PH and Our 2PH
Approaches

Table 4 relates the number of explored states of the 1PH and our 2PH under low (L)
and high (H) lattice configurations.

D Phase 1: Semantics of js0

Before delving into the details on the transition rules, auxilary functions and relations,
we introduce the notation and conventions used.

Notation and Conventions We use] to denote disjoint union: if X = Y] Z , then
Y = X \ Z . The notation X = x : X ′ deconstructs a sequence X into its first element x
and the rest X ′. We write 〈〉 for the empty sequence. The power domain of set X is
denoted as P (X). The empty function is denoted as [], and for all inputs returns the

1:31

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Table 3 Result of applying the SAST component derived from our RASP IFC monitor on 13
test cases without hidden implicit flows from of Sayed et al. [39]. Each test case
contains an IFC policy violation, and a checkmark in column Violation detected
signifies that the static verification correctly detected this. Column Features lists
the set of notable features are present in each test program: if—if statement,
lp—for or while statement, ret—(conditional) return statement, thr—throw state-
ment, this—this expression, new—new expression, arr—arrays, oprop—access
or modification of object property, oproto—access or modification of prototype
property.

Test case [39] Features Violation detected

1 3

2 if 3

3 lp 3

4 lp 3

5 lp 3

6 lp, if, arr, oprop 3

7 lp, if, cb, oprop 3

14 oprop, this 3

15 oprop, this, new 3

17 oprop, this, new 3

19 ret, oprop, this, new 3

22 oprop 3

24 ret, oprop, oproto, this, new 3

28 lp, oprop 3

bottom element ⊥ of its range. The notation f [x 7→ y] denotes function extension and
yields a function f ′ such that:

f ′(z) =

¨

y if z = x ,
f (z) else.

We write the function restriction (or narrowing) of a function f to domain X as f |X ,
such that (f |X)(x) = f (x) if x ∈ X and (f |X)(x) = ⊥ else. Function joining happens
in a pointwise fashion. If t is the join operator for the range of the function, then
[x 7→ y1] t [x 7→ y2] = [x 7→ y1 t y2]. In particular,

⊔

{[x0 7→ y0], . . . , [xn 7→ yn]} =
[x0 7→ y0]t . . .t [xn 7→ yn].

D.1 Auxiliary Evaluation Functions and Relations

The evaluation rules for simple expressions are shown in figure 8. Function evalSimple :
Simple× Env× Store× Kont 7→ D evaluates three types of simple expressions in js0:
literals, references to either a global or non-global variable, and this expression.

1:32

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Table 4 Comparison the between number of states generated by (1PH) and our (2PH)
during the analysis of experimental applications using low (L) and high (H)
precision lattice configurations.

Program Precision
States generated

1PH 2PH

sequential
H 1899 1481
L 3839 1481

branches
H 2033 1560
L 4317 1560

iterative
H 1316 1636
L 1435 2445

safe
H 2122 1726
L 2383 2312

recursive
H - 1902
L 1199 2842

fib
H - 2111
L 4439 5052

passStrength
H - 11912
L 29991 22767

steal
H 10266 1673
L - 2692

E-lit

evalSimple(δ,ρ,σ,κ) = α(δ)

E-var
v ∈ Dom(ρ) a = ρ(v)

evalSimple(v,ρ,σ,κ) = σ(a)

E-global
v /∈ Dom(ρ) ω0 = σ(a0)

evalSimple(v,ρ,σ,κ) =ω0(v)

E-this

evalSimple([[this]],ρ,σ, (e, c, tex targ, athis,σ)) = {athis}

Figure 8 Evaluation rules for simple expressions.

Relation lookupProp looks up a property by traversing the prototype chain of an
object. If the property is not found in the chain, undefined is returned.

lookupProp(v, a,σ)

=

ω(v) if v ∈ Dom(ω)

{undef} if ω(“proto”) =∅
lookupProp(v, a′,σ) else

where ω= σ(a)
a′ ∈ω(“proto”)

1:33

Deriving Static Security Testing from Runtime Security Protection for Web Applications

Function evalCall applies a callable (or closure) (f ,ρ) to an argument tex targ in
a certain program state. We assume a single parameter and a single local variable
declaration. Therefore, evalCall extends the function’s static environment ρ and the
store σ by binding parameter to its argument value and the variable is hoisted to the
beginning of the function scope and bound to undefined.
The continuation κ is the execution context of the caller and parameter κ′ is the

execution context for the call itself. The stack store Ξ is extended by allocating the
caller stack (ι,κ) at stack address κ′. The function’s body evaluation occurs in the
static environment and store extended with the binding of the argument (ρ′ and σ′),
with an empty local stack 〈〉, and the execution context for the call κ′.

E-call
f = [[function (v){var vh; e}]]

ρ′ = ρ[v 7→ a] σ′ = σt [a 7→ tex targ, ah 7→ {undef}]
a = alloc(v,ρ,σ, ι,κ) ah = alloc(vh,ρ,σ, ι,κ) Ξ′ = Ξt [κ′ 7→ {(ι,κ)}]

evalCall((f ,ρ), tex targ,σ, ι,κ,Ξ,κ′) = ev(e,ρ′,σ′, 〈〉,κ′,Ξ′)

D.2 Transition Relation

We define the transition relation 7→ of our abstract machine using the functions defined
in the previous sections.

(7→)v State× State

Rules for transitions from evaluation states (ev) correspond with the different syntactic
cases, while rules for transitions from continuation states (ko) correspond with the
different kinds of continuations. Figure 9 and figure 10 show the transitions rules.

D.3 Program Evaluation

Function I : Exp → State injects an expression into the state-space. It returns an
initial evaluation state with empty environment, initial store, empty local continuation,
and the root context (κ0) as interprocedural continuation.

κ0 = (e,⊥,⊥, a0,σ0) σ0 = [a0 7→ []]

I (e) = ev(e, [],σ0,κ0,ε, [])

The initial store σ0 contains the global object at address a0, which we assume to be
available throughout the semantics.

If ς0 is the initial state for program e, then the evaluation of this program corresponds
with computing the transitive closure of 7→ starting from ς0.

κ0 = (e,⊥,⊥, a0,σ0) ς0 = I (e) ς0 7→∗ ko(tex t,_, 〈〉,κ0,_)

tex t ∈ E (e)

Our static analysis requires a finite model (i.e flow graph) for every possible (finite)
program. This can be guaranteed by parameterizing the abstract machine with an

1:34

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

E-simple
tex t = evalSimple(s,ρ,σ,κ)

ev(s,ρ,σ, ι,κ,Ξ) 7→ ko(tex t,σ, ι,κ,Ξ)

E-fun-call
tex t f = evalSimple(v,ρ,σ,κ) tex targ = evalSimple(s,ρ,σ,κ)

a f ∈ tex t f ω f = σ(a f) c ∈ω f (“call”) κ′ = (e, c, tex targ, a0,σ)

ev([[v(s)
︸︷︷︸

e

]],ρ,σ, ι,κ,Ξ) 7→ evalCall(c, tex targ,σ, ι,κ,Ξ,κ′)

E-assign
φ = as(v,ρ)

ev([[v=e]],ρ,σ, ι,κ,Ξ) 7→ ev(e,ρ,σ,φ : ι,κ,Ξ)

E-load
tex t r = evalSimple(s,ρ,σ,κ) a ∈ tex t r tex t ∈ lookupProp(v, a,σ)

ev([[s.v]],ρ,σ, ι,κ,Ξ) 7→ ko(tex t,σ, ι,κ,Ξ)

K-assign-var
v ∈ Dom(ρ) a = ρ(v) σ′ = σt [a 7→ tex t]

ko(tex t,σ,as(v,ρ) : ι,κ,Ξ) 7→ ko(tex t,σ′, ι,κ,Ξ)

K-assign-global
v /∈ Dom(ρ)ω= σ(a0)[v 7→ tex t] σ′ = σt [a0 7→ω]

ko(tex t,σ,as(v,ρ) : ι,κ,Ξ) 7→ ko(tex t,σ′, ι,κ,Ξ)

K-store
tex t r = evalSimple(s,ρ,σ,κ) a ∈ tex t r ω= σ(a)[v 7→ tex t] σ′ = σt [a 7→ω]

ko(tex t,σ, st(s, v,ρ) : ι,κ,Ξ) 7→ ko(tex t,σ′, ι,κ,Ξ)

K-ctr-return
(ι′,κ′) ∈ Ξ(κ) tex t ′ = {athis} ([[new v(s)]],_,_, athis,_) = κ

ko(tex t,σ, 〈〉,κ,Ξ) 7→ ko(tex t ′,σ, ι′,κ′,Ξ)

K-fun-return
(ι′,κ′) ∈ Ξ(κ)

ko(tex t,σ, 〈〉,κ,Ξ) 7→ ko(tex t,σ, ι′,κ′,Ξ)

Figure 9 Transition rules of the abstract machine 1.

address allocator that draws addresses from a finite set Addr. When both Var and Addr
are finite sets, then the entire state-space is finite as well and 7→, which is monotonic,
has a least fixed point.

1:35

Deriving Static Security Testing from Runtime Security Protection for Web Applications

E-fun
a = allocFun(f ,ρ,σ, ι,κ)

a′ = allocProto(f ,ρ,σ, ι,κ) σ′ = σt [a 7→ {ω f }, a′ 7→ {ωproto}]
ω f = [“call” 7→ {(f ,ρ)}, “proto” 7→∅,prototype 7→ {a′}] ωproto = [“proto” 7→∅]

ev([[function (v){var vh; e}
︸ ︷︷ ︸

f

]],ρ,σ, ι,κ,Ξ) 7→ ko({a},σ′, ι,κ,Ξ)

E-method-call
tex tthis = evalSimple(s0,ρ,σ,κ) tex targ = evalSimple(s1,ρ,σ,κ)

athis ∈ tex tthis tex t f ∈ lookupProp(v, athis,σ)
a f ∈ tex t f ω f = σ(a f) c ∈ω f (“call”) κ′ = (e, c, tex targ, athis,σ)

ev([[s0.v(s1)
︸ ︷︷ ︸

e

]],ρ,σ, ι,κ,Ξ) 7→ evalCall(c, tex targ,σ, ι,κ,Ξ,κ′)

E-ctr-call
tex t f = evalSimple(v,ρ,σ,κ)

tex targ = evalSimple(s,ρ,σ,κ) a f ∈ tex t f ω f = σ(a f)
c ∈ω f (“call”) athis = allocCtr(e,ρ,σ, ι,κ) ω= [“proto” 7→ω f (prototype)]

σ′ = σt [athis 7→ {ω}] κ′ = (e, c, tex targ, athis,σ)

ev([[new v(s)
︸ ︷︷ ︸

e

]],ρ,σ, ι,κ,Ξ) 7→ evalCall(c, tex targ,σ′, ι,κ,Ξ,κ′)

E-store
φ = st(s, v,ρ)

ev([[s.v=e]],ρ,σ, ι,κ,Ξ) 7→ ev(e,ρ,σ,φ : ι,κ,Ξ)

E-return
tex t = evalSimple(s,ρ,σ,κ)

ev([[return s]],ρ,σ, ι,κ,Ξ) 7→ ko(tex t,ρ,σ, 〈〉,κ,Ξ)

Figure 10 Transition rules of the abstract machine 2.

E Phase 2: A Posteriori Abstract Interpretation of Meta Operations

During the second phase, the appropriate meta program operations must be triggered
by exploring the output of the abstract interpretation from the first phase. This is
the responsibility of the Execution Explorer (EE) (cf. section 3.2). The semantics of
js0 therefore not only form an operational foundation for a static analysis of the base
program, but also for a result-oriented abstract interpretation of the meta code in this
second phase. Both objectives are fulfilled by representing the semantics of js0 as an
abstract machine that models evaluation in small steps.

Intercepting operations is relatively straightforward when looking at the transition
relation for js0 (cf. appendix D.2). Again, taking the interception of function calls as

1:36

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

an example, we can observe that rules E-fun-call, E-method-call, and E-ctr-call
are states in which a function is about to be called.

Upon detection of an operation that must be intercepted, the EE has to invoke the
associated meta operation on the handler object. However, instead of duplicating the
behavior of the run time meta operation by extending the abstract machine of the
static analysis, the EE relies on the meta operations defined on the run time handler
(i.e META). At this point, the EE will initiate an abstract interpretation invoking the
appropriate trap on the handler. This is possible because the base program already
included the code ofmeta program, and the base andmeta language are the necessarily
the same (because the EM is based in source code instrumentation). This forms the
crux of our approach.

E.1 Obtaining the Callable Object

Suppose ς is a state in which an operation vm must be intercepted. The EE first has
to obtain the handler object META from this state, which, as before, we assume is a
property of the global object. Rule Trap-Callable obtains a reference tex tM for the
handler object by looking up the [[META]] property on the global object with address a0.
The trap method is looked up as a property with name vm on the handler, resulting in
a reference tex tm to a function object. Finally, the value of the “call” special property
is returned.

Trap-Callable
tex tM ∈ lookupProp([[META]], a0,σς)

aM ∈ tex tM tex tm ∈ lookupProp(vm, aM ,σς)
am ∈ tex tm ωm = σς(am) cm ∈ωm(“call”)

cm ∈ trap(ς, vm)

E.2 Intercepting Base Program Operations and Invoking Traps

We define a relation handle that the EE uses when exploring the resulting base pro-
gram’s flow graph. Relation handle takes a state and a meta store, and invokes the
required trap if required. It returns the result of a trap invocation and a resulting meta
store. The meta store is required for maintaining meta state, and is explained below.
Our explanation here focuses on interception of operations and trap invocation, and
as an example we illustrate the rule for intercepting method calls and invoking the
corresponding apply trap.
Suppose ς is a state that, upon transition, results in a method call, i.e., transition

rule E-method-call in figure 10 applies to ς. From the specification of the EM the

1:37

Deriving Static Security Testing from Runtime Security Protection for Web Applications

apply trap has to be invoked. The EE encode this behavior by means of the rule
Handle-Method-Call for relation handle.
Handle-Method-Call

ev([[s0.v(s1)]], . . .) = ς cm ∈ trap(ς, [[apply]])
tex tthis = evalSimple(s0,ρ,σ,κ) tex targ = evalSimple(s1,ρ,σ,κ)
κm = (⊥, cm, tex targ, a0,σm) κr = (⊥,⊥,⊥, a0,σm) σm = σςσM

evalCall(cm, tex targ,σm, 〈〉,κr ,Ξ,κm) 7→∗ ko(tex tr ,σr , 〈〉,κr ,_) σ′M = σr |Rσr (aM)

(tex tr ,σ
′
M) ∈ handle(ς,σM)

Handle-No-Intercept
no intercept for ς

(⊥,σM) ∈ handle(ς,σM)

Rule Handle-Method-Call applies when state ς is effectively a method call,
which is the case when transitioning from an ev state with a method call as control
component. Relation trap is used to obtain the callable apply trap. The remainder of
the rule specifies the arguments for the call to the semantic evalCall function, which
actually invokes the trap. Like a regular function application in js0, the trap function
is called with an empty local continuation. The trap function is called with the empty
meta-continuation as if its body were top-level code. As a consequence, upon return
of the trap function there is no continuation possible and a final state is reached.
Side effects can occur during the abstract interpretation of the handler trap in

ς. Therefore, the EE maintains a meta store (σM) and propagates those changes
thorough the exploration of the base program’s flow graph states. Before the handle
apply call, the rules computes a new store σm for ς where the information of the meta
store σM is “merged” with the ς store. After the abstract interpretation a new meta
store σ′M is computed containing the possible side effects that happened during call.

Rule Handle-No-Intercept applies when no intercept is required for a state, i.e.,
when no other rules for handle apply. It returns an absent trap invocation result ⊥ and
the unmodified meta store.
Function R : P (Addr) ×P (Addr) × Store → P (Addr) computes the set of all ad-

dresses that are reachable from a given root set of addresses. In general terms, the
overloaded function T : X →P (Addr) returns the set of addresses directly referenced
by components in the state space.

T ((f ,ρ)) = T (ρ)
T (a) = {a}
T (ω) = T (Range(ω))

T (ρ) = Range(ρ)

T (δ) =∅

T ({x0, . . . , xn}) =
⋃

i∈0..n

T (x i)

Reachable addresses
a′ ∈ T (σ(a))

a T ,σ a′
a ∈ T (tex t) a ∗T ,σ a′

a ∈ Rσ(tex t)

1:38

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

Handle-Property-Read
ev([[s.v]], . . .) = ς cm ∈ trap(ς,get)

tex tthis = evalSimple(s,ρ,σ,κ) tex tv = evalSimple(v,ρ,σ,κ)
κm = (⊥, cm,⊥, a0,σm) κr = (⊥,⊥,⊥, a0,σm) σm = σςσM

evalCall(cm, [tex tthis, tex tv],σm, 〈〉,κr ,Ξ,κm) 7→∗ ko(tex tr ,σr , 〈〉,ε,_)
σ′M = σr |Rσr (aM)

(tex tr ,σ
′
M) ∈ handle(ς,σM)

Handle-Property-Write
ev([[s0.v=s1]], . . .) = ς cm ∈ trap(ς, set)

tex t0 = evalSimple(s0,ρ,σ,κ) tex t1 = evalSimple(s1,ρ,σ,κ)
κm = (⊥, cm, tex t0, a0,σm) κr = (⊥,⊥,⊥, a0,σm) σm = σςσM

evalCall(cm, [tex t0, v, tex t1],σm, 〈〉,ε,Ξ,κm) 7→∗ ko(tex tr ,σr , 〈〉,ε,_)
σ′M = σr |Rσr (aM)

(tex t r ,σ
′
M) ∈ handle(ς,σM)

Handle-New-Obj-Expressions
ev([[new v(s)]], . . .) = ς cm ∈ trap(ς, construct)

tex t0 = evalSimple(v,ρ,σ,κ) tex t1 = evalSimple(s,ρ,σ,κ)
κm = (⊥, cm, tex t0, a0,σm) κr = (⊥,⊥,⊥, a0,σm) σm = σςσM

evalCall(cm, [tex t0, tex t1],σm, 〈〉,κr ,Ξ,κm) 7→∗ ko(tex tr ,σr , 〈〉,ε,_)
σ′M = σr |Rσr (aM)

(tex tr ,σ
′
M) ∈ handle(ς,σM)

Handle-Var-Assignment-Expressions
ev([[v=e]], . . .) = ς cm ∈ trap(ς,write)

tex t0 = evalSimple(e,ρ,σ,κ) tex tM ∈ lookupProp([[META]], a0,σς)
κm = (⊥, cm, tex targ, a0,σm) κr = (⊥,⊥,⊥, a0,σm) σm = σςσM

evalCall(cm, [v, tex t0],σm, 〈〉,ε,Ξ,κm) 7→∗ ko(tex tr ,σr , 〈〉,ε,_) σ′M = σr |Rσr (aM)

(tex tr ,σ
′
M) ∈ handle(ς,σM)

Figure 11 Additional rules for trapping program operations during the second static analysis
phase.

Figure 11 shows the other rules for trapping operations which are specified in a
similar fashion. Rules Handle-Property-Read and Handle-Property-Write handle
object property access and updates, respectively. Rule Handle-New-Obj-Expressions
handles new Obj() expressionsm and rule Handle-Var-Assignment-Expressions
handles variable assignment.

E.3 Execution Exploration while Maintaining Meta State

For stateless meta code it suffices to visit all explored states once in an unspecified
order and passing them to relation handle, ignoring the meta store from that relation. If,

1:39

Deriving Static Security Testing from Runtime Security Protection for Web Applications

for a particular state, the value returned by handle subsumes the abstracted META.HALT,
then this indicates that, according to the static analysis, a base program operation
was intercepted that should halt the execution.

In case the meta code is stateful, then the meta state has to be maintained as well.
In this case, detecting traps that halt the execution of a program must be expressed
as a fixed point computation over the flow graph. Let (,→)w D× State× Store× D×
State × Store be the relation that operates on triples representing a state and the
result of “handling” a state through handle, i.e., a meta value and meta store. The
single rule below describes a transition from a reachable triple for one state to another
triple for its successor state based on an edge in the flow graph and the result of
handling the successor state. The initial triple for ,→ is the initial state ς0 of the flow
graph and the result of handle(state0).

EE-Trans
ς −→ ς′ ∈ G (e) (tex t ′r ,σ

′
M) ∈ handle(ς′,σM)

(_,ς,σM) ,→ (tex t ′r ,ς
′,σ′M)

Computing the transitive closure of ,→ then enables detecting states for which a
trap returns META.HALT.

(tex t0,σ0) ∈ handle(ς0, [])
(tex t0,ς0,σ0) ,→∗ (tex tr ,ς,σM) α([[META.HALT]])v tex tr

halt(ς)

1:40

Angel Luis Scull Pupo, Jens Nicolay, and Elisa Gonzalez Boix

About the authors

Angel Luis Scull Pupo Angel Luis Scull Pupo is a PhD Student
at the Software Languages Lab (SOFT) of the Vrije Universiteit
Brussel (VUB) in Belguim. He obtained his Master in Applied
Mathematics and Informatics to Administration in 2015 from the
Universidad de Holguín (Uho). You can contact him at angel.luis.
scull.pupo@vub.be.

Jens Nicolay Jens Nicolay is a Professor at the Software Languages
Lab (SOFT) of the Vrije Universiteit Brussel (VUB) in Belgium. His
doctoral research and work as a professor has mainly focused on
program analysis with security as an important application. You
can contact him at jens.nicolay@vub.be.

Elisa Gonzalez Boix Elisa Gonzalez Boix is an Associate Professor
at the Software Languages Lab (SOFT) of the Vrije Universiteit
Brussel (VUB) in Belgium. She obtained her Master in Informatics
Engineering in 2004 from the Universitat Politècnica de Catalunya
(UPC) and her PhD in Sciences in 2012 from the VUB. Since 2014,
she leads a group on concurrent and distributed systems, studying
programming language technology and dynamic software tools
like debuggers. You can contact her at egonzale@vub.be.

1:41

mailto:angel.luis.scull.pupo@vub.be
mailto:angel.luis.scull.pupo@vub.be
mailto:jens.nicolay@vub.be
mailto:egonzale@vub.be

	1 Introduction
	2 Motivation
	2.1 Running Example
	2.2 Challenges for RASP and SAST Integration

	3 Deriving SAST from RASP
	3.1 RASP through Metaprogramming
	3.2 Deriving SAST from RASP Using a Two-Phase Abstract Interpretation Approach

	4 Phase 1: Static Analysis of Base Programs
	4.1 Syntax of js0
	4.2 Semantics of js0

	5 Phase 2: Static Analysis of Meta Operations
	5.1 Intercepting Base Program Operations and Invoking Traps
	5.1.1 Obtaining Trap Methods
	5.1.2 Executing Trap Methods

	5.2 Maintaining Analysis State

	6 Evaluation
	6.1 Evaluation of Applicability
	6.1.1 Access Control Policies
	6.1.2 Information Flow Control Policies

	6.2 Evaluation of Performance and Precision
	6.2.1 Precision
	6.2.2 Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Access Control Policies
	B Information Flow Control Policies
	C Comparison of Number of States Generated by 1PH and Our 2PH Approaches
	D Phase 1: Semantics of js0
	D.1 Auxiliary Evaluation Functions and Relations
	D.2 Transition Relation
	D.3 Program Evaluation

	E Phase 2: A Posteriori Abstract Interpretation of Meta Operations
	E.1 Obtaining the Callable Object
	E.2 Intercepting Base Program Operations and Invoking Traps
	E.3 Execution Exploration while Maintaining Meta State

	About the authors

